Abstract

SooD, AVNEET. A New Monte Carlo Assisted Approach to Detector Response

Functions. (Under the direction of Dr. Robin P. Gardner.)

The physical mechanisms that describe the components of Nal, Ge, and Sili
detector response have been investigated using Monte Carlo simulation. The mech-
anisms described focus on the shape of the Compton edge, the magnitude of the
flat continuum, and the shape of the exponential tails features. These features are
not accurately predicted by previous Monte Carlo simulation. Probable interaction
mechanisms for each detector response component is given based on this Monte Carlo
simulation.

Precollision momentum of the electron is considered when simulating incoherent
scattering of the photon. The description of the Doppler broadened photon energy
spectrum corrects the shape of the Compton edge. Special attention is given to
partial energy loss mechanisms in the frontal region of the detector like the escape
of photoelectric and Auger electrons or low-energy X-rays from the detector surface.
The results include a possible physical mechanism describing the exponential tail
feature that is generated by a separate Monte Carlo simulation. Also included is a
description of a convolution effect that accounts for the difference in magnitude of
the flat continuum in the Monte Carlo simulation and experimental spectra. The
convolution describes an enhanced electron loss. Results of these applications are

discussed.
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1 Introduction

Detector response functions (drf’s) are becoming more and more useful in radi-
ation detection for spectrometry purposes. Specifically, Monte Carlo models used to
predict incident photon spectra are applied in conjunction with the detector response
function to translate photons incident on the detector to a pulse-height spectrum. The
detector response function is defined as the pulse-height distribution for an incident
monoenergetic gamma or X ray usually denoted R(E’, E) where E' is the pulse-height
energy and FE is the incident gamma- or X-ray energy. The drf is a probability distri-
bution function (pdf) which has the properties that it is always larger than or equal
to zero over its entire range and integrates over all £’ to unity.

Detector response functions defined in this manner are rarely obtained directly by
experiment since features are almost always present in experimental spectra that are
not a part of this function. As an example, features from interactions in the shield-
ing or source like a 180° backscatter gamma ray peak or a 0.511 MeV annihilation
photon peak are not part of the drf as defined here. Detector response functions de-
termined experimentally are more appropriately described as library spectra because
they include the effects of interactions with surrounding materials and variations in
the source.

General purpose Monte Carlo codes such as MCNP and ITS are now accurate
enough to be used to simulate detector response by simulating as much of a detector
response function as possible. In principle, one could use Monte Carlo simulation

entirely to produce drf’s if all of the pertinent detector characteristics were known



exactly. However, there are many features of interest that cannot be determined
and cannot be simulated. Features like the detector imperfections within the crystal,
which significantly affect the flat continuum, are nearly impossible to determine. The
same 1s true for determining the standard deviation of the Gaussian detector resolu-
tion and the extent of the exponential tails. Since generating these characteristics by
Monte Carlo is not a practical solution, instead Monte Carlo simulation can be used to
determine the extent of the full energy peak, the Compton continuua, and the annihi-
lation photon and X-ray escape peaks. We propose to use Monte Carlo simulation to
obtain these features and then augment these results with separate simple programs
that are used to match a limited number of experimental single-energy spectral data
for the three features: (1) Gaussian standard deviation of the full energy peak (and
entire spectrum), (2) exponential tail(s), and (3) flat continuua.

Once the drf is developed, it is very useful in further Monte Carlo simulation
because it can be used with an incident particle distribution to produce a pulse-
height distribution. Detector response functions used in this manner assumes that
the response is independent of angle of incidence and point of entry. Specificially, the
assumptions require the ratio of the detector length to detector diameter, L/D,to be
close to unity and that there is no collimation of the source. Under these assump-
tions, the drf can be used to automatically smooth the original incident spectrum
considerably and eliminate the need for following particles inside the detector. This
allows one to use standard flux tallies with any variance reduction technique in a

Monte Carlo code rather than having to perform the simulation in analog mode.



2 Review of Previous Work

There are three basic approaches to obtaining detector response functions. They

are identified by Gardner, Yacout, Zhang, and Verghese (1986):

e Experimental: where one obtains the response in matrix form from a large

number of measured monoenergetic spectra and interpolates for other energies.

e Monte Carlo: where one generates response functions by simulation for a large

number of monoenergetic spectra and interpolates for other energies.

e Semi-empirical: where one determines an analytic model and uses least-squares
fits to a smaller number of single energy results and then generalizes these

results with energy to provide a continuous model.

The first approach can be applied directly, but has the disadvantage of requiring
a large number of difficult experimental measurements under standard conditions as
done in a catalogue by Heath (Heath, 1964 and Heath, 1974). Often times there are
insufficient single energy samples to generate a complete energy range. The second
approach minimizes the amount of experimental work required and gives valuable
insight into the actual processes that take place within the detector, but additionally
requires very careful analysis and description of the problem for sufficient accuracy.
In many cases, the characteristic parameters of the detector are difficult if not impos-
sible to obtain. Also, certain effects still cannot be adequately predicted by Monte

Carlo like: (1) the Gaussian standard deviation of the full energy peak (and entire



spectrum), (2) the exponential tail(s), and (3) the flat continuua. The third approach
utilizes general physical mechanisms that lead to the simple shapes of the various fea-
tures. However, this method does not give much insight into the physical processes
that take place inside of the detector. In previous work, there is insufficient accuracy
in the sharpness of the Compton edge with further discrepancies in the flat continuum
and exponential tails for low and high energy ranges (Wang, 1996).

There have been many years of effort devoted to generating detector response func-
tions, and, consequently, the literature offers an exhaustive set of references. However,
many of these methods concentrate on accurate description of specific features like
the photopeak only and do not appear to accurately describe the entire detector re-
sponse shape to monoenergetic gamma- or X-ray point sources. There is a growing
amount of general interest in using all information available from the pulse-height
spectra. The present work addresses this growing interest by considering the entire
shape of the detector response. Not all of the methods described in the literature
are reviewed because a number of references do not influence this work directly and
the total number becomes too large. This work reviews some of the more influential
methods in generating detector response functions that consider the features of the
entire spectrum and its shape. For other work not included in this report, see the
reference list.

The Center for Engineering Applications of Radioisotopes (CEAR) has a long
history of research on detector response functions (drf’s). A series of papers (Gardner,
Yacout, Zhang, and Verghese, 1986; Jin, Gardner, and Verghese, 1986; and Yacout,
Gardner, and Verghese, 1986) outlined the semi-empirical approach that has been

4



adopted as a standard method for constructing detector response functions. That

approach consisted of first identifying a number of separable features that include:

the full energy Gaussian peak,

a single Gaussian escape peak due to annihilation photons,

a double Gaussian escape peak due to annihilation photons,

e one or two exponential tails on the low-energy side of the full energy peak,

e a flat continuum that ranges from zero to the full energy peak,

e a Compton scattering continuum from zero to the full energy peak (primarily

from zero to the Compton ’edge’),

a Compton scattering continuum between the first and second escape peaks due

to the Compton scattering of one of the annihilation photons, and

e X-ray escape peaks from detector component elements such as Ge, Si, and 1.

These features are shown in Figures 1 and 2 for Ge and Si(Li) detectors, respectively
(Gardner, 1986).

The semi-empirical approach consisted of a least-squares fitting of these features
for single gamma-ray-energy radioisotope sources or for single element X-ray energies
for a range of gamma- or X-ray energies. The individual parameter values for each
energy could be fit to simple functions of energy (such as polynomials) to provide a
general detector response function (drf). This approach was useful because each of

the features identified could be expressed with relatively simple analytical functions.



The most complex was the Compton continua which were fit for gamma-rays incident
on Ge detectors with one, two, or three Compton scatters. Analytical expressions
derived using approximations to the scattered photon physics were obtained for the
three Compton scatters by using the Klein-Nishina cross section and one and two
integrations of it. This could be used for the relatively small Ge detector (39%)
because one could neglect the variable attenuation of the Compton scattered photons
escaping from the detector. In general one cannot neglect this variation for large
detectors. Consequently, the integrations cannot be performed that yield analytical
expressions for large detectors.

This approach was pursued for both the Ge detector for gamma rays (Lee, et al,
1987a, 1987b) and for the Si(Li) detector for X rays (He, et al , 1990). A number
of things were learned about these drf’s and this approach during that time. How-
ever, a complete study using a number of detectors was not done. One of the things
learned was that the flat continuum was larger than is predicted by electron losses
from the detector surface. In some cases this was as much as an order of magnitude.
It is believed that this is due to imperfections within the detector that cause addi-
tional charge losses. The exponential tails are believed to be due to Auger electron
losses to detector windows and “dead” layers (Geretschlager, 1987, Wang, 1992, and
Goto, 1993). The features that are specific to each detector (even when detectors are

essentially identical in shape and size) are:

e the standard deviation of the Gaussian spreading,

e the extent of the exponential tails, and



o the extent of the flat continuum.

The last two of these are detector specific in part because they involve electron energy
losses.

Monte Carlo simulation appeared potentially useful for producing drf’s. A study
was performed to simulate ®He spectrometers by Monte Carlo simulation (Choi,
Wehring, Gardner, and Verghese, 1986). It was found to work quite well without
additional modification. The interest naturally shifted to generating drf’s for large
Nal detectors. Some of the first work in generating the entire spectra was done by
Berger and Seltzer. Other authors produced Monte Carlo codes with improvements
in the physics description (Rogers, 1982 and Peplow, 1994).

Some authors have devoted great effort in using Monte Carlo simulation to re-
produce specific key features of the detector response function (Geretschlager, 1987,
Campbell, 1990, Wang, 1992, and Goto, 1993). While this body of work does not
concentrate on the entire spectra, significant attention was given to reproduce fea-
tures like the photopeak, exponential tails, and K-xray escape peaks for low-energy
spectroscopy using Sili detectors. The importance of modelling the frontal region
where there is poor charge collection is signficant was stressed. Several models de-
scribing incomplete charge collection were presented. Additionally, the interactions
of low-energy physics like Auger electrons and X-ray fluorescence lines were shown to

contribute to photopeak shape.
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Figure 1: Physical Components of Ge Spectrum: (1) the flat continuum, (2) the
exponential tail, (3) the full energy peak, (4) the Compton electron scattering contin-
uum, (5) a continuum between the Compton electron scattering continuum and the
full energy peak, (6) the single escape peak, (7) the double escape peak, (8) a small
scattering continuum between the single and double escape peaks.
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Figure 2: Physical Components of Sili Spectrum: The spectrum is from an X-ray
spectrum of titanium excited by a Cd-109 radioisotope. The features are shown for
the Ka X-ray only. The featuresare: (1) the flat continuum, (2) the Si escape peak,
(3) the long-term exponential, (4) the short-term exponential, and (5) the full-energy
peak. 8



3 New Approach

Recently studies have been initiated to try to use Monte Carlo simulation to
generate as much of the detector response functions as possible. In principle, one
could use Monte Carlo simulation entirely to produce drf’s if the pertinent detector
characteristics are known exactly. However, it is extremely difficult, if not impossible,
to determine all the pertinent characteristics. Monte Carlo simulation can be used
to determine the extent of the full energy peak, the Compton continuua, and the
annihilation photon and X-ray escape peaks. These results can be augmented with
separate simple programs that are used to match a limited number of experimental
single-energy spectral data for the three features: (1) Gaussian standard deviation
of the full energy (and entire spectrum) peak, (2) exponential tail(s), and (3) flat
continuua.

Three slight modifications of the previous drf treatment for gamma and X rays
have recently been identified and describe the ideas presented in this work. These

are:

e the flat continuum comes not only from the full energy peak, but also from all

parts of the photon spectrum, including the Compton continuum,

o the shape of gamma- and X-ray pulse-height spectra in semi-conductor detectors
is influenced significantly by Doppler broadening, particularly in the spectral

region of the Compton scattering continuum, and

e crystal imperfections serve as electron trapping sites, increasing the amount of



incomplete charge collection.

The second effect is seen most clearly in Ge gamma-ray spectra at the Compton edge
which is degraded in its sharpness considerably by the Doppler broadening effect.
In X-ray spectra it is seen in the Compton backscatter peaks from discrete energy
radioisotope excitation sources.

The first and third effects are similar to electron losses from the surface of the
detector crystal. Preliminary studies indicated that the entire photon spectrum con-
tributed to the shape of the flat continuum. One of the proposed solutions was to
increase the electron leakage artificially by increasing the electron range thus sim-
ulating charge loss due to imperfections or electron channeling effects. This could
be included in the Monte Carlo simulation by modifying the density of the material
for the electron when an electron is created. Alternatively, one could simply reduce
the photopeak by a specified fraction and distribute it to the rest of the spectrum.
This offers the advantage of a convolution after the Monte Carlo simulation that is
particular to a specific detector.

These convolution or spreading effects must be implemented to obtain the final
pulse-height spectra. Since they are presently not in the existing general purpose
codes like MCNP and ITS, it is important to be able to implement them after and
outside of a normal Monte Carlo simulation. A program has been written to simulate
the increased electron leakage by applying a fraction of the photons that deposit
their full energy and simply spreading them equally over the entire spectrum below

the energy of interest.
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4 Experimental Data

Most of the experimental digital library data was obtained from R.L. Heath for a
number of single gamma-ray energies that were reported in his original Nal Gamma-
Ray Spectrum Catalogue (Heath, 1964) and Gamma-Ray Spectrum Catalogue for
Ge(Li) and SiLi (Heath, 1974). Other data were generated at NCSU for comparison
of methodology. These data were very carefully taken under standard conditions and
represent the best benchmarked data available. It is important to note, however, that
any data taken in this manner contain a few features that are not part of the detector
response function as previously defined. This includes the backscatter peak that is due
to 180-degree scatters from the standard shield used by Heath and the 0.511 MeV peak
from annihilation photons that also come from the shield. By the original definition of
the drf, only the features that come directly from the incident monoenergetic gamma-
or X-ray are a part of the drf. In the present case the standard shield used by Heath
is included in the Monte Carlo calculations so that these additional features will be
included in the predictions. So in this case we are obtaining standard gamma-ray
library spectra instead of detector response functions. It is reasoned that if we can
simulate these standard spectra accurately then we should be able to simulate the
detector response functions just as accurately by simply removing the shield from the

Monte Carlo simulation.

5 DRF Code Development

General pupose codes like MCNP, ITS, and EGS4 can be used for calculating

11



detector response functions. However, additional tallies must be specifically created
to allow the investigation of the components of the detector response function. It
is useful to develop specific purpose codes that allow the user to concentrate on
specific physical mechanisms that occur because these very specific tally features are
not available. The specific purpose codes are also useful analysis tools because the
general purpose codes only allow analog simulation when calculating the pulse-height
tally; the user is not able to see the effect of less probable events on the detector
response without a very long simulation time.

To address the need of adequate analysis tools, a Monte Carlo code, CEARDRF,
has been developed to simulate the response of a bare Si(Li), Ge, or Nal detector
crystal to a monoenergetic point source. The unique feature of this code is that the
individual components of the detector response function are specifically tallied and
produced separately. Using this technique, the contribution to the pulse height tally
from physical mechanisms such as secondary electron escape and dead layer losses
can be studied in great detail. Distributions of these physical mechanisms can be
produced directly from the simulation. This will replace any of the approximations
introduced in semi-empirical models such as neglecting attenuation in the contribution
from multiple Compton scattering. This feature allows differences in experimental and
predicted responses to be characterized by observing the contribution of the individual

components.
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5.1 Calculating the response function

The Monte Carlo calculation includes basic gamma-ray interactions: photoelec-
tric absorption, incoherent scattering, and pair production. Rayleigh scattering is not
included. Cross sections are generated from the general purpose Monte Carlo code,
MCNP (Breismeister, 1997), which uses updated values of Storm and Israel (1967)
data. Electrons and positrons produced in the detector include bremsstrahlung pro-
duction and are transported using a simplified range model. After the beginning of
each history, an interaction is forced to occur inside the detector. Once inside the
detector, all particles are allowed to leave the detector. Once outside of the detector,
the escaped particles do not further contribute to the response function. A descrip-
tion of physical mechanisms in the Monte Carlo simulation is given. Attention is
focused on the simplifying assumptions to the detailed physics. Details of the basic
photon physics used can be found in any introductory nuclear engineering textbooks
like Mayo (1998). Similarly, a complete description of the Monte Carlo principles can

be found in texts like Carter and Cashwell (1975).

5.1.1 Photoelectric absorption

Photoelectric absorption of the incident photon will generate photoelectrons with
either K-shell Auger electrons and the KLL satellite X-rays, or fluorescence X-rays.
The photoelectric absorption generates a K-shell photoelectron that is assumed to
be emitted isotropically with kinetic energy equal to the difference in incident energy

and K-shell binding energy. Once the K-shell vacancy is created, it may be de-excited
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by the simultaneous emission of an L-shell Auger electron and the associated satellite
X-rays or by the emission of a K, or Kg fluorescence X-ray. The sum of the energies
in the secondary emission must equal the total binding energy of the K-shell vacancy.
As atomic number increases, the probability of the Auger effect decreases, thereby
increasing the probability of X-ray fluorescence emission. The detector materials
under consideration vary up to a Z of 32. All data for the Auger and fluoresence
events comes from Krause (1979) and Scofield (1974).

The Auger electron and satellite X-rays are assumed to be emitted isotropically.
Only the KLL satellite X-rays are considered because of the dominant probability of
emission and intensity over other lines. Previous work by He et al (1990) indicate the
importance of Auger electrons and satellite X-rays when describing detector response
by semi-empirical fitting methods.

Fluorescence X-rays are also assumed to be emitted isotropically. The allowed
fluorescence X-rays are K, or Kg emission. The K, emission is simultaneously fol-
lowed by an associated L, X-ray. The remaining energy (of a nearly 100 eV) from a
Kz emission is deposited locally. Again, these fluorescence X-rays were chosen due to

their dominant emission probabilities and intensities.

5.1.2 Incoherent scattering

Incoherent scattering of the incident photon can occur with a bound electron in a
shell of the detector material and will generate a Compton electron and a scattered
photon. Electron binding effects become important when the photon energy is near

a few hundred keV. The result of this binding effects on the angle and energy of the
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scattered photon must be taken into account for accurate simulation of low-energy
photon transport. The effect of the bound electron on the scattered photon angular
distribution appears as a reduction in the total scattering cross section in the forward
direction. The electron binding effect on the scattered photon’s energy distribution
appears as a broadening of the energy spectrum due to the precollision momentum
of the electron.

Since incoherent scattering is an important interaction mode for low-energy pho-
tons, consideration of the precollision motion of the electron for incoherent scattering,
called the Doppler effect, is important for accurately simulating the transport of pho-
tons. Since the treatment modifies the angular and energy distribution of a scattered
photon, it will modify the calculation of the mean free path of a photon through a
material. The most dramatic effect appears in the pulse height spectra in the predic-
tion of energy distribution in the region near the Compton edge and the associated
continuum. This can be seen when comparing Monte Carlo simulated results and
experimental results. Evidence of the Doppler broadening has been documented very
well in the past few years (Namito, 1993 and Lee, 1999). Direct comparison of ex-
perimental and calculated pulse height spectra demonstrates the dramatic difference
in the Compton region. This can be seen in Figure 3 from Namito’s implementation
of Doppler broadening with a linearly polarized mono-energetic beam in EGS4. Fig-
ure 3 also shows a comparison of MCNP with the addition of Doppler broadening.
The effect of Doppler broadening is clearly seen in the shape of the Compton scatter
region. The results do not match the EGS4 results of Namito because MCNP does

not implement linearly polarized photons. As incident photon energy increases, the
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effect of the precollision momentum of the electron decreases the Doppler broadening
effect on the predicted pulse height spectra.

The modification of the angular distribution has been accounted for by several
Monte Carlo transport codes by using an incoherent scattering function multiplying
the total cross section. The effect of the incoherent scattering function is to decrease
the Klein-Nishina cross section per electron more extremely in the forward direction
for low-energy and for high Z, independently. However, the broadening of the scat-
tered photon energy is not treated, as of yet, by many current versions of general
purpose Monte Carlo transport codes like ITS, EGS4, and MCNP. The first inclu-
sion of the Doppler broadened energy in a Monte Carlo code that appears in the
literature was by Felsteiner, Pattison and Cooper (1974) with the purpose to correct
experimental Compton profiles for the effect of multiple scattered photons in their
measurement sample. A standard method of implimenting Doppler broadening was
set forth by Namito, Ban, and Hirayama (1994) in an improved version of EGS4.
Their paper provides a discussion of the formulas for describing the Doppler broaden-
ing, incoherent scattering function, and total incoherent cross section of a low-energy
photon.

The method of calculation used here is the same as described by Namito, et al
(1994) and has been used locally at NCSU by Lee, Ao, and Gardner (1999) in their
specific purpose X-ray Fluorescence code, CEARXRF. The same treatment is adopted
with CEARDRF and is included in a local version of MCNP4B by a patch.

When a photon undergoes an incoherent scatter in the Monte Carlo simulation,

the cosine of the exit angle, 8, is sampled from a modified Klein-Nishina differential

16



cross section:

do-inc dO'K N

(6,4)S(=, 2) (1)

where S(x,Z) is the incoherent scattering factor. For any Z, S(x,Z) increases from
zero until Z at Z=infinity. The parameter, x, is the inverse length = sin(6/2)/A =
kay/T — p where k=107 mc/(h v/2) = 29.1445 cm ~! and « is the initial photon
energy in units of rest mass energy of an electron.

The cosine of the scattering polar angle, p, is calculated by using Kahn’s rejection
method which samples the Klein-Nishina formula exactly. The final angle is rejected
according to the incoherent scattering function, S(x,Z).

The scattered photon’s energy must be determined next by using the shellwise
Compton profiles. The Compton profiles are tabulated as a function of the projected

precollision momentum of the electon on the momentum transfer vector of the photon.

This is described by:

E; — E, — E;E,(1 — p)/m,c?

p. = —137
VB2 + E? — 2E;E,

(2)

where p, is in atomic units of mocz/ﬁ, E; and E, are the incident and scattered photon
energies, respectively. The Compton profiles are related to the incoherent scattering

function, S(x,Z) by:

S@2) = ¥ /: Je(p2, Z)dp. (3)

where k refers to the particular electron subshell and p,_,_ is the maximum momen-
tum transferred.
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The particular subshell of the electron that interacts with the photon must be
chosen. It is picked based on the number of electrons in each subshell. The projected
momentum, p,, is sampled from the Compton profile. The scattered photon energy

is calculated by solving p, for E,.

5.1.3 Electron transport model

The electron transport model begins with a calculation of the range of the electron.

The range equation follows the form:

R = (4)

3

where R is in cm, E is in MeV, and p is in g/cm®. The parameters a, b, and c are

empirically determined values. The values as calculated by Pages et al (1972) are
a=0.69361, b= 1.1508, and c¢=0.083893.

The behavior of electron collisions was approximated by assuming that the path
begins as a straight line with continuous energy loss by ionization until a major
interaction occurs and changes the original direction. Since the electron range is
based on an extrapolation of a transmission curve, a modified pdf was created to
account for the slightly greater distances (Peplow, 1993). The approximation to the

pdf for an electron to travel a distance, d, was made by using:

p(d) = (2R/5)(1+3d/R) (5)

The electron loses energy continuously by ionization collisions moving along this dis-
tance. The new energy of the electron due to the ionization collisions can be calculated
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by using the range relationship above and solving for the new energy. It is given as:

E' = exp(b/2c —/(8?/4c* — 1/cln(p(R — d)/a))) (6)

The energy deposited in the detector is the difference between the original electron
energy and E’.

Changing the direction of the electron results contributes to the radiative energy
loss of the electron by the production of bremsstrahlung radiation. Radiative en-
ergy loss is dominant for electrons at higher energies while collisional energy loss is
dominant for lower energies and is characterized by the stopping power. Instead of
modelling the radiative production of bremsstrahlung by use of the stopping power,
empirically found values were used instead to match bremsstrahlung spectral shapes
generated by the response functions by Berger and Seltzer (1972) and general pur-
pose codes. This approximation was done to increase the computational speed of the
specific purpose code while minimizing losses in accuracy. The energy distribution for
the bremsstrahlung photon is chosen from values given by Hansen and Fultz (1960).
The electron angle is scattered at 90° and the photon is emitted in the original di-
rection of the electron. This procedure has been benchmarked in previous work by
Peplow (1993) where comparisons are made with pulse height distributions generated

by general purpose codes like ITS and MCNP.

5.2 Benchmarking CEARDRF

The spectra generated by the Monte Carlo code, CEARDRF, was compared with
the results from the general purpose code MCNP version 4B2 for bare Nal, Ge, and
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SiLi detectors with a monoenergetic point source 10 cm away. Figures 4 - 8 show
typical verification comparisons for two single energies for each detector. The slight
differences in the Compton valley are due to simplifications in the electron transport
and bremsstrahlung production. Computational time with CEARDREF is on the order
of 10 to 15 minutes for less than 1% precision in each channel on a Sun Ultra I. MCNP
simulation requires 5 hours for the Nal and Ge spectra and up to 10 hours for the

low-energy spectra in SiLi detectors for the same precision.
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6 Components of the Detector Response Function

The components described earlier by Gardner (1986) are derived from analytic
descriptions of the physical interactions occuring in the detector. Particular features
like the short-term exponential in the Sili detector response are only evident after
other functions have been properly stripped from the spectrum. While the shape of
these features have been determined, the physical mechanism describing them has
not been clearly identified.

Many of the semi-empirical formulas are derived with simplifying assumptions. An
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example is in the multiple Compton scatter component where photon attenuation is
ignored. Using Monte Carlo simulation, the individual components can be produced
with their true shape limited only by the description of the physics in the simulation.
Monte Carlo simulation can be used to generate the components by simply flagging
particular interactions when they occur during the normal simulation. For example,
the multiple Compton scatter component is generated by counting the number of
scatters and determining if the Compton electron deposits its full energy inside the
detector and if the Compton scattered photon escapes. At the end of the photon
history, the energy deposited from these conditions are tallied separately. Figure 9
shows the basic components of the detector response function. Special attention is
required for the exponential tails near the photopeak. These features are described
in detail in section 6.2.

The components shown in Figure 9 are obtained directly from the Monte Carlo
simulation and convolved with a Gaussian with the appropriate resolution. The

features present are:

1. the full energy Gaussian peak,

2. a single Gaussian escape peak due to annihilation photons,

3. a double Gaussian escape peak due to annihilation photons,

4. a flat continuum that ranges from zero to the full energy peak, but is comprised

from two physical features,

5. a Doppler broadened Compton scattering continuum broken into first, second,
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and third Compton scatters from zero to the full energy peak,

6. a Compton scattering continuum between the first and second escape peaks due

to the Compton scattering of one of the annihilation photons, and

7. X-ray escape peaks from detector component elements such as Ge, Si, and 1.
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Figure 9: Physical Mechanisms of Detector Response

One of the first distinctions is the shape of the flat continuum. The flat contin-
uum was previously considered as a single feature but is comprised of two different
mechanisms that give a flat distribution when combined. This feature is generated by

flagging the photoelectron and Compton electron losses from the sides of the detector.
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A second distinct feature is the shape of the Compton edge. The Compton edge
as predicted by previous Monte Carlo simulation produced a very sharp change in
slope indicating a 180° Compton scatter event. Including the low-energy Doppler
effect on the angle and energy of the incident photon produces a shape that matches
the experimentally observed shape of the Compton edge. The second, third, and
subsequent Compton scatters reflect the effect of the newly implemented low-energy
physics. The dominant contribution to the shape of the Compton edge is from the first
and second Compton scatters. Notice the change in the shape of the triple Compton

scatter contribution.

6.1 Analysis by Region

An important part of this investigation is the ability to concentrate on specific
regions of the detector crystal. Previous authors (Geretschlager, 1987, Campbell,
1999, and Goto, 1993) stressed the importance of the frontal region of SiLi detectors.
It is assumed that this region is also important for other high resolution detectors like
Ge. This region has a significant effect on the shape of the exponential tail behavior
in the photopeak. CEARDREF allows the user to force the first interaction within a
region defined by the user including any dead layers. The particle weight reduction is
accounted for by the ratio of the true and modified probability distribution function
describing the forced interaction. The true and modified probability distribution

functions used are given as:

Joue(p) = pexp(—pp) (7)
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N pexp(—pp)
Jmalp) = eXp(—HPmin) — €XP(—HPmaz) ®)

Wnew = Wold |[€XP(—[4Pmin) — €XP(—Pmaz)] (9)

where p is the distance to interaction and p is the total interaction probability. The
values of ppin and pge, determine the limits where the first interaction is forced to
occur. All subsequent interactions are allowed to occur within the detector crystal.
This would allow the user to investigate the contribution of interactions within a dead

layer to specific regions of the detector crystal.

6.2 Exponential Tails

The exponential tail behavior to the left of the photopeak has been well estab-
lished for semiconductor detectors. The literature has produced a number of studies
for Sili detectors addressing this feature which does not appear in ordinary Monte
Carlo simulation but has a significant contribution in low-energy experimental spec-
tra. The low-energy tail has been explained by incomplete charge carrier collection by
diffusion towards the surface of the detector crystal, insensitive regions in the frontal
layers of the crystal, and by partial energy loss of secondary radiation like Auger
electrons, fluorescence X-rays, and photoelectrons. Some work has used a combina-
tion of these explainations. Authors have developed general models for describing the
charge collection efficiency (Geretschlager, 1987, Wang, 1992, and Goto, 1993) that
depend on parameters specific to the semiconductor detector used. These parameters
are roughly deduced from precise experiments with these detectors. One of the fun-

damental parameters of these models is the spatial location of the insensitive region
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where the incomplete charge collection is modelled. The work by Goto (1993) applies
his incomplete charge collection model over the range of the photoelectron created
by the incident photon. Work by Wang and Campbell (1992) examines the effect
of moving this boundary on their model of the poorly sensitive region. In reviewing
most of the literature, the values vary from 0.1 gm to 1 pm. Monte Carlo simulation
usually considers the entire active region of the detector crystal. It has been found
in this work as in others that this frontal region has an unusually large contribution
to the shape of the exponential tails. This is an important separation of the effect
of local properties on the detector response from the bulk properties of the detector
crystal.

The specific purpose code, CEARDRF, allows the user to investigate the contri-
bution of any specific region or any insensitive layers to the detector response. As an
example, the response can be calculated for a SiLi detector to an 88 keV source with
a totally insensitive region, called a dead layer, of thickness equal to 0.1 ym (nearly
the range of an KLL Auger electron in silicon). Since the probability of interaction
in the dead layer is very small, the first collision is forced to occur in the dead region
with the proper particle weight adjustment.

The frontal region of the detector crystal has been found to be unusually signficant
to the shape of the photopeak because of the small energy loss mechanisms that
occur within the range of the photoelectron. One difficulty with this procedure is
determining appropriate lengths of dead layers and frontal regions. The literature
suggests dead layers of thickness varing from 0.1 pm to 0.5um. The frontal region

was defined to be the range of the photoelectron. This distance was used because
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interactions that occur below the range of the photoelectron will not have any energy
loss and any interactions occuring above this range may exhibit minor energy losses
from the photoelectron, KLL Auger electron, satellite X-rays, and any fluorescence
X-rays. Figure 11 shows the typical shape of the combined effect on the photopeak
shape generated when particles are forced within the dead layer and the frontal region
of the detector. This shows the contribution of the low-energy Auger electron, satellite
X-rays, and fluorescence X-rays on the shape of the photopeak. This shape resembles
the combined short-term and long-term exponential peak shapes used with the semi-
empirical approach to detector response functions shown in Figures 1 and 2 generated
by Gardner (1986). This shape also resembles the experimentally determined KLL
Auger electron distribution in Si by Papp, Campbell, et al (1998).

Previous work supports these ideas, however, the magnitude of the contribution
in the frontal region has been at least one order of magnitude off. This has been
shown in the work by Gardner et al (1986) and is addressed by different authors in
many ways. A new approach is suggested to model the loss of secondary radiation
in the frontal region. The imperfections in the detector crystal serve as electron
trapping sites and thus increase the amount of incomplete charge collection. The
resulting effect is similar to electron losses from the surface of the detector crystal.
Since this detector characteristic cannot be physically described with much certainty,
an approximation must be made. This can be simulated by introducing a ‘pseudo’
density change in the material properties when an electron is created. Since the
reaction rate depends on the product of density and cross section, the reaction rate

may be changed by simply modifying the material density instead. Since the frontal
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regions of the detector crystal signficantly contribute to the exponential tail, the
specific purpose code, CEARDRF, adopts the general shape developed for incomplete
charge collection developed by Goto as a pseudo electron density modification. The
model given by Goto is based on a one-dimensional electron carrier density model for

silicon and looks like:

fz) = 1-(1- R)exp(-C2) (10)

where R controls the rate change in density. The shape is an exponential that quickly
reaches saturation. Figure 10 shows the density change as a function of electron
generation sites for different R.

Using this density model, several photopeak shapes are generated by including a
0.1 pm dead layer and forcing first collisions within the range of the photoelectron.
This distance changes with incident photon energy. The parameter R is changed until
the peak shape is matched for a particular detector. Table 1 lists the detector type,

incident photon energy, and values of R that generates the photopeak shape.
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Table 1: Exponential Tail Parameters

0.9

Detector Type | Isotope E (keV) R

SiLi 1 Fe--55 5.89 0.1
Mo--93 17.37 0.1
Cd--109 88.1 0.5

SiLi 2 Cd--109 88.1 0.5

HPGe 1 Cs--137 662 0.5
Mn--54 835 0.5

HPGe 2 Mn--54 835 0.9
Cd--109 88.1 0.9
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Figures 11-16 show the resulting photopeak shapes. The components of the pho-
topeak are broken into two contributions. The first includes the photoelectron only.
The energy due to photoelectron deposition varies from zero to the incident energy
less the binding energy. The second contribution includes the Auger electron, satellite

X-rays and the La fluorescence X-rays. The energy deposited ranges from complete




Auger electron loss to the full energy peak. The Monte Carlo results are convolved
with a Gaussian function with the appropriate resolution for each detector. The
resulting peak shape is very similar to the combined short term and long term expo-
nential functions generated by the semi-empirical methods. The two components are
added together and normalized to the experimental photopeak. It should be noted
that the low-energy tailing is not seen in Nal spectra nor will be seen by Monte Carlo
simulation. This is due to the larger resolution of the detector.

The small energy losses in the frontal region contribute largely to the exponential
tail region. The thickness of this region is estimated to be the sum of the insensitive
region and the maximum electron range in silicon or germanium. The K X-rays are

allowed to escape but the contribution towards the tail is small.
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Figure 12: Exponential Tail Components for SiLi #1 Cd-109: Experiment (--), Auger
Component (——), Photoelectron Component (—-)
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Figure 13: Exponential Tail Components for SiLi #1, Mo-93: Experiment (--), Auger
Component (——), Photoelectron Component (—-)

10’ o

10°F

Normalized Yield

1 | 111 | |
0.086 0.0865 0.087 0.0875 0.088 0.0885 0.089 0.0895 0.09
Energy (MeV)

Figure 14: Exponential Tail Components for SiLi #2 Cd-109: Experiment (--), Auger
Component (——), Photoelectron Component (—-)
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Figure 15: Exponential Tail Components for Ge Detector, Cs-137:
Auger Component (——), Photoelectron Component (—-)
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6.3 Flat Continuum Losses

Electron losses to the sides of the detector create a flat continuum component
to the detector response. While Monte Carlo simulation includes electron losses, it
underpredicts the magnitude of the loss when comparing with experimental spectra.
The difference in magnitude was attributed to an increased loss within the range of
the photoelectron. More recent studies indicated that the entire photon spectrum
contributed to the shape of the flat continuum.

The components that describe the flat continuum have been calculated by Monte
Carlo simulation and subdivided into a Compton electron and photo electron contri-
bution. One of the proposed solutions was to increase the electron leakage artificially
by increasing the electron range thus simulating charge loss due to imperfections or
electron channeling effects. This could be included in the Monte Carlo simulation by
modifying the density of the material for the electron when an electron is created.
A treatment that is similar by Geretschlager (1987) assumes an exponential spatial
distribution of impurities and reduces the collection efficiency if an interaction occurs
within the impurity cluster. Figure 17 demonstrates the effect of including a 'pseudo
electron density’ modification for a Ge detector at 0.662 MeV. The decreased density
increases the electron leakage. Figure 17 shows this by decreasing the density by
half the nominal and a tenth the nominal density. This is reflected as the two flat
continuum components increase in magnitude. The most significant improvement is
in the Compton valley. The density modification could be changed until the Monte

Carlo simulation matched the experimental data.
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Figure 17: Pseudo electron density modification: prominat; 0-5Pnominat, and 0.1pnominai

An alternative to this could be to simply reduce the photopeak by a specified
fraction and distribute it to the rest of the spectrum. This offers the advantage of a
convolution calculation after the basic Monte Carlo simulation that is particular to
a specific detector. A program has been written to simulate the increased electron
leakage by applying a fraction of the photons that deposit their full energy and simply
spreading them equally over the entire spectrum below the energy of interest. It is
applied after the Monte Carlo simulation but before the Gaussian convolution. Table
2 gives the applied photo fraction for each detector. Figures 18-23 show the effect
of this treatment. A constant value for a specific detector applied to the photopeak
appears sufficient to regenerate the distribution. Figures 22 and 23 also show that
this convolution does not appear to work well below 100 keV. It should be noted
that the photopeak should be generated separately including any low-energy tailing

features after this convolution.
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Table 2: Applied Photofraction for Flat Continuum

Detector Type | Photo Fraction
Sili 1 0.70
SiLi 2 0.65
HPGe 1 0.40
HPGe 2 0.45
Nal 0.08
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Figure 18: Flat Continuum Results for HPGe #1, Cs-137: Experiment (--), Flat
continuum convolution(—)
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Figure 19: Flat Continuum Results for HPGe #1, Mn-54: Experiment (--), Flat

continuum convolution(—)
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Figure 20: Flat Continuum Results for HPGe #2, Cs-137: Experiment (--), Flat
continuum convolution(—)
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Figure 21: Flat Continuum Results for Nal, Cs-137: Experiment (--), Flat continuum
convolution(—)
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Figure 22: Flat Continuum Results, HPGe #2, Am-241: Experiment (--), Flat con-
tinuum convolution(—)
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Figure 23: Flat Continuum Results, HPGe #2, Cd-109: Experiment (--), Flat con-

tinuum convolution(—) 41



7 Detector Response Function Validation

It has been shown that Monte Carlo simulation can reproduce many of the features
of the detector response function. However, there are features particular to each
detector that are nearly impossible to determine and cannot be simulated. Generating
these characteristics by Monte Carlo is not practical and should be augmented with
separate programs that are used to match a limited number of experimental single
energy spectra. This work has concentrated on the possible physical mechanisms
that produce the correct shape and magnitude of the Compton edge, the exponential
tails and the flat continuua. The Monte Carlo simulation has been improved to
include Doppler motion and supplimentary codes have been developed to generate
the exponential tails and flat continuua.

An advantage of generating detector response functions with Monte Carlo simu-
lation instead of semi-empirical methods is the reduction in the number of monoen-
ergetic experimental spectra required to validate the results. Table 3 summarizes
the experimental data taken from the Heath catalogues (1964, 1974) and from detec-
tors at NCSU that were chosen to reproduce using these techniques. Figures 24-35
show the comparison of experimental data and calculated response. The calculated
response represents the combination of the Monte Carlo generated spectra with the
convolution of the flat continuum and the addition of the photopeak shape with a
Gaussian convolution of appropriate resolution.

The agreement is good for most detectors. However, there is concern for energies

below 100 keV for the high purity Ge detectors. The experimental data for these
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Table 3: Experimental Data

Detector Isotope Energy (keV)
SiLi 1 Fe—--55 5.89
Mo--93 17 .4

Cd--109 88.1

SiLi 2 Cd--109 88.1
HPGe 1 Am--241 59.5
Cd--109 88.1

Cs--137 662

HPGe 2 Cs--137 662
Mn--54 835

NaIl Be--7 4738
Cs--137 662

Mn--54 835

energies was taken at NCSU with a point source and contain low-energy contributions
from other gamma emissions at higher energies. These particular energies represent
the lower limit of detection for Ge detectors and the upper limit for Sili detectors.
The experimental spectra for the SiLi detectors does not reproduce the flat continuum
accurately. This is due to the multiple X-ray energies emitted by the radioisotope

source.
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Figure 24: SiLi #1, Fe-55: Experiment (--), Monte Carlo generated response(—)
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Figure 25: SiLi #1, Mo-93: Experiment (--), Monte Carlo generated response(—)
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Figure 26: SiLi #1, Cd-109: Experiment (--), Monte Carlo generated response(—)
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Figure 27: SiLi #2, Cd-109: Experiment (--), Monte Carlo generated response(—)
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Figure 28: HPGe #1, Am-241: Experiment (--), Monte Carlo generated response(—)
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Figure 29: HPGe #1, Cd-109: Experiment (--), Monte Carlo generated response(—)
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Figure 30: HPGe #1, Cs-137: Experiment (--), Monte Carlo generated response(—)
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Figure 31: HPGe #2, Cs-137: Experiment (--), Monte Carlo generated response(—)
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Figure 32: HPGe #2, Cs-137: Experiment (--), Monte Carlo generated response(—)
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Figure 33: Nal, Be-7: Experiment (--), Monte Carlo generated response(—)
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Figure 34: Nal, Cs-137: Experiment (--), Monte Carlo generated response(—)
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Figure 35: Nal, Mn-54: Experiment (--), Monte Carlo generated response(—)
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8 Summary and Conclusions

There are several features of the detector response function that have required im-
provement. The ideas presented here affect the fundamental components of detector
response. Through the use of Monte Carlo simulation, the shape of the fundamental
physical mechanisms that produced the detector response have been described. One
area that required improved accuracy is the shape of the Compton edge. The shape is
dominated by the first and second Compton scatters which previously neglected the
change in photon energy and angle due to the momentum imparted by the Doppler
motion of the bound electron. This work utlized the methods developed by Namito
(1993) and incorporated Doppler motion into the Monte Carlo simulation. Doppler
motion is currently not treated in most general purpose Monte Carlo codes with the
recent exception of a special version of EGS4 (Namito, 1993) but is now included in
a local version of MCNP4B.

The next two areas that required improvement are in the valley region between
the Compton edge and the photopeak and the Compton continua. The imperfections
in the detector crystal serve as electron trapping sites and thus increase the amount of
incomplete charge collection. The resulting effect is similar to electron losses from the
surface of the detector crystal. Since this detector characteristic cannot be physically
described, an approximation was made. A convolution program has been written to
simulate the increased electron leakage by applying a fraction of the photons that
deposit their full energy and simply spreading them equally over the entire spectrum

below the energy of interest. This offers the advantage of a convolution after the basic
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Monte Carlo simulation that is particular to a specific detector and is applied after
the Monte Carlo simulation but before the Gaussian convolution.

The next area of improvement was in the exponential tail that appears left of
the main photopeak. Previous authors’ conclusions in the literature were matched
independently. The frontal region of the detector is unusually significant to the shape
of the photopeak. The tailing feature is greatly enhanced when there is a contribution
from an inactive region. A general description of a dead layer and a region of poor
charge collection was described by using a pseudo density correction when an electron
was created. The parameters of this model allow simulation for different detectors
of the same material. Also, simulation results only show the exponential behavior
when a full description of the de-excitation process is included. This included Auger
electrons, satellite Auger X-rays, and fluorescence X-rays. General agreement with
experimental data is reached. The shape of this feature resembles the previous short
and long term exponentials used in semi-empirical methods. Further refinement of
the pseudo-density model should be pursued.

The methods described here are applicable to any scintillation or semi-conductor
detector systems and were used specifically for Nal, Ge, and Si detectors. The avail-
ability of completely described benchmark quality data is essential to the experimental
validation of these methods. Fortunately, this has been solved for Nal and HP Ge de-
tectors by the work of Heath, however, there is not a consistent set of benchmark
quality data for Si detector systems. This may be solved by generating data with the
help of mono-energetic photons originiating from linear accelerators or synchotron

radiation sources
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