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Consistent methodology for calculating surface and interface energies
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A consistent approach to the calculation of the surface energy valid for all crystal systems is presented.
Voronoi polyhedra are introduced and used in conjunction with the energy-density formalism of Chetty and
Martin [Phys. Rev. B45, 6074(1992; 45, 6089(1992] to provide a methodology for the determination of
surface energies. The surface energies of the unrelaxed, unreconstructed0G8Aend (111) surfaces are
calculated as a test. As an example of the application of the formalism to a low symmetry system, the energies
of selected (000) surfaces of the wide-gap semiconductors GaN and SiC are determined.
[S0163-182¢08)02012-§

INTRODUCTION used to calculate the surface energies in the second case
above. They introduced the concepts of the energy density
There has been tremendous interest and progress in tleed symmetry-adapted unit cell to provide a procedure for
technology of crystal growth over the past few decddes.the calculation of the surface energy and applied their ap-
This has made relevant numerous theoretical questions r@roach to the GaAs$111) surface and interfaces. However,
lated to crystal growth and the equilibrium behavior of sur-symmetry-adapted unit cells can be used only if the space
faces. Indeed, intense efforts have been made to understagtbup has sufficiently high symmetry, namely, a center of
the energetics of such surfacesiowever, in spite of the symmetry, two axes of rotation, or an axis of rotation and a
substantial progress towards an understanding of the physiesirror plane not through this axis. For the third case, no
of surfaces, the surface energies must be calculated with rerethodology exists to calculate the surface energy.
spect to a reference surface, the reference being different for We have generalized the energy-density approach of
different surfaces except for specific high-symmetry casesChetty and Martift* to a consistent methodology for the cal-
Since the surface energy plays an important role in the deculation of surface energies for all systeimsluding those of
termination of the mode of growth, namely, layer, island orcase three aboven this approach, the slab and bulk are
layer-plus-island growth, the lack of a procedure for the cal-considered to be built from blocks whose shape is deter-
culation of the surface energy is unfortunate. Indeed, ifmined by the symmetry of the bulk crystal. The “energy
meaningfulab initio predictions about the equilibrium crys- cost” of each block is evaluated and the “cost” of creating
tal shape and preferred growth directions are to be made, & surface, the surface energy, is obtained by summing up the
will be necessary to have a database of surface energies ofst of each block in the slab and subtracting the costs of the
reconstructed surfaces for different directions. This requiregquivalent blocks in the bulk. The shape of the blocks is
that the evaluations of the surface energies be consistent bdetermined according to a geometric rule; thus the approach
tween calculations. provides a consistent way of determining the surface energy
The situation can be summarized as follows: On the basithat can be used for low-symmetry systems. Further, the
of general considerations, it can be shown that for crystals afymmetric nature of the blocks ensures that symmetry-
sufficiently high symmetry, the surface energy can be calcuequivalent surfaces will have the same surface energy and
lated unambiguously. For the remaining systems, it can onljience the methodology will reproduce the results of slab
be calculated consistently, i.e., the surface energy is definethlculations, and those of Chetty and Martin. The blocks can
up to a gauge; this gauge is of no consequence in the detebe chosen to be either neutral or charged, the former being
mination, for instance, of equilibrium crystal shapes. Practi-our preferred choice because they are more intuitive.
cally, however, the surface energy, when it is unambiguously The paper is organized as follows: a briéueneof the
defined, can be calculated absolutely with a slab calculatiosurface energy begins the presentation, after which the stan-
only when the two surfaces are crystallographically identicaldard calculations of the surface energy are discussed. In ad-
most often, only a relative surface energy can be determinedlition, a conceptual approach using only total-energy calcu-
Three cases therefore exi¢t) the surface energy is un- lations and scaling arguments, which is applicable to systems
ambiguously defined and can be determined using a slabf sufficiently high symmetry, is presented. This approach
calculation; th€002) surface of a zinc-blende semiconductor clarifies the issues involved in unambiguously defining the
is such a casgp) the surface energy is unambiguously de-surface energy, but it is not feasible at present. The energy-
fined, but slab calculations give only relative surface enerdensity approach of Chetty and Martin is then reviewed to-
gies; the(111) surface of a zinc-blende semiconductor servegyether with the implementation of the energy-density formal-
as a case in point3) the surface energy can only be definedism using symmetry-adapted unit cells. A generalization of
consistently(the gauge must be set, once and for all, for thethe energy-density formalism using Voronoi polyhev#&)
calculation$; the (0001 surface of a wurtzite semiconductor is introduced and applied to GaA801), GaAs(111), SiC
is such an example. (0007, and GaN(000J). The latter two cases provide ex-
Chetty and Martifi® developed an approach that could beamples of low-symmetry systems in which symmetry-
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adapted unit cells cannot be used. The paper concludes with Since the surface energy manifests itself physically
a summary. through the minimization of the integral in E), it is pos-

sible to add to the surface energy a gauge t€rm (where
I. SURFACE ENERGY C is a constant vectprwithout changing the equilibrium

. _ _ shapé®® Symmetry, however, permits a nonzeEofor only

In this section we review the theory of the sgr_fe_lce energy| o point groups, namelGy, Cg, (Which includes wurtzite

ant?c the role tha: symrtrjetTy plfays mtthe dtehflr;mon off tlhec4’ Cuy, Cs, Cay, Cy, Cyy, Cyp, andC,. ForCy, C is

surface energy. In particular, for systems that areé ol IoWeompletely arbitrary; for the rest, symmetry constrains the

symmetry the surface energy cannot be defined absolutely,qice ofC. ForCy;,, C must lie on the mirror plane; for the
but only up to a gauge, which must be the same for allgmaining eight point group<s must lie along the unique

directions. » axis. In other words, one, two, or three arbitrary scalars must
Consider a system containing two phases, 1 and 2, and & choses.

dividing surface. The excess energ$ due to the presence
of the dividing surface is thgexcess quantity defined

; Il. DETERMINATION OF THE SURFACE ENERGY
through the relation

FROM TOTAL ENERGY CALCULATIONS

E=EY+E@+E®, (1 For the surface energy two situations exigj: for high
) Ve symmetry systems, the surface energy is unambiguously de-

wherekE is the total energy of the system aBf(E?) is  fined (combining cases one and two of the introduclidii)
the energy of the equivalent bulk system of phas@)1The  for |ow symmetry systems, the surface energy is defined up
definitions for other surface _thgrmodynamm quantities, suchy 5 gauge. In this section, we begin by pointing out that slab
as the entropyS®, etc. are similaf. The surface free energy calculations permit a determination of the absolute energy
per unit area is defined to be only in high-symmetry cases. In other cases, slab calcula-
tions provide only relative surface energies, even if the sur-
face energy is absolutely defined. We then present a method
that permits the calculation of absolute surface energies us-
ing polyhedra and scaling behavior.
where small letters denote the corresponding excess quanti- The calculations employed to determine the surface en-
ties per unit area with the exception Bf=N{¥/A, whichis  ergy for a given crystal direction are generally slab calcula-
the excess number of particles of thin species per unit tions. The slab consists of a finite number of layers and is
area, andu; is the chemical potential of thih species. made infinite in the plane of the surface through the imposi-

The surface free energy defined in this way measures thigon of periodic boundary conditions. The need to decouple
work required to create a new surface. It is, in general, disthe two surfaces from one another dictates the thickness of
tinct from the work needed to deform a surface that is thehe slab and also the number of vacuum lay@ne calcula-
surface stress. In fluids, as is well known, the surface fre¢ions are usually carried out using superdgel¥e define the
energy is isotropic and is the same as the surface $tiess. energy of the equivalent bulk as the sum of the number of
contrast, the surface free energy in solids is generally anisatoms of each species times the chemical potential of that
tropic, which is to say that the surface free energgn), is species. Invariably, aingle configuration is used to deter-
a function of the direction of the outward-pointing normal. Mmine the totalground stateenergy of the slab af=0. In a
Further, the surface free energy and the surface stress afelliticomponent system, the chemical potential for a single
distinct quantities. species is not defined for a single configuration. In fact, the

The surface free energy per unit area is important in thé&hemical potentials that occur in the slab calculations are
determination of the equilibrium geometry of small crystalsexternal parameterand can take arbitrary values; however,
and the equilibrium shape of small particles in contact with aPhysical arguments are invoked to establish limits upon the

y=e<3>—Ts<S>—Z wily, 2

substrate. Under conditions of constant temperalyreol-  Variability of the chemical potentials of the individual spe-
umeV, and chemical potentiajg; , the excess free energy of CI€S. o . _ o

equal in all phases that are in contact. This observation can

R be exploited to impose constraints on the possible equilib-

‘If=f dAy(n), 3 rium values. In particular, it is generally assumed that the
bulk is in equilibrium with the surface, i.e., that the sum of

where dA is the element of surface area with outward-the chemical potentials of the individual specigs,, ug,

pointing normaln. The equilibrium shape thus minimizes ©{C- €quals the bulk chemical poteniaks...z(buk »
the excess free energy.

For a single crystal at constant temperature and chemical
potential, the minimization of Eq(3) subject to the con- Further, the chemical potential for a given species cannot be
straint of fixed volume leads to the Wulff construction for above the chemical potential of its elemental bulk phase,
determining the equilibrium shafayhile a modification of ~ since the bulk phase would then be unstable with respect to
the Wulff construction, the Winterbottom construction, precipitation of the elemental bulk. Thus, the maximum
gives the shape of a crystal for a given orientation of thevalue of the chemical potential of a given species, Aays
substrate and, thus, information about the growth mode. equal to the chemical potential of its elemental bulk phase

MAB--Z(buly = Mat pupt T uz. (4)
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HMaulky- The heat of formatioMH¢, which relates the
chemical potential in the elemental bulk system to the chemi- Esur= anL? (Epoly~Nama—Npug...=Nzuz) + O(1L).
cal potential in the compound is defined by (9)

HAB:--Z(bulk) = MA(bulk) T ~B(bulky T+ mz(buiy —AH . A two-component system with a zinc-blende lattice pro-
() vides an example of a crystal with sufficiently high symme-
It can be used to set bounds for the chemical potential of th#'y; a tetrahedron can be constructed that has four faces com-

individual species in the bulk, viz. prised of(111) surfaces terminated by the same species, A or
B.13 Clearly this approach is valid only for a limited set of

Meabul) ~ AHS 1= Lacbuik » (6) symmetry directions. For the 11 Laue point groups and 11 of

wherea=A B, ... 2.2 It is worth emphasizing that these the 21 remaining point groups that have either two rotation

icAXes or one rotation axis with a mirror plane not through the

stable. If the chemical potential falls outside of these boundX!S: clit 'Sf posstlbllle to f'nhq aﬁ)olyhe_dr?n \;vhosfe g%%es are com-
the bulk will become metastable and kinetics will determine’bOse ot crystaliographically équivalent Surfaces.
the subsequent behavior of the system, i.e., whether a Chan(%eThe surface energies for other directions can be calculated

bounds only delineate the range over which the bulk

of phase will occur, whether the metastable phase will b y slicing off one of the vertices; the surface energy for all
very long lived, etc ’Thus the bounds H6) provide area- ut one of the faces is known and, in the scaling limit, the

sonablerange over which to consider the surface enérgy. “’?k”OW” surface energy can be determinegt?_(d/L). In
this case, too, the polyhedron must be sufficiently large to

For certain directions of sufficiently high symmetry, the hat ed d ” liible. Althouah
calculation of the surface energy is simplified. Along thesetSUre that edge and vertex effects are negligible. Althoug

special directions, it is possible to find a slab that has idenSUch calculations are not feasible at present, the procedure
tical surfaces. More explicitly, the surfaces are related by gscnbed n .th's section |IIustrqtes the existence of unam-
reflection about the center of the slab and, possibly, by iguously defined surface energies for crystals with symme-
rotation in the plane of the surface. For a slab of materiaf €S &S des_crlbed above_. For crysta_ls_wnh lower symmetries,
AB---Z consisting ofN, atoms of species\, Ng atoms of an appropriate convention for deﬁmng the vector the
speciesB, etc., in a sufficiently simple structuféne (001) same for all surfaces, must be established. For these systems,

surface is an example of such a surfadke surface energy the surface energies are measured with respect to a single
s reference surface.

y= 1 (Equs— Napia— Nga—..Nypiz), @) IIl. ENERGY-DENSITY FORMALISM

where Egy, is the total energy of the sldB.Along lower _The tot_al energy pf a charge_-neutral_ system of e_Iectrons
symmetry directions, the slab calculations give only the surWith densityp(r) within the density-functional theory is

face energy relative to some reference, usually taken to be

the 1x 1 ugr?/reconstructed, unrelaxed surface. g E=Tdpl+Vulpl+Exclpl+Viel p]1+Ei({Ri}), (10)

It is possible, at least in principle, to determine the absowhere T p] is the Kohn-Sham kinetic-energy functional,
lute surface energies for the symmetry directions for whichy, [ p] is the Hartree functionalEyc[p] is the exchange-
slab calculations yield only relative surface energies progorrelation functionalVe[ p] is the electron-ion energy and
vided the crystal has a space group of sufficiently high symg . ({R,}) is the electrostatic self-energy of the atoms located
metry. Construct a polyhedron with identical faces: the totalt {R}. Minimization of this functional subject to the con-
energy of a polyhedrork,,, that has identical facesne  straint that the number of electrons is fixed leads to the
edges, and, vertices, and contair§,, atoms of specied,  Kohn-Sham equations, the solution of which gives the

Ng atoms of specieB, etc., is ground-state energy and density of the charge-neutral
systemt+1°
Epoy=Nasa+ Napg: -+ Nouz+ aniEsud?+ deNeEeqqd The energy density can be defifiédhrough the relation
+ a, Ny Evertexs (8)
whereE, is the energy per unit volume of the bulk mate- E= jvd3r5(r). (11

rial comprising the polyhedrorg,; is the surface energy

per unit areafqqqeis the edge energy per unit lengl,eex ~ Consistent with this definition of the energy density, any
is the energy of a vertex, arld is the characteristic size of function f(r) that integrates to zero can be added to the
the polyhedron. Ther coefficients depend upon the detailed energy density. In principle, this presents a problem for the
shapes of the surfaces, edges and vertices but the differeahergy-density formalism; such an arbitrary function, a
scaling behavior of each of the energy terms can be exploitegdauge function, would make the integrals over subvolumes
to calculate the surface energy. After subtracting out the bullarbitrary. In practice, however, such a probletoes not
energy, the remainder consists of surface terms, which vargrise The energy functional and the energy density are-
asL?, edge terms, which vary ds and vertex terms, which structed with each term having a physical motivatiand

are independent df. For a sufficiently large polyhedron, the thus such an arbitrary, unphysical function canexeluded
contribution of the edge terms to the remainder will be negby construction Notwithstanding this exclusion of arbitrary
ligible and the surface energy can be calculated to order 1/ unphysical gauge terms, there is an intrinsic variability of the
viz. energy density in any multicomponent system, which is due
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to the nature of the lattice sum for the Coulomb energy of the The pseudoion-pseudoion energy per supercell must be

ions. This intrinsic variability can be used to incorporate themuch more extensively reworked analytically and the sum

variability of the externally imposed chemical potential. restricted to the supercell by use of the minimum-imaging
The forms of many of the components of the energy deneonvention in order to obtain

sity follow in a straightforward manner from the definition,

Eqg. (11), although their concrete realization depends uponE 1 2, 2,7, ¢ R; 1 27,
the details of the implementation of the calculation. In par- Eion™5 R. ¢C TS5 —an | 2 s
ticular, the present calculations use a supercell geometry, the DR ReitRes <0 277R21,7)

pseudopotential formalism and a plane-wave basis. The

kinetic-energy density is The first term in the pseudoion—pseudoion electrostatic self-
energy is due to the Coulomb interaction between a Gaussian

1 . pseudoion aR, and one aR;, while the second term is the
=5 2 FaVgia () - Vibn(r), (120 glectrostatic self-energy of the charge distribution of the

pseudoion aR,. The energy density for this contribution to

where the{y,,} are the Kohn-Sham wave functions affg} the total energy is obtained by taking the energy correspond-

their occupations. This symmetric form of the kinetic energying to an atom aR, to be the coefficient of & function

is the more basic form that enters into the variational formu-<entered on that atom, viz.

lation of quantum mechanic¢&!” In systems possessing pe-

riodic boundary conditions, the minimization of this func- _ S VAVA ; Ri;
tional gives the standard Laplacian-form of the kinetic sion(r)_ueﬂ Ry er 2 T R2 Xad(r—Ry)
energy in the Kohn-Sham equatiofisThe use of Bloch’s ol e
theorem permits the expansion of the Kohn-Sham wave 1 s 27,
functions, viz. - = ——6(r—R)) (18
2 leQ) \/2’7TRC1| ( !
1 here the pri th indicates thatJ. The un-
— =S VD) Vi ’ 13 where the prime on the sum indicates thatJ. The un
=3 Tk YD) Vi) (13 known coefficientsy,; reflect an ambiguity in the resolution

of this term into a density; the electrostatic energy between a
where the sum oR is over the first Brillioun zone. SpeCial- pseudoion aRI and one aRJ is a sum evaluated at the ion
izing to a plane-wave basis, it is more efficient, from a com-positions, not an integral evaluated over all space. When the
putational point of view, to evaluate the gradient of the wavenwo ions in the sum are distinct, there is agriori way of
function in reciprocal space and then to Fourier transformpssigning a portion of the weights to the contribution of each
into real space, wher@(r) is a point-wise product. In real jon to the sum. They; may be chosen to be different for

space, the exchange-correlation energy density is the poinfifierent pairs of species subject only to the constraint
wise product of the electron density and the exchange-

correlation energy per electron of the homogeneous, interact- atay=1 for I+#J. (19

ing electron gas taken at the local density, i.e., . .
Thus in a two-component system there are two additional

_ degrees of freedony,; and «;;, and one constraint so that
Exc(r)=p(r r). 14 1 Jb '
xe(r)=p(Nexc(r) (14 in effect, there is one degree of freedom. For convenience,

The determination of the energy density for the electro—the{a”} were set equal to one-half in the calct_JIatlons.
The local-pseudopotential energy can be written as

static terms requires a careful treatment. The reasons are
computational and mathematical. The Hartree potential can
be most efficiently calculated for a charge density that has Ejps= 2 J dgfp(r)Usm(f% (20)
zero net charge, while the lattice sums of the Coulomb po- re JO

tentials of the ions must be regularized through the use

techniques related to those introduced by Ewald. The square

of the electric field, which is the negative of the gradient of Ng ((X)
the Hartree potential, i.e., Usr’,(r)=U|ps,,(r)—j d3x |? X (22
v _
E(r)=—Vuy(r), (15  so that the energy density for the local pseudopotential is
gives the Maxwell energy density, viz. Epd1) =p(NUg(r). (22)

In Eqg. (21), ng,(x) is a Gaussian charge density with
integrated charg&, and widthR. | centered aR, .

The nonlocal pseudopotential is short range in real space.
This term can be most efficiently calculated in a mannerFollowing Chetty and Martiri,the nonlocal pseudopotential-
similar to the kinetic-energy density. The electric field is firstenergy associated with an ion B is gathered into a
evaluated in reciprocal space and then transformed into reéillinction centered on that ion. The smallest volumes that will
space, where the energy density is calculated as a pointwid®e considered are much larger than the region over which the
product. nonlocal pseudopotential is nonzero so that no spurious re-

1
5m(r)=§|E(r)|2- (16)
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sults are introduced by this treatment of the nonlocal pseudo- B. The Voronoi polyhedron
p_otgntial. The energy density for the nonlocal pseudopoten- The integration procedure must permit@nsistenevalu-
tial is ation of the surface energy for those low-symmetry systems
for which the absolute surface energy cannot be defined.
Enipd 1) = > Enips) O(r—Ry), (23)  Such an approach is needed because, in general, it is neces-
e sary to treat the two surfaces of the slab in supercell calcu-
lations differently. For instance, to minimize the charge
transfer between surfaces, one of the surfaces may need to
R passivated and consequently it is desirable to have a meth-
Enips) = 2 fikf dsff A" (1) Upipsy (1,1 i (1), odology that permits the surface energy of each face to be
bk @ @ calculated separately. Further, in order to make meaningful
(29 - e A
ab initio predictions about equilibrium crystal shape and pre-
Thus&(r) is a sum of densities, viz. ferred growth directions, a database of surface energies of
reconstructed surfaces for different directions must be made.
E(r)=Ean(r) +Exc(N +En(r) +Edr) +Eon(r), (25)  This requires that the evaluations of the surface energies be
] o ) ] consistent between calculations.
where Ey(r) is the kinetic-energy densityxc(r) is the In the approach that we have developed, we view the bulk
exchange-correlation energy densié(r) is the Maxwell  anq the slab as built of blocks. These blocks are constructed
energy densitya particular form of the energy density for 4ccording to a well-defined rule, which is a natural generali-
the Hartree term £,(r) is the pseudopotential energy den- zation of the definition of the familiar Wigner-Seitz cell. The
sity, and&ien(r) is the ion-ion electrostatic self-energy den- same rule is used to obtain the Voronoi polyhedra in the slab:
sity. deep in the slab, where the bulk is recovered, the Voronoi
polyhedra are identical to those of the bulk; near the surface,
IV. EVALUATION OF THE SURFACE ENERGY they are deformed. With each block we associate an energy,

namely, the integral of the energy density over that volume.

The present a_ppr_oach to the calcul.auon of the surfapq.he “total cost” of constructing a slab and the equivalent
energy necessarily involves two parts: the energy-densn}su”( is determin

methodology* and an integration procedure. This approach
extends the method developed by Chetty and Mirtiby
generalizing the integration method so that it can be use
even in systems of low symmetry.

where the coefficient of thé function is

gies associated with all of the Voronoi polyhedra. The sur-

face energy is then simply the difference in “cost” between
e portion of the slab containing one surface and the equiva-

lent bulk.

_ In a one-component crystalline system condensed on a

A. Surface energy using symmetry-adapted cells lattice without a basis, the integral of the energy density over

The approach of Chetty and Mariiii makes use of any volume that is charge neutral is unique; it is the total
symmetry-adapted unit cells for the integration. The boundenergy per particle. The arbitrariness of the choice of volume
aries of a symmetry-adapted unit cell are symmetry planes diotwithstanding, there is a geometrically motivated volume,
the crystal. Therefore, the integral of the energy density ovepamely, the Wigner-Seitz cell. The Wigner-Seitz cell pos-
this unit cell is gauge independent and the number of atomsesses the symmetry of the lattice, is space filling and charge

in the cell can be unambiguously determined. The surfac@eutral. If the crystal has a basis of two identical atoms, then
energy is then there is a difference between the positions of the atoms mak-

ing up the crystal and the lattice points. The Wigner-Seitz
3 cell for this crystal is the set of all points closer to a given
o= fv d°rEgiad 1) — zl Nigsi, (26) lattice point than to all other lattice points. As for the case of
s a lattice without a basis, the Wigner-Seitz cell for the lattice
where Vg is the volume of the symmetry-adapted unit cell with a two-atom basis is charge neutral, possesses the sym-
andN; is the number of atoms of thigh species inside the metry of the point group of the lattice and is space filling.
cell with i=A,B, ..., Z. The externally imposed chemical However, it contains two atoms. The Wigner-Seitz cell can
potential of theith species isu; ; their sum is subject to the be generalized to a Voronoi polyhedron about each atom.
constraint, Eq(4). This approach can be employed to calcu-This polyhedron, which is space filling and charge neutral, is
late the surface energy of those directions in which the surinvariant under the largest point subgroup of the space group
face is cut obliquely by these symmetry planes. Chetty anaf the lattice.
Martin* applied their method to thé€.00) and(111) surfaces Consider a lattice that has a basis of two distinct atoms.
of GaAs. The(111) surfaces of a zinc-blende crystal are cut As in the case of a lattice with a basis of two identical atoms,
obliquely by the(100 and the(110 planes. However, this the Wigner-Seitz-like volume for a given atom will have the
approach cannot be used for a crystal whose point group isymmetry of the largest point group that is a subgroup of the
one of the 10 point groups for which the absolute surfacespace group of the crystal. The union of such volumes with
energy is not defined, i.e., there will be surfaces that are ndhe similarly defined cells for the other atom of the basis will
cut obliquely by a sufficient number of symmetry planes.be space filling, but the volume need not be charge neutral.
Wourtzite (000J) is an example of such a surface; as the resuliWe will generally choose to use a Voronoi polyhedron that
of the hexagonal symmetry, the appropriate symmetryhas these properties and, because it is most intuitive, is
adapted cell cannot be defined. charge neutral. This Voronoi polyhedron is obtained if the
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faces are translated inward or outward along its normal until
the volume is charge neutral. If the normal to a face lies
along the vector joining two identical atoms, the face will not
be shifted. Only a face that has its normal pointing towards
an atom of a different species than the one at the center o
the cell will shift. However, it is also possible to use non- .
charge-neutral polyhedra. Indeed, in strongly ionic systems
where the charge exchange between the cation and anion
significant or in Gy where the carbon atoms are not identi-
cal, it is necessary to use charged Voronoi polyhedra. Be:
cause the role of the Voronoi polyhedra is to provide a way .
of counting atoms and the energi@hemical potentiajsas-
sociated with them, it is not necessary to add terms to the
Hamiltonian when using charged Voronoi polyhedra. Math-
ematical aspects of the definition of the Voronoi polyhedron
are discussed in Appendix I.

The integral of the energy density over the Voronoi poly-

FIG. 1. A two-dimensional slab showing the atomic cells. In the

hedron,Q},,, in bulk is _
center of the slab, the bulk Voronoi polyhedra are recovered; the
cells at the surface extend to infinity.
E* =J d3r&(r) (27
Oup its twelve isosceles triangular faces is a bisecting plane be-

and will be referred to as the bulk-atom energy. In a ondween the atom at the center and a next-nearest neighbor.
component systenE* is equal to the chemical potential. The zinc-blende crystal structure for a compound semicon-
The integral of the energy density over the Voronoi polyhe-ductorAB has space group43m. In all but the exceptional
dron for speciesA will be referred to as the bulk-atom en- case of equal weights for the two species, the Voronoi poly-

ergy of specied\, etc. hedra will be deformed snub tetrahedra, i.e., snub tetrahedra
For a multicomponent system, the bulk-atom energy satwith nonideal proportiongthe union of the two deformed
isfies the constraint of equilibrium snub tetrahedra—one fok and the other foB—is space
filling). In GaAs, the snub tetrahedra are very close to pris-
MAB'~~Z:EK+E§+'”+E* , (28) tine.

whereu g ..z is the chemical potential. The total energy of a
system ofN, atoms of specie8 andNg atoms of specieB,
etc., is The use of Voronoi polyhedra permits the determination
of the deviation from bulk behavior in a straightforward
Eiot=NaEX +NgEg +---+NzE7 . (29 manner. For each atom, there is one polyhedron; deep in the
] ) ~slab, the Voronoi polyhedra of the bulk are recovered. A
The bulk-atom energy plays a role identical to the im-gection of the slab that extends from a point deep in the slab
posed chemical potential in a slab calculation, namely, of apyt to a point deep in the vacuum and contdijsatoms of
externally imposed parametécf. Sec. I). It can assume gpeciesA, N atoms of specie$, etc., has a total energy
arbitrary values in the bulk system subject only to the congqual to the sum of the energy of each of the Voronoi poly-
straint of Eq.(28). The same physical constraints that arepeqra contained in that portion of the slab, i.e.,
used to delineate the possible values of the chemical poten-
tial also delimit the range of the bulk-atom energy.
For atoms deep inside of a slab where the bulk has been Eqom 2, f d3rEgad 1), (30
recovered, the Voronoi polyhedra of the slab are identical to rJo
the bulk Voronoi polyhedra. The shape of each Voronoi . .
polyhedron depends upon the locations of the neighborin/n€re€}, is the Voronoi polyhedron for an atom Bf and|

atoms. Consequently, as the surface is approached and atof#gs over all atoms in the section of the slab. In order to
are displaced from their bulk positions, the volumes will de-OPt&in the surface energy, the atoms of the slab can be put

form. Because the atoms on the surface do not have arl(to @ one-to-one correspondence with the atoms of the bulk.
neighbors in the vacuum, the volumes for atoms at the surl NiS equivalent bulk is comprised of the appropriate bulk,

face will extend out to infinity, cf. the definition in Appendix Yoronoi polyhedra. Its total energy is simply
| and Fig. 1.

As an example, consider diamond. In a diamond crystal, _ 3 _ * * "
which has space groupd3m, the Voronoi polyhedron is a Eb”'k_2| fgvpld r Eouk(1)=NaEA +NgEg +---+NzE7 ,
snub tetrahedrdf?® that has sixteen vertices and sixteen ' (31)
faces. The snub-tetrahedron is invariant under the point
group T4 and is pristine, i.e., it is space filling only if it has whereQyp, is the Voronoi polyhedron for an atom &,
ideal proportiong? Its four hexagonal faces lie between the and | runs over all atoms in the equivalent bulef. Eq.
nearest neighbors and the atom at the origin, while each d29)]. The surface energy is thus

C. Surface energy using Voronoi polyhedra
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2.2 ‘ ‘ - ‘ tices that differ by less than a tolerance or that fall outside of
— total energy calculation a cutoff are rejected. As a check to verify that the polyhedra
--- charge-neutral VP fill the entire space, the total volume is calculated as a sum of

20 | [ == non charge-neutral VP 1 the individual polyhedra and compared with the total volume

of the supercell. In all cases the agreement was excellent,
indicating that the polyhedra so generated were space filling.
The charge density and the energy density, defined on a
grid, must be integrated over the convex Voronoi polyhedra.
Due to the role played by Brillouin-zone integrations in
electronic-structure calculations, there has been constant in-
terest in the development of techniques for the evaluation of
Brillouin-zone integrationé’~° The integrals of the energy
and charge density over the Voronoi polyhedra are the real-
space equivalent to the Brillouin-zone integration.
A careful treatment of contributions to the integral from
00 02 04 06 08 10 the boundary is essential to the accurate numerical evalua-
W(Ga) - W(As) (eV) tion of integrals over polyhedra such as occur in the present
case. The approach that was used was to decompose the
FIG. 2. Comparison of the surface energy of the gallium-polyhedron into tetrahedra by a Delaunay triangulafion.
terminated surface of GaA®01) from a total-energy calculation This, however, requires vertices on the surface and edges of
with the values obtained using the energy-density formalism withthe polyhedron. These vertices were obtained by intersecting
charge-neutral and charged Voronoi polyhefitee charge of the the lines and planes of the fast fourier transfaiFT) grid
Voronoi polyhedron(VP) centered on the gallium atom is 3€)9  with the surface and edges of the polyhedron, respectively. A
The results agree to less than 0.01 eV. The linear dependence uUpgielaunay triangulation of this lattice, comprised of the FFT
the gallium chemical potential predicted from the formalism is grid and the vertices on the faces and edges, was carried out
—0.50, in excellent agreement with the theoretical result6£50 using GEOMPACK32 The values of the functions on the sur-
(the linear dependence upon _the (_jiﬁerence chemical pqtential iBce of the polyhedron and at the center of gravity of the
—0.25. The range of the abscissa is chosen, by convention, 0 bg.oheqra were calculated using a tricubic interpolation. The
about twice the heat of formation. In this and the following flgures,integration rule for the tetrahedron was of third ordiem
it has been slightly broadened to include the possibility of metasta—h. fficient inteqration accuracy for the charge and
bility as discussed in the texSec. I)). this Wa)_/ sufticien . 9 y . 9
energy in a Voronoi polyhedron was obtained.

iy -
D (=]

Surface Energy (eV/(1x1))

-t
N

-0.2

1
1
B

Esurd ET ) = Esec™ Epui (32 V. APPLICATIONS
=> [f d3f55|at{f)—E|*}v The present approach was used to calculate the surface
[ Q energies of thg001) and (111) unreconstructed, unrelaxed

(33 surfaces of GaAs and of the unreconstructed, unrelaxed sur-
where the sum oh runs over all atoms in the section of the faces. andi a few reconstructions of @001 surfaces .Of
slab wurtzite SiC and GaN. In each case, the energy-density for-
' malism with Voronoi polyhedra was used to calculate the

It should be emphasized that the Voronoi polyhedra pro
vide a way of counting atoms and the energieslk-atom reference surface energy of the unrelaxed, unreconstructed
surfaces.

energiegassociated with them. In particular, the energy den- . .

sity is calculated for the entire cell and not as the superposi- The Car-Parrinello methdt* was employed W'Fh a

tion of energy densities obtained by using the charge densit lane-wave cutoff of 14 Ry for GaAs. anq 30 Ry for SIC and

in each Voronoi polyhedron. For instance, the Maxwell en- aN. The PerdeW-Zeljlsnger parametrization of the exchange-

ergy density, Eq(16), is calculated using the density in the Correlation energlf® was chosen. Norm-conserving
seudopotential®~*'were used for gallium, arsenic, carbon,

entire cell; Voronoi polyhedra are not used. Thus problem . ; i .
poly P %ydrogen, and silicon, while the nitrogen pseudopotential

related to long-range multipole moments do not arise. imized soft d ol of Li q
Finally, in order to effectively use the formalism, the slabWaS an optimized soft-core pseudopotential of LI an

. 42 . .
must be sufficiently thick to ensure that the bulk is recoverecﬁab”' The pseudppotenhals wepaloc_:al pse.udopotennals,
in the center of the slab. In the example shown in Fig. 2, 9.6XCePpt for the gallium pseudopotential, which wasocal.

layers were used in order to obtain an accuracy of better thah'€ non-local potentials were employed using the Kleinman-
0.01 eV, Bylander approacff For GaAs, the gallium pseudopotential

included the nonlinear core correctih®

A supercell was used to reimpose the translational invari-
ance that is broken along the direction parallel to the surface

Numerous algorithms for the construction of Voronoi normal. For the calculations involving th®01) gallium-
polyhedra exist =26 The particular algorithm we followed is terminated surface, thex22 supercell contained 9.5 bilayers
similar to that of Finney? A subset of neighbors is selected of GaAs (both faces gallium terminatgénd 2.5 bilayers of
and the vertices of the Voronoi polyhedron are then detervacuum; for the calculations of th@11) surfaces, the 2
mined. The list of vertices thus generated is sorted and versupercell contained six bilayers of GaAs and three bilayers

D. Integrals over the Voronoi polyhedra
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of vacuum. A 2<4 supercell containing five bilayers of ma-
terial and three bilayers of vacuum was used for SiC; thez= 191
2x2 GaN supercell contained six bilayers of material and
four bilayers of vacuum. hao/ian | ]
In order to minimize charge transfer between the faces>
hydrogen atoms passivated one face of the GaN and Si(®. 151 ]
slabs. This was successful as charge transfer was found to k >
small. o 1.3
If the work functions of the two surfaces are different, g a1l
then the periodic boundary conditions of the supercell en-id ™ —— gallium
force a common electrostatic potential in the vacuum and® 09 | L=———_arsenic o
result in an unphysical change in the electric potential inthe@ ~— |~ cmmmm=—="""""
vacuum region equal to the difference between the two WOI’kE N
functions. The field, induced by this change, was cancellecgn o7y
by adding a dipole layer in the vacuum region.

05 .
-04 -02

0:0 0.2 0:4 0:.5 0.‘8 1.0
A. Surface energy of GaAs(001) w(Ga) - u(As) (eV)

The calculation of the surface energy of #@®1) surface FIG. 3. Surface energy of the unrelaxed, unreconstructed
of GaAs provides a good test of the present formalism. InGaAg111) surfaces calculated using the energy-density formalism
this case a slab in which both surfaces have the same termith Voronoi polyhedra.
nation exists. The surface energy can thus be calculated us-
ing the total-energy approach and the surface energies of thex< 2 m-bonded reconstruction has the lowest energy of the
two surfaces can be independently calculated using theeconstructions considered. It should be noted, however, that
energy-density approach presented herein. Figure 2 shol@wer-energy reconstructions exist and are currently being
the gallium surface energy calculated with the total-energytudied.
method compared to that obtained with the energy-density
formalism with Voronoi polyhedra for two different cases: D. GaN surface energy
(1) charge-neutral Voronoi polyhedra an@) charged
Voronoi polyhedra in which the polyhedra around the gal-
lium atoms have charge 3.€9while those centered on the
arsenic atoms have charge 4900nly the calculations of

The surface energies for the Ga- and N-terminated faces
are shown in Fig. 5. With'-point sampling we find that on
the gallium-terminated surface the nitrogen-adatom and
D ._gallium-vacancy structures have the lowest energies over the
one face of the slab are shown. Similar results are obtaineg, ;e physical range; the energy difference is smaller than
for the other face. . the accuracy of the calculation. On the nitrogen-terminated

The surface energies agree to better than 0.01 eV over thg a6 the nitrogen vacancy has the lowest energy while the
entire range. In all of the cases, the linear dependence of the, ..m adatom has a somewhat higher energy. Although the
surface energy upon the gallium chemical potential has @nergies of the individual surfaces can be shifted by a con-

slope of —0.50, which is in very good agreement with the iant(cf. Sec. ), the sum of the surface energies is an abso-
exact value of-0.50. The value of this slope is not assumed|ute|y defined quantity.

in the calculation, but is a result that confirms the correctness
of the approach. Thus it is possible to use either neutral or

. SUMMARY AND CONCLUSIONS
charged Voronoi polyhedra.

The surface energy plays a critical role in determining
B. Surface energy of GaAs(111) equilibrium crystal shapes and modes of growth. The stan-

The surface energies for tiig11) Ga- and As-terminated dardab initio method for the evaluation of surface energies
faces are shown in Fig. 3. As expected, a linear dependen@nploys total-energy slab calculations. These calculations
upon the gallium chemical potential is observed with a slopdive the absolute surface energies only for those exceptional
of —0.27 for the gallium-terminated surface and 0.26 for thedirections in which the two faces of the slab are crystallo-
arsenic-terminated surface. This should be compared witBraphically the same. For other surfaces, they give the ener-
the analytical results of 0.25 for the Ga-terminated surface 9gies relative to some reference surface, even in those cases
and 0.25 for the As-terminated surface. The energy of théor which the absolute surface energy exists. In order to
As-terminated face is lower than that of the Ga-terminatectValuate the surface energies of lower-symmetry surfaces
face over the entire range and the numerical results are iffor which the absolute surface energy is definétetty and

good agreement with those of Chetty and Martin. Martin®=® introduced the energy-density formalism together
with symmetry-adapted unit cells; however, the energy-

density approach procedure is not applicable to systems
where such cells cannot be defined.

The surface energies for selected reconstructfonisthe The surface energy, which is an excess thermodynamic
Si- and C-terminated faces are shown in Fig. 4. The unregquantity, is absolutely defined for crystals that have a center
laxed, unreconstructed surfaces are observed to depend liaf symmetry, or two axes of rotation or an axis of rotation
early on the chemical potential of silicon. In both cases theand a mirror plane not through this axis. For lower-symmetry

C. SiC surface energy
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FIG. 4. Surface energy of selected reconstructions of(880D1) FIG. 5. Surface energy of the reconstructions of G@€02)

calculated using the energy-density formalism with Voronoi poly- calculated using the energy-density formalism with Voronoi poly-
hedra: (@) the silicon-terminated surface ang) the carbon- hedra: (@) the gallium-terminated surface arth) the nitrogen-
terminated surface. The linear dependence of the surface energiestefminated surface. For the unreconstructed, unrelaxed gallium-
the reconstructions of the carbon-terminated surface on the carbderminated face, the surface energy depends linearly upon the
chemical potential has slope0.24; the linear dependence of the gallium chemical potential with slope of 0.25; for the unrecon-
surface energies of the reconstructions of the silicon-terminated sustructed, unrelaxed nitrogen-terminated face, the surface energy de-
face on the silicon chemical potential has slop8.24. pends linearly upon the nitrogen chemical potential with slope of
—0.25.

cry§tals, the surface energy is defined up to a gauge ey, The surface energies of the gallium- and arsenic-

C-n, whereC is constrained by symmetry for all but the terminated faces of GaAd11) were determined and found

point groupC, ; hence for these systems the surface energyo be in agreement with those of Chetty and Maftfinally,

must be defined in a consistent manner for all directfohs. the approach was used to evaluate the surface energies of
We have developed a generalization of their approach thajelected reconstructions of t(@001) surfaces of the wide-

permits the evaluation of surface energies in all cases, sulap semiconductors SiC and GaN.

ject only to the physical ambiguity of the gauge te@mn.

Our method uses appropriately defined Voronoi polyhedra to ACKNOWLEDGMENTS

calculate the differences between the bulk and surface con-

tributions to the integrated energy density, thus isolating th(?_|

excess energy introduced by the surface. K
This approach was used to calculate the surface energy gfore

gallium-terminated GaA§001). Since the surface energy in APPENDIX: MATHEMATICAL DETAILS

this case can be evaluated using a total-energy calculation, it CONCERNING THE VORONOI POLYHEDRON

provides a good test of the method. The surface energies of

the two approachegtotal-energy and energy-density with  For a Bravais lattice which has lattice poirfts;}, the

Voronoi polyhedra agreed to less than 0.1 eV per surfaceregion of space nearer to the lattice patntthan tox; (the

The authors acknowledge the contributions of Dr. Y. G.
wang and Dr. P. Bogustawski during the early part of this
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so-called dominance region &f overx;) is the half-space  the space group of the crystal. Further, the integral of the
energy density over this volume is independent of any gauge
D(x; X)) ={X|[x—x;|><[x=x|%}; (A1)  and is equal to the total energy per atom.
If the basis atoms are not identical, for example as in
GaAs, the Voronoi polyhedron will no longer be neutral as is
[x— x| %= |x—xj|2; (A2) desired. In this case, the Voronoi polyhedra is defined to be
) ) . . . an additively weighted power Voronoi polyhedr%fnThe ad-
and the ngner-Seltz cell is the intersection of all such half'ditively weighted power Voronoi polyhedron or, more sim-
spaces, I.e., ply, the power Voronoi polyhedron extendsturally the
_ definition of the Voronoi polyhedron from a lattice with a
Vi) =MD 06 X)), (A3) basis of identical atoms to a lattice with a basis of distinct
Since the Wigner-Seitz cell is the intersection of convexatoms. In point of fact, the standard Wigner-Seitz cell, the
half-spaces, it is convex. Because its faces are planes, it is\#oronoi polyhedron for a lattice with a basis of identical
polyhedron. atoms and the Voronoi polyhedron for a lattice with a basis
The isogonal point group of a crystal is the group formedof distinct atoms are all encompassed within the definition of
from all of the point-group operations which occur in the the power Voronoi polyhedron.
space grouf’ If the space group is symmorphic, the isogo-  The additively weighted power-distance of poinfrom
nal point group will be a subgroup of the space group; if thean atom aR, is
space group is nonsymmorphiit contains either a screw
axis or glide-reflection planeit will not be a subgroup. Be- dow(X, Ry W) = X~ R [2=w, (AB)
cause the symmetry operations of the point group leave thﬁ/herew, is the weight associated with the atomRgt With

lattice points unchanged, the Wigner-Seitz cell is also invari-respect to the additively weighted power distance, the half-
ant under the operations of the point group. The Wigners

. . > _ space closer to an atom Bt than to one aR; is

Seitz cell is also space filling and is charge neutral. Thus the

three properties that characterize a Wigner-Seitz cell are as D(R;,Ry) ={X||x—R|2—w,<|x—Ry|>—w;} (A7)

follows: it is a space-filling polyhedron that has the symme- . . . .

try of the point group of the lattice and is charge neutral. and the power Voronoi polyhedron is the intersection of the
In the case of diamond, there are two carbon atoms in thBalf-spaces, i.e.,

basis and the Wigner-Seitz cell as traditionally defined con- V(R)=Ny.D(R,,R,). (A8)

tains the same number of atoms as there are atoms in the

baSiS, i.e., two carbon atoms. A Wigner-SeitZ cell for an The use of the add|t|ve|y We|ghted power distance is mo-
atom or, more properly, a Voronoi polyhedron, can be detjvated by the observation that the planes defining the sur-
fined by analogy with the Wigner-Seitz cell for a lattice faces of the traditional Wigner-Seitz cell are defined through
point. The region nearer to an atomRjtthan to an atom at  gq. (A2) and that the additive weights rigidly translate the

R, is the half-space faces of the Wigner-Seitz cell, always maintaining a polyhe-
dral shape. Whenv,=w=constant for a lattice without a

the boundary of this half-space is the plane defined by

D(Ri,Ry) = {x|x=R[*<[x=Ry[?}. (A4) basis, the standard Wigner-Seitz cell is obtained.
The intersection of all these half-spaces, i.e., For a tetrahedrally coordinated compound semiconductor
comprised of element®\ and B, the volume contained
V(R)=N3.D(R;,Ry), (A5)  within the Voronoi polyhedron is a monotonic function of

defines the Voronoi polyhedron. Any point inside this cell isthe difference of the weighta, andwg . If charge-neutral
closer to the atom &, than to all other atom@ather thanto  Pelyhedra are used, the value of this difference is fixed by
the lattice point as is the case for the traditional Wigner-SeitZN€ requirement that the total electronic charge W'th'”_ the
cell). The Voronoi polyhedron, being the intersection of half- Yoronoi polyhedron cell be equal to the ionic charge; if,
spaces, is a convex polyhedron. instead, charged pplyhedra are used, the difference can be
Defined in this way, the Voronoi polyhedron possesse£nosen for convenience. In the case gf Cnot all of the
many properties similar to those of the standard Wigner&0ms are in symmetry-equivalent positions and charged
Seitz cell. It is a space-filling polyhedron and charge neutralY©ronoi polyhedra must be used. Further, the space group is
However, it is no longer necessarily invariant under the symnensymmorphic. Consequently, the largest point group that
metry operations of the isogonal point group, but only undefS & subgroup of the space group for soligh@ not Ty, but
the operations of the largest point group that is a subgroup @ and the Voronoi polyhedra will have this symmetry.
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