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Real-Time Implementation and Analysis of a
Modified Energy Based Controller for the

Swing-Up of an Inverted Pendulum on a Cart
Emese Kennedy, and Hien Tran, Member, SIAM

Abstract—In this paper we derive a modified energy based
swing-up controller using Lyapunov functions. During the deriva-
tion, all effort has been made to use a more complex dynamical
model for the single inverted pendulum (SIP) system than the
simplified model that is most commonly used. We consider the
electrodynamics of the DC motor that drives the cart, and
incorporate viscous damping friction as seen at the motor pinion.
Furthermore, we use a new method to account for the limitation
of having a cart-pendulum system with a finite track length. Two
modifications to the controller are also discussed to make the
method more appropriate for real-time implementation. One of
the modifications improves robustness using a modified Lyapunov
function for the derivation, while the other one incorporates
viscous damping as seen at the pendulum axis. We present both
simulation and real-time experimental results implemented in
MATLAB Simulink.

Index Terms—inverted pendulum, energy systems, optimal
control, constrained control

I. INTRODUCTION

THE swing-up and stabilization of a single inverted pen-
dulum (SIP) is a popular and challenging problem in

nonlinear control theory. It is popular because the shape and
dynamics of the SIP resemble many different real world
systems, such as the ones in Fig. 1, thus the control methods
used can be utilized in numerous applications. The challenge
in controlling the SIP arises because the equations of motion
governing the system are inherently nonlinear and because the
upright position is an unstable equilibrium. Furthermore, the
system is under-actuated as it has two degrees of freedom, one
for the cart’s horizontal motion and one for the pendulum’s
angular motion, but only the cart’s position is actuated, while
the pendulum’s angular motion is indirectly controlled.

In a laboratory setting, there are two main types of SIP
systems: the rotary pendulum system, and the pendulum on
a cart system. The controllers for these two systems are
similar, but they have different actuator dynamics. The greatest
difference between the two systems is that the pendulum on a
cart system has a finite track length that needs to be taken into
account, especially during swing-up. This paper only focuses
on the controllers for a cart pendulum system.

The SIP control problem is composed of two tasks: the first
task is to swing-up the pendulum from its downward hanging
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position, and the second task is to stabilize the pendulum
around the vertical upright position. These two tasks are
usually accomplished using two separate controllers, however,
there are a few existing control methodologies that can handle
both tasks without having to switch controllers [1]. Our novel
stabilization controller was previously published in [2] and [3].
We have also presented a swing-up controller in [4]. Here, we
will expand on our previous work by including a more in-
depth derivation and analysis, as well as two other swing-up
controllers that led to the controller published in [4].

A. Existing Energy-Based Control Methods
One of the most popular control methods for swinging

up the pendulum is where the control law is chosen such
that the energy of the pendulum builds until reaching the
upright equilibrium. This technique was originally proposed by
Astrom and Furuta in 1996 at the 13th International Federation
of Automatic Control World Congress [5]. Their revised paper
that included the implementation of their method on a rotary
pendulum was published in 2000 [6]. Later, the method was
adapted for a cart-pendulum system by Angeli in [7], but
without taking the finite length of the track into account. In
[8]–[11] the use of energy based controllers for the pendulum
on a cart system is discussed. Control methods that consider
the length of the track are presented in [12] and [13].

Many of the published controllers have only been tested in
simulations and not in real-time experiments [1]. As almost all
simulations use a simplified model to represent the dynamics
of the SIP, the observed experimental results are often very dif-
ferent from the previously published simulation results. These
simplified SIP models commonly used in simulations usually
ignore the effects of friction, and often fail to incorporate some
physical restrictions like the maximum deliverable voltage by
the amplifier, the capacity of the DC motor that drives the cart,
and the finite track length [14].

II. SYSTEM DYNAMICS

A. System Representation and Notations
Fig. 2 shows a diagram of the SIP mounted on a cart. The

upward pointing vertical position of the pendulum corresponds
to an angle of zero radians (i.e. α = 0 rad), and the
counterclockwise rotation is defined to be positive (i.e. α̇ > 0).
The displacement of the cart to the right is understood to be
positive (i.e. ẋ > 0), as indicated by the Cartesian frame of
coordinates presented in Fig. 2. The model parameters and
their values are provided in Table I.
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Fig. 1. Inverted pendulum like systems.
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Fig. 2. Single inverted pendulum diagram.

TABLE I
INVERTED PENDULUM MODEL PARAMETERS

Symbol Description Value
Mw Cart Weight Mass 0.37 kg
M Cart Mass with Extra Weight 0.57 +Mw kg
Jm Rotor Moment of Inertia 3.90E-007 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71
rmp Motor Pinion Radius 6.35E-003 m
Beq Equivalent Viscous Damping Coefficient 5.4 N.m.s/rad
Mp Pendulum Mass 0.230 kg
`p Pendulum Length from Pivot to COG 0.3302 m
Ip Pendulum Moment of Inertia at its COG 7.88E-003 kg.m2

Bp Viscous Damping Coefficient 0.0024 N.m.s/rad
g Gravitational Constant 9.81 m/s2

Kt Motor Torque Constant 0.00767 N.m/A
Km Back-ElectroMotive-Force Constant 0.00767 V.s/rad
Rm Motor Armature Resistance 2.6 Ω

B. Equations of Motion
Using Langrange’s method, we have previously showed [2],

[14] that the second-order time derivatives of the position of

the cart, x, and the angle of the pendulum, α, are the two
non-linear equations

ẍ =

(
− (Ip +Mp`

2
p)Beqẋ−Mp`p cos(α)Bpα̇

− (M2
p `

3
p + IpMp`p) sin(α)α̇

2 + (Ip +Mp`
2
p)Fc

+M2
p `

2
pg cos(α) sin(α)

)/
D(α)

(1)

and

α̈ =

(
(M +Mp)Mpg`p sin(α)− (M +Mp)Bp (α̇)

−M2
p `

2
p sin(α) cos(α) (α̇)

2 −Mp`p cos(α)Beq (ẋ)

+Mp`p cos(α)Fc

)/
D(α),

(2)

where D(α) = (M+Mp)Ip+MMp`
2
p+M

2
p `

2
p sin

2(α), and x
and α are both functions of t. Furthermore, the driving force,
Fc, generated by the DC motor acting on the cart through the
motor pinion is considered to be the single input to the system.

Since in our real-time implementation the input is equal
to the cart’s DC motor voltage, Vm, we can use Kirchhoff’s
voltage law and the physical properties of our system to
convert the driving force, Fc, to voltage input by deriving the
relationship

Fc = −
K2
gKtKm (ẋ(t))

Rmr2mp
+
KgKtVm
Rmrmp

. (3)

III. CONTROLLER DESIGN

Here, we modify the popular energy-based swing-up con-
troller, that commonly uses a simplified SIP model, to account
for our more complex dynamical model for the SIP system
given by equations (1) and (2). We also consider the electro-
dynamics of the DC motor that drives the cart, incorporate
viscous damping friction as seen at the motor pinion, and
account for the limitation of having a cart-pendulum system
with a finite track length.
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A. Pendulum’s Energy

The total energy, Ep, of the pendulum at it’s hinge is given
by the sum of it’s rotational kinetic energy and it’s potential
energy, so

Ep =
1

2
Jpα̇

2 +Mp`pg(cos(α)− 1), (4)

where Jp, the pendulum’s moment of inertia at it’s hinge is
defined as

Jp =

∫ 2`p

0

r2
Mp

2`p
dr =

4

3
Mp`

2
p. (5)

Our goal is to increase the energy of the pendulum until it
reaches the upright position, which means that we must design
a controller so that the condition

dEp
dt
≥ 0 (6)

is guaranteed. Differentiating (4) yields

dEp
dt

= Jpα̇α̈−Mp`pg sin(α)α̇

=
4

3
Mp`

2
pα̇α̈−Mp`pg sin(α)α̇.

(7)

As derived in [4] and [14], the two Lagrange’s equations
for our system can be written as(

M +Mp +
JmK

2
g

r2mp

)
ẍ(t) +Mp`p sin(α(t))α̇(t)

2

−Mp`p cos(α(t))α̈(t) = Fc −Beqẋ(t),
(8)

and

−Mp`p cos(α(t))ẍ(t) +
4

3
Mp`

2
pα̈(t)−Mp`pg sin(α(t))

= −Bpα̇(t).
(9)

Then, using (9) we can rewrite (7) as

dEp
dt

=Mp`pα̇ cos(α)ẍ. (10)

It should be noted, that as is commonly done in swing-
up control derivation, the effects of viscous damping at the
pendulum axis have been ignored (i.e. set Bp = 0). This is
acceptable because Bp is very small and its effect is minor.

B. Converting to Voltage Input

In most swing-up derivations, the control input is taken
to be the acceleration of the cart, ẍ, but for our real-time
implementation the control input is defined to be the voltage
applied to the cart Vm. Thus, we need to express ẍ in terms
of Vm. We will do this by considering Newton’s second law
of motion together with D’Alembert’s principle,

Mẍ+ Fai = Fc −Beqẋ, (11)

where Fai is the armature rotational inertial force acting on the
cart [15]. As seen at the motor pinion, Fai can be expressed
as a function of the armature inertial torque, Tai, thus

Fai =
KgTai
rmp

. (12)

Now, applying Newton’s second law of motion to the shaft of
the cart’s DC motor yields

Jmθ̈m = Tai, (13)

where θm is the rotational angle of the motor shaft. Using
the mechanical configuration of the cart’s rack-pinion system
and the technical specifications from the Quanser IP02 User
Manual [16], as well as the study of the electrodynamics of a
DC motor in [17] we have

θm =
Kgx

rmp
. (14)

Then, we can substitute equations (14) and (13) into (12) to
obtain

Fai =
K2
gJmẍ

rmp
. (15)

With the use of equations (3) and (15), we can express (11)
as(
M +

K2
gJm

r2mp

)
ẍ = −

(
Beq +

K2
gKtKm

Rmr2mp

)
ẋ+

KgKtVm
Rmrmp

.

(16)
Solving for ẍ results in

ẍ =
KgKtrmpVm − (K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

. (17)

Therefore, by substituting (17) into (10) and imposing the
condition in (6), we obtain that our control input, Vm, must
satisfy

dEp
dt

=Mp`pα̇ cos(α)

(
KgKtrmpVm

Rm(Mr2mp +K2
gJm)

−
(K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

)
≥ 0.

(18)

C. Lyapunov Stability Condition

Consider the Lyapunov function

L(X) =
1

2
(Ep)2 , (19)

which is defined to be zero when the pendulum is in it’s
upright position, and positive everywhere else. Then, based
on Lyapunov’s theorem, we must have

dL

dt
=Ep

dEp
dt

=EpMp`pα̇ cos(α)

(
KgKtrmpVm

Rm(Mr2mp +K2
gJm)

−
(K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

)
≤ 0.

(20)

Substituting the model parameter values provided in Table I
into (20) and simplifying yields the condition

Epα̇ cos(α)(Vm − 7.614ẋ) ≤ 0, (21)

that our swing-up controller must satisfy to guarantee Lya-
punov stability.
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0.25-0.25 0

x < 0, ẋ > 0
sg(X) = 1

x > 0, ẋ > 0
sg(X) = 1

x < 0, ẋ > 0
sg(X) = 1

x > 0, ẋ > 0
sg(X) = −1

x < 0, ẋ < 0
sg(X) = −1

x > 0, ẋ < 0
sg(X) = −1

x < 0, ẋ < 0
sg(X) = 1

x > 0, ẋ < 0
sg(X) = −1

Fig. 3. Diagram representing how sg(X) is defined. The arrows indicate the
direction of the cart’s displacement, while the number line indicates the cart’s
position.

D. Control Law

Consider the control law of the form

Vm(X) = β|ẋ|
(
−sign(Epα̇ cos(α)) + sg(X)eη|x|

)
, (22)

where β and η are positive constants, sign represents the
signum function, and the function sg(X) is defined as

sg(X) =0.5
(

sign(ẋ)− sign(x)

− sign(|x| − 0.25)(sign(ẋ) + sign(x))
)
,

(23)

which will output ±1 depending on the position of the cart
and direction it is moving. Then, the sign of Vm will be the
same as the sign of sg(X) because of the exponential term in
(22). The total length of the track that the cart can travel is
0.814 m, indicating that the cart’s horizontal displacement in
either direction must be less than 0.407 m (i.e. |x| < 0.407
m). For safety reasons, the cart should not get too close to
the end of the track, thus sg(X) was defined in such a way
that it switches signs only when the cart’s displacement from
the center is more than 0.25 m and the direction of the cart’s
displacement is towards either track end. Fig. 3 provides a
graphical representation of how sg(X) is defined. Substituting
(22) into (21) gives

Epα̇ cos(α)
(
β|ẋ|

(
−sign(Epα̇ cos(α)) + sg(X)eη|x|

)
− 7.614ẋ

)
≤ 0,

(24)

which can be rewritten as

β|ẋ|
(

sg(X)Epα̇ cos(α)eη|x| − |Epα̇ cos(α)|
)

≤ 7.614ẋEpα̇ cos(α).
(25)

Then, dividing by |ẋ||Epα̇ cos(α)| yields

β
(

sign(Epα̇ cos(α))sg(X)eη|x| − 1
)

≤ 7.614sign(Epα̇ cos(α))sign(ẋ).
(26)

Physically for our system, a positive input voltage means
positive cart displacement, therefore Vm and ẋ have the same
sign. Furthermore, since we defined sg(X) to have the same
sign as Vm, this also means that sg(X) and ẋ must also have
the same sign. Now, consider the possible sign combinations
for Epα̇ cos(α) and sg:

• Case 1: Epα̇ cos(α) > 0 and sg(X) = 1 (ẋ > 0)

β
(
eη|x| − 1

)
≤ 7.614⇒ β ≤ 7.614

eη|x| − 1
.

• Case 2: Epα̇ cos(α) > 0 and sg(X) = −1 (ẋ < 0)

β
(
−eη|x| − 1

)
≤ −7.614⇒ β ≥ 7.614

eη|x| + 1
.

• Case 3: Epα̇ cos(α) < 0 and sg(X) = 1 (ẋ > 0)

β
(
−eη|x| − 1

)
≤ −7.614⇒ β ≥ 7.614

eη|x| + 1
.

• Case 4: Epα̇ cos(α) < 0 and sg(X) = −1 (ẋ < 0)

β
(
eη|x| − 1

)
≤ 7.614⇒ β ≤ 7.614

eη|x| − 1
.

Based on the above cases, we obtain that β and η must satisfy
the condition

7.614

eη|x| + 1
≤ β ≤ 7.614

eη|x| − 1
. (27)

Moreover, we have to ensure that the commanded voltage does
not make the power amplifier go into saturation, so we must
design our control in a way that |Vm| < 10 Volts. This means
that β and η also have to satisfy∣∣∣∣∣β|ẋ|(−sign(Epα̇ cos(α)) + sg(X)eη|x|

) ∣∣∣∣∣ ≤ 10. (28)

Based on technical specifications provided in [16] we can
calculate that the theoretical maximum velocity of the cart is
ẋ = 1.075 m/s [14], which allows us to find a bound for (28)
only in terms of β and η. One particular, albeit arbitrary, choice
for β and η that satisfies all of the above conditions is β = 4
and η = 0.9. Both our simulation and real-time experimental
results will be presented in the later sections of this paper, but
first we consider two modifications to the control law given
by equation (22).

IV. A MORE ROBUST SWING-UP CONTROLLER

A. Modified Lyapunov Function

Even though most publications on energy-based control
methods for the swing-up of the pendulum use the same Lya-
punov function we used in equation (19) for their derivation,
in [18] Maeba et al. point out that this function has several
zeros aside from the upright position. In fact, the pendulum’s
energy given by (4), and thus the Lyapunov function in (19),
is zero every time the pendulum’s angle and angular velocity
satisfy

α̇ = ±

√
3g(1− cos(α))

2`p
. (29)

This means that the presented controller is not guaranteed to
swing the pendulum up since the energy will stop building
once the desired zero energy is achieved. To fix this problem,
consider the Lyapunov function

L2(X) =
1

2
E2p + k(1− cos3(α)), (30)

where k is a positive constant. Equation (30) only has one
zero, namely the upright position with zero angular velocity
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(i.e. α = 0, α̇ = 0), and is strictly positive everywhere
else. Differentiating (30) and utilizing (20) we obtain the new
Lyapunov condition

dL2

dt
=EpMp`pα̇ cos(α)

(
KgKtrmpVm

Rm(Mr2mp +K2
gJm)

−
(K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

)
+

3

2
k cos(α) sin(2α)α̇

≤ 0.

(31)

Substituting the model parameter values provided in Table I
into (31) yields the new condition

Epα̇ cos(α)(Vm − 7.614ẋ) + 12.28kα̇ cos(α) sin(2α) ≤ 0,
(32)

that the control input, Vm must satisfy.

B. Modified Control Law

Consider the control law of the form

Vm(X) =β1|ẋ|
(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
− β3sign(α̇ cos(α))| sin(2α)|

Ep
,

(33)

where β1, β3, and η are positive constants, 1 > β2 > 0, and
sg is the same function defined in (23). Note that equation
(33) is a modification of the previously presented control law
in (22). Substituting (33) into (32) gives

Epα̇ cos(α)

(
β1|ẋ|

(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
− 7.614ẋ

)
− β3|α̇ cos(α)|| sin(2α)|

+ 12.28kα̇ cos(α) sin(2α)

≤ 0.
(34)

The above inequality is satisfied when

Epα̇ cos(α)
(
β1|ẋ|

(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
−7.614ẋ

)
≤ 0,

(35)

and

−β3|α̇ cos(α)|| sin(2α)|+ 12.28kα̇ cos(α) sin(2α) ≤ 0 (36)

are both satisfied. Based on our earlier conditions in (26) and
(27), we can obtain that (35) holds when

7.614

eη|x| + β2
≤ β1 ≤

7.614

eη|x| − β2
. (37)

Furthermore, inequality (36) is satisfied when

β3 ≥ 12.28k. (38)

In addition to the conditions (37) and (38), the sign of Vm
should be given by the value of sg(X) to make sure the cart
avoids the edges of the track. Therefore, we must have

sign

(
β1|ẋ|

(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
−β3sign(α̇ cos(α))| sin(2α)|

Ep

)
= sg(X).

(39)

Now, consider the possible sign combinations for Epα̇ cos(α)
and sg(X):
• Case 1: Epα̇ cos(α) > 0 and sg(X) = 1

(i.e. want Vm > 0, ẋ > 0)

β1|ẋ|
(
−β2 + eη|x|

)
− β3| sin(2α)|

|Ep|
> 0

⇒ β1 >
β3| sin(2α)|

|ẋ||Ep|(eη|x| − β2)
.

• Case 2: Epα̇ cos(α) > 0 and sg(X) = −1
(i.e. want Vm < 0, ẋ < 0)

β1|ẋ|
(
−β2 − eη|x|

)
− β3| sin(2α)

|Ep|
< 0

⇒ β1 > −
β3| sin(2α)|

|ẋ||Ep|(eη|x| + β2)
.

• Case 3: Epα̇ cos(α) < 0 and sg(X) = 1
(i.e. want Vm > 0, ẋ > 0)

β1|ẋ|
(
β2 + eη|x|

)
+
β3| sin(2α)|
|Ep|

> 0

⇒ β1 > −
β3| sin(2α)|

|ẋ||Ep|(eη|x| + β2)
.

• Case 4: Epα̇ cos(α) < 0 and sg(X) = −1
(i.e. want Vm < 0, ẋ < 0)

β1|ẋ|
(
β2 − eη|x|

)
+
β3| sin(2α)|
|Ep|

< 0

⇒ β1 >
β3| sin(2α)|

|ẋ||Ep|(eη|x| − β2)
.

The above cases all hold when the constants β1, β2, β3, and η
satisfy

β1 >
β3| sin(2α)|

|ẋ||Ep|(eη|x| − β2)
. (40)

To avoid division by zero and bound the value of β1, we
can saturate the signals of Ep and ẋ so that |Ep| > δ1 and
|ẋ| > δ2 for some small positive constants δ1 and δ2. Then,
the condition (40) will be satisfied when

β1 ≥
β3

δ1δ2(1− β2)
. (41)

Moreover, to avoid saturation of the power amplifier, the
constants in (33) must be chosen so that |Vm| ≤ 10. Just
as before, the choice of the constants in the control law that
satisfy all the restrictions is somewhat arbitrary. One possible
choice that satisfies all conditions and yields satisfactory
simulation results is β1 = 5.1, β2 = 0.5, β3 = 0.002, and
η = 0.8. These constants were calculated using k = 10−4,
δ1 = 0.001, and δ2 = 0.1.
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V. INCORPORATING VISCOUS DAMPING AT THE
PENDULUM AXIS

The two swing-up methods presented so far in the previous
sections have accounted for viscous damping friction as seen
at the cart’s motor pinion, but they have ignored the effects
of viscous damping as seen at the pendulum axis. Though
the effect of the viscous damping term, Bpα̇, in equation (9)
is small, it is desirable for real-time experiments and some
applications to use a more complete model. In this section,
we present another modification for our previous swing-up
controllers to include viscous damping at the pendulum axis. If
we include the Bpα̇ term from (9), then equation (10) becomes

dEp
dt

=Mp`pα̇ cos(α)ẍ−Bpα̇2, (42)

which can be rewritten as
dEp
dt

=Mp`pα̇ cos(α)

(
KgKtrmpVm

Rm(Mr2mp +K2
gJm)

−
(K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

)
−Bpα̇2

(43)

using equation (17). Then, using the modified Lyapunov func-
tion given in (30), and adding the viscous damping term into
the derivate, we can modify (31) to obtain the new condition

dL2

dt
=EpMp`pα̇ cos(α)

(
KgKtrmpVm

Rm(Mr2mp +K2
gJm)

−
(K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

)
+

3

2
k cos(α) sin(2α)α̇− EpBpα̇2

≤ 0.

(44)

Substituting the model parameter values provided in Table I
into (44), and simplifying yields the condition

Epα̇ cos(α)(Vm − 7.614ẋ) + 12.28kα̇ cos(α) sin(2α)

−0.0197Epα̇2 ≤ 0,
(45)

that our modified controller must satisfy to guarantee Lya-
punov stability. To account for the effect of the damping term,
consider the control law of the form

Vm(X) =β1|ẋ|
(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
− β3sign(α̇ cos(α))| sin(2α)|

Ep
+ 0.0197sign(Ep)α̇ cosα,

(46)

which is just a modification of (33) with positive constants,
β1, β3, η, and 0 < β2 < 1. Substituting (46) into (45), and
simplifying results in

Epα̇ cos(α)

(
β1|ẋ|

(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
− 7.614ẋ

)
− β3|α̇ cos(α)|| sin(2α)|

+ 12.28kα̇ cos(α) sin(2α)− 0.0197 sin2(α)|Ep|α̇2

≤ 0.
(47)

As before, the inequality in (47) is satisfied when both (37)
and (38) hold for the constants. Furthermore, we must make
sure that sign(Vm(X)) = sg(X). Now, consider the possible
sign combinations for Epα̇ cos(α) and sg:

• Case 1: Epα̇ cos(α) > 0 and sg(X) = 1
(i.e. want Vm > 0, ẋ > 0)

β1|ẋ|
(
−β2 + eη|x|

)
−β3| sin(2α)|

|Ep|
+0.0197|α̇ cosα| > 0

⇒ β1 >
β3| sin(2α)|

|ẋ||Ep|(eη|x| − β2)
− 0.0197|α̇ cos(α)|
|ẋ|(eη|x| − β2)

• Case 2: Epα̇ cos(α) > 0 and sg(X) = −1
(i.e. want Vm < 0, ẋ < 0)

β1|ẋ|
(
−β2 − eη|x|

)
− β3| sin(2α)

|Ep|
+0.0197|α̇ cosα| < 0

⇒ β1 > −
β3| sin(2α)|

|ẋ||Ep|(eη|x| + β2)
+

0.0197|α̇ cos(α)|
|ẋ|(eη|x| + β2)

.

• Case 3: Epα̇ cos(α) < 0 and sg(X) = 1
(i.e. want Vm > 0, ẋ > 0)

β1|ẋ|
(
β2 + eη|x|

)
+
β3| sin(2α)|
|Ep|

−0.0197sign(Ep)α̇ cosα > 0

⇒ β1 >
0.0197|α̇ cos(α)|
|ẋ|(β2 + eη|x|)

− β3| sin(2α)|
|ẋ||Ep|

(
β2 + eη|x|

) .
• Case 4: Epα̇ cos(α) < 0 and sg(X) = −1

(i.e. want Vm < 0, ẋ < 0)

β1|ẋ|
(
β2 − eη|x|

)
+
β3| sin(2α)|
|Ep|

−0.0197sign(Ep)α̇ cosα < 0

⇒ β1 >
β3| sin(2α)|

|ẋ||Ep|(eη|x| − β2)
− 0.0197|α̇ cos(α)|
|ẋ|(eη|x| − β2)

.

The above cases all hold when the constants β1, β2, β3, and η
satisfy

β1 >
β3| sin(2α)|

|ẋ||Ep|(eη|x| − β2)
− 0.0197|α̇ cos(α)|
|ẋ|(eη|x| − β2)

(48)

and

β1 >
0.0197|α̇ cos(α)|
|ẋ|(β2 + eη|x|)

− β3| sin(2α)|
|ẋ||Ep|

(
β2 + eη|x|

) . (49)

Just as before, we must again choose β1, β2, β3, and η in
a way to ensure that the amplifier doesn’t go into saturation
(i.e. |Vm| ≤ 10). A particular choice of constants that will
satisfy all conditions for the new controller in (46) is β1 = 4.8,
β2 = 0.6, β3 = 0.0115, and η = 0.6.
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VI. SIMULATION RESULTS

All three of the presented swing-up controllers were tested
in simulation using Simulink in MATLAB. Since the starting
downward position of the pendulum is a stable equilibrium
we must input some initial voltage to get the experiment
started. The starting voltage for our simulation was 8 Volts
that was applied for 0.1 second. The resulting state responses
are graphed in Figs. 4-7 with the corresponding control efforts
presented in Fig. 8. The dashed blue lines in Fig. 5 indicate the
region where the stabilization control can take over (i.e. where
|α| < 15◦) [14]. A numerical summary comparing the three
simulations is given in Table II. For all three of the controllers
the values of the states and the required control effort stayed
within the possible ranges deliverable by the apparatus we use
for real time experiments. Figure 4 indicates that the cart did
not go past the end of the track in any of the simulations
(i.e. the value of |x| stayed below 0.407 m). The original
energy based controller from equation (22) was the slowest at
swinging up the pendulum, taking approximately 55 seconds,
followed by the first modified controller from equation(33),
which took approximately 40 seconds. The final modified
controller from equation (46) was by far the fastest at swinging
up the pendulum, taking only 28 seconds. Furthermore, this
final controller used the least amount of voltage on average
(using only 0.68 Volts). The original energy based controller
used 0.83 Volts on average, which is less than the average of
0.978 Volts used by the first modified controller.

VII. REAL-TIME IMPLEMENTATION

A. Apparatus

The apparatus used in our real-time experiments was de-
signed and provided by Quanser Consulting Inc. (119 Spy
Court Markham, Ontario, L3R 5H6, Canada). This includes
a single inverted pendulum mounted on an IP02 servo plant
(depicted in Fig. 9), a VoltPAQ amplifier, and a Q2-USB DAQ
control board. The IP02 cart incorporates a Faulhaber Coreless
DC Motor (2338S006) coupled with a Faulhaber Planetary
Gearhead Series 23/1. The cart is also equipped with a US
Digital S1 single-ended optical shaft encoder. The detailed
technical specifications can be found in [16]. A diagram of
our experimental setup is included in Fig. 10.

B. Experimental Results

The original energy based controller from equation (22)
and the final modified controller from equation (46) were
both successfully implemented in real-time using Simulink and
MATLAB with Quanser’s QuArc real-time control software.
The real-time state response and the corresponding control
effort are given in Fig. 11 for the original energy based
controller from (22), and in Fig. 12 for the final modified
controller from (46). A numerical summary comparing the
real-time performance of these two controllers is given in
Table III. The best swing-up time for the modified controller
from (46) was only about 15 seconds, which is three times
faster than our best swing-up time for the original energy
based controller from (22). The 15 second swing-up time is

comparable to the swing-up time of the proportional-velocity
controller provided by Quanser with our apparatus [19]. The
modified controller used 2.89 Volts on average while the
original controller only used only 1.35 Volts on average. For
both controllers, the required control effort reached the upper
limit of 10 Volts on one occasion and had to be saturated. Once
the pendulum reached within 15◦ of the upright position, our
power series based stabilization controller presented in [2], [3]
and [14] successfully took over.

We repeated the experiment with both controllers several
times. Even though we have been able to achieve successful
swing-up using the original energy based controller from (22),
this has not been the case for every experimental run. There
have been some instances when instead of swinging up to the
upright position, the pendulum ended up swinging back and
forth at a constant rate without building up more energy. This
is most likely caused by the issue with the Lyapunov function
that we discussed in Section IV. We did not experience this
phenomena with our modified controller from (33), but we
did observe a wide range of swing-up times ranging between
15 to 40 seconds for that controller. This inconsistency is
likely caused by the way the function sg is defined. During the
swing-up procedure the sg function causes the cart to make
very fast big moves, and when the cart gets close to the end of
the track the controller successfully makes the cart move away
from the edge with a quick jerking movement. Unfortunately,
when the pendulum is near the upright position, this fast jerk
of the cart can overpower the movement of the pendulum, and
make the pendulum lose momentum. Making up this loss of
momentum increases the swing-up time [4], [14].

VIII. CONCLUSION

We have presented and successfully implemented a new
energy-based swing-up controller that was derived using Lya-
punov functions based on the method originally proposed by
Astrom and Furuta [5], [6]. We’ve also provided two modi-
fications to make the swing-up method more appropriate for
real-time implementation. Our controller is based on a more
complex dynamical model for the SIP system than the models
that are most commonly used in the literature. In addition
to considering the electrodynamics of the DC motor that
drives the cart, we’ve also considered viscous damping friction
as seen at the motor pinion, and our last modification also
considered the viscous damping as seen at the pendulum axis.
Furthermore, we have accounted for the limitation of having
a cart-pendulum system with a finite track length. This was
accomplished using a method that is different from previously
published methods of others. Our final swing-up controller,
given in equation (46), was able to swing the pendulum up in
approximately 15 seconds. However, the swing-up time of our
final controller is inconsistent.
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Method Swing-Up Time |x|max |ẋ|max |α̇|max |Vm|max |Vm|avg

energy based controller from (22) 55 s 0.29 m 0.897 m/s 583 deg/s 7.64 Volts 0.83 Volts
first modified controller from (33) 40 s 0.269 m 0.701 m/s 570 deg/s 5.57 Volts 0.978 Volts
final modified controller from (46) 28 s 0.146 m 0.724 m/s 564 deg/s 8 Volts 0.68 Volts

TABLE III
SUMMARY OF EXPERIMENTAL STATE RESPONSE AND CONTROL EFFORT

Method Best Swing-Up Time |x|max |ẋ|max |α̇|max |Vm|max |Vm|avg
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