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Light detection and ranging (LiDAR) data are increasingly used to measure structural characteristics of
urban forests but are rarely used to detect the growing problem of exotic understory plant invaders. We
explored the merits of using LiDAR-derived metrics alone and through integration with spectral data
to detect the spatial distribution of the exotic understory plant Ligustrum sinense, a rapidly spreading
invader in the urbanizing region of Charlotte, North Carolina, USA. We analyzed regional-scale L. sinense
occurrence data collected over the course of three years with LiDAR-derived metrics of forest structure
that were categorized into the following groups: overstory, understory, topography, and overall veg-
etation characteristics, and IKONOS spectral features - optical. Using random forest (RF) and logistic
regression (LR) classifiers, we assessed the relative contributions of LIDAR and IKONOS derived variables
to the detection of L. sinense. We compared the top performing models developed for a smaller, nested
experimental extent using RF and LR classifiers, and used the best overall model to produce a predictive
map of the spatial distribution of L. sinense across our country-wide study extent. RF classification of
LiDAR-derived topography metrics produced the highest mapping accuracy estimates, outperforming
IKONOS data by 17.5% and the integration of LiDAR and IKONOS data by 5.3%. The top performing model
from the RF classifier produced the highest kappa of 64.8%, improving on the parsimonious LR model
kappa by 31.1% with a moderate gain of 6.2% over the county extent model. Our results demonstrate
the superiority of LiDAR-derived metrics over spectral data and fusion of LiDAR and spectral data for
accurately mapping the spatial distribution of the forest understory invader L. sinense.
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characteristics, recent advancements in mapping algorithms, and
synergistic use of datasets from multiple instruments. While
some success has been achieved with high-to-moderate resolu-

Introduction

Biological invasions are one of the leading contributors to

changes in regional and global biodiversity (Asner and Vitousek
2005; Simberloff et al., 2013). The rapid spread of invaders
across a range of ecosystems makes it challenging to accurately
assess the spatial distribution and abundance in a timely and
cost-effective manner at a desired spatio-temporal scale (Huang
and Asner, 2009). Remote sensing has facilitated advances in
mapping and monitoring biological invasions across a range of
ecosystems, including deciduous forests (Resasco et al., 2007), wet-
lands (Laba et al., 2008), rangelands (Glenn et al., 2005), coastal
environments (Hestir et al., 2008), and tropical forests (Asner
et al., 2008). These successes are primarily attributable to sensor
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tion imagery, hyperspectral imagery has demonstrated the most
promising results (Huang and Asner, 2009). The growing number
of invasions in forests pushes the limits of remote sensing per-
formance, particularly in detecting exotic plant invasions in the
understory where regeneration and recruitment are most impacted
by invaders (Becker et al., 2013). Canopy cover closure, canopy gap
shadowing, mortality of native plant species, and terrain variabil-
ity in the understory of forest ecosystems limit accurate detection
of understory invaders (Asner et al., 2008). Successful detection
often depends upon open views of the species of interest (Resasco
et al., 2007) and the timing of remote sensing imagery to take
advantage of phenological patterns in the overstory, i.e., after leaf
abscission (Becker et al., 2013; Tuanmu et al., 2010). To date,
detection of understory plant invasions is largely reliant on field
surveys, but cost and data collection times limit the number of
locations that can be assessed. Although spatially explicit mod-
els such as species distribution models (SDMs) have been used to
predict the probability of invader presence in non-sampled
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locations, there has been little success to date in applying these
models to new regions outside the study extent. Successful man-
agement of broad-scale exotic invaders in the understory of forest
ecosystems requires new techniques using minimal field data for
mapping their spatial distribution and abundance.

Several studies have examined the potential of using field-
measured SDMs augmented with optical remote sensing to detect
understory plant invaders (Estes et al., 2010; Rushton et al., 2004).
Andrew and Ustin (2009) suggest that the mapping of the dis-
tribution of invasives and sites prone to invasion using remote
sensing can be improved by including covariates characterizing
the environmental suitability of the site for the invader, such as
slope, solar radiation index, and soil moisture index. Other stud-
ies have examined the efficacy of moderate-to-high resolution
and multi-to-hyperspectral remote sensing data to detect under-
story invaders based on variability in seasonal and environmental
responses (Wilfong et al., 2009). For example, spectral differences
in the seasonal phenology of understory vegetation and decidu-
ous tree canopy during leaf-off conditions can be used to detect
understory vegetation, but success is limited to narrow windows
of senescence time (Chastain and Townsend, 2007). The spatial
and vertical heterogeneities of forest vegetation limit the util-
ity of spectral-based approaches for detecting the structure and
composition of understory vegetation even where distinguishing
physiological and phenotypic characteristics of an invader exist
(Homolovaetal.,2013). Studies have also attempted to improve the
detection of understory vegetation by using sub-pixel multivariate
algorithms, such as artificial neural networks, linear mixture mod-
els, and maximum entropy (Linderman et al., 2004; Tuanmu et al.,
2010; Wang et al., 2009). While some studies have shown potential
for using spectral remote sensing to detect understory invasives
by coupling the phenological patterns and improved algorithms,
questions remain regarding the efficient use of structural remote
sensing.

Light detection and ranging (LiDAR) offers the possibility of
accurately detecting understory invasive shrubs on the basis
of their structural characteristics as distinguished from canopy
species since it provides three dimensional data on the structure
and arrangement of vegetation across all forest strata (Falkowski
et al,, 2009; Goetz et al., 2010). LiDAR data have been widely
used for quantifying structural characteristics (e.g., tree diameter,
height, density, and biomass) of forest stands (Hudak et al., 2008;
Jaskierniak et al., 2011), mapping snags and understory shrubs
(Martinuzzi et al., 2009), characterizing successional stages of for-
est stands (Falkowski et al., 2009), estimating native understory
vegetation cover (Estornell etal.,2011; Wingetal.,2012),and iden-
tifying tree species. To complement LiDAR’s narrow spectral range,
structural covariates of LiDAR have been combined with multi-
to-hyperspectral remote sensing imagery to map forest structural
attributes, plant species distribution, forest biomass, and forest
canopy fuels (Mutlu et al., 2008; Popescu et al., 2004). To date,
LiDAR technologies ‘alone’ or through ‘fusion’ with spectral data
have not been leveraged to improve our ability to detect under-
story plantinvaders in urban forest ecosystems at regional scales. In
addition, detection information is typically limited to direct LiDAR
measurement (e.g., shrub height) of the plant individuals them-
selves while ignoring other forest and landscape characteristics
(e.g., topographic position) that may affect the distribution and
growth of invaders.

In this study, we examine the utility of multi-return LiDAR
data, IKONOS imagery, and the combination of data from both
sensors for detecting and mapping understory invaders. Using
Ligustrum sinense (commonly known as Chinese privet) as a case
study, we focus on the urban to rural forests located in Mecklen-
burg County, North Carolina to analyze the performance of LiDAR
data, IKONOS, and the data combination. We incorporate additional

forest and landscape characteristics to detect this plant invader
by analyzing combinations of datasets developed from categorized
LiDAR-derived variables (overstory, understory, topography, and
overall vegetation characteristics) and IKONOS spectral features
(optical) using random forest (RF) and logistic regression (LR) clas-
sifiers. We then compare the top performing models and apply the
best model to map the probability of L. sinense occurrence across
the heterogeneous study region.

Methods
Study system

The naturalized L. sinense has invaded over one million hectares
of forests across a large portion of the southeastern United States,
and the species is listed among the top invasives in many states
(Miller et al., 2008). It grows in a wide variety of habitats and
environmental conditions, including abandoned farmlands and dis-
turbed areas, where it forms impenetrable thickets with a typical
height range of 1-5 m, occasionally reaching heights of 10 m (Fig. 1).
It is a prolific seed producer with a high germination rate. Its ability
to tolerate both flooding and shade makes it well suited to the flood-
plains and riparian zones of forests (Brown and Pezeshki, 2000).
The abundance of L. sinense threatens forest ecosystems by alter-
ing the diversity, composition, and structure of forests (Greene and
Blossey, 2012). The growing threat of large-scale ecosystem modi-
fication by L. sinense is of extreme concern for land managers and
conservationists in the United States (Hanula et al., 2009).

A growing number of studies have examined L. sinense invasion
and impacts on ecosystem services across much of the southeastern
United States. The invasive has threatened to displace endangered
Miccosukee gooseberry (Ribes echinellum)in Florida (Langeland and
Burks, 1998). Invasions by L. sinense have been linked to several
negative outcomes including reduced herbaceous species in under-
story and suppressed tree regeneration in a mixed hardwood forest
in western North Carolina (Merriam and Feil, 2002); decreased
beetle diversity in northeastern forests of Georgia (Ulyshen et al.,
2010); and declining populations of the Schweintz’s sunflower
(Helianthus schweinitzii) found in the central Piedmont region of
North and South Carolina (USFWS, 1991). Faulkner et al. (1989)
found that dense thickets of L. sinense in forested areas of Tennessee
produce large quantities of litter and act like ‘umbrellas’ preventing
the infiltration of leaf litter from the native tree canopy. L. sinense
ranked fourth among the top invasive plants in North Carolina with
high prevalence in urban areas (EDDMaps, 2014).

The highly fragmented and urbanizing forested landscape of
Mecklenburg County (1415 km?), located in the CMR of North Car-
olina within the Piedmont province of the southeastern United
States (Fig. 2a), provides an ideal system for this case study.
The study system is characterized by rolling topography with a
forest-farmland mosaic that comprises a mix of secondary growth
oak-hickory-pine forests and stands of loblolly pine, which domi-
nate clear-cuts and abandoned farmland Singh et al. (2015).

Field data collection

We established a network of 346 randomly distributed field
plots within 75 forested sites in the study system (Fig. 2b). We col-
lected data at 139 field plots during the leaf-on season of 2009 and
2010 from mid-May to the end of July, and at 207 field plots dur-
ing the leaf-off season of 2012 from mid-January to mid-March.
Impassability to field plots due to thick understory vegetation in
the leaf-on season forced us to collect data in the leaf-off season
at the peak of senescence and abscission. We used a stratified-
random strategy to ensure adequate representation of upland and
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Fig. 1. Ligustrum sinense during the leaf-off season. (a) A dense stand of L. sinense in the forest understory within the riparian zone along Toby Creek greenway in Charlotte,
North Carolina, USA, (b) a dense monotypic stand of L. sinense, and (c) typical foliage exhibits thick leaves with a glossy upper surface and light green lower surface.

lowland field plots in the study system across urban, suburban, and
rural forested landscapes. At each site, we established a 10 x 10m
(0.01 ha) plot by defining a center point and recording coordi-
nates using a Garmin GPSMAP 62s device. We used a modified
Braun-Blanquet scale to collect presence/absence data following
an assessment of abundance by estimating the percentage of the
plot area occupied by aerial parts of L. sinense. We noted whether
L. sinense was present or absent, and if present, collected data as
percentage cover (up to 20%, 40%, 60%, 80%, and 100%) (Table 1).

LiDAR data acquisition

We obtained 1896 tiles of discrete return airborne LiDAR data
covering Mecklenburg County from the GIS Mapping and Project
Services of Charlotte-Mecklenburg County. Data were provided in
the State Plane Coordinate System (NC FIPS 3200, NAD 1983, m)

Table 1
Distribution of 100 m? field plots along urban-rural gradients.

Class County extent Total Experimental extent? Total
Presence Absence Presence Absence

Urban 68 88 156 16 11 27

Suburban 27 113 140 7 43 50

Rural 4 46 50 0 4 4
99 247 346 23 58 81

2 Field data used in the analyses at the experimental extent.

with each tile having dimensions 914.40 m x 914.40m (Fig. 2b).
Pictometry International Corp. (Rochester, New York) acquired the
data over six missions between April 11 and 14, 2012 using an
Optech ALTM Gemini 3100 LiDAR system. The on-board GPS (global
positioning system) data from the aircraft and concurrent ground-
based station data were post-processed using Applanix POSPac v4.4
to generate a smoothed best estimate trajectory (SBET). Optech’s
DashMap software package was used to produce LiDAR point cloud
data from the raw laser range data combined with SBET, and fur-
ther processed in TerraMatch software to measure and apply small
adjustments to the system’s orientation angles in order to ensure
proper alignment of data between flight lines. Additionally, Ter-
raScan was used to classify returns as either ground or non-ground
points and to ensure the quality of the classification. The sensor
recorded four returns plus intensity with an average point spacing
of 1 m between any two neighboring points over the study area.

LiDAR data processing

Topography and forest strata play a key role in the distribution
and growth of understory plant invasions (Royo and Carson, 2006).
We developed LiDAR metrics representing overstory and under-
story forest structure, and topography. We processed each LiDAR
tile using the BCAL LiDAR tools, based on IDL programing language
(BCAL LiDAR Tools, 2013), at 5 m resolution rasterized metrics for
the entire county. Processing LiDAR data at 5 m spatial resolution
allowed us to capture the variability within the plot while main-
taining computational efficiency during the analysis (Singh et al.,
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Table 2

Predictor variables used in the random forests and logistic regression classifiers for detection and mapping of Ligustrum sinense. LiDAR-derived variables assigned to overstory,
understory, topography, and overall vegetation characteristics types while IKONOS-derived variables are optical type.

Variable type Variable name Description
Overstory Hnax Height maximum
Hpcr(7s-95) Height percentile 75th, 90th, and 95th
Vurs Vegetation height >5m and <10 m
Vura Vegetation height >10 m
VstrRATUM(4-6) Percentage of vegetation returns in the height >10 m and <20 m, 20m and <30m, and >30 m
Understory Hmin Height minimum
Hpcr(s-s0) Height percentile 5th, 10th, 25th, and 50th (median)
Vi Vegetation height >0m and <1m
Vi Vegetation height >1 m and <5 m (understory vegetation)
VsTRATUM(0-3) Percentage of vegetation returns in the height range >0m and <1 m, >1 m and <2.5m, and >2.5m and <10m
Topography ASP Aspect
BEar Bare earth absolute roughness
BEcpp Ground point density
BEmin Bare earth intensity minimum
BEjmax Bare earth intensity maximum
BE|vEA Bare earth intensity mean
BEisp Bare earth intensity standard deviation
BE|min Bare earth elevation minimum
BELmax Bare earth elevation maximum
BELmea Bare earth elevation mean
BEr Bare earth local roughness
BEsipcosasp Bare earth slope cosine aspect
BEsipsinasp Bare earth slope sine aspect
DEM Digital elevation model
ERR Elevation relief ratio
Crv Curvature surface
Hpg Hill-shade
Nicr Number of LiDAR ground returns
PGR Percentage ground return
SLP Slope surface (degree)
SRI Solar radiation index
T™I Topographic moisture index
TRI Topographic roughness index
Overall vegetation Haap Height average absolute deviation
characteristics Hev Height coefficient of variation
Higr Height interquartile range
Hyur Height kurtosis
Hymap Height median absolute deviation
HumEean Height mean
Hgrne Height range
Hsp Height standard deviation
Hske Height skewness
Hrex Height texture
Hvar Height variance
IaLL Intensity surface overall
Imin Intensity surface minimum
Inax Intensity surface maximum
IMEAN Intensity surface mean
Isp Intensity surface standard deviation
Nir Number of LiDAR returns
Nivg Number of LiDAR vegetation returns
Vivp Total vegetation density
VCrype Vegetation cover type (deciduous, evergreen and mixed)
Vimin Vegetation intensity minimum
Vimax Vegetation intensity maximum
VIMean Vegetation intensity mean
Visp Vegetation intensity standard deviation
Optical Texture Texture (contrast, homogeneity, variance, and correlation)
ARVI Atmospherically resistant vegetation index
MSAVI Modified soil adjusted vegetation index
[HS Hue intensity and saturation
EVI Enhanced vegetation index
Pan Pan-sharpened bands (three visible and one infrared)
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Fig. 2. Study system. (a) Mecklenburg County at the center of the Charlotte Metropolitan Area of North Carolina, USA, (b) the distribution of forest cover across the county
with overlays of LiDAR tile index and locations of field plots. A total of 1896 LiDAR tiles of dimension 914.40 m x 914.40 m used for developing predictor variables, and (c)

the extent of IKONOS coverage.

2012). To account for forest vertical structures in the analyses, we
divided forest into four vertical strata(<1m; >1-<5m;>5-<10m;
and >10 m) following the height range of L. sinense. LiDAR data col-
lected in the leaf-off season vary significantly both in point density
and intensity values for different forest types such that contrast
among different forest strata and topography is emphasized. We
converted LiDAR intensity into various vegetation and topography
intensity metrics. We also developed height percentile metrics to
represent the proportion of vegetation below a given percentile.
For example, the 99th percentile defines a measure of the maxi-
mum height, whereas the remaining percentiles quantify variation
in height across the vegetation profile (Jaskierniak et al., 2011).
We developed indices using a LiDAR-derived digital elevation
model (DEM) to characterize moisture content and site conditions.
Indices include an integrated moisture index (IMI), an elevation
to relief ratio (ERR), a topographic roughness index (TRI), and a
solar radiation index (SRI). An IMI with increasing values indicates
increasing moisture accumulation and retention (Iverson et al.,
1997). The ERR index measures the extent to which topography
has been opened up by erosion (Martinuzzi et al., 2009). The TRI
is a measure of variability in the landscape surface and a proxy
for disturbances (Stambaugh and Guyette, 2008). The SRI affects
biological processes that influence species distributions across
landscapes (Keating et al., 2007). We used a three-band compos-
ite dataset containing a canopy height model, a normalized digital
surface model, and a differenced surface model of these two to clas-
sify forested landscapes into deciduous and evergreen types (Singh

et al.,, 2010). We created sixty-six variables from LiDAR, consist-
ing of 43 canopy and 23 topographic metrics at the county extent
(Table 2). We further post-processed these metrics using a mask
of vegetation cover to exclude developed land cover types from
forested landscapes.

IKONOS data acquisition

We acquired a cloud-free multispectral IKONOS image from the
leaf-off season dated February 21, 2010, covering a portion of Meck-
lenburg County (Fig. 2c) (hereafter referred to as “experimental
extent”). The image consists of three pan-sharpened visible bands
(blue, 0.45-0.52 pm; green, 0.51-0.60 pm; red, 0.63-0.70 pm) and
one near infrared band (nir, 0.76-0.85 pm) at 1 m spatial resolution.
We projected the four-band composite image into the State Plane
Coordinate System (NC FIPS 3200, NAD 1983, m). The selection of
leaf-off IKONOS images facilitated spectral discrimination between
L. sinense and neighboring deciduous trees. We applied radiomet-
ric correction to ground reflectance by applying a simple dark pixel
subtraction method. We co-registered calibrated IKONOS data to
the LiDAR intensity surface model by creating 15 landmark con-
trol points using the same features on both images. We applied an
affine transformation based RST (rotation, scaling, and translation)
algorithm to warp image followed by nearest neighbor resampling
method. On average, a positional difference of the same features
between the two images was less than one-fourth of the pixel.
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IKONOS data processing

We developed fourteen spectral features, including a
pan-sharpened, four-band image, a three-band hue-intensity-
saturation (HIS)image, four texture images (contrast, homogeneity,
variance, and correlation), and three vegetation indices: (1)
enhanced vegetation index (EVI), (2) modified soil adjusted
vegetation index (MSAVI), and (3) the atmospherically-resistant
vegetation index (ARVI). Studies have demonstrated the efficacy
of pan-sharpened imagery in the classification of forest tree
species in urban areas, estimation of vegetation cover, detection
of disturbance severity and canopy heterogeneity, and for under-
standing the spatiotemporal distributions of forest structural and
dynamic variables in the tropical forest (Carleer and Wolff, 2004;
Pu, 2011). We transformed the pan-sharpened four-band image to
HIS, and texture images. Texture images are useful for retrieving
forest structure variables and distinguishing subtle differences
in vegetation types (Franklin et al., 2001; Kayitakire et al., 2006).
The EVI is suitable for detecting changes in areas of high biomass.
The MSAVI distinguishes areas with a high degree of exposed
soil surface. The ARVI, being less sensitive to atmospheric effects
(aerosols), is useful for measuring and monitoring plant growth,
vegetation cover, and biomass production. Finally, we resampled
these features to 5m resolution to match the spatial grain of the
LiDAR-derived variables to facilitate comparisons.

Datasets and modeling schema

To understand the contribution of forest structure in detec-
tion and mapping of L. sinense, we categorized the LiDAR-derived
variables into overstory, understory, topography, and overall vege-
tation characteristics variable types and assigned IKONOS spectral
features to the optical types (Table 2). We used the description
of variables and their established applications in forestry-related
studies for the purpose of categorization (Asner et al., 2008;
Falkowski et al., 2009; Hudak et al., 2008; Jaskierniak et al., 2011;
Martinuzzi et al., 2009). Using the five ‘variable types’, we devel-
oped thirty-one unique combinations of models at the IKONOS
experimental extent (Fig. 2c; Table 3), and then further applied
the RF (Breiman, 2001) classifier to analyze relative contributions
of sensors and forest landscape structures in detection L. sinense.
Finally, we compared the top performing model developed from
selected predictor variables (PVs) using the RF classifier to the best
parametric model developed from LR (Orka et al., 2012), and used
the best overall model to map the probability of L. sinense occur-
rence across the heterogeneous county extent Fig. 3.

Statistical analysis

We implemented the RF and LR classifiers in the IDL (Waske
etal., 2012) and R programming environment (R Core Team, 2013),
respectively. In order to account for the time lag between field
data and remotely sensed data, we performed visual assessment
of the field data collected prior 2012 using LiDAR canopy cover to
eliminate those field plots affected by forest loss.

Traditional statistical methods do not address nonlinear
complex interactions among high-dimensional remote sensing
variables (Cutler et al., 2007). To overcome these limitations,
we used a non-parametric RF classifier, a decision-tree-based
ensemble classifier, which has proven effective in the classifica-
tion of high-dimensional remote sensing and ecological data (Cutler
etal., 2007; Goetz et al., 2010; Martinuzzi et al., 2009). We selected
the RF classifier based on: (1) its robustness and accurate perfor-
mance on complex datasets with an array of input variables (higher
dimensionality) (Guo et al., 2011; Stumpf and Kerle, 2011), (2)
its ability to determine significant variables in the classification,
and (3) a waiver from cross-validation as it generates an internal

Table 3
Model accuracy estimates using random forests classifier at the experimental extent.

Models Accuracy estimate?
F-1 measure+ Kappa Specificity Sensitivity

Mos 57.16 0.239 0.636 0.754
Muys 41.34 0.000 0.000 0.722
Mro 60.04 0.308 0.636 0.790
Mo 47.46 0.086 0.417 0.734
Mop 42.58 0.019 0.125 0.724
Mosus 43.48 0.038 0.167 0.724
Mosto 57.05 0.260 0.488 0.767
Musto 55.70 0.213 0.448 0.742
Mosot 43.25 0.034 0.250 0.727
Musot 42.69 0.000 0.125 0.725
Mroot 52.93 0.213 0.375 0.746
Mosop 48.61 0.149 0.625 0.730
Muysop 41.63 0.000 0.000 0.722
Mro0p 55.39 0.270 0.604 0.760
Motop 47.55 0.101 0.500 0.733
Mosusot 43.79 0.038 0.375 0.739
Moustoor 55.67 0.255 0.500 0.763
Mostoot 55.93 0.244 0.563 0.758
MosusTo 55.53 0.236 0.388 0.765
Mosusop 41.63 0.014 0.000 0.735
Mostoop 56.09 0.270 0.625 0.762
Muystoop 54.86 0.250 0.475 0.758
Mosorop 48.28 0.129 0.500 0.733
Muysotop 46.68 0.100 0.250 0.728
Mro0t0p 53.51 0.184 0.469 0.802
MosusToot 52.69 0.180 0.375 0.751
MosusToop 51.94 0.205 0.500 0.747
Mosusopot 42.97 0.030 0.125 0.739
MosToopot 55.68 0.238 0.531 0.749
Mustoopot 54.32 0.196 0.542 0.759
ML 54.79 0.229 0.500 0.757

+F-1 measure - the harmonic mean of precision and recall.
2 10-fold cross-validated accuracy estimate.

unbiased estimate of test error (Cutler et al., 2007). The RF classi-
fier provides estimates of variable importance in the classification
to assist with reducing data dimensionality. The classifier oper-
ates by growing a large number of individual decision trees from
randomized subsets of training samples to maximum size without
pruning, and then selecting only the best split among a random
subset at each node (Falkowski et al., 2009; Prasad et al., 2006).
The optimal classification is then determined by selecting the most
common classification results at each node within the group of mul-
tiple decision trees (Breiman, 2001). Due to the randomness, the
bias of RF usually increases, but its variance also decreases due to
averaging, therefore constructing the most parsimonious classifica-
tion model that retains the highest classification accuracy (Cutler
et al.,, 2007; Goetz et al., 2010). For comparison, and due to the
binary nature of the output, we also applied the LR classifier to plot
level datasets. This approach offers a robust discriminant function
without assuming a specific distribution in the input variables.

We applied the LR classifier to analyze the presence of L.
sinense, in which field-collected privet occurrence data served as
the response variable and remote sensing covariates as PVs. Our
selection of LR is based on its flexibility related to key statistical
assumptions (linearity, normality, and homoscedasticity), and the
straightforward interpretation of results based on odds ratios and
statistical hypothesis testing. We modeled the logit of the presence
of L. sinense as:

y = log, [ﬁ} = logit(P) = Bo + f1X1 + ... + Prxk

where y is a linear combination function of included PVs x,... X,
the parameters g + f1,. . . + By are the regression coefficients to be
estimated, P is the probability of the occurrence of L. sinense, and
logit(P) is the odds ratio.
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Fig. 3. The spatial distribution of Ligustrum sinense in the forest understory at experimental extent based on: (a) the top performing random forests model (F-1 accu-
racy =69.90%) developed using selected predictor variables with high variable importance, and (b) a parsimonious logistic regression model (F-1 accuracy =54.50%).

We used the variance inflation factor (VIF) <10 for the identifi-
cation and removal of collinear PVs, and we applied the backward
elimination technique by deleting one predictor variable for each
iteration until no further improvement in the Akaike’s information
criterion (AIC) was observed (Orka et al., 2012). Since AIC penal-
izes over fitting a model, the lowest AIC value is ideal for selecting
a model from a set of models for a given set of data. We used a
maximized sum of specificity and sensitivity criterion (MST — max-
imized sum threshold) for selecting the threshold of occurrence for
L. sinense detection. The MST is the value that maximizes the sum of
specificity and sensitivity in the model, and may offer a number of
cutoffs that do nearly as well. Once an optimal LR was established,
we applied it to the entire dataset to produce a categorical map of
presence and absence of L. sinense.

Evaluation of model performance

We evaluated model performance by computing resubstitution
and 10-fold cross-validation (k-fold CV) estimates for all models
from RF and LR classifiers using F-1 measure (sensitivity, specificity,
and kappa), and the area under the receiver operating character-
istic curve (ROC). The area under the ROC curve ranges from 0 to
1 (none correctly classified to all correctly classified) and provides
a quantitative measure of model performance. We obtained the
ROC by plotting the true positive proportion of correctly predicted
presences (sensitivity) on the Y-axis against the false positive pro-
portion of correctly predicted absences (specificity) on the X-axis.
Since the RF classifier provides a reliable error estimate using data

that is randomly withheld from each iteration of tree development
(the “out-of-bag” portion), an accuracy assessment using indepen-
dent testing data is not required (Lawrence et al., 2006). However,
for the purpose of model comparison and analytical robustness, we
computed a k-fold CV by dividing the field data into ten equal sets,
where nine sets were input for training and one set for testing, and
repeated this procedure ten times (Cutler et al., 2007).

Results
Understory detection and mapping performance

The LiDAR-derived PVs produced the highest accuracy esti-
mates, outperforming both IKONOS alone and the integration of
LiDAR and IKONOS data (Figs. 3 and 7). The RF classifier, with
selected PVs (10 variables) at experimental and county extents
(Fig. 4a and b), performed substantially better with higher accu-
racy estimates compared to the LR classifier (Fig. 5), while the
LR classifier showed less variability between resubstitution and
cross-validated accuracy estimates. The RF model at the experi-
mental extent produced the highest resubstitution kappa of 64.8%
(Fig. 3), improving on the LR model by 31.1% with a moderate gain
of 6.2% compared to the county extent (Tables 3 and 4). The k-
fold CV revealed the robustness of the RF classifier by producing
a similar kappa (1% difference) estimate at both extents. In addi-
tion, the kappa estimate was 21% and 40% higher as compared to
the model from the LR classifier and models created by the com-
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Fig. 4. Normalized variable importance (NVI) plot from the random forests classifier showing the relative importance of each predictor variable in the model. NVl is a ratio
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Table 4

Accuracy metrics for top performing models with observed and predicted frequencies at the experimental and county extents.

Experimental extent

RF LR

Predicted Predicted
Observed Presence Absence Presence Absence Absence % Correct
Presence 11 9 15 20 31 74.80
Absence 61 5 41 187 84.20
Overall % correct 80.87
Accuracy F-1 measures: 71.00 F-1 measures: 54.50 73.60
estimates Kappa: 0.648 Kappa: 0.337 0.586

Sensitivity: 1.000 Sensitivity: 0.750 0.724

Specificity: 0.871 Specificity: 0.672 0.858

AUC: 0.936 AUC: 0.787 0.791
10-fold F-1 measures: 61.55 F-1 measures: 53.30 67.37
cross-validation Kappa: 0.537 Kappa: 0.331 0.547

RF - random forests; LR - logistic regression; F-1 measure - the harmonic mean of precision and recall. AUC - the area under the curve of the receiver operating characteristic.
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bination of variable type using the RF classifier, respectively Fig. 5
(Table 4). The F-1 estimate between resubstitution and k-fold CV
varies on average 7.84% using the RF classifier compared to 1.2%
using LR. The RF classifier predicted nearly three times the area
of L. sinense spread in the understory of forests at the experimen-
tal extent compared to the LR classifier (Fig. 6a). The ratio of L.
sinense to forest cover is nearly consistent across urban-rural gra-
dients. However, the ratio of L. sinense to developed land cover in
rural areas is 71% higher than in suburban areas, and 140% higher

than in urban areas (Fig. 6b). The estimated sensitivities across the
models, created by the combination of variable type, are relatively
higher >0.72, than specificities, which differ significantly except
at the county extent where sensitivity is lower than specificity.
However, with higher positive and negative productivity (ratio
between true positive/negative and total positive/negative), the RF
classifier performed substantially better at the county extent than
at the experimental extent at detecting invasion.
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Relative contribution of IKONOS imagery and LiDAR data

The F-1 and kappa estimates obtained from RF classification
of optical PVs were only 1.25% and 1.9% higher, respectively,
than the understory model, and contributed only marginally to
improvements in overall accuracy estimates when combined with
overall vegetation characteristics and understory PVs (Table 3).
However, the IKONOS-derived PVs when analyzed together with
the other LiDAR PVs did not improve classification accuracy esti-
mates of detection and mapping L. sinense. Among the optical PVs,
texture contributed slightly to improved detection when combined
with overall vegetation characteristics while no other optical PVs
were significant in the top performing RF and LR analysis.

Contributions of forest landscape structures

The topography PVs alone produced the highest accuracy esti-
mates and contributed more to detection of L. sinense than other
variable types across all models created by the combination of vari-
able type using the RF classifier at the experimental extent. The
F-1 estimate was 11.4% higher than average estimates obtained
from other variable types alone, followed by overstory and over-
all vegetation characteristics (Table 3). Gains in accuracies did not
improve with increasing numbers of variable types except for a
slight improvement of >0.2 kappa with the topography PVs. How-
ever, the RF variable importance plot of the Mu;; model (Fig. 4a)
produced a higher number of PVs from overall vegetation charac-

teristics contributing in the overall accuracy estimates followed by
the topography and overstory variable types. The LR analysis also
identified similar sets of significant variable types with the excep-
tion of understory (Vstratum—1) (Table 5). Two PVs: TMI and VIgp,
are significant in both the top performing models from RF classi-
fier and model from the LR classifier. LIDAR intensity-derived forest
landscape variables (VIyean/VIimax and VIyy) contributed in both
top performing RF and LR models. However, the lower performance
suggests that the LR classifier was unable to address adequately
some nonlinear structure for matching or higher accuracy esti-
mates. The LR classifier revealed the magnitude and direction of
PVs’ contribution in the detection of L. sinense. Examination of the
RF variable importance plots showed that in addition to the TMI,
three PVs (topographic roughness index, vegetation density and
forest cover types) contributed considerably to improved detection
with higher accuracy estimates at both experimental and county
extents (Fig. 4b).

Large-area assessment of L. sinense

The higher performance of LiDAR PVs using the RF classifier
encouraged us to evaluate county level field data for improved
detection of L. sinense. Our analysis produced similar k-fold CV
kappa estimates with only slight variation in resubstitution accu-
racy estimates. Use of county level field data increased the positive,
and negative predictive ratio by 33% as compared to the ratio at the
experimental extent accompanied by a 13.4% difference between
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Table 5
Parameters and fit statistics for logistic regression model.
Variable type Predictor Description B SE B8 z p ef
(odds ratio)
Constant —-0.933 0.602 —1.551 0.1208 NA
Understory VSTRATUM-1 Percentage of vegetation returns 0.035 0.014 2.470 0.0135 1.036
Topography BEisp Bare earth intensity standard deviation —-0.051 0.022 —2.308 0.0210 0.950
TM™I Topographic moisture index 0.014 0.003 4558 <0.0001 1.014
Overall vegetation Hyur Height kurtosis -0.612 0.279 -2.188 0.0287 0.542
characteristics IaL Intensity surface overall -0.013 0.004 -2.924 0.0035 0.987
VIMean Vegetation intensity mean —0.459 0.170 —2.695 0.0070 0.631
Visp Vegetation intensity standard deviation 0.005 0.002 2.012 0.0442 1.005
Test X? df P
Overall model fit Likelihood ratio test 68.356 7 <0.0001
Wald test 13.900 2 0.0009

sensitivity and specificity, which suggests an improved prediction.
The variable importance plot indicated TMI as the most significant
PV for large-area assessment of L. sinense, followed by VCrypg, TRI,
and vegetation density (Fig. 4b). The analysis of LiDAR PVs and the
RF classifier with the county level field data mapped the spatial
distribution of L. sinense that occupies 5.95% of forest understory,
predominantly in drainage ways and lowland areas of forested
landscapes along urban-rural gradients in the county (Fig. 7).

Discussion

Regional assessment of understory invasions requires an
approach that overcomes the complicacies of spatial and vertical
heterogeneity of forested landscapes, and utilizes structural and
spectral remote sensing data in a coherent manner. In this study, we
found that structural and spectral data from LiDAR can be used to
detect L. sinense over large areas with greater accuracy than either
using multispectral IKONOS data alone or the combination of pre-
dictors derived from LiDAR and IKONOS. We obtained high accuracy
estimates using the RF classifier with selected LiDAR PVs at both the
experimental and county extents (Table 4). Topographic attributes,
including TMI and TRI, together with vegetation height and LiDAR’s
spectral metrics contributed the most in the detection of L. sinense,
regardless of the classifier used.

Contrary to our expectations, high resolution IKONOS did not
contribute significantly to the detection of L. sinense, revealing the
limited ability of spectral remote sensing to unravel vertical struc-
ture of heterotypic forest stands. The ineffectiveness of IKONOS in
the detection of L. sinense could be due to cumulative or individ-
ual constraints in spectral, spatial, and temporal resolutions. The
heterogeneity of forest strata is responsible for the mixed spectral
response resulting in scale-dependent variance. This could be fur-
ther complicated with an off-nadir effect of tall trees on understory
vegetation as found in (Hsieh et al., 2001) and (Myeong et al., 2006).
Decreasing the spatial resolution of IKONOS spectral features to
5 m for spatial consistency across the analysis and the uneven geo-
registration between IKONOS and LiDAR may have also contributed
to poor results (Nelson et al., 2006). A time lag in acquisition (a tem-
poral gap) may also contribute to problematic integration of the two
remote sensing data sources, which is also the case in this study.
Accurate detection of understory plant invasions is scale (scale of
the study) and data dependent, considering the types of data ana-
lyzed, the existing data dimensionality and nonlinearity, and the
data acquisition period. The choice of classification techniques also
influenced computational efficiency and detection success. More-
over, detection success is most dependent upon the characteristics
of forested landscapes, including physiology of invasive shrubs and
the host environment (Chastain and Townsend, 2007; Resasco et al.,
2007).

Our approach of dividing PVs from LiDAR into variable types rep-
resenting characteristics of forest structure and forested landscapes
added a new element into the design of our analytical frame-
work. The RF accuracy estimates of models based on LiDAR-derived
variable type combinations (Table 3) illustrate the significance of
forest structure and landscape characteristics and their contribu-
tion in detection and mapping L. sinense. The topography variables
contributed the most with improved detection once combined
with overall vegetation characteristics, and overstory using the
RF classifier. Among our broad variable types, topographic mois-
ture, roughness, vegetation height, and vegetation intensity profile
were key variables in the RF and LR models at both extents (Fig. 4a
and b, Table 4). Topographic moisture and roughness play impor-
tant roles in the growth and distribution of L. sinense in riparian
forests of the southeastern United States (Hudson et al., 2013;
Wang and Grant, 2012), therefore, the influence of these variables
in the analysis is not surprising. The significance of vegetation
height, density, and intensity profiles variables supports our con-
cept that physiological characteristics of L. sinense are the most
suitable for LiDAR-based detection. The prominence of vegeta-
tion density and intensity variables in our analysis also suggests
that LiDAR with higher point-density, acquired in the peak of
senescence period, can improve detection and mapping by pro-
viding distinct spectral contrast and vegetation densities between
deciduous and compact evergreen understory, which corroborates
the findings of Straatsma and Middelkoop (2007).

Our k-fold CV of model performance helped minimize the
over-fitting tendency of the RF classifier and provided a direct
comparison between RF and LR models. The RF classifier outper-
formed the LR classifier using the same set of selected PVs. Cutler
et al. (2007) observed higher performance using the RF classifier
when there were strong interactions among the PVs. RF's abil-
ity to model complex interactions among PVs perhaps addresses
the complicated interactions of LiDAR-derived PVs in the top
performing model and explains the better performance of RF
classifier. The common PVs in both classifiers, for example, TMI
and VIgp, and the marginal difference in AUC value suggests that
the LR-derived probabilities might be useful for making rapid
adjustments to thresholds that alter false positive/false negative
rates to improve prediction of L. sinense. One disadvantage of LR is
that it requires non-collinear variables, whereas RF is not affected
by multicollinearity because the algorithm ‘spreads’ the variable
importance across all the variables and keeps those which are
good predictors of the response even when correlated with other
PVs (Cutler et al., 2007). The unbalanced sample size is also one
potential reason for the performance disparity between the two
classifiers. The RF makes no distributional assumptions about the
predictor or response variables and can automatically reanalyze the
presence and absence class to achieve equal size, providing another
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advantage over LR. In general, a higher number of presence data in
the model poses a challenge of overestimation. On the contrary, due
to a higher number of absence data, more than twice the presence
dataatboth extents, we expect that neither classifier overestimated
the spatial distribution of L. sinense.

We identified two primary sources of error in the overestima-
tion of ‘sensitivities’ in models: (1) the presence of other evergreen
understory shrubs, and (2) the use of field plots containing a fewer
number of seedlings, juveniles, and matures as presence in the
classifiers. However, the effects of higher evergreen shrub coverage
and plots with sparser L. sinense plants on detection and mapping
are matters for further analysis. Other technical issues influencing
accuracy estimates were GPS positional errors from the fieldwork,
loss of information during data conversion (e.g., float to integer),
and the quality of LiDAR data and derived variables at regional
extents, including gaps between LiDAR tiles and non-calibrated
LiDAR intensity. Computational challenges that arose due to large
data volumes associated with the large-area LiDAR application sug-
gest that we need to explore data reduction techniques and optimal
resolutions for detection and mapping of understory plantinvaders.

We observed little difference in accuracy estimates when imple-
menting the RF classifier at the experimental and county extents,
with only slightly reduced variability between resubstitution and k-
fold CV at the county extent. This reduced variability is attributable
to the larger amounts of field data at the county extent. However,
similar accuracy estimates at both extents suggests the suitabil-
ity of the RF classifier when less field data is available, which is
consistent with research presented by Martinuzzi et al. (2009).
County-level analyses showed that TMI and vegetation cover types
- deciduous and evergreen - (VCrypg) are the most important
variables for predicting the distribution of L. sinense at that scale.
Application of the RF classifier at the county extent prompted two
methodological avenues for future research: (1) to analyze LiDAR-
derived PVs with spatial resolution matching the field plot size
(i.e., 10m x 10 m) to enhance data handling and computational effi-
ciency while providing sufficient accuracy estimates, and (2) to
measure the variability in accuracy estimates when using other
evergreen understory invasive species found in the field plots.
Ultimately, using county-level field data with the RF classifier is
suitable for large-area assessment of L. sinense, and this approach
can be applied to other local and regional sites.

Conclusions

Successful management of native biodiversity and ecosystem
services at regional scales requires methodological advances in
the application of remote sensing technologies aiming to accu-
rately quantify the spatial distribution of invasive species. Our
results suggest that LiDAR data provides: (1) adequate informa-
tion for accurately detecting and mapping the spatial distribution
of the understory invasive L. sinense over large urbanizing regions,
and (2) improved results as compared to the analysis of IKONOS
optical imagery. The topography variables (TMI + TRI), when com-
bined with overall vegetation characteristics (density +spectral)
and overstory (height), produced the highest accuracy estimates.
These findings highlight the significance of the structural and
spectral characteristics of LiDAR for quantifying the landscape-
level topographic, forest stand, and physical and structural plant
attributes used for detecting and mapping the distribution of L.
sinense. LiDAR intensity-derived variables were significant in the
successful detection and mapping of L. sinense, emphasizes the
importance of the spectral attributes of LiDAR data for assessing
understory invasives. This research demonstrates how categorizing
LiDAR-derived variables into variable types representing overstory
and understory forest structure and topography contributed to

our understanding of the forest and landscape characteristics that
influence the distribution, growth, and detection of L. sinense. Our
study suggests an even distribution of L. sinense in forests along the
urban-rural gradients of Mecklenburg County, NC, found predom-
inantly in drainage ways, lowlands, and disturbed areas of forested
landscapes as observed during fieldwork. This research further
highlights the importance of LiDAR data acquisition during the
leaf-off season for mapping L. sinense. Our methodological frame-
work addresses data complexities, including multidimensionality
and nonlinearity in multisource data, and provides a generalized
approach for rapid assessments of L. sinense in forested landscapes
over large urbanizing regions to support development and imple-
mentation of management plans for conserving native biodiversity.
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