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1. Introduction. One might say, with some justice, that projective geometry,

Ain sd far as present day research is concerned, has split into two quite separate
fields. On the one hand, the researcher into the foundations of geometry tends

to regard Desarguesian spaces as completely known. Since the only possible non-
Desarguesian spaces are planes, his attention is restricted to the theory of
projective planes, especially the non-Desarguesian planes. On the other hand.stand
all those researchers - and especially, the algebraic geometers - who are unwilling
to be bound to two-dimensional space and uninterested in permitting non-Desar=-
guesian planes to assume an exceptional role in their theorems. For the latter
group of researchers, there are no projective spaces except tﬁe Desarguesian
spaces.

In the present paper we present a construction which, we hope, may do just a
little to span the chasm between the two fields of projective geometry. Speci-
fically, we show how to construct a class of non~Desarguesian planes (which occur
most naturally in affine form) in terms of the elements (certain points and cer-
tain projective subspaces) of (Desarguesian) projective spaces of even dimension.

The construction is given in Section L.
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g The researcher in the theory of planes will want to know what planes we have
constructed. There are two answers: (1) Only translation planes. (2) All
finite translation planes. and, more specifically, precisely those translation
planes coordinatized by a right Veblen-Wedderburn system which is finite-
dimensional over its left-operator skew-field. See Sections 6, 7; in particular,
Theorem T.l.
Since this paper has two authors, the following remarks may be appropriate:
The present construction hinges upon the concept of a spread (of an odd-dimensional
projective space; see Section 3.) This concept was introduced by Bruck, with the
construction of planes in mind (_and as a natural sequel to the concluding part of
his 1963 lectures to the Saskatoon Seminar of the Canadian Mathematical Congress;

see Bruck [1]) but with a different objective. The construction presented here

. is entirely due to Bose and evolved, essentially, from comsidering spreads of
3-dimensional projective space (which are maximal sets of skew lines) in terms of
5=-dimensional projective space, And, finally, the analytical detalls of the paper,
including the precise relation with translation planes, were supplied by Bruck.

The first example of a non~Desarguesian tramslation plane was given in 1907
by Veblen and Wedderburn [2]. The first examples of spreads (in the sense used
in this paper) seem to have been given in 1945, 1946 by C, Radhakrishma Rao [3a,
3b]. (Equivalent examples are given in Section 3. Fowever, in [3b], Rao also
gives a solution of the original Kirkman Schoolgirl Problem by partitioning the
35 lines of projective 3-space over GF(2) into 7 disjoint spreads, each
spread consisting of 5 skew lines containing, by threes, the 15 points of space.)
The first published use of spreads for the construction of non-Desarguesian planes

is that in the present paper,



. 2. Projective spaces in terms of vector spaces. Since most algebraists
are more familiar with vector spaces than with projecfive spaces, we wish to
recall a classical representation. This representation is thoroughly studied, for
example, in Baer [4].

Let F be a skew-field (that is, an associative division ring vwhich may or
may not be commutative) and let V be a vector space with F as a ring of (say)
left-operators. The dimension of V over F may be finite or infinite but
(to avoid trivialities) should be at least 3. From V we define a projective
space = = Z(V/F) 1in the following manmer: A point (or O-dimensional projective
subspace) of & is a l-dimensional vector subspace of V over F. More generally,
for each non-negative integer s, an s~dimensional projective subspace of Z is
an (s+1)-dimensional vector subspace of V over F. And incldence in I 1is de-

. fined in terms of the containing relation in V. The axiom of Desargues is a
theorem of Z. The axiom of Pappus is valid in X precisely when F 1is a field.

Conversely, if 4 2 2 1is a'yositive integer and if ¥ is a d-dimensional
projective space (and if = satisfies the axiom of Desargues in case d=2) then
there exists a skew-field F, uniquely defined to within an isomorphism, and a
(&+1)-dimensional vector space V over F such that £ 1is isomorphic to
=(v/F).

Since, by the Theorem of Wedderburn, the only finite skew-fields are the
Galois fields GF(q), éne for each prime-power ¢q, the only finite d-dimensional
Desarguesian projective spaces are the projective spaces pa(d, q), one for
each 4 Z 2 and each prime-power g, where PG(d,q) is defined as above, with

V (a+1)-dimensional over GF(q).
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3. Spreads. Let = be a (finite or infinite) projective space of odd
dimension 2t-l., Let S be a collection of (t-l)-dimensional projective sube
sapces of Z. We call S a spread of I provided that each point of ¥ is con-
tained in one and only one member of I. =~ Note that, if t=1, I 1is a projec-
tive line and I has precisely one spread, namely the collection comsisting
of all the points of Z.

In the special case that I = PG(2t-1,q), a simple calculation shows that
a spread of I 1s merely a collection of 1 + qt _distinct (t=1)-dimensional
projective subspaces which are EEEX in the sense that no two héve a common point.

The existence of a spread of PG(2t-1),q) may be shown quite simply in
terms of the representation described in Section 2. Set L = GF(qgt). Let
K = GF(q?) be the unique subfield of L of indicated order and let F = GF(q)
be the unique subfield of L and K of indicated order. Then L is a 2-
dimensional vector space over K, and K 1is a te-dimensional vector space over F,
and L is a (2t)-dimensional vector space over F. Hence, in the sense of
isomorphism, PG(2t-1,q) = =(L/F) and PG(1, qt) = 2(L/K). The set, S, of all
l-dimensional vector subspaces of L over K is also a set of (some but not
all) t-dimensional vector subspaces of I over F. And S is, simultaneously,
a spread of PG(z, qt) and a spread of PG(2t-1, q). - As we shall see later, not
all spreads of PG(2t-1l, q) can be obtained in this menner if t > 1.

Before turning to our construction we should like to raise & point which may
be of some interest. Again let Z be a (finite or infinite) projective space
of odd dimension 2t~1, but now assume that t 1is at least two. Call a collec-
tion, S, of (t-l)«dimensional projective subspaces of I a dual spread of Z
provided that eachv (2t-2)-dimensional projective subspace of I contains one
and only member of S, If & is finite, it 1s easy to see that the class of all
spreads of I i1s identical with the class of all dual spreads of Z. It 1s not

obvious whether the two classes need coincide when I is infinite.
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4. The construction. Let * be a positive integer. What we have to say

will be valid for t=1 but will only be new for t > 2.
Let = ©be a projective space of even dimension 2t, and let IZ' %be a fixed
projective subspace of I 'of dimension 2t-1., PFurthermore, let S be a fixed

spread of Z'. We construct a system

an = =(, %', 8) ,

(which will turn out to be an affine plane) as follows:

The points of = are the points of £ which are not in .

The lines of = are the t-dimensional projective subspaces of X which
intersect £' in a unigue member of S, and are not contained in Z?,

The incidence relation of =z i1s that induced by the incidence relation of

Theorem 4.1. The system = = n{(Z, &', S} 1is an affine plane.

Corollary. If £ =PG(2t, q) . then = =n(Z, =!, S) is an affine plane

of order qt.

Remark. If t=1, so that I 1is a projective plane (not necessarily Desar-

guesian) and I' is a line of I, then S is the éet of all points of Z' and
u(z, Z', 8) is isormorphic to the affine plane obtained from I by deleting
the line X' and the point-set S. On the other hand, if t > 1, then Z 1is a
Degarguesian space and the construction of = seems to be new.

Proof. We may assume t > 1, so that I is a Desarguesian space.

First let P be a point of n and let J be s member of 8. Then, since
J is a (t-l)-dimensional projective subspace of I which is contained in Z!
and since P is a point of I which is not contained in ZI', there exists one
and only one t-dimensional projective subspace, L, of ZE. which contains both

J and P. Moreover, L (VEZ' = J. Hence L is a line of x. Thus: there is
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one and only one line, L, of x containing a given point P of =x and a given

member, J, of S.

Bext let Ll’ L2 be two distinct lines of xn, If Ll’ L2 contain the same
member, J, of S, then, as we have just shown, L., L. can have no point of =

1’ 2
in common. That is: +two distinet lines of =x which contain the same member,

J, of S are parallel. Next suppose that Li/”\ ot o= Iy {i =1, 2), vhere

Jl, J, are distinct members of S. In this case, Jl M J2 is empty, and

2
hence Ll{f) L2 hag no point in common with £!', However, since Ll’ L2 are
t-dimensional projective subspaces of the (et)-dimensional projective space I,
then Llfﬂ\ L2 contains at least one point, P, of X. And P, not being in Zi;

is a point of =n. Thus: +two lines of = which contain different members of

S have at lesst one common point of =n., These two facts lead at once to the

parallel axiom: If T 1s a line of = and 1f P 1is a point of x which is

not on L, then there exists one and only one line, L', of = which contains

P and has no point of =n in common with L.

Finally, let P, Q be distinct points of s, Then the line, PQ, of I is
not contained in the (2t-1)-dimensional projective subspace L' of . Since
L has dimension 2t, PQ hes a unique point, R, in common with Z'. Since S
is a spread of L', R 1is contained in one and only one member, J, of S. If
there exists a line, I, of = which contains P and Q, then 1 must contain
R and hence J. On the other hand, if L 1is the unique line of = which con-
tains P and J, then L contains R and hence L contains PR = PQ. There-

fore L contains P and Q. Thus: if P, Q are two distinct points of =,

then P and Q are contained in one and only one line, L, of =,

In order to complete the proof of Theorem 4,1, we need only show that each
line of =n contains at least two distinct points of =, But this is sufficiently

obviocus.
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In the case of the Corollary, we need only compute the number, n, of
1-dimensional vector spaces of a (t+l)~-dimensional vector space, L, over 6F(q),

which are not in a specified t-dimensional vector subspace, J, of L. Clearly

t+1 t

n(g-1) = q ~ -4 )
whence n = qt. Thus, if Z = PG(et,q) _ each line of = = n(Z, &', q) has pre=-
cisely n = qt distinct points. This proves the Corollary.

We may imbed the affine plane = = n(Z, =', S) in a projective plane ¥
in the familiar manner. Since each member, J, of S corresponds to a class of
parallel lines of =, namely those containing J, we adjoin each such J to =x
as & "point at infinity". And we adjoin the spread, S, to x as a "line at
infinity". Hence the corresponding projective plane x* has a perfectly concrete
representation in terms of our construction.

It (as will turn out to be the case) some of our planes = are not Desar-
guesian (for + > 1), the main advantage of the present construction is that it
exhibits non-Desarguesian projective planes in the realm of classical Desarguesian
projective geometry. In particular, the various planes = may be related to the
group of all collineations of Z. There is, however, a practical question which

now must be answered: How extensive is the present construction? In order to

glve a complete answer we must relate our work to the known thedry of projective
planes, and for this purpose we must make rather more use of coordinates than we

would choose under other circumstances.

5. An affine representation of spreads. Let t 2 2 be a positive integer
and let ZI' be a projective space of odd dimension 2t-l. Then, in the sense
of Section 2, Z! = Z(W/F) where F 1s a skew~-field and W is a (2t)-dimensional
vector space over F as a ring of left operators. We shall study the spreads

of Z! which contain a specified (t-1) dimensional projective subspace of Z'.



This subspece we shall designate by J(=).
Since J(») is a t-dimensional vectcr subspace of the (2t)-dimensional vec-

tor space W over F, we may choose an arbitrary basis

e e - e
1? T2t et g

of J(m) over F and complete this to a basis of W over F by adjoining +t

additional basis elements

ei, eé, saey e% .
Thus
(5-1) J(°°) = {el’ €ps e e‘t} P)
(5-2) W = {el, 62, [ XNE] et, ei, eé, eve) e% } .

Once the bases have been chosen, we define a one-to-one mapping X =—> x' of

J(») upon a (t-dimensional vector) subspace of W by the following rule: If
t
(5-5) _ X = L X

where the x, are in F, then

T
T t
(5.4) x'= L x ef .
Next suppose that J 1is any (t-l)-dimensional projective subspace of Z!,
Then J is a t-dimensional vector subspace of W. A necessary and sufficient

condition that J(») and J have no point in common is that J(=) /ﬁ)J consist

of the zero~vector alone:

(5.5) I T = {0} ’



or, equivalently, that
(5.6) Je) + J = W

We note that the equivalent conditions (5.5), (5.6) will hold precisely when
each w in W has a unique representation w =x+ y where x i1s in J(=)

and y is in J. Equivalently, we must have, for each 1 =1, 2, «ssy t,

ei = =X+ Yy
where the x; are in JG») and the vy constitute a basis of J. Moreover,
1f x; is in J(2), then
t
X, = I X,, e,

where the xij are in F. As a consequence, there corresponds to each J skew
to J@») a unlque matrix X = (xij) of t rows and columns with elements in F

such that J = J(X) where

(5.7) J(X) = {xl +el, %, ¥ eé, cees X+ el }
and
(5.8) : ( )
5‘8 X = 2 X,. €, i = l,E)ro,t .
i j=1 13 73

Next let X, Y be two distinct t+ by t matrices over F, and set

Z =X -~ Y, The intersection of

J(x) + J(¥)

with J(») 4s spanned by the t vectors

t

Z = = Z,. €, (i = l, 2) (XXX t).
L g B



10
Hence

(529) J(X) + J(¥) = W< X - Y is nonsingular.

Next let us observe the spaces J(0), §{I) corresponding to the zero matrix,

0 &and the identity matrix, I:

(5.10) J(0)

{ei, eé) esey e_;‘}

J(1) {el tel,eptel, iy vell

Clearly each two of J(»), J(0), J(I) are disjoint. We wish to establish the

following converse: If J(w), L, M are three mutually disjoint (t-1)-dimensional

projective subspaces of X', and if ©1s oees &y is a preassigned basis of J(w)

over F, there exists one and only set of t additional basis vectors ei,...,e{

of W over F such that L =J(0), M = J(I). We see this as follows: Since

L, M are disjoint, then

LM = {o}, L+ M V.

Hence, for each 1 =1, 2, aeey &,

e, = =} + b,
i

i i

for unique elements e}, b, in L and M respectively. Since L(m) and L

i’ 71
are disjoint, the +t elements

— b
bi = ei + ei

must constitute a basis of M over F. Since L(w) and M are disjoint, the t

elements ei must constitute a basis of L over F; in addition, the 2t ele-

ments ey ei must constitute a basis of W over F, This is the promised

proof.

At this point it should be clear that, in considering spreads of X', there
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is no loss of generality, in terms of the above notation, in limiting attention
to spreads containing J(»), J(0) and J(I). Such a spread, S, must have the
following properties:
(i) S contains J(=).
(11) EBach member of 8, other than J(*), has the form J(X), where
X Tbelongs to a collection, (f s of matrices of t rows and columns with elements
in F, subject to the following conditions:
{11a) C contains the zero matrix, 0, and the identity matrix, I.
(iib) If X, Y are distinct matrices in 657, then the matrix X-Y is
non~singular. |
(iic) To each ordered pair of elements a, b of J(») with a £ o there
corresponds a (unique) matrix X in Cff such that &> = b.

In view of the preceding discussion, we need only explain the condition

(1ie) and, in particular the notation ax. First, if X = (xij) and if

t
(5.11) a8 = .Z ai ei
i=1
where the a; are in F, then
X t t
(5.12) a8 = L I @ xe, .
i=1 j=1 :

As a consequence, for each t by t matrix X with elements in F, the mapping
8 w— ax is a linear transformation of J(») over F.

Now we may explain (iic) as a maximality condition. Conditions (i) and (iia)
are merely normalization conditions. Condition (iib) merely ensures that no two
members of S have a common point, As we shall see, (iic) has precisely the
effect of ensuring that each point of Z is contained in at least one member
(and hence in exactly onermember) of S. Consider a point of Z', that is, a

l-dimensional subspace {w} of W over F, where, of course, W 1is a nonzero
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element of W, In terms of the mapping defined by (5.3), (5.4), w=1b + a!
for a unique pair of elements a, b of J(»), If a =0 then w is in J(=»).
If a £ O then we want w +to be in J(X) for some (unique) X in (f?.

Hovever, in view of (5.7), w will be in J(X) precisely when (assuming (5.11))

P = al xl + a2 x2 + see + an xn

or (in view of (5.8), (5.12)) precisely when a* = b.
In the section which follows we shall use the present discussion to exhibit
the connection between spreads and the so-called Veblen-Wedderburn systems. For

this reason we shall not bother to give examples at this point.

6. Affine coordinates for x. ILet t be a positive integer, + i 2, let
Z %be a (2t)-dimensional projective space, let L' be a (2t-1)-dimensional
projective subspace of Z, and let S be a spread of X', We wish to introduce
affine coordinates for the affine plane n = =(Z, t, S) defined in Section L.

As in Section 2 we represent X 1in the form Z(V/?) where F 1s a skew-
fleld and V is a (2t+l)-dimensiona1 vector space over F as a ring of left
operators, Then Z' =3(W/F) vhere W is a (2t)-dimensional vector subspace of
V over F. Without loss of generality we may give a special role to some {arbi-
trarily chosen) ordered triple, J(»), J(0), J(I), of distinct members of the
spread S. Then we may assume that, in the notation of Section 5, S consists
of J(») and other members J(X), X e (ff » Where Zfﬁ is a collection of t
by t matrices with properties (iia), (iib), (iic). Here W has a basis of
2t elements ey e{ (1 = 1,2,...5%t), and we need only add a single elememt, e*,
of V which is not in W in order to get a basis of V.

We observe that, in terms of the notation of Section 5, each point of =,
that is, each l-dimensional vector space of V over F which is not in W, has

a unligue basis element of the fom
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¥y o+ x' + e*

vwhere x, y are in J(»). Thus we may speak of the point (x, y) of = where

we define

(6.1) (x, y) = {y+x' + ex}

for every ordered pair x, y of elements of J{(=).
A line of m, that is, a (t+l)-dimensional vector space of V over F which

intersects W in a member J of S, has the form

T+ (x, ) =J+ {y+ x* + e*}

provided (x, y) is one of its points. These lines may be divided into two types:

(I) Lines x =4a. If a is in J{»), the point (x,y) of = lies on

the line

J(=) +(a, 0) = J(=) + fa' + e}
if and only if x = a. ‘

(II) Idnes y = #'+ b, If b is in J(=») and if J(M) is in S,

the point (x, y) lies on the line

JM) + (0, b) = J(M) + {b+ ex}
if and only if y-b + x' is in J(M); that is, if and only if
y -b = XM .
Now we have specified all the points and all the lines of =x by coordinates
and equations, respectively. For purposes of comparison we wish to go slightly
further and introduce a coordinate ring (R, +, *). To begin with, we take

R = J(») and we define addition, +, in R to be the addition in J(=) (as a

subspace of V). To specify multiplication in R we must specialize a non-zero
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element of R = JQ») or, equivalently, we must pick a unit point of =n. We pick

the unit point

(6.2) I = (1,1) = {1+ 1"+ e*}
where 1 is any fixed nonzero element of R = J(w). Then we define multiplication
() in R =J(») as follows: To each x in R there corresponds a unigque

matrix T(x) in (f - or a unique member J(T(x)) of S - such that

(6.3) TE

And we define

(6.4) yx o= yex = yrex)

for all y, x in R. It is now easy to verify that (R, +, «) has the following

properties:

(1) (R, +) is an abelian group with zero, O .

(11) (R, +) 1is a groupoid.

(iii) If R* d1s the set of nonzero elements of R, then AKR*, +) is a

loop with identity element 1.

(iv) (x+y)z =xz +yz for all x, y, 2 in R.

(v) If a, b, ¢ are elements of R, with a # b, there exists one

and only element x of R such that xa = xb + c,

The axioms (i) through (v) characterize a so-called Veblen-Wedderburn system
(or quasi-field). See, for example, M. Hall [5], Bruck [6] or Pickert [7].

However, in the present case we have additional properties. Obviously

(6.5) f(x+ y) = £x + fy

and

(6.6) (ex)y = f£(xy)



15
for every f 1in the skew-field F and for all Xx, y in R. In additiom, if

1 is the identity element of R, we see from (6.6) that

(f1)x = fx

forall f in F, x in R, and from (6.5), (6.6) that
(f+g)l=rf1L+gl, (£g)1 = (f1)(el)
for all f, g in F. Consequently, the mapping
f ——> £l

is an operator-isomorphism of P upon a skew-field F1 which is a subsystem of
(R, +, *). Therefore we may imbed F as a sub~skew-field of (R, +, *) with
properties (6.5), (6.6) by making the identification f£ = f1 for every f in F.
At this point we need a known lemma: |

Lerma 6.1. Let (R, +, ) be a Veblen-Wedderburn system and let F be the

set of all elements £ in R which satisfy (6.5), (6.6) for all x, y in R.

Then the subsystem (F, +, ») of (R, +, *) is a skew-field.
Definition. We shall call the skew-field F of Lemma 6.1 the left-

operator skew-field of the Veblen-Wedderburn system (R, +, -).

Proof. With each element x of R we associate a mapping, R(x), of R,

the right-multiplication by x, defined by

(6.7) vy R(x) = yx

for all y in R. 1In view of axiom (iv), each R(x) is an endomorphism of the
abelian group (R, +). By axiom (411), if a, b are elements of R with

a ¥ O, there exists a unique x in R such that aR(x) = b, Hence the set 6222
of right multiplications of R is an irreducible set of endomorphisms of (R, +).

* o
Therefore, by Schur's Lemma, the centralizer, é%? , of é{ygn the ring of ail
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endomorphisms of (R, +), 1s a skew-field. An endomorphism, 8, of (R, +) is in

*
C;? if and only if

(6.8)  (ve)x = (yx)e

for all y,x in R. Setting y = 1 in (6.8), we get

(6'9) X g =Ix

for all x, where f = lg. From (6.9) in (6.8), we get

(fy)x = £(yx)
for all y, x in R. That is, (6.6) holds. In addition, since ¢ is an endo-
morphism of (R, +), then (6.5) holds. Conversely, if f satisfies (6.5), (6.6)
and if ¢ is defined by (6.9), then g is an endomorphism of (R, +) which

satisfies (6.8). If, further, g satisfies (6.5), (6.6) and if ¢ is defined

by
Xo = gX »
then
x(p + o) =% + x = fx + gx = (£ + g)x
and

x(egp) = (xado = g(fx) = (gf)x .

Consequently the system (F, +, ) 1is a skew-field anti-isomorphic to the
*
skew=field G%l .
Now we may add our crucial axiom:

(vi) The Veblen-Wedderburn system (R, +, ) is a Ffinite-dimensional

vector space over its left-operator skew-field.

We note that, although the skew~field F from which we started is not

necessarily the full left-operator skew-field of (R, +, ), nevertheless, (R, +)
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must, a fortiori, have finite dimension over its left-operator skew-field.
Axiom (vi) raises a question to which the answer is probably unknown: ggg

every Veblen~Wedderburn system finite dimension over its left-operator skews

field?

7. Translation planes. For an axiomatic characterization of translation

planes, see M. Hall [5]. We need merely say here that a projective plane =¥

is a translation plane with respect to eme of i&é lines, L, if and only if the
corresponding affine plane =, obtained from a* by deleting 1L and its points,
can be coordinatized by a Veblen-Wedderburn sysfem. It will be convenient here
to speak of the affine plane x as an affine translation plane. Now we may
state a theorem:

Theorem 7.l. Every affine plane =n(Z, ', 8), comstructed as in Section h,

is a translation plane. Conversely, if =n is an. gffine trenslation plane with

a coordinating Veblen-Wedderburn system which is finite dimensional over its left-

operator skew-field, then =x is isomorphic to at least one plane x(Z, =%, S).
/

Corollary. Every finite affine translation plane is isomorphic to at least

one plane =n{Z, £', S5).

23222; We need only concern ourselves with the second sentence of Theorem
7.1. Suppose then that = 1s coordinatized by a Veblen-Wedderburn system
(R, +, ). Suppose also that (R, +, ) has a subsystem, F = (¥, +, +), such
that F 1is a skew-field contained in (but not necessarily equal to) the left-
operator skew-field of (R, +, ¢) and such that R 1is a t-dimensional vector
space over F, where t is a positive integer. It is to be understood that the
points of =x are ordered pairs (x, v)s X, ¥ € R, and that the lines of = be-
long to two types: (I) +the lines x = a, one for each a in R; (II) the lines
y = xm + b, one for each ordered pair of elements m, b in R. We shall omit

the verification that =n 1is indeed an affine plane.
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. It will be convenient to speak of R as a t-dimensional vector space over
F. Next we introduce a second vector space R', isomorphic to R over F,
but having only the zero vector in common with R. Then we define the vector
space
W = R + R! 3
the direct sum of R and R', whose zero element coincides with that of R and

R'. We shall understand that the mapping

X f-—-> X'
is an isomorphism of R upon R!' over F. Then W is a (2t)-dimensional vec-

tor space over F. We define

J=) = R
. and, for each element m of R, we define J(m) to be the set of all vectors
- of form

xm + x!

where x ranges over R. Then J(m) is a t-dimensional subspace of W over
F and

3) () Jm) = {0}

for each m. Indeed, xm + x' is in J(») =R if and only if x = 0. Similarly,

J{m) M 3k) = {0} if’ nmék ,

for if

xm+ x' = yk+y'
then

vk=(y-x) = 0

d

. vhence y = x and
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Since m # k, the latter equation has the unique solution x = 0. Next, let

w =y + x' # 0

be an arbitrary nonzero element of W, If ( and only if) x =0, w 1is in
J(») = R. On the other hand, if x # 0, there is one and only one m in R
such that xm = y; and, for this (and only this) choice of m, W is in J(m).

Consequently, if S 1is the collection consisting of J(») and the J(m),
meR, then S is (in vector form) a spread.

Next we introduce a l-dimensional vector space {e*} over F, having only

0 4in common with W, and define

V = W+ {e¥} ’
where the direct sum is understood. Thus V is a (2t+1)-dimensional vector
space over F,

At this point, we define X = =(V/F) to be the usual (2t)-dimensional
projective space, take Z' = S(W/F) to be the corresponding (2t-1)~dimensional
projective subspace of I, and use the spread S, just defined, as a spread of
Z', It is novw a simple matter to verify that the affine plane x(z, =*, S) is
isomorphic to the plane = from which we started. This completes the proof of
Theorem T.l.

Clearly we have made very little use, in the foregoing proof, of the fact
that R has finite dimension t over ©F. However, without this restriction,
fhe projective space I is infinite dimensional, and so is Z'., And now we see
the problem: How do we define the concept of a spread of an infinite-dimensional
projective space?

For specific examples of Veblen-Wedderburn systems - and hence for examples

of spreads - see M, Hall [5].
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8. Some geometric examples. In order to éﬁoid giving the impression that
the only way to comstruct spreads is by using Veﬁleq{Wedderburn systems, wve
shall sketch briefly, without proof, part of a geometric theory developed by
Bruck for spreads of PG(3, q).

We recall that a spread of PG(3, q) is a set of 1 + q2 skew lines of
PG(3) a).

If A, B, C are three distinect skew lines, the set, éng’ of transversals
to A, B, C, consists of ¢+l skew lines., Each transversal to three members of
(212’ is a transversal to all the members of CQZZ'. The set,é;%7= ﬁi%?(A,B,C),
consisting of the g+l +transversals to CEQ', may be called the regulus con-
taining A, B, C, and CZ%Z' may be called the opposite regulus to (2%2. The
points of the lines af(:z7ame the same as the points of the lines of (;é%; and
these (q&l)e points comstitute a doubly-ruled quadric, éZJ: E;L(A,B,C), with

CZZ?and é;z?‘ as its two reguli.

A spread, S, of PG{3,q) will be called regular provided that, for every

three (necessarily skew) lines A, B, C belonging to S, S contains every line
of the regulus CQ%Z(AQB,C). Note that if D is one of the qg—q lines which is
in S but not in C;ZZ(A,B,C), then D 1is skew to every line of Q;%?(A;B,C).

It may be shown that if A,B,C are three skew lines and if D is any line skew
to every member ofgf%é%A,B,C), there is one and only one regular spread S con~

taining A, B, C and D, As a gonsequence, three skew lines A,B8,0 are con-

tained in precisely (qe-q}/e distinet regular spresds, and each two of these

spreads have precisely CZZ&fging) in common.
The case ¢@=2 is exceptional. Ivery spread of PG(3,2) is regular; and
three skew lines A,B,C of PG(3,2) are contained in precisely one spread. In

the rest of the discussion we assume q > 2.



21
Let S be a spread of PG(3,4), q > 2, which happens to contain a regulus
CZ%Z . If 8' is derived from S by replacing the regulus(é%?%y the opposite

regulus é%?’, then S' 1s a spread. Moreover, if one of S, S' is regular,

the other is not. It seems reasomable to conjecture that every spread may be

obtained from a regular spread by iteration of the process of replacing a regulus
by the opposite regulus. The conjecture is correct for q = 3.
Next suppose that CZ&% C;Z' are opposite reguli of PG(3,q), belonging to

a quadric C;ZJ. It may be shown that if S, S' are regular spreads containing

C;i?&,44%fi respectively, then S//)S' conslsts of precisely two lines A, B,

namely of & pair of conjugate non=-secants of the gquadric éii .
Again, let A, B be two arbitrarily chosen lines of a regular spread S

of PG(3,q). It may be shown that the remaining ggel lines of S are par-

- Ry By ooy (F,
titioned into g-1 disjoint reguli ¢ 12 Kos eees kdffé_l uniguely defined

by the requirement that, for each i, A, B are conjugate non-secants to the

quadric ézli with reguli Cj%f;, CZ?? . As a consequence, by combining 4, B

with one of {Qﬁgi,cZZ?i for each 1, we get eq'l distinct spreads, many of
which are non-regular for q large. If q = 3, there are U spreads, of which
2 are vregular and 2 are non-regular,

The analytic formulation of the above remaxks is quite interesting. We use
the notation of Section 6, with F = GF(q) and t=2, except that, to emphasize

the fact that we are dealing with lines, we use L instead of J. Then

(8-1) L(°°) {el’ 92} ) L(,O) = {ei: eé] )

(8.2) L(X)

1 1
{08 + Xpp8p + €] xyep + Xppe, g b,

where X 1s a matrix of two rows and columns over GF(q).
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. If @ is the regulus determined by L{w), L{0), L{I), then % consists
of L(») and the lines L(aI) corresponding to the scalar matrices al,
a € GF(q). E,ch regular spread containing % consists of L(») and lines
I(T) where T ranges over q2 matrices forming a field isomorphic to GF(qa).

Equivalently, T ranges over q2 matrices of form
al + bX , a, b ¢ GF(q)

where X is a fixed (but arbitrarily chosen) irreducible matrix.‘ Another type
of spread consists of @ and qe-q lines L{(Y) where Y ranges over the
qe-q distinct conjugates A

plxp

of a fixed (but arbitrarily chosen) irreducible matrix X. The latter spread is
. not regular, but becomes regular when @ is replaced by @'.
Of the two types of spread just described, the regular spread corresponds to
a Veblen~Wedderburn system which is a field, and hence corresponds (according to
our construction) to a Desarguesian plane. On the other hand, the non-regular
spread correspondsd to a Veblen-Wedderburn system which is a Hall system, and
hence corresponds (according to our construction) to a Hall plane.
Returning again to the regular spread defined above, we may verify that
the g=1 reguli Wl’ @2,... 3 % g-1 of the spread, with respect to which
L(»), L{O) are conjugate non-secants, consist, for each i, of the lines
L{al + bX) such that the determinant
|aT + 1x |
has a constant value di # 0. Clearly, if q is even, each % has & unique
line in common with @ , while, if ¢q is odd, half of the gg 1 have a unique
. line in common with @ and the other half are disjoint from @ .
So far we have no satisfactory formulation of a geometric theory of spreads of

(2t-1)-dimensional projective space for the case 1t > 2.
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9. A connection with a procedure of Ostrum. In a series of papers, of

which we shall mention only two, Ostrum [8, 9] has developed & procedure for
constructing from a given plane = of finite order  2° a "econjugate" plane
#' which is symmetrically related to = but usually has different properties-.
We explain the procedure in its affine form:

Iet =x be an affine plane of finite order n2 possessing a collection,
K, made up of all the lines of some n+l parallel classes of lines of =, such
that, to every pair, P, Q, of distinct points of = which are joined in = by
a line, PQ, in K, there corresponds an affine subplane, (PQ)‘, of = with
the following properties: (i) (PQ® contains P and @Q; (1i) (PQ)* has order n;
(iii) the lines of (PQ)! are all in K. (There can be at most one subplane
(PQ)t .with properties (i), (ii), (iii).) Let XK' be the collection consisting
of the subplanes (PQ)'. Iet =n' be the system obtained from = by retaining
the points of x and the lines of = which are not in K but replacing the
lines PQ in K by the subplanes (PQ)' in K' - and using the latter as lihes.
Then =x' 4is an affine plane of order n2. Moreover, K' consists of all the
lines of some n+l parallel classes of n'; and K is a collection of arffine
subplanes of order n of =xn', one for each pair, P, Q@ of distinct points of
n! such that the line (PQ)! of =' is in K'.

Now let us apply Ostrum's procedure to an affine translation plane
T = n(Z, L', 8) of order n2-= q2 constructed by the method of Section 4 from
the projective UY-space I = PG(h, q),» Here Z!' = PG(3, q) is a projective 3-
space of & and S, a spread of Z!, consists of q2+l skew lines of X', We
recall that the points of = are the points of X which are not in It and
that the lines of x are the planes of £ which are not in Z' but meet I!

in a line of S.
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. First, consider any plane, T, of I which is not in X' and does not meet
5' ina line of S. Then S meéts L' in a line, L, which is not in S. To
L corresponds a set, C, of g+l. lines of S, one through each point of L.
Let (T) he the system consisting of the q2 points of T which are not in
51 and of the q(g+l) planes of Z conteining & line of C and at least one
point of (T). It is easy to see that (T) is an affine subplane of = of

order q. Hence x has affine subplanes of order ¢ in rich profusion.

Next suppose that the spread S happens to contain a regulus, @2 In
the sense of Ostrum's procedure, let K be the collection consisting of all
/'1
planes of I which are not in XI' and which meet Z! in a line ofCK. Then
K consists of all the lines of some ¢+l parallel classes of lines of =.
And - in view of the preceding paragraph - Ostrum's procedure amounts, in this
‘ case, to changing the spread S by replacing the regulus % by the opposite

regulus % ', In particular, the conjecture about spreads of PG(3,q) men-

tioned in Section 8 could be rephrased as a conjecture that, by iteration of
Ostrum's procedure, any translation plane obtainable by our construction from

PG(’-L, q) could be derived from a Desarguesian plane.
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