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Theory and simulation of the swelling of polymer gels
N. R. Kenkare,a) C. K. Hall,b) and S. A. Khan
Department of Chemical Engineering, Box 7905, North Carolina State University,
Raleigh, North Carolina 27695-7905

~Received 18 October 1999; accepted 4 April 2000!

A combined discontinuous molecular dynamics and Monte Carlo simulation technique is used to
study the swelling of athermal, continuous-space, near-perfect, trifunctional polymer networks
containing hard chains of lengths 20 and 35 immersed in an athermal hard-sphere solvent. The
swelling simulations are conducted under conditions of constant pressure and chemical potential. A
simple, analytical theory for gel swelling is presented in which the gel free energy is calculated as
the sum of an elastic, affine-type term, and a liquidlike mixing term that is based on the
generalized-Flory dimer equation of state. The theory shows good agreement with our simulation
results for the gel properties at swelling equilibrium. ©2000 American Institute of Physics.
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I. INTRODUCTION

When placed in a low molecular weight solvent, a
crosslinked polymers will absorb the solvent and swell. T
swelling behavior of crosslinked polymers has led to th
widespread application in drug delivery, molecular sepa
tion systems, biomedical devices including implants a
contact lenses, and in emerging technologies such as
based valves and actuators, sensors, artificial muscles
display devices.1

The aim of this paper is to investigate the molecu
mechanisms underlying gel swelling using carefully co
trolled computer simulations. Specifically, we use a com
nation of molecular dynamics and Monte Carlo simulati
techniques to investigate the swelling of athermal gels
athermal, monomeric solvents. We also derive an analyti
molecularly based theory for gel swelling by extending o
previous work2 on the pressure-volume properties of solve
free polymer networks to the case in which solvent
present.

One of the first molecularly based approaches to
swelling was that of Flory and Rehner,3 who suggested tha
the change in Helmholtz free energy of a polymer gel up
swelling could be expressed as the sum of a polymer-sol
mixing free energy term, and an elastic free energy term

DAswell5DAmixing1DAelastic, ~1!

whereDAmixing is the free energy change on mixing of th
equivalent uncrosslinked polymer and solvent, andDAelastic

is the elastic free energy change due to the configuratio
rearranging and stretching of the crosslinked network cha
during the swelling process. The elastic free energy term
considered to be completely independent of the presence
nature of the solvent except insofar as the absorption of
vent by the gel causes the network to expand and its ch
to stretch. In the Flory–Rehner approach, the polym
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solvent mixing free energy term is obtained from the Flor
Huggins theory,4 and the elastic free energy term is obtain
from the affine model for rubber elasticity.5,6 Most subse-
quent theoretical work on gel swelling has been based on
Flory–Rehner development@i.e., on Eq.~1!#, although dif-
ferent forms of the mixing and elastic contributions ha
been used.7–10

Much of the theoretical work on the swelling o
crosslinked systems applies to perfect networks, i.e.,
works with constant chain length between junctions and f
structural irregularities~dangling chains, loops, or junction
of varying functionality!. The validation of network theories
is best done using model near-perfect networks with w
characterized molecular structure. Experimental efforts
this direction are, however, hampered by the difficulty as
ciated with obtaining precise measurements of the netw
structure. Over the past decade, computer simulation
proved to be a uniquely useful tool in investigating the pro
erties of polymer networks since it allows the constructi
and investigation of near-perfect model networks with we
characterized structure.

Simulation studies of polymer networks have largely f
cused on network dynamics, crosslinking kinetics and
PVT properties.11–18,2,19–21Simulations of gel swelling are
rare, partly because of the relatively complex simulati
techniques required, and partly because gels take very
times to reach swelling equilibrium. As a result, swellin
simulations require the use of efficient simulation techniqu
as well as large amounts of computing time.

To our knowledge, the only simulations of gel swellin
are those of Escobedo and de Pablo,21,22 who conducted
Monte Carlo simulations of the swelling of perfect, te
rafunctional, athermal networks~of chain lengths 10 to 32!
having a diamondlike junction connectivity immersed
athermal monomeric and short-chain solvents. The ther
dynamic properties of the solvent phase were obtai
using a suitable equation of state~for instance the
Carnahan–Starling23 equation of state for monomeric so
vents! and the thermodynamic properties of the gel pha
© 2000 American Institute of Physics
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were obtained by conducting Monte Carlo simulations
constant external chemical potential and pressure, i.e.,
mPT ensemble. Owing to the limitations of convention
Monte Carlo methods for simulating crosslinked system
Escobedo and de Pablo invented a set of complex Mo
Carlo moves~the ECCB, slab, and cluster moves! for relax-
ing the network and for conducting the volume chan
moves necessary in the isobaric ensemble. They found
the mole fraction of the solvent in the gel increased w
pressure and with network chain length, and that the
packing fraction increased with pressure and decreased
network chain length. By conducting a set of NPT ensem
simulations of the gels as they approached equilibrium a
particular pressure, Escobedo and de Pablo found that
packing fraction of the gel always lies between that of
dry network and the bulk solvent at the same pressure. T
also presented a mean-field theory for gel swelling, in wh
the free energy of the gel was considered to be the sum o
free energy of a reference polymer/solvent mixture, and
elastic free energy of the solvent-free network. The free
ergy of the reference polymer/solvent mixture was obtain
from an equation of state for athermal molecules introdu
in a previous publication by the authors,24 and the elastic free
energy of the network was evaluated directly from th
simulation results. The Escobedo and de Pablo theory
their simulation results fairly well; however its semicomp
tational nature precludes its general use for predicting sw
ing equilibria. Their work in simulating gel swelling is sig
nificant in that it presents a way to overcome the limitatio
of conventional Monte Carlo techniques in investigati
these systems. Escobedo and de Pablo’s work represen
first successful simulation-based investigation of gel sw
ing.

Our study of gels is motivated by the paucity of simu
tion data on the swelling and structural properties of netw
systems, and by the need for an improved analytical the
to predict the phase equilibrium properties of polymer ge
The purpose of this paper is to describe our novel hyb
Monte Carlo molecular dynamics technique for simulati
the swelling of model gels, to present data for the solv
uptake and change in volume of model trifunctional g
upon swelling, and to propose a simple theoretical model
gel swelling based on our previously derived equation
state for solvent-free networks.2

We use discontinuous molecular dynamics technique
construct near-perfect, off-lattice, tri-functional networks
chain lengths 20 and 35. The swelling of these networks
athermal solvents is simulated by allowing the network
absorb hard-sphere solvent molecules and to expand u
conditions of constant external chemical potential and p
sure, where the chosen external chemical potential and p
sure correspond to the chemical potential and pressure o
pure~bulk! solvent. This procedure is akin to placing the g
in a large excess of solvent and letting it swell, and is sim
to the procedure used by Escobedo and de Pablo21,22 in their
gel swelling simulations. In this work, the swelling of the g
is simulated using a combination of the discontinuous m
lecular dynamics~DMD! method and themPT ensemble
Monte Carlo algorithm. The DMD method is used to d
Downloaded 03 Mar 2008 to 152.1.211.43. Redistribution subject to AIP
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place the solvent and gel segments in order to relax the
tem, and themPT Monte Carlo algorithm is used to condu
volume change and particle insertion/deletion moves wh
are necessary for the gel to achieve mechanical and chem
equilibrium with the bulk solvent. The thermodynamic pro
erties of the bulk solvent are assumed to remain cons
throughout the swelling process, and are described by
Carnahan–Starling23 equation of state for hard spheres. O
combined simulation technique is fairly efficient and allow
us to simulate gel systems containing more than 12 000
ments. Another advantage of using this technique is tha
can be used to simulate the swelling of networks of differ
functionalities and molecular weights, without the introdu
tion of complex, system-specific moves.

Highlights of our simulation results are as follows. W
find that the solvent site fraction~defined as the ratio of the
number of solvent beads to the total number of segment
the gel! and the gel packing fraction increase with press
and chemical potential. The solvent site fraction also
creases with chain length while the gel packing fraction
creases with chain length. During the constant-press
swelling of the gel to its equilibrium state, the gel packin
fraction is always found to lie between that of the dry n
work and of the bulk solvent. These observations are al
qualitative agreement with the results from the simulatio
of Escobedo and de Pablo’s. Quantitatively, our results di
somewhat from those of Escobedo and de Pablo; for
stance, the solvent site fraction in our swelled gels show
weaker dependence on chain length than in their syste
We also examine the structural characteristics of the netw
chains as the gel swells, and find that the mean-squared
to-end vectors of the chains exhibit a weaker-than-affi
scaling behavior with the macroscopic swelling.

We extend our previously published theory of network2

to the case of gel swelling. As before, the network is mo
eled as a set of interpenetrating dendrimers, where each
drimer branch is a network chain. The free energy of the
is taken to be the sum of a liquidlike contribution whic
arises from the polymer-solvent mixing interaction and
elastic contribution which arises from the change in config
rational free energy of the chains during the volume cha
that accompanies swelling. The liquidlike contribution to t
free energy of the dendrimer-solvent system is obtained fr
the Generalized Flory–Dimer equation of state f
mixtures.25 The elastic free energy contribution to the fre
energy of the system is obtained the same way as in
previous paper. In this method we invoke an analogy
tween a classical spring and an ideal, Gaussian netw
chain, obtain an equivalent ‘‘spring constant’’ and hence f
energy for dendrimers composed of these chains, and ca
late the network elastic free energy~for the deformed and
undeformed network! as the sum of the free energies of th
constituent dendrimers.

We use our theory to predict the gel packing fraction a
solvent site fraction at swelling equilibrium over a range
external solvent pressures. The theory shows very g
agreement with our simulation data except at high pressu
It is also remarkably successful in predicting the amount
solvent taken up by the gel and the change in the gel volu
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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as the system moves along the constant-pressure pa
swelling equilibria.

The organization of our paper is as follows. Section
describes the molecular model and the simulation techniq
used for network construction and relaxation, and for
swelling. In Sec. III, our theoretical model is described, a
in Sec. IV, our simulation and theoretical results are d
cussed. A brief summary and some further discussion
given in Sec. V.

II. MOLECULAR MODEL AND SIMULATION
TECHNIQUE

In this paper, we combine the discontinuous molecu
dynamics~DMD! technique that we have used earlier to tre
polymer melts26,27 and networks,18,2 with the mPT ensemble
Monte Carlo algorithm. We begin this section by describi
the molecular model for the network and solvent, and th
review the DMD technique as it is applied to polymer mel
Next we outline our method for the construction, relaxatio
and evaluation of the pressure-volume properties of solv
free networks. We conclude this section by describing
technique that we have used to simulate gel swelling.

The basic unit of the polymer network is a polym
chain which we represent as a freely jointed chain of tang
hard spheres. The potential energy of interaction betw
any two beads~segments! on the same or neighboring chain
in the network is given by

U~r !50, r .s,

5`, r<s, ~2!

where s is the bead diameter. The solvent molecules
represented as hard spheres having the same diameter
network beads. The potential energy of interaction betw
any two solvent beads, or between a solvent bead and a
on a network chain is given by Eq.~2!.

A. DMD technique, network construction and P – V
properties

It is difficult to simulate a system of tangent hard sphe
chains using standard molecular dynamics techniques
cause the tangency requirement cannot be implemente
rectly. To circumvent this problem, Rapaport28 and
Bellemans29 suggested an approach in which the bo
length, l, between successive segments of the tangent h
sphere chain is not kept constant, but is instead allowe
vary freely over the range,s(12d), l ,s(11d) where
d!1. The chain then effectively becomes a collection of s
ments connected by sliding links~the Bellemans chain!. As
d→0, the chain approximates the tangent-hard-sphere c
model. The relaxation of the constant bond length requ
ment allows the chain segment trajectories to be parti
decoupled, resulting in linear trajectories between collisio
The system dynamics can then be treated using the dis
tinuous molecular dynamics~DMD! techniques develope
by Alder and Wainwright30–32 for hard sphere systems. A
comprehensive description of the discontinuous molec
dynamics technique is given in the paper by Smithet al.,26,27
Downloaded 03 Mar 2008 to 152.1.211.43. Redistribution subject to AIP
to

I
es
l

d
-
re

r
t

n
.
,
t-
e

nt
n

e
the
n
ad

e
e-
di-

rd-
to

-

in
-

ly
s.
n-

r

along with descriptions of various methods for improving t
code efficiency, including neighbor lists, linked lists, bina
trees, and delayed position updates.

In order to construct solvent-free tri- or tetrafunction
networks we endlink melts of linear Bellemans chains. Sin
it is easier to achieve near-complete extents of reaction
lower densities than at higher densities, the endlinking
conducted at an initial system packing fraction ofh50.3.
The packing fraction is then increased toh50.45 by growing
the segment diameter. The system packing fraction is defi
to be

h5
p

6

Ncns3

V
, ~3!

where Nc is the number of network chains,n is the chain
length andV is the volume of the simulation cell. Thi
crosslinking method allows us to construct nearly perfect
networks, i.e., solvent-free systems containing a very sm
percentage of free chains, dangling ends, loops and uns
ated junctions~junctions to which only two chain ends ar
attached!. Details of the crosslinking procedure are describ
in a previous publication.18

In this paper, we focus on two such trifunctional ne
works, one containing chains of length 20 and the other c
taining chains of length 35. Each network contains 90 cha
The chain segment diameter equals 1, the Bellemans b
variation factor,d equals 0.05, and the box length varies w
the packing fraction. The structural characteristics of the n
works, displayed in Table I, are described in terms of
elastically active fraction, %elastic, the number of trifunc-
tional junctions,N3 , the number of bifunctional~unsatur-
ated! junctions,N2 , the number of dangling ends and loop
Nend and Nloop and the number of free chains,Nfree. The
elastically active fraction is an important measure of t
‘‘perfectness’’ of our networks, and is defined to be the fra
tion of the chains that are connected at both ends to junct
with at least three independent paths to the network.33,34 It is
calculated in the table by subtracting the number of unsa
ated junctions, dangling chains, and loops from the to
number of network chains, and dividing by the total numb
of network chains. Since the elastically active fraction
close to 1 for both of the networks considered, and the nu
ber of dangling chains, loops and unsaturated junction
low, we consider these networks to be near-perfect syste

Once the networks attained their final packing fraction
0.45, they were relaxed for 500 million collisions. The
compressibility factors were then evaluated from the Cl
sius virial theorem in the following form:

TABLE I. The network structural characteristics in terms of the cha
length,n, number of chains,Nc , the total number of segments in the syste
Nt , the elastic fraction, %el , the number of trifunctional junctions,N3 , the
number of unsaturated~bifunctional! junctions,N2 , the number of dangling
ends,Nend, the number of loops,Nloop, and the number of free chains,Nfree.

n Nc Nt %el N3 N2 Nend Nloop Nfree

20 90 1800 0.99 60 0 0 1 0
35 90 3150 0.96 59 1 2 1 0
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Znet[
PV

NnetkBT
5Ncn2

m(collr i j •Dvi j

3kBTte
, ~4!

whereP is the network pressure,Nnet is the number of net-
work molecules~Nnet51 since the network is considered
be one large molecule!, te is the elapsed simulation time ove
which the sum is calculated,kB is the Boltzmann constant,T
is the temperature,m is the mass of a network chain segme
r i j is the vector between segment centers at a collision,
Dvi j is the velocity change for the colliding pair. In th
paper, the simulation results are reported in terms of
reduced pressure,P* [Ps3/kBT5ZnetNnet6h/(pNcn).

The evaluation of the pressure-volume properties
solvent-free networks is a useful intermediate step in
study of the swelling properties of solvent-containing n
works ~gels!. The P–V properties of solvent-free trifunc
tional networks of chain lengths,n520, 35, 50, and 100
were reported by us in a previous publication.2 The network
pressure was obtained over a range of packing fractions~i.e.,
volumes! by starting with a high initial density network an
expanding it to lower densities using a volume change a
rithm that takes advantage of the variable bond-length pr
erty of the Bellemans chain. Details of this algorithm a
described in Ref. 2. Employing this volume-change meth
the networks were expanded from their initial packing fra
tion of 0.45 to successively lower packing fractions
0.35,...,0.003, and the network pressures were calculate
each packing fraction. These simulation results for the n
work pressure are reproduced in Table II and will be used
a comparison later in this paper~cf. Sec. IV! with the
pressure-volume behavior of gels.

B. Gel swelling

In this section we describe our combined DMD/mPT en-
semble Monte Carlo algorithm for simulating the swelling
athermal networks in hard-sphere solvents.

The application of modern phase equilibria compu
simulation techniques~e.g., the Gibbs ensemble method! to
the case of gel swelling typically involves the use of tw
separate simulation cells, one for the bulk solvent phase
one for the gel phase. This can be reduced to the use
single simulation cell for the gel phase alone by consider
the situation in which the swelling of the gel takes place i
large excess of bulk solvent. Since the amount of bulk s

TABLE II. Simulation results~Ref. 2! for the reduced pressure,P* of dry
trifunctional networks of chain length 20 and 35.

h P* (n520) P* (n535)

0.45 5.129 5.149
0.40 3.021 3.042
0.35 1.736 1.755
0.30 0.959 0.973
0.25 0.495 0.507
0.15 0.087 0.095
0.05 20.0065 20.000 98
0.03 20.0107 20.0045
0.01 20.0224 20.0074
0.005 20.012
Downloaded 03 Mar 2008 to 152.1.211.43. Redistribution subject to AIP
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vent is large compared to the amount of solvent taken up
the gel during swelling, the thermodynamic properties of
bulk solvent~pressure, chemical potential, and temperatu!
can be assumed to remain constant throughout the swe
process. Therefore the bulk solvent phase need not be s
lated since its thermodynamic properties can be obtained
using an accurate equation of state. In this paper we use
Carnahan–Starling23 equation of state for hard sphere so
vents. The simulation of gel swelling in the bulk solvent th
reduces to the simulation of the gel phase alone under c
ditions of constant external~bulk solvent! chemical potential,
pressure, and temperature, i.e., in themPT ensemble. At the
start of the simulation the gel phase may contain some o
solvent. To achieve thermal, mechanical and chemical e
librium between the gel and bulk solvent phases in themPT
ensemble, the gel undergoes a number of particle displ
ment, volume-change, and solvent particle insertion/dele
moves. After a sufficient number of such moves, the
approaches swelling equilibrium, i.e., the pressure, and
solvent chemical potential of the gel converge to stable v
ues that are equal to the bulk solvent pressure and chem
potential~the thermal equilibrium condition is trivially satis
fied in an athermal system!.

In this paper, we have combined the DMD techniq
with themPT ensemble Monte Carlo algorithm in such a w
that the DMD technique is used within the framework of t
mPT algorithm to execute the particle displacement and v
ume change moves, while purely Monte Carlo algorith
steps are used for the particle insertion/deletion moves.
method departs from standard phase equilibria technique
which Monte Carlo algorithm steps are used for all thr
types of moves. Our motivation for developing this hybr
method is the following: since the structure of the network
highly constrained and complex, conventional Monte Ca
particle displacement and volume change moves canno
used because they would cause bond breakage and de
tion of the network topology. Thus there is a need for dev
oping alternative techniques/moves for network syste
One solution to this problem is to develop a set of compl
system-specific Monte Carlo particle displacement a
volume-change moves that would preserve the network
pology, as was done by Escobedo and de Pablo.21,22 Our
solution has been to simply use the DMD method~which we
have employed earlier to investigate the dynamics a
pressure–volume properties of networks18,2! to conduct the
displacement and volume-change moves within the fram
work of themPT Monte Carlo algorithm. The idea of com
bining the DMD method with MC techniques is not novel—
for instance a combined DMD–NPT ensemble method w
used by Wilson and Allen35 to investigate liquid crystal for-
mation. This is, however, the first time that such an appro
has been used to study gel swelling. The advantage of
method is that is simple and yet general, so that it can
used to investigate phase equilibria in a variety of co
strained systems.

The details of our simulation technique are as follows.
order to use the DMD technique within the constantmPT
ensemble MC algorithm, we must assign each particle a
locity and calculate particle collision times, just as in
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



to
to
V

-
u
n

b
la
er
s

.

rlo

n/
n
te

e
a
i

dd
be

s
ffi
-
n
in
d
yp
,

ilit
-

g
ie
m
n
th
en
l
bu
he
qu
e

n

en

e

icle
cle
is-
osi-
he
ted,
om

n-
the
t–
the
ge

tions

he
t be
be
of

le

or
ith a

e

nd
r a

ugh
no

the

re
tem
-
ial
ell,

me
ove
em
ac-

m a
res-

408 J. Chem. Phys., Vol. 113, No. 1, 1 July 2000 Kenkare, Hall, and Khan
purely DMD simulation. At first glance, the simplest way
combine the DMD andmPT techniques would perhaps be
replace the particle displacement moves in a regular N
ensemble simulation with DMD events~particle pair colli-
sions or bond stretches!. The drawback to this simple proce
dure is that the time interval between events in a DMD sim
lation is not equal~since the simulation proceeds on a
event-by-event basis!, which in the combinedmPT-DMD al-
gorithm has the effect of introducing a bias which distur
the approach of the system to equilibrium. In our simu
tions, we have avoided this bias in the following mann
The total simulation time is divided into equal time step
which are then grouped into cycles ofNstep time steps each
The system is allowed to begin the DMD simulation~i.e., the
particle displacement steps!. When the simulation time is
equal to the duration of a time step~or a multiple of a time
step!, a Monte Carlo move is attempted. The Monte Ca
move may be either a particle displacement~attempted as a
DMD event!, a volume change or a particle insertio
deletion. The move is accepted or rejected in accorda
with the criteria described in the following paragraphs. Af
the conclusion of the move, the time lists~and particle posi-
tions and velocities if necessary! are recalculated and th
MD simulation is resumed, until the simulation time is equ
to that of the next time step, when the next MC move
attempted. Thus in this procedure, a small number of a
tional DMD particle displacement events are conducted
tween successive MC moves. The actual number of DM
events taking place between MC moves depends on the
of the time step, i.e., if the time step is chosen to be su
ciently small, very few or no DMD events will occur be
tween MC moves. However, the time step must be chose
be large enough that the system approaches equilibrium
finite number of moves. In our simulations, between 0 an
DMD events occurred between MC moves. The specific t
of MC move that is attempted~i.e., particle displacement
volume change or particle insertion/deletion moves! is se-
lected randomly, but in accordance with a preset probab
that ensures that each cycle ofNstepMonte Carlo moves con
sists of Ndisp particle displacement moves,Nvol volume
change moves, andNins particle insertion/deletion moves.

Starting with a dry network or with a gel containin
some solvent, several million Monte Carlo moves are carr
out during the slow approach of the system to equilibriu
The simulation is continued until the pressure of the gel a
the solvent chemical potential converge to stable values
are approximately equal to the corresponding bulk solv
values. After the pressure and solvent chemical potentia
the gel have remained stable about the corresponding
solvent values for several million Monte Carlo moves, t
system is considered to have reached equilibrium. The e
librium state of the gel is described by its pressure, solv
chemical potential, gel packing fraction~which indicates the
magnitude of the volume change due to swelling!, and sol-
vent site fraction, which is defined as the ratio of solve
segments to the total number of segments~network plus sol-
vent! in the gel, and is a measure of the amount of solv
absorbed by the gel.

The details of the three types of simulation moves us
Downloaded 03 Mar 2008 to 152.1.211.43. Redistribution subject to AIP
T

-

s
-
.
,

ce
r

l
s
i-
-

D
ize
-

to
a

4
e

y

d
.
d
at
t

of
lk

i-
nt

t

t

d,

i.e., the particle displacement, volume change and part
insertion/deletion moves are given below. During the parti
displacement moves, the DMD procedure is utilized to d
place the network and solvent beads, keeping the comp
tion and volume of the simulation cell constant. During t
volume change move, a trial volume change is attemp
keeping the composition of the cell unchanged. A rand
number,e, is chosen from the range (2emax,emax), and the
new box volume,Vnew, is taken to be

Vnew5Vold~11e!3, ~5!

whereVold is the old box volume. The positions of the co
stituent molecules must be scaled in accordance with
change in volume of the cell. In conventional constan
pressure simulations of uncrosslinked chainlike systems,
positions of the particles in the box during a volume chan
move can be changed by scaling the center of mass loca
of each chain molecule by~11e!, and moving the whole
chain without altering the intramolecular positions of t
segments. For crosslinked systems, this method canno
used since it would cause the network connectivity to
broken. To get around this problem, we take advantage
the flexibility of the Bellemans bond length and simply sca
the position of each segment by the factor~11e!. The vol-
ume change move is rejected if it results in bond breaking
overlaps between the segments. The move is accepted w
probability equal to min@1,exp(2DH/kBT)#, where DH is
given by

DH5DU1PDV2NtkBT logS Vnew

Vold
D , ~6!

whereDU is the change in internal energy due to the volum
change~equal to zero or infinity for a hard-sphere system!,
DV5Vnew2Vold is the change in volume of the system, a
Nt is the total number of segments in the system. Thus, fo
volume change move to be accepted,DU must be zero, i.e.,
after an attempted volume change, we must search thro
all the particles in the system to ensure that there are
overlaps or broken bonds. The quantityemax is chosen so as
to produce an acceptance ratio36 of 35–50 %. Once the vol-
ume change move is accepted, all the collision times in
system are recalculated and the neighbor lists are reset.

During the particle insertion/deletion move, attempts a
made to insert or delete a solvent molecule from the sys
~with equal probability!, keeping the volume of the simula
tion cell constant. During a particle insertion move, a tr
particle is created at a random position in the simulation c
and the move is accepted36 with a probability equal to
min@1,exp(2DC/kBT)# where

DC5DU2m2 logS V

Ns11D , ~7!

wherem is the chemical potential of the bulk solvent andNs

is the number of solvent molecules. Just as in the volu
change move, the acceptance of a particle insertion m
involves searching through all of the particles in the syst
to ensure that there are no overlaps. Once the move is
cepted, the new particle is assigned a random velocity fro
Gaussian distribution, and all the particle velocities are
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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caled to ensure zero total momentum. During a particle
letion move, a randomly chosen particle is destroyed;
move is accepted with a probability equal to min@1,
exp(2DD/kBT)# where

DD5DU1m1 logS V

Ns
D . ~8!

The particle velocities are then rescaled as before.
The gel pressure and solvent chemical potential

evaluated at regular intervals during the simulation in or
to monitor the approach of the system towards equilibriu
The gel pressure is obtained by evaluating the compress
ity factor from the Clausius virial theorem in the followin
form:

Z5
Nt

Nm
2

m(collr i j •Dvi j

3NmkBTte
, ~9!

whereNt5Ncn1Ns is the total number of beads~network
segments and solvent!, Ns is the number of solvent bead
andNm511Ns is the total number of molecules in the sy
tem. The reduced pressure of the system,P* , is obtained
from the relation,P* 5Ps3/kBT5Z6hNm /pNt . The ex-
cess chemical potential of the solvent in the gel is calcula
using the Widom test-particle insertion method37 in which
we repeatedly attempt to insert a test solvent particle at
dom positions in the gel. For a hard-sphere system, the
cess chemical potential of the solvent in the gel is sim
equal to37 kBT ln(ps

ins), whereps
ins is the ratio of the numbe

of successful test solvent particle insertions to the total nu
ber of attempted test solvent particle insertions. The b
solvent pressure and chemical potential are obtained f
the Carnahan-Starling equation of state for hard-sphere23

and are given by

Ps3

kBT
5

6h

p

~11h1h22h3!

~12h!3 ~10!

and

m5 lnS 6h

p D1
8h29h213h3

~12h!3 , ~11!

where the first term on the right is the ideal contribution
the chemical potential, and the second term is the exc
contribution to the chemical potential~over the ideal!.

The approach of the system towards equilibrium is
tremely slow, particularly at high densities and for large s
tems. This is partly due to the intrinsically slow relaxation
crosslinked systems, and partly due to the technique use
the volume changes. The latter constitutes a bottleneck
large systems since the positions and collision times of
the particles have to be recalculated following a succes
volume change move, and the neighbor lists and time l
have to be reset. As a result, the above volume cha
method becomes unsuitable for systems larger than a
12 000 segments. To give an approximate idea of the C
time for these simulations, the generation of each simula
point ~corresponding to a particular value of pressure a
chemical potential! for our 20-mer and 35-mer networks~of
90 chains each! containing between 750 and 10 000 solve
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particles, required between 150 and 450 CPU hours o
cluster of DEC Alphas with CPU speeds ranging from 125
500 MHz.

The question arises as to whether our combin
DMD–MC technique satisfies the detailed balance conditi

pipi j 5pj pji , ~12!

where pi and pj represent the probabilities of the syste
being in statei and j, respectively, andpi j andpji represent
the transition probabilities from statei to j, and statej to i,
respectively. The purely Monte Carlo based techniques
phase equilibria are known to satisfy the above conditi
provided that the three types of moves~particle displace-
ments, volume changes and particle insertion/deletion! are
carried out in a random order~although the total numbers o
each type of move can be preset!.38 In our method, although
the three types of moves are carried out in a random or
the necessity of incorporating the DMD method into the M
algorithm without introducing any biases associated with
unequal DMD time step has necessitated the carrying ou
a few DMD particle displacement events between M
moves. These DMD events may cause the detailed bala
condition@Eq. ~12!# not to be fulfilled for the following rea-
son: consider that the system is in statei, before an MC
move~say, a volume change! is attempted. The MC move is
attempted, is successful in accordance with the condi
stated in Eq.~6! and the system is now in state,j. In order for
the detailed balance condition@Eq. ~12!# to be satisfied, the
ratio of the transition probabilities,pji ( j→ i )/pi j ( i→ j ),
must be equal to the ratio,pi /pj , i.e., Eq.~6! must be the
sole criterion determining whether the system can go bac
state, i from statej. If a few DMD particle displacements
must occur before a second MC move is attempted, then
transition probability does not depend solely on Eq.~6! but
also on whether the system has moved up to the next t
step after executing an MC move. Hence the detailed bala
condition is not strictly fulfilled. In our systems, the detaile
balance condition will be fulfilled if the time step for the MC
move is chosen to be sufficiently small so that no DM
events occur between attempted MC moves. In that case
transition probabilities depend only on the criteria for vo
ume changes and particle insertions/deletions, and the
tailed balance condition is fulfilled. This is the case for o
smaller systems. For our larger systems however, the ch
of a small MC time step causes a very large increase in
total simulation time, and so we have allowed a few DM
events~0 to 4! to take place between the MC moves. As
result, the microscopic reversibility condition is not satisfi
at every step of the process. We must keep in mind that
fulfillment of the detailed balance condition is a very stro
condition36,38 for the system to reach equilibrium. Previou
studies using hybrid MC–MD35 techniques that do no
strictly satisfy the detailed balance condition have been c
ried out and have resulted in adequate sampling of the c
figuration space and the correct equilibrium distributions.
our work, despite the drawback of not strictly fulfilling th
detailed balance condition, the complexity of network sim
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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lations is such that a combined MC–MD technique such
ours has proved very useful in providing insights into t
phase behavior of these systems.

III. THEORY

In this section, we extend our previously derived equ
tion of state2 for dry athermal networks to the case
network-solvent mixtures, i.e., gels. The basis for our d
network equation of state is the idea~James and Guth39! that
the free energy of a network,Anetwork(h), at any packing
fraction, h, can be taken to be the sum of a liquidlike co
tribution, Aliq(h), which is associated with the interatom
repulsive forces between the network monomers, and
elastic contribution,Aelastic(h), which is associated with the
retractive force exerted by the network chains opposing
work deformation, i.e.,

Anetwork~h!5Aliq~h!1Aelastic~h!. ~13!

In our previous work,2 the liquidlike contribution is given by
the free energy of a dendritic reference polymer which
the same excluded volume as the network, and the ela
contribution is given by a modified version of the affin
model for rubberlike elasticity.

In the case of network-solvent mixtures~gels!, the free
energy of a gel is generally calculated using an appro
which is analogous to that described above for dry netwo
i.e., the gel free energy,Agel~hgel,x), can be evaluated as th
sum of a liquidlike contribution,Amix~hgel,x), which is given
by the free energy of a reference-polymer/solvent mixtu
and an elastic contribution,Aelastic~hgel* ,0), which has the
same form as the dry network elastic free energy contri
tion. The liquidlike contribution to the gel free energy is
function of the gel packing fraction,hgel, and the solvent
mole fraction,x, while the elastic free energy is a function
the solvent-free gel packing fraction alone,hgel* , wherehgel*
[h for the equivalent dry network~i.e., a dry network hav-
ing the same number of network segments and the s
volume as the gel!. Thus the gel free energy is

Agel~hgel,x)5Amix~hgel,x)1Aelastic~hgel* ,0). ~14!

In the following sections, the development of analytic
expressions for the liquidlike and elastic contributions to
gel free energy,Amix~hgel,x), and Aelastic~hgel* ,0), is de-
scribed. The analytical form for the gel free energy is th
employed to predict the gel properties at swelling equilibr
i.e., the solvent fraction and packing fraction of the gel wh
it attains mechanical and chemical equilibrium in an exter
solvent at a given pressure and chemical potential. Since
development of the expression for the gel free energy
based on extending our equation of state for solvent-free
works to the case of mixtures, we begin with an outline
our theory for dry networks.

A. Networks

In this section, we outline our approach to calculati
the elastic and liquidlike contributions to the free energy
dry networks~details are given in Ref.2!. The network is
modelled as a set of interpenetrating dendrimers,2 with each
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branch of a dendrimer representing an ideal, Gaussian
work chain of lengthn. The dendrimers have the same fun
tionality, f as the network. Figure 1 is an example of a sing
such dendritic structure. It consists of concentric layers
branches or chains, and the total number of layers is ca
the rank of the network. The first layer of the dendrime
containsf chains, the second layer containsf ( f 21) chains,
the third layer containsf ( f 21)2 chains, and so on. The tota
number of chains in a dendrimer of rankm is given by

nden5 f F ~ f 21!m21

~ f 22! G . ~15!

The elastic contribution to the network Helmholtz fre
energy is calculated by invoking the analogy between
ideal network chain and a classical elastic spring,40 such that
the spring constant of the ideal network chain is given
kchain53kBT/^R0

2&, where ^R0
2&5nl2 is the mean-square

end-to-end distance of the ideal chain. The effective spr
constant of a dendrimer molecule,kdendrimer, composed of
nden chains can be calculated in terms of the spring cons
of a single chain, i.e., kdendrimer5kchainf ( f 22)@( f
21)(m21)/( f 21)m21#. The network chain-elastic sprin
analogy can be carried further to obtain the elastic free
ergy of the dendrimer as,Adendrimer5kdendrimerD

2/2, whereD2

is the squared spatial dimension or diameter of the dendri
and is given byD252m^R2&, where ^R2& is the mean-
squared end-to-end distance of a dendrimer chain. When
network is deformed from an original volumeV0 to a final
volume,V5l3V0 , wherel is the deformation ratio, the den
drimers are assumed to deform affinely, that is,D25l2D0

2,
whereD0

252ml2^R0
2& denotes the mean-squared spatial

mension of the undeformed dendrimer.
The elastic component of the reduced pressure of

f-functional dendrimer-network of rankm, can be written as2

Pelastic~h!s3

kBT
52

]NDAdendrimer~h!

]V

52
12h0

pn
m~ f 22!2F ~ f 21!~m21!

~~ f 21!m21!2G S h

h0
D 1/3

,

~16!

FIG. 1. Model of a single dendrimer in a network.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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whereND is the number of dendrimers in the network, a
h0 is the packing fraction of the undeformed network. T
determineh0 , we must first define the undeformed state
the network. In our simulations, we started with networks
a packing fraction ofh50.45 and expanded them to succe
sively lower packing fractions ofh50.35,0.25,...,0.05. Thu
the network ath50.45 is the starting point for all expansion
of the system. At this packing fraction~i.e., h50.45! we
found that the mean-squared end-to-end distance of the
work chains is equal to the mean-squared end-to-end
tance of uncrosslinked system chains at the same pac
fraction~shown in Ref. 2!. Hence the configurational entrop
of the network chains at a packing fraction of 0.45 is a
proximately the same as that of the equivalent uncrosslin
system chains at the same packing fraction. At any low
packing fraction~h,0.45!, the mean-squared end-to-end d
tance of the network chains is greater than the mean-squ
end-to-end distance of uncrosslinked system chains, and
configurational entropy of the network chains is lower th
that of the uncrosslinked system chains at that packing f
tion. Based on this, the network is considered to be un
formed at the initial packing fraction ofh050.45 and to be
deformed at all successive lower packing fractions. The
formation ratio of a network at any packing fractionh<h0

can now be defined as

l5lx5ly5lz5Fh0

h G1/3

5F0.45

h G1/3

5F V

V0
G1/3

. ~17!

The liquidlike contribution to the network pressur
Pliq

net, is obtained using an approach based on the genera
Flory–Dimer ~GF–D! theory of Hall and co-workers.41–43

To evaluatePliq
net, we postulate thatPliq

net is equal to the pres
sure of a reference polymer having the same excluded
ume as the network. For our dendrimer-network model,
reference polymer is simply a fluid off-functional dendrim-
ers of rankm. The compressibility factor of the dendrime
fluid is given by2

ZGF–D
net ~h, f !5Fvdendrimer~n,m, f !2ve~1!

ve~2!2ve~1! GZ2~h!

2Fvdendrimer~n,m, f !2ve~2!

ve~2!2ve~1! GZ1~h!, ~18!

where Z1(h) and Z2(h) are the compressibility factors o
fluids composed of hard sphere monomers and dimers
spectively, at the same packing fraction as the dendri
fluid, vdendrimer(n,m, f ) is the excluded volume of a den
drimer of rankm and functionality,f, andve(1) andve(2)
are the monomer and dimer excluded volumes, wh
ve(1)5(4p/3)s3 andve(2)5(9p/4)s3.

The excluded volume of the dendrimer is obtained
treating the dendrimer fluid as a set off-functional star-
centers connected by linear arms~as shown in Fig. 1!, and is
given by
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vdendrimer~n,m, f !5F11
f ~ f 21!~m21!21

~ f 22! Gvcenter~ f !1~n24!

3F f
~~ f 21!m2121!

~ f 22! G~ve~3!2ve~2!!

12 f ~ f 21!~m21!~ve~3!2ve~2!!, ~19!

where vcenter( f ) is the excluded volume of the star cente
and ve(3)59.82605s3 is the excluded volume of a trimer
The excluded volume of the star center is calculated usin
Monte Carlo simulation technique following that of Alejan
dro and Chapela44 and Yethiraj and Hall;45 for a trifunctional
network (f 53), vcenter(3)518.01s60.05s, and for a tet-
rafunctional network (f 54), vcenter(4)523.06s60.03s2.

The compressibility factor of the monomer fluid,Z1(h),
is obtained using the Carnahan–Starling equation of stat23

Z1~h!5
11h1h22h3

~12h!3 ~20!

and the compressibility factor of the dimer fluid is obtain
using the Tildesley–Streett equation of state46

Z2~h!5
11a1h1a2h22a3h3

~12h!3 , ~21!

where a1 , a2 , a3 are constants which take the values,a1

52.456 96,a254.103 86, anda353.755 03.
The liquidlike contribution to the network pressure

obtained from the relation,Pliq
net(h)/kBT[ZGF–D

net ND /V
5ZGF–D

net (h, f )(6h/(ps3ndenn)).
The total reduced pressure of the solvent-free networ

then given by the sum of the elastic pressure@Eq. ~16!# and
the liquidlike pressure@Eq. ~18!#

Pnetwork~h!s3

kBT
5

Pelastic~h!s3

kBT
1

Pliq
net~h!s3

kBT

52
12h0

pn
m~ f 22!2F ~ f 21!~m21!

~~ f 21!m21!2G
3S h

h0
D 1/3

1ZGF–D
net ~h, f !

3
6h

np F ~ f 22!

f ~~ f 21!m21!G . ~22!

B. Gel swelling

In this section, we extend our equation of state
solvent-free networks to the case of gels. Our primary obj
tive is to develop analytical expressions for the gel free
ergy, pressure, and chemical potential which can be use
predict the extent of swelling and the solvent uptake
swelled gels in equilibrium with a bulk hard-sphere solve

Mathematically the conditions for an athermal gel to
in swelling equilibrium with an athermal bulk solvent ma
be written as

Pbulk5Pgel, mbulk
s 5mgel

s , ~23!

wherePbulk andPgel represent the bulk solvent and gel pha
pressures,mbulk

s represents the bulk solvent chemical pote
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tial, andmgel
s represents the solvent chemical potential in

gel phase. We now develop analytical expressions for e
of the terms in the above equation.

The pressure of an athermal gel~an athermal network
swelled with athermal solvent! can be written21,22,5in a form
analogous to Eq.~22!, as the sum of an elastic contributio
and a liquidlike contribution,

Pgel~h,x!s3

kBT
5

Pelastic~h* ,0!s3

kBT
1

Pmix~h,x!s3

kBT
. ~24!

The elastic contribution to the gel pressure,Pelastic(h* ,0), is
calculated on a solvent-free basis, and has exactly the s
form as described in the preceding section for dry netwo
@cf. Eq. ~16!#. The solvent-free packing fraction of the ne
work, h* , is given byh* 5pND(ndenn)s3/6V, whereND is
the number of dendrimer molecules, and (ndenn) is the num-
ber of segments in each dendrimer molecule;h* can also be
written in terms of the solvent mole fraction and gel packi
fraction as h* 5h@(12x)(ndenn)#/@x1(12x)(ndenn)#,
wherex is the solvent mole fraction in the gel.

The liquidlike contribution to the gel pressur
Pmix(h,x), is obtained from the thermodynamic properti
of a mixture of dendrimer and solvent molecules at the sa
packing fraction and composition as the gel, and is evalua
using a simple conformal-solution-type equation, followi
Honnell and Hall.25 For a mixture ofND dendrimer mol-
ecules andNs solvent molecules having the same segm
diameter, the compressibility factor of the mixture,Zmix

[PmixV/kBT(ND1Ns), is given by the mole fraction aver
age of the GF–D compressibility factors of the pure, co
stituent species evaluated at the packing fraction of the m
ture,

Zmix~h,x!5xZs~h!1~12x!ZGF–D
net ~h!, ~25!

whereZs(h) is the compressibility factor of the solvent, an
ZGF–D

net (h) is the compressibility factor of the dendrime
molecule reference polymer system.

The total reduced pressure of the gel is then given by
sum of the elastic and liquidlike contributions to the pre
sure,

Pgel~h,x!]s3

kBT
5

Pelastic~h* ,0!s3

kBT
1

Pmix~h,x!s3

kBT

52
12h0

pn
m~ f 22!2F ~ f 21!~m21!

~~ f 21!m21!2G
3S h*

h0
D 1/3

1Zmix~h,x!
6h

p

3Fn
~ f 22!

~ f ~~ f 21!m21!~12x!1x~ f 22!!G .
~26!

The last term in the above equation is obtained from
expressionPmix5Zmix(ND1Ns)/V where ND and Ns are
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rewritten in terms of the packing fraction,h, and the solvent
mole fraction, x, by using the definitions h
5(p/6)s3(NDndenn1Ns )/V and x5Ns /(ND1Ns). We
now look at how Eq.~23! and Eq.~26! can be used to predic
the phase equilibrium properties of the swelled gel.

Since the bulk solvent in our system is a pure ha
sphere fluid, its thermodynamic properties can be obtai
from the Carnahan–Starling equation of state.23 The pressure
of the bulk solvent is given by Eq.~20!, evaluated at the bulk
solvent packing fraction,hbulk . The chemical potential of the
bulk solvent is given by Eq.~11! evaluated at the bulk sol
vent packing fraction. The thermodynamic properties of
bulk phase remain unchanged as the gel swells.

To obtain the gel properties~i.e., the packing fraction
and solvent mole fraction! at which the swelling equilibrium
conditions in Eq.~23! are satisfied, we must find how the g
phase pressure,Pgel and solvent chemical potential,mgel

s de-
pend on the packing fraction and mole fraction. The press
of the gel phase can be obtained using Eq.~26!. The chemi-
cal potential of the solvent in the gel phase can be evalua
if the Helmholtz free energy of the gel is known as a functi
of the solvent mole fraction,x, at constantV andNk , where
Nk is the number of molecules of other~nonsolvent! species
present:

mgel
s

kBT
5

m id,gel
s

kBT
1

mex,gel
s

kBT

5
]Aid,gel/kBT

]Ns
U

V,T,Nk

1
]Aex,gel/kBT

]Ns
U

V,T,Nk

, ~27!

whereAid,gel andAex,gel are the ideal gas and excess cont
butions to the gel free energy. In our system, since we h
a single-component solvent,Nk is equal to the number o
dendrimer molecules, which always remains constant du
the swelling process~since the solvent is the only migran
species!.

To calculate the solvent chemical potential, we must c
culate the total Helmholtz free energyAid,gel1Aex,gel as a
function of the solvent mole fraction,x, at constant volume
V. From Eq.~14!, we already know that the Helmholtz fre
energy of the gel,Agel(h,x), is the sum of the elastic contri
bution, Aelastic(h* ,0), and the liquidlike contribution
Amix(h,x). The liquidlike contribution to the free energy o
the gel can be calculated as the sum of an ideal compon
Aid,mix and an excess component,Aex,mix. The ideal compo-
nent of the Helmholtz free energy of the gel,Aid,gel, is equal
to the ideal component of the liquidlike contribution to th
gel free energy,Aid,mix , because the elastic contribution
the gel free energy does not contain an ideal component,
becauseAid,mix(h,x) is evaluated at the same packing fra
tion and mole fraction as the gel. Hence, the excess He
holtz free energy of the gel,Aex,gel(h,x) is the sum of the
excess component of the liquidlike free energy contributi
Aex,mix(h,x), and the elastic contribution,Aelastic(h* ,0). We
can now use our expression forZmix ~Eq. 25! to evaluate the
excess component of the liquidlike free energy contributi
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Aex,mix~h,x!

~ND1Ns!kBT
5E

0

h

@Zmix~h8,x!21#
dh8

h8

5E
0

h

@~xZs~h8!1~12x!

3ZGF–D
net ~h8!!21#

dh8

h8

5xE
0

h

~Zs~h8!21!
dh8

h8
1~12x!

3E
0

h

~ZGF–D
net ~h8!21!

dh8

h8
. ~28!

For a pure hard-sphere solvent,Zs(h8) is given by Eq.~20!.
For ZGF–D

net (h8), we use the expression given by Eq.~18!, and
obtain an analytical expression for the excess componen
the liquidlike free energy

Aex,mix~h,x!

~ND1Ns!kBT
5xF4h23h2

~12h!2 G1~12x!

3F 1

~12h!2 S A11A21A3

2 D
2

1

~12h!
~A212A3!2A3 ln~12h!

2S A11A223A3

2 D G , ~29!

whereA1 , A2 andA3 are constants given by

A15~a121!Yn1~a113!,

A25~a221!Yn1~a223!, ~30!

A35~12a3!Yn1~12a3!,

and a1 , a2 , a3 are constants from the Tildesley–Stre
equation of state@Eq. ~21!#, and Yn5(vdendrimer(n,m, f )
2ve(1))/(ve(2)2ve(1)). Theelastic component of the ex
cess free energy of the gel is given by2

Aelastic~h* ,0!53kBTm f~ f 22!F ~ f 21!~m21!

~ f 21!m21 G S h0

h* D 2/3

. ~31!

The chemical potential of the solvent in the gel phase
then

mgel
s 5

]

]Ns
@Aid,mix#V,Nk

1
]

]Ns
@Aex,mix1Aelastic#V,Nk

. ~32!

Since the elastic free energy contribution@Eq. ~31!# depends
only the volume change of the network during swelling, a
is calculated on a solvent free basis, the term,]Aelastic/]Ns is
zero under constant volume conditions. Hence Eq.~32! can
be rewritten as

mgel
s 5

]

]Ns
@Aid,mix#V,Nk

1
]

]Ns
@Aex,mix#V,Nk

. ~33!

Expressingx and h in terms ofNs , i.e., x5Ns /(Ns1ND),
and h5p@Ns1ND(ndenn)#/6V, the termAex,mix can be re-
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written in terms of the single variable,Ns . Taking the de-
rivative of Aid,mix @where Aid,mix5kBT(Ns1ND)ln@(Ns

1ND! /V#21] andAex,mix with respect toNs then yields

mgel
s 5 ln~rs!1Ff h~422h!

~12h!3 1
4h23h2

~12h!2 G1
~12f!h

~ndenn!

3F ~A11A21A3!

~12h!3 2
~A212A3!

~12h!2 1
A3

~12h!G , ~34!

wherers5Ns /V is the number density of the solvent mo
ecules in the gel, andf5(ndenn)x/@(12x)1(ndenn)x# is
the solvent site fraction.

Since we now know the gel pressure and the solv
chemical potential that appear in Eq.~23! in terms of the
packing fraction and mole fraction, we can proceed with o
phase equilibria calculations. Our aim is to calculate
value of the solvent mole fraction,x, and the gel packing
fraction,h, at which the gel pressure and the solvent che
cal potential in the gel equal the predetermined values of
bulk solvent pressure and chemical potential. This is done
adopting the method and numerical techniques of Kenk
et al.,47 as outlined below. At predetermined values of t
bulk solvent pressure,Pbulk we iterate onh at each value of
x ~in increments of 0.000 01!, until we find the packing frac-
tion at which the evaluated pressure,Pgel approachesPbulk

within some toleranced<1026. This gives us a curve forh
versusx at which Pgel equalsPbulk . In order to find out
which value ofh(x) satisfies the criterion,mgel

s 5mbulk
s we

then use Eq.~34! to evaluate the solvent chemical potent
as a function ofx. Whenmgel

s equalsmbulk
s within some tol-

eranced1,1023, the conditions for swelling equilibrium are
satisfied. This method is used to calculate the gel pack
fractions and solvent mole fractions over a range of b
solvent pressures.

IV. RESULTS AND DISCUSSION

In Tables III and IV we present simulation results for th
thermodynamic properties of 20-mer and 35-mer trifun
tional gels that are swelled to equilibrium in a hardsph
solvent. The tables show the reduced pressure and chem
potential of the bulk solvent phase,Pbulk,CS* andmbulk,CS

s ~cal-
culated using the Carnahan–Starling23 equation of state!, and
our simulation results for the reduced pressure and the
vent chemical potential of the gel phase,Pgel* and mgel

s , the
packing fraction of the gel phase,h5p(Ns1Ncn)s3/6V,
the solvent site fraction,f5Ns /(Ns1Ncn), the number of
solvent molecules in the gel,Ns , and the total number o
segments~network and solvent! in the system,Nt . The esti-
mated uncertainties in the gel phase properties were obta
by letting each simulation continue for six or more runs
50–300 million collisions each~depending on the system
size! after the equilibration runs, and calculating the stand
deviation from the properties measured during these ru
We found generally good agreement within the error e
mates between the pressure and chemical potential in
bulk solvent phase and our simulation results for the press
and solvent chemical potential in the gel phase, thus c
firming that the gels had reached swelling equilibrium. Da
was obtained for pressures ranging fromP* 50.1 to P*
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



d

e
9

414 J. Chem. Phys., Vol. 113, No. 1, 1 July 2000 Kenkare, Hall, and Khan

Downloaded 03 M
TABLE III. Equilibrium data for the 20-mer gel. Values for the bulk solvent pressure,Pbulk,CS* , and chemical
potential,mbulk,CS

s , calculated from the Carnahan–Starling~Ref. 23! ~CS! equation of state for hard spheres, an
our simulation results for the gel pressure,Pgel* , solvent chemical potential,mgel

s , gel packing fraction,h,
solvent site fraction,f, the number of solvent molecules in the gel,Ns , and the total number of segments in th
gel, Nt . The values in parentheses indicate the uncertainty in the last digit; for instance a value of 4.9~4! is
equivalent to a value of 4.9960.04.

Pbulk,CS* mbulk,CS
s Pgel* mgel

s h f Ns Nt

0.1 22.09 0.105~4! 22.05~3! 0.106~2! 0.286~4! 721613 2521613
0.5 0.219 0.501~3! 0.216~40! 0.180~1! 0.570~1! 2386610 4186610
1.0 1.73 1.003~4! 1.73~1! 0.239~1! 0.643~1! 3242615 5024615
3.0 5.49 2.98~2! 5.48~4! 0.351~1! 0.698~1! 4160620 5960620
5.0 8.37 4.99~4! 8.38~6! 0.409~1! 0.701~1! 4220620 6020620
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55.0 for the 20-mer gels, and for pressures ranging fr
P* 50.1 toP* 53.0 for the 35-mer gels. We were unable
obtain swelling data for the 35-mer network at pressu
higher thanP* 53.0 owing to computational limitations as
sociated with the large number of solvent molecules in
system ~the 35-mer network atP* 53.0 contained abou
9300 solvent molecules in addition to 3150 network s
ments!.

Figure 2 displays the reduced pressure versus pac
fraction for a pure hard-sphere fluid~from the Carnahan–
Starling equation of state23!, a trifunctional 20-mer gel
swelled to equilibrium in hard-sphere solvent~from our
simulation results, cf. Table III!, and a solvent-free trifunc
tional 20-mer network~from our previously published2 simu-
lation results, cf. Table II!. This plot helps us to compare th
magnitude and trends in the gel properties with the mag
tudes and trends in the pure solvent and network proper
The lines through the 20-mer gel and solvent-free netw
data show our theoretical predictions for the gel~from Sec.
III B ! and for the network@Eq. ~22!#. We see that, at a give
packing fraction, the pressure of the gel always lies betw
the pressures of the bulk-hard-sphere solvent and the
network. The theoretical prediction for the gel packing fra
tion agrees very well with the simulation data.

Figure 3 shows the equilibrium values for the solve
site fraction,f, and the gel packing fraction,h, versus re-
duced gel pressure,Pgel* , for the 20-mer and 35-mer ne
works. Both the solvent site fraction and the gel pack
fraction are observed to increase with pressure. The s
lines show the predictions of our theory for the 20-mer n
work, and the dashed lines show the predictions of
theory for the 35-mer network. The numerical values for o
predictions are shown in Tables V and VI. It is evident th
the theoretical predictions for the packing fraction show
cellent agreement with the simulation results. The the
also shows good agreement with the solvent site frac
ar 2008 to 152.1.211.43. Redistribution subject to AIP
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data, although it overpredicts the solvent site fraction at h
pressures for the 20-mer and the 35-mer networks. The
son for the overprediction off by our theory at high pres
sures is not completely clear; a possible explanation may
that the elastic term@Eq. ~22!# performs poorly at high pres
sures, since the gel is highly deformed~expanded! and the
network chains are considerably extended. As a result
chain vector distribution may deviate significantly from th
Gaussian, causing an increase in the magnitude of the el
contribution to the network pressure, and a decrease in
overall network pressure. A similar and possibly related p
nomenon was observed by us in our previous work on
pressure–volume behavior of dry networks; we observed
when such networks were expanded to very large defor
tion ratios there was a sudden increase in the magnitud
the elastic component of the network pressure~which is
negative!, and our theory~being based on a Gaussian cha
model! was less able to accurately predict the network pr
sure. Similarly, in highly swelled gels, the magnitude of t
negative elastic contribution to the network pressure may
greater than is predicted by our theory, resulting in overp
diction of the gel pressure.

From Fig. 3 and the values in Tables III and IV, w
observe that the equilibrium gel packing fraction of the 3
mer network is slightly lower than that of the 20-mer ne
work at any given pressure, i.e., the pressure of the gel
creases with increasing chain length at any given pack
fraction. This trend is similar to that seen in dry networ
and is accurately predicted by our theory. In an equival
uncrosslinked system~in which the system pressure is give
by the mixing contribution alone!, the pressure decrease
with increasing chain length. To understand why the
pressure should increase with increasing chain length,
necessary to recall that the magnitude of the negative ela
contribution to the gel pressure decreases with increa
chain length at a given packing fraction@cf. Eq.~16!#. This is
TABLE IV. Equilibrium data for the 35-mer gel. Notation as in Table III.

Pbulk,CS* mbulk,CS
s Pgel* mgel

s h f Ns Nt

0.1 22.09 0.100~1! 22.12~2! 0.095~1! 0.325~3! 1517620 4667620
0.3 20.633 0.296 20.65 0.139~1! 0.545~3! 3775645 6925645
1.0 1.73 1.01~1! 1.74~1! 0.236~1! 0.675~1! 6542630 9692630
1.9 3.63 1.92 3.60 0.299~0! 0.732~0! 860065 11 75065
2.94 5.42 2.98~2! 5.48~4! 0.345~1! 0.747~1! 9300650 12 450650
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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because the elastic contribution to the gel pressure a
from the retractive force exerted by the chains opposing
work deformation, which in turn is related to the ratio of th
end-to-end distance of the network chains to their maxim
extended length.2 At a given packing fraction or deformatio
ratio, the ratio of the end-to-end distance of a network ch
to its maximum extended length is greater for the chains
short chain-length network than for the chains in a lo
chain-length network. Hence the short network chain und
goes a greater loss of configurational entropy than a l
network chain at a given network deformation ratio, and
erts a correspondingly greater retractive force on the
work. Thus, the magnitude of the retractive force exerted
the chains increases with decreasing chain length at a g
deformation ratio. The corresponding negative elastic con

FIG. 2. Reduced pressure,P* 5Ps3/kBT, versus packing fraction,h, for
~1! a pure hard-sphere fluid,~2! a 20-mer trifunctional gel, and~3! a 20-mer
solvent-free trifunctional network. The lines through the gel and netw
data points represent our theoretical predictions.

FIG. 3. Simulation results for the solvent site fraction,f, and the packing
fraction, h, of the gel versus reduced pressure,P* 5Pgels

3/kBT for the
20-mer and 35-mer networks. The solid lines represent our theoretical
dictions for the 20-mer network, and the dashed lines represent our the
ical predictions for the 35-mer network.
Downloaded 03 Mar 2008 to 152.1.211.43. Redistribution subject to AIP
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bution to the pressure increases in magnitude also, cau
the total pressure of the gel to decrease with decreasing c
length.

From Fig. 3 and Tables III and IV, we also observe th
the equilibrium value of the solvent site fraction increas
with increasing chain length at a given pressure and b
solvent chemical potential. We can understand why this is
by returning to the chemical potential equilibrium conditio
@Eqs.~23! and ~27!#.

mbulk
s 5mgel

s 5m id,gel
s 1mex,gel

s , ~35!

wherem id,gel
s andmex,gel

s are the ideal and excess compone
of the chemical potential of the solvent in the gel. At a giv
value of the bulk solvent pressure and chemical potential,
solvent chemical potentials in a 20-mer and 35-mer ge
swelling equilibrium are both equal tombulk

s although the
magnitudes of the individual ideal and excess chemical
tential contributions are not the same. The ideal compon
of the solvent chemical potential is given bym id,gel

s

[kBT log(rs)5kBT log(hf), wherers is the number density
of the solvent molecules. The excess component of the
vent chemical potential is calculated using the relat
mex,gel

s [2kBT log(rs
ins), whereps

ins is the probability of in-
serting a test solvent molecule into the gel. Now we s
earlier that at a given bulk solvent pressure or chemical
tential, the equilibrium packing fraction of the gel decreas
with increasing chain length, i.e., the packing fraction of t
20-mer gel at swelling equilibrium is higher than the packi
fraction of the 35-mer network under the same conditio
Therefore we expect that it will be more difficult to insert
solvent molecule into the 20-mer gel than into the 35-mer
at that bulk pressure or chemical potential, and therefo
ps

ins(20),ps
ins(35). Hence the excess solvent chemical p

tential of the 20-mer gel will be higher than that of the 3
mer gel, i.e.,mex,gel

s (20).mex,gel
s (35). Since both the 20-me

k

e-
et-

TABLE V. Comparison between our simulation results and our theoret
prediction for the 20-mer gel. Simulation data for the gel packing fracti
h, and solvent site fraction,f, and our theoretical predictions,h theory and
f theory.

Pbulk,CS* mbulk,CS
s h f h theory f theory

0.1 22.09 0.106~2! 0.286~4! 0.102 0.283
0.5 0.219 0.180~1! 0.570~1! 0.180 0.551
1.0 1.73 0.239~1! 0.643~1! 0.237 0.634
3.0 5.49 0.351~1! 0.698~1! 0.349 0.716
5.0 8.37 0.409~1! 0.701~1! 0.405 0.745

TABLE VI. Comparison between our simulation results and our theoret
prediction for the 35-mer gel. Simulation data for the gel packing fracti
h, and solvent site fraction,f, and our theoretical predictions,h theory and
f theory.

Pbulk,CS* mbulk,CS
s h f h theory f theory

0.1 22.09 0.095~1! 0.325~3! 0.089 0.365
0.3 20.633 0.139~1! 0.545~3! 0.136 0.559
1.0 1.73 0.236~1! 0.675~1! 0.232 0.709
1.9 3.63 0.299~0! 0.732~0! 0.295 0.760
2.9 5.42 0.345~1! 0.747~1! 0.343 0.779
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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and 35-mer gels are at the same total chemical potential
ideal component of the 20-mer solvent chemical poten
must be lower than that of the 35-mer,m id,gel

s (20)
,m id,gel

s (35). Using the previously given expression for ide
chemical potential, we can write

kBT log@h~20!f~20!#,kBT log@h~35!f~35!#

⇒ f~20!

f~35!
,

h~35!

h~20!
. ~36!

Since the packing fraction of the 35-mer gel is lower than
packing fraction of the 20-mer gel, i.e.,h~35!/h~20!,1, we
conclude thatf~20!/f~35!,1 at a given pressure and chem
cal potential, or that the solvent site fraction for the 20-me
lower than that of the 35-mer. Hence the solvent site fract
decreases with chain length at constant pressure and ch
cal potential.

We investigate the change in thermodynamic proper
of the gel during evolution of the system from a solvent-fr
network to a swollen gel in mechanical and chemical eq
librium with the bulk solvent by adopting the approach us
by Escobedo and de Pablo. We conducted a set of sim
tions of the gel in which the gel pressure is held constant
equal to the bulk solvent pressure. Within this set of simu
tions at a given pressure, the solvent site fraction is increa
incrementally from zero~dry network! to fequil, the solvent
site fraction at swelling equilibrium at that pressure. For ea
individual simulation run within the set, the solvent site fra
tion is kept constant. Two values of the bulk solvent press
are chosen,Pbulk* 50.5 and 1.0. Each simulation data poi
was obtained by starting with a dry network~f50! at a
network pressure equal to one of the selected bulk solv
pressure values, inserting a fixed number of solvent m
ecules into the network, and letting the gel relax to its fin
volume keeping the pressure constant~an NPT simulation!.
Table VII displays our simulation results for the gel packi
fraction for the two sets of runs conducted atP* 50.5 and
P* 51.0, both for the 20-mer network. At each value off,
the table shows the gel packing fraction,h, the deformation
ratio, l, and the mean-squared end-to end distance of
network chains,̂ R2&/s2.

Figure 4 shows the simulation results for the gel pack

TABLE VII. NPT-ensemble simulation results for the evolution of the pac
ing fraction,h, the deformation ratio,l, and the chain mean-squared end
end distance,̂R2&/s2, for the 20-mer gel at various solvent site fraction
f, as the network swells to its equilibrium state atP* 50.5 andP* 51.0.

P* f h l ^R2&/s2

0.5 0.0 0.250 1.216 41.12
0.5 0.114 0.234 1.293 44.82
0.5 0.205 0.222 1.367 48.24
0.5 0.400 0.199 1.556 56.79
0.5 0.567 0.179 1.798 68.15

1.0 0.0 0.302 1.142 36.92
1.0 0.114 0.293 1.200 40.08
1.0 0.205 0.283 1.259 42.75
1.0 0.283 0.275 1.316 45.31
1.0 0.400 0.261 1.421 50.63
1.0 0.645 0.239 1.743 63.98
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fraction, h, versus the solvent fraction,f, at P* 50.5 and
P* 51.0, as obtained from Table VII. The data points rep
sented by squares are the equilibrium swelling values for
packing fraction and solvent fraction at that bulk pressu
and the data points represented by the filled triangles~at
f51.0! are the pure solvent packing fractions~obtained us-
ing the Carnahan–Starling equation of state!.23 The gel pack-
ing fraction decreases continuously as the solvent frac
increases, i.e., as the gel absorbs solvent@due to the chemica
potential gradient!, its volume increases in order to mainta
the gel pressure constant, thus resulting in a decreas
packing fraction. For all values off at a given pressure, th
value ofh lies between the dry network packing fraction~at
f50! and the bulk solvent packing fraction~at f51.0!#. The
lines in the figure represent our theoretical predictions wh
show good overall agreement with the simulation data.

Finally we examine the structural characteristics of t
network chains in an effort to ascertain the validity of t
affine assumption. The affine assumption states that when
gel swells, the end-to-end vectors of the individual cha
deform proportionally with macroscopic deformation, i.e
^R2&}l2, where^R2& is the mean-squared end-to-end d
tance of the network chains. This assumption was first e
ployed in the affine network model of Flory and Wall, and
the phantom model of James and Guth, where it was use
describe the deformation of ‘‘phantom’’ network chains, i.
chains for which the excluded-volume condition is n
glected. Due to its simplicity, most subsequent theories
rubber elasticity, including ours, have used the affine
sumption. The validity of the affine assumption is examin
in Fig. 5, which displays the scaled mean-squared end-to-
distance of the network chains,^R2&/s2 as calculated in
Table VII versusl2, on a logarithmic scale~which is useful
for deducing the scaling exponents!. The dashed line repre
sents the affine assumption prediction and the solid lines

FIG. 4. Simulation results for the gel packing fraction,h, versus the solvent
fraction,f, as the gel evolves towards swelling equilibrium. Data are sho
for P* 50.5 andP* 51.0. The data points marked by squares represent
equilibrium swelling solvent and packing fractions, and the data po
marked by solid triangles represent the pure solvent packing fraction@evalu-
ated from the Carnahan–Starling equation of state~Ref. 23!#. The lines
represent our theoretical predictions.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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linear regression fits through the simulation data. It appe
that the affine scaling is not followed either atP* 50.5 or at
P* 51.0. In fact, the data at both pressures appears to fo
the considerably weaker scaling of^R2&}l2g, where g is
considerably less than 1. The value ofg is 0.643 for the
20-mer network and 0.639 for the 35-mer network. Th
could be several reasons for the failure of the affine assu
tion in these real networks: the constraints imposed by
excluded volume of the network chains on the chain de
mation, the presence of trapped or temporary entanglem
~this is relatively unlikely since we are working with low
molecular weight systems!, and the damping effect of sol
vent molecules.

V. CONCLUSION

In this paper, a combined DMD–MC technique has be
used to investigate the swelling of polymer gels. A simp
analytical, mean-field theory has been proposed to pre
the swelling properties of athermal gels, based on trea
the free energy of the gel as the sum of the free energy
reference polymer-solvent mixture and an elastic free ene
contribution.

Our theory performs extremely well in predicting the g
packing fraction at swelling equilibrium, and fairly well i
predicting the solvent fraction. The success of the theor
remarkable considering the simplicity of our elastic free e
ergy term, which is basically an affinelike term that does
account for excluded volume, entanglements, etc. We
tribute the success of our theory largely to an appropr
choice of the reference-polymer system that provides ac
rate predictions for the liquidlike contribution to the g
properties.

The DMD–MC technique is a simple, general, and fai
efficient method for investigating gel swelling. The couplin
of the DMD technique with the gel swelling MC algorithm
obviates the necessity for complex, network-specific M
moves that would otherwise be required in a purely M

FIG. 5. Simulation results for the mean-squared end-to-end distance o
network chains,̂R2& versus the squared macroscopic deformation ratio,l2,
for the 20-mer network chains, atP* 50.5 ~stars! andP* 51.0 ~circles!. The
solid lines represent linear regression fits to the data, and the dashed
represents the affine model prediction.
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network simulation. The efficiency of the combined tec
nique is an important point in its favor, since the swellin
process requires extremely large equilibration periods. Ho
ever, despite the efficiency of our code, we found it diffic
to simulate the swelling of long chain length networks~chain
lengths of 50 or more!. Part of the difficulty lies in the fact
that the system size grows rapidly with the swelling of t
gel; for instance, a 35-mer dry network of 90 chains~3150
segments! absorbs more than 9000 solvent particles dur
swelling at a pressure,P* 53.0, resulting in a fairly large
system of about 12 000 segments.

The primary significance of this work lies in the fact th
it shows that a simple theoretical approach can capture
main features of gel swelling. In addition, it provides prev
ously unavailable simulation data for the swelling of trifun
tional, continuous-space gels. We consider this study to b
starting point for detailed investigations of gel swelling, wi
possible future studies including the investigation of t
swelling of networks with temperature dependent interact
potentials, the study of gel swelling in solvent mixtures, t
examination of the effects of solvent size and structure,
of network structure~for example, the influence of networ
functionality, and structural irregularities! on the swelling
properties of gels.
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