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Midpoint rule as a variational-symplectic integrator: Hamiltonian systems
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Numerical algorithms based on variational and symplectic integrators exhibit special features that make
them promising candidates for application to general relativity and other constrained Hamiltonian
systems. This paper lays part of the foundation for such applications. The midpoint rule for Hamilton’s
equations is examined from the perspectives of variational and symplectic integrators. It is shown that the
midpoint rule preserves the symplectic form, conserves Noether charges, and exhibits excellent long-term
energy behavior. The energy behavior is explained by the result, shown here, that the midpoint rule exactly
conserves a phase space function that is close to the Hamiltonian. The presentation includes several
examples.
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I. INTRODUCTION

This is the first in a series of papers that explore the
possible advantages of using variational and symplectic
numerical integration techniques for constrained
Hamiltonian systems. A constrained Hamiltonian system
is the Hamiltonian formulation of a gauge theory [1]. For
such a theory the canonical momenta, defined by the
derivatives of the Lagrangian with respect to the velocities,
are not invertible for the velocities as functions of the
coordinates and momenta. As Dirac showed [2], this im-
plies the presence of constraints among the coordinates and
momenta. The constraints are the canonical generators
of the gauge symmetry. They appear in the action as
part of the Hamiltonian, accompanied by undetermined
multipliers.

Constrained Hamiltonian systems are common in phys-
ics. Examples include electrodynamics, Yang-Mills theo-
ries, string theory, and general relativity. The numerical
integration of Maxwell’s equations for electrodynamics
has been well studied. For example, with the finite differ-
ence time domain (FDTD) method, the electric and mag-
netic fields are evolved using discrete forms of Ampere’s
and Faraday’s laws [3]. The FDTD discretization automati-
cally preserves the two Gauss’s law constraints in the
source free case. Yang-Mills and string theories are pri-
marily used to describe elementary quantum systems, so
for these theories the classical solutions do not play a
critical role. Correspondingly, numerical methods for
evolving the classical Yang-Mills fields and classical
strings have not been thoroughly explored.

The most challenging example of a constrained
Hamiltonian system, and the one that serves as my primary
motivation for this investigation, is general relativity.
There is currently a great deal of interest in developing
numerical methods for solving Einstein’s equations. This
interest is driven by recent advances on the experimental
front. A number of ground-based gravitational wave de-
tectors are in operation today, and during the next decade
some of these instruments will reach the level of sensitivity
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needed to detect black hole collisions. The LISA project is
a joint effort between NASA and ESA, with the goal of
placing a gravitational wave detector in solar orbit. The
LISA detector will be capable of sensing, among other
sources, collisions between the supermassive black holes
that reside at the centers of galaxies. To maximize the
scientific payoff of these instruments we need a theoretical
understanding of the gravitational-wave signals produced
by black hole collisions and other astrophysical phe-
nomena. The only known method for predicting the gravi-
tational wave signature of colliding black holes is through
numerical simulation.

Numerical relativity is not a mature field. Researchers
have spend much time and effort in developing numerical
relativity codes, but the complexity of the Einstein equa-
tions coupled with the topological issues that arise when
modeling black holes have made progress slow. Current
codes can succeed in simulating at most about one orbit of
a binary black hole system before errors completely spoil
the results [4]. The main difficulty appears to be the
presence of ‘‘constraint violating modes’’ [5–8]. These
are solutions of the Einstein evolution equations that are
unphysical in that they do not respect the constraints.
Although the evolution equations preserve the constraints
at an analytical level, numerical errors inevitably excite
these constraint violating modes. Some of these modes
grow exponentially fast and spoil the numerical results.
What is needed for numerical relativity is an algorithm that
will keep the constraints satisfied, or nearly satisfied, dur-
ing the course of the evolution. It might be possible to
develop a scheme like the FDTD method of electrodynam-
ics, but the complexity and nonlinearity of the Einstein
equations makes this a difficult task. Some progress along
these lines has been made by Meier [9].

In this paper I begin to explore a different route for
keeping the constraints satisfied for general relativity and
other constrained Hamiltonian systems. The idea is based
on the use of variational integrators (VI). In the traditional
approach to numerical modeling by finite differences, the
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.024001


J. DAVID BROWN PHYSICAL REVIEW D 73, 024001 (2006)
continuum equations of motion are discretized by replac-
ing derivatives with finite difference approximations. In the
VI approach we first discretize the action, then derive the
discrete equations of motion by extremizing the action.
This approach was pioneered by a number of researchers
beginning in the 1960’s; for a brief historical overview, see
Ref. [10]. Variational integrators have been developed
further in recent years by Marsden and collaborators
[10,11].

One of the key properties of variational integrators is
that they are symplectic. This means that the discrete time
evolution defined by the VI equations automatically con-
serves a symplectic form. The subject of symplectic inte-
grators is well-developed; for an overview, see Ref. [12].
Variational integrators also conserve the charges associated
with symmetries via Noether’s theorem. For our present
purposes, the most interesting characteristic of variational
and symplectic integrators is their behavior regarding en-
ergy. Although these integrators do not typically conserve
energy, they exhibit excellent long-time energy behavior.
For other integrators the energy errors typically increase
unboundedly in time. For variational and symplectic inte-
grators the energy error is typically bounded in time.

There are various ways that one can develop a varia-
tional integrator for constrained Hamiltonian systems. For
example, one can extremize the action while keeping the
undetermined multipliers fixed. In that case the constraints
will not remain zero under the discrete time evolution. But
there is reason to believe that in many cases the constraint
errors, like energy, will remain bounded in time [13].
Another option is to extremize the action with respect to
the undetermined multipliers as well as the canonical
coordinates and momenta. This is the most attractive ap-
proach from a number of perspectives. In this case the
discrete constraints are imposed as equations of motion
at each timestep, so they are guaranteed to hold under the
discrete time evolution. The trade off is that the undeter-
mined multipliers of the continuum theory are actually
determined by the discrete equations of motion.

In general relativity the constraints cannot be solved for
the multipliers unless the coordinates and momenta are
chosen appropriately. The traditional choice of canonical
coordinates [14], the spatial metric, leads to generically ill-
defined equations for the multipliers. Recently Pfeiffer and
York [15,16] have rewritten the constraints using the con-
formal metric and the trace of the extrinsic curvature as
coordinates. They show that the resulting equations for the
multipliers are generically well-defined. In Ref. [17] I
rewrote the action and evolution equations in terms of
these new coordinates and their conjugate momenta. This
is one form of the action that is suitable for the develop-
ment of a variational integrator for general relativity.

The essential idea of using a discrete action to define a
set of discrete equations of motion that both respect the
constraints and determine the multipliers has also been
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studied in the context of general relativity by Di Bartolo,
Gambini, and Pullin [18–23]. They refer to their approach
as ‘‘consistent discretization’’. They discuss consistent
discretization in the context of numerical relativity, and
also as a route toward quantization. There are a number of
technical differences between the works of Di Bartolo,
Gambini, and Pullin and the results presented in this and
the following papers. The most important difference be-
tween my approach and theirs is a difference in techniques
used to generate the equations of motion. I extremize the
discrete action directly while Di Bartolo et al. identify the
discrete Lagrangian as the generator of a Type 1 canonical
transformation. With direct extremization we obtain useful
information about the system encoded in the endpoints of
the varied action. This is the key to proving the important
properties of the variational integrator including symplec-
ticity, Noether’s theorem, and the good long-time behavior
of energy.

In this first paper I focus on simple mechanical systems
with no constraints. This is a rich subject that has been
explored rather thoroughly, in mathematically precise lan-
guage, by Marsden et al. [10,11]. The purpose of this paper
is to present the key results on variational integrators in the
context of a particular discretization using language famil-
iar to most physicists. The particular discretization of the
action considered here leads to the midpoint rule applied to
Hamilton’s equations. The midpoint rule is an old, familiar
numerical algorithm. It is presented here in a new, perhaps
unfamiliar light as a variational-symplectic integrator. This
new perspective allows us to derive and to understand the
characteristic features of this integrator on a rather deep
level.

In the next section I review the derivation of Hamilton’s
equations from the action expressed in Hamiltonian form.
In Sec. III, I discretize the action and derive the VI equa-
tions from its extremum. In Sec. IV I show that the varia-
tional integrator is symplectic, and Noether’s theorem
holds. I also show that the VI equations can be written as
the midpoint rule applied to Hamilton’s equations.
Section V contains a discussion of energy. There, it is
shown that the energy is well behaved because the VI
equations exactly conserve the value of a phase space
function that is close, in a sense to be discussed, to the
Hamiltonian. Several examples are given in Sec. VI. These
examples explore the energy behavior and the convergence
properties of the midpoint rule as a variational integrator.

My goal is to investigate variational and symplectic
integration techniques for constrained Hamiltonian sys-
tems. In the next paper in this series [13], I will apply
these techniques to a class of simple constrained
Hamiltonian systems, namely, parametrized Hamiltonian
mechanics. These are ordinary Hamiltonian systems with
the coordinates, momenta, and time expressed as functions
of an arbitrary parameter. The theory is invariant under
changes of the parameter, and this gauge invariance gives
-2
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rise to a constraint that enforces conservation of energy. In
future papers I will apply VI techniques to field theories
with gauge symmetries. In canonical form these theories
are described as constrained Hamiltonian systems with
constraints that are local functions in space.
FIG. 1. Discretization in time. The nodes are labeled n �
0; . . . ; N and the zones (or time intervals) are labeled n �
1; . . . ; N. The coordinates and momenta are node-centered, the
Hamiltonian function is zone-centered.
II. CONTINUUM MECHANICS

Let the index a label pairs of canonically conjugate
dynamical variables xa and pa. The action is a functional
of xa�t� and pa�t�, given by

S�p; x� �
Z t00

t0
dt�pa _xa �H�p; x; t��: (1)

Here, H�p; x; t� is the Hamiltonian and t is physical time.
The dot denotes differentiation with respect t. The summa-
tion convention is used for repeated indices, so the expres-
sion pa _xa includes an implied sum over a.

Variation of the action (1) yields

�S�p; x� �
Z t00

t0
dt
��

_xa �
@H
@pa

�
�pa �

�
� _pa �

@H
@xa

�
�xa

�

� pa�xajt
00

t0 : (2)

With the coordinates xa fixed at the initial and final times, t0

and t00, the endpoint terms in �S vanish. Then the condition
that the action should be stationary, �S � 0, yields

_xa �
@H
@pa

; (3a)

_pa � �
@H
@xa

; (3b)

These are the familiar Hamilton’s equations. An immediate
consequence of these equations is that the Hamiltonian
function H�p; x; t� satisfies

_H �
@H
@t
: (4)

If H has no explicit t dependence, then _H � 0. In this case
H, the energy, is a constant of the motion.
III. DISCRETE MECHANICS

Let us divide the time interval between t0 and t00 into N
equal subintervals, or ‘‘zones’’, labeled n � 1; . . . ; N.
These zones are separated by nodes, which are labeled n �
0; . . . ; N. As seen in Fig. 1 the endpoints of zone n are
nodes n� 1 and n. The expression tn denotes the time at
the nth node. Likewise, xna and pna denote the coordinates
and momenta at the nth node. The timestep is �t � tn �
tn�1. In this paper I consider the following second-order
accurate discretization of the action (1):
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S�p; x� �
XN
n�1

�t
�
pna

�xna
�t
�H�pn; xn; tn�

�
: (5)

The � notation and the underlined index notation are
employed repeatedly below; they are defined by

�xna � xna � xn�1
a ; (6a)

xna �
xna � xn�1

a

2
: (6b)

These operations commute; that is, xna � x
n�1
a � ��xna �

�xn�1
a �=2.
It will also prove useful to denote the value of the

Hamiltonian in the nth zone by

Hn � H�pn; xn; tn�: (7)

That is, we view t, xa, and pa as node-centered in time and
H as zone-centered in time. [See Fig. 1.] Then Eq. (7)
expresses the fact that, to second-order accuracy, the zone-
centered values of t, xa, and pa that appear in Hn can be
obtained from the averages of the neighboring node-
centered values.

The discrete ‘‘Lagrangian’’, that is, the term in square
brackets in Eq. (5), has truncation errors that scale like
O��t2�. The discrete action is a sum over N 	 1=�t terms,
each having errors of order O��t3�. It follows that the error
in S typically scales like O��t2�. Thus the action (5) is
second-order accurate. Note that Eq. (5) is not the only
possible second-order discretization of the action. For
pedagogical purposes, I have chosen to restrict consider-
ations in this paper to the discrete action (5). Other dis-
cretizations, including some with higher order accuracy,
will be discussed elsewhere [13].

Note that the momentum variables appear in the action
(5) only in the combination pna � �pna � p

n�1
a �=2. This

combination represents the zone-centered momentum, ac-
curate to second-order. Let us set this observation aside for
the moment and treat the action as a function of all node-
centered coordinates and momenta, xna and pna for n �
0; . . . ; N. The variation of S is
-3
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�S�
XN�1

n�1

�t
�

�xn�1
a

�t
�

�
@H
@pa

�
n�1

�
�pna�

XN�1

n�1

�t
�
�

�pn�1
a

�t
�

�
@H
@xa

�
n�1

�
�xna�

1

2

�
�x1

a�

�
@H
@pa

�
1
�t
�
�p0

a

�
1

2

�
�xNa �

�
@H
@pa

�
N

�t
�
�pNa �

�
p1
a�

1

2

�
@H
@xa

�
1
�t
�
�x0

a�

�
p
N
a �

1

2

�
@H
@xa

�
N

�t
�
�xNa : (8)
Here and below we treat the derivatives ofH�p; x; t�, likeH
itself, as zone-centered quantities. Recall the notation de-
fined in Eqs. (6) and (7). For any zone-centered function
F�p; x; t� of the canonical variables and time, we have
Fn�1 � �Fn�1 � Fn�=2 � �F�pn�1; xn�1; tn�1� �
F�pn; xn; tn��=2. These notational rules apply to the deriva-
tives of the Hamiltonian that appear in �S.

If we fix the coordinates at the endpoints, x0
a and xNa , then

the condition that the discrete action should be extremized
is

�xn�1
a

�t
�

�
@H
@pa

�
n�1

; n � 1; . . . ; N � 1; (9a)

�pn�1
a

�t
� �

�
@H
@xa

�
n�1

; n � 1; . . . ; N � 1; (9b)

�x1

�t
�

�
@H
@pa

�
1

(9c)

�xN

�t
�

�
@H
@pa

�
N
: (9d)

These equations are redundant. For example, Eq. (9d) can
be derived from Eqs. (9a) and (9c). This redundancy is a
result of the fact that the action does not depend on the
node-centered momenta pna independently, but only on the
zone-centered combinations pna. We can combine
Eqs. (9a), (9c), and (9d) into a single expression and write
the equations of motion (9) as

�xn�1
a

�t
�

�
@H
@pa

�
n�1

; n � 0; . . . ; N � 1; (10a)

�pn�1
a

�t
� �

�
@H
@xa

�
n�1

; n � 1; . . . ; N � 1: (10b)

The equations of motion in this form can be obtained
directly from the action (5) by extremizing with respect
to the node-centered coordinates xna and the zone-centered
momenta pna. They are a discrete form of Hamilton’s
Eqs. (3).

The equations of motion (10) constitute the variational
integrator defined by the discrete action (5). Since they are
derived from a variational principle, these equations natu-
rally define a boundary value problem in which the freely
chosen data are divided between the endpoints in time.
Thus, given the boundary data x0

a and xNa , Eqs. (10) deter-
mine the coordinates xna for n � 1; . . . ; N � 1 and mo-
menta pna for n � 1; . . . ; N. We can add boundary terms
to the action to change the permitted boundary conditions.
However, in practice, our primary interest is not in any of
these boundary value problems. Rather, we are interested
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in solving an initial value problem. Thus, we are faced with
the task of reinterpreting the equations of motion in such a
way that initial data can be posed and evolved into the
future.

It is not difficult to reinterpret the variational integrator
(10) as an initial value problem. One possibility is to
choose values for the coordinates at the initial time t0

and values for the momenta at the half timestep t1; that
is, we choose x0

a and p1
a. Then Eq. (10a) with n � 0 can be

solved for x1
a. This completes the determination of data at

‘‘levels’’ n � 0 and 1. Alternatively, we can generate data
at levels n � 0 and 1 by specifying x0

a and x1
a, then solving

Eq. (10a) with n � 0 for p1
a. Once the data at levels 0 and 1

have been found, we can solve Eqs. (10) with n � 1 for the
level 2 data x2

a, and p2
a. We continue in this fashion to

obtain the data at levels 3, 4, etc.
Strictly speaking, neither of the options outlined above

is an initial value problem. With the first option, the freely
specifiable data x0

a, p1
a are split between the initial time

node and the first time zone. With the second option, the
data x0

a and x1
a are split between time nodes 0 and 1. Apart

from this slight misuse of the word ‘‘initial’’, we see that it
is fairly trivial to reinterpret the variational integrator
equations (10) as an initial value problem. With higher
order discretizations, this reinterpretation is not so simple
[13].
IV. SYMPLECTIC FORM, NOETHER’S THEOREM
AND THE MIDPOINT RULE

In this section we show that the variational integrator
(10) is symplectic, and that Noether’s theorem applies.
These results are derived in mathematically precise lan-
guage for the Lagrangian formulation of mechanics by
Marsden et al. [10,11]. In the process of developing these
results, we show that the VI equations can be expressed in
terms of the node-centered momentum. The discrete equa-
tions are equivalent to the midpoint rule applied to
Hamilton’s equations.

Consider first the continuous Hamiltonian system de-
fined by the action (1). The canonical two-form is defined
by

! � dpa ^ dxa; (11)

where d is the exterior derivative and ^ is the exterior
product. Hamiltonian systems are symplectic, meaning
that the form ! is invariant under time evolution. We can
derive this result by noting that, for a solution of the
classical equations of motion (3), the variation of the action
-4
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reduces to the endpoint terms in Eq. (2). Let S�x00; t00; x0; t0�
denote the action evaluated along the classical history with
endpoint data xa�t0� � x0a and xa�t00� � x00a. We see that
@S�x00; t00; x0; t0�=@x00a � pa�t00�, and @S�x00; t00; x0; t0�=@x0a �
�pa�t0�. Then the exterior derivative of the action is given
by

dS�x00; t00; x0; t0� � padxajt
00

t0 ; (12)

where pa is the canonical momentum evaluated along the
classical path. The identity ddS�x00; t00; x0; t0� � 0 shows
that dpa ^ dxajt

00

t0 vanishes, so that ! is constant in time.
Now turn to the discrete system defined by the action

(5). Let us define the coefficient of �xNa that appears in �S
[Eq. (8)] as ���PN

a , where

���P n
a � pna �

�t
2

�
@H
@xa

�
n
: (13)

Similarly, we can define the coefficient of �x0
a as ���P 0

a,
where

���P n
a � pn�1

a �
�t
2

�
@H
@xa

�
n�1

: (14)

The VI equations (10) define an evolution in phase space.
Obviously this evolution can be extended to values of n
beyond nodes 0 and N. Likewise, we can apply our defi-
nitions of ���P n

a and ���P n
a for all integer n. Now observe

that the VI equations imply that ���P n
a �

���P n
a vanishes

when the extended equations of motion hold. Thus, we can
drop the superscripts ��� and ��� and denote both ���P n

a

and ���P n
a by P n

a.
Let S�xN; tN; x0; t0� denote the value of the discrete

action (5) for a solution of the VI equations of motion
with endpoint data xNa at tN and x0

a at t0. The variation in
Eq. (8) shows that, when the (extended) equations of
motion hold,

dS�xN; tN; x0; t0� � P n
adxnaj

N
n�0: (15)

This is the analog of Eq. (12) above. Taking the exterior
derivative of this expression we find

0 � dP n
a ^ dx

n
aj
N
n�0: (16)

Thus, the discrete action naturally defines a symplectic
two-form

! � dP n
a ^ dxna (17)

that is conserved under the phase space evolution defined
by the VI equations of motion.

In the analysis above we defined

P n
a � pna �

�t
2

�
@H
@xa

�
n
� pn�1

a �
�t
2

�
@H
@xa

�
n�1

: (18)

The two expressions for P n
a are equivalent when the equa-

tions of motion hold. A short calculation using Eq. (10b)
shows that
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P
n�1
a �

P n�1
a � P n

a

2
� pn�1

a : (19)

Therefore we see that, when the equations of motion hold,
P n
a can be identified as the node momentum pna.
The equation of motion for P n

a can be derived by com-
puting �P n

a and using the VI equation (10b). Along with
Eq. (10a), we have

�xn�1
a

�t
�

�
@H
@pa

�
n�1

; (20a)

�P n�1
a

�t
� �

�
@H
@xa

�
n�1

: (20b)

This is perhaps the most elegant form of the VI equations.
They are simply Hamilton’s equations discretized with the
midpoint rule. Their interpretation as an initial value prob-
lem is straightforward: given data x0

a and P 0
a at the initial

time, we solve the equations with n � 0 for x1
a, P 1

a. Repeat
to find data at nodes n � 2; 3; . . . . Recall that the deriva-
tives of H that appear on the right-hand sides of Eqs. (20)
are zone-centered functions. Thus, they are evaluated at
P
n�1
a xn�1

a , and tn�1.
Noether’s theorem states that symmetries give rise to

conserved ‘‘charges’’. We now show that when the discrete
action is invariant under a symmetry transformation, there
exists a charge that is exactly conserved by the VI
equations.

Consider first the continuum case. Let xa ! X�a �x� be a
one-parameter family of transformations that leave the
action, expressed in Lagrangian form, unchanged. Since
we are working with the Hamiltonian formalism, let us
extend this family of configuration space transformations
to a family of point canonical transformations:

xa ! X�a ; (21a)

pa ! P�a � pb
@X��b
@xa

: (21b)

Here, it is assumed that � � 0 coincides with the identity
transformation. By differentiating the relation xa �
X��a �X��x�� we see that P�a _X�a � pa _xa so the transforma-
tion (21) is indeed canonical.

By assumption the action (1) is unchanged by the trans-
formations (21), so we have S�p; x� � S�P�; X�� for all �.
It follows that the derivative of S�P�; X��with respect to �
must vanish. On the other hand, the endpoint terms in the
general variation of the action (2) imply that, if X�a , P�a
satisfy the equations of motion when � � 0, then

dS�P�; X��
d�

� pa
dX�a
d�

��������
t00

t0
(22)

at � � 0. Because the left-hand side of this equation
vanishes, we see that the charge
-5
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Q � pa
dX�a
d�

����������0
(23)

is conserved in time for the classical motion of the system.
Now turn to the discrete case. Let us assume that the

discrete action (5) is unchanged when the variables xna, pna
are transformed by Eqs. (21) for each value of n. Then, as
in the continuum case, the derivative of S�P�; X�� with
respect to � vanishes. The general variation of the action
(8) implies that, if �X�a �n, �P�a �n satisfy the equations of
motion at � � 0, then

dS�P�; X��
d�

� P n
a
d�X�a �n

d�

��������
N

n�0
(24)

at � � 0. Here, I have used the definitions (18) for P n
a.

Since the left-hand side of this relationship vanishes, we
find that the charge

Q � P n
a
d�X�a �n

d�

����������0
(25)

is conserved (independent of n) by the VI equations (10) or
(20).

V. ENERGY CONSERVATION

One of the key characteristics of variational integrators
that makes them interesting and important is their behavior
with respect to energy. If the Hamiltonian has no explicit
time t dependence then the energy is conserved in the
continuum theory; see Eq. (4). Variational integrators do
not conserve energy exactly, but typically the energy error
does not grow as the evolution time increases. To be
precise, in this section I show that the VI equations (20)
exactly conserve the value of a phase space function H
that differs from the Hamiltonian H by terms of order
O��t2�. The coefficient of the O��t2� difference is a phase
space function that remains bounded at least as long as the
solution trajectory is bounded in phase space. It follows
that the value of energy predicted by the VI equations will
be ‘‘close’’ to the exact value, where close means that the
error is of order O��t2� with a coefficient that does not
exhibit unbounded growth in time.

Let us begin the analysis by considering the continuum
evolution for a system with time-independent Hamiltonian
H �p; x�. This system is described by the action

S �p; x� �
Z t00

t0
dt�pa _xa �H �p; x��; (26)

with variation

�S � eom’s� pa�xajt
00

t0 : (27)

The terms listed as ‘‘eom’s’’ are the terms that yield
Hamilton’s equations of motion. Let S�x00; t00; x0; t0� denote
the action (26) evaluated at the solution of Hamilton’s
equations with endpoint data x0a at t0 and x00a at t00. The
variation equation (27) implies that S�x00; t00; x0; t0� satisfies
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@S�x00; t00; x0; t0�
@x00a

� p00; (28a)

@S�x00; t00; x0; t0�
@x0a

� �p0; (28b)

where p0a � pa�t0� and p00a � pa�t00�. These equations show
that �S�x00; t00; x0; t0� is a Type 1 generating function for a
canonical transformation from ‘‘old’’ coordinates and mo-
menta x0a, p0a to ‘‘new’’ coordinates and momenta x00a, p00a
[24]. We also know that, starting from the initial data x0a,
p0a, the classical trajectory generated by the Hamiltonian
H �p; x� passes through the phase space point x00a, p00a.
Thus, �S�x00; t00; x0; t0� is a Type 1 generating function
that generates a canonical transformation representing the
time evolution of the system from t0 to t00.

Generating functions of different type are related by
functions of the old and new coordinates and momenta.
We can define a new generating function H by

H �
p00a � p0a

2

x00a � x0a
t00 � t0

�
S�x00; t00; x0; t0�

t00 � t0
: (29)

Eqs. (28) can be written as dS�x00; t00; x0; t0� � p00adx00a �
p0adx

0
a. From this result it is straightforward to show that

the exterior derivative of H is given by

dH �
�xa
�t

d �pa �
�pa
�t

d �xa; (30)

where �pa � �p00a � p0a�=2, �xa � �x00a � x0a�=2, �pa �
p00a � p0a, �xa � x00a � x0a, and �t � t00 � t0. Thus, H can
be viewed as a function of �pa and �xa. The canonical
transformation that represents the classical evolution
from t0 to t00 is written in terms of the new generating
function H � H� �p; �x� as

@H� �p; �x�
@ �pa

�
�xa
�t

; (31a)

@H� �p; �x�
@ �xa

� �
�pa
�t

: (31b)

These are precisely the VI equations (20), the midpoint
rule, with some simple changes of notation.

The analysis above shows that the VI equations (20) can
be viewed as the generating function equations for a ca-
nonical transformation from old coordinates and momenta
xna, P n

a to new coordinates and momenta xn�1
a , P n�1

a . The
generating function is H�P n�1; xn�1;�t�; it is helpful at
this point in the analysis to consider H as dependent on the
timestep �t as well as the coordinates and momenta. The
canonical transformation generated by H defines a map-
ping of phase space that coincides with the exact time
evolution described by the Hamiltonian H �P ; x�. The
relationship between H and H is given by
-6
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H�P n�1; xn�1;�t� � P
n�1
a

�xn�1
a

�t

�
S�xn�1; tn�1; xn; tn�

�t
: (32)

This is Eq. (29) with appropriate changes in notation. The
function S�xn�1; tn�1; xn; tn� is the continuum action (26)
evaluated at the solution of the equations of motion with
endpoint data xna at tn and xn�1

a at tn�1. Analogous to
Eqs. (28), we have the relations

P n�1
a �

@S�xn�1; tn�1; xn; tn�

@xn�1
a

; (33a)

P n
a � �

@S�xn�1; tn�1; xn; tn�
@xna

; (33b)

that define the momenta at the endpoints.
The discrete evolution defined by the VI equations with

Hamiltonian H coincides with the exact continuum evolu-
tion defined by Hamilton’s equations with Hamiltonian
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H . Since the exact evolution conserves H , it follows
that the VI equations conserve H . We now show by
explicit calculation that H and H differ by terms of order
O��t2�.

In order to evaluate the action S along the classical
solution between tn and tn�1, we first expand the solution
xa�t�, pa�t� in a series in t with coefficients that depend on
xn�1
a and pn�1

a � P
n�1
a . The calculation is simplified by

writing Hamilton’s equations (3) as

_� a � !abH b; (34)

where �a denotes the set of canonical variables fxa; pag and
!ab is the matrix

!ab �
0 �I
I 0

� �
: (35)

Here and below, subscripts on H denote derivatives;, for
example, H b � @H =@�b. The solution is
�a�t� � �n�1
a �!aa0 �H a0 �H a0bc!bb0H b0!cc0H c0�t

2=8��t� tn�1� � 1
2!aa0H a0b!bb0H b0 ��t� t

n�1�2

� ��tn�1�2=4� � 1
24!aa0 �H a0bc!bb0H b0!cc0H c0 �H a0b!bb0H b0c!cc0H c0 ��4�t� tn�1�3 � 3�t� tn�1�


 ��tn�1�2� �O��t4�; (36)
where all derivatives of H are evaluated at �n�1
a .

The Type I generating function �S�xn�1; tn�1; xn; tn� is
written as a function of �n�1

a by inserting the solution (36)
into the action (26), with initial and final times tn and tn�1.
The new generating function H is then found from
Eq. (32), with the result

H �H � 1
24H ab!aa0H a0!bb0H b0�t2 �O��t4�:

(37)
Clearly, this formal expansion for H in terms of H can be
inverted to yield

H � H � 1
24Hab!aa0Ha0!bb0Hb0�t

2 �O��t4�: (38)
This is the desired relationship between the phase space
functions H and H.

With the solution �a�t� expanded to terms of order �t3 in
Eq. (36), the evaluation of Eq. (32) yields H through terms
of order �t2. However, a simple argument can be given to
show that the terms of order �t3, and in fact all terms
proportional to odd powers of �t, must vanish. Consider
Eq. (32), but let the data tn, xna and tn�1, xn�1

a exchange
roles. The data must be exchanged in the definitions (33) as
well; this yields
P n
a �

@S�xn; tn; xn�1; tn�1�

@xna
; (39a)

P n�1
a � �

@S�xn; tn; xn�1; tn�1�

@xn�1
a

: (39b)

Now, the function S�xn; tn; xn�1; tn�1� is just the action
evaluated at the solution of Hamilton’s equations with
endpoint data xa�tn� � xna and xa�tn�1� � xn�1

a . It differs
from S�xn�1; tn�1; xn; tn� only because the limits of inte-
gration are reversed. Hence, we have

S �xn; tn; xn�1; tn�1� � �S�xn�1; tn�1; xn; tn�; (40)

and we find that the definitions (39) are identical to
Eqs. (33). It follows that the right-hand side of Eq. (32)
is unchanged when we exchange the endpoint data.
Equating the left-hand sides leads to

H�P n�1; xn�1;�t� � H�P n�1; xn�1;��t�: (41)

Therefore, H is an even function of �t, and its expansion
(37) in terms of H does not contain odd powers of �t.

To summarize, the VI equations exactly conserve H
and the Hamiltonian H differs from H by terms of order
�t2. The coefficient of the O��t2� and higher order terms
are constructed from derivatives of H. As long as the
motion in phase space remains bounded, and the
Hamiltonian and its derivatives are nonsingular, then these
coefficients will remain bounded. It follows that H will
remain close to H , which is constant, for all time. If the
-7
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motion in phase space does not remain bounded, it does not
necessarily follow that the coefficient of the O��t2� will
grow in time. In this situation the results depend on the
details of the Hamiltonian.

The energy behavior of the VI equations is quite differ-
ent from the behavior exhibited by many numerical inte-
grators. For example, second-order Runge-Kutta (RK2)
typically exhibits errors in H of order �t2 on short time
scales and a drift in the value of H of order �t3 on long-
time scales. Fourth order Runge-Kutta (RK4) exhibits
errors in H of order �t4 on short time scales and a drift
in H of order �t5 on long-time scales. For both RK2 and
RK4, the energy error becomes unboundedly large as time
increases. We will see examples of these behaviors in the
next section.
time

FIG. 2 (color online). The amplitude x for the coupled har-
monic oscillator as a function of time. The VI simulation
produces the solid curve that tracks the exact solution (dashed
curve) fairly closely. The other solid curve is obtained from RK2.
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FIG. 3 (color online). Energy error for the coupled harmonic
oscillator for VI. The solid curve has timestep �t � 0:01. The
dashed curve shows the error divided by 100 for �t � 0:1. The
results are displayed for the first and last 	12 time units; the
total run time was t � 1
 106.
VI. EXAMPLES

The examples in this section show the results obtained
from numerical integration of simple Hamiltonian systems
using the VI equations (20) and standard second and fourth
order Runge–Kutta. Issues of efficiency are ignored.
Clearly the midpoint rule, being implicit, is numerically
more expensive to solve than explicit integration schemes.
However, the aim of this paper is to investigate the prop-
erties of variational-symplectic integrators without con-
cern for details of implementation. This is because,
ultimately, we would like to apply these methods to theo-
ries like general relativity for which standard integration
techniques are inadequate. The main goal, then, is to find a
numerical algorithm that works—efficiency is at most a
secondary concern.

One can solve the implicit VI equations using a Newton-
Raphson method. But in practice it is much simpler and
more reliable to iterate the equations until the answer is
unchanged to a prescribed level of accuracy. Thus, given xna
and P n

a, we begin the first iteration with the approximation
xn�1
a � xna, P n�1

a � P n
a. This is inserted into the right-

hand sides of the VI equations to yield improved approx-
imations for xn�1

a and P n�1
a . The whole process is repeated

until the desired level of accuracy is achieved. For the
higher resolution runs presented below, about 5 iterations
were needed to reach a solution that was accurate to 1 part
in 1013. For the lower resolution runs, around 15 iterations
were needed to reach this same level of accuracy.

A. Coupled harmonic oscillators

Our first example is the system of coupled harmonic
oscillators with Hamiltonian

H � 1
2�p

2
x � p2

y� �
1
2�x

2 � y2� � 1
5�x� y�

6: (42)

The graph in Fig. 2 shows the amplitude of one of the
oscillators, x, as a function of time. The behavior exhibited
is rather complicated. The two solid curves show the
results of numerical integration with the VI equations (20)
024001
and second-order Runge-Kutta (RK2), both using a time-
step of �t � 0:1. The dashed curve is obtained from a
fourth order Runge-Kutta integrator with timestep �t �
0:01. Over the short time scale (t � 50) shown in the
figure, the dashed curve can be taken as the ‘‘exact’’
solution. Compared to RK2, VI does a visibly better job
of tracking the solution.

The initial data chosen for the coupled oscillator is x �
1, y � px � py � 0, so the exact solution has energy H �
0:7. Figure 3 shows the error in energy for VI at two
resolutions. The solid curve shows the error for �t �
0:01 while the dashed curve shows the error divided by
-8
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100 for �t � 0:1. The close agreement between the am-
plitudes of these two curves shows that the energy error is
second-order in the timestep. The key observation is that
the energy error does not grow in time, even for the
simulation with a relatively low resolution of �t � 0:1.

The solid curve in Fig. 4 shows the energy error for RK2
at a resolution of �t � 0:01. The dashed curve is the
energy error for RK2 with resolution �t � 0:02, divided
by 8. Note that the two curves in this figure coincide on
long-time scales (t * 5). This shows that the drift in energy
is order �t3. The short time scale errors are O��t2�, so the
‘‘wiggles’’ in the low resolution simulation (having been
divided by 8) are approximately half the size of the wiggles
seen in the high resolution run. For this particular system,
and this particular choice of initial data, the growth rate of
the energy error with RK2 is about 2:5�t3 energy units per
time unit.

Qualitatively similar results are found for RK4. In Fig. 5
the solid and dashed curves are obtained from simulations
with timesteps �t � 0:01 and 0:02, respectively. The er-
rors for the low resolution case have been divided by 32.
We see that the long-time scale drift in energy is O��t5�,
while the short time scale wiggles are O��t4�. For this
simulation the growth rate of the energy error is about
�1:1�t5 energy units per time unit.

The value of energy H obtained from VI is nearly
constant because the VI equations exactly conserve the
nearby Hamiltonian H . This can be confirmed by com-
puting the first two terms in the expansion for H given in
Eq. (38). For the coupled harmonic oscillator with timestep
�t � 0:01, the two–term approximation for H remains
nearly constant with variations at the level of 10�9. With
timestep �t � 0:1, the approximation for H remains
nearly constant with variations at the level of 10�5.
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FIG. 4 (color online). Energy error for the coupled harmonic
oscillator for RK2. The solid curve has timestep �t � 0:01. The
dashed curve shows the error divided by 8 for �t � 0:02.
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These variations are just what we expect given the fact
that, according to Eq. (38), the terms omitted in the ap-
proximation for H are order O��t4�.

B. Simple pendulum

For our next example, consider the simple pendulum
with Hamiltonian

H � 1
2p

2 � cos�x�; (43)

where x denotes the angle from the vertical and p is the
angular momentum. Figure 6 shows a portion of the phase
space for the system. We consider a family of initial data
points clustered about x � �=2, p � 0. Specifically, the
initial data are given by

x � �=2� 0:002 cos���; p � 0:002 sin���; (44)

for 0 � � � 2�. These points form a ‘‘circle’’ in phase
VI (low res)

VI (high res)
“exact” solution

initial data

RK2 (high res)

RK2 (low res)
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FIG. 6 (color online). Phase space diagram for the pendulum.
The initial data occupy a circle around x � �=2, p � 0, and are
evolved for just under 10 oscillation periods. Final data is shown
for VI and RK2, for low and high resolutions.
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space. The boxes in Fig. 6 mark the points � � 0, �=2, �,
and 3�=2. The initial data are evolved with VI and with
RK2, both at low resolution (timestep �t � 0:1) and high
resolution (timestep �t � 0:05). The run time is 74:1 time
units, which is just under 10 oscillation periods. The initial
data cycles around the phase space diagram in a clockwise
direction. Figure 6 shows the end result of this evolution
for the two integrators at low and high resolutions, as well
as the exact solution obtained from RK4 with a very small
timestep. The dashed curves show the constant energy
contours with energies determined by the initial data
shown as boxes.

Qualitatively, we see that both VI and RK2 schemes are
second-order accurate. That is, the errors in x and p are
reduced by a factor of about 4 when the resolution is
doubled. But the character of that error is very different.
The VI evolution stays close to the constant energy con-
tours, and the phase space errors lie almost entirely in the
H � constant subspace. The RK2 integrator does not re-
spect conservation of energy, and over time the system
point in phase space spirals outward with increasing en-
ergy. After about 9000 time units the simulation with RK2
and �t � 0:1 predicts that the pendulum will gain enough
energy to circle around completely, rather than oscillate.

Recall that the midpoint rule is a symplectic integrator,
that is, the symplectic form (17) is preserved in time. It
follows that the volume of phase space bounded by the
initial data circle in Fig. 6 is constant under the discrete
evolution defined by the variational integrator. The stan-
dard second-order Runge-Kutta scheme is not symplectic,
and does not preserve phase space volume. In Fig. 6 it is
not possible to tell, simply by looking, whether or not the
initial phase space volume is conserved by the VI scheme,
or changed by the RK2 scheme. A more involved numeri-
cal test would be needed to verify the expected results.

C. Unbounded motion in one dimension

The VI equations conserve the phase space function H
exactly, but the energy H might not remain close to H if
the motion of the system is unbounded. Consider the
Hamiltonian for a particle moving in a one-dimensional
potential, H � p2=2� V�x�. In this case Eq. (38) gives

H �H �
�t2

24
�p2V00 � �V0�2� �O��t4�; (45)

where prime denotes d=dx. The time derivative of this
difference is d�H �H �=dt � p3V000�t2=24 plus terms
of higher order in �t. We see that H�H , and therefore
also H, will grow in time if p3V 000 remains finite and does
not change sign.

A nice example of this unbounded behavior is obtained
with the potential V�x� � �x6=5. In this case the particle
motion at late times is given approximately by x	
�2

���
2
p
t=5�5=2, p	

���
2
p
�2

���
2
p
t=5�3=2. Equation (45) shows

that the energy grows linearly with time, H 	H �
024001
�2
���
2
p

�t2=125�t. Figure 7 confirms that for this system,
the variational integrator exhibits linear growth in the
energy. The initial data used in this simulation was x �
0:1, p � 0, with timestep �t � 0:1. The energy error
obtained from RK2 is almost identical to the result shown
in Fig. 7 for VI.

D. Orbital motion

Our final example is motion in a gravitational (or elec-
tric) field described by a central 1=r potential. The
Hamiltonian is defined by
-10
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H �
1

2
�p2

x � p2
y� �

1����������������
x2 � y2

p : (46)

This system is symmetric under rotations in the x–y plane.
The conserved Noether charge associated with rotational
symmetry is angular momentum, J � xpy � ypx. The ini-
tial data for this simulation is x � 1:0, px � 0:0, y � 0:0,
py � 1:2. The resulting orbital motion is an ellipse with
eccentricity 	0:5 and period 	15.

Figure 8 shows the angular momentum as a function of
time for RK2 and VI with timestep �t � 0:25. With the
variational integrator the angular momentum is exactly
conserved (to machine accuracy) and J retains its initial
024001
value of 1.2 throughout the simulation. With RK2, the
angular momentum exhibits short timescale fluctuations
and a longer timescale drift. A more complete analysis
shows that the short timescale errors are order �t2, whereas
the drift in J is order �t3. Qualitatively similar results are
obtained for RK4. In that case, the short timescale errors in
J are order �t4, and the drift is order �t5.
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