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Abstract—Motor systems are very important in modern society.
They convert almost 60% of the electricity produced in the U.S.
into other forms of energy to provide power to other equipment.
In the performance of all motor systems, bearings play an impor-
tant role. Many problems arising in motor operations are linked to
bearing faults. In many cases, the accuracy of the instruments and
devices used to monitor and control the motor system is highly de-
pendent on the dynamic performance of the motor bearings. Thus,
fault diagnosis of a motor system is inseparably related to the diag-
nosis of the bearing assembly. In this paper, bearing vibration fre-
quency features are discussed for motor bearing fault diagnosis.
This paper then presents an approach for motor rolling bearing
fault diagnosis using neural networks and time/frequency-domain
bearing vibration analysis. Vibration simulation is used to assist in
the design of various motor rolling bearing fault diagnosis strate-
gies. Both simulation and real-world testing results obtained indi-
cate that neural networks can be effective agents in the diagnosis
of various motor bearing faults through the measurement and in-
terpretation of motor bearing vibration signatures.

Index Terms—Bearing vibration, fault diagnosis, frequency do-
main, neural network, time domain.

I. INTRODUCTION

DUE TO THE close relationship between motor system de-
velopment and bearing assembly performance, it is dif-

ficult to imagine the progress of modern rotating machinery
without consideration of the wide application of bearings. In ad-
dition, the faults arising in motors are often linked with bearing
faults. In many instances, the accuracy of the instruments and
devices used to monitor and control the motor system is highly
dependent on the dynamic performance of bearings.

Bearing vibration can generate noise and degrade the quality
of a product line which is driven by a motor system. Heavy
bearing vibration can even cause the entire motor system to
function incorrectly, resulting in downtime for the system and
economic loss to the customer. Proper monitoring of bearing
vibration levels in a motor system is highly cost effective in
minimizing maintenance downtime—both by providing ad-
vance warning and lead time to prepare appropriate corrective
actions, and by ensuring that the system does not deteriorate
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to a condition where emergency action is required. Thus, it
is important to include bearing vibration diagnosis into the
scheme of motor system fault diagnosis [1]–[3].

Signals from vibration sensors are usually measured and
compared with reference measurements in order to interpret
bearing conditions. The methods used to analyze these signals
include probabilistic analysis [4], [5], frequency analysis
[4]–[13], time-domain analysis [4], [5], and finite-element
analysis [14]. Among these methods, the frequency analysis
approach is the most popular one. This popularity is most
probably due to the availability of Fourier transform technique,
as characteristics of vibration signals are more easily noticed
in the frequency domain rather than in the time domain. The
frequency analysis technique involves frequency analysis of
the vibration signal and further processing of the resulting
spectrum to obtain clearly defined diagnosis information [15],
[16]. Among the methods that use frequency analysis are the
bearing defect frequencies analysis method [15], [16], high-fre-
quency shock pulse and friction forces method [5], [15], [16],
and enveloped spectrum method [15], [16]. In the category
of time-domain analysis technique there are the time-series
averaging method [16], the signal enveloping method [16], the
Kurtosis method [16], and the spike energy method [16].

In the motor bearing fault diagnosis process, as shown in
Fig. 1, the sensors collect time domain vibration signals. The
fast Fourier transform (FFT) technique is then employed to
convert the time-domain signals into frequency-domain signals,
which can provide salient features for the diagnosis of the
bearing condition. The designed fault diagnosis system can use
both time-domain and frequency-domain signals to perform
motor bearing fault diagnosis.

In this paper, neural networks are applied to motor bearing
fault diagnosis. The bearing vibration frequency features and
time-domain characteristics are applied to a neural network
to build an automatic motor bearing fault diagnosis machine.
Neural networks have a proven ability in the area of nonlinear
pattern classification. After being trained, they contain expert
knowledge and can correctly identify the different causes of
bearing vibration. The capacity of artificial neural networks
to mimic and automate human expertise is what makes them
ideally suited for handling nonlinear systems. Neural networks
are able to learn expert knowledge by being trained using a
representative set of data [2], [3], [17]–[19]. At the beginning of
a neural network’s training session, the neural network fault de-
tector’s diagnosis of the motor’s condition will not be accurate.
An error quantity is measured and used to adjust the neural net-
work’s internal parameters in order to produce a more accurate
output decision. This process is repeated until a suitable error
is achieved. Once the network is sufficiently trained and the
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Fig. 1. General flow of signals in a typical motor bearing fault detection process.

parameters have been saved, the neural network contains all the
necessary knowledge to perform the fault detection. This paper
presents the design of the neural network diagnosis algorithm.
Both simulation and actual experimental results indicate that a
neural network bearing vibration diagnosis algorithm can give
accurate information about the condition of the motor bearing
based on appropriately monitored vibration data.

II. M OTORBEARING VIBRATION FREQUENCYFEATURES

Since most bearing vibrations are periodical movements, it
is easy to extract vibration features from the frequency domain
using the powerful and popular FFT technique. Many publi-
cations have studied the frequency features of rolling bearing
vibration [4]–[7], [20]–[22]. Generally, rolling bearings con-
sist of two concentric rings, called the inner raceway and outer
raceway, with a set of rolling elements running in their tracks.
Standard shapes of rolling elements include the ball, cylindrical
roller, tapered roller, needle roller, and symmetrical and unsym-
metrical barrel roller [7]. Typically, the rolling elements in a
bearing are guided in a cage that ensures uniform spacing and
prevents mutual contact.

There are five basic motions that are used to describe the dy-
namics of bearing elements, with each movement having a cor-
responding frequency [4]–[8], [12], [21]. These five frequencies
are denoted as the shaft rotational frequency (), the funda-
mental cage frequency ( ), the ball pass inner raceway fre-
quency ( ), the ball pass outer raceway frequency ( ),
and the ball rotational frequency ( ). These frequencies are
illustrated in Fig. 2.

Fig. 3 describes several important variables that will be used
in later sections. , , and represent the linear velocities of
the inner raceway, ball center, and outer raceway, respectively.

is the ball diameter, is the bearing cage diameter mea-
sured from one ball center to the opposite ball center, andis
the contact angle of the bearing.

A. Shaft Rotational Frequency ( )

As bearings are often used to form a bearing–rotor system,
the speed of the rotor (or shaft) is very important to the
movements of bearings. All other frequencies are a function of
this frequency.

Fig. 2. Basic frequencies in a bearing.

B. Fundamental Cage Frequency ()

The fundamental cage frequency is related to the mo-
tion of the cage. It can be derived from the linear velocity of
a point on the cage , which is the mean of the linear veloc-
ities of the inner raceway , and the outer raceway , i.e.,

. When is divided by the radius of the
cage , we can get the fundamental cage frequency

. Thus, can be written as [5]–[7], [13], [23]:

(1)

Sometimes, it is more convenient to represent the linear
velocities and as their respective rotational frequen-
cies and multiplied by their corresponding radii

and . Thus,
can be further expressed as

(2)

C. Ball Pass Inner Raceway Frequency ( )

The ball pass inner raceway frequency indicates the
rate at which the balls pass a point on the track of the inner
raceway. The value of is equal to the number of bearing
balls multiplied by the difference between the fundamental
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Fig. 3. Structure of a ball bearing and the definition of each variable.

cage frequency and the inner raceway frequency[5]–[7],
[13], [23]

(3)

D. Ball Pass Outer Raceway Frequency ( )

Similar to the ball pass inner raceway frequency , the
ball pass outer raceway frequency is defined as the rate
at which the balls pass a point on the track of the outer raceway.
The value of is a function of the number of bearing balls

and the difference between the outer raceway frequency
and the fundamental cage frequency [5]–[7], [13], [23]

(4)

E. Ball Rotational Frequency ( )

The ball rotational frequency is the rate of rotation of a
ball about its own axis in a bearing. This frequency can be cal-
culated from either the ball pass inner raceway frequency

or ball pass outer raceway frequency . Both situations will
give the same result [5]–[7], [13], [23]

(5)

where is the radius of the ball.
In a motor system, the outer raceway can be assumed

stationary, since it is generally locked in place by an external
casing, while the inner raceway is rotating at the speed of the
shaft, i.e., and . Therefore, in a motor system,
(2)–(5) can be rewritten as

(6)

(7)

(8)

(9)

Frequency-domain studies show that, when defects exist in a
bearing, the defects will generate some of the above frequencies
in the vibration signals. Many publications have discussed the
use of these five frequencies to identify defects in a bearing as-
sembly [5]–[7], [13], [23].

For defects on the raceway of a rolling bearing, each time
a roller hits the defective raceway, the corresponding ball pass
inner raceway frequency or ball pass outer raceway fre-
quency will be excited. If the defective area is large, har-
monics of or will also be present as an indication
of the severity of the defects [5]–[7], [13], [23]. For defects ex-
isting on a bearing roller, usually, two times the ball rotational
frequency will be generated. This is because the roller hits
both the inner and outer raceways each time it spins on its own
axis. In most cases, this frequency will be modulated with other
existing frequencies, such as and , resulting in a
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TABLE I
BEARING VIBRATION FEATURES

more complicated spectrum. Occasionally, if the defective area
on the roller is very large, the system natural frequency will
also be excited and modulated with two times the ball rotational
frequency [5]–[7], [13], [23]. Table I summarizes the possible
motor bearing vibration features in the frequency domain.

III. B EARING VIBRATION FAULT DIAGNOSIS ALGORITHM

USING NEURAL NETWORK

In the design and study of motor bearing fault diagnosis
schemes, it is important to determine if the designed fault
diagnosis algorithm is able to correctly classify different
bearing fault conditions. Using a well-controlled fault data
environment, such as one obtained from a computer simulation,
to verify the fault diagnosis algorithm’s performance capability
is essential. In this section, the authors use theFast Prototype
Motor Simulationsoftware, MotorSim, [3], [24] to simulate
and design the bearing vibration fault diagnosis algorithm.

MotorSim is a MATLAB-SIMULINK [25] based program
that provides a framework for in-depth simulation of motor
system dynamics. Although motor system dynamics simulation
software cannot completely model all real-world situations,
a computer simulation can assist in several aspects of motor
system operation and control. MotorSim can be used to generate
appropriate motor data, with different operating and loading
conditions, in a cost-effective and time-efficient manner.

A significant amount of motor fault diagnosis research has
focused on bearing vibration to detect motor bearing condi-
tions. MotorSim can generate time-domain vibration signals
for different conditions of bearing failure by incorporating a
bearing wear submodule into the motor base module. Inverse

Fourier transform was used and fine tuned to reconstruct
different bearing vibration time-domain signals based on those
frequency features discussed in the previous section. Measure-
ment noise was also introduced in the bearing vibration model.
The results have been verified by comparison to real-world
vibration signals [6]. Fig. 4 shows a bearing vibration signal
generated by simulating bearing looseness and defects on the
inner raceway and rolling element using MotorSim.

Table I shows that the vibration generated by defects in the
bearing will show one, or some combination of several, of the
five basic frequencies. Many publications [5]–[7], [13], [23]
have discussed the usage of these five basic frequencies to iden-
tify defects in a bearing. Usually, an expert will examine the
time-domain signal and the frequency spectra of bearing vibra-
tion to determine if there are any defects within the bearing.
However, a problem with using experts for vibration analysis
is that this experience, which is gained over a period of many
years, is a very expensive and an inefficient use of resources.
Therefore, if a neural network can be trained to emulate the
knowledge of vibration experts, motor bearing fault diagnosis
can be achieved more efficiently and at a reduced cost. The gen-
eral structure of this neural-network-based motor bearing fault
diagnosis system is shown in Fig. 5.

MotorSim is used to generate vibration signals with varying
severity for each of three different bearing defects. The geo-
metrical structure of the bearing is in,
in, and . The three bearing defects are the vibrations
caused by bearing looseness, by a circular defect located on
the inner raceway with a variable size from the initial diam-
eter of 0.03–0.225 in at a severe case, and by a defect which
resides on the rolling element increasing from 0.025 to 0.155 in.
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Fig. 4. Bearing vibration signal generated by MotorSIM.

Fig. 5. Neural network motor bearing fault detection system.

Each signal consists of 2048 sampling points with a sampling
time of 0.0005 seconds. An FFT is performed to extract the fre-
quency characteristics of these vibration signals. This procedure
is shown in

(10)
where and denotes the
time-domain data generated by MotorSim. The power spectrum
of the vibration signal is obtained as follows:

(11)

(12)

(13)

Next, we construct basic frequency signatures to represent
different bearing vibrations. These signatures are created from
the power spectrum of the vibration signal and consist of the cor-
responding basic frequencies, with varying amplitudes based on

the defect present. Due to the energy leakage, when generating
the signatures, we consider a frequency band of 5 Hz for each
basic frequency. That is

frequency band (14)

where is the basic frequency.
For the different characteristic frequencies, the frequency am-

plitude can be represented as

(15)

where is the sampling time, and is the total sampling points
used.

Therefore, the amplitude of spectrum for frequencies,
, and are

(16)

(17)

(18)

The time-domain information considered is the maximum
and mean value of the amplitude of vibration waveform, and
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the Kurtosis factor of the vibration waveform. They are defined
as

(19)

(20)

(21)

where

The completed neural network will have six input measure-
ments

(22)

The neural network has three outputs, each one serving as an
indicator for one of the three fault conditions (bearing looseness,
defects on the inner raceway, and defects on the rolling element)
producing an output of 1 for good and1 for bad.

Different neural network configurations have been evaluated
to determine the possible structure of the motor rolling bearing
fault diagnosis algorithm. The performance of the final motor
bearing fault diagnosis machine, a three-layer feedforward
neural network with ten hidden nodes, was tested using the
data generated by MotorSim and is summarized in Table II. A
learning rate of 0.01 and momentum of 0.8 was selected for all
cases based on the experience of the authors. Table II shows
that the neural network was able to accurately detect the three
faults.

IV. REAL-TIME DATA VERIFICATION

In this section, actual motor rolling bearing vibration data
were collected to verify the feasibility of applying a neural net-
work to diagnose bearing fault. The vibration data was gener-
ated with aMachinery Fault Simulatormanufactured by Spec-
traQuest, Richmond, VA, 1997. TheMachinery Fault Simulator
allows for the measurement of vibration data with the motor op-
erating under a variety of fault conditions. The platform of the
Machinery Fault Simulatoris depicted in Fig. 6.

TheMachinery Fault Simulatorcan simulate different types
of motor faults. Bearing fault vibration is generated by replacing
the front bearing with a bearing of known fault condition pro-
vided by the bearing manufacturer. The vibration signals are
measured through two vibration sensors located on theand
axes. The motor speed or the shaft rotational frequencycan
be collected from the encoder attached on the motor shaft. The
signals from the vibration sensors and encoder are transmitted
to a National Instruments SCXI chassis [26] for signal condi-
tioning and then sampled at a rate of 20 000 samples/s via a Na-
tional Instruments A/D PC card. Each data set collected contains
16 384 samples. An FFT of the data set is followed immediately

TABLE II
PERFORMANCE OF THENEURAL NETWORKMOTORBEARING FAULT DIAGNOSIS

ALGORITHM ON SIMULATED MOTORROLLING BEARING FAULT DATA

after finishing the data collection and the result is saved on the
hard disk. The overall data acquisition system setup is shown in
Fig. 7.

Three kinds of bearing fault vibrations are generated using the
Machinery Fault Simulator. They are: 1) defect on bearing ball;
2) defect on inner raceway; and 3) defect on outer raceway. In
addition, the normal bearing vibration is also measured in order
to compare with the fault cases. The geometrical structure of
the bearing used in the experiment is in,

in, and . The faulted bearings are provided by the
manufacturer; the detailed information (size and geometry) for
the defects are not known.

The vibration signals under normal condition, bearing ball de-
fect, and inner raceway and outer raceway defects are measured
at five shaft rotational frequencies , which are 15, 57.5, 25,
40, and 32 Hz, respectively. At each shaft frequency, five mea-
surements are made for each working condition.

As in the real-world environment, the motor speed cannot
keep rotating at a constant precisely. This fluctuation is
caused from external factors such as the performance of the
controller, noise, and disturbance in power system. The fluctua-
tion in also causes other bearing basic frequencies to deviate
from the calculated value. Therefore, the frequency band range
in (14) needs to be adjusted. Thus, in each measurement, the
deviation of is computed by

(23)

Generally, the deviation in each measurement under the same
bearing fault condition may not be identical. In order to de-
rive the range of the deviations for all conditions, the maximum
value of deviation from all measurements in each fault condi-
tion is considered. The maximum deviation at eachunder
different conditions is plotted in Fig. 8.

The frequency band range has to be wide enough to cover the
maximum deviation in every condition. Therefore, the variable
range is defined by drawing the-range line shown in Fig. 8
from the maximum deviation of every fault condition at
15 Hz to the maximum deviation at 32 Hz because this
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Fig. 6. Motor fault simulator drawing (1: encoder;2: three-phase induction motor;3: temperature sensor;4: shaft coupling;5: variable-frequency motor drive;
6: current sensor;7: x-axis vibration sensor;8: front bearing;9: rotational disk 1;10: y-axis vibration sensor;11: motor shaft;12: rotational disk 2;13: rear
bearing).

Fig. 7. Real-time motor bearing vibration data acquisition system.

range represents the maximum proportion betweenand de-
viation. This line is extended to cover other . The slope of
this line is used to define the frequency band range. Thus, (15)
becomes

(24)

where is the slope of the -range line.
The modified frequency band range from (24) provides a

more robust scheme to process the measured data described
by the equations in Section III. As the real-time environment
cannot provide a vibration signal under different severity for

one bearing element defect as we did in the simulation data,
vibration signals generated from faulty bearings at different
motor speeds are examined instead. To examine the effect of
motor speed on the performance of diagnosis of the neural
network motor bearing fault scheme, two neural networks
are designed in this verification. The input for these neural
networks are
and
correspondingly. The used to compute
is the average from each measurement. The training of the
neural network with real-time data sets is performed by the
MATLAB Neural Networks Toolbox 3.0 [27]. A three-layer
feedforward neural network is trained by using the Leven-
berg–Marquardt algorithm. The activation functions at the
hidden layer and output layer in the network are a hyperbolic
tangent function. Two parameters, the number of hidden
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Fig. 8. Frequency fluctuation in real-time measurement.

TABLE III
PERFORMANCE OFREAL–TIME NEURAL NETWORK MOTOR BEARING FAULT DIAGNOSIS ALGORITHM

neurons and the learning rate, are varied to find the optimal
design. The different numbers of hidden neurons applied in the
verification are 10, 15, 20, 25, 30, and 35. The two learning
rates used are 0.001 and 0.005. All inputs are normalized to be
in the range [ 1, 1] before being applied to train the network.
To improve generalization and the avoid overtraining problem,
the cross-validation method [28] is applied during the training.

Table III shows the performance of the real-time neural net-
work motor bearing fault diagnosis scheme. There are totally
40 real-time testing data sets to test the accuracy of the trained
neural network to diagnose different motor bearing faults. The
result demonstrates that with proper processing of the measured
data and possible training procedure, the neural network motor
bearing fault diagnosis schema can diagnose bearing faults with
desired accuracy.

V. CONCLUSION

This paper has discussed several popular rolling bearing vi-
bration features in both the time and frequency domain and
the use of signal processing to provide features to be used for
bearing fault diagnosis. Neural networks have been used in this
paper to perform motor bearing fault diagnosis based on the
extracted information features. Computer-simulated data were
first used to study and design the neural network motor bearing
fault diagnosis algorithm. Actual bearing vibration data col-
lected in real-time were then applied to perform initial testing
and validation of the approach. The results show that neural net-
works can be effectively used in the diagnosis of various motor
bearing faults through appropriate measurement and interpreta-
tion of motor bearing vibration signals.
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