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OPTIMALLY SPARSE MULTIDIMENSIONAL REPRESENTATION
USING SHEARLETS∗

KANGHUI GUO† AND DEMETRIO LABATE‡

Abstract. In this paper we show that shearlets, an affine-like system of functions recently intro-
duced by the authors and their collaborators, are essentially optimal in representing 2-dimensional
functions f which are C2 except for discontinuities along C2 curves. More specifically, if fS

N is the
N -term reconstruction of f obtained by using the N largest coefficients in the shearlet representation,
then the asymptotic approximation error decays as ‖f − fS

N‖2
2 � N−2 (logN)3, N → ∞, which is

essentially optimal, and greatly outperforms the corresponding asymptotic approximation rate N−1

associated with wavelet approximations. Unlike curvelets, which have similar sparsity properties,
shearlets form an affine-like system and have a simpler mathematical structure. In fact, the elements
of this system form a Parseval frame and are generated by applying dilations, shear transformations,
and translations to a single well-localized window function.
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1. Introduction. The notion of efficient representation of data plays an increas-
ingly important role in areas across applied mathematics, science, and engineering.
Over the past few years, there has been a rapidly increasing pressure to handle ever
larger and higher-dimensional data sets, with the challenge of providing representa-
tions of these data that are sparse (that is, “very” few terms of the representation
are sufficient to accurately approximate the data) and computationally fast. Sparse
representations have implications reaching beyond data compression. Understanding
the compression problem for a given data type entails a precise knowledge of the
modeling and approximation of that data type. This in turn is useful for many other
important tasks, including classification, denoising, interpolation, and segmentation
[13].

Multiscale techniques based on wavelets have emerged over the last two decades
as the most successful methods for the efficient representation of data, as attested, for
example, by their use in the new FBI fingerprint database [3] and in JPEG2000, the
new standard for image compression [4, 19]. Indeed, wavelets are optimally efficient
in representing functions with pointwise singularities [27, Chap. 9].

More specifically, consider the wavelet representation (using a “nice” wavelet ba-
sis) of a function f of a single variable that is smooth apart from a point discontinuity.
Because the elements of the wavelet basis are well localized (i.e., they have very fast
decay both in the spatial and in the frequency domain), very few of them interact
significantly with the singularity, and thus very few elements of the wavelet expansion
are sufficient to provide an accurate approximation. This contrasts sharply with the
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Fourier representation, for which the discontinuity interacts extensively with the ele-
ments of the Fourier basis. Denoting by fN the approximation obtained by using the
largest N coefficients in the wavelet expansion, the asymptotic approximation error
satisfies

‖f − fN‖2
2 � N−2, N → ∞.

This is the optimal approximation rate for this type of function [10], and outperforms
the corresponding Fourier approximation error rate N−1 [13, 27]. In addition, the
multiresolution analysis (MRA) associated with wavelets provides very fast numerical
algorithms for computing the wavelet coefficients [27].

However, despite their remarkable success in applications, wavelets are far from
optimal in dimensions larger than one. Indeed wavelets are very efficient in dealing
with pointwise singularities only. In higher dimensions other types of singularities
are usually present or even dominant, and wavelets are unable to handle them very
efficiently. Consider, for example, the wavelet representation of a 2-dimensional (2-
D) function that is C2 away from a discontinuity along a curve of finite length (a
reasonable model for an image containing an edge). Because the discontinuity is
spatially distributed, it interacts extensively with the elements of the wavelet basis.
As a consequence, the wavelet coefficients have a slow decay, and the approximation
error ‖f − fN‖2

2 decays at most as fast as O(N−1) [27]. This is better than the
rate of the Fourier approximation error N−1/2, but far from the optimal theoretical
approximation rate (cf. [12])

(1.1) ‖f − fN‖2
2 � N−2, N → ∞.

There is, therefore, large room for improvements, and several attempts have been
made in this direction both in the mathematical and engineering communities in recent
years. Those include contourlets, complex wavelets and other “directional wavelets”
in the filter bank literature [1, 2, 11, 22, 26, 28], as well as brushlets [8], ridgelets [5],
curvelets [7], and bandelets [24].

The most successful approach so far are the curvelets of Candès and Donoho.
This is the first and so far the only construction providing an essentially optimal ap-
proximation property for 2-D piecewise smooth functions with discontinuities along
C2 curves [7]. The main idea in the curvelet approach is that, in order to approx-
imate functions with edges accurately, one has to exploit their geometric regularity
much more efficiently than traditional wavelets. This is achieved by constructing an
appropriate tight frame of well-localized functions at various scales, positions, and
directions. We refer to [6, 7] for more details about this construction.

The main goal of this paper is to show that shearlets, a construction based on
the theory of composite wavelets, also provides an essentially optimal approximation
property for 2-D piecewise C2 functions with discontinuities along C2 curves. We
will show that the approximation error associated with the N -term reconstruction fS

N

obtained by taking the N largest coefficients in the shearlet expansion satisfies

(1.2) ‖f − fS
N‖2

2 � N−2(logN)3, N → ∞.

This is exactly the approximation rate obtained using curvelets. The proof of our
result adapts several ideas from the corresponding sparsity result of the curvelets
[7] and follows the general architecture of that proof, but does not follow directly
from the curvelets construction. Indeed, as we will argue in the following, our alter-
native approach based on shearlets has some mathematical advantages with respect
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to curvelets, including a simplified construction that provides the framework for a
simpler mathematical analysis and fast algorithmic implementation (see also [9, 14]).

The theory of composite wavelets, recently proposed by the authors and their
collaborators [16, 17, 18], provides a most general setting for the construction of
truly multidimensional, efficient, multiscale representations. Unlike the curvelets,
this approach takes full advantage of the theory of affine systems on R

n. Specifically,
the affine systems with composite dilations are the systems

(1.3) AAB(ψ) = {ψj,�,k(x) = |detA|j/2 ψ(B� Ajx− k) : j, � ∈ Z, k ∈ Z
n},

where A,B are n×n invertible matrices and |detB| = 1. The elements of this system
are called composite wavelets if AAB(ψ) forms a Parseval frame (also called a tight
frame) for L2(Rn); that is, ∑

j,�,k

|〈f, ψj,�,k〉|2 = ‖f‖2

for all f ∈ L2(Rn). The shearlets, which will be considered in this paper, are a special
class of composite wavelets where A is an anisotropic dilation and B is a shear matrix.
Details for this construction will be given in section 1.2. These representations have
fully controllable geometrical features, such as orientations, scales, and shapes, which
set them apart from traditional wavelets as well as complex and directional wavelets.
In addition, thanks to their mathematical structure, there is a multiresolution anal-
ysis naturally associated with composite wavelets. This is particularly useful for the
development of fast algorithmic implementations of these transformations [23, 25].

Observe that curvelets are not of the form (1.3), and, unlike the shearlets, are
not generated from the action of a family of operators on a single or finite family of
functions.

1.1. Notation. Throughout this paper, we shall consider the points x ∈ R
n to

be column vectors, i.e.,

x =

⎛⎜⎝x1

...
xn

⎞⎟⎠ ,

and the points ξ ∈ R̂
n (the frequency domain) to be row vectors, i.e., ξ = (ξ1, . . . , ξn).

A vector x multiplying a matrix a ∈ GLn(R) on the right is understood to be a column
vector, while a vector ξ multiplying a on the left is a row vector. Thus, ax ∈ R

n and
ξa ∈ R̂

n. The Fourier transform is defined as

f̂(ξ) =

∫
Rn

f(x) e−2πiξx dx,

where ξ ∈ R̂
n, and the inverse Fourier transform is

f̌(x) =

∫
R̂n

f(ξ) e2πiξx dξ.

1.2. Shearlets. The collection of shearlets that we are going to define in this
section is a special example of composite wavelets in L2(R2), of the form (1.3), where

(1.4) A =

(
4 0
0 2

)
, B =

(
1 1
0 1

)
,
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and ψ will be defined in the following. It is useful to observe that, by applying the
Fourier transform to the elements ψj,�,k in (1.3), we obtain

ψ̂j,�,k(ξ) = |detA|−j/2 ψ(ξA−jB−�) e2πiξA−jB−�k.

For any ξ = (ξ1, ξ2) ∈ R̂
2, ξ1 	= 0, let ψ be given by

(1.5) ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2
ξ1

)
,

where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,−

1
16 ] ∪ [ 1

16 ,
1
2 ], and supp ψ̂2 ⊂ [−1, 1]. We

assume that

(1.6)
∑
j≥0

|ψ̂1(2
−2jω)|2 = 1 for |ω| ≥ 1

8

and

(1.7) |ψ̂2(ω − 1)|2 + |ψ̂2(ω)|2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1.

It follows from the last equation that, for any j ≥ 0,

(1.8)

2j∑
�=−2j

|ψ̂2(2
j ω + �)|2 = 1 for |ω| ≤ 1.

It also follows from our assumptions that ψ̂ ∈ C∞
0 (R̂2), with supp ψ̂ ⊂ [− 1

2 ,
1
2 ]2. There

are several examples of functions ψ1, ψ2 satisfying the properties described above (see
the appendix).

Observe that (ξ1, ξ2)A
−jB−� = (2−2jξ1,−�2−2jξ1+2−jξ2). Using (1.6) and (1.8),

it is easy to see that

∑
j≥0

2j∑
�=−2j

|ψ̂(ξ A−jB−�)|2 =
∑
j≥0

2j∑
�=−2j

|ψ̂1(2
−2j ξ1)|2

∣∣∣∣ψ̂2

(
2j

ξ2
ξ1

− �

)∣∣∣∣2

=
∑
j≥0

|ψ̂1(2
−2j ξ1)|2

2j∑
�=−2j

∣∣∣∣ψ̂2

(
2j

ξ2
ξ1

− �

)∣∣∣∣2 = 1

for (ξ1, ξ2) ∈ DC , where DC = {(ξ1, ξ2) ∈ R̂
2 : |ξ1| ≥ 1

8 , |
ξ2
ξ1
| ≤ 1}. This equation,

together with the fact that ψ̂ is supported inside [− 1
2 ,

1
2 ]2, implies that the collection

of shearlets,

(1.9) SH(ψ) =

{
ψj,�,k(x) = 2

3j
2 ψ(B�Ajx− k) : j ≥ 0,−2j ≤ � ≤ 2j , k ∈ Z

2

}
,

is a Parseval frame for L2(DC)∨ = {f ∈ L2(R2) : supp f̂ ⊂ DC}. Details about the
argument that this system is a Parseval frame can be found in [18, sect. 5.2.1].

To obtain a Parseval frame for L2(R2), one can construct a second system of
shearlets which form a Parseval frame for the functions with frequency support in
the vertical cone DC̃ = {(ξ1, ξ2) ∈ R̂

2 : |ξ2| ≥ 1
8 , |

ξ1
ξ2
| ≤ 1}. Finally, one can easily
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(a)

ξ1

ξ2

(b)

��

∼ 22j

�

�

∼ 2j

Fig. 1.1. (a) The tiling of the frequency plane R̂
2 induced by the shearlets. (b) Frequency

support of the shearlet ψj,�,k, for ξ1 > 0. The other half of the support, for ξ1 < 0, is symmetrical.

construct a Parseval frame (or an orthonormal basis) for L2([− 1
8 ,

1
8 ]2)∨. Then any

function in L2(R2) can be expressed as a sum f = PCf + PC̃f + P0f , where each
component corresponds to the orthogonal projection of f into one of the three sub-
spaces of L2(R2) described above. The tiling of the frequency plane R̂

2 induced by
this system is illustrated in Figure 1.1(a). The above construction was first introduced
in [15].

The conditions on the support of ψ̂1 and ψ̂2 imply that the functions ψ̂j,�,k have
frequency support:

supp ψ̂j,�,k ⊂
{

(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1],

∣∣∣∣ξ2ξ1 − � 2−j

∣∣∣∣ ≤ 2−j

}
.

Thus, the system SH(ψ), given by (1.9), is a Parseval frame exhibiting the following
properties:

(i) Time-frequency localization. Since ψ̂ ∈ C∞
0 (R̂2), then |ψ(x)| ≤ CN (1+|x|)−N

for any N ∈ N, and thus the elements ψj,�,k are well localized.

(ii) Parabolic scaling. Each element ψ̂j,�,k has support on a pair of trapezoids,
each one contained in a box of size approximately 22j×2j (see Figure 1.1(b)).
Because the shearlets are well localized, each ψj,�,k is essentially supported
on a box of size 2−2j × 2−j . Thus, their supports become increasingly thin
as j → ∞.

(iii) Directional sensitivity. The elements ψ̂j,�,k are oriented along lines with slope
given by � 2−j . As a consequence, the corresponding elements ψj,�,k are ori-
ented along lines with slope −� 2−j . The number of orientations (approxi-
mately) doubles at each finer scale.

(iv) Spatial localization. For any fixed scale and orientation, the shearlets are
obtained by translations on the lattice Z

2.
(v) Oscillatory behavior. The shearlets ψj,�,k are nonoscillatory along the orien-

tation axis of slope −� 2−j , and oscillatory across this axis.
Observe that the curvelets of Candès and Donoho also satisfy similar properties,

with the following main differences. Concerning property (iii), the number of orienta-
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tions in the curvelet constructions doubles at every other scale. Concerning property
(iv), the curvelets are not associated with a fixed translation lattice. However, for a
given scale parameter j and orientation θ, they are obtained by translations on a grid
that depends on j and θ. In fact, as we mentioned before, unlike the shearlets, the
curvelets are not generated from the action of a family of operators on a single or
finite family of functions.

1.3. Main results. One major feature of shearlets is that, if f is a compactly
supported function which is C2 away from a C2 curve, then the sequence of shearlet
coefficients {〈f, ψj,�,k〉} has (essentially) optimally fast decay. As a consequence, if
fS
N is the N -term approximation of f obtained from the N largest coefficients of its

shearlet expansion, then the approximation error is essentially optimal.
Before stating the main theorems, let us define more precisely the class of functions

we are interested in. We follow [7] and introduce STAR2(A), a class of indicator
functions of sets B with C2 boundaries ∂B. In polar coordinates, let ρ(θ) : [0, 2π) →
[0, 1]2 be a radius function, and define B by x ∈ B if and only if |x| ≤ ρ(θ). In
particular, the boundary ∂B is given by the curve in R

2:

(1.10) β(θ) =

(
ρ(θ) cos(θ)
ρ(θ) sin(θ)

)
.

The class of boundaries of interest to us is defined by

(1.11) sup |ρ′′(θ)| ≤ A, ρ ≤ ρ0 < 1.

We say that a set B ∈ STAR2(A) if B ⊂ [0, 1]2 and B is a translate of a set obey-
ing (1.10) and (1.11). In addition, we set C2

0 ([0, 1]2) to be the collection of twice
differentiable functions supported inside [0, 1]2.

Finally, we define the set E2(A) of functions which are C2 away from a C2 edge
as the collection of functions of the form

f = f0 + f1 χB ,

where f0, f1 ∈ C2
0 ([0, 1]2), B ∈ STAR2(A), and ‖f‖C2 =

∑
|α|≤2‖Dαf‖∞ ≤ 1.

Let M be the set of indices {(j, �, k) : j ≥ 0,−2j ≤ � ≤ 2j , k ∈ Z
2}, and let

{ψμ}μ∈M be the Parseval frame of shearlets given by (1.9). The shearlet coefficients
of a given function f are the elements of the sequence {sμ(f) = 〈f, ψμ〉 : μ ∈ M}.
We denote by |s(f)|(N) the Nth largest entry in this sequence. We can now state the
following results.

Theorem 1.1. Let f ∈ E2(A), and let {sμ(f) = 〈f, ψμ〉 : μ ∈ M} be the sequence
of shearlet coefficients associated with f . Then

(1.12) sup
f∈E2(A)

|s(f)|(N) ≤ C N−3/2 (logN)3/2.

Let fS
N be the N -term approximation of f obtained from the N largest coefficients

of its shearlet expansion, namely,

fS
N =

∑
μ∈IN

〈f, ψμ〉ψμ,

where IN ⊂ M is the set of indices corresponding to the N largest entries of the
sequence {|〈f, ψμ〉|2 : μ ∈ M}. Then the approximation error satisfies

‖f − fS
N‖2

2 ≤
∑
m>N

|s(f)|2(m).
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Therefore, from (1.12) we immediately have the following.
Theorem 1.2. Let f ∈ E2(A) and fS

N be the approximation to f defined above.
Then

‖f − fS
N‖2

2 ≤ C N−2 (logN)3.

1.4. Analysis of the shearlet coefficients. The argument that will be used
to prove Theorem 1.1 follows essentially the architecture of the proofs in [7]. In order
to measure the sparsity of the shearlet coefficients {〈f, ψμ〉 : μ ∈ M}, we will use the
weak-�p quasi-norm ‖·‖w�p defined as follows. Let |sμ|(N) be the Nth largest entry in
the sequence {sμ}. Then

‖sμ‖w�p = sup
N>0

N
1
p |sμ|(N).

One can show (cf. [29, sect. 5.3]) that this definition is equivalent to

‖sμ‖w�p =

(
sup
ε>0

#{μ : |sμ| > ε} εp
) 1

p
.

To analyze the decay properties of the shearlet coefficients {〈f, ψμ〉} at a given
scale 2−j , we will smoothly localize the function f near dyadic squares. Fix the scale
parameter j ≥ 0. For this j fixed, let Mj = {(j, �, k) : −2j ≤ � ≤ 2j , k ∈ Z

2} and
Qj be the collection of dyadic cubes of the form Q = [k1

2j ,
k1+1
2j ] × [k2

2j ,
k2+1
2j ], with

k1, k2 ∈ Z. For w a nonnegative C∞ function with support in [−1, 1]2, we define a
smooth partition of unity ∑

Q∈Qj

wQ(x) = 1, x ∈ R
2,

where, for each dyadic square Q ∈ Qj , wQ(x) = w(2jx1−k1, 2
jx2−k2). We will then

examine the shearlet coefficients of the localized function fQ = f wQ, i.e., {〈fQ, ψμ〉 :
μ ∈ Mj}.

For f ∈ E2(A), the decay properties of the coefficients {〈fQ, ψμ〉 : μ ∈ Mj} will
exhibit a very different behavior depending on whether the edge curve intersects the
support of wQ or not. Let Qj = Q0

j ∪ Q1
j , where the union is disjoint and Q0

j is the
collection of those dyadic cubes Q ∈ Qj such that the edge curve intersects the support
of wQ. Since each Q has sidelength 2 · 2−j , then Q0

j has cardinality |Q0
j | ≤ C0 2j ,

where C0 is independent of j. Similarly, since f is compactly supported in [0, 1]2,
|Q1

j | ≤ 22j + 4 · 2j .
We have the following results, which will be proved in section 2.
Theorem 1.3. Let f ∈ E2(A). For Q ∈ Q0

j , with j ≥ 0 fixed, the sequence of
shearlet coefficients {〈fQ, ψμ〉 : μ ∈ Mj} obeys

‖〈fQ, ψμ〉‖w�2/3 ≤ C 2−
3j
2

for some constant C independent of Q and j.
Theorem 1.4. Let f ∈ E2(A). For Q ∈ Q1

j , with j ≥ 0 fixed, the sequence of
shearlet coefficients {〈fQ, ψμ〉 : μ ∈ Mj} obeys

‖〈fQ, ψμ〉‖w�2/3 ≤ C 2−3j
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for some constant C independent of Q and j.
As a consequence of these two theorems, we have the following.
Corollary 1.5. Let f ∈ E2(A) and, for j ≥ 0, let sj(f) be the sequence

sj(f) = {〈f, ψμ〉 : μ ∈ Mj}. Then

‖sj(f)‖w�2/3 ≤ C

for some C independent of j.
Proof. Using Theorems 1.3 and 1.4, by the p-triangle inequality for weak �p spaces,

p ≤ 1, we have

‖sj(f)‖2/3

w�2/3 ≤
∑

Q∈Qj

‖〈fQ, ψμ〉‖2/3

w�2/3

=
∑

Q∈Q0
j

‖〈fQ, ψμ〉‖2/3

w�2/3 +
∑

Q∈Q1
j

‖〈fQ, ψμ〉‖2/3

w�2/3

≤ C |Q0
j | 2−j + C |Q1

j | 2−2j .

The proof is completed by observing that |Q0
j | ≤ C0 2j , where C0 is independent of j,

and |Q1
j | ≤ 22j + 4 · 2j .

We can now prove Theorem 1.1.
Proof of Theorem 1.1. By Corollary 1.5, we have that

(1.13) R(j, ε) = #{μ ∈ Mj : |〈f, ψμ〉| > ε} ≤ C ε−2/3.

Also, observe that, since ψ̂ ∈ C∞
0 (R2), then

|〈f, ψμ〉| =

∣∣∣∣∫
R2

f(x) 23j/2 ψ(B�Ajx− k) dx

∣∣∣∣
≤ 23j/2 ‖f‖∞

∫
R2

|ψ(B�Ajx− k)| dx

= 2−3j/2 ‖f‖∞
∫

R2

|ψ(y)| dy < C ′ 2−3j/2.(1.14)

As a consequence, there is a scale jε such that |〈f, ψμ〉| < ε for each j ≥ jε. Specifically,
it follows from (1.14) that R(j, ε) = 0 for j > 2

3 (log2(ε
−1) + log2(C

′)) > 2
3 log2(ε

−1).
Thus, using (1.13), we have that

#{μ ∈ M : |〈f, ψμ〉| > ε} ≤
∑
j≥0

R(j, ε) ≤ C ε−2/3 log2(ε
−1),

and this implies (1.12).

2. Proofs. This section contains the constructions and proofs needed for the
theorems in section 1.4.

2.1. Proof of Theorem 1.3. Suppose that a function in E2(A) contains a C2

edge. Following the approach in [7], we suppose that, for j > j0, the scale 2−j is
small enough so that over the square −2−j ≤ x1, x2 ≤ 2−j the edge curve may be
parametrized as

(
E(x2)
x2

)
or
( x1

E(x1)

)
. (The case where j ≤ j0 is small requires a much

simpler analysis and will be discussed in section 2.3.) Without loss of generality, let
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x1

x2

E(x2)

�

�

2 · 2−j

Fig. 2.1. Representation of an edge fragment.

us assume that the first parametrization holds. Then an edge fragment is a function
of the form

f(x1, x2) = w(2jx1, 2
jx2) g(x1, x2)χ{x1≥E(x2)},

where g ∈ C2
0 ((0, 1)2). For simplicity, let us assume that the edge goes through the

origin and, at this point, its tangent is vertical (see Figure 2.1). Then, using the
regularity of the edge curve, we have that

(i) E(0) = 0, E′(0) = 0;
(ii) sup|x2|≤2−j |E(x2)| ≤ 1

2 sup|x2|≤2−j 2−2j |E′′(x2)|.
That means that, for |x2| ≤ 2−j , the edge curve is almost straight. Observe that any
arbitrary edge fragment is obtained by rotating and translating the one above. Since
the analysis of the edge fragment that will be presented in the following is not affected
by these transformations, there is no loss of generality in considering this case only.

In order to quantify the decay properties of the shearlet coefficients, we first need
to analyze the decay of the Fourier transform of the edge fragment along radial lines
in the region DC ⊂ R̂

2, defined in section 1.2. It will be convenient to introduce polar
coordinates. Let ξ = (ξ1, ξ2) ∈ DC . Using polar coordinates, we have

ξ1 = λ cos θ, ξ2 = λ sin θ, with |θ| ≤ π

4
, λ ∈ R, |ξ1| ≥

1

8
.

Using this notation, the radial lines have the form (λ cos θ, λ sin θ), λ ∈ R, |θ| ≤ π
4 .

For ξ = (ξ1, ξ2) ∈ DC , j ≥ 0, −2j ≤ � ≤ 2j , we introduce the notation

(2.1) Γj,�(ξ) = ψ̂1

(
2−2j ξ1

)
ψ̂2

(
2j

ξ2
ξ1

− �

)
.

We have the following claim.
Proposition 2.1. Let f be an edge fragment and Γj,� be given by (2.1). Then∫

R2

|f̂(ξ)|2 |Γj,�(ξ)|2 dξ ≤ C 2−3j (1 + |�|)−5.
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In order to prove this proposition, we need to recall the following result [7,
Thm. 6.1].

Theorem 2.2. Let f be an edge fragment and Ij a dyadic interval [22j−α, 22j+β ]
with α ∈ {0, 1, 2, 3, 4}, β ∈ {0, 1, 2}. Then, for all θ,∫

|λ|∈Ij

|f̂(λ cos θ, λ sin θ)|2 dλ ≤ C 2−3j
(
1 + 2j | sin θ|

)−5

.

Proof of Proposition 2.1. The assumptions on the support of ψ̂1 and ψ̂2 imply
that

(2.2) supp ψ̂1(2
−2jξ1) ⊂

{
ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1]

}
and

supp ψ̂2

(
2j

ξ2
ξ1

− �

)
⊂
{

(ξ1, ξ2) :

∣∣∣∣2j ξ2ξ1 − �

∣∣∣∣ ≤ 1

}
.

Since tan θ = ξ2
ξ1

, the last expression can be written as

(2.3) supp ψ̂2

(
2j

ξ2
ξ1

− �

)
⊂
{
(λ, θ) : 2−j(�− 1) ≤ tan θ ≤ 2−j(� + 1)

}
.

Since λ2 = ξ2
1 + ξ2

2 = ξ2
1 (1 + (tan θ)2) and |�| ≤ 2j , then, using (2.2) and (2.3), we

have

|λ| ≤ 22j−1
(
1 + 2−2j(1 + |�|)2

) 1
2 ≤ 22j−1

(
1 + 2−2j(1 + 2j)2

) 1
2 ≤ 22j+1

and

|λ| ≥ 22j−4
(
1 + 2−2j(|�| − 1)2

) 1
2 ≥ 22j−4.

Thus, the support of Γj,� is contained in

Wj,� = {(λ, θ) : 22j−4 ≤ |λ| ≤ 22j+1, arctan(2−j(�− 1)) ≤ θ ≤ arctan(2−j(� + 1))}.

Observe that, in particular, |θ| ≤ arctan 2. Since, for |θ| ≤ 2, we have that1 tan θ ≈
sin θ, it follows from (2.3) that, on Wj,�,

(2.4) 2j | sin θ| ≈ 2j (2−j |�|) = |�|.

Thus, using (2.4) and Theorem 2.2, we have that∫
R̂2

|f̂(ξ)|2 |Γj,�(ξ)|2 dξ ≤ C

∫
Wj,�

|f̂(λ cos θ, λ sin θ)|2 λ dλ dθ

≤ C

∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

|f̂(λ cos θ, λ sin θ)|2 |λ| dλ dθ

≤ C 22j+1

∫ arctan(2−j(�+1))

arctan(2−j(�−1))

2−4j
(
1 + 2j | sin θ|

)−5

dθ

≤ C 2−2j (1 + |�|)−5
(
arctan(2−j(�− 1)) − arctan(2−j(� + 1))

)
= C 2−3j (1 + |�|)−5.

1We use the notation f(x) ≈ g(x), x ∈ D, to mean that there are constants C1, C2 > 0 such that
C1 g(x) ≤ f(x) ≤ C2 g(x) for all x ∈ D.
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The following proposition provides a similar estimate for the partial derivatives
of the Fourier transform of the edge fragment.

Proposition 2.3. Let f be an edge fragment, Γj,� be given by (2.1), and L be
the differential operator

L =

(
I −
(

22j

2π (1 + |�|)

)2
∂2

∂ξ2
1

) (
1 −
(

2j

2π

)2
∂2

∂ξ2
2

)
.

Then ∫
R̂2

∣∣∣L(f̂(ξ) Γj,�(ξ)
)∣∣∣2 dξ ≤ C 2−3j (1 + |�|)−5.

In order to prove this proposition, we need to recall the following result [7,
Cor. 6.6].

Corollary 2.4. Let f be an edge fragment and Ij a dyadic interval [22j−α, 22j+β ]
with α ∈ {0, 1, 2, 3, 4}, β ∈ {0, 1, 2}. Then, for each m = (m1,m2) ∈ N × N and for
each θ,

∫
|λ|∈Ij

∣∣∣∣ ∂m1

∂ξm1
1

∂m2

∂ξm2
2

f̂(λ cos θ, λ sin θ)

∣∣∣∣2 dλ

≤ Cm 2−2j|m|
(
2−(4+2m1)j (1 + 2j | sin θ|)−5 + 2−10j

)
,

where Cm is independent of j and � and N = N ∪ {0}.
We also need the following lemma, which follows from a direct computation.

Lemma 2.5. Let Γj,� be given by (2.1). Then, for each m = (m1,m2) ∈ N × N,
m1,m2 ∈ {0, 1, 2},∣∣∣∣ ∂m1

∂ξm1
1

∂m2

∂ξm2
2

Γj,�(ξ1, ξ2)

∣∣∣∣ ≤ Cm 2−(2m1+m2)j (1 + |�|)m1 ,

where |m| = m1 + m2 and Cm is independent of j and �.

We can now prove Proposition 2.3.

Proof of Proposition 2.3. From Corollary 2.4, using (2.4), we have

∫ 22j+1

22j−4

∣∣∣∣ ∂2

∂ξ2
1

f̂(λ cos θ, λ sin θ)

∣∣∣∣2 dλ ≤ C 2−4j
(
2−8j (1 + |�|)−5 + 2−10j

)
.

Thus, using the same idea as in the proof of Proposition 2.1,

∫
R̂2

∣∣∣∣( ∂2

∂ξ2
1

f̂(ξ)

)
Γj,�(ξ)

∣∣∣∣2 dξ

≤ C

∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

∣∣∣∣ ∂2

∂ξ2
1

f̂(λ cos θ, λ sin θ)

∣∣∣∣2 |λ| dλ dθ

≤ C 2−3j
(
2−8j (1 + |�|)−5 + 2−10j

)
.(2.5)



OPTIMALLY SPARSE REPRESENTATION USING SHEARLETS 309

Similarly, using Corollary 2.4 and Lemma 2.5, we have∫
R̂2

∣∣∣∣( ∂

∂ξ1
f̂(ξ)

) (
∂

∂ξ1
Γj,�(ξ)

)∣∣∣∣2 dξ

≤ C 2−4j(1 + |�|)2
∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

∣∣∣∣ ∂

∂ξ1
f̂(λ cos θ, λ sin θ)

∣∣∣∣2 |λ| dλ dθ

≤ C 2−4j(1 + |�|)2 2−j
(
2−6j (1 + |�|)−5 + 2−10j

)
= C 2−5j(1 + |�|)2

(
2−6j (1 + |�|)−5 + 2−10j

)
(2.6)

and ∫
R̂2

∣∣∣∣f̂(ξ)

(
∂2

∂ξ2
1

Γj,�(ξ)

)∣∣∣∣2 dξ

≤ C 2−8j(1 + |�|)4
∫ arctan(2−j(�+1))

arctan(2−j(�−1))

∫ 22j+1

22j−4

∣∣∣f̂(λ cos θ, λ sin θ)
∣∣∣2 |λ| dλ dθ

≤ C 2−8j(1 + |�|)4 2−3j (1 + |�|)−5 = C 2−11j (1 + |�|)−1.(2.7)

Finally, combining (2.5), (2.6), (2.7), and using the fact that |�| ≤ 2j , we have that

(2.8)

∫
R̂2

∣∣∣∣∣
(

22j

2π(1 + |�|)

)2
∂2

∂ξ2
1

(
f̂(ξ) Γj,�(ξ)

)∣∣∣∣∣
2

dξ ≤ C 2−3j (1 + |�|)−5.

Similarly for the derivatives with respect to ξ2 we have

(2.9)

∫
R̂2

∣∣∣∣( ∂2

∂ξ2
2

f̂(ξ)

)
Γj,�(ξ)

∣∣∣∣2 dξ ≤ C 2−3j
(
2−4j (1 + |�|)−5 + 2−10j

)
,

(2.10)

∫
R̂2

∣∣∣∣( ∂

∂ξ2
f̂(ξ)

) (
∂

∂ξ2
Γj,�(ξ)

)∣∣∣∣2 dξ ≤ C 2−3j
(
2−4j (1 + |�|)−5 + 2−10j

)
,

(2.11)

∫
R̂2

∣∣∣∣f̂(ξ)

(
∂2

∂ξ2
2

Γj,�(ξ)

)∣∣∣∣2 dξ ≤ C 2−7j (1 + |�|)−5.

Combining (2.9), (2.10), (2.11), and using again the fact that |�| ≤ 2j , we have that

(2.12)

∫
R̂2

∣∣∣∣∣
(

2j

2π

)2
∂2

∂ξ2
2

(
f̂(ξ) Γj,�(ξ)

)∣∣∣∣∣
2

dξ ≤ C 2−3j (1 + |�|)−5.

Similarly, one can show that

(2.13)

∫
R̂2

∣∣∣∣ 23j

(1 + |�|)(2π)2
∂2

∂ξ2
2

∂2

∂ξ2
1

(
f̂(ξ) Γj,�(ξ)

)∣∣∣∣2 dξ ≤ C 2−3j (1 + |�|)−5.

The proof is completed using (2.8), (2.12), (2.13), and Lemma 2.5.
We can now prove Theorem 1.3. The following proof adapts some ideas from [7].
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Proof of Theorem 1.3. Fix j ≥ 0 and, for simplicity of notation, let f = fQ. For
μ ∈ Mj , the shearlet coefficient of f is

〈f, ψμ〉 = 〈f, ψj,�,k〉 = |detA|−j/2

∫
R̂2

f̂(ξ) Γj,�(ξ) e
2πiξA−jB−�k dξ,

where Γj,�(ξ) is given by (2.1) and A, B are given by (1.4). Observe that

2πiξA−jB−�k = 2πi
(
ξ1 ξ2

)(2−2j 0
0 2−j

)(
1 −�
0 1

)(
k1

k2

)
= 2πi

(
(k1 − k2�)2

−2jξ1 + k22
−jξ2
)
.(2.14)

Using (2.14), a direct computation shows that

∂2

∂ξ2
1

(
2πξA−jB−�k

)
= −(2π)22−4j(k1 − k2�)

2 =

{
−(2π)2 �2 2−4j(k1

� − k2)
2 if � 	= 0,

−(2π)2 2−4jk2
1 if � = 0,

∂2

∂ξ2
2

(
2πξA−jB−�k

)
= −(2π)2 2−2jk2

2.(2.15)

By the equivalent definition of weak �p norm, the theorem is proved, provided we
show that

(2.16) #{μ ∈ Mj : |〈f, ψμ〉| > ε} ≤ C 2−j ε−
2
3 .

Let L be the second order differential operator defined in Proposition 2.3. Using
(2.14) and (2.15), it follows that
(2.17)

L
(
e2πiξA−jB−�k

)
=

⎧⎨⎩
(

1 +
(

�
(1+|�|)

)2 (
k1

� − k2

)2)
(1 + k2

2) e
2πiξA−jB−�k if � 	= 0,

(1 + k2
1)(1 + k2

2) e
2πiξA−jB−�k if � = 0.

Integration by parts gives

〈f, ψμ〉 = |detA|−j/2

∫
R̂2

L
(
f̂(ξ) Γj,�(ξ)

)
L−1
(
e2πiξA−jB−�k

)
dξ.

Let us consider first the case � 	= 0. In this case, from (2.17) we have that

(2.18) L−1
(
e2πiξA−jB−�k

)
= G(k, �)−1 e2πiξA−jB−�k,

where G(k, �) =
(
1 +
(

�
(1+|�|)

)2(k1

� − k2

)2)
(1 + k2

2). Thus

〈f, ψμ〉 = |detA|−j/2 G(k, �)−1

∫
R̂2

L
(
f̂(ξ) Γj,�(ξ)

)
e2πiξA−jB−�k dξ,

or, equivalently,

G(k, �) 〈f, ψμ〉 = |detA|−j/2

∫
R̂2

L
(
f̂(ξ) Γj,�(ξ)

)
e2πiξA−jB−�k dξ.

Let K = (K1,K2) ∈ Z
2, and define RK = {k = (k1, k2) ∈ Z

2 : k1

� ∈ [K1,K1+1], k2 =

K2}. Since, for j, � fixed, the set {|detA|−j/2 e2πiξA−jB−�k : k ∈ Z
2} is an orthonormal
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basis for the L2 functions on [− 1
2 ,

1
2 ]AjB�, and the function Γj,�(ξ) is supported on

this set, then ∑
k∈RK

|〈G(k, �) f, ψμ〉|2 ≤
∫

R̂2

∣∣∣L(f̂(ξ) Γj,�(ξ)
)∣∣∣2 dξ.

From the definition of RK it follows that∑
k∈RK

|〈f, ψμ〉|2 ≤ C
(
1 + (K1 −K2)

2
)−2

(1 + K2)
−2
∫

R̂2

∣∣∣L(f̂(ξ) Γj,�(ξ)
)∣∣∣2 dξ.

By Proposition 2.3,

(2.19)
∑

k∈RK

|〈f, ψμ〉|2 ≤ C L−2
K 2−3j(1 + |�|)−5,

where LK = (1 + (K1 − K2)
2)(1 + K2

2 ). For j, � fixed, let Nj,�,K(ε) = #{k ∈ RK :
|ψj,�,k| > ε}. Then it is clear that Nj,�,K(ε) ≤ C (|�| + 1), and (2.19) implies that

Nj,�,K(ε) ≤ C L−2
K 2−3j ε−2(1 + |�|)−5.

Thus

(2.20) Nj,�,K(ε) ≤ C min
(
|�| + 1, L−2

K 2−3j ε−2(1 + |�|)−5
)
.

Using (2.20), we will now show that

(2.21)
2j∑

�=−2j

Nj,�,K(ε) ≤ C L
− 2

3
K 2−j ε−

2
3 .

In fact, let �∗ be defined by (�∗ + 1) = L−2
K 2−3j ε−2(1 + �∗)−5. That is, �∗ + 1 =

L
−1/3
K 2−j/2 ε−1/3. Then

2j∑
�=−2j

Nj,�,K(ε) ≤
∑

|�|≤(�∗+1)

Nj,�,K(ε) +
∑

|�|>(�∗+1)

Nj,�,K(ε)

≤
∑

|�|≤(�∗+1)

(|�| + 1) +
∑

|�|>(�∗+1)

L−2
K 2−3j ε−2(1 + |�|)−5

≤ (�∗ + 1)2 + C L−2
K 2−3j ε−2(1 + �∗)−4 ≤ C (�∗ + 1)2,

which gives (2.21).

Since
∑

K∈Z2 L
−2/3
K < ∞, using (2.21) we then have that

#{μ ∈ Mj : |〈f, ψμ〉| > ε} ≤
∑
K∈Z2

2j∑
�=−2j

Nj,�,K(ε) ≤ C 2−j ε−
2
3
∑
K∈Z2

L
− 2

3
K ≤ C 2−j ε−

2
3 ,

and, thus (2.16) holds.
The case � = 0 is similar. Indeed, in this case

L−1
(
e2πiξA−jB−�k

)
= (1 + k2

1)
−1(1 + k2

2)
−1 e2πiξA−jB−�k,

and we can proceed as in the case � 	= 0, with LK = (1+K2
1 ) (1+K2

2 ). It is clear that

also in this case
∑

K∈Z2 L
−2/3
K < ∞. This completes the proof of the theorem.
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2.2. Proof of Theorem 1.4. In order to prove Theorem 1.4, the following
lemmata will be useful.

Lemma 2.6. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1
j . Then

(2.22)

∫
Wj,�

|f̂(ξ)|2 dξ ≤ C 2−10j .

Proof. The proof follows [7, Lem. 8.1] and is reported here for completeness.
The function f belongs to C2

0 (R2), and its second partial derivative with respect
to x1 is

∂2f

∂x2
1

=
∂2g

∂x2
1

wQ + 2
∂ g

∂x1

∂ wQ

∂x1
+ f

∂2wQ

∂x2
1

= h1 + h2 + h3.

Using the fact that wQ is supported in a square of sidelength 2 · 2−j , we have∫
R̂2

|ĥ1(ξ)|2 dξ =

∫
R2

|h1(x)|2 dx ≤ C 2−2j .

Next, observe that ‖ ∂
∂x1

h2‖∞ ≤ C 22j . Using again the condition on the support of
wQ, it follows that∫

R̂2

|2πξ1 ĥ2(ξ)|2 dξ =

∫
R2

∣∣∣∣ ∂

∂x1
h2(x)

∣∣∣∣2 dx ≤ C 22j ,

and thus, for ξ ∈ Wj,� (hence ξ1 ≈ 22j),∫
Wj,�

|ĥ2(ξ)|2 dξ ≤ C 2−2j .

Finally, observing that ‖ ∂2

∂x2
1
h3‖∞ ≤ C 24j , a computation similar to the one above

shows that ∫
Wj,�

|ĥ3(ξ)|2 dξ ≤ C 2−2j .

Since −(2π)2 ξ2
1 f̂(ξ) = ĥ1(ξ)+ ĥ2(ξ)+ ĥ3(ξ), it follows from the estimates above that∫

Wj,�

|f̂(ξ)|2 dξ ≤ C 2−10j .

This completes the proof.
Lemma 2.7. Let m = (m1,m2) ∈ N × N, ξ = (ξ1, ξ2) ∈ R̂

2, and Γj,� be given by
(2.1). Then

2j∑
�=−2j

∣∣∣∣ ∂m1

∂ξm1
1

∂m2

∂ξm2
2

Γj,�(ξ)

∣∣∣∣2 ≤ Cm 2−2|m|j ,

where Cm is independent of j and ξ and |m| = m1 + m2.
Proof. Observe that Wj,� ∩ Wj,�+�′ = ∅ whenever |�′| ≥ 3. Since |�| ≤ 2j , the

lemma then follows from Lemma 2.5.
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Lemma 2.8. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1
j . Define

(2.23) T =

(
I − 2j

(2π)2
Δ

)
,

where Δ = ∂2

∂ξ2
1

+ ∂2

∂ξ2
2
. Then

∫
R̂2

2j∑
�=−2j

∣∣∣T 2
(
f̂ Γj,�

)
(ξ)
∣∣∣2 dξ ≤ C 2−10j .

Proof. Observe that, for N ∈ N,

ΔN
(
f̂ Γj,�

)
=

∑
|α|+|β|=2N

Cα,β

(
∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂

) (
∂β1

∂ξβ1

1

∂β2

∂ξβ2

2

Γj,�

)
.

Then, using Lemma 2.7, we have that

∫
R̂2

2j∑
�=−2j

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣2
∣∣∣∣∣ ∂β1

∂ξβ1

1

∂β2

∂ξβ2

2

Γj,�(ξ)

∣∣∣∣∣
2

dξ

≤ Cβ 2−2|β|j
∫
Wj,�

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣2 dξ.

Recall that f(x) is of the form g(x)w(2jx). It follows that xα f(x) = 2−j|α| g(x)wα(2jx),
where wα(x) = xαw(x). By Lemma 2.6, g(x)wα(2jx) obeys the estimate (2.22).

Thus, observing that ∂α1

∂ξ
α1
1

∂α2

∂ξ
α2
2

f̂(ξ) is the Fourier transform of (−2πix)αf(x), we

have that ∫
Wj,�

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣2 dξ ≤ Cα 2−2j|α| 2−10j .

Combining the estimates above, we have that, for each α, β with |α| + |β| = 2N ,

(2.24)

∫
R̂2

2j∑
�=−2j

∣∣∣∣ ∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)

∣∣∣∣2
∣∣∣∣∣ ∂β1

∂ξβ1

1

∂β2

∂ξβ2

2

Γj,�(ξ)

∣∣∣∣∣
2

dξ ≤ Cα,β 2−10j 2−4jN .

Since T 2 = 1 − 2 2j

(2π)2 Δ + 22j

(2π)4 Δ2, the lemma now follows from (2.24) and Lemma
2.7.

We can now prove Theorem 1.4.
Proof of Theorem 1.4. Using (2.15), for T given by (2.23), we have that

(2.25) T
(
e2πiξA−jB−�k

)
=
(
1 + 2−2j(k1 − k2 �)

2 + k2
2

)
e2πiξA−jB−�k.

Fix j ≥ 0 and let f = fQ. Then, using integration by parts as in the proof of
Theorem 1.3, from (2.25) it follows that

〈f, ψμ〉 = |detA|−j
(
1 + 2−2j(k1 − k2 �)

2 + k2
2

)−2
∫

R̂2

T 2
(
f̂ Γj,�

)
(ξ) e2πiξA−jB−�k dξ.
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Let K = (K1,K2) ∈ Z
2 and RK be the set {(k1, k2) ∈ Z

2 : k2 = K2, 2
−j(k1 −K2�) ∈

[K1,K1 +1]}. Observing that, for each K, there are only 1+2j choices for k1 in RK ,
it follows that the number of terms in RK is bounded by 1 + 2j . Thus, arguing again
as in the proof of Theorem 1.3, we have that∑

k∈RK

|〈f, ψμ〉|2 ≤ C
(
1 + K2

1 + K2
2

)−4
∫

R̂2

∣∣∣T 2
(
f̂ Γj,�

)
(ξ)
∣∣∣2 dξ.

From this inequality, using Lemma 2.8, we have that

2j∑
�=−2j

∑
k∈RK

|〈f, ψμ〉|2 ≤ C (1 + K2)−4

∫
R̂2

2j∑
�=−2j

∣∣∣T 2
(
f̂ Γj,�

)
(ξ)
∣∣∣2 dξ

≤ C (1 + K2)−4 2−10j .(2.26)

For any N ∈ N, provided 1
2 < p < 2, the Hölder inequality yields

(2.27)

N∑
m=1

|am|p ≤
(

N∑
m=1

|am|2
)p

2

N

(
1−p

2

)
.

Since the cardinality of RK is bounded by 1 + 2j , it follows from (2.26) and (2.27)
that, for 1

2 < p < 2,

2j∑
�=−2j

∑
k∈RK

|〈f, ψμ〉|p ≤ C
(
22j
)(1−p

2 )
(1 + K2)−2p 2−5pj .

Thus, since p > 1
2 ,

∑
μ∈Mj

|〈f, ψμ〉|p ≤ C 2

(
2j(1−p

2 )−5pj
) ∑

K∈Z2

(1 + K2)−2p ≤ C 2(2−3p)j ,

and, in particular,

‖〈f, ψμ〉‖�2/3 ≤ C 2−3j .

2.3. Coarse scale analysis. In section 2.1, we assumed that the scale parameter
j was large enough. The situation where j is small can be treated in a much simpler
way. In fact, if fQ is an edge fragment, then a trivial estimate shows that

‖fQ‖2 =

(∫
suppwQ

|fQ(x)|2 dx
)1/2

≤ C |suppwQ| = C 2−j .

It follows that ‖〈fQ, ψμ〉‖�2 ≤ C 2−j , and thus, by the Hölder inequality,

‖〈fQ, ψμ〉‖�2/3 ≤ C 2j .

This satisfies Theorem 1.3 for j small.
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2.4. Additional remarks.
• In order to define the collection of shearlets, in section 1.2 we have constructed

a function ψ̂ ∈ C∞
0 . This property allows us to obtain a collection of elements

that are well localized. Observe, however, that we need only ψ̂ ∈ C2
0 in order

to prove all the results presented in this paper.
• In this paper, we have considered the representation of functions containing a

discontinuity along a C2 curve. More generally, we can consider the situation
where a function f contains many edge curves of this type, exhibiting finitely
many junctions or corners between them. In this setting, the discontinuity
curve is not globally C2 but only piecewise C2. The results reported in this
paper, namely Theorems 1.1 and 1.2, extend to this setting as well. We refer
to [7] for a similar discussion in the case of curvelets.

• The assumption we made about the regularity of the discontinuity curve plays
a critical role in our construction. If the discontinuity curve is in Cα, with
α > 2, then our argument still works and we can still prove Theorem 1.2.
This result, however, is not (essentially) optimal as in the case α = 2. On the
other hand, if the discontinuity curve is in Cα, with α < 2, then the estimate
given by Theorem 1.2 does not hold, and the estimate could be worse in
general. We refer to [24] for additional observations about this fact, and for
an alternative approach, based on an adaptive construction, to the sparse
representation of functions with edges.

• There are natural ways of extending the shearlets to dimensions larger than 2.
We refer to [18] for a discussion of these extensions, as well as the extensions
of the shear transformations to the general multidimensional setting. For
example, in dimension 3, let A =

(
4 0
0 2 I2

)
; define the shear matrices {Sk =(

1 k
0 I2

)
: k ∈ Z

2}, where I2 is the 2 × 2 identity matrix, 0 = ( 0
0 ); and, for

ξ = (ξ1, ξ2, ξ3) ∈ R
3, define ψ by

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2

(
ξ2
ξ1

)
ψ̂2

(
ξ3
ξ1

)
,

where ψ1 and ψ2 are given as in the 2-D case. Then, similarly to their 2-D
counterpart, one can construct a Parseval frame of well-localized 3-D shearlets

{ψj,�,k = |detA|−j/2 ψ(S� A
−jx− k) : j ∈ Z, � ∈ Z

2, k ∈ Z
2},

with frequency support on a parallelepiped of approximate size 22j × 2j ×
2j , at various scales j, with orientations controlled by the 2-D index � and
spatial location k. Then, using a heuristic argument, one can argue that these
systems provide sparse representations for 3-D functions f that are smooth
away from “nice” surface discontinuities of finite area. In fact, thanks to
their frequency support and their localization properties, the elements ψj,�,k,
at scale j, are essentially supported on a parallelepiped of size 2−2j×2−j×2−j ,
with location controlled by k and orientation controlled by �. Thus, there are
at most O(22j) significant shearlet coefficients SHj,�,k(f) = 〈f, ψj,�,k〉, and
they are bounded by C 2−2j . This implies that the Nth largest 3-D shearlet
coefficient |SHN (f)| is bounded by O(N−1), and thus, if f is approximated by
taking the N largest coefficients in the 3-D shearlets expansion, the L2-error
would approximately obey

‖f − fS
N‖2

L2 ≤
∑
�>N

|SH�(f)|2 ≤ C N−1,
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up to lower order factors. A rigorous proof of this fact will be presented
elsewhere.

Appendix. Construction of ψ1, ψ2. In this section we show how to construct
examples of functions ψ1, ψ2 satisfying the properties described in section 1.2.

In order to construct ψ1, let h(t) be an even C∞
0 function, with support in (− 1

6 ,
1
6 ),

satisfying
∫

R
h(t) dt = π

2 , and define θ(ω) =
∫ ω
−∞ h(t) dt. Then one can construct a

smooth bell function as

b(ω) =

⎧⎪⎪⎨⎪⎪⎩
sin
(
θ
(
|ω| − 1

2

))
if 1

3 ≤ |ω| ≤ 2
3 ,

sin
(

π
2 − θ

(
|ω|
2 − 1

2

))
if 2

3 < |ω| ≤ 4
3 ,

0 otherwise.

It follows from our assumptions (cf. [20, sect. 1.4]) that

∞∑
j=−1

b2(2−jω) = 1 for |ω| ≥ 1

3
.

Now letting u2(ω) = b2(2ω) + b2(ω), it follows that

∞∑
j≥0

u2(2−2jω) =

∞∑
j=−1

b2(2−jω) = 1 for |ω| ≥ 1

3
.

Finally, let ψ1 be defined by ψ̂1(ω) = u( 8
3ω). Then supp ψ̂1 ⊂ [− 1

2 ,−
1
16 ]∪ [ 1

16 ,
1
2 ], and

(1.6) is satisfied. This construction is illustrated in Figure A.1(a).

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2
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1.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8

1

1.2

(a) ω

�
��

b2(ω)

b2(2ω)

�
��

|ψ̂1(ω)|2

(b) ω

ψ̂2(ω)

Fig. A.1. (a) The function |ψ̂1(ω)|2 (solid line), for ω > 0; the negative side is symmetrical.
This function is obtained, after rescaling, from the sum of the window functions b2(ω) + b2(2ω)

(dashed lines). (b) The function ψ̂2(ω).

For the construction of ψ2, we start by considering a smooth bump function f1 ∈
C∞

0 (−1, 1) such that 0 ≤ f1 ≤ 1 on (−1, 1) and f1 = 1 on [− 1
2 ,

1
2 ] (cf. [21, sect. 1.4]).

Next, let f2(t) =
√

1 − exp (1/t). Then (in the left limit sense) f2(0) = 1, f
(k)
2 (0) = 0

for k ≥ 1 and 0 < f2 < 1 on (−1, 0). Define f(t) = f1(t)f2(t) for t ∈ [−1, 0]. It is
then easy to see that f (k)(−1) = 0 for k ≥ 0, and f(0) = 1, f (k)(0) = 0 for k ≥ 1.
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Since g(t) = exp ( 1
2(t−1) ) for t ∈ ( 1

2 , 1), it follows that limt→1− g(k)(t) = 0 for k ≥ 0.

Finally, we define

ψ̂2(ω) =

⎧⎪⎨⎪⎩
f(ω) if ω ∈ [−1, 0),

g(ω) if ω ∈ [0, 1],

0 otherwise.

Then ψ̂2 ∈ C∞
0 (R), with supp ψ̂2 ⊂ [−1, 1], and

ψ̂2
2
(ω) + ψ̂2

2
(ω − 1) = 1, ω ∈ [0, 1].

The last equality implies (1.7). The function ψ̂2 is illustrated in Figure A.1(b).
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