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Theory and simulation of the swelling of polymer gels
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A combined discontinuous molecular dynamics and Monte Carlo simulation technique is used to
study the swelling of athermal, continuous-space, near-perfect, trifunctional polymer networks
containing hard chains of lengths 20 and 35 immersed in an athermal hard-sphere solvent. The
swelling simulations are conducted under conditions of constant pressure and chemical potential. A
simple, analytical theory for gel swelling is presented in which the gel free energy is calculated as
the sum of an elastic, affine-type term, and a liquidlike mixing term that is based on the
generalized-Flory dimer equation of state. The theory shows good agreement with our simulation
results for the gel properties at swelling equilibrium. 2000 American Institute of Physics.
[S0021-960600)50425-5

I. INTRODUCTION solvent mixing free energy term is obtained from the Flory—
) ) Huggins theory,and the elastic free energy term is obtained
When placed in a low molecular weight solvent, all ¢o0"the affine model for rubber elasticity’. Most subse-
crosslinked polymers will absorb the solvent and swell. Th&,,ent theoretical work on gel swelling has been based on the
swelling behavior of crosslinked polymers has led to the'rFIory—Rehner developmeiiite., on Eq.(1)], although dif-
widespread application in drug delivery, molecular separagoent forms of the mixing and elastic contributions have
tion systems, biomedical devices including implants and[reen used-10
contact lenses, and in emerging technologies such as gel- \» b of the theoretical work on the swelling of
based valves and actuators, sensors, artificial muscles a@?osslinked systems applies to perfect networks, i.e., net-
dlsp_ll%y de_\/lceéf. thi s 10 figate th lecul works with constant chain length between junctions and few
€ aim of this paper 1S 1o investigate the moleculargy, oy gy irregularitiegdangling chains, loops, or junctions

mechanisms unde_rlymg_ gel swelh_n_g using carefully con- varying functionality. The validation of network theories
trolled computer simulations. Specifically, we use a combi-

i f molecular d . d Monte Carlo simulat is best done using model near-perfect networks with well-
hation of molecular dynamics an onte Larlo SImuialion ., » 2 cterized molecular structure. Experimental efforts in

getﬁre]rr]rlr?;esrngon(;rr]::rsiggs?ﬁ/ ;:ti vvvzlgﬁlfo ?jfefil\t/ge;?aalngfltsic; his direction are, however, hampered by the difficulty asso-
moIecuIa,rI based theory for .eI swelling by extendin yourciated with obtaining precise measurements of the network
i y Y 9 gy ¢ g structure. Over the past decade, computer simulation has
previous work on the pressure-volume properties of solvent- . T S
: . ._proved to be a uniquely useful tool in investigating the prop-
free polymer networks to the case in which solvent is” . . . )
erties of polymer networks since it allows the construction

present. ) nd investigation of near-perfect model networks with well-
One of the first molecularly based approaches to gef" .
characterized structure.

swelling was that of Flory and Rehnéwho suggested that . . : i
. Simulation studies of polymer networks have largely fo
the change in Helmholtz free energy of a polymer gel upon . o o
. used on network dynamics, crosslinking kinetics and on
swelling could be expressed as the sum of a ponmer—soIver&VT propertied1-18219-21gimulations of gel swelling are

mixing free energy term, and an elastic free energy term, rare, partly because of the relatively complex simulation
AAgyer= AAmixing+ AAeiastios (1)  techniques required, and partly because gels take very long
times to reach swelling equilibrium. As a result, swelling
where AAning is the free energy change on mixing of the simulations require the use of efficient simulation techniques
equivalent uncrosslinked polymer and solvent, @&W,sic  as well as large amounts of computing time.
is the elastic free energy change due to the configurational To our knowledge, the only simulations of gel swelling
rearranging and stretching of the crosslinked network chaingre those of Escobedo and de PaBl& who conducted
during the swelling process. The elastic free energy term i#lonte Carlo simulations of the swelling of perfect, tet-
considered to be completely independent of the presence amgfunctional, athermal network®f chain lengths 10 to 32
nature of the solvent except insofar as the absorption of sohaving a diamondlike junction connectivity immersed in
vent by the gel causes the network to expand and its chainghermal monomeric and short-chain solvents. The thermo-
to stretch. In the Flory—Rehner approach, the polymerdynamic properties of the solvent phase were obtained
using a suitable equation of statéor instance the
aCurrently at Lucent Technologies, Norcross, GA. Carnahan-Starlifg equation of state for monomeric sol-
D Author to whom correspondence should be addressed. venty and the thermodynamic properties of the gel phase
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were obtained by conducting Monte Carlo simulations atplace the solvent and gel segments in order to relax the sys-
constant external chemical potential and pressure, i.e., them, and theuPT Monte Carlo algorithm is used to conduct
uPT ensemble. Owing to the limitations of conventionalvolume change and particle insertion/deletion moves which
Monte Carlo methods for simulating crosslinked systemsare necessary for the gel to achieve mechanical and chemical
Escobedo and de Pablo invented a set of complex Montequilibrium with the bulk solvent. The thermodynamic prop-
Carlo movesthe ECCB, slab, and cluster movder relax-  erties of the bulk solvent are assumed to remain constant
ing the network and for conducting the volume changethroughout the swelling process, and are described by the
moves necessary in the isobaric ensemble. They found th&arnahan—Starlirfg equation of state for hard spheres. Our
the mole fraction of the solvent in the gel increased withcombined simulation technique is fairly efficient and allowed
pressure and with network chain length, and that the gelis to simulate gel systems containing more than 12 000 seg-
packing fraction increased with pressure and decreased witlments. Another advantage of using this technique is that it
network chain length. By conducting a set of NPT ensemblean be used to simulate the swelling of networks of different
simulations of the gels as they approached equilibrium at éunctionalities and molecular weights, without the introduc-
particular pressure, Escobedo and de Pablo found that th&®n of complex, system-specific moves.

packing fraction of the gel always lies between that of the  Highlights of our simulation results are as follows. We
dry network and the bulk solvent at the same pressure. Thefind that the solvent site fractiofefined as the ratio of the
also presented a mean-field theory for gel swelling, in whicmumber of solvent beads to the total number of segments in
the free energy of the gel was considered to be the sum of thiae ge) and the gel packing fraction increase with pressure
free energy of a reference polymer/solvent mixture, and thand chemical potential. The solvent site fraction also in-
elastic free energy of the solvent-free network. The free enereases with chain length while the gel packing fraction de-
ergy of the reference polymer/solvent mixture was obtainedreases with chain length. During the constant-pressure
from an equation of state for athermal molecules introducedwelling of the gel to its equilibrium state, the gel packing
in a previous publication by the authdfsand the elastic free fraction is always found to lie between that of the dry net-
energy of the network was evaluated directly from theirwork and of the bulk solvent. These observations are all in
simulation results. The Escobedo and de Pablo theory fitqualitative agreement with the results from the simulations
their simulation results fairly well; however its semicompu- of Escobedo and de Pablo’s. Quantitatively, our results differ
tational nature precludes its general use for predicting swellsomewhat from those of Escobedo and de Pablo; for in-
ing equilibria. Their work in simulating gel swelling is sig- stance, the solvent site fraction in our swelled gels shows a
nificant in that it presents a way to overcome the limitationsweaker dependence on chain length than in their systems.
of conventional Monte Carlo techniques in investigatingWe also examine the structural characteristics of the network
these systems. Escobedo and de Pablo’s work represents ttiegains as the gel swells, and find that the mean-squared end-
first successful simulation-based investigation of gel swellto-end vectors of the chains exhibit a weaker-than-affine
ing. scaling behavior with the macroscopic swelling.

Our study of gels is motivated by the paucity of simula- We extend our previously published theory of netwdrks
tion data on the swelling and structural properties of networko the case of gel swelling. As before, the network is mod-
systems, and by the need for an improved analytical theorgled as a set of interpenetrating dendrimers, where each den-
to predict the phase equilibrium properties of polymer gelsdrimer branch is a network chain. The free energy of the gel
The purpose of this paper is to describe our novel hybrids taken to be the sum of a liquidlike contribution which
Monte Carlo molecular dynamics technique for simulatingarises from the polymer-solvent mixing interaction and an
the swelling of model gels, to present data for the solventlastic contribution which arises from the change in configu-
uptake and change in volume of model trifunctional gelsrational free energy of the chains during the volume change
upon swelling, and to propose a simple theoretical model fothat accompanies swelling. The liquidlike contribution to the
gel swelling based on our previously derived equation offree energy of the dendrimer-solvent system is obtained from
state for solvent-free networks. the Generalized Flory—Dimer equation of state for

We use discontinuous molecular dynamics techniques tmixtures?® The elastic free energy contribution to the free
construct near-perfect, off-lattice, tri-functional networks of energy of the system is obtained the same way as in our
chain lengths 20 and 35. The swelling of these networks irprevious paper. In this method we invoke an analogy be-
athermal solvents is simulated by allowing the network totween a classical spring and an ideal, Gaussian network
absorb hard-sphere solvent molecules and to expand undehain, obtain an equivalent “spring constant” and hence free
conditions of constant external chemical potential and presenergy for dendrimers composed of these chains, and calcu-
sure, where the chosen external chemical potential and prekte the network elastic free energfor the deformed and
sure correspond to the chemical potential and pressure of thendeformed networkas the sum of the free energies of the
pure (bulk) solvent. This procedure is akin to placing the gelconstituent dendrimers.
in a large excess of solvent and letting it swell, and is similar ~ We use our theory to predict the gel packing fraction and
to the procedure used by Escobedo and de Bafim their  solvent site fraction at swelling equilibrium over a range of
gel swelling simulations. In this work, the swelling of the gel external solvent pressures. The theory shows very good
is simulated using a combination of the discontinuous mo-agreement with our simulation data except at high pressures.
lecular dynamics(DMD) method and theuPT ensemble It is also remarkably successful in predicting the amount of
Monte Carlo algorithm. The DMD method is used to dis- solvent taken up by the gel and the change in the gel volume
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as the system moves along the constant-pressure path TBLE I. The network structural characteristics in terms of the chain
swelling equilibria length,n, number of chaind\,, the total number of segments in the system,

The organization of our paper is as follows. Section “Nt, the elastic fraction, %, the number of trifunctional junction$y;, the
9 pap ’ number of unsaturate@ifunctiona) junctions,N,, the number of dangling

describes the molecular model and the simglation techniquésdsN,,, the number of l00pSNio0p, and the number of free chair¥yee.
used for network construction and relaxation, and for gel

swelling. In Sec. lll, our theoretical model is described, and ™ Ne Ne  %e N3 Nz Neng  Niggp  Niee
in Sec. IV, our simulation and theoretical results are dis- 2g 90 1800 099 60 0 0 1 0
cussed. A brief summary and some further discussion aress 90 3150 0.96 59 1 2 1 0

given in Sec. V.

Il. MOLECULAR MODEL AND SIMULATION . o i i )
TECHNIQUE along with descriptions of various methods for improving the

) ) ) ) code efficiency, including neighbor lists, linked lists, binary
In this paper, we combine the discontinuous moleculakrees, and delayed position updates.

dynamics(DMD) technique that we have used earlier to treat |5 order to construct solvent-free tri- or tetrafunctional
polymer meltd®?” and networks* with the uPT ensemble  networks we endlink melts of linear Bellemans chains. Since
Monte Carlo algorithm. We begin this section by describingit js easier to achieve near-complete extents of reaction at
the molecular model for the network and solvent, and thenower densities than at higher densities, the endlinking is
review the DMD technique as it is applied to polymer melts.conducted at an initial system packing fraction 2£0.3.
Next we outline our method for the construction, relaxation,The packing fraction is then increasedsje0.45 by growing

and evaluation of the pressure-volume properties of solvenghe segment diameter. The system packing fraction is defined
free networks. We conclude this section by describing thgg pe

technique that we have used to simulate gel swelling. 3

The basic unit of the polymer network is a polymer _r Ncna 3)
chain which we represent as a freely jointed chain of tangent 6 V '
hard spheres. The potential energy of interaction bet‘Neeﬂ/hereN is the number of network chains, is the chain
any two beadg¢segmentson the same or neighboring chains g4, andV is the volume of the simulation cell. This

in the network is given by crosslinking method allows us to construct nearly perfect dry

U(r)=0, r>o, networks, i.e., solvent-free systems containing a very small
percentage of free chains, dangling ends, loops and unsatur-
=, r<g, 2 ated junctiongjunctions to which only two chain ends are

where o is the bead diameter. The solvent molecules areattachedl Details of the crosslinking procedure are described
represented as hard spheres having the same diameter as ifhé@ previous publication? _ _
network beads. The potential energy of interaction between In this paper, we focus on two such trifunctional net-

any two solvent beads, or between a solvent bead and a be#®rks, one containing chains of length 20 and the other con-
on a network chain is given by E). taining chains of length 35. Each network contains 90 chains.

The chain segment diameter equals 1, the Bellemans bond
variation factor,é equals 0.05, and the box length varies with
the packing fraction. The structural characteristics of the net-
works, displayed in Table |, are described in terms of the

It is difficult to simulate a system of tangent hard sphereelastically active fraction, %, the number of trifunc-
chains using standard molecular dynamics techniques bétonal junctions,N;, the number of bifunctionalunsatur-
cause the tangency requirement cannot be implemented dited junctions,N,, the number of dangling ends and loops,
rectly. To circumvent this problem, Rapap8rtand Ng4 and Nioop @and the number of free chainblye.. The
Belleman$® suggested an approach in which the bondelastically active fraction is an important measure of the
length, I, between successive segments of the tangent hardperfectness” of our networks, and is defined to be the frac-
sphere chain is not kept constant, but is instead allowed tton of the chains that are connected at both ends to junctions
vary freely over the rangeg(1—8)<I<o(1+68) where with at least three independent paths to the netwdiklt is
6<1. The chain then effectively becomes a collection of segealculated in the table by subtracting the number of unsatur-
ments connected by sliding linkghe Bellemans chajnAs  ated junctions, dangling chains, and loops from the total
6—0, the chain approximates the tangent-hard-sphere chamumber of network chains, and dividing by the total number
model. The relaxation of the constant bond length requireef network chains. Since the elastically active fraction is
ment allows the chain segment trajectories to be partiallclose to 1 for both of the networks considered, and the num-
decoupled, resulting in linear trajectories between collisionsber of dangling chains, loops and unsaturated junctions is
The system dynamics can then be treated using the discotew, we consider these networks to be near-perfect systems.
tinuous molecular dynamic€OMD) techniques developed Once the networks attained their final packing fraction of
by Alder and Wainwrigh®=3? for hard sphere systems. A 0.45, they were relaxed for 500 million collisions. Their
comprehensive description of the discontinuous moleculacompressibility factors were then evaluated from the Clau-
dynamics technique is given in the paper by Sreittal,?®?’  sius virial theorem in the following form:

A. DMD technique, network construction and P-V
properties
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TABLE II. Simulation results(Ref. 2 for the reduced pressur* of dry  vent is large compared to the amount of solvent taken up by

trifunctional networks of chain length 20 and 35. the gel during swelling, the thermodynamic properties of the
7 P*(n=20) P*(n=35) bulk solvent(pressure, chgmical potential, and temperaturg

can be assumed to remain constant throughout the swelling

8'32 2(1)3? g'éjg process. Therefore the bulk solvent phase need not be simu-

035 1736 1755 lated since its thermodynamic properties can be obtained by

0.30 0.959 0.973 using an accurate equation of state. In this paper we use the

0.25 0.495 0.507 Carnahan-Starlirfg equation of state for hard sphere sol-

0.15 0.087 0.095 vents. The simulation of gel swelling in the bulk solvent then

0.05 —0.0065 —0.000 98 . .

0.03 00107 00045 reduces to the simulation of the gel phase alone under con-

001 _0.0224 0.0074 ditions of constant externébulk solven} chemical potential,

0.005 -0.012 pressure, and temperature, i.e., in ifleT ensemble. At the
start of the simulation the gel phase may contain some or no
solvent. To achieve thermal, mechanical and chemical equi-
librium between the gel and bulk solvent phases in g

et PV M2 o - AVj; ensemble, the gel undergoes a number of particle displace-

2= e = Nen = —g @ cle inserti -
NPk T 3kgTte ment, volume-change, and solvent particle insertion/deletion

moves. After a sufficient number of such moves, the gel
approaches swelling equilibrium, i.e., the pressure, and the

be one large moleculet, is the elapsed simulation time over solvent chemical potential of the gel converge to stable val-
which the sum is calcufatedi is the Boltzmann constari. ~ U€S that are equal to the bulk solvent pressure and chemical
is the temperaturen is the mgss of a network chain segm’ent potential(the thermal equilibrium condition is trivially satis-

ri; is the vector between segment centers at a collision, anfdied in an athermal system

Av;; is the velocity change for the colliding pair. In this In this paper, we have combined th_e DMD technique
paper, the simulation results are reported in terms of thvith the uPT ensem,b'e Monte Carl.o glgorlthm in such a way
reduced pressur®* =P o3/kgT=Z"*N"6 7/(7N_n). that the DMD technique is used W!thln t_he framework of the
The evaluation of the pressure-volume properties ofPT algorithm to execute_the particle displacement and_ vol-
solvent-free networks is a useful intermediate step in thé!Me change moves, while purely Monte Carlo algorithm
study of the swelling properties of solvent-containing net.Steps are used for the particle |nsert|0n/d_e_let!on moves. qu
works (gels. The P—V properties of solvent-free trifunc- me_thod departs from stan_dard phase equilibria techniques in
tional networks of chain lengths)=20, 35, 50, and 100, which Monte Carlo algor!thm steps are usgd for.all thrge
were reported by us in a previous publicatfofihe network ~ YP€s of moves. Our motivation for developing this hybrid
pressure was obtained over a range of packing fractioms method is the followmg: since the structur(_a of the network is
volumes by starting with a high initial density network and hlgh_ly cor_wstralned and complex, conventional Monte Carlo
expanding it to lower densities using a volume change algoParticle displacement and volume change moves cannot be
rithm that takes advantage of the variable bond-length propdSed because they would cause bond breakage and destruc-
erty of the Bellemans chain. Details of this algorithm aretion of the network topology. Thus there is a need for devel-
described in Ref. 2. Employing this volume-change method2Ping alternative techniques/moves for network systems.
the networks were expanded from their initial packing frac-One solution to this problem is to develop a set of complex,
tion of 0.45 to successively lower packing fractions of SyStem-specific Monte Carlo particle displacement and
0.35,...,0.003, and the network pressures were calculated %¢lume-change moves that would preserve the network to-
each packing fraction. These simulation results for the netPology, as was done by Escobedo and de P& Our
work pressure are reproduced in Table Il and will be used irfolution has been to simply use the DMD mettfadhich we
a comparison later in this papécf. Sec. I\) with the have employed earlier to investigate the dynamics and
pressure-volume behavior of gels. pressure—volume properties of netwdfi& to conduct the
displacement and volume-change moves within the frame-
work of the uPT Monte Carlo algorithm. The idea of com-
bining the DMD method with MC techniques is not novel—
In this section we describe our combined DMIPT en-  for instance a combined DMD-NPT ensemble method was
semble Monte Carlo algorithm for simulating the swelling of used by Wilson and Allef to investigate liquid crystal for-
athermal networks in hard-sphere solvents. mation. This is, however, the first time that such an approach
The application of modern phase equilibria computerhas been used to study gel swelling. The advantage of our
simulation techniquege.g., the Gibbs ensemble methdd method is that is simple and yet general, so that it can be
the case of gel swelling typically involves the use of twoused to investigate phase equilibria in a variety of con-
separate simulation cells, one for the bulk solvent phase angtrained systems.
one for the gel phase. This can be reduced to the use of a The details of our simulation technique are as follows. In
single simulation cell for the gel phase alone by consideringrder to use the DMD technique within the constauRT
the situation in which the swelling of the gel takes place in aensemble MC algorithm, we must assign each particle a ve-
large excess of bulk solvent. Since the amount of bulk sollocity and calculate particle collision times, just as in a

whereP is the network pressuré"®is the number of net-
work moleculegN"™=1 since the network is considered to

B. Gel swelling
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purely DMD simulation. At first glance, the simplest way to i.e., the particle displacement, volume change and particle
combine the DMD angPT techniques would perhaps be to insertion/deletion moves are given below. During the particle
replace the particle displacement moves in a regular NVTisplacement moves, the DMD procedure is utilized to dis-
ensemble simulation with DMD eventgparticle pair colli- place the network and solvent beads, keeping the composi-
sions or bond stretchesThe drawback to this simple proce- tion and volume of the simulation cell constant. During the
dure is that the time interval between events in a DMD simuvolume change move, a trial volume change is attempted,
lation is not equal(since the simulation proceeds on an keeping the composition of the cell unchanged. A random
event-by-event basiswhich in the combinedtPT-DMD al-  number,e, is chosen from the range—(emax,€may), and the
gorithm has the effect of introducing a bias which disturbsnew box volumeV e, is taken to be
the approach of the system to equilibrium. In our simula- _ 3
; . ‘e hiac i ; View= Void(1+€)°, )
tions, we have avoided this bias in the following manner.
The total simulation time is divided into equal time steps,whereV is the old box volume. The positions of the con-
which are then grouped into cycles Mf;,time steps each. stituent molecules must be scaled in accordance with the
The system is allowed to begin the DMD simulatige., the ~ change in volume of the cell. In conventional constant—
particle displacement stepswWhen the simulation time is pressure simulations of uncrosslinked chainlike systems, the
equal to the duration of a time stépr a multiple of a time  positions of the particles in the box during a volume change
step, a Monte Carlo move is attempted. The Monte Carlomove can be changed by scaling the center of mass locations
move may be either a particle displaceméattempted as a ©Of each chain molecule byl+e), and moving the whole
DMD evend, a volume change or a particle insertion/ chain without altering the intramolecular positions of the
deletion. The move is accepted or rejected in accordancéegments. For crosslinked systems, this method cannot be
with the criteria described in the following paragraphs. Afterused since it would cause the network connectivity to be
the conclusion of the move, the time ligend particle posi- broken. To get around this problem, we take advantage of
tions and velocities if necessargre recalculated and the the flexibility of the Bellemans bond length and simply scale
MD simulation is resumed, until the simulation time is equalthe position of each segment by the factbr-e¢). The vol-
to that of the next time step, when the next MC move isume change move is rejected if it results in bond breaking or
attempted. Thus in this procedure, a small number of addioverlaps between the segments. The move is accepted with a
tional DMD particle displacement events are conducted beProbability equal to mifl,exp(-AH/kgT)], where AH is
tween successive MC moves. The actual number of DMOZiven by
events taking place between MC moves depends on the size View
of the time step, i.e., if the time step is chosen to be suffi- AH=AU+PAV— NthTIog( v ) (6)
ciently small, very few or no DMD events will occur be- old
tween MC moves. However, the time step must be chosen tovhereAU is the change in internal energy due to the volume
be large enough that the system approaches equilibrium in éhange(equal to zero or infinity for a hard-sphere sysjem
finite number of moves. In our simulations, between 0 and AV=V o~ V4 iS the change in volume of the system, and
DMD events occurred between MC moves. The specific typdN; is the total number of segments in the system. Thus, for a
of MC move that is attemptedi.e., particle displacement, volume change move to be acceptdd) must be zero, i.e.,
volume change or particle insertion/deletion movissse-  after an attempted volume change, we must search through
lected randomly, but in accordance with a preset probabilinall the particles in the system to ensure that there are no
that ensures that each cycleNf,.,Monte Carlo moves con- overlaps or broken bonds. The quantiya, is chosen so as
sists of Ny, particle displacement movesy,, volume to produce an acceptance rafiof 35-50 %. Once the vol-
change moves, an;, particle insertion/deletion moves. ~ ume change move is accepted, all the collision times in the
Starting with a dry network or with a gel containing System are recalculated and the neighbor lists are reset.
some solvent, several million Monte Carlo moves are carried ~ During the particle insertion/deletion move, attempts are
out during the slow approach of the system to equilibrium.made to insert or delete a solvent molecule from the system
The simulation is continued until the pressure of the gel andWwith equal probability, keeping the volume of the simula-
the solvent chemical potential converge to stable values thdlon cell constant. During a particle insertion move, a trial
are approximately equal to the corresponding bulk So|venpartiC|e is created at a random pOSitiOﬂ in the simulation cell,
values. After the pressure and solvent chemical potential c&nd the move is acceptédwith a probability equal to
the gel have remained stable about the corresponding bufRin[1,exp(-AC/kgT)] where
solvent values for several million Monte Carlo moves, the
system is considered to have reached equilibrium. The equi- AC=AU-—u—log —)
= : i . Ng+1
librium state of the gel is described by its pressure, solvent s
chemical potential, gel packing fractigwhich indicates the whereu is the chemical potential of the bulk solvent aNgd
magnitude of the volume change due to swelljrand sol- is the number of solvent molecules. Just as in the volume
vent site fraction, which is defined as the ratio of solventchange move, the acceptance of a particle insertion move
segments to the total number of segmenistwork plus sol-  involves searching through all of the particles in the system
veny in the gel, and is a measure of the amount of solvento ensure that there are no overlaps. Once the move is ac-
absorbed by the gel. cepted, the new particle is assigned a random velocity from a
The details of the three types of simulation moves usedGaussian distribution, and all the particle velocities are res-

)
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caled to ensure zero total momentum. During a particle departicles, required between 150 and 450 CPU hours on a
letion move, a randomly chosen particle is destroyed; thigluster of DEC Alphas with CPU speeds ranging from 125 to
move is accepted with a probability equal to piin 500 MHz.

exp(—AD/kgT)] where The question arises as to whether our combined
y DMD-MC technique satisfies the detailed balance condition,
al ©

The particle velocities are then rescaled as before.

The gel pressure and solvent chemical potential are
evaluated at regular intervals during the simulation in ordefwhere p; and p; represent the probabilities of the system
to monitor the approach of the system towards equilibriumbeing in stateé andj, respectively, ang;; andp;; represent
The gel pressure is obtained by evaluating the compressibithe transition probabilities from stateto j, and statg to i,
ity factor from the Clausius virial theorem in the following respectively. The purely Monte Carlo based techniques for
form: phase equilibria are known to satisfy the above condition,

provided that the three types of movgsarticle displace-
, (9) ments, volume changes and particle insertion/delgtane

Nm  3NmkgTte carried out in a random ordéalthough the total numbers of

whereN,=N.n+ N, is the total number of beadsetwork ~ €ach type of move can be pre)s@tm our method, although
segments and solventN, is the number of solvent beads, the three types c_)f moves are carried out in a re}ndom order,
andN,,= 1+ N is the total number of molecules in the sys- the necessity of incorporating the DMD method into the MC
tem. The reduced pressure of the systéth, is obtained algorithm W|thogt introducing any ble}ses assouateq with the
from the relation,P* =Po3/kgT=267N, /7N,. The ex- unequal DMD time step has necessitated the carrying out of

cess chemical potential of the solvent in the gel is calculate@ féw DMD particle displacement events between MC
using the Widom test-particle insertion metfbin which ~ Moves. These DMD events may cause the detailed balance
we repeatedly attempt to insert a test solvent particle at rarzondition[Eq. (12)] not to be fulfilled for the following rea-
dom positions in the gel. For a hard-sphere system, the ex0N: consider that the system is in statebefore an MC
cess chemical potential of the solvent in the gel is simplyMOVe(say, & volume changes attempted. The MC move is
equal t&7 kT In(pl"), wherep!™ is the ratio of the number attemp_ted, is successful in aqcordaqce with the condition
of successful test solvent particle insertions to the total numStated in Eq(6) and the system is now in staje|n order for

ber of attempted test solvent particle insertions. The bulkne detailed balance conditidiq. (12)] to be satisfied, the
solvent pressure and chemical potential are obtained frofftio Of the transition probabilitiesp;;(j—i)/pi;(i—j),

the Carnahan-Starling equation of state for hard-spHéres,Must be equal to the ratig; /p;, i.e., Eq.(6) must be the
and are given by sole criterion determining whether the system can go back to

state,i from statej. If a few DMD particle displacements
must occur before a second MC move is attempted, then the

AD=AU+ u+log

PiPij = P;Pji » (12

&_ M ol - AV

Po® 67 (1+5+7°— 7%

keT = (1-7)3 (10 transition probability does not depend solely on Eg). but
also on whether the system has moved up to the next time
and step after executing an MC move. Hence the detailed balance
67\ 87—972+37° condition is not strictly fulfilled. In our systems, the detailed
= In(7) + =g (11)  balance condition will be fulfilled if the time step for the MC

move is chosen to be sufficiently small so that no DMD
where the first term on the right is the ideal contribution toevents occur between attempted MC moves. In that case, the
the chemical potential, and the second term is the excedsansition probabilities depend only on the criteria for vol-
contribution to the chemical potentiedver the ideal ume changes and particle insertions/deletions, and the de-
The approach of the system towards equilibrium is ex-ailed balance condition is fulfilled. This is the case for our
tremely slow, particularly at high densities and for large sys-smaller systems. For our larger systems however, the choice
tems. This is partly due to the intrinsically slow relaxation of of a small MC time step causes a very large increase in the
crosslinked systems, and partly due to the technique used féotal simulation time, and so we have allowed a few DMD
the volume changes. The latter constitutes a bottleneck fagvents(0 to 4) to take place between the MC moves. As a
large systems since the positions and collision times of altesult, the microscopic reversibility condition is not satisfied
the particles have to be recalculated following a successfuit every step of the process. We must keep in mind that the
volume change move, and the neighbor lists and time listéulfillment of the detailed balance condition is a very strong
have to be reset. As a result, the above volume changeonditior?®>® for the system to reach equilibrium. Previous
method becomes unsuitable for systems larger than abostudies using hybrid MC—M#} techniques that do not
12000 segments. To give an approximate idea of the CPUtrictly satisfy the detailed balance condition have been car-
time for these simulations, the generation of each simulatiomied out and have resulted in adequate sampling of the con-
point (corresponding to a particular value of pressure andiguration space and the correct equilibrium distributions. In
chemical potentialfor our 20-mer and 35-mer networksf ~ our work, despite the drawback of not strictly fulfilling the
90 chains eaghcontaining between 750 and 10 000 solventdetailed balance condition, the complexity of network simu-
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lations is such that a combined MC—-MD technique such as
ours has proved very useful in providing insights into the
phase behavior of these systems.

lll. THEORY

In this section, we extend our previously derived equa-
tion of staté for dry athermal networks to the case of
network-solvent mixtures, i.e., gels. The basis for our dry
network equation of state is the idélames and Gutf) that
the free energy of a networldeword 7), at any packing
fraction, z, can be taken to be the sum of a liquidlike con-
tribution, Aji4(7), which is associated with the interatomic
repulsive forces between the network monomers, and an D
elastic contributionAgsid 7), Which is associated with the
retractive force exerted by the network chains opposing net-
work deformation, i.e.,

Anetword 7) = Aqu( 1)+ Aclastid 17)- (13 . . . .
branch of a dendrimer representing an ideal, Gaussian net-

In our previous work the liquidlike contribution is given by work chain of lengti. The dendrimers have the same func-
the free energy of a dendritic reference polymer which ha§iona|ity, f as the network. Figure 1 is an example of a single
the same excluded volume as the network, and the elastig,chy dendritic structure. It consists of concentric layers of
contribution is given by a modified version of the affine yranches or chains, and the total number of layers is called
model for rubberlike elasticity. . the rank of the network. The first layer of the dendrimer

In the case of network-solvent mixturegels, the free  containsf chains, the second layer contaiftd —1) chains,

energy of a gel is generally calculated using an approackhe third layer contain§(f — 1) chains, and so on. The total
which is analogous to that described above for dry networks, ymber of chains in a dendrimer of rankis given by

i.e., the gel free energB e 75exX), can be evaluated as the
sum of a liquidlike contributionAx(74el,X), Which is given
by the free energy of a reference-polymer/solvent mixture,
and an elastic contributionAe,astic(n§e|,0), which has the
same form as the dry network elastic free energy contribu
tion. The liquidlike contribution to the gel free energy is a
function of the gel packing fractionyge, and the solvent
mole fraction x, while the elastic free energy is a function of
the solvent-free gel packing fraction along, where 7,

= 5 for the equivalent dry networli.e., a dry network hav-
ing the same number of network segments and the sal
volume as the gel Thus the gel free energy is

FIG. 1. Model of a single dendrimer in a network.

(f-1)™—1
(f=2)

The elastic contribution to the network Helmholtz free
energy is calculated by invoking the analogy between an
ideal network chain and a classical elastic spfihgych that
the spring constant of the ideal network chain is given by,
Kenaii= 3ks T/(R3), where (R3)=nl? is the mean-square
end-to-end distance of the ideal chain. The effective spring
constant of a dendrimer moleculRyengrimer COMposed of
n]%en chains can be calculated in terms of the spring constant

of (a )single chain, i.e., Kgendrimer™ Kehainf (f —2)[ (f
—1)M=D/(f—1)"—1]. The network chain-elastic spring

Agel get: X) = Amix(get X) + Actastid 7e10) - (14 analogy can be carried further to obtain the elastic free en-

In the following sections, the development of analytical ergy of the dendrimer a#\gendrimer KgendrimeP >/2, WhereD?
expressions for the liquidlike and elastic contributions to thes the squared spatial dimension or diameter of the dendrimer
gel free energy,Ani(7geX), and Agasid 75e,0), is de-  and is given byD?=2m(R?), where (R?) is the mean-
scribed. The analytical form for the gel free energy is thensquared end-to-end distance of a dendrimer chain. When the
employed to predict the gel properties at swelling equilibria,network is deformed from an original volumé, to a final
i.e., the solvent fraction and packing fraction of the gel whenvolume,V=2\3V,, where\ is the deformation ratio, the den-
it attains mechanical and chemical equilibrium in an externatirimers are assumed to deform affinely, that€=\2D3,
solvent at a given pressure and chemical potential. Since thehereD3=2m\?(R3) denotes the mean-squared spatial di-
development of the expression for the gel free energy isnension of the undeformed dendrimer.
based on extending our equation of state for solvent-free net- The elastic component of the reduced pressure of an
works to the case of mixtures, we begin with an outline off-functional dendrimer-network of rark, can be written &s
our theory for dry networks.

den—

(15

Pelastid 7) o? _ INpAgendrimet 17)

A. Networks kgT Y

In this section, we outline our approach to calculating 127 (f—1)(m=D 7|13
the elastic and liquidlike contributions to the free energy of =— 0 m(f—2)2[w (—) ,
dry networks(details are given in Ref). The network is mn ((F=1)"=1)"\ mo
modelled as a set of interpenetrating dendrimrierith each (16)
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whereNp is the number of dendrimers in the network, and f(f-1)(m b1

70 is the packing fraction of the undeformed network. ToU dendrimetN,M,f)=| 1+ e Ucentekf) +(n—4)
determineny, we must first define the undeformed state of

the network. In our simulations, we started with networks at (f—1)™1—-1)

a packing fraction ofy=0.45 and expanded them to succes- X fv (ve(3)~ve(2))

sively lower packing fractions 0f=0.35,0.25,...,0.05. Thus (1)
the network aty=0.45 is the starting point for all expansions +2f(f-1) (ve(3)—ve(2)), (19

of the system. At this packing fractiofi.e., 7=0.49 We  \yherep o eff) is the excluded volume of the star center,
found that the mean-squared end-to-end distance of the nefnq, (3)=9.8260% is the excluded volume of a trimer.
work chains is equal to the mean-squared end-to-end disrhe excluded volume of the star center is calculated using a
tance of uncrosslinked system chains at the same packingionte Carlo simulation technique following that of Alejan-
fraction(shown in Ref. 2 Hence the configurational entropy gro and Chapef4 and Yethiraj and Half® for a trifunctional

of the network chains at a packing fraction of 0.45 is ap-petwork (f=23), v ene(3)=18.0l0=0.05x, and for a tet-
proximately the same as that of the equivalent uncrosslinkeghtynctional network {=4), v cenef4) = 23.067 = 0.030°2.
system chains at the same packing fraction. At any lower Tpe compressibility factor of the monomer fluig( 7),

packing fraction(<0.49, the mean-squared end-to-end dis-js gptained using the Carnahan—Starling equation of tate,
tance of the network chains is greater than the mean-squared » 3

end-to-end distance of uncrosslinked system chains, and the A 20
configurational entropy of the network chains is lower than 1 (1— 77)g

that of the uncros_slmked system qhams at that packing fracémd the compressibility factor of the dimer fluid is obtained
tion. Based on 'Fhls, the petwork_|s considered to be undeﬁsing the Tildesley—Streett equation of stite
formed at the initial packing fraction of;=0.45 and to be

deformed at all successive lower packing fractions. The de- _ltaypt a,n?—azn’

formation ratio of a network at any packing fractioa= 7 A= (1-7)3 '

can now be defined as

(21)

wherea,, a,, az are constants which take the values,
=2.456 96,a,=4.103 86, anch;=3.755 03.
nol¥3 [0.4513 [y ]R3 The liquidlike contribution to the network pressure is
—| = =g (17 obtained from the relation,P}S{(5)/kgT=Z& Np/V
Vo net 3 i F
=Zgr_p( 7. 1) (6 7/ (70" Nge)).
The total reduced pressure of the solvent-free network is
The liquidiike contribution to the network pressure, then given by the sum of the elastic pressike. (16)] and
PP is obtained using an approach based on the generalizée liquidlike pressuréEq. (18)]

lig »
Pretword 7) o’ . Pelastid 7) o’ n Plriﬁt( 7) o’

A:xx=>\y:>\2:{

Y 7

Flory—Dimer (GF-D) theory of Hall and co-worker&:~3

To evaluateP}s', we postulate thalj' is equal to the pres- =

g kT kgT kgT

sure of a reference polymer having the same excluded vol-
ume as the network. For our dendrimer-network model, the 70 (f—1)(m-1)
reference polymer is simply a fluid éffunctional dendrim- =- ?m(f—Z)z[m}
ers of rankm. The compressibility factor of the dendrimer
fluid is given b 3

J Y x(l +28 ((n,1)

7
net . U dendrimet N, M, f) —v (1) 6_77 (f=2)
e N T EV R G | F(F- D71 22

U dendrimef N,M, f) —v¢(2)
ve(2)—ve(1)

}Zl( 7), (18  B. Gelswelling

In this section, we extend our equation of state for

solvent-free networks to the case of gels. Our primary objec-

whereZ,(n) and Z,(#) are the compressibility factors of tive is to develop analytical expressions for the gel free en-

fluids composed of hard sphere monomers and dimers, rergy, pressure, and chemical potential which can be used to
spectively, at the same packing fraction as the dendrimepredict the extent of swelling and the solvent uptake of
fluid, v genarimefN,M,f) is the excluded volume of a den- swelled gels in equilibrium with a bulk hard-sphere solvent.

drimer of rankm and functionality,f, andv(1) andv¢(2) Mathematically the conditions for an athermal gel to be
are the monomer and dimer excluded volumes, wherén swelling equilibrium with an athermal bulk solvent may
ve(1)=(4m/3)0® andv(2)=(97/4)0>. be written as

The excluded volume of the dendrimer is obtained by
treating the dendrimer fluid as a set bfunctional star-
centers connected by linear arfias shown in Fig. X, and is ~ whereP"“k andP% represent the bulk solvent and gel phase
given by pressuresug, represents the bulk solvent chemical poten-

Pouk=Pgelr  Lbuk= Mgel: (23
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tial, and 5, represents the solvent chemical potential in theréwritten in terms of the packing fractio, and the solvent
gel phase. We now develop analytical expressions for eacfole fraction, x, by using the definitions 7
of the terms in the above equation. =(m/6)c*(Npnge+Ns)/V and x=Ngs/(Np+Ng). We
The pressure of an athermal gein athermal network Nhow look at how Eq(23) and Eq.(26) can be used to predict
swelled with athermal solventan be writte?>%in a form  the phase equilibrium properties of the swelled gel.

analogous to Eq(22), as the sum of an elastic contribution, ~ Since the bulk solvent in our system is a pure hard-
and a liquidlike contribution, sphere fluid, its thermodynamic properties can be obtained

from the Carnahan—Starling equation of stit€he pressure

of the bulk solvent is given by E@20), evaluated at the bulk
(29 solvent packing fractiongy,,. The chemical potential of the

bulk solvent is given by Eq(11) evaluated at the bulk sol-
) o ) vent packing fraction. The thermodynamic properties of the
The elastic contribution to the gel pressuPgj.sid 7*,0), IS pylk phase remain unchanged as the gel swells.
calculated on a solvent-free basis, and has exactly the same T4 gptain the gel propertieéi.e., the packing fraction
form as described in the preceding section for dry network$ng solvent mole fractiorat which the swelling equilibrium
[cf. Eq. (16)]. The solvent-free packing fraction of the net- congitions in Eq(23) are satisfied, we must find how the gel
work, 7, is given by #* = mNp(ngef1) °/6V, whereNp is phase pressuré®,,. and solvent chemical potentiakS,, de-

. . 1gel gel

the number of dendrimer molecules, amdd) is the num- yenq on the packing fraction and mole fraction. The pressure
ber of segments in each dendrimer molecujeican also be ¢ the gel phase can be obtained using &§). The chemi-
written in terms of the solvent mole fraction and gel packingca| potential of the solvent in the gel phase can be evaluated
fraction as 7" =7[(1=Xx)(NgeM) VIX+(1=X)(NaeM) ], if the Helmholtz free energy of the gel is known as a function
wherex is the solvent mole fraction in the gel. of the solvent mole fraction, at constan¥ andN,, where

The liquidlike contribution to the gel pressure, \ s the number of molecules of oth@ronsolvent species
Pmix(7,X), is obtained from the thermodynamic propertlespresent

of a mixture of dendrimer and solvent molecules at the same
packing fraction and composition as the gel, and is evaluated
using a simple conformal-solution-type equation, following
Honnell and Half® For a mixture ofNp dendrimer mol-
ecules and\g solvent molecules having the same segment

Pgel( 7,X) o3 _ Pelasid 7 ,0) o’ n P mix( 7,X) o’
kgT kgT kgT

s s s
Hgel  Midgel , Mex,gel
kgT kgT kgT

diameter, the compressibility factor of the mixtur,,, I gell K T IPex geil Ke T
=P,xV/kgT(Np+Ny), is given by the mole fraction aver- TTUN. T AN. ; (27)
age of the GF-D compressibility factors of the pure, con- S V. T.Ng S VTN

stituent species evaluated at the packing fraction of the mix-

ture,

whereAy 4o and A, o¢ are the ideal gas and excess contri-

butions to the gel free energy. In our system, since we have

a single-component solvenl, is equal to the number of

) o dendrimer molecules, which always remains constant during

Wrtlfrezs( 7) is the compressibility factor of the solvent, and e gwelling processsince the solvent is the only migrant

Zgr_(m) is the compressibility factor of the dendrimer- species

molecule reference polymer system. _ To calculate the solvent chemical potential, we must cal-
The total reduced pressure of the gel is then given by the|ate the total Helmholtz free enerdYy gert Aexgel 8 @

sum of the elastic and liquidlike contributions to the Pres-function of the solvent mole fraction, at constant volume,

Zid 1 X) =XZ( )+ (1—X)Z8_(7), (25)

sure, V. From Eq.(14), we already know that the Helmholtz free
energy of the gelAy.( 7,X), is the sum of the elastic contri-
Poel 7.X)]0°  Pepasid 7*,0)0°  Priu(7,X) 0 bution, Agasid 7%,0), and the liquidlike contribution
kgT B kgT + kgT Anmix(7,X). The liquidlike contribution to the free energy of
1 f_1)m-1) the gel can be calculated as the sum of an ideal component,
__ <o m(f—2)2[ ( ) } Aigmix and an excess componeh, k. The ideal compo-
mn (f-1)™-1)? nent of the Helmholtz free energy of the g&ly 4/, is equal
1\ 1/3 to the ideal component of the liquidlike contribution to the
7 67 . L
X|=—|  +Zmi(7.X) — gel free energyAiq mix, because the elastic contribution to
70 ™ the gel free energy does not contain an ideal component, and
(f—2) l:.)ecauseAid,mix(n,x) .is evaluated at the same packing frac-
X n(f((f—1)m—1)(1—x)+x(f—2))}' tion and mole fraction as the gel. Hence, the excess Helm-

holtz free energy of the geReyge(7.X) is the sum of the
(26)  excess component of the liquidlike free energy contribution,

Aexmix 7,X), and the elastic contributiodg,eid 7*,0). We
The last term in the above equation is obtained from thecan now use our expression g, (Eq. 25 to evaluate the
expressionP ,ix=Zmix(Np+Ng)/V where N and Ng are  excess component of the liquidlike free energy contribution,
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Aex,mix( 7,X)

_jn . ) 1 dn’
(Not NgkeT  Jo LEmd 707 1=

:fo"uxzsw')ﬂl—x)

dn’
XZg on' ) -1l

d !
/@m0 a0

!

7 d
X f (28 () —1) —.
0 7

(28)

For a pure hard-sphere solvedt( ') is given by Eq.(20).

ForZg n'), we use the expression given by Efg), and
obtain an analytical expression for the excess component q

the liquidlike free energy

Aex,mix( 7,X) _ 477_37]2
(Np+Ns)kgT (1-n)?

x[ -
(1-7)?

X +(1—-x)

A1+A2+A3)
2

1
— = (A2t 2A3) —Agin(l—7)

(1-7)
A1+A2_3A3)

2

whereA;, A, andA; are constants given by
Ai=(a;—1)Y,+(a;+3),
Arx=(a;—1)Y,+(a;—3),
Asz=(1—az)Y,+(1—-ay),

and a;, a,, az are constants from the Tildesley—Streett

(29

(30

equation of state[Eq. (21)], and Y,=(vgendrimekN,m,T)

—va(1))/(ve(2)—ve(1)). Theelastic component of the ex-

cess free energy of the gel is given?by

(f—l)““l)K 70

Aglastid 77,00 =3kgTmf(f—2) [

then

7
The chemical potential of the solvent in the gel phase i

2/3
) . (3]

Jd Jd
/"'Sel: (9_Ns [Aid,mix]V,Nk+ (9_Ns [Aex,mix+ AeIastic]V,Nk- (32

Since the elastic free energy contributidfy. (31)] depends

S
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written in terms of the single variabléys. Taking the de-
rivative  of Ajgmix [Where Aigmix=KgT(Ns+ Np)In[(Ns
+Np)/V]—1] and Ag, mix With respect taNg then yields

s n(4-27) 471—3772} (1-¢)n
U i s R T P R T
(A1+A+A3) (A +2A3) Az
{ I=n° =92 =g ©¥

where ps=Ng/V is the number density of the solvent mol-
ecules in the gel, an@d=(NgeN)X/[ (1 —X) + (Nge)X] IS
the solvent site fraction.

Since we now know the gel pressure and the solvent
chemical potential that appear in E®3) in terms of the
packing fraction and mole fraction, we can proceed with our
phase equilibria calculations. Our aim is to calculate the
value of the solvent mole fractiorx, and the gel packing
f;ction, 7, at which the gel pressure and the solvent chemi-
cal potential in the gel equal the predetermined values of the
bulk solvent pressure and chemical potential. This is done by
adopting the method and numerical techniques of Kenkare
et al,*” as outlined below. At predetermined values of the
bulk solvent pressure?,,« we iterate onzy at each value of
x (in increments of 0.000 Q.Luntil we find the packing frac-
tion at which the evaluated pressufg,e approaches
within some tolerancé=<10 . This gives us a curve fop
versusx at which Py equalsPyy. In order to find out
which value of 7(x) satisfies the criterionuge= wp i We
then use Eq(34) to evaluate the solvent chemical potential
as a function ok. When ug equalsup,, within some tol-
erances; <10 3, the conditions for swelling equilibrium are
satisfied. This method is used to calculate the gel packing
fractions and solvent mole fractions over a range of bulk
solvent pressures.

IV. RESULTS AND DISCUSSION

In Tables Il and IV we present simulation results for the
thermodynamic properties of 20-mer and 35-mer trifunc-
tional gels that are swelled to equilibrium in a hardsphere
solvent. The tables show the reduced pressure and chemical
potential of the bulk solvent phas@}, . csand wpy cs (cal-
culated using the Carnahan—Starfihgquation of state and
our simulation results for the reduced pressure and the sol-
vent chemical potential of the gel phas&, and ug, the
packing fraction of the gel phase;=m(Ng+Nn)o>/6V,
the solvent site fractiong=Ng/(Ng+N.n), the number of
solvent molecules in the geNg, and the total number of
segmentgnetwork and solventin the systemN,. The esti-
mated uncertainties in the gel phase properties were obtained
by letting each simulation continue for six or more runs of

only the volume change of the network during swelling, andsn_300 million collisions eaclidepending on the system

is calculated on a solvent free basis, the teffy i/ INs iS
zero under constant volume conditions. Hence B6) can

be rewritten as

J Jd
Maelza_Ns[Aid,mix]V,Nk"_ (;_Ns[Aex,mix]v,Nk-

(33

Expressingx and » in terms ofNg, i.e., x=Ng/(Ns+Np),

and »=7[Ng+ Np(nged) ]/6V, the termAg, ,ix can be re-

size after the equilibration runs, and calculating the standard

deviation from the properties measured during these runs.
We found generally good agreement within the error esti-

mates between the pressure and chemical potential in the
bulk solvent phase and our simulation results for the pressure
and solvent chemical potential in the gel phase, thus con-
firming that the gels had reached swelling equilibrium. Data

was obtained for pressures ranging frd?i =0.1 to P*
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TABLE Ill. Equilibrium data for the 20-mer gel. Values for the bulk solvent pressBigy cs, and chemical
potential,up cs, Calculated from the Carnahan—StarlifRef. 23 (CS) equation of state for hard spheres, and
our simulation results for the gel pressuR{;el, solvent chemical potentiapze“ gel packing fraction,,
solvent site fractiong, the number of solvent molecules in the gel,, and the total number of segments in the
gel, N;. The values in parentheses indicate the uncertainty in the last digit; for instance a value(4f .99
equivalent to a value of 4.990.04.

Pgulk,cs :“Eulk,cs PSel /'Lael Y é Ns Ni
0.1 —-2.09 0.10%4) —2.053) 0.1062) 0.2864) 721+13 252113
0.5 0.219 0.50@) 0.21640) 0.1801) 0.57Q1) 2386+10 4186+10
1.0 1.73 1.00@%) 1.731) 0.2391)  0.6431)  3242+15  5024:15
3.0 5.49 2.98) 5.484) 0.3511) 0.6981) 4160+20 5960+-20
5.0 8.37 4.99%) 8.396) 0.4091)  0.70X1)  4220:20  6020:20

=5.0 for the 20-mer gels, and for pressures ranging frondata, although it overpredicts the solvent site fraction at high
P*=0.1 toP* =3.0 for the 35-mer gels. We were unable to pressures for the 20-mer and the 35-mer networks. The rea-
obtain swelling data for the 35-mer network at pressureson for the overprediction of by our theory at high pres-
higher thanP* =3.0 owing to computational limitations as- sures is not completely clear; a possible explanation may be
sociated with the large number of solvent molecules in thehat the elastic terrhEq. (22)] performs poorly at high pres-
system (the 35-mer network aP*=3.0 contained about sures, since the gel is highly deforméskpandey and the
9300 solvent molecules in addition to 3150 network segnetwork chains are considerably extended. As a result the
ments. chain vector distribution may deviate significantly from the
Figure 2 displays the reduced pressure versus packinGaussian, causing an increase in the magnitude of the elastic
fraction for a pure hard-sphere fluidrom the Carnahan— contribution to the network pressure, and a decrease in the
Starling equation of statd, a trifunctional 20-mer gel overall network pressure. A similar and possibly related phe-
swelled to equilibrium in hard-sphere solvefftom our  nomenon was observed by us in our previous work on the
simulation results, cf. Table Il and a solvent-free trifunc- pressure—volume behavior of dry networks; we observed that
tional 20-mer networkfrom our previously publishédsimu- ~ when such networks were expanded to very large deforma-
lation results, cf. Table }I This plot helps us to compare the tion ratios there was a sudden increase in the magnitude of
magnitude and trends in the gel properties with the magnithe elastic component of the network pressndich is
tudes and trends in the pure solvent and network propertiesiegativg, and our theorybeing based on a Gaussian chain
The lines through the 20-mer gel and solvent-free networknode) was less able to accurately predict the network pres-
data show our theoretical predictions for the febm Sec.  sure. Similarly, in highly swelled gels, the magnitude of the
[11B) and for the networkEg. (22)]. We see that, at a given negative elastic contribution to the network pressure may be
packing fraction, the pressure of the gel always lies betweegreater than is predicted by our theory, resulting in overpre-
the pressures of the bulk-hard-sphere solvent and the purdiction of the gel pressure.
network. The theoretical prediction for the gel packing frac-  From Fig. 3 and the values in Tables Ill and IV, we
tion agrees very well with the simulation data. observe that the equilibrium gel packing fraction of the 35-
Figure 3 shows the equilibrium values for the solventmer network is slightly lower than that of the 20-mer net-
site fraction, ¢, and the gel packing fractiory, versus re- work at any given pressure, i.e., the pressure of the gel in-
duced gel pressureRy,, for the 20-mer and 35-mer net- creases with increasing chain length at any given packing
works. Both the solvent site fraction and the gel packingfraction. This trend is similar to that seen in dry networks
fraction are observed to increase with pressure. The solidnd is accurately predicted by our theory. In an equivalent
lines show the predictions of our theory for the 20-mer net-uncrosslinked systertin which the system pressure is given
work, and the dashed lines show the predictions of ouby the mixing contribution alone the pressure decreases
theory for the 35-mer network. The numerical values for ourwith increasing chain length. To understand why the gel
predictions are shown in Tables V and VL. It is evident thatpressure should increase with increasing chain length, it is
the theoretical predictions for the packing fraction show ex-necessary to recall that the magnitude of the negative elastic
cellent agreement with the simulation results. The theoryontribution to the gel pressure decreases with increasing
also shows good agreement with the solvent site fractiohain length at a given packing fractipef. Eq.(16)]. This is

TABLE IV. Equilibrium data for the 35-mer gel. Notation as in Table III.

Phulk.cs Mgulk,cs PSel :U«Zel n ¢ Ns Nq
0.1 -2.09 0.1001) —-2.122) 0.0951) 0.3253) 1517+20 466720
0.3 —0.633 0.296 —-0.65 0.1391) 0.5453) 377545 6925-45
1.0 1.73 1.011) 1.741) 0.2361) 0.6751) 6542+30 9692+ 30
1.9 3.63 1.92 3.60 0.299 0.7320) 8600+5 11 7505
2.94 5.42 2.9) 5.484) 0.3451) 0.7471) 9300+50 12 450-50
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10.0 . T . TABLE V. Comparison between our simulation results and our theoretical
prediction for the 20-mer gel. Simulation data for the gel packing fraction,
7, and solvent site fractionp, and our theoretical predictionsjeqr, and

8.0 r hard sphere 1 Piveory-

EOS T Plukcs  Mbukcs 7 ¢ iheory Pineory
6.0 1

0.1 —2.09 0.1062  0.2864) 0102  0.283
) 0.5 0219 0181  05741) 0180  0.551
& 4ol ] 1.0 1.73 0.230)  0.6431) 0237  0.634
20-mer gel 3.0 5.49 0.3511)  0.6981)  0.349  0.716
5.0 8.37 0.40a)  0.70X1) 0405  0.745

2.0

20-mer network 1

0.0 bution to the pressure increases in magnitude also, causing

' ; . ; the total pressure of the gel to decrease with decreasing chain
0.00 0.10 0.20 0.30 0.40 0.50 length

M From Fig. 3 and Tables Il and 1V, we also observe that
FIG. 2. Reduced pressurB* =Pa3/ksT, versus packing fractiony, for  the equilibrium value of the solvent site fraction increases
(1) a pure hard-sphere flui@) a 20-mer trifunctional gel, an(8) a 20-mer  with increasing chain length at a given pressure and bulk
solvent-free trifunctional network. The lines through the gel and networkgglyent chemical potential. We can understand Why this is so
data points represent our theoretical predictions. by returning to the chemical potential equilibrium condition

[Egs.(23) and(27)].

because the elastic contribution to the gel pressure arises Mﬁmkzﬂéel: #%,geﬁf MZx,geli (35

from the retractive force exerted by the chains opposing net- s s :
work deformation, which in turn is);elated to the I;‘)(:1ptio ofg thet\/\lhere'um"ge'-and’ue"'ge'-a re the ideal and excess components
' of the chemical potential of the solvent in the gel. At a given

end-to-end distance of the network chains to their maximumyg e of the bulk solvent pressure and chemical potential, the
extended lengtA At a given packing fraction or deformation solvent chemical potentials in a 20-mer and 35-mer gel at
ratio, the ratio of the end-to-end distance of a network Chai%welling equilibrium are both equal tp{,, although the

u

to its maximum extended length is greater for the chains in &,,qnitudes of the individual ideal and excess chemical po-
short chain-length network than for the chains in a longiena contributions are not the same. The ideal component
chain-length network. Hence the short network chain underbf the solvent chemical potential is given by .

id,ge

goes a greater loss of configurational entropy than a long. kT log(p) =ksT l0g(7), wherepy is the number density

network chain at a given network deformation ratio, and €X-¢ yhe solvent molecules. The excess component of the sol-

erts a correspondingly greater retractive force on the neyen chemical potential is calculated using the relation
work. Thus, the magnitude of the retractive force exerted by s _ —kgT |Og(pin5) where pins
s /1

o X . . . = is the probability of in-
the chains increases with decreasing chain length at a givep®9® S P ‘

def . o Th di ) lasti serting a test solvent molecule into the gel. Now we saw
eformation ratio. The corresponding negative elastic Contrizo iy that at a given bulk solvent pressure or chemical po-

tential, the equilibrium packing fraction of the gel decreases

with increasing chain length, i.e., the packing fraction of the
1.0 ' i ' 20-mer gel at swelling equilibrium is higher than the packing
fraction of the 35-mer network under the same conditions.
Therefore we expect that it will be more difficult to insert a
solvent molecule into the 20-mer gel than into the 35-mer gel
at that bulk pressure or chemical potential, and therefore,
Pa(20)< pa(35). Hence the excess solvent chemical po-
tential of the 20-mer gel will be higher than that of the 35-
mer gel, i.€.ugy 4 20)> ey 4ol 35) . Since both the 20-mer

TABLE VI. Comparison between our simulation results and our theoretical
prediction for the 35-mer gel. Simulation data for the gel packing fraction,
7, and solvent site fractionp, and our theoretical predictionsyeqr, and

¢theory-
p* | Phukcs /‘“gulk,CS Y ¢ Tltheory Ptheory
gel

0.1 —2.09 0.095%1) 0.3253) 0.089 0.365

FIG. 3. Simulation results for the solvent site fractigh,and the packing 0.3 —0.633 0.1301) 0.5453) 0.136 0.559
fraction, », of the gel versus reduced pressuR¥,=Pg.o®/kgT for the 1.0 1.73 0.2361) 0.6751) 0.232 0.709
20-mer and 35-mer networks. The solid lines represent our theoretical pre- 1.9 3.63 0.29@) 0.7320) 0.295 0.760
dictions for the 20-mer network, and the dashed lines represent our theoret- 2.9 5.42 0.348L) 0.74711) 0.343 0.779

ical predictions for the 35-mer network.
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TABLE VII. NPT-ensemble simulation results for the evolution of the pack- 0.40 : . ; ;
ing fraction, 5, the deformation ratio), and the chain mean-squared end—
end distance{R?)/a2, for the 20-mer gel at various solvent site fractions,
¢, as the network swells to its equilibrium stateRit=0.5 andP* = 1.0. 0.35
p* ¢ n A <R2>/(TZ 0.30
0.5 0.0 0.250 1.216 41.12
0.5 0.114 0.234 1.293 44.82 N 0.25 %
0.5 0.205 0.222 1.367 48.24
0.5 0.400 0.199 1.556 56.79
0.5 0.567 0.179 1.798 68.15 0.20
1.0 0.0 0.302 1.142 36.92
1.0 0.114 0.293 1.200 40.08 0.15
1.0 0.205 0.283 1.259 42.75
1.0 0.283 0.275 1.316 45.31 0.10 . : . .
1.0 0.400 0.261 1.421 50.63 0.0 0.2 0.4 0.6 0.8 1.0
1.0 0.645 0.239 1.743 63.98 ¢

FIG. 4. Simulation results for the gel packing fractiop,versus the solvent
) ) fraction, ¢, as the gel evolves towards swelling equilibrium. Data are shown
and 35-mer gels are at the same total chemical potential, thér P*=0.5 andP* =1.0. The data points marked by squares represent the

ideal component of the 20-mer solvent chemical potentiapquilibrium swelling solvent and packing fractions, and the data points

_ s marked by solid triangles represent the pure solvent packing fra@iaiu-
musst be Iower than thE_lt of t_he 35 mew_ldlge'(zo_) ated from the Carnahan-Starling equation of s@ef. 23]. The lines
< Mig gel(35). Using the previously given expression for ideal represent our theoretical predictions.

chemical potential, we can write

kgT log[ 7(20) (20)]<kgT log[ 7(35) ¢(35)]

(200 7(35) fraction, », versus the solvent fractionrp, at P* =0_.5 and
= m<m (36 P*=1.0, as obtained from Table VII. The data points repre-
sented by squares are the equilibrium swelling values for the
Since the packing fraction of the 35-mer gel is lower than thepacking fraction and solvent fraction at that bulk pressure,
packing fraction of the 20-mer gel, i.ep(35/7(20)<1, we and the data points represented by the filled triangéts
conclude that)(20)/(35)<1 at a given pressure and chemi- ¢=1.0) are the pure solvent packing fractiof@btained us-
cal potential, or that the solvent site fraction for the 20-mer ising the Carnahan—Starling equation of stafeThe gel pack-
lower than that of the 35-mer. Hence the solvent site fractioring fraction decreases continuously as the solvent fraction
decreases with chain length at constant pressure and chennicreases, i.e., as the gel absorbs sol{duné to the chemical
cal potential. potential gradient its volume increases in order to maintain
We investigate the change in thermodynamic propertieshe gel pressure constant, thus resulting in a decrease in
of the gel during evolution of the system from a solvent-freepacking fraction. For all values ab at a given pressure, the
network to a swollen gel in mechanical and chemical equivalue of 7 lies between the dry network packing fractiGat
librium with the bulk solvent by adopting the approach used¢=0) and the bulk solvent packing fractidat ¢»=1.0)]. The
by Escobedo and de Pablo. We conducted a set of simuldines in the figure represent our theoretical predictions which
tions of the gel in which the gel pressure is held constant andhow good overall agreement with the simulation data.
equal to the bulk solvent pressure. Within this set of simula-  Finally we examine the structural characteristics of the
tions at a given pressure, the solvent site fraction is increaseatetwork chains in an effort to ascertain the validity of the
incrementally from zerddry network to ¢eqi, the solvent affine assumption. The affine assumption states that when the
site fraction at swelling equilibrium at that pressure. For eaclgel swells, the end-to-end vectors of the individual chains
individual simulation run within the set, the solvent site frac-deform proportionally with macroscopic deformation, i.e.,
tion is kept constant. Two values of the bulk solvent pressuréR?)=\?, where(R?) is the mean-squared end-to-end dis-
are chosenPy,,=0.5 and 1.0. Each simulation data point tance of the network chains. This assumption was first em-
was obtained by starting with a dry netwo(ly=0) at a  ployed in the affine network model of Flory and Wall, and in
network pressure equal to one of the selected bulk solverthe phantom model of James and Guth, where it was used to
pressure values, inserting a fixed number of solvent moldescribe the deformation of “phantom” network chains, i.e.,
ecules into the network, and letting the gel relax to its finalchains for which the excluded-volume condition is ne-
volume keeping the pressure constéart NPT simulation glected. Due to its simplicity, most subsequent theories of
Table VII displays our simulation results for the gel packingrubber elasticity, including ours, have used the affine as-
fraction for the two sets of runs conductedRit=0.5 and sumption. The validity of the affine assumption is examined
P*=1.0, both for the 20-mer network. At each valuedf in Fig. 5, which displays the scaled mean-squared end-to-end
the table shows the gel packing fractiop,the deformation distance of the network chaingR?)/c? as calculated in
ratio, A, and the mean-squared end-to end distance of th&able VII versus\?, on a logarithmic scaléwhich is useful
network chains{R?)/a2. for deducing the scaling exponent¥he dashed line repre-
Figure 4 shows the simulation results for the gel packingsents the affine assumption prediction and the solid lines are
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2.20 : T network simulation. The efficiency of the combined tech-
nigue is an important point in its favor, since the swelling
. process requires extremely large equilibration periods. How-
200 - L’ . ever, despite the efficiency of our code, we found it difficult
- to simulate the swelling of long chain length netwotkkain
. lengths of 50 or morne Part of the difficulty lies in the fact
180 | <R~ - o i that the system size grows rapidly with the swelling of the
-7 e gel; for instance, a 35-mer dry network of 90 chai8450
" ,.;.3—".:.-’/-"'::‘ _ segments absorbs more than 9000 solvent particles during
P : swelling at a pressureR* =3.0, resulting in a fairly large
160 ;{"’1'/ i system of about 12 000 segments.
The primary significance of this work lies in the fact that
it shows that a simple theoretical approach can capture the
1-4%'10 030 0.50 070 main featurgs of ggl swellling. In addition, it prpvides previ-
log )’ qusly unavgllable simulation data for thg swellllng of trifunc-
tional, continuous-space gels. We consider this study to be a
FIG. 5. Simulation results for the mean-squared end-to-end distance of thstarting point for detailed investigations of gel swelling, with
]['et\:;m';gham%ﬁ% VifSl;S_the ;guageg(n:acgoscggic dlefgzmatliog f?go possible future studies including the investigation of the
soorlid (Tinesnr]:;rr:aesgl(irlirfe:rmrse’gressidn f?tsartoatrlle data,.anZIIrtChee dast?ed “r§ewellln.g of networks with temper.atur_e dependenfc interaction
represents the affine model prediction. potentials, the study of gel swelling in solvent mixtures, the
examination of the effects of solvent size and structure, and
of network structurgfor example, the influence of network

linear regression fits through the simulation data. It appearfynctionality, and structural irregularitieon the swelling
that the affine scaling is not followed eitherRt =0.5 or at  properties of gels.

P*=1.0. In fact, the data at both pressures appears to follow
the considerably weaker scaling OR?)«\29, whereg is
considerably less than 1. The value @fis 0.643 for the ACKNOWLEDGMENTS
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