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Application of Functional Link Neural Network to
HVAC Thermal Dynamic System Identification
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Abstract—Recent efforts to incorporate aspects of artificial
intelligence into the design and operation of automatic control
systems have focused attention on techniques such as fuzzy
logic, artificial neural networks, and expert systems. The use of
computers for direct digital control highlights the recent trend
toward more effective and efficient heating, ventilating, and air-
conditioning (HVAC) control methodologies. Researchers in the
HVAC field have stressed the importance of self learning in
building control systems and have encouraged further studies in
the integration of optimal control and other advanced techniques
into the formulation of such systems. Artificial neural networks
can also be used to emulate the plant dynamics, in order to
estimate future plant outputs and obtain plant input/output
sensitivity information for on-line neural control adaptation. This
paper describes a functional link neural network approach to
performing the HVAC thermal dynamic system identification.
Methodologies to reduce inputs of the functional link network
to reduce the complexity and speed up the training speed will be
presented. Analysis and comparison between the functional link
network approach and the conventional network approach for
the HVAC thermal modeling will also be presented.

Index Terms—Functional link, HVAC, intelligent control, neu-
ral network, system identification.

I. INTRODUCTION

H EATING, ventilating, and air-conditioning (HVAC) sys-
tems are a permanent part of everyday life in our

industrialized society. A mere 1% improvement in energy
efficiency of these systems translates into annual savings of
millions of dollars at the national level [1]. The evolution
of microprocessor technology has significantly increased the
viability of many computationally intensive control algorithms.
The use of computers fordirect digital control (DDC) high-
lights the recent trend toward more effective and efficient
HVAC control methodologies [2], [3]. Several studies related
to optimal control of HVAC systems have emerged since the
early 1980’s [2], [4]–[8].

The application ofintelligent control to HVAC systems is
proposed by Shoureshi and Rahmani in [7]. A fuzzy optimal
controller is used for control decisions in which approximate
reasoning is required, such as the estimation of human com-
fort. This work is incorporated into the development of an
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Fig. 1. Forward system identification approach.

intelligent building system (IBS) which uses a supervisor and
a coordinator to set control policies for local controllers [9].
The authors stress the importance of self learning in building
control systems and encourage further studies in the integration
of optimal control and other advanced techniques into the
formulation of such systems.

The nonlinear functional mapping properties ofneural net-
works are central to their use in identification and control
[10]–[14]. Although a number of key theoretical problems
remain, results pertaining to the approximation capabilities of
neural networks demonstrate that they have great promise in
the modeling of nonlinear systems. An important question in
system identification is whether a system under study can be
adequately represented within a given model structure [10].
In the absence of such concrete theoretical results for neural
networks, it is usually assumed that the system under consid-
eration belongs to the class of systems that the chosen network
is able to represent. Two system identification techniques are
now introduced:forward modelingand inverse modeling.

The procedure of training a neural network to represent
the forward dynamics of a system is often referred to as
the forward system identificationapproach [10]. A schematic
diagram of this process is shown in Fig. 1.

The neural network is placed in parallel with the system, and
the error between the system outputsand network outputs

is used to train the network. This represents a classical
supervised learningproblem for which the teacher (i.e., the
system) provides target values (i.e., system outputs) directly in
the output coordinate system of the learner (i.e., the network
model) [15].

In an inverse system identificationapproach, a network is
trained in an effort to model the inverse of the plant mapping
[10]. One of the simplest approaches, known asdirect inverse
system identification, is shown schematically in Fig. 2.
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Fig. 2. Direct inverse system identification approach.

A synthetic training signal is introduced to the system,
and the system output is used as the input to the network.
The network output is compared to the training signal, and
this error is used to train the network.

The inverse modeling structure shown in Fig. 2 tends to
force the network to represent the inverse of the plant, but there
are potential drawbacks to this approach. The training signal
must be chosen to sample over a wide range of system inputs,
and the actual operational inputs may be hard to definea priori
[15]. This point is strongly related to the concept of persistent
excitation discussed in the adaptive control literature. A second
drawback is that an incorrect inverse model can be obtained if
the nonlinear system mapping is not one to one. An approach
called specialized inverse modelinghas been proposed in an
effort to overcome these problems. The details of this approach
can be found in [16]. The neural network identification models
can be used in the adaptive control of unknown nonlinear
plants.

The Exploratory and Applied Research Division of the Elec-
tric Power Research Institute (EPRI) has been supporting the
authors of this paper to investigate and develop methodologies
for intelligent control of an HVAC system using artificial
neural network and fuzzy logic technologies. In the project,
fuzzy logic is used as a tool for initializing a neural controller
[12], [17], [18]. The parameters of this controller are then
adjusted on line in an effort to minimize a prespecified cost
index. Artificial neural networks are also used to emulate
the plant dynamics, in order to estimate future plant outputs
and obtain plant input/output sensitivity information. This
paper focuses on the design and development of the HVAC
thermal dynamic system identification using afunctional link
neural network based on the forward modeling approach.
Methodologies to reduce inputs of the functional link network,
minimize the complexity, and speed up the training speed will
be presented. Analysis and comparison between the functional
link network approach and conventional network approach for
the HVAC thermal modeling will also be presented.

II. HVAC SYSTEM MODELING AND

CONTROL PROBLEM DEFINITION

The single-zone thermal system model shown in Fig. 3 is
chosen for our analysis [4]. The system represents a simpli-
fication of an overall building climate control problem, but
retains the distinguishing characteristics of an HVAC system.

Fresh air enters the system at temperature and vol-
umetric flow rate and is mixed with recirculated air at
temperature and flow rate Air with temperature

TABLE I
HVAC SYSTEM VARIABLES AND PARAMETER VALUES

and flow rate passes through the heat exchanger,
where an amount of heat given by (positive for heating
and negative for cooling) is exchanged with the air. The air
and heat exchanger are assumed to have some capacitance, so
that the resulting temperature has a transient response. In
addition, perfect mixing in the heat exchanger is assumed, so
that the air temperature within and exiting the heat exchanger
is

After being conditioned in the heat exchanger, the air passes
into the thermal space. The capability of applying a space
thermal load is included as The temperature of the
space has a transient response due to the capacitance of the
air and the thermal space. Perfect mixing in the thermal space
is assumed, so that the air temperature within and exiting the
space is Air leaving the thermal space is drawn through
the fan, after which a portion may be recirculated to mix with
the fresh air and the remainder may be exhausted from the
system.

The conditions within the system are regulated by a con-
troller that provides signals to control the heat input in the
heat exchanger, the volumetric airflow rate, and the position
of the return air damper. The controller signals are depicted
as thin lines and are denoted by and The signal

denotes the temperature in the thermal space, while
denotes a cost associated with the performance of the system.
Thermal losses between components are neglected and, thus,
temperatures and are equal to the temperature
of the air exiting the thermal space. In addition, infiltration
and exfiltration effects are neglected and, thus, flow rates at
locations2–4 are equal to The humidity of the air is not
considered, and transient effects in the flow splitter, mixer,
fan, and heat exchanger are neglected.

The system equations are derived from the conservation of
energy principles and are given by

(1)

(2)

where the parameters and variables are as described in Table I.
A lumped capacitance assumption is made, implying that

the capacitance of the heat exchanger and the thermal space
are accounted for in the effective heat exchanger and thermal
space volumes. Statements of the conservation of mass and
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Fig. 3. HVAC system model.

energy applied at the flow mixer yield

(3)

where

(4)

is the system-to-fresh-air volumetric flow-rate ratio. For
there is no recirculation and a once-through system is

considered. The position of the return air damper as described
by is obtained from the values of and which are
computed explicitly by the controller.

Denoting and making the appropriate
substitutions in (1) and (2) yields

(5)

(6)

where For the purposes of comfort and
hygiene, the minimum allowable value of the outside
air volumetric flow rate, is set at 0.0354 ms [19]. The
equilibrium states of the system are

(7)

Since this is an underdetermined case, an infinite number
of combinations of and provide the same steady-state
output and the system does not possess a unique inverse. The
ranges of the control variables are defined as

W (8)

and

m s (9)

The value of can never exceed the value of , due
to conservation of mass principles. Thus, the controller must

command values for these inputs that satisfy the following
condition:

(10)

The operating ranges of the system states and outside air
temperature are assumed to be

C or F (11)

C or F (12)

and the range of the reference temperature is assumed be

C or F (13)

In order to most effectively use the controller must
have information as to whether the outside air temperature
is higher or lower than the desired room temperature. Thus,
an additional input variable called is introduced, where

(14)

It is assumed that can be measured accurately with an
inexpensive temperature sensor.

In order to determine the ranges of the changes in the states
over a sample period of s, the state equations (5)
and (6) are integrated from 0–10 s, using 1000 random initial
conditions satisfying (8)–(12). Histograms for and
are shown in Fig. 4(a) and (b), respectively.

Based on the extreme values of and shown in
Fig. 4(a) and 4(b), the ranges for the changes in the states are
assumed to be

C (15)

and

C (16)

The range of control signals using assumptions (11)–(13), (15),
and (16) will be used to train the neural network to learn the
HVAC thermal dynamics.
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(a)

Fig. 4. (a) Histogram of�x1: (b) Histogram of�x2:

III. N EURAL IDENTIFICATION SCHEME

As mentioned previously, the objective of this paper is to
design a neural controller and develop a method for adapting
the controller on line, in order to minimize a prespecified cost
index. Neural networks are also used for system identification,
in order to provide plant sensitivity information that is used
to adapt the controller.

A. The Functional Link Concept

Since neural networks are used for adaptive identification
and control, the learning capabilities of the networks can
have significant effects on the performance of the closed-loop
system. If the information content of data input to a network
can be modified in an appropriate way, the network will be
able to more easily extract the salient features of the data.
This is the motivation behindfunctional link mapping [20].
Functional links basically expand the original input space into
higher dimensions in an attempt to reduce the burden on the
training phase of the neural networks. The functional link acts
on an element of an input vector or on all the input vectors
by generating a set of linearly independent functions, then
evaluating these functions with the pattern as the argument. In
one sense, no newad hoc information has been inserted into
the process; nonetheless, the representation has definitely been
enhanced, and separability becomes possible in the enhanced
space. Thus, both the training time and training error of the
network can be improved. A common example of such a

mapping is given by

(17)

which is sometimes referred to as atensormodel [20].

B. Neural Identification Architecture

In order to estimate the future outputs of the thermal
system and obtain gradient information for the adaptation
scheme, a neural identification model is developed to mimic
the dynamics of the system. The forward modeling scheme
discussed previously is used. Consider the multi-input, single-
output nonlinear system:

(18)

For many systems, the change in any state over one sample
period in the desired operating region is usually small com-
pared to the magnitude of that state. For these systems, the
neural identifiers are more effective if they are trained to learn
the changes in the states as defined by
rather than the scaled values of the states at time index
Training a neural identifier to learn is basically the
same as training the network to learn the system dynamics
without the need to worry about the initial state conditions,
because the current state will be added to to provide

This approach can significantly reduce the network size,
because the network does not need to learn all possible state
condition, but only the dynamics itself. In addition, training
the neural identifier to learn is more accurate than to
learn For example, the operating range of is [10,30],
as shown in (12), while the operating range of is [ 1.5,
1.5] as shown in (16). With the same network structure, the
operating range to be covered between these two training
schemes is

Even though the training of a neural network depends on
many factors, based on the above analysis and assuming that
other factors are held constant, we can expect the accuracy
of training the neural identifier to provide to be on
the order of seven times compared to the neural identifier
to provide A generic neural identifier depicting this
approach is shown in Fig. 5.

The first-order dynamics are emulated for each state by
separate networks, so that the delayed effects of the inputs
on the outputs can be captured accurately. For the HVAC
system, since then is not needed. In the absence
of a mathematical model, it would be assumed that each state
could be measured, since input/output patterns for the states are
needed to train the neural identifiers. For the HVAC system,
the current system states and inputs are mapped to the inputs
of and by (17). The input is
expanded according to the tensor model in (17):
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Fig. 5. A generic neural identifier.

Fig. 6. Typical training error plots for the conventional networkNc and the
functional link networkNfl:

Then, the functional link of the input becomes

We feed the same input information to all the neural
identifiers Thus,

(19)

The neural identifiers are trained off line to learn the system
dynamics. One thousandtraining patternsare generated using
random states and inputs in the assumed ranges. The number
of training patterns is chosen so that the data set is statistically
significant [21]. The change in each state is computed by
integrating the state equations over one time step. Typical
training error plots for two different networks learning the
quantity are shown in Fig. 6. One is theconventional
network which has inputs 12
hidden-layer neurons, and one output node. The other is a
functional link network which has inputs given by (19),
two hidden-layer neurons, and one output node.

Fig. 6 clearly shows that trains faster and exhibits a
slightly smaller final error. Further, uses a total of 59
network weights, while uses a total of 97. Using (19)
as the input for each identifier results in faster training with
fewer network weights. Training speed is important for this

TABLE II
FINAL WEIGHTS OF Nfl CONNECTING ALL INPUTS

TO ONE OF THE HIDDEN-LAYER NEURONS

application, since network weights are adjusted on line, in
order to adapt to the changes in the system dynamics.

Although the use of (19) decreases the number of weights
needed for the identifiers, the increase in the number of inputs
results in an increase in the computational complexity of the
adaptation method. This is because the sensitivity of plant state

with respect to the plant inputs is estimated by

(20)

where maps the inputs, states, and outside temperature at
time step to state at time step The dimensions
of the factors on the right-hand side of (17) increase as the
dimension of increases.

There are at least two methods that can be used to justify
using a reduced set of inputs. We can usea priori knowledge
of the system dynamics based on the mathematical model
and eliminate inputs that are redundant or unnecessary. For
example, input has a negligible effect on
Another method involves training the networks using all
inputs, then deciding which inputs to include based on the final
network weight values. To illustrate this approach, magnitudes
of the final weight values of from the previous example
are listed in Table II. For clarity, only the weights that connect
input neurons to one of the hidden-layer neurons are listed.

The weights that connect all inputs to the second hidden-
layer neuron are similar in magnitude to those shown in Table
II. It is clear that inputs 15, 16, 20, and 21 have by far the
largest effects on the output. These inputs are, in fact, the
terms in (19) that contribute linearly to the system function
given by (18). Although this network is trained to learn the
discretemapping
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Fig. 7. State trajectories generated for testing.

Fig. 8. Actual and estimated values of�x1:

the system varies slowly with respect to the sample period
and, thus,

Estimates of and obtained from the
neural identifiers are plotted in Figs. 8 and 9, along with the
actual values of the changes in states.

Since all network inputs are normalized (mapped to [1,
1]), magnitudes of weights connecting hidden-layer neurons
to the output neuron are on the order of 0.5 and, because
only two neurons are used in the hidden layer, the effects of
inputs having very small connection weights (i.e.,0.002) can
be considered negligible and can be eliminated. This method
may be more appealing, since information about which inputs
should be used is obtained via network training and noa
priori information is needed. After eliminating inputs with
connection weights less than 0.002 in magnitude, the network
can be retrained and the network weights can be evaluated
again. In this case, repeating this process results in a five-input
network for estimating and a two-input network
for estimating

The trained networks are tested by simulating the system
for 500 samples using input values computed by

W

m s

m s (21)

Fig. 9. Actual and estimated values of�x2:

The input signals are chosen so that the resulting state tra-
jectories exhibit rich dynamic behavior. The resulting state
trajectories are plotted in Fig. 7.

The plots in Figs. 8 and 9 suggest that the identifiers are able
to accurately predict the changes in states and, thus, provide
accurate values of the states at the next time step.

IV. CONCLUSION

This paper has presented the application of conventional
and reduced-ordered function link neural networks for HVAC
thermal dynamic system identification. A single-zone thermal
system model was chosen for our analysis. The system rep-
resents a simplification of an overall building climate control
problem, but retains the distinguishing characteristics of an
HVAC system. The use of neural networks for identification
and control provides a means of adapting a controller on line
in an effort to minimize a given cost index. The identification
networks demonstrate the capacity to learn changes in the plant
dynamics and to accurately predict future plan behavior.
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