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AN EVALUATION OF THE ACCURACY OF KERNEL DENSITY 

ESTIMATORS FOR HOME RANGE ANALYSIS1 


D. ERRANSEAMAN^ AND ROGERA. POWELL 
Department of zoo log)^, North Carolina State University, Raleigh, North Carolina 27695-7617 USA 

Abstract. Kernel density estimators are becoming more widely used, particularly as 
home range estimators. Despite extensive interest in their theoretical properties, little em- 
pirical research has been done to investigate their performance as home range estimators. 
We used computer simulations to compare the area and shape of kernel density estimates 
to the true area and shape of multimodal two-dimensional distributions. The fixed kernel 
gave area estimates with very little bias when least squares cross validation was used to 
select the smoothing parameter. The cross-validated fixed kernel also gave surface estimates 
with the lowest error. The adaptive kernel overestimated the area of the distribution and 
had higher error associated with its surface estimate. 

Key words: kernel density estimation; nonparametric statistical methods; radio telemetry; spatial 
analysis of home range; utilization distribution. 

p, of its total utilization" (Jennrich and Turner 1969: 

Field studies commonly record data on the locations 232). 

of organisms and such observations can be used to Defining home range in terms of a frequency distri- 

describe the home ranges of individuals or the ranges bution has proved far easier than estimating the utili- 

of taxa. These data may then be analyzed to test hy- zation distribution. The estimation procedure has been 

potheses about resources use, about animals' behavior, problematic because of three factors: (1) the distribu- 

or about distributions and overlap of taxa. Estimating tion is two-dimensional, (2) observed utilization dis- 

and analyzing two-dimensional distributions has been tributions rarely conform to parametric models, and (3) 

difficult, however, and development of methods has observations are sequential locations of an individual 

been hindered by the need for powerful computational animal and often may not be independent observations 

abilities. of the true distribution (Swihart and Slade 1985). 

Much of the interest in estimating two-dimensional Alternate models of animal home ranges have also 

distributions has come from researchers working on been proposed. Loehle (1990) and Gautestad and Mys- 

animal home ranges. Burt's verbal definition of home terud (1993) have modeled animal movements as a 

range (1943:351) is still widely accepted: " . . . that multiscale random walk, and analyzed the pattern of 

area traversed by the individual in its normal activities locations as a fractal. This innovative approach may 

of food gathering, mating, and caring for young. Oc- provide new insights into animal movements. Never- 

casional sallies outside the area, perhaps exploratory theless, to generalize beyond the actual observed lo- 

in nature, should not be considered as in part of the cations it is necessary to estimate where the animal 

home range." The need for performing statistical anal- was in the times between observations. Furthermore, 

yses of home ranges has led to more explicit definitions. to relate the frequency of use to different habitat vari- 

The term utilization distribution has been applied to ables, it is necessary to estimate the frequency of use. 

animal home ranges by several authors (Hayne 1949, Such tasks inherently fall into the realm of density 

Calhoun and Casby 1958, Jennrich and Turner 1969). estimation. 

Van Winkle (1975:118) defined it as "the two-dimen- Many methods for estimating home ranges and uti- 

sional relative frequency distribution for the points of lization distributions have been developed. They have 

location of an animal over a period of time." Thus, the been thoroughly reviewed (Van Winkle 1975, Worton 

utilization distribution is a probabilistic model of home 1987, White and Garrott 1990), and several of the most 

range that describes the relative amount of time that popular methods have been numerically compared 

an animal spends in any place. Within such a frame- through Monte Carlo simulations (Boulanger and 

work one can then define home range as "the smallest White 1990, Naef-Daenzer 1993, Worton 1995). 

sub-region which accounts for a specified proportion, Nonparametric statistical methods for estimating 
probability densities have been available for several 

Manuscript received 24 April 1995; revised 4 December decades, and their properties have been well explored 
1995; accepted 18 January 1996. by statisticians (e.g., Bowman 1985, Breiman et al. 

Present address: National Biological Service, Forest and 1977, Fryer 1977, Silverman 1986). One of the best Rangeland Ecosystem Science Center, Olympic Field Office, 
600 E. Park Avenue, Port Angeles, Washington 98362-6798 known methods is the kernel density estimator, which 
USA. has been thoroughly described by Silverman (1986). 

I 
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The kernel density estimator has the desirable qualities 
of directly producing a density estimate, and being un- 
influenced by effects of grid size and placement (Sil- 
verman 1986). Furthermore, because it is nonparamet- 
ric, it has the potential to accurately estimate densities 
of any shape, provided that the level of smoothing is 
selected appropriately. 

The kernel density estimator was introduced to ecol- 
ogists as a home range estimator by Worton (1989a), 
and is becoming more widely used as computer im- 
plementations of the method become available. In this 
paper we briefly describe the methodology of the kernel 
density estimator (largely drawn from Silverman 
1986), and demonstrate its behavior when applied to 
simulated home range datasets that have been generated 
from distributions with known parameters. 

Despite the strong interest statisticians have had in 
their theoretical properties, kernel density estimators 
had not been thoroughly tested as home range esti- 
mators until recently (Worton 1995). Worton (1995) 
performed simulations using the four data types of 
Boulanger and White (1990) with known true areas. 
He found that kernel estimators overestimated the 95% 
home range area, and he applied a correction factor to 
reduce the bias for the datasets he tested. 

Naef-Daenzer (1993) provided limited tests of the 
kernel density estimators in the context of home range 
analysis. Naef-Daenzer (1993) determined that the 
method was over-estimating home range size, and he 
applied an arbitrary modification of the kernel esti- 
mator (truncating the tails of the bivariate normal ker- 
nel). 

The kernel method can be used for density estimation 
in any number of dimensions, though it will be com- 
putationally slow for more than two dimensions. It is 
a valuable tool for analyzing anything that may be dis- 
tributed multimodally or non-normally. Observations 
may be: sequential locations of an individual to study 
home range and resource use; single locations of dif- 
ferent individual organisms to study a species range; 
or measurements of properties other than location (e.g., 
soil temperature and photosynthetic rate) that charac- 
terize a population of interest. 

The kernel density estimates form an ideal basis for 
quantitative analysis. In the context of home range 
analysis, the density at any location is an estimate of 
the amount of time spent there. This information forms 
a basis for ecological investigations of habitat use and 
preference. The density also forms a basis for mea- 
suring the overlap of individuals or species in terms of 
area and intensity of use (volume). A simple measure 
of only the area of overlap may be misleading if that 
space is used with either higher or lower than average 
intensity, whereas weighting area by usage can give a 
more accurate estimate of the probability of interaction 
between individuals (Smith and Dobson 1994). 

In this study we tested kernel estimators, and com- 
pared them to the harmonic mean that has performed 

best of the other home range estimators tested (Bou- 
langer and White 1990). Such tests are needed because 
several important aspects of kernel performance are 
unexplored, and the estimator is becoming accepted 
more widely without a thorough knowledge of how it 
actually behaves. The main factors that we tested were 
cross validation as a method for choosing bandwidth, 
and adaptive vs. fixed bandwidth. 

Our tests used Monte Carlo simulations and were 
based on distributions that are mixtures of normal den- 
sities; the resulting true density functions were mul- 
timodal and irregular in shape, yet were based on para- 
metric values, and thus the true area could be calcu- 
lated. Previous tests have used simple distributions 
with few variants. Since the accuracy of an estimator 
depends on the true distribution it is estimating, it is 
necessary to simulate distributions that more closely 
resemble the real distributions that the estimator will 
be used on. Our research compared estimates of home 
range size and shape that result from the various kernel 
methods and from the harmonic mean method. We 
found that the cross-validated fixed kernel gave the best 
results in almost all cases. 

Kernel estimators 

Intuitively, the kernel method consists of placing a 
kernel (a probability density) over each observation 
point in the sample. A regular rectangular grid is su- 
perimposed on the data, and an estimate of the density 
is obtained at each grid intersection, using information 
from the entire sample. The estimated density at each 
intersection is essentially the average of the densities 
of all the kernels that overlap that point. Observations 
that are close to a point of evaluation will contribute 
more to the estimate than will ones that are far from 
it. Thus, the density estimate will be high in areas with 
many observations, and low in areas with few. 

The kernel density estimator for bivariate data is 
mathematically defined as 

where n is the number of data points, h is the bandwidth 
(see discussion in following paragraph), K is a kernel 
density such as the one described below, x is a vector 
of x,y coordinates describing the location where the 
function is being evaluated, and X, is a series of vectors 
whose coordinates describe the location of each ob- 
servation i. Several kernels are available, and different 
forms of the kernel give essentially equivalent results 
(Epanechnikov 1969). All kernels have a volume that 
integrates to 1. We used the biweight kernel K2 (Sil- 
verman 1986:76) (Fig. l ) ,  which is defined as K2(x) = 

( 3 / ~ ) ( 1- X ' X ) ~for x'x < 1, and K2(x) = 0 for x'x 2 
1, where x'x is the distance from the evaluation point 
to the observation point divided by the bandwidth h. 
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FIG. 1. Biweight kernel K,. The kernel is a probability 
density; the volume under the curve integrates to 1. 

Determining the width of the kernels is an important 
and difficult issue in implementing a kernel density 
estimator (Silverman 1986). This width is variously 
termed "bandwidth," "smoothing parameter," or 
"window width." Narrow kernels allow nearby obser- 
vations to have the greatest influence on the density 
estimate; wide kernels allow more influence of distant 
observations. Thus, narrow kernels reveal small-scale 
detail of the data structure, and wide kernels reveal the 
general shape of the distribution. 

The optimal bandwidth has been determined analyt- 
ically for standard multivariate normal distributions. 
We will refer to this as the "reference bandwidth" (h,,,) 
after Worton (1995). For any number of dimensions of 
data being analyzed, the bandwidth h,,, for each di- 
mension i (i = 1 . . . d) is defined as h, = A~,n-l ' (~+",  
where A is a constant that tailors the bandwidth to the 
particular kernel being used, d is the number of di- 
mensions of data being analyzed, and a, is an estimate 
of the standard deviation of the data in dimension i 
(Silverman 1986: 86). 

Animal utilization distributions are seldom close to 
standard bivariate normal; they frequently have mul- 
tiple modes (centers of activity) with differing heights 
and widths. Such distributions violate the assumption 
of normality and result in the choice of too large a 
bandwidth if the reference bandwidth is chosen. This 
is because the reference bandwidth treats the distri- 
bution as if it were a single unimodal normal and cre- 
ates an estimate with the amount of smoothing that 
would be appropriate for such a distribution. Nonethe- 
less, this bandwidth presents a plausible initial choice. 

Another method for choosing the bandwidth is the 
process of least squares cross validation (LSCV). This 
process examines various bandwidths, and selects the 
one that gives a minimum score M,(h) for the estimated 
error (the difference between the unknown true density 
function and the kernel density estimate): 

where K* = K(2)- 2K, and K(2)is a bivariate normal 

density with variance of 2. Full details are given by 
Silverman (1986:87). This score function is an ap-
proximation of a jacknife estimator and essentially uses 
subsets of the data to determine the bandwidth that 
gives the lowest mean integrated squared error for the 
density estimate. 

We implemented cross validation with a numerical 
routine (Press et al. 1986: Golden Section Search) that 
minimized error by testing values for h to within 0.05 
units of h. The score function is for the fixed kernel; 
we used the resulting bandwidth as a basis for the adap- 
tive kernel as well. Silverman (1986:106) presented a 
definitional score function specifically for the adaptive 
kernel, but a computationally useful form is not avail- 
able. We did not implement the adaptive kernel score 
function because of the mathematical difficulties, and 
because Silverman (1986:105) stated that it is reason- 
able to use the cross-validation result from the fixed 
kernel form of the function. 

Since the variances in the two dimensions may be 
unequal, bandwidths were selected by the following 
procedure. The data were standardized by dividing each 
coordinate by the standard deviation of the observa- 
tions for that dimension (Silverman 1986:77). Cross 
validation was performed on the standardized data, 
which allowed the program to select a single best band- 
width for the dataset. We then created two bandwidths, 
one for each dimension, by multiplying the selected 
bandwidth by the standard deviation of each dimension 
of the data. This allowed the amount of smoothing in 
each dimension to respond to the amount of variation 
in that dimension, effectively creating an asymmetri- 
cally elongated kernel when the data are distributed in 
an elongated distribution along the x or y axis. How- 
ever, the kernel does not respond to diagonal elongation 
that results from covariance between the x and y co-
ordinates. 

Cross validation was performed with a normal kernel 
because the cross-validation score function is far sim- 
pler for a normal kernel, but home range estimates were 
made with the kernel K,, which is computationally fast- 
er and has finite tails. The cross-validated bandwidth 
was multiplied by 2.78 to convert it from a value for 
a normal kernel to a value for the kernel K2 (Silverman 
1986:87). 

Once a base bandwidth is selected, it is possible to 
adjust the density estimate by using the adaptive kernel 
method (Silverman 1986). In the adaptive kernel es- 
timate, areas with low densities of observations receive 
more smoothing, and areas with high densities receive 
less smoothing. This technique uses any pilot band- 
width to make an initial density estimate. Local band- 
width factors A, are calculated for each observation, 
and are later multiplied by the base bandwidth, causing 
the kernel widths to vary at each observation (Silver- 
man 1986: 101). The local bandwidth is defined as A,  
= Cf(X,)lg)-ll", where,f(X,) is the pilot fixed kernel den- 
sity estimate, g is the geometric mean of the pilot den- 
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TABLE1. An example of the parameters for simulated com- 
plex home range that consists of a mixture of 10 normal 
distributions. 

Mean ,, Mixing 

propor-


Comp.7 X Y X Y tion p 


f Component number. 

sity estimates, and a is a sensitivity parameter with a 
suggested value of 2. 

Once the utilization distribution has been estimated, 
the density is converted into a home range estimate. 
Contours connecting areas of equal density can de-
scribe any usage area of the home range; for the present 
analysis we defined the home range as the smallest area 
containing 95% of the utilization distribution. 

Harmonic mean estimator 

The harmonic mean estimator has been presented in 
detail by Dixon and Chapman (1980). Briefly, it is the 
mean of the inverse distances from any point to all 
observations. This mean is then re-inverted to give the 
final result. Evaluating the harmonic mean over a grid 
gives an approximated surface that is "upside down"; 
it is low where observations are densest because the 
mean distance to observations is low, and the surface 
is high where observations are most dispersed because 
the mean distance to observations is high. 

We wrote our own program for making harmonic 
mean estimates. It used the original data points, i.e., 
data points were not displaced to the centers of grid 
squares (Ackerman et al. 1990). Harmonic means were 
first calculated at the observations, then at grid points. 
All grid points with harmonic mean values greater than 
the largest value calculated at a data point were con- 
sidered to be outside the home range (Ackerman et al. 
1990). We converted harmonic means into a relative 
frequency distribution by dividing the mean at each 
grid point by the sum of the means in the home range. 
The home range size was calculated as the area under 
the lowest 95% of this utilization distribution (Ack- 
erman et al. 1990). 

Performance of the estimators 

We used simulations to explore the accuracy and pre- 
cision of kernel density estimates. Animal home ranges 
were assumed to have utilization distributions that could 
be mimicked by mixtures of bivariate normal distribu- 
tions. Animal locations were simulated by choosing ran- 

dom numbers for x,y coordinates from mixtures of nor- 
mal distributions. The kernel estimators (using all com- 
binations of reference and cross-validated bandwidth se- 
lection, and fixed and adaptive bandwidths) were 
compared to the harmonic mean estimator for the ability 
to reproduce the original distribution. 

Simulated data and comparisons 

We performed two major sets of simulations. First 
we repeated the tests of Boulanger and White (1990) 
to provide a basis for generalization to other home 
range estimators that we did not test. Their data type 
2 was chosen for the tests because it appeared to be 
the most realistic approximation of animal home ranges 
of the four data types they used. It is a mixture com- 
posed of two elliptical normal distributions, which each 
contribute equal proportions of observations to the 
mixture. We used 100 replicate home ranges, each sam- 
pled with 50  and again with 150 simulated locations. 
Parameters of interest were the size and standard de- 
viation of the estimated area. 

The minimum area that contained 95% of the mixed- 
frequency distribution was used for the comparisons; 
this area was ~ 0 . 8 9 5  arbitrary units squared. Boulan- 
ger and White mistakenly claimed the area to be 1.0 
units squared because they did not calculate the effect 
of overlap between the two ellipses in the mixture (G. 
White, personal communication). 

Second, we explored the behavior of the kernel es- 
timator using mixtures of 5-15 bivariate normal dis- 
tributions. The composite produced irregular utilization 
distributions with several modes, much like actual an- 
imal home ranges, and was intended to provide a more 
realistic analysis of the performance of the kernel es- 
timators as home range estimators. We randomly se- 
lected from uniform distributions to get values of the 
parameters that defined each normal distribution in a 
mixture. Ranges of means were from 0 to 12, standard 
deviations were from 0.5 to 7.5, and x,y covariances 
(p) were from -1 to 1, mixing proportions were >O 
and constrained to sum to 1. An example of the dis- 
tribution parameters for a typical simulated complex 
home range are given in Table 1. The number of modes 
in a mixture is not necessarily equal to the number of 
means because several means can combine to form a 
mode. 

We calculated the true density at all grid points, and 
used these numbers as the basis of several comparisons. 
The bivariate density for each normal distribution at 
any given point (x,y) was calculated as 
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TABLE 2. Estimated areas (arbitrary units) of 

tour of two ellipse home ranges, 100 simulat 

= 0.895 units. n = 50 or 150 locations per 


Estimator n Mean SD estimate 

Harmonic mean 50 1.059 0.195 18.4 

150 0.999 0.106 11.7 


Kernel, cross-validated 

Fixed 50 1.122 0.215 22.9 


150 1.000 0.079 11.9 

Adaptive 50 1.308 0.252 46.3 


''l3' 0'098 27'2 

Kernel, reference bandwidth 


Fixed 50 1.193 0.147 33.4 
150 1.130 0.072 26.3 

Adaptive 50 1.395 0.190 56.0 
150 1.309 0.097 46.4 

The density for each normal was multiplied by its mix- 
ing proportion, and the densities were summed over all 
the component distributions for each evaluation point. 
The "volume" for a grid point was the density at the 
point multiplied by the area represented by the point 
(the squared distance between points). The true area 
was calculated as the minimum area containing 95% 
of the volume of the mixture of normals. 

As a check on the accuracy of our program, we cal- 
culated and output the total volume of the density es- 
timate, which should always equal exactly 1. Our grid 
size varied between replicates, but was always suffi- 
ciently fine to make the volume equal 1.00 to two dec- 
imal places. If the grid is too coarse, or does not extend 
over the entire area of the distribution, the volume will 
not equal 1 and the results will be inaccurate. Without 
knowing the volume it is difficult to determine that 
there are errors. 

The performance of an estimator will vary depending 
on the distribution it is estimating. To investigate the 
effect of different aspects of distribution shape on per- 
formance, we simulated 15 shapes and generated 150 
replicate samples of each shape. Each replicate home 
range was tested with 50  and 150 simulated locations. 

We compared the estimate of each replicate simu- 
lated home range to the true area for that simulation, 
and recorded the percentage difference. The mean and 
standard deviation of the percentage differences de- 
scribe the bias and precision of the estimators. 

The fit of the surface of the estimated density func- 
tion is an important feature of the performance of dif- 
ferent estimators. We estimated the mean integrated 
squared error (MISE) of different kernel estimates to 
determine which best fit the true distribution. We de- 
fined this estimate of error in terms of the difference 
between the estimated and true density at each grid 
point, summed over all grid points: 

~ 0 . 1 2  

.0.09 2 

8 1.14. 

n = 1.11, , 0.03 
0 

0 25 50 75 100 

NUMBER OF SAMPLES 

FIG.2. Mean (solid line) and standard deviation (dashed 
line) of adaptive kernel home range size estimates as func- 
tions of the number of replicate samples. Each sample con- 
tains 150 observations. 

MISE = -1 " [Ax) - f(x)I2 
(4)

n t = ,  f(x) 

where n is the number of grid points, x is a vector of 
the grid point coordinates, f is the estimated density at 
the grid point, and f is the true density at the grid point 
calculated by Eq. 3. A weakness of this definition is 
that the estimate will change if the grid is extended 
beyond the area of the distribution. This happens be- 
cause n will increase while the density estimates do 
not. Nevertheless, since we calculated this estimate of 
error on the same grid for the four density estimation 
methods for each replicate, it provides a useful com- 
parison between the methods. This comparison cannot 
be made for the harmonic mean since it does not pro- 
duce a density estimate. 

Field data and cross validation 

Kernel estimators were also run on actual location 
data from radio telemetry of black bears. The primary 
purpose of this exercise was to determine whether sim- 
ulation results were indicative of the behavior of cross 
validation on real data. Radio telemetry data were col- 
lected as part of an ongoing study of black bear in the 

TABLE 3. Percentage bias of estimated areas of complex 
simulated home ranges, 150 replicates of 15 home range 
shapes. n = 50 or 150 observations per replicate. 

Mean 
Estimator n bias SD 

Harmonic means 5 0 20.0 35.4 
150 20.0 23.6 

Kernel, cross-validated 
Fixed 50 5.5 30.5 

1 50 -2.0 17.9 
Adaptive 50 36.6 40.1 

150 23.2 22.0 

Kernel, reference bandwidth 
Fixed 50 27.8 28.3 

150 26.3 20.8 
Adaptive 50 67.5 42.0 

150 65.0 30.2 
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FIG. 3. Density contours of a complex simulated home range, (A) true density, (B) cross-validated fixed kernel estimate, 
(C) cross-validated adaptive kernel estimate, (D) h,,, fixed kernel estimate, (E) h,,, adaptive kernel estimate, (F) harmonic 
mean estimate. Contours represent 95, 72.5, 50, 27.5, and 5% of the volume of the home range estimate; data points mark 
observation locations. 

Pisgah Bear Sanctuary, Pisgah National Forest, North 
Carolina (Powell 1987, Horner and Powell 1990, Pow-
ell et al. 1996). 

Data sets for bears that were radio tracked from 1981 
through 1990 were submitted to the kernel density es- 
timator for cross validation. Telemetry observations at 
winter den sites were excluded from this analysis. 
There were 59.5 2 28.7 observations per home range 
estimate (mean i 1 SD). Output consisted of the es- 
timated contours of home ranges, the bandwidths (both 
h,,, and h,,), and the ratio between the cross-validated 
bandwidth choice and the reference bandwidth choice. 

The true size and shape of these ranges is not known, 
so the performance of the estimator could not be an- 
alyzed in this context. 

Simulated data: two-ellipse home range 

For these simulations the harmonic mean and the 
cross-validated fixed kernel estimates had the lowest 
bias and standard deviation (Table 2).  Both methods 
performed better with 150 observations per replicate 
than with 50; smaller sample sizes led to larger over- 
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1 A 

501 

" 1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 1 4 1 5  

HOME RANGE 

TABLE4. Mean integrated squared error (MISE) for kernel 
methods. Means are of 2250 replicates (15 home range 
shapes with 150 replicates each); n = 50 or 150 observa-
tions per replicate. 

Error 

Estimator n Mean SD 

LSCVt fixed 50 1.4 x lo5 4.3 x lo6 
LSCV adaptive 50 6.2 X loz7 2.9 X lozy 
h,,, fixed 50 2.8 X loy 9.9 X 1Ol0 
h,,, adaptive 50 1.9 X loM 6.5 X 
LSCV fixed 150 2.0 X lo3 8.8 X lo4 
LSCV adaptive 150 1.4 X lo iy  6.5 X loZ0 
h,,, fixed 150 6.3 x lo5 1.8 x lo7 
h,,, adaptive 150 2.4 x lo46 1.1  x lo4a 

t LSCV = least squares cross validation. 

HOME RANGE 

FIG. 4. Mean bias of 150 replicates for each 
of 15 true home range shapes, estimated by (A) 
cross-validated fixed kernel, (B) cross-validated 
adaptive kernel, (C) h,,, fixed kernel, ( D )  h,,, 
adaptive kernel, (E) harmonic mean. 

TABLE5. Results of least squares cross validation (LSCV) 
kernel estimation on five black bear home ranges. 

H HR 
Bcar Year n t  ratio$ sizes h,,,, h,,,,'J 

Number of radio telemetry locations in the home range. 
hcv/hrer

§ Estimated home range size (km2). 
1 1  The LSCV bandwidth (km) for the x axis that was used 

for this estimate. 
¶ T h e  LSCV bandwidth (km) for the y axis that was used 

for this estimate. 
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FIG.5 .  Telemetry locations with fixed (A, C, E, G, I) and adaptive (B, D, F, H, J)  kernel contours for five black bear 
home ranges: bear 106 (A, B); bear 70 (C, D); bear 163 (E, F); bear 72 (G, H); bear 61 (I, J). Contours and symbols are as 
in Fig. 3. Axis values are truncated UTM coordinates (km). 

estimates of the home range size. Although Boulanger 
and White (1990) used 1000 replicates, we judged 100 
replicates to be adequate since means and standard de- 
viations stabilized with far fewer than this number of 
replicates (Fig. 2). 

Simulated data: complex mixtures 

The results of the estimation procedures are illus- 
trated graphically with one simulated home range (Fig. 
3). The parameters of the 10 normal distributions that 
comprise this home range were presented earlier (Table 
1). The numerical results for all replicates follow (Table 
3). The cross-validated fixed (Fig. 3B) and adaptive 

kernel (Fig. 3C) methods closely estimated the true 
distribution (Fig. 3A) from which home ranges were 
simulated, and produced smooth density estimates that 
show no influence of the evaluation grid. The harmonic 
mean (Fig. 3F) shows very irregular contours and local 
minima that result from observations' falling particu- 
larly close to evaluation points. 

There were large differences in the accuracy of size 
estimates between the various methods of estimation 
(Table 3). Again, the most accurate kernel estimates 
resulted from using cross validation and a fixed band- 
width. These estimates also had the highest precision. 
When the kernel bandwidth was chosen under the as- 
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FIG.5. 

sumption of standard normal data (i.e., the reference 
choice) the density estimate was oversmoothed and re- 
sulted in a large positive bias in home range size. The 
harmonic mean had a larger positive bias for these 
complex home range simulations than did the cross- 
validated fixed kernel estimates; its standard deviation 
was approximately the same as those of the cross val- 
idated kernel estimators. The accuracy of each esti- 
mator varied from one home range shape to another 
(Fig. 4). 

The differences in mean integrated squared error be- 
tween the various kernel methods were quite large (Ta- 
ble 4). The cross-validated fixed kernel had the lowest 
MISE, the adaptive estimates had extraordinarily high 
MISE. 

Real data 

Results from five black bears illustrate a range of 
cross-validated kernel estimates (Table 5, Fig. 5). The 
contours show the multimodal and often disjunct nature 
of the home ranges that is typical for these bears, even 
when sample sizes are large. The adaptive estimates 
show the contracted inner contours and expanded outer 
contours that result from this method. Since the true 
home range cannot be known for free-ranging animals, 
there is no way to determine the accuracy of these 
estimates. 

Continued. 

The kernel method with cross validation produced 
the most accurate estimates of simulated home ranges. 
When performing density estimates on data that are 
multimodal and non-normal, the cross-validated fixed 
kernel appears to be the best method to use. This cor- 
roborates Worton's (1995) conclusion that the fixed 
kernel gives the least biased results, and that proper 
selection of the smoothing parameter is very important. 
Although we agree with Worton's (1995) conclusion 
that the appropriate level of smoothing is the most im- 
portant factor for obtaining accurate home range size 
estimates, we make a contrasting conclusion that the 
choice of whether to use fixed or adaptive kernel den- 
sity estimation is also important. 

We found that the fixed kernel performed better than 
the harmonic mean estimator that Boulanger and White 
(1990) found to be the best of the well-known home 
range estimators. Although they reported a lower bias 
than we do for the harmonic mean estimator with the 
two ellipse simulations, their bias estimate was incor- 
rect due to their miscalculation of the true area of the 
simulated distribution. 

Naef-Daenzer (1993) concluded that kernel estima- 
tors overestimate home ranges. Although he did not 
explicitly describe the method for choosing the band- 
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width, he apparently used the h,,, bandwidth. Thus, our 
results for the h,,, bandwidth would substantially agree 
with his conclusions. 

It is interesting that the fixed kernel performed better 
than the adaptive kernel in all of the tests. Adaptive 
kernels have been expected to produce better estimates 
than fixed kernels (Silverman 1986: 110); however, 
their properties have not been thoroughly explored by 
statisticians, nor have they been widely applied to real 
data. This finding is particularly significant for some 
readily available computer applications of kernel es- 
timation, which primarily provide the adaptive kernel 
estimate as output. It is possible that implementing the 
cross validation equation designed for the adaptive ker- 
nel (Silverman 1986:106) would improve the adaptive 
estimates, but this is hard to justify in view of the 
excellent results of the fixed kernel and the mathe- 
matical difficulties with implementing the adaptive 
cross validation. 

Choosing the smoothing parameter by fine-grained 
least squares cross validation was essential for obtain- 
ing accurate estimates. Many of the currently available 
kernel home range programs do not provide such cross 
validation. In addition, it is important to collect loca- 
tion data with high precision because LSCV performs 
quite badly with data that are rounded (i.e., collected 
on a coarse grid; Silverman 1986, Chiu 1991). 

The differences in mean integrated squared error for 
the different kernel methods were very large, and were 
strikingly different from the expectation that the adap- 
tive kernel would be the most accurate. Worton (1989b) 
found lower MISE for adaptive kernels than for fixed 
kernels tested on bivariate normal data. He measured 
MISE at the observations themselves, whereas we mea- 
sured it at the grid points. Apparently, adaptive kernels 
give the best density estimate at the actual observation 
locations, whereas fixed kernels give the best overall 
surface estimate. 

The implementation of any home range estimator 
will have an important effect on the results. The def- 
inition of the harmonic mean home range we used (in- 
clude all grid points with harmonic mean values that 
are lower than the highest harmonic mean value at an 
observation, Ackerman et al. 1990) will make the area 
estimate highly sensitive to outlying observations. An 
outlying observation will have a high harmonic mean 
value, and thus will force the inclusion of many grid 
points. While it is possible to modify the definition and 
the methodology of the harmonic mean estimator to 
improve its accuracy, the necessity of doing so em- 
phasizes the artificial and inappropriate nature of the 
harmonic mean as a home range estimator. In contrast, 
kernel estimators are well defined and tractable. 

We attempted to create simulations that would rep- 
resent reasonable animal home ranges. Nevertheless, 
the simulated distributions we tested are not actual 
home ranges, and the results are not strictly indicative 

of how the estimators will perform on actual distri- 
butions. 

The kernel estimates of the black bear home ranges 
reveal a range of shapes, sizes, and degrees of smooth- 
ing. The amount of smoothing varies with the structural 
irregularity of the data. We feel that the estimates are 
reasonable representations of these animals' home 
ranges. 

Our simulations were performed with 50  and 150 
observations per replicate; animal home range studies 
frequently obtain far fewer than 150 observations per 
animal. Kernel-based estimates from small samples 
will be poor at identifying fine structure and will over- 
estimate home range size. This contrasts with other 
home range estimation techniques (e.g., minimum con- 
vex polygon) that show a positive correlation between 
sample size and home range size (Gautestad and Mys- 
terud 1993). The more a home range deviates from a 
smooth unimodal distribution, the larger sample size it 
will require for accurate estimates. 

The fact that the sample size and the data structure 
affect the degree of smoothing can result in unexpected 
patterns for LSCV kernel-based estimates of seasonal 
vs. yearly home ranges. Adding tightly spaced obser- 
vations (e.g., breeding season observations for a nest- 
ing animal) to a group of more dispersed (e.g., non- 
breeding season) observations can lead to a smaller 
estimate for the annual home range than for the non- 
breeding season home range. This is because the added 
data from the breeding season causes LSCV to reduce 
the amount of smoothing compared to that for the non- 
breeding data alone. This effect can be prevented in 
our program by specifying the same value for the an- 
nual smoothing parameter as for the nonbreeding sea- 
son, if desired. 

We are most grateful to B. Silverman and D. Nychka for 
explanations of the kernel estimation procedure. C. Brownie 
provided suggestions for improving the simulations, J. Bald- 
win provided explanations of the harmonic mean estimator 
and comments on a draft of this manuscript. We are especially 
grateful to B. Worton for a particularly thorough review. Two 
anonymous reviewers provided valuable comments on a pre- 
vious draft. 
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