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Consistent methodology for calculating surface and interface energies

Krzysztof Rapcewicz, Bin Chen, Boris Yakobson, and J. Bernholc
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
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A consistent approach to the calculation of the surface energy valid for all crystal systems is presented.
Voronoi polyhedra are introduced and used in conjunction with the energy-density formalism of Chetty and
Martin @Phys. Rev. B45, 6074 ~1992!; 45, 6089 ~1992!# to provide a methodology for the determination of
surface energies. The surface energies of the unrelaxed, unreconstructed GaAs~001! and ~111! surfaces are
calculated as a test. As an example of the application of the formalism to a low symmetry system, the energies
of selected ~0001! surfaces of the wide-gap semiconductors GaN and SiC are determined.
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INTRODUCTION

There has been tremendous interest and progress in
technology of crystal growth over the past few decade1

This has made relevant numerous theoretical questions
lated to crystal growth and the equilibrium behavior of s
faces. Indeed, intense efforts have been made to unders
the energetics of such surfaces.2 However, in spite of the
substantial progress towards an understanding of the phy
of surfaces, the surface energies must be calculated with
spect to a reference surface, the reference being differen
different surfaces except for specific high-symmetry cas
Since the surface energy plays an important role in the
termination of the mode of growth, namely, layer, island
layer-plus-island growth, the lack of a procedure for the c
culation of the surface energy is unfortunate. Indeed
meaningfulab initio predictions about the equilibrium crys
tal shape and preferred growth directions are to be mad
will be necessary to have a database of surface energie
reconstructed surfaces for different directions. This requ
that the evaluations of the surface energies be consisten
tween calculations.

The situation can be summarized as follows: On the b
of general considerations, it can be shown that for crystal
sufficiently high symmetry, the surface energy can be ca
lated unambiguously. For the remaining systems, it can o
be calculated consistently, i.e., the surface energy is defi
up to a gauge; this gauge is of no consequence in the d
mination, for instance, of equilibrium crystal shapes. Pra
cally, however, the surface energy, when it is unambiguou
defined, can be calculated absolutely with a slab calcula
only when the two surfaces are crystallographically identic
most often, only a relative surface energy can be determi

Three cases therefore exist:~1! the surface energy is un
ambiguously defined and can be determined using a
calculation; the~001! surface of a zinc-blende semiconduct
is such a case;~2! the surface energy is unambiguously d
fined, but slab calculations give only relative surface en
gies; the~111! surface of a zinc-blende semiconductor serv
as a case in point;~3! the surface energy can only be defin
consistently~the gauge must be set, once and for all, for
calculations!; the ~0001! surface of a wurtzite semiconducto
is such an example.

Chetty and Martin3–5 developed an approach that could
570163-1829/98/57~12!/7281~11!/$15.00
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used to calculate the surface energies in the second
above. They introduced the concepts of the energy den
and symmetry-adapted unit cell to provide a procedure
the calculation of the surface energy and applied their
proach to the GaAs~111! surface and interfaces. Howeve
symmetry-adapted unit cells can be used only if the sp
group has sufficiently high symmetry, namely, a center
symmetry, two axes of rotation, or an axis of rotation and
mirror plane not through this axis. For the third case,
methodology exists to calculate the surface energy.

We have generalized the energy-density approach
Chetty and Martin3,4 to a consistent methodology for the ca
culation of surface energies for all systemsincluding those of
case three above. In this approach, the slab and bulk a
considered to be built from blocks whose shape is de
mined by the symmetry of the bulk crystal. The ‘‘energ
cost’’ of each block is evaluated and the ‘‘cost’’ of creatin
a surface, the surface energy, is obtained by summing up
cost of each block in the slab and subtracting the costs of
equivalent blocks in the bulk. The shape of the blocks
determined according to a geometric rule; thus the appro
provides a consistent way of determining the surface ene
that can be used for low-symmetry systems. Further,
symmetric nature of the blocks ensures that symme
equivalent surfaces will have the same surface energy
hence the methodology will reproduce the results of s
calculations, and those of Chetty and Martin. The blocks
be chosen to be either neutral or charged, the former be
our preferred choice because they are more intuitive.

The paper is organized as follows: a brief re´suméof the
surface energy begins the presentation, after which the s
dard calculations of the surface energy are discussed. In
dition, a conceptual approach using only total-energy cal
lations and scaling arguments, which is applicable to syste
of sufficiently high symmetry, is presented. This approa
clarifies the issues involved in unambiguously defining
surface energy, but it is not feasible at present. The ene
density approach of Chetty and Martin is then reviewed
gether with the implementation of the energy-density form
ism using symmetry-adapted unit cells. A generalization
the energy-density formalism using Voronoi polyhedra~VP!
is introduced and applied to GaAs~001!, GaAs ~111!, SiC
~0001!, and GaN~0001!. The latter two cases provide ex
amples of low-symmetry systems in which symmetr
7281 © 1998 The American Physical Society
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7282 57RAPCEWICZ, CHEN, YAKOBSON, AND BERNHOLC
adapted unit cells cannot be used. The paper concludes
a summary.

I. SURFACE ENERGY

In this section we review the theory of the surface ene
and the role that symmetry plays in the definition of t
surface energy. In particular, for systems that are of l
symmetry the surface energy cannot be defined absolu
but only up to a gauge, which must be the same for
directions.

Consider a system containing two phases, 1 and 2, a
dividing surface. The excess energyE(s) due to the presenc
of the dividing surface is the~excess! quantity defined
through the relation

E5E~1!1E~2!1E~s!, ~1!

whereE is the total energy of the system andE(1)(E(2)) is
the energy of the equivalent bulk system of phase 1~2!. The
definitions for other surface thermodynamic quantities, s
as the entropy,S(s), etc. are similar.6 The surface free energ
per unit area is defined to be

g5e~s!2Ts~s!2(
i

m iG i , ~2!

where small letters denote the corresponding excess qu
ties per unit area with the exception ofG i5Ni

(s)/A, which is
the excess number of particles of thei th species per uni
area, andm i is the chemical potential of thei th species.

The surface free energy defined in this way measures
work required to create a new surface. It is, in general, d
tinct from the work needed to deform a surface that is
surface stress. In fluids, as is well known, the surface f
energy is isotropic and is the same as the surface stress6 In
contrast, the surface free energy in solids is generally an
tropic, which is to say that the surface free energy,g(n̂), is
a function of the direction of the outward-pointing norma
Further, the surface free energy and the surface stress
distinct quantities.

The surface free energy per unit area is important in
determination of the equilibrium geometry of small crysta
and the equilibrium shape of small particles in contact wit
substrate. Under conditions of constant temperatureT, vol-
umeV, and chemical potentialsm i , the excess free energy o
the system due to the presence of the surface is

C5E dAg~ n̂!, ~3!

where dA is the element of surface area with outwar
pointing normaln̂. The equilibrium shape thus minimize
the excess free energy.

For a single crystal at constant temperature and chem
potential, the minimization of Eq.~3! subject to the con-
straint of fixed volume leads to the Wulff construction f
determining the equilibrium shape,6 while a modification of
the Wulff construction, the Winterbottom construction7

gives the shape of a crystal for a given orientation of
substrate and, thus, information about the growth mode.
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Since the surface energy manifests itself physica
through the minimization of the integral in Eq.~3!, it is pos-
sible to add to the surface energy a gauge termC•n̂ ~where
C is a constant vector! without changing the equilibrium
shape.8,9 Symmetry, however, permits a nonzeroC for only
10 point groups, namely,C6 , C6v ~which includes wurtzite!,
C4 , C4v , C3 , C3v , C2 , C2v , C1h , andC1 . For C1 , C is
completely arbitrary; for the rest, symmetry constrains
choice ofC. ForC1h , C must lie on the mirror plane; for the
remaining eight point groups,C must lie along the unique
axis. In other words, one, two, or three arbitrary scalars m
be chosen.9

II. DETERMINATION OF THE SURFACE ENERGY
FROM TOTAL ENERGY CALCULATIONS

For the surface energy two situations exist:~i! for high
symmetry systems, the surface energy is unambiguously
fined ~combining cases one and two of the introduction!; ~ii !
for low symmetry systems, the surface energy is defined
to a gauge. In this section, we begin by pointing out that s
calculations permit a determination of the absolute ene
only in high-symmetry cases. In other cases, slab calc
tions provide only relative surface energies, even if the s
face energy is absolutely defined. We then present a me
that permits the calculation of absolute surface energies
ing polyhedra and scaling behavior.

The calculations employed to determine the surface
ergy for a given crystal direction are generally slab calcu
tions. The slab consists of a finite number of layers and
made infinite in the plane of the surface through the impo
tion of periodic boundary conditions. The need to decou
the two surfaces from one another dictates the thicknes
the slab and also the number of vacuum layers~the calcula-
tions are usually carried out using supercells!. We define the
energy of the equivalent bulk as the sum of the number
atoms of each species times the chemical potential of
species. Invariably, asingle configuration is used to deter
mine the totalground stateenergy of the slab atT50. In a
multicomponent system, the chemical potential for a sin
species is not defined for a single configuration. In fact,
chemical potentials that occur in the slab calculations
external parametersand can take arbitrary values; howeve
physical arguments are invoked to establish limits upon
variability of the chemical potentials of the individual sp
cies.

At equilibrium, the chemical potential of a species
equal in all phases that are in contact. This observation
be exploited to impose constraints on the possible equ
rium values. In particular, it is generally assumed that
bulk is in equilibrium with the surface, i.e., that the sum
the chemical potentials of the individual species,mA , mB ,
etc. equals the bulk chemical potentialmAB¯Z(bulk) ,

mAB¯Z~bulk!5mA1mB1¯1mZ . ~4!

Further, the chemical potential for a given species canno
above the chemical potential of its elemental bulk pha
since the bulk phase would then be unstable with respec
precipitation of the elemental bulk. Thus, the maximu
value of the chemical potential of a given species, sayA, is
equal to the chemical potential of its elemental bulk pha
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57 7283CONSISTENT METHODOLOGY FOR CALCULATING . . .
mA(bulk) . The heat of formationDH f , which relates the
chemical potential in the elemental bulk system to the che
cal potential in the compound is defined by

mAB¯Z~bulk!5mA~bulk!1mB~bulk!1¯1mZ~bulk!2DH f .
~5!

It can be used to set bounds for the chemical potential of
individual species in the bulk, viz.

ma~bulk!2DH f<ma<ma~bulk! , ~6!

wherea5A,B, . . . ,Z.10 It is worth emphasizing that thes
bounds only delineate the range over which the bulk
stable. If the chemical potential falls outside of these boun
the bulk will become metastable and kinetics will determ
the subsequent behavior of the system, i.e., whether a ch
of phase will occur, whether the metastable phase will
very long lived, etc. Thus the bounds Eq.~6! provide area-
sonablerange over which to consider the surface energy11

For certain directions of sufficiently high symmetry, th
calculation of the surface energy is simplified. Along the
special directions, it is possible to find a slab that has id
tical surfaces. More explicitly, the surfaces are related b
reflection about the center of the slab and, possibly, b
rotation in the plane of the surface. For a slab of mate
AB¯Z consisting ofNA atoms of speciesA, NB atoms of
speciesB, etc., in a sufficiently simple structure@the ~001!
surface is an example of such a surface#; the surface energy
is

g5 1
2 ~Eslab2NAmA2NBmB2

¯

NZmZ!, ~7!

where Eslab is the total energy of the slab.12 Along lower
symmetry directions, the slab calculations give only the s
face energy relative to some reference, usually taken to
the 131 unreconstructed, unrelaxed surface.

It is possible, at least in principle, to determine the ab
lute surface energies for the symmetry directions for wh
slab calculations yield only relative surface energies p
vided the crystal has a space group of sufficiently high sy
metry. Construct a polyhedron with identical faces: the to
energy of a polyhedron,Epoly , that hasnf identical faces,ne
edges, andnv vertices, and containsNA , atoms of speciesA,
NB atoms of speciesB, etc., is

Epoly5NAmA1NBmB¯1NzmZ1a fnfEsurfL
21aeneEedgeL

1avnvEvertex, ~8!

whereEbulk is the energy per unit volume of the bulk mat
rial comprising the polyhedron,Esurf is the surface energy
per unit area,Eedgeis the edge energy per unit length,Evertex
is the energy of a vertex, andL is the characteristic size o
the polyhedron. Thea coefficients depend upon the detaile
shapes of the surfaces, edges and vertices but the diffe
scaling behavior of each of the energy terms can be explo
to calculate the surface energy. After subtracting out the b
energy, the remainder consists of surface terms, which v
asL2, edge terms, which vary asL, and vertex terms, which
are independent ofL. For a sufficiently large polyhedron, th
contribution of the edge terms to the remainder will be n
ligible and the surface energy can be calculated to order 1L,
viz.
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Esurf5
1

a fnL2 ~Epoly2NAmA2NBmB¯

2NzmZ!1O~1/L !.

~9!

A two-component system with a zinc-blende lattice pr
vides an example of a crystal with sufficiently high symm
try; a tetrahedron can be constructed that has four faces c
prised of~111! surfaces terminated by the same species, A
B.13 Clearly this approach is valid only for a limited set o
symmetry directions. For the 11 Laue point groups and 11
the 21 remaining point groups that have either two rotat
axes or one rotation axis with a mirror plane not through
axis, it is possible to find a polyhedron whose faces are co
posed of crystallographically equivalent surfaces.9,13

The surface energies for other directions can be calcula
by slicing off one of the vertices; the surface energy for
but one of the faces is known and, in the scaling limit, t
unknown surface energy can be determined toO(1/L). In
this case, too, the polyhedron must be sufficiently large
ensure that edge and vertex effects are negligible. Altho
such calculations are not feasible at present, the proce
described in this section illustrates the existence of una
biguously defined surface energies for crystals with symm
tries as described above. For crystals with lower symmetr
an appropriate convention for defining the vectorC, the
same for all surfaces, must be established. For these syst
the surface energies are measured with respect to a s
reference surface.

III. ENERGY-DENSITY FORMALISM

The total energy of a charge-neutral system of electr
with densityr~r ! within the density-functional theory is

E5Ts@r#1VH@r#1EXC@r#1Vie@r#1Eii ~$RI%!, ~10!

where Ts@r# is the Kohn-Sham kinetic-energy functiona
VH@r# is the Hartree functional,EXC@r# is the exchange-
correlation functional,Vie@r# is the electron-ion energy an
Eii ($RI%) is the electrostatic self-energy of the atoms loca
at $RI%. Minimization of this functional subject to the con
straint that the number of electrons is fixed leads to
Kohn-Sham equations, the solution of which gives t
ground-state energy and density of the charge-neu
system.14,15

The energy density can be defined3,4 through the relation

E5E
V
d3rE~r !. ~11!

Consistent with this definition of the energy density, a
function f (r ) that integrates to zero can be added to
energy density. In principle, this presents a problem for
energy-density formalism; such an arbitrary function,
gauge function, would make the integrals over subvolum
arbitrary. In practice, however, such a problemdoes not
arise. The energy functional and the energy density arecon-
structed with each term having a physical motivationand
thus such an arbitrary, unphysical function can beexcluded
by construction. Notwithstanding this exclusion of arbitrar
unphysical gauge terms, there is an intrinsic variability of t
energy density in any multicomponent system, which is d
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to the nature of the lattice sum for the Coulomb energy of
ions. This intrinsic variability can be used to incorporate t
variability of the externally imposed chemical potential.

The forms of many of the components of the energy d
sity follow in a straightforward manner from the definitio
Eq. ~11!, although their concrete realization depends up
the details of the implementation of the calculation. In p
ticular, the present calculations use a supercell geometry
pseudopotential formalism and a plane-wave basis.
kinetic-energy density is

T~r !5
1

2 (
n

f n¹cn* ~r !•¹cn~r !, ~12!

where the$cn% are the Kohn-Sham wave functions and$ f n%
their occupations. This symmetric form of the kinetic ener
is the more basic form that enters into the variational form
lation of quantum mechanics.16,17 In systems possessing p
riodic boundary conditions, the minimization of this fun
tional gives the standard Laplacian-form of the kine
energy in the Kohn-Sham equations.18 The use of Bloch’s
theorem permits the expansion of the Kohn-Sham w
functions, viz.

T~r !5
1

2 (
i ,k

f ik¹c i ,k* ~r !•¹c i ,k~r !, ~13!

where the sum onk is over the first Brillioun zone. Special
izing to a plane-wave basis, it is more efficient, from a co
putational point of view, to evaluate the gradient of the wa
function in reciprocal space and then to Fourier transfo
into real space, whereT~r ! is a point-wise product. In rea
space, the exchange-correlation energy density is the p
wise product of the electron density and the exchan
correlation energy per electron of the homogeneous, inter
ing electron gas taken at the local density, i.e.,

EXC~r !5r~r !«XC~r !. ~14!

The determination of the energy density for the elect
static terms requires a careful treatment. The reasons
computational and mathematical. The Hartree potential
be most efficiently calculated for a charge density that
zero net charge, while the lattice sums of the Coulomb
tentials of the ions must be regularized through the use
techniques related to those introduced by Ewald. The sq
of the electric field, which is the negative of the gradient
the Hartree potential, i.e.,

E~r !52¹vh~r !, ~15!

gives the Maxwell energy density, viz.

EM~r !5
1

8p
uE~r !u2. ~16!

This term can be most efficiently calculated in a man
similar to the kinetic-energy density. The electric field is fi
evaluated in reciprocal space and then transformed into
space, where the energy density is calculated as a point
product.
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The pseudoion-pseudoion energy per supercell mus
much more extensively reworked analytically and the s
restricted to the supercell by use of the minimum-imag
convention in order to obtain

Eion5
1

2 (
I ,JPV

8
ZIZJ

RIJ
erfcF RIJ

ARc,I
2 1Rc,J

2 G2
1

2 (
I PV

2ZI

A2pRc,I

.

~17!

The first term in the pseudoion–pseudoion electrostatic s
energy is due to the Coulomb interaction between a Gaus
pseudoion atRI and one atRJ , while the second term is the
electrostatic self-energy of the charge distribution of t
pseudoion atRI . The energy density for this contribution t
the total energy is obtained by taking the energy correspo
ing to an atom atRI to be the coefficient of ad function
centered on that atom, viz.

« ion~r !5 (
I ,JPV

8
ZIZJ

RIJ
erfcF RIJ

ARc,I
2 1Rc,J

2 G3a IJd~r2RI !

2
1

2 (
I PV

2ZI

A2pRc,I

d~r2RI ! ~18!

where the prime on the sum indicates thatIÞJ. The un-
known coefficientsa IJ reflect an ambiguity in the resolutio
of this term into a density; the electrostatic energy betwee
pseudoion atRI and one atRJ is a sum evaluated at the io
positions, not an integral evaluated over all space. When
two ions in the sum are distinct, there is noa priori way of
assigning a portion of the weights to the contribution of ea
ion to the sum. Thea IJ may be chosen to be different fo
different pairs of species subject only to the constraint

a IJ1aJI51 for IÞJ. ~19!

Thus in a two-component system there are two additio
degrees of freedom,a IJ andaJI , and one constraint so tha
in effect, there is one degree of freedom. For convenien
the $a IJ% were set equal to one-half in the calculations.

The local-pseudopotential energy can be written as

Elps5 (
I PV

E
V

d3rr~r !Usr,I~r !, ~20!

where

Usr,I~r !5U lps,I~r !2E
V
d3x

ng,I~x!

ur2xu
, ~21!

so that the energy density for the local pseudopotential i

Elps~r !5r~r !Usr~r !. ~22!

In Eq. ~21!, ng,I(x) is a Gaussian charge density wi
integrated chargeZI and widthRc,I centered atRI .

The nonlocal pseudopotential is short range in real spa
Following Chetty and Martin,3 the nonlocal pseudopotentia
energy associated with an ion atRI is gathered into ad
function centered on that ion. The smallest volumes that w
be considered are much larger than the region over which
nonlocal pseudopotential is nonzero so that no spurious
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57 7285CONSISTENT METHODOLOGY FOR CALCULATING . . .
sults are introduced by this treatment of the nonlocal pseu
potential. The energy density for the nonlocal pseudopo
tial is

Enlps~r !5 (
I PV
Enlps,Id~r2RI !, ~23!

where the coefficient of thed function is

Enlps,I5(
i ,k

f ikE
V

d3r E
V

d3r 8c i ,k* ~r !Ûnlps,I~r ,r 8!c i ,k~r 8!.

~24!

ThusE~r ! is a sum of densities, viz.

E~r !5Ekin~r !1EXC~r !1EM~r !1Eps~r !1Eion~r !, ~25!

where Ekin(r ) is the kinetic-energy density,EXC(r ) is the
exchange-correlation energy density,EM(r ) is the Maxwell
energy density~a particular form of the energy density fo
the Hartree term!, Eps(r ) is the pseudopotential energy de
sity, andEion(r ) is the ion-ion electrostatic self-energy de
sity.

IV. EVALUATION OF THE SURFACE ENERGY

The present approach to the calculation of the surf
energy necessarily involves two parts: the energy-den
methodology3,4 and an integration procedure. This approa
extends the method developed by Chetty and Martin3–5 by
generalizing the integration method so that it can be u
even in systems of low symmetry.

A. Surface energy using symmetry-adapted cells

The approach of Chetty and Martin3–5 makes use of
symmetry-adapted unit cells for the integration. The bou
aries of a symmetry-adapted unit cell are symmetry plane
the crystal. Therefore, the integral of the energy density o
this unit cell is gauge independent and the number of ato
in the cell can be unambiguously determined. The surf
energy is then

s5E
Vs

d3rEslab~r !2(
i

Nim i , ~26!

whereVs is the volume of the symmetry-adapted unit c
andNi is the number of atoms of thei th species inside the
cell with i 5A,B, . . . ,Z. The externally imposed chemica
potential of thei th species ism i ; their sum is subject to the
constraint, Eq.~4!. This approach can be employed to calc
late the surface energy of those directions in which the s
face is cut obliquely by these symmetry planes. Chetty
Martin4 applied their method to the~100! and~111! surfaces
of GaAs. The~111! surfaces of a zinc-blende crystal are c
obliquely by the~100! and the~110! planes. However, this
approach cannot be used for a crystal whose point grou
one of the 10 point groups for which the absolute surfa
energy is not defined, i.e., there will be surfaces that are
cut obliquely by a sufficient number of symmetry plane
Wurtzite~0001! is an example of such a surface; as the res
of the hexagonal symmetry, the appropriate symme
adapted cell cannot be defined.
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B. The Voronoi polyhedron

The integration procedure must permit aconsistentevalu-
ation of the surface energy for those low-symmetry syste
for which the absolute surface energy cannot be defin
Such an approach is needed because, in general, it is n
sary to treat the two surfaces of the slab in supercell ca
lations differently. For instance, to minimize the char
transfer between surfaces, one of the surfaces may nee
passivated and consequently it is desirable to have a m
odology that permits the surface energy of each face to
calculated separately. Further, in order to make meanin
ab initio predictions about equilibrium crystal shape and p
ferred growth directions, a database of surface energie
reconstructed surfaces for different directions must be ma
This requires that the evaluations of the surface energie
consistent between calculations.

In the approach that we have developed, we view the b
and the slab as built of blocks. These blocks are constru
according to a well-defined rule, which is a natural gener
zation of the definition of the familiar Wigner-Seitz cell. Th
same rule is used to obtain the Voronoi polyhedra in the s
deep in the slab, where the bulk is recovered, the Voro
polyhedra are identical to those of the bulk; near the surfa
they are deformed. With each block we associate an ene
namely, the integral of the energy density over that volum
The ‘‘total cost’’ of constructing a slab and the equivale
bulk is determined by simply adding up the respective en
gies associated with all of the Voronoi polyhedra. The s
face energy is then simply the difference in ‘‘cost’’ betwe
the portion of the slab containing one surface and the equ
lent bulk.

In a one-component crystalline system condensed o
lattice without a basis, the integral of the energy density o
any volume that is charge neutral is unique; it is the to
energy per particle. The arbitrariness of the choice of volu
notwithstanding, there is a geometrically motivated volum
namely, the Wigner-Seitz cell. The Wigner-Seitz cell po
sesses the symmetry of the lattice, is space filling and cha
neutral. If the crystal has a basis of two identical atoms, th
there is a difference between the positions of the atoms m
ing up the crystal and the lattice points. The Wigner-Se
cell for this crystal is the set of all points closer to a giv
lattice point than to all other lattice points. As for the case
a lattice without a basis, the Wigner-Seitz cell for the latti
with a two-atom basis is charge neutral, possesses the s
metry of the point group of the lattice and is space fillin
However, it contains two atoms. The Wigner-Seitz cell c
be generalized to a Voronoi polyhedron about each at
This polyhedron, which is space filling and charge neutral
invariant under the largest point subgroup of the space gr
of the lattice.

Consider a lattice that has a basis of two distinct atom
As in the case of a lattice with a basis of two identical atom
the Wigner-Seitz-like volume for a given atom will have th
symmetry of the largest point group that is a subgroup of
space group of the crystal. The union of such volumes w
the similarly defined cells for the other atom of the basis w
be space filling, but the volume need not be charge neu
We will generally choose to use a Voronoi polyhedron th
has these properties and, because it is most intuitive
charge neutral. This Voronoi polyhedron is obtained if t
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faces are translated inward or outward along its normal u
the volume is charge neutral. If the normal to a face l
along the vector joining two identical atoms, the face will n
be shifted. Only a face that has its normal pointing towa
an atom of a different species than the one at the cente
the cell will shift. However, it is also possible to use no
charge-neutral polyhedra. Indeed, in strongly ionic syste
where the charge exchange between the cation and ani
significant or in C60 where the carbon atoms are not iden
cal, it is necessary to use charged Voronoi polyhedra.
cause the role of the Voronoi polyhedra is to provide a w
of counting atoms and the energies~chemical potentials! as-
sociated with them, it is not necessary to add terms to
Hamiltonian when using charged Voronoi polyhedra. Ma
ematical aspects of the definition of the Voronoi polyhedr
are discussed in Appendix I.

The integral of the energy density over the Voronoi po
hedron,Vvp , in bulk is

E* 5E
Vvp

d3rE~r ! ~27!

and will be referred to as the bulk-atom energy. In a o
component system,E* is equal to the chemical potentia
The integral of the energy density over the Voronoi polyh
dron for speciesA will be referred to as the bulk-atom en
ergy of speciesA, etc.

For a multicomponent system, the bulk-atom energy s
isfies the constraint of equilibrium

mAB¯Z5EA* 1EB* 1¯1EZ* , ~28!

wheremAB¯Z is the chemical potential. The total energy of
system ofNA atoms of speciesA andNB atoms of speciesB,
etc., is

Etot5NAEA* 1NBEB* 1¯1NZEZ* . ~29!

The bulk-atom energy plays a role identical to the i
posed chemical potential in a slab calculation, namely, of
externally imposed parameter~cf. Sec. II!. It can assume
arbitrary values in the bulk system subject only to the c
straint of Eq.~28!. The same physical constraints that a
used to delineate the possible values of the chemical po
tial also delimit the range of the bulk-atom energy.

For atoms deep inside of a slab where the bulk has b
recovered, the Voronoi polyhedra of the slab are identica
the bulk Voronoi polyhedra. The shape of each Voron
polyhedron depends upon the locations of the neighbo
atoms. Consequently, as the surface is approached and a
are displaced from their bulk positions, the volumes will d
form. Because the atoms on the surface do not have
neighbors in the vacuum, the volumes for atoms at the
face will extend out to infinity, cf. the definition in Appendi
I and Fig. 1.

As an example, consider diamond. In a diamond crys
which has space groupFd3m, the Voronoi polyhedron is a
snub tetrahedron19,20 that has sixteen vertices and sixte
faces. The snub-tetrahedron is invariant under the p
groupTd and is pristine, i.e., it is space filling only if it ha
ideal proportions.20 Its four hexagonal faces lie between th
nearest neighbors and the atom at the origin, while eac
til
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its twelve isosceles triangular faces is a bisecting plane
tween the atom at the center and a next-nearest neigh
The zinc-blende crystal structure for a compound semic
ductorAB has space groupF4̄3m. In all but the exceptional
case of equal weights for the two species, the Voronoi po
hedra will be deformed snub tetrahedra, i.e., snub tetrah
with nonideal proportions~the union of the two deformed
snub tetrahedra—one forA and the other forB—is space
filling !. In GaAs, the snub tetrahedra are very close to p
tine.

C. Surface energy using Voronoi polyhedra

The use of Voronoi polyhedra permits the determinat
of the deviation from bulk behavior in a straightforwa
manner. For each atom, there is one polyhedron; deep in
slab, the Voronoi polyhedra of the bulk are recovered.
section of the slab that extends from a point deep in the s
out to a point deep in the vacuum and containsNA atoms of
speciesA, NB atoms of speciesB, etc., has a total energ
equal to the sum of the energy of each of the Voronoi po
hedra contained in that portion of the slab, i.e.,

Esec5(
I
E

V I

d3rEslab~r !, ~30!

whereV I is the Voronoi polyhedron for an atom atRI andI
runs over all atoms in the section of the slab. In order
obtain the surface energy, the atoms of the slab can be
into a one-to-one correspondence with the atoms of the b
This equivalent bulk is comprised of the appropriate bu
Voronoi polyhedra. Its total energy is simply

Ebulk5(
I
E

VVP,I

d3rEbulk~r !5NAEA* 1NBEB* 1¯1NZEZ* ,

~31!

whereVVP,I is the Voronoi polyhedron for an atom atRI
and I runs over all atoms in the equivalent bulk@cf. Eq.
~29!#. The surface energy is thus

FIG. 1. A two-dimensional slab showing the atomic cells. In t
center of the slab, the bulk Voronoi polyhedra are recovered;
cells at the surface extend to infinity.
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Esurf~EI* !5Esec2Ebulk ~32!

5(
I

F E
V I

d3rEslab~r !2EI* G ,
~33!

where the sum onI runs over all atoms in the section of th
slab.

It should be emphasized that the Voronoi polyhedra p
vide a way of counting atoms and the energies~bulk-atom
energies! associated with them. In particular, the energy d
sity is calculated for the entire cell and not as the superp
tion of energy densities obtained by using the charge den
in each Voronoi polyhedron. For instance, the Maxwell e
ergy density, Eq.~16!, is calculated using the density in th
entire cell; Voronoi polyhedra are not used. Thus proble
related to long-range multipole moments do not arise.

Finally, in order to effectively use the formalism, the sl
must be sufficiently thick to ensure that the bulk is recove
in the center of the slab. In the example shown in Fig. 2,
layers were used in order to obtain an accuracy of better
0.01 eV.

D. Integrals over the Voronoi polyhedra

Numerous algorithms for the construction of Voron
polyhedra exist.21–26The particular algorithm we followed is
similar to that of Finney.22 A subset of neighbors is selecte
and the vertices of the Voronoi polyhedron are then de
mined. The list of vertices thus generated is sorted and

FIG. 2. Comparison of the surface energy of the galliu
terminated surface of GaAs~001! from a total-energy calculation
with the values obtained using the energy-density formalism w
charge-neutral and charged Voronoi polyhedra@the charge of the
Voronoi polyhedron~VP! centered on the gallium atom is 3.09e#.
The results agree to less than 0.01 eV. The linear dependence
the gallium chemical potential predicted from the formalism
20.50, in excellent agreement with the theoretical result of20.50
~the linear dependence upon the difference chemical potenti
20.25!. The range of the abscissa is chosen, by convention, to
about twice the heat of formation. In this and the following figur
it has been slightly broadened to include the possibility of meta
bility as discussed in the text~Sec. II!.
-
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s

d
5
an

r-
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tices that differ by less than a tolerance or that fall outside
a cutoff are rejected. As a check to verify that the polyhe
fill the entire space, the total volume is calculated as a sum
the individual polyhedra and compared with the total volum
of the supercell. In all cases the agreement was excel
indicating that the polyhedra so generated were space fill

The charge density and the energy density, defined o
grid, must be integrated over the convex Voronoi polyhed
Due to the role played by Brillouin-zone integrations
electronic-structure calculations, there has been constan
terest in the development of techniques for the evaluation
Brillouin-zone integrations.27–30 The integrals of the energy
and charge density over the Voronoi polyhedra are the r
space equivalent to the Brillouin-zone integration.

A careful treatment of contributions to the integral fro
the boundary is essential to the accurate numerical eva
tion of integrals over polyhedra such as occur in the pres
case. The approach that was used was to decompose
polyhedron into tetrahedra by a Delaunay triangulation31

This, however, requires vertices on the surface and edge
the polyhedron. These vertices were obtained by intersec
the lines and planes of the fast fourier transform~FFT! grid
with the surface and edges of the polyhedron, respectively
Delaunay triangulation of this lattice, comprised of the FF
grid and the vertices on the faces and edges, was carried
using GEOMPACK.32 The values of the functions on the su
face of the polyhedron and at the center of gravity of t
tetrahedra were calculated using a tricubic interpolation. T
integration rule for the tetrahedron was of third order.33 In
this way sufficient integration accuracy for the charge a
energy in a Voronoi polyhedron was obtained.

V. APPLICATIONS

The present approach was used to calculate the sur
energies of the~001! and ~111! unreconstructed, unrelaxe
surfaces of GaAs and of the unreconstructed, unrelaxed
faces and a few reconstructions of the~0001! surfaces of
wurtzite SiC and GaN. In each case, the energy-density
malism with Voronoi polyhedra was used to calculate t
reference surface energy of the unrelaxed, unreconstru
surfaces.

The Car-Parrinello method34–36 was employed with a
plane-wave cutoff of 14 Ry for GaAs and 30 Ry for SiC a
GaN. The Perdew-Zunger parametrization of the exchan
correlation energy37,38 was chosen. Norm-conservin
pseudopotentials39–41were used for gallium, arsenic, carbo
hydrogen, and silicon, while the nitrogen pseudopoten
was an optimized soft-core pseudopotential of Li a
Rabii.42 The pseudopotentials werep local pseudopotentials
except for the gallium pseudopotential, which wasd local.
The non-local potentials were employed using the Kleinm
Bylander approach.43 For GaAs, the gallium pseudopotenti
included the nonlinear core correction.44,45

A supercell was used to reimpose the translational inv
ance that is broken along the direction parallel to the surf
normal. For the calculations involving the~001! gallium-
terminated surface, the 232 supercell contained 9.5 bilayer
of GaAs ~both faces gallium terminated! and 2.5 bilayers of
vacuum; for the calculations of the~111! surfaces, the 232
supercell contained six bilayers of GaAs and three bilay
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of vacuum. A 234 supercell containing five bilayers of ma
terial and three bilayers of vacuum was used for SiC;
232 GaN supercell contained six bilayers of material a
four bilayers of vacuum.

In order to minimize charge transfer between the fac
hydrogen atoms passivated one face of the GaN and
slabs. This was successful as charge transfer was found
small.

If the work functions of the two surfaces are differen
then the periodic boundary conditions of the supercell
force a common electrostatic potential in the vacuum a
result in an unphysical change in the electric potential in
vacuum region equal to the difference between the two w
functions. The field, induced by this change, was cance
by adding a dipole layer in the vacuum region.

A. Surface energy of GaAs„001…

The calculation of the surface energy of the~001! surface
of GaAs provides a good test of the present formalism.
this case a slab in which both surfaces have the same te
nation exists. The surface energy can thus be calculated
ing the total-energy approach and the surface energies o
two surfaces can be independently calculated using
energy-density approach presented herein. Figure 2 sh
the gallium surface energy calculated with the total-ene
method compared to that obtained with the energy-den
formalism with Voronoi polyhedra for two different case
~1! charge-neutral Voronoi polyhedra and~2! charged
Voronoi polyhedra in which the polyhedra around the g
lium atoms have charge 3.09e, while those centered on th
arsenic atoms have charge 4.91e. Only the calculations of
one face of the slab are shown. Similar results are obta
for the other face.

The surface energies agree to better than 0.01 eV ove
entire range. In all of the cases, the linear dependence o
surface energy upon the gallium chemical potential ha
slope of20.50, which is in very good agreement with th
exact value of20.50. The value of this slope is not assum
in the calculation, but is a result that confirms the correctn
of the approach. Thus it is possible to use either neutra
charged Voronoi polyhedra.

B. Surface energy of GaAs„111…

The surface energies for the~111! Ga- and As-terminated
faces are shown in Fig. 3. As expected, a linear depende
upon the gallium chemical potential is observed with a slo
of 20.27 for the gallium-terminated surface and 0.26 for
arsenic-terminated surface. This should be compared
the analytical results of20.25 for the Ga-terminated surfac
and 0.25 for the As-terminated surface. The energy of
As-terminated face is lower than that of the Ga-termina
face over the entire range and the numerical results ar
good agreement with those of Chetty and Martin.

C. SiC surface energy

The surface energies for selected reconstructions46 of the
Si- and C-terminated faces are shown in Fig. 4. The un
laxed, unreconstructed surfaces are observed to depend
early on the chemical potential of silicon. In both cases
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232 p-bonded reconstruction has the lowest energy of
reconstructions considered. It should be noted, however,
lower-energy reconstructions exist and are currently be
studied.

D. GaN surface energy

The surface energies for the Ga- and N-terminated fa
are shown in Fig. 5. WithG-point sampling we find that on
the gallium-terminated surface the nitrogen-adatom a
gallium-vacancy structures have the lowest energies over
entire physical range; the energy difference is smaller t
the accuracy of the calculation. On the nitrogen-termina
surface, the nitrogen vacancy has the lowest energy while
gallium adatom has a somewhat higher energy. Although
energies of the individual surfaces can be shifted by a c
stant~cf. Sec. I!, the sum of the surface energies is an ab
lutely defined quantity.

SUMMARY AND CONCLUSIONS

The surface energy plays a critical role in determini
equilibrium crystal shapes and modes of growth. The st
dardab initio method for the evaluation of surface energi
employs total-energy slab calculations. These calculati
give the absolute surface energies only for those excepti
directions in which the two faces of the slab are crystal
graphically the same. For other surfaces, they give the e
gies relative to some reference surface, even in those c
for which the absolute surface energy exists. In order
evaluate the surface energies of lower-symmetry surfa
~for which the absolute surface energy is defined! Chetty and
Martin3–5 introduced the energy-density formalism togeth
with symmetry-adapted unit cells; however, the energ
density approach procedure is not applicable to syste
where such cells cannot be defined.

The surface energy, which is an excess thermodyna
quantity, is absolutely defined for crystals that have a cen
of symmetry, or two axes of rotation or an axis of rotatio
and a mirror plane not through this axis. For lower-symme

FIG. 3. Surface energy of the unrelaxed, unreconstruc
GaAs~111! surfaces calculated using the energy-density formal
with Voronoi polyhedra.
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57 7289CONSISTENT METHODOLOGY FOR CALCULATING . . .
crystals, the surface energy is defined up to a gauge t
C•n̂, whereC is constrained by symmetry for all but th
point groupC1 ; hence for these systems the surface ene
must be defined in a consistent manner for all directions8,9

We have developed a generalization of their approach
permits the evaluation of surface energies in all cases,
ject only to the physical ambiguity of the gauge termC•n̂.
Our method uses appropriately defined Voronoi polyhedr
calculate the differences between the bulk and surface
tributions to the integrated energy density, thus isolating
excess energy introduced by the surface.

This approach was used to calculate the surface energ
gallium-terminated GaAs~001!. Since the surface energy i
this case can be evaluated using a total-energy calculatio
provides a good test of the method. The surface energie
the two approaches~total-energy and energy-density wit
Voronoi polyhedra! agreed to less than 0.1 eV per surfa

FIG. 4. Surface energy of selected reconstructions of SiC~0001!
calculated using the energy-density formalism with Voronoi po
hedra: ~a! the silicon-terminated surface and~b! the carbon-
terminated surface. The linear dependence of the surface energ
the reconstructions of the carbon-terminated surface on the ca
chemical potential has slope20.24; the linear dependence of th
surface energies of the reconstructions of the silicon-terminated
face on the silicon chemical potential has slope20.24.
rm

y

at
b-

to
n-
e

of
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of

atom. The surface energies of the gallium- and arse
terminated faces of GaAs~111! were determined and foun
to be in agreement with those of Chetty and Martin.4 Finally,
the approach was used to evaluate the surface energie
selected reconstructions of the~0001! surfaces of the wide-
gap semiconductors SiC and GaN.
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APPENDIX: MATHEMATICAL DETAILS
CONCERNING THE VORONOI POLYHEDRON

For a Bravais lattice which has lattice points$xj%, the
region of space nearer to the lattice pointxi than toxj ~the

-

s of
on

r-

FIG. 5. Surface energy of the reconstructions of GaN~0001!
calculated using the energy-density formalism with Voronoi po
hedra: ~a! the gallium-terminated surface and~b! the nitrogen-
terminated surface. For the unreconstructed, unrelaxed galli
terminated face, the surface energy depends linearly upon
gallium chemical potential with slope of20.25; for the unrecon-
structed, unrelaxed nitrogen-terminated face, the surface energ
pends linearly upon the nitrogen chemical potential with slope
20.25.
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so-called dominance region ofxi over xj ! is the half-space

D~xi ,xj !5$xuux2xi u2,ux2xj u2%; ~A1!

the boundary of this half-space is the plane defined by

ux2xi u25ux2xj u2; ~A2!

and the Wigner-Seitz cell is the intersection of all such ha
spaces, i.e.,

V~xi !5ù j Þ iD~xi ,xj !. ~A3!

Since the Wigner-Seitz cell is the intersection of conv
half-spaces, it is convex. Because its faces are planes, it
polyhedron.

The isogonal point group of a crystal is the group form
from all of the point-group operations which occur in th
space group.47 If the space group is symmorphic, the isog
nal point group will be a subgroup of the space group; if
space group is nonsymmorphic~it contains either a screw
axis or glide-reflection plane!, it will not be a subgroup. Be-
cause the symmetry operations of the point group leave
lattice points unchanged, the Wigner-Seitz cell is also inv
ant under the operations of the point group. The Wign
Seitz cell is also space filling and is charge neutral. Thus
three properties that characterize a Wigner-Seitz cell ar
follows: it is a space-filling polyhedron that has the symm
try of the point group of the lattice and is charge neutral.

In the case of diamond, there are two carbon atoms in
basis and the Wigner-Seitz cell as traditionally defined c
tains the same number of atoms as there are atoms in
basis, i.e., two carbon atoms. A Wigner-Seitz cell for
atom or, more properly, a Voronoi polyhedron, can be
fined by analogy with the Wigner-Seitz cell for a lattic
point. The region nearer to an atom atRI than to an atom a
RJ is the half-space

D~RI ,RJ!5$xuux2RI u2,ux2RJu2%. ~A4!

The intersection of all these half-spaces, i.e.,

V~RI !5ùJÞID~RI ,RJ!, ~A5!

defines the Voronoi polyhedron. Any point inside this cell
closer to the atom atRI than to all other atoms~rather than to
the lattice point as is the case for the traditional Wigner-S
cell!. The Voronoi polyhedron, being the intersection of ha
spaces, is a convex polyhedron.

Defined in this way, the Voronoi polyhedron posses
many properties similar to those of the standard Wign
Seitz cell. It is a space-filling polyhedron and charge neut
However, it is no longer necessarily invariant under the sy
metry operations of the isogonal point group, but only un
the operations of the largest point group that is a subgrou
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the space group of the crystal. Further, the integral of
energy density over this volume is independent of any ga
and is equal to the total energy per atom.

If the basis atoms are not identical, for example as
GaAs, the Voronoi polyhedron will no longer be neutral as
desired. In this case, the Voronoi polyhedra is defined to
an additively weighted power Voronoi polyhedron.31 The ad-
ditively weighted power Voronoi polyhedron or, more sim
ply, the power Voronoi polyhedron extendsnaturally the
definition of the Voronoi polyhedron from a lattice with
basis of identical atoms to a lattice with a basis of distin
atoms. In point of fact, the standard Wigner-Seitz cell, t
Voronoi polyhedron for a lattice with a basis of identic
atoms and the Voronoi polyhedron for a lattice with a ba
of distinct atoms are all encompassed within the definition
the power Voronoi polyhedron.

The additively weighted power-distance of pointx from
an atom atRI is

dpw~x,RI ;wI !5ux2RI u22wI ~A6!

wherewI is the weight associated with the atom atRI . With
respect to the additively weighted power distance, the h
space closer to an atom atRI than to one atRJ is

D~RI ,RJ!5$xuux2RI u22wI,ux2RJu22wJ% ~A7!

and the power Voronoi polyhedron is the intersection of
half-spaces, i.e.,

V~RI !5ùJÞID~RI ,RJ!. ~A8!

The use of the additively weighted power distance is m
tivated by the observation that the planes defining the s
faces of the traditional Wigner-Seitz cell are defined throu
Eq. ~A2! and that the additive weights rigidly translate th
faces of the Wigner-Seitz cell, always maintaining a polyh
dral shape. WhenwI5w5constant for a lattice without a
basis, the standard Wigner-Seitz cell is obtained.

For a tetrahedrally coordinated compound semicondu
comprised of elementsA and B, the volume contained
within the Voronoi polyhedron is a monotonic function o
the difference of the weightswA and wB . If charge-neutral
polyhedra are used, the value of this difference is fixed
the requirement that the total electronic charge within
Voronoi polyhedron cell be equal to the ionic charge;
instead, charged polyhedra are used, the difference ca
chosen for convenience. In the case of C60, not all of the
atoms are in symmetry-equivalent positions and char
Voronoi polyhedra must be used. Further, the space grou
nonsymmorphic. Consequently, the largest point group
is a subgroup of the space group for solid C60 is notTh

6 , but

3̄ and the Voronoi polyhedra will have this symmetry.
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