Surface passivation of n-GaN by nitrided-thin-Ga₂O₃/SiO₂ and Si₃N₄ films

Choelhwyi Bae, Cristiano Krug, and Gerald Lucovsky^{a)}
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

Arpan Chakraborty and Umesh Mishra

Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106

(Received 22 March 2004; accepted 24 May 2004)

The electrical characteristics of n-GaN/nitrided-thin-Ga $_2$ O $_3$ /SiO $_2$ and n-GaN/Si $_3$ N $_4$ metal-insulator-semiconductor (MIS) capacitors have been compared, and the work-function difference $\phi_{\rm ms}$ and effective dielectric-fixed charge density $Q_{\rm f,eff}$ have been determined. Oxide samples showed lower interface trap level density $D_{\rm it}$, lower leakage current, and better reproducibility compared to the nitride samples. The superior properties of the oxide samples are partially attributed to the nitrided-thin-Ga $_2$ O $_3$ layer (\sim 0.6-nm-thick). $\phi_{\rm ms}$ and $Q_{\rm f,eff}$ were determined, respectively, as 0.13 V and $1.0\times10^{12}~q$ cm $^{-2}$ in oxide and 0.27 V and $-3.6\times10^{11}~q$ cm $^{-2}$ in nitride samples using flatband voltage versus dielectric thickness data. True dielectric-fixed charge density and location of the major amount of fixed charge are discussed based on $Q_{\rm f,eff}$, $D_{\rm it}$, and spontaneous polarization of n-GaN. © 2004 American Institute of Physics. [DOI: 10.1063/1.1772884]

I. INTRODUCTION

Gallium nitride/insulator interfaces have been investigated for application in GaN-based metal-insulator-semiconductor field effect transistors (MISFETs) and AlGaN/GaN high electron mobility transistors (HEMTs). ¹⁻³ Many researchers have reported promising *n*-GaN/insulator interfaces showing a reduced interface trap level density $D_{\rm it}$ as compared to MIS structures on other compound semiconductors (Ref. 1 and references therein). Among the promising insulating materials on GaN—mainly formed by plasma-assisted amorphous film deposition, epitaxial film growth, and oxidation of the GaN surface—SiO₂ and Si₃N₄ are potentially the most valuable as they have supported the Si-based MIS device industry.

The electrical properties reported for $n\text{-}\mathrm{GaN/SiO}_2$ and $n\text{-}\mathrm{GaN/Si}_3\mathrm{N}_4$ structures depend on GaN surface preparation and insulating film deposition method and gave rise to controversy concerning Fermi level pinning at the $n\text{-}\mathrm{GaN/SiO}_2$ interface (Ref. 1 and references therein). When the oxide layer is formed by deposition rather than oxidation of the substrate, the cleaning method of the GaN surface is crucial for a reproducible interface featuring low D_{it} , because that very surface, buried under the deposited layer, becomes the GaN/dielectric interface. While the investigated and established *in situ* cleaning methods of the GaN surface have been successfully applied for surface studies of GaN and metal contacts in ultrahigh vacuum (UHV), most dielectrics in GaN-based MIS structures have been deposited after ex situ wet chemical treatment.

Ex situ or in situ removal of the air-grown native oxide on GaN does not guarantee the absence of an interfacial oxide in the n-GaN/SiO $_2$ structure because the presence of oxidant and excitation during processing very often leads to parasitic oxide growth on the substrate surface. During

plasma-assisted SiO_2 deposition, a N_2 -plasma-treated, nearly oxygen-free (oxygen coverage below 0.1 monolayer) n-GaN substrate was slightly consumed by plasma-activated oxygen species that diffused through the thickening SiO_2 layer and oxidized the underlying substrate; online Auger-electron spectroscopy (AES) indicated a \sim 0.7-nm-thick subcutaneous oxide. Hashizume et al. ascribed poor capacitance-voltage (C-V) characteristics of GaN/SiO_2 structures to unexpected and uncontrollable oxidation of the GaN surface during plasma-assisted SiO_2 deposition. Interface defects in GaN/SiO_2 MIS structures thus depend (among other factors) on the uncontrolled formation of interfacial gallium oxide during SiO_2 deposition and postdeposition annealing steps.

The GaN/Si₃N₄ structure has been the first choice when substrate oxidation is to be completely avoided. In GaN/Si₃N₄ MIS capacitors (MIS-Cs), reduced D_{it} was obtained by a NH₄OH cleaning followed by electron cyclotron resonance (ECR) N₂-plasma treatment.³ However, Si₃N₄ appears to be a worse candidate than SiO₂ to gate dielectric due to trap levels in the lower half of the band gap as well as a small band offset with respect to GaN. Moreover, the n-GaN/Si₃N₄ interface does show a small amount of residual gallium oxide (oxygen coverage below 0.5 monolayer) after a conventional wet cleaning followed by nitride deposition.⁵

Parasitic oxidation of GaN during plasma-assisted SiO₂ deposition has been prevented by intentional plasma-assisted oxidation of the substrate prior to dielectric deposition. 4 Such two-step process at 300 °C—(i) remote-plasma-assisted oxi-(RPAO) form an interfacial dation to (~0.6 nm thick) and (ii) remote-plasma-enhanced chemicalvapor deposition (RPECVD) to deposit SiO₂—significantly reduced interfacial trapping as compared to single-step SiO₂ deposition. 4 The RPAO process at low temperature also provides in situ surface cleaning, e.g., reducing the level of residual carbon.

a)Electronic mail: gerry_lucovsky@ncsu.edu

Of relevance to the electrical characterization of Algated MIS structures on n-GaN, the metal-semiconductor work-function difference $\phi_{\rm ms}$ has been chosen as 0 V by assuming that the work function of Al and n-GaN are both 4.1 eV. Theoretical C-V curves for Al-gated n-GaN MIS-Cs have been drawn under that assumption. Although an accurate value of $\phi_{\rm ms}$ must be known to determine the dielectric-fixed charge density $Q_{\rm f}$ and little is known about the work function of GaN, there has been no effort to measure $\phi_{\rm ms}$ for Al-gated MIS structures on n-GaN.

Assuming negligible dielectric-trapped charge density $Q_{\rm ot}$ and mobile dielectric charge density $Q_{\rm m}$ in a MIS structure, the flatband voltage $V_{\rm FB}$ is given by $^{7.8}$

$$V_{\rm FB} = \phi_{\rm ms} - \frac{Q_{\rm f} + Q_{\rm it}(\psi_{\rm s}) + Q_{\rm pol}}{C_{\rm ox}} = \phi_{\rm ms} - \frac{Q_{\rm f,eff}}{\varepsilon_{\rm ox}} t_{\rm ox}, \tag{1}$$

where $Q_{\rm f}$ is the dielectric-fixed charge density, $Q_{\rm it}$ is the interface-trapped charge density, $\psi_{\rm s}$ is the semiconductor band bending, $Q_{\rm pol}$ is the polarization charge density, $C_{\rm ox}$ is the accumulation capacitance per unit area ($C_{\rm ox} = \varepsilon_{\rm ox}/t_{\rm ox}$, where $\varepsilon_{\rm ox}$ is the permittivity of SiO₂ and $t_{\rm ox}$ the equivalent SiO₂ thickness of the dielectric), and $Q_{\rm f,eff}$ is the effective dielectric-fixed charge density. After measurement of $V_{\rm FB}$ as a function of $t_{\rm ox}$, $\phi_{\rm ms}$, and $Q_{\rm f,eff}$ can be obtained from a linear fit to the experimental data; the intercept at the $V_{\rm FB}$ axis is $\phi_{\rm ms}$, and the slope is $-Q_{\rm f,eff}/\varepsilon_{\rm ox}$. If $Q_{\rm f,eff}$ results from different types of charging, possible compensation effects must be considered to extract $Q_{\rm f}$. In particular, $Q_{\rm pol}$ has been ignored in the analysis of MIS-Cs on GaN.

In their wurtzite structure, group III nitrides show spontaneous polarization along the [0001] direction, which induces bound surface/interface charges and gives rise to a strong internal electric field. The spontaneous polarization in GaN leads to a negative-bound charge at the Ga face and a positive-bound charge at the N face. Epitaxial GaN layers grown by metal organic chemical-vapor deposition (MOCVD), as in this work, are typically Ga face. The theoretical value for the spontaneous polarization $P_{\rm sp}$ of GaN is -0.029 C m⁻², corresponding to a bound charge density of $-1.73 \times 10^{13} q \text{ cm}^{-2}$ (where q is the elementary charge, 1.6022×10^{-19} C) at the Ga face. Piezoelectric polarization, which occurs in group III nitrides in addition to the spontaneous polarization, can be neglected if the GaN layer is above a critical thickness. In most previous reports on Algated n-GaN/SiO₂ MIS structures, the measured $V_{\rm FB}$ is close to 0 V, and the reported Q_f is on the order of $10^{11} q \text{ cm}^{-2}$. This indicates that $Q_{\rm pol}$ has been ignored despite its recognized and key effect in GaN/AlGaN heterostructures, because neutralization of the theoretical negative-bound charge requires ~100 times higher positive-charge density. Matocha et al. reported on Q_{pol} in n-GaN-based MIS structures. An observed positive shift of V_{FB} with increasing temperature was attributed to changes in Q_{pol} ; however, there was no consideration of Q_{pol} itself. In the Al/SiO₂/GaN/Al_{0.4}Ga_{0.6}N/GaN heterojunction MIS structure studied by Chen *et al.*, 10 a wide *C-V* hysteresis window and a positive V_{FB} shift corresponding to a charge density of $-2.9 \times 10^{12} \ q \ \mathrm{cm}^{-2}$ were attributed to Q_{pol} .

The surface passivation of AlGaN is emerging as an important issue in AlGaN/GaN (HEMT) applications. Frequency-dependent current degradation attributed to trap levels between gate and drain was almost eliminated in devices incorporating $\mathrm{Si}_3\mathrm{N}_4$ or SiO_2 . Also, increased charge density in two-dimensional electron gases (2DEGs) was obtained by surface passivation of AlGaN using $\mathrm{Si}_3\mathrm{N}_4$ and SiO_2 layers. Although the analysis of AlGaN-based MIS structures can be expected to be more complex than that of their GaN counterparts, it seems to be clear that the latter constitutes the basic research tool to understand the former.

We report the electrical characteristics of Al-gated n-GaN/nitrided-thin Ga_2O_3/SiO_2 and n-GaN/ Si_3N_4 MIS-Cs as determined by C-V, ac conductance, and current-voltage (I-V) measurements. For conciseness, we refer to these structures as "SiO₂" and "Si₃N₄" samples. SiO₂ samples feature a three-step process designed for optimal interface formation—RPAO followed by remote-plasma-assisted nitridation (RPAN) and SiO₂ deposition—whereas Si₃N₄ samples feature the conventional single-step dielectric deposition on wet-etched substrate. We determine $D_{\rm it}$, $\phi_{\rm ms}$, and $Q_{\rm f,eff}$, for both sets of samples, discuss the results based on interface structure, and consider the effect of $Q_{\rm pol}$ on our findings.

II. EXPERIMENTAL PROCEDURE

A homoepitaxial Fe-doped insulating GaN/unintentionally doped GaN/Si-doped GaN structure was grown on sapphire by MOCVD. The thickness of the Si-doped GaN epilayer was $\sim 1~\mu m$, and its bulk carrier density was $3.3\times 10^{17}~\rm cm^{-3}$. The *n*-GaN substrates were etched in NH₄OH/H₂O 1:5 solution at 80 °C for 15 min prior to introduction in the processing tool.

For the ${\rm SiO_2}$ samples, the as-loaded n-GaN substrate was oxidized by remote ${\rm O_2/He}$ plasma at 0.3 Torr for 30 s to form a thin superficial ${\rm Ga_2O_3}$ layer, which was then nitrided by remote ${\rm N_2/He}$ plasma at 0.3 Torr for 90 s. ${\rm SiO_2}$ films were deposited by RPECVD using ${\rm SiH_4}$ (2% in He) and an ${\rm O_2/He}$ gas mixture at 0.3 Torr. $^{4.5,14,15}$ For the ${\rm Si_3N_4}$ samples, the dielectric was directly deposited on wet-etched GaN by RPECVD using ${\rm SiH_4}$ (2% in He) and an ${\rm N_2/He}$ gas mixture at 0.2 Torr. 14 In all remote plasma processing, the substrate temperature was 300 °C and radio frequency (rf) power was 30 W at 13.56 MHz.

After ${\rm SiO_2}$ or ${\rm Si_3N_4}$ deposition, the samples were rapid-thermal annealed at 900 °C for 30 s in Ar atmosphere. A 300-nm-thick Al layer was evaporated onto the samples and defined by a conventional lithographic process. Postmetallization annealing (PMA) was performed at 400 °C for 30 min in forming gas (${\rm N_2/H_2}$). The electrical properties of MIS-Cs on *n*-GaN were investigated using HP 4284A and 4140B meters. The area of the devices under test was $(1-4)\times 10^{-4}~{\rm cm^2}$.

III. RESULTS AND DISCUSSION

A. Interface trap level density

Figure 1 displays measured and simulated C-V characteristics of (i) a SiO_2 and (ii) a Si_3N_4 sample. Contrary to their SiO_2 counterparts, Si_3N_4 samples showed a large run-

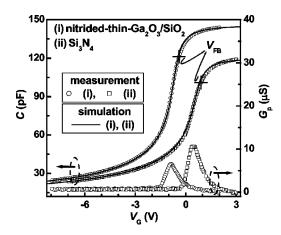


FIG. 1. Measured and simulated C-V curves for Al-gated (i) $n\text{-}GaN/\text{nitrided-thin-}Ga_2O_3/\text{Si}O_2$ and (ii) $n\text{-}GaN/\text{Si}_3N_4$ MIS-Cs at 25 °C and 1 MHz; t_{ox} and V_{FB} are (i) 9.4 nm and -0.4 V and (ii) 11.4 nm and 0.9 V, respectively. Also shown is parallel conductance.

to-run variation. Optimal Si₃N₄ samples were chosen for comparison with SiO₂ in this article. The equivalent SiO₂ thicknesses t_{ox} are (i) 9.4 and (ii) 11.4 nm. C-V curves were acquired at 1 MHz, at room temperature, in the dark, and with the gate voltage V_G being swept from positive to negative. In the evaluation of expressions for the theoretical C - V curves, ^{7,16} the same fundamental constants as in a previous report⁶ were used. Because MIS-Cs on the wide-bandgap n-GaN showed deep depletion instead of inversion, the net donor concentration $N_{\rm D}$ in the semiconductor substrate was obtained as 4.2×10^{17} cm⁻³ for both samples from data fitting to the partial range of the C-V characteristics in which $1/C^2$ -V is linear, as shown in Fig. 2. Simulated ideal (i.e., without considering oxide or interface defects) C-V curves were shifted along the voltage axis until they showed good agreement with the measured data.

The C-V data obtained from the $\mathrm{Si}_3\mathrm{N}_4$ sample shows larger deviation from the simulated curve. Discrepancies are attributed to stretch-out of the experimental data along the V_{G} axis due to changes in the occupancy of interface states. In the negative V_{G} direction starting at a point below V_{FB} , the measured C-V data are intrinsically well described by the

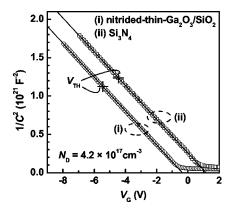


FIG. 2. Plot of $1/C^2$ versus $V_{\rm G}$ data for Al-gated (i) n-GaN/nitrided-thin-Ga₂O₃/SiO₂ and (ii) n-GaN/Si₃N₄ MIS-Cs. Net doping concentration N_D obtained from the slopes is 4.2×10^{17} cm⁻³ for both samples. Threshold voltages $V_{\rm TH}$ are (i) –5.3 V and (ii) –4.4 V. Both samples clearly show deep depletion below $V_{\rm TH}$. Symbols are experimental data, lines are fit to the data.

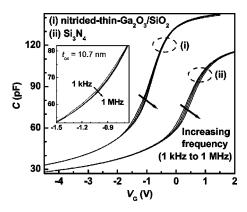


FIG. 3. Frequency dependence of the C-V characteristics of the MIS-Cs that originated Fig. 1. The inset displays data from the n-GaN/nitrided-thin-Ga₂O₃/SiO₂ MIS-C showing the lowest D_{it} among the samples fabricated.

simulated curves because interface states cannot follow changes in $V_{\rm G}$ quasi-statically. The measured $V_{\rm FB}$ is (i) $-0.4~\rm V$ for the SiO $_2$ and (ii) 0.9 V for the Si $_3\rm N_4$ sample. Such $V_{\rm FB}$ data is used in the next section to determine $\phi_{\rm ms}$ and $Q_{\rm f,eff}$.

Figure 1 also shows the measured parallel conductance G_p for both SiO_2 and $\mathrm{Si}_3\mathrm{N}_4$ samples, evidencing clear peaks of interface trap loss and negligible dielectric loss. The conductance peak of the $\mathrm{Si}_3\mathrm{N}_4$ sample is about 1.5 times higher than that of the SiO_2 sample. Because these samples showed similar values of series resistance ($\sim 200~\Omega$) and C_{ox} , D_{it} is nearly proportional to the measured conductance peak height.

We refrain from estimating D_{it} using the Terman method. The N_D for n-GaN in MIS-Cs was obtained by fitting the measured C-V data. In this case, stretch-out due to changes in the occupancy of interface traps can be misinterpreted as increased doping concentration, also leading to the underestimation of D_{it} as determined by the Terman method. The high-low frequency C-V and ac conductance methods 16 were used to extract a more reliable D_{it} , within their limitations when applied to n-GaN MIS devices. 18,19

Figure 3 shows the frequency dependence (1, 10, 100 kHz and 1 MHz) of the C-V characteristics of the (i) SiO_2 and (ii) $\mathrm{Si}_3\mathrm{N}_4$ samples that originated Fig. 1. The inset displays C-V characteristics of the sample showing the lowest interface trap level density among the SiO_2 samples fabricated. In the high-low frequency C-V method, D_{it} as a function of gate voltage is calculated from 16

$$D_{\rm it} = \frac{C_{\rm ox}}{q} \left(\frac{C_{\rm lf}/C_{\rm ox}}{1 - C_{\rm lf}/C_{\rm ox}} - \frac{C_{\rm hf}/C_{\rm ox}}{1 - C_{\rm hf}/C_{\rm ox}} \right),\tag{2}$$

where $C_{\rm lf}$ is the capacitance measured at low frequency ($f=1~{\rm kHz}$) and $C_{\rm hf}$ is the capacitance measured at high frequency ($f=1~{\rm MHz}$). In our samples, the actual $D_{\rm it}$ is higher than estimated using this method because 1 kHz is not sufficiently low to allow the response of slow interface traps. The $V_{\rm G}$ at which high- and low-frequency C-V curves show the maximum capacitance difference $\Delta C_{\rm max}$ corresponds to an energy level at which $D_{\rm it}$ can be extracted without severe underestimation. The extracted $D_{\rm it}$ rapidly decreases below $V_{\rm G}(\Delta C_{\rm max})$ because, as noted earlier,

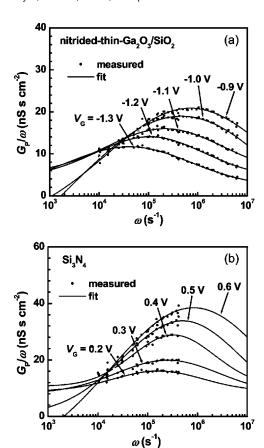


FIG. 4. Parallel conductance $G_{\rm p}/\omega$ versus angular frequency ω from (a) n-GaN/nitrided-thin-Ga₂O₃/SiO₂ and (b) n-GaN/Si₃N₄ MIS-Cs. Points are experimental data; lines are Gaussian fit to the data.

interface states cannot follow changes in $V_{\rm G}$ quasi-statically and thus become undetected. The D_{it} from ΔC_{max} is 4 $\times 10^{11}$ cm⁻² eV⁻¹ at V_G =-1.1 V for the SiO₂ sample and 9 $\times 10^{11}$ cm⁻² eV⁻¹ at V_G =0.4 eV for the Si₃N₄ sample. We present the energy distribution of D_{it} according to the highlow frequency method after considering ac conductance measurements.

Figure 4 displays parallel conductance $G_{\rm p}/\omega$ versus angular frequency $\omega = 2\pi f$ curves at selected gate voltages. From the graphically determined standard deviation of band bending $\sigma_{\rm s}$ and universal function $f_{\rm D}$ as a function of $\sigma_{\rm s}$, the $D_{\rm it}$ of each sample was extracted using ¹⁶

$$D_{\rm it} = \left(\frac{G_{\rm p}}{\omega}\right)_{\rm fp} [qf_{\rm D}(\sigma_{\rm S})]^{-1},\tag{3}$$

where f_p is the frequency corresponding to the peak value of $G_{\rm p}/\omega$. The determined values of $f_{\rm D}$ were 0.18–0.20 for the

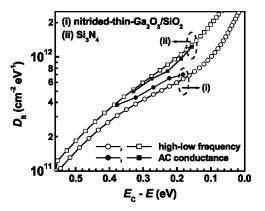


FIG. 5. Interface trap level density Dit for (i) n-GaN/nitrided-thin ${\rm Ga_2O_3/SiO_2}$ and (ii) $n{\rm -GaN/Si_3N_4}$ MIS-Cs as determined using the ac conductance and high-low frequency C-V methods.

 SiO_2 and 0.19–0.24 for the Si_3N_4 sample. The D_{it} from the ac conductance and high-low frequency C-V methods is shown in Fig. 5 as a function of energy relative to the GaN conduction band edge $E_{\rm C}$. The SiO₂ sample shows lower $D_{\rm it}$ according to both methods in the whole energy interval under consideration. As noted earlier, Si₃N₄ samples presented poor reproducibility; the result shown is from an optimal sample. For the SiO₂ sample that originated the inset in Fig. 3, $D_{\rm it}$ from the high-low frequency C-V method at $E_{\rm C}$ -E $\approx 0.3 \text{ eV}$ is $1 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}$; the ac conductance method could not be used for this sample due to a small signal-tonoise ratio, as observed for an optimized SiO₂/Si₃N₄/SiO₂ (ONO) structure on n-GaN. The rapidly decreasing D_{it} for both SiO_2 and Si_3N_4 samples at $E_C-E>0.3$ eV $\approx qV_{\rm G}(\Delta C_{\rm max})$ is not realistic, as discussed earlier.

Table I summarizes the parameters extracted from the electrical characterization of SiO₂ samples featuring various $t_{\rm ox}$. All MIS-Cs were fabricated under the same conditions, but the sample featuring t_{ox} =20.3 nm showed higher D_{it} and a significantly wider, positive hysteresis window as compared to the others. Implications will be noted in the following section.

B. Dielectric-fixed charge density and metal-semiconductor work-function difference

Figure 6 shows $V_{\rm FB}$ versus $t_{\rm ox}$ data for Al-gated [(i) and (ii)] SiO_2 and (iii) Si_3N_4 samples. For the SiO_2 samples, linear fitting was performed (i) excluding and (ii) including the sample with $t_{\rm ox}$ =20.3 nm; $\phi_{\rm ms}$ and $Q_{\rm f,eff}$ were thus determined as (i) $0.13\pm0.09 \text{ V}$ and $(1.0\pm0.1)\times10^{12} \text{ q cm}^{-2}$ and

TABLE I. Summary of parameters extracted from n-GaN/nitrided-thin-Ga2O3/SiO2 MIS-Cs featuring various $t_{\rm ox}$. The hysteresis window is reported at flatband capacitance, and minimum $D_{\rm it}$ was obtained at $E_{\rm C}$ -E \approx 0.3 eV using the high-low frequency C-V and the ac conductance (data in parentheses) methods.

t _{ox} (nm)	$N_{\rm D}$ $(10^{17}~{\rm cm}^{-3})$	V _{FB} (V)	<i>V</i> _{TH} (V)	Hysteresis window (V)	$D_{\rm it}$ (10 ¹¹ cm ⁻² eV ⁻¹)
5.8	4.0	-0.02	-4.34	-0.03	3.3
9.4	4.2	-0.46	-5.43	-0.02	4.3 (5.4)
10.5	4.0	-0.39	-5.36	-0.03	2.0
20.3	3.9	-0.43	-7.17	0.50	8.5
35.2	4.1	-1.50	-10.72	-0.02	6.3 (6.8)

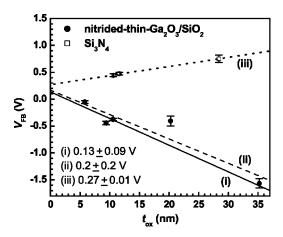


FIG. 6. Linear fits to flat band voltage $V_{\rm FB}$ versus equivalent oxide thickness $t_{\rm ox}$ data from n-GaN/nitrided-thin-Ga₂O₃/SiO₂ MIS-Cs [(i) excluding and (ii) including the point at 20.3 nm] and from (iii) n-GaN/Si₃N₄ MIS-Cs. The displayed error bars are standard deviations of $V_{\rm FB}$ measured for different capacitors on each sample. Standard deviations of $t_{\rm ox}$ are below $\pm 1\%$ of $t_{\rm ox}$.

(ii) $0.2\pm0.2 \text{ V}$ and $(1.0\pm0.2)\times10^{12} \ q \text{ cm}^{-2}$, respectively. We note that for the proper extraction of ϕ_{ms} , it is an essential requirement that all samples considered present the same amount of charge at the semiconductor-oxide interface. The sequential etching of SiO_2 can be seen as an alternative method to produce samples with different t_{ox} satisfying the requirement of a constant amount of charge at the semiconductor-oxide interface.

To evaluate Al/n-GaN/Si₃N₄ structures, samples with relatively low $D_{\rm it}$ were chosen. Si₃N₄ samples with high $D_{\rm it}$ (mid- 10^{12} cm⁻² eV⁻¹) showed more positive $V_{\rm FB}$, whose proper extraction was made difficult by significant electron trapping. Large positive $V_{\rm FB}$ was also reported on nonoptimized n-GaN MIS structures with high $D_{\rm it}$ using SiO₂ and ONO dielectrics. For the selected Si₃N₄ samples with relatively low $D_{\rm it}$, $\phi_{\rm ms}$ and $Q_{\rm f,eff}$ extracted from our data are 0.27 ± 0.01 V and $(-3.6\pm0.2)\times10^{11}$ q cm⁻², respectively.

Focusing on $Q_{\rm f,eff}$ results, Fig. 7 illustrates that in the case of a MIS-C on n-type substrate at $V_{\rm FB}$, most of the interface trap levels are occupied. We assume that interface traps at the upper (lower) half of the band gap are acceptor-(donor-) type. Acceptor-type (neutral when empty) interface traps below the Fermi energy $E_{\rm F}$ appear as negative $Q_{\rm it}$, whereas acceptor-type interface traps above $E_{\rm F}$ and donor-type (positive when empty) interface traps do not contribute to $Q_{\rm it}$ because they are both neutral. Furthermore, we momentarily neglect $Q_{\rm pol}$ in Eq. (1). Then

$$Q_{\rm f} = Q_{\rm f,eff} - Q_{\rm it,e} \approx Q_{\rm f,eff} + qD_{\rm it} \left[\frac{E_{\rm g}}{2} - (E_{\rm C} - E_{\rm F}) \right],$$
 (4)

where $Q_{\rm it,e}$ is the interface-trapped charge density $(Q_{\rm it,e} < 0)$ and $E_{\rm g}$ is the band gap energy of GaN, $E_{\rm C} - E_{\rm V}$. Using $Q_{\rm f,eff}$ reported earlier, taking $D_{\rm it}$ from ac conductance results in Fig. 5 at $E_{\rm C} - E_{\rm E} = 0.3$ eV and using $E_{\rm C} - E_{\rm F} = 0.1$ eV, $Q_{\rm f}$ becomes $\sim 1.7 \times 10^{12}~q~{\rm cm}^{-2}$ in SiO₂ samples and $\sim 5.5 \times 10^{11}~q~{\rm cm}^{-2}$ in Si₃N₄ samples. Therefore, although SiO₂ samples present lower $D_{\rm it}$ and better reproducibility than Si₃N₄ samples, they apparently present higher dielectric

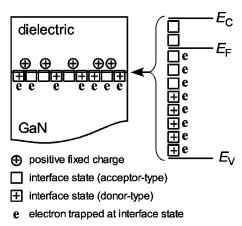


FIG. 7. Interface trap level configuration in an MIS structure on n-type substrate at $V_{\rm FB}$.

fixed charge density. We recall that all calculations shown earlier assume this fixed charge to be at the semiconductor/dielectric interface (as verified for the $\mathrm{Si/SiO_2}$ system). If such charge density is distributed over the dielectric film thickness, the figures just presented for $Q_{\mathrm{f,eff}}$ and Q_{f} are overestimated. That could be the case for the $\mathrm{Si_3N_4}$ samples (even though they have not been subjected to electrical stress before measurements). In the case of $\mathrm{SiO_2}$ samples, we speculate that the major amount of fixed dielectric charge is located at the nitrided-thin- $\mathrm{Ga_2O_3/SiO_2}$ interface.

We now consider the possible effect of $Q_{\rm pol}$ on $Q_{\rm f}$. The theoretical value of upward surface band bending at the Gaface of GaN is 3.4 V.²⁰ The experimentally obtained upward band bending is lower and dependent on the cleaning method of GaN via structural defects, surface states, and contamination causing Fermi level pinning or additional charge screening.²⁰ For example, Bermudez²¹ found that practical n-GaN surfaces prepared by cleaning in aqueous NH₄OH show an upward band bending of 0.4 ± 0.2 V, less than the value of 0.9 V obtained after cleaning in UHV. Tracy et al., 22 who performed in situ chemical vapor cleaning (CVC), reported an upward band bending of $\sim 0.3 \text{ V}$. Consider n-GaN-based MIS structures showing a low density of donor-like surface states and negligible upward band bending, i.e., $D_{\rm it}$ on the order of $10^{11}\,{\rm cm}^{-2}\,{\rm eV}^{-1}$ and $V_{\rm FB}$ close to 0 V, as in the present work. One possible screening mechanism of Q_{pol} is positive Q_f . Including Q_{pol} corresponding to the theoretical $P_{\rm sp}$ in (4) as per (1), $Q_{\rm f}$ in our MIS structures could be as high as $\sim 2 \times 10^{13} q \text{ cm}^{-2}$. In SiO₂ samples, we suggest the Ga₂O₃/SiO₂ interface as the location of the major amount of positive $Q_{\rm f}$. The preparation of $\textit{n-}GaN/nitrided-thin-}Ga_2O_3/Al_2O_3 \quad samples \quad is \quad underway.$ Lower Q_f at the Ga₂O₃/Al₂O₃ interface as compared to Ga_2O_3/SiO_2 could lead to incomplete neutralization of Q_{pol} and appear as a significant positive shift of $V_{\rm FB}$.

We finally examine the possibility of $Q_{\rm pol}$ screening due to the presence of hydrogen, a ubiquitous impurity. First-principles calculations indicate that the H⁻ configuration is favored over H⁺ and H⁰ for hydrogen in GaN with $E_{\rm F}$ close to $E_{\rm C}$, as in our substrate.²³ Therefore, H in n-GaN is not expected to screen $Q_{\rm pol}$. It has been established that interstitial atomic H is amphoteric at the Si/SiO₂ interface, inducing

a characteristic $D_{\rm it}$ peak 0.2 eV above the Si midgap level. First-principles calculations indicate the H⁺ configuration to be favored in SiO₂ for $E_{\rm F}$ – $E_{\rm V}$ <3.5 eV. Si Given the available information on band alignment at the SiO₂/GaN interface and $E_{\rm F}$ in our substrate, it is unlikely that hydrogen in SiO₂ contributes to $Q_{\rm pol}$ screening. We have no account of H-charge state behavior in nitrided-thin-Ga₂O₃ or Si₃N₄. Charge configuration changes, as long as occurring for $E_{\rm F}$ within the semiconductor band gap, should appear as $D_{\rm it}$. Such interface states, however, could be out of the energy range probed by standard measurement techniques.

Regarding $\phi_{\rm ms}$, we obtain 0.13 V from the SiO₂ samples, which is close to the 0 V assumed in most previous reports on $n\text{-}\mathrm{GaN/SiO_2}$ MIS-Cs. An $n\text{-}\mathrm{GaN/SiO_2}$ interface without detectable $\mathrm{Ga_2O_3}$ was prepared by annealing GaN at 860 °C for 15 min in 1.0×10^{-4} Torr of NH₃ (CVC process), depositing an ultrathin Si sacrificial layer, and oxidizing it.²⁷ There is no report on metal-oxide-semiconductor (MOS) capacitors featuring such an $n\text{-}\mathrm{GaN/SiO_2}$ interface without interfacial $\mathrm{Ga_2O_3}$. Using ultraviolet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS), the conduction band offset $\Delta E_{\rm C}$ was deduced as 3.6 eV. If the work function of Al $\phi_{\rm m}$ and the electron affinity of $\mathrm{SiO_2}~\chi$ are taken as 4.1 and 1.1 eV, respectively, $\phi_{\rm ms}$ for the direct $n\text{-}\mathrm{GaN/SiO_2}$ MOS structure with Al gate should be close to -0.7 V, according to 7

$$q\phi_{\rm ms} = \phi_{\rm m} - [\chi + \Delta E_{\rm C} + (E_{\rm C} - E_{\rm F})],$$
 (5)

where $E_{\rm C}-E_{\rm F}$ is again taken as ~ 0.1 eV. Note that to keep up with common practice, we report $\phi_{\rm ms}$ in electric potential and the quantities in the right-hand side of Eq. (5) in energy units.

In metallurgical junctions, partial charge transfer between interface states of the two materials results in interface dipoles. Our methodology to determine $\phi_{
m ms}$ yields an effective value that incorporates any interface-dipole effects.²⁸ At n-GaN/dielectric interfaces, the interface dipole ranged from 1.3 to 2.0 V when SiO_2 , Si_3N_4 , or HfO_2 was used as a dielectric. ^{26,27,29} Although that is included (through ΔE_C) in the estimation above, the interface dipole between the Al gate and SiO₂ should make the effective ϕ_{ms} higher (i.e., less negative or more positive) than -0.7 V. We therefore ascribe the difference between -0.7 V and our result of 0.13 V to the combined effect of interface dipoles (i) between Al and SiO₂ and (ii) involving the interfacial nitrided-thin Ga₂O₃ in our samples. A more conclusive discussion will be possible after we determine (i) $\phi_{
m ms}$ using Al-gated MIS-Cs featuring the direct n-GaN/SiO $_2$ interface and/or (ii) $\Delta E_{\rm C}$ between *n*-GaN and nitrided-thin Ga₂O₃/SiO₂ using UPS and XPS.

Using n-GaN/Si₃N₄ structures, $\Delta E_{\rm C}$ for the direct interface has been determined²⁷ as 2.5 eV. Taking χ =1.8 V in (6) to account for the electron affinity of Si₃N₄ leads to $\phi_{\rm ms}$ \approx -0.3 V for Al-gated samples. Again, the difference between -0.3 V and our result of 0.27 V should be due to the combined effect of interface dipoles (i) between Al and Si₃N₄ and (ii) involving parasitic interfacial gallium oxide in our Si₃N₄ samples. Such interface dipoles must also account for the difference in $\phi_{\rm ms}$ as obtained from SiO₂ and Si₃N₄ samples (0.13 and 0.27 V, respectively). With interface di-

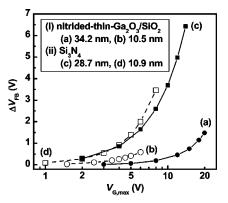


FIG. 8. Flatband voltage shift $\Delta V_{\rm FB}$ as a function of maximum gate bias $V_{\rm G,max}$ as determined for (i) $n\text{-GaN/nitrided-thin-Ga}_2\mathrm{O}_3/\mathrm{SiO}_2$ and (ii) $n\text{-GaN/Si}_3\mathrm{N}_4$ MIS-Cs.

poles properly taken into account, ϕ_{ms} should be independent of dielectric as its textbook definition requires.

C. Electron trapping and electrical conduction

C-V characteristics of n-GaN MIS structures have been measured (before and in this study) by sweeping V_G from positive to negative. Substrate electron injection into dielectric traps due to the starting positive bias would cause positive $\Delta V_{\rm FB}$. As shown in Fig. 8, that is indeed observed, with Si_3N_4 samples showing several times larger ΔV_{FB} than SiO_2 samples under comparable maximum (starting) positive bias $V_{\rm G,max}$. For an Si₃N₄ sample showing $t_{\rm ox} \approx 11$ nm, $N_{\rm D}$ obtained from $1/C^2-V$ data increased from 4.2 to 4.4 $\times 10^{17}$ cm⁻³ for $V_{\rm G,max}$ =0 to 6 V due to the emission of trapped electrons. When $V_{G,max}$ was reduced from 3 to 0 V, $V_{\rm FR}$ and hysteresis window were reduced from 0.9 to 0.5 V and from 0.1 to 0.02 V, respectively. Significant electron trapping in our Si₃N₄ samples is ascribed to an elevated density of traps in the bulk Si₃N₄ film and a small conduction band offset between Si₃N₄ and GaN. As for SiO₂ samples, electron trapping should take place mostly at or near the interface with GaN, in trap levels out of our detection range. The absence of bulk electron traps in plasma-enhanced chemical vapor deposition (PECVD) SiO₂ can be inferred from its demonstrated performance on Si substrates.

Figure 9 displays gate current density J versus effective oxide field $E_{\rm ox}$ for (i) SiO₂ ($t_{\rm ox}$ =10.7 nm) and (ii) Si₃N₄ ($t_{\rm ox}$ =10.5 nm) samples under a $V_{\rm G}$ sweep rate of 0.05 V s⁻¹. $E_{\rm ox}$ is given by

$$E_{\rm ox} = V_{\rm ox}/t_{\rm ox} = (V_{\rm G} - V_{\rm FB} - \psi_{\rm s})/t_{\rm ox},$$
 (6)

in which $V_{\rm ox}$ is the voltage drop across the dielectric film and $\psi_{\rm s}$ is the semiconductor band bending, negligible under accumulation. The solid lines in Fig. 9 result from using $V_{\rm FB}$ as (i) -0.35 V for the SiO₂ and (ii) 0.5 V for the Si₃N₄ sample. These $V_{\rm FB}$ were obtained from C-V curves showing negligible $\Delta V_{\rm FB}$ induced by positive gate bias. The dashed lines take into account $\Delta V_{\rm FB}$ data from Fig. 8. Whereas J for the SiO₂ sample remains in the displacement current range up to $E_{\rm ox} \approx 4.5$ MV cm⁻¹, the onset of significant leakage through Si₃N₄ appears at $E_{\rm ox} \approx 3$ MV cm⁻¹. Note that the principal breakdown mode of both samples is extrinsic, occurring be-

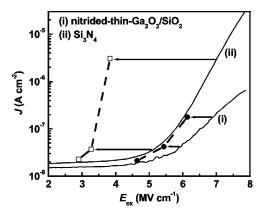


FIG. 9. Current density J versus electric field $E_{\rm ox}$ from (i) $n\text{-GaN/nitrided-thin-Ga}_2\text{O}_3/\text{SiO}_2$ ($t_{\rm ox}$ =10.7 nm) and (ii) $n\text{-GaN/Si}_3\text{N}_4$ ($t_{\rm ox}$ =10.5 nm) MIS-Cs. Solid lines are obtained by using $V_{\rm FB}$ as (i) -0.35 V and (ii) 0.5 V; dashed lines are obtained by applying $V_{\rm FB}$ shown in Fig. 8.

low 10 MV cm⁻¹, and $J-E_{\rm ox}$ data were chosen among 20 breakdown events.

At present, there are few available reports on $J-E_{\rm ox}$ characteristics of MIS structures on n-GaN and SiO2 or Si₃N₄. For an ONO structure on n-GaN, the tunneling current was observed above 6 MV cm⁻¹, and the extracted barrier height from the Fowler-Nordheim model was 2.3 eV. For Si₃N₄ on *n*-GaN, $J \approx 1 \times 10^{-5}$ A cm⁻² at 6 MV cm⁻¹, and the conduction-band offset energy was deduced as 0.5 eV based on XPS data.³⁰ Ga₂O₃ (20-80 nm)/SiO₂ (20 nm) insulator stacks analyzed under the Frenkel-Poole model yielded a forward breakdown field $2.64 - 3.56 \text{ MV cm}^{-1}$ and a barrier height of 0.63-1.21 eV.31 Our results lie well within the general framework. A detailed discussion of electrical conduction in our samples, including band offset energy determination will be possible after we obtain improved electron trapping and breakdown behavior.

IV. CONCLUSIONS

We have compared Al-gated *n*-GaN/nitrided-thin Ga₂O₃/SiO₂ and *n*-GaN/Si₃N₄ MIS-Cs using *C-V*, ac conductance, and *I-V* measurements. On wet-cleaned *n*-GaN surfaces, nitrided-thin-Ga₂O₃/SiO₂ yielded reduced density of interface defects, electron trapping, and leakage current as compared to Si₃N₄. Reproducibility also distinguishes *n*-GaN/nitrided-thin-Ga₂O₃/SiO₂ from *n*-GaN/Si₃N₄ structures. Without separate *in situ* surface cleaning at high temperature, the RPAO-RPAN process provides excellent control of ultrathin interfacial layers that passivate the GaN substrate.

From linear fittings to $V_{\rm FB}$ versus $t_{\rm ox}$ data, $\phi_{\rm ms}$ and $Q_{\rm f,eff}$ were determined as 0.13 V and $1.0\times10^{12}~q~{\rm cm}^{-2}$ for ${\rm SiO_2}$ and as 0.27 V and $-3.6\times10^{11}~q~{\rm cm}^{-2}$ for ${\rm Si_3N_4}$ samples. The $\phi_{\rm ms}$ was compared to estimates obtained from spectroscopic data and discussed in terms of interface dipole effects.

Both $Q_{\rm f,eff}$ and $D_{\rm it}$ were used to estimate $Q_{\rm f}$, and a possible contribution of $Q_{\rm pol}$ was considered. Most of the dielectric-fixed charge in SiO₂ samples should be located at the Ga₂O₃/SiO₂ interface, whereas in Si₃N₄ it could be distributed over the insulating film. At comparable $t_{\rm ox}$, SiO₂ samples provide lower leakage current and higher breakdown field.

ACKNOWLEDGMENTS

This research is supported by the ONR, AFOSR, SRC, and i-Sematech/SRC Front End Processes Center.

- ¹S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, Mater. Sci. Eng., R. **30**, 55 (2000).
- ²R. Vetury, N. Q. Q. Zhang, S. Keller, and U. K. Mishra, IEEE Trans. Electron Devices **48**, 560 (2001).
- ³T. Hashizume, S. Ootomo, T. Inagaki, and H. Hasegawa, J. Vac. Sci. Technol. B 21, 1828 (2003).
- ⁴C. Bae and G. Lucovsky, J. Vac. Sci. Technol. A (to be published).
- ⁵C. Bae and G. Lucovsky, Surf. Sci. **532**, 759 (2003).
- ⁶H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, Appl. Phys. Lett. **68**, 1850 (1996).
- ⁷D. K. Schroder, *Semiconductor Material and Device Characterization*, 2nd ed. (Wiley, New York, 1998).
- ⁸K. Matocha, T. P. Chow, and R. J. Gutmann, IEEE Electron Device Lett. 23, 79 (2002).
- ⁹F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B **56**, 10024 (1997).
- ¹⁰P. Chen, S. J. Chua, W. D. Wang, D. Z. Chi, Z. L. Miao, and Y. D. Zheng, J. Appl. Phys. **94**, 4702 (2003).
- ¹¹B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, IEEE Electron Device Lett. 21, 268 (2000).
- ¹²T. R. Prunty, J. A. Smart, E. M. Chumbes, B. K. Ridley, L. F. Eastman, and J. R. Shealy, *Proceedings of the 2000 IEEE/Cornell Conference on High Performance Devices* (2000), p. 208.
- ¹³X. Z. Dang, E. T. Yu, E. J. Piner, and B. T. McDermott, J. Appl. Phys. **90**, 1357 (2001).
- ¹⁴G. Lucovsky, IBM J. Res. Dev. **43**, 301 (1999).
- ¹⁵C. Bae and G. Lucovsky, J. Vac. Sci. Technol. A (to be published).
- ¹⁶E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).
- ¹⁷J. A. Cooper, Phys. Status Solidi A **162**, 305 (1997).
- ¹⁸B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, IEEE Trans. Electron Devices 48, 458 (2001).
- ¹⁹J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. **77**, 250 (2000).
- ²⁰U. Karrer, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett. 77, 2012 (2000).
- ²¹V. M. Bermudez, J. Appl. Phys. **80**, 1190 (1996).
- ²²K. M. Tracy, W. J. Mecouch, R. F. Davis, and R. J. Nemanich, J. Appl. Phys. **94**, 3163 (2003).
- ²³J. Neugebauer and C. G. Van de Walle, Phys. Rev. Lett. **75**, 4452 (1995).
- ²⁴P. E. Blöchl and J. H. Stathis, Phys. Rev. Lett. **83**, 372 (1999).
- ²⁵A. Yokozawa and Y. Miyamoto, Phys. Rev. B **55**, 13783 (1997).
- ²⁶T. E. Cook, C. C. Fulton, W. J. Mecouch, K. M. Tracy, R. F. Davis, E. H. Hurt, G. Lucovsky, and R. J. Nemanich, J. Appl. Phys. 93, 3995 (2003).
- ²⁷T. E. Cook, C. C. Fulton, W. J. Mecouch, R. F. Davis, G. Lucovsky, and R. J. Nemanich, J. Appl. Phys. **94**, 3949 (2003).
- ²⁸H. Z. Massoud, J. Appl. Phys. **63**, 2000 (1988).
- E. Massoud, J. Appl. Phys. 63, 2000 (1766).
 E. Cook, C. C. Fulton, W. J. Mecouch, R. F. Davis, G. Lucovsky, and R. J. Nemanich, J. Appl. Phys. 94, 7155 (2003).
- ³⁰K. M. Chang, C. C. Cheng, and C. C. Lang, Solid-State Electron. **46**, 1309 (2002)
- ³¹C. T. Lee, H. Y. Lee, and H. W. Chen, IEEE Electron Device Lett. **24**, 54