
AIC under the Framework of Least Squares Estimation

H.T. Banks and Michele L. Joyner

Center for Research in Scientific Computation
North Carolina State University

Raleigh, NC, United States
and

Dept of Mathematics and Statistics
East Tennessee State University

Johnson City, TN 37614

May 4, 2017

Abstract

In this note we explain the use of the Akiake Information Criterion and its related model compar-
ison indices (usually derived for maximum likelihood estimator inverse problem formulations) for use
with least squares (ordinary, weighted, iterative weighted or ”generalized”, etc.) based inverse problem
formulations. The ideas are illustrated with several examples of interest in biology.

1 Introduction and Overview of AIC

The Akaike Information Criterion (AIC) is one of the most widely used methods for choosing a “best
approximating” model from several competing models given a particular data set [13, 15]. It was first
developed by Akaike in 1973 [2] and expanded upon in several following papers [3, 4, 5, 6, 7, 8]. The basis
of the Akaike Information Criterion relies on several assumptions. It is assumed that the given data or
set of observations is a realization of a random variable which has some unknown probability distribution;
however, one can draw inferences about the “true” distribution using the distribution of the data. Using
this assumption, the best approximating model would be the model in which the “distance” between the
estimated distribution and “true” distribution is as small as possible. Kullback-Leibler (K-L) information is
a well-known measure of the “distance” between two probability distribution models. Suppose Y is a random
variable characterized by a probability density function p(y|θ) where θ = (θ1, θ2, ..., θk) is a k-dimensional
parameter vector, θ ∈ Rk, for the distribution. We assume there exists a true parameter θ0 such that
p0 = p(·|θ0) is the true probability density function of observations Y. Then the K-L information between
the estimated model and “true” model is given by

I(p0, p(·,θ)) =
∫

Ωy
p0(y) ln

(
p0(y)

p(y|θ)

)
dy

=
∫

Ωy
p0(y) ln (p0(y)) dy −

∫
Ωy
p0(y) ln (p(y|θ)) dy

(1)
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where Ωy is the set of all possible values for y. We know that I(p0, p(·,θ)) = 0 if and only if p0 =
p(·|θ); therefore, a good approximation model is one in which K-L information is small. However, the K-L
information quantity cannot be calculated directly as the true model p0 is generally unknown.

Yet, the maximum likelihood estimate θMLE(Y) is shown to be a natural estimator for θ0 [5, 10, 13].
In the misspecified case (i.e., when there does not exist a “true” value θ0 for θ such that p(·|θ) ≡ p0),
the asymptotic normality property of the maximum likelihood estimator gives that θMLE(Y) is normally
distributed with

E(θMLE(Y)) = arg min
θ∈Ωθ

I(p0, p(·|θ)).

Furthermore, EY(I(p0, p(·|θMLE(Y))) > I(p0, p(·|θ)) [15]; therefore, EY(I(p0, p(·|θMLE(Y))) can be used
to estimate the “distance” between p and p0. Thus the best approximating model would be the one that
solves

min
p∈P

EY(I(p0, p(·|θMLE(Y)))

where P is a set of candidate models. Following the derivation in [15], we can write

EY(I(p0, p(·|θMLE(Y))) =
∫

Ωy
p0(x) ln (p0(x)) dx− EY

(∫
Ωy
p0(x) ln (p(x|θMLE(y))) dx

)
=

∫
Ωy
p0(x) ln (p0(x)) dx− EYEX (ln (p(X|θMLE(Y)))) .

Therefore,
min
p∈P

EY(I(p0, p(·|θMLE(Y))) = max
p∈P

EYEX (ln (p(X|θMLE(Y)))) .

Furthermore, for a large sample and “good” model, it can be shown (see [15] for details) that

max
p∈P

EYEX (ln (p(X|θMLE(Y)))) ≈ ln
(
L(θ̂MLE |y)

)
− κθ

where L(θ̂MLE |y) = p(y|θ̂MLE) represents the likelihood of θ̂MLE given sample outcomes y and κθ is the
total number of estimated parameters. For historical reasons, Akaike multiplied by -2 yielding the well-known
Akaike information criterion (AIC):

AIC = −2 ln
(
L(θ̂MLE |y)

)
+ 2κθ. (2)

Note that the complexity of the model, as given by the total number of parameters in the model, is considered
in the AIC. Given the same level of accuracy, the simpler model is preferable to the more complex one.

In this paper, we focus on models which are n-dimensional vector dynamical systems or mathematical
models of the form

dx

dt
(t) = g(t,x(t),q),

x(t0) = x0

with observation process
f(t,q) = Cx(t;q)

where C is the observation operator which maps Rn to Rm. Some x0 of the initial parameters x0 may be
among the parameters θ to be estimated, i.e., θ = (q,x0, σ), from the data. All of the discussions below
are readily extended to this case but for ease in discussion and exposition we will, without loss of generality,
assume for our discussions here that the initial conditions are known.

There are a variety of techniques available for parameter estimation in models of this type, one of which
is the maximum likelihood method used in the original AIC formulation; however, another popular choice
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is parameter estimation in the framework of a least squares estimation problem ([10] and all the references
herein). As such, our goal in this paper is to provide a concise formulation for the AIC using the least
squares estimator. Depending on the statistical model for the problem, the appropriate estimation technique
varies; therefore, the observations Yj will be assumed to satisfy various statistical models. In each of
the Sections 2, 3, and 4, we assume a statistical model with absolute error, constant weighted error, and
parameter dependent weighted error, respectively. We then formulate AIC under the framework of least
squares estimation for each of these statistical models. Finally in Section 5, we illustrate this approach on
two experimental data sets.

2 Absolute Error Statistical Model (Ordinary Least Squares (OLS)
Formulation)

In this section, we assume a statistical model

Yj = f(tj ,q0) + Ej

with Ej , j = 1, 2, ..., N i.i.d. N (0, σ2). Under this statistical model, {Yj}Nj=1 are independent and normally

distributed random variables with mean E(Yj) = f(tj ,q) and variance Var(Yj) = σ2, j = 1, 2, ..., N . The
probability distribution function for a normal distribution N (µ, σ2) is given by

p(x|µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
; (3)

therefore, the likelihood function of θ = [q, σ]T given the sample outcome y is

L(θ|y) =
N∏
j=1

p(yj |f(tj ,q), σ2)

=
N∏
j=1

(
1√

2πσ2
exp

(
−(yj − f(tj ,q))2

2σ2

))

=
1(√

2πσ2
)N exp


−

N∑
j=1

(yj − f(tj ,q))2

2σ2

.
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Taking the natural logarithm of the above equation, we have

ln (L(θ|y)) = ln

 1(√
2πσ2

)N exp


−

N∑
j=1

(yj − f(tj ,q))2

2σ2




= ln

 1(√
2πσ2

)N
−

N∑
j=1

(yj − f(tj ,q))2

2σ2

= − ln

((√
2πσ2

)N)
−

N∑
j=1

(yj − f(tj ,q))2

2σ2

= −N
2

ln (2πσ2)−

N∑
j=1

(yj − f(tj ,q))2

2σ2

= −N
2

ln (2π)−N ln (σ)−

N∑
j=1

(yj − f(tj ,q))2

2σ2
.

(4)

In Eq. (2) for AIC, the log likelihood function is evaluated at the maximum likelihood estimation θ̂MLE =
(q̂MLE , σ̂MLE). By examining the equation for ln (L(θ|y)), we note that

arg max
q∈Ωq

(ln (L((q, σ)|y))) = arg min
q∈Ωq

 N∑
j=1

(yj − f(tj ,q))2


The right hand side above is defined as the ordinary least squares estimate q̂OLS . That is,

q̂OLS = arg min
q∈Ωq

 N∑
j=1

(yj − f(tj ,q))2

 . (5)

Therefore, the maximum log likelihood estimate for q is the same as the ordinary least squares estimate;
in other words, q̂MLE = q̂OLS . To find the maximum likelihood estimate σ̂MLE of σ, we evaluate

∂ ln (L(θ|y))

∂σ

∣∣∣∣
θ=θ̂MLE

= 0.

Taking the partial of Eq. (4) with respect to σ, we have

∂ ln (L(θ|y))

∂σ
= −N

σ
+

N∑
j=1

(yj − f(tj ,q))2

σ3
.
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Therefore,
∂ ln (L(θ|y))

∂σ

∣∣∣∣
θ=θ̂MLE

= 0

gives

σ2
MLE =

1

N

N∑
j=1

(yj − f(tj ,qMLE))2.

Substituting θ̂MLE = (q̂MLE , σ̂MLE) into Eq. (4) gives

ln (L(θMLE |y)) = −N
2

ln (2π)−N ln (σ̂MLE)−

N∑
j=1

(yj − f(tj , q̂MLE))2

2σ̂2
MLE

= −N
2

ln (2π)−N ln




N∑
j=1

(yj − f(tj , q̂MLE))2

N


1/2
−

N∑
j=1

(yj − f(tj , q̂MLE))2

2
1

N

N∑
j=1

(yj − f(tj , q̂MLE))2

= −N
2

(ln (2π) + 1)− N

2
ln


N∑
j=1

(yj − f(tj , q̂MLE))2

N

.
We recall q̂MLE = q̂OLS . Furthermore, κθ, the total number of estimated parameters, is given by κq + 1
where κq is the total number of model parameters since there is only one statistical parameter σ. Substituting
everything into Eq. (2), we have

AIC = N (ln (2π) + 1) +N ln


N∑
j=1

(yj − f(tj , q̂OLS))2

N

+ 2(κq + 1).

The constant term will be the same across all models; therefore, the formula for AIC under a constant
variance statistical model is given by

AICOLS = N ln


N∑
j=1

(yj − f(tj , q̂OLS))2

N

+ 2(κq + 1). (6)

3 Constant Weighted Error Statistical Model (Weighted Least
Squares (WLS) Formulation)

In this section, we assume a statistical model

Yj = f(tj ,q0) + wjEj (7)
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where wj are known weights and Ej , j = 1, 2, ..., N are i.i.d. N (0, σ2). Under this statistical model,
{Yj}Nj=1 are independent and normally distributed random variables with mean E(Yj) = f(tj ,q) and variance

Var(Yj) = w2
jσ

2, j = 1, 2, ..., N . Using Eq. (3) for the probability distribution function of a normal

distribution, the likelihood function of θ = [q, σ]T given the sample outcome y for this statistical model is

L(θ|y) =
N∏
j=1

p(yj |f(tj ,q), w2
jσ

2)

=
N∏
j=1

 1√
2πw2

jσ
2

exp

(
−(yj − f(tj ,q))2

2w2
jσ

2

)

=
1(√

2πσ2
)N N∏

j=1

(w−1
j ) exp

(
− 1

2σ2

N∑
j=1

w−2
j (yj − f(tj ,q))2

)
.

Taking the natural logarithm of the above equation, we have

ln (L(θ|y)) = ln

 1(√
2πσ2

)N N∏
j=1

(w−1
j ) exp

(
− 1

2σ2

N∑
j=1

w−2
j (yj − f(tj ,q))2

)

= ln

(
1

(
√

2πσ2)N

)
+ ln

(
N∏
j=1

(w−1
j )

)
− 1

2σ2

N∑
j=1

w−2
j (yj − f(tj ,q))2

= ln

(
1

(
√

2πσ2)N

)
+

N∑
j=1

(
ln (w−1

j )
)
− 1

2σ2

N∑
j=1

w−2
j (yj − f(tj ,q))2

= − ln
(

(
√

2πσ2)N
)
−

N∑
j=1

ln (wj)−
1

2σ2

N∑
j=1

w−2
j (yj − f(tj ,q))2

= −N
2

ln (2π)−N ln (σ)−
N∑
j=1

ln (wj)−
1

2σ2

N∑
j=1

w−2
j (yj − f(tj ,q))2.

(8)

In Eq. (2) for AIC, the log likelihood function is evaluated at the maximum likelihood estimation θ̂MLE =
(q̂MLE , σ̂MLE). By examining the equation for ln (L(θ|y)), we note that

arg max
q∈Ωq

(ln (L((q, σ)|y))) = arg min
q∈Ωq

 N∑
j=1

w−2
j (yj − f(tj ,q))2

 .

The right hand side above is defined as the weighted least squares estimate q̂WLS . That is,

q̂WLS = arg min
q∈Ωq

 N∑
j=1

w−2
j (yj − f(tj ,q))2

 . (9)
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Therefore, the maximum log likelihood estimate for q when the statistical model has constant weighted
variance is the same as the weighted least squares estimate; in other words, q̂MLE = q̂WLS . To find the
maximum likelihood estimate σ̂MLE of σ, we evaluate

∂ ln (L(θ|y))

∂σ

∣∣∣∣
θ=θ̂MLE

= 0.

Taking the partial of Eq. (8) with respect to σ, we have

∂ ln (L(θ|y))

∂σ
= −N

σ
+

N∑
j=1

w−2
j (yj − f(tj ,q))2

σ3
.

Therefore,
∂ ln (L(θ|y))

∂σ

∣∣∣∣
θ=θ̂MLE

= 0

gives

σ2
MLE =

1

N

N∑
j=1

w−2
j (yj − f(tj ,qMLE))2.

Substituting θ̂MLE = (q̂MLE , σ̂MLE) into Eq. (8) gives

ln (L(θMLE |y)) = −N
2

ln (2π)−N ln (σ̂MLE)−
N∑
j=1

ln (wj)−

N∑
j=1

w−2
j (yj − f(tj , q̂MLE))2

2σ̂2
MLE

= −N
2

ln (2π)−N ln




N∑
j=1

w−2
j (yj − f(tj , q̂MLE))2

N


1/2


−
N∑
j=1

ln (wj)−

N∑
j=1

w−2
j (yj − f(tj , q̂MLE))2

2
1

N

N∑
j=1

w−2
j (yj − f(tj , q̂MLE))2

= −N
2

(ln (2π) + 1)−
N∑
j=1

ln (wj)−
N

2
ln


N∑
j=1

w−2
j (yj − f(tj , q̂MLE))2

N

.
We recall q̂MLE = q̂WLS for this statistical model, and as in Section 2, κθ = κq + 1. Substituting this
information into Eq. (2), we have

AIC = N (ln (2π) + 1) + 2

N∑
j=1

ln (wj) +N ln


N∑
j=1

w−2
j (yj − f(tj , q̂WLS))2

N

+ 2(κq + 1).
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The two constant terms will be the same across all models; therefore, the formula for AIC under a weighted
variance statistical model is given by

AICWLS = N ln


N∑
j=1

w−2
j (yj − f(tj , q̂WLS))2

N

+ 2(κq + 1). (10)

4 Parameter Dependent Weighted Error Statistical Model (Iter-
ative Reweighted Weighted Least Squares (IRWLS) Formula-
tion)

A method motivated by the WLS (as we have presented it above) is the Iterative Reweighted Weighted Least
Squares (IRWLS) (also called simply the Iterative Weighted Least Squares (IWLS) [10, 16, 17, 21] or the
”Generalized” Least Squares (GLS))

Yj = f(tj ,q0) + wj(q0)Ej = f(tj ,q0) + fγ(tj ,q0)Ej (11)

and can be motivated by examining the special weighted least squares estimate

q̂IRWLS = arg min
q∈Ωq

 N∑
j=1

w−2
j (yj − f(tj ,q))2

 (12)

for wj(q) = fγ(tj ;q). By definition the corresponding iterative procedure is given by:

1. Solve for the initial estimate q̂(0) obtained using the OLS minimization (5). Set l = 0.

2. Form the weights ŵ
(l)
j = fγ(tj ; q̂

(l)).

3. Re-estimate q to obtain q̂(l+1) defined by

q̂(l+1) = arg min
q∈Ωq

(

N∑
j=1

(ŵ
(l)
j )−2[yj − f(tj ;q)]2). (13)

4. Set l = l + 1 and return to step 2. Terminate the process and set q̂IRWLS = q̂(l+1) when two of the
successive estimates are sufficiently close.

We note that the above procedure is equivalent to finding the weighted least squares for a statistical

model (7) for a sequence of weights wj = ŵ
(l)
j . Recalling the arguments up through (9) we thus have

q̂(l+1) = q̂
(l+1)
WLS = q̂MLE(ŵ

(l)
j ) for the sequence of weights and hence one has the arguments of the previous

section leading to

AIC
(l+1)
WLS = N ln


N∑
j=1

w−2
j (yj − f(tj , q̂

l+1
WLS))2

N

+ 2(κq + 1), (14)
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for the weights wj = ŵ
(l)
j . Thus under reasonable conditions [17], if the process enumerated above is

continued a sufficient number of times, then ŵj
(l) → fγ(tj ; q̂IRWLS) and thus we may establish

AICIRWLS ≈ N ln


N∑
j=1

w−2
j (yj − f(tj , q̂

M
WLS))2

N

+ 2(κq + 1), (15)

where wj = ŵMj ≈ fγ(tj ; q̂IRWLS) where M is the number of times the process is enumerated.

5 Model Comparison Examples

In this section, we use an appropriate least squares formulation of the AIC to compare a set of candidate
models in two examples. In the first example, we compare decay models for the size distribution of aggregates
in amyloid fibril formulation in which the data has been shown to have an absolute error statistical model
[20], i.e., we will use the ordinary least squares formulation of the AIC in the model comparison. In the
second example we compare growth models for longitudinal data collected from algae growth which has a
parameter dependent weighted error statistical model [11], i.e, the iterative reweighted weighted least squares
(IRWLS) formulation of the AIC is necessary. In both data sets, the sample size is small; therefore, the
modification of AIC for small sample sizes is first discussed in Section 5.1. In addition, Section 5.2 focuses
on Aikake weights which are used as a means for judging the relative strength of the ‘best’ model (the one
with the smallest AIC value). We then apply these techniques to the amyloid fibril data and algae growth
data in Sections 5.3 and 5.4, respectively.

5.1 AIC for Small Sample Size

In the original formulation of AIC, it is assumed that the sample size is sufficiently large; thus, if the sample
size is not large enough relative to the number of parameters which must be estimated, the AIC may perform
poorly. In [15], it was suggested that the AIC only be used if the sample size N is at least 40 times as large
as the total number of estimated parameters, i.e. N/κθ ≥ 40. However, in many cases, only a small sample
can be collected. In the case of small sample sizes, Sugiura [23] proposed the AICc for scalar linear regression
models which was later extended by Hurvich and Tsai [18] for a scalar non-linear regression model and by
Bedrick and Tsai [12] in the case of multivariate observations. In the derivation of AICc in [23], it was
assumed that the measurement errors Ej , j = 1, 2, ..., N were independent and identically distributed with
Ej ∼ N (0, σ2). In this case, the penalty term 2κθ in the AIC formula (Eq. (2)) is modified by a correction

term
N

N − κθ − 1
,

AICc = −2 ln
(
L(θ̂MLE |y)

)
+ 2κθ

N

N − κθ − 1
.

We can rewrite this in terms of the original AIC by noticing that the new penalty term can be written as
the old penalty term plus an additional term:

2κθ
N

N − κθ − 1
= 2κθ +

2κθ (κθ + 1)

N − κθ − 1
.

Therefore,

AICc = AIC +
2κθ (κθ + 1)

N − κθ − 1
. (16)
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If we derive the AICc under the ordinary least squares formulation as in Section 2 and substituting κθ = κq+1,
we have a similar equation in which

AICOLSc = AICOLS +
2(κq + 1) (κq + 2)

N − κq
. (17)

In [14], it was shown that if the error was not too far skewed from the normal distribution, the same
modification factor was sufficient for small data sets. In the case of the weighted least squares formulation,
we have Yj = N (0, w2

jσ
2); therefore, we can formulate the AICc in a similar method for this case since the

error for each Yj is normally distributed with only varying weights for the variance of each data point. We
obtain the formula

AICWLSc = AICWLS +
2(κq + 1) (κq + 2)

N − κq
. (18)

Given that the iterative reweighted weighted least squares formulation is an iterative process using updated
weights in the weighted least squares formulation, we also have

AICIRWLSc = AICIRWLS +
2(κq + 1) (κq + 2)

N − κq
. (19)

5.2 Comparison of AIC or AICc Values for Model Selection

In general, one wants the AIC to be as small as possible; however, as Burnham and Anderson [15] stated,
“It’s not the absolute size of the AIC value, it is the relative values, and particularly the AIC differences
(∆i), that are important.” Given a set of candidate models and the values of AIC or AICc for these models,
it is easy to order the values of AIC from least to greatest; however, one often wants to know how much
more likely the ‘best’ model is compared to the next best model. As such, Akaike weights are important in
the comparison of models. To define weights, we first define AIC differences ∆i(AIC) [15, 24],

∆i(AIC) = AICi −AICmin,

where AICmin denotes the minimum calculated AIC value across all candidate models and the term AIC
refers to either the original AIC, AICc or other variations of the AIC. Note that if Model l is the model with
the minimum AIC value, then ∆l = 0. Akaike [9] indicates that the likelihood of model i given data set y

is proportional to exp

(
−1

2
∆i

)
; therefore, we can use this value as an indication of the relative strength

of evidence for each candidate model. Normalizing the relative likelihoods, we obtain the Akaike weights
wi(AIC) [15, 24],

wi(AIC) =

exp

(
−1

2
∆i(AIC)

)
K∑
k=1

exp

(
−1

2
∆k(AIC)

) (20)

where K is the number of candidate models. We note that the weights of all candidate models sum to 1, so
the weight gives a probability that each model is the best model. Furthermore, the evidence ratio

wi(AIC)

wj(AIC)
(21)
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indicates how much more likely model i is compared to model j. In addition, if there are two models,
say models i and j, which have the largest and second largest weights respectively, then the normalized
probability

wi(AIC)

wi(AIC) + wj(AIC)
(22)

indicates the probability of model i over model j [24]. We now apply these techniques to analyze two
experimental data sets.

5.3 Amyloid fibril data

The first example involves the size and distribution of amyloid fibrils. Many diseases, such as Alzheimers,
Huntingtons and Prion diseases (e.g. mad cow) are related to aggregations of proteins which exhibit an
abnormal folding [22]. These protein aggregates are called amyloids and have been the focus of many recent
studies [19, 20, 25, 26]. In the paper by Prigent et. al [19], the size distribution of aggregates in amyloid
fibril formation was studied. Two samples of fibrils were collected, one of size 531 and one of size 95. The
frequency of each fribil size (monomers) was obtained and converted to proportions and the sizes were divided
by 10,000 which was assumed to be a theoretical maximum. We refer the reader to [19] for full details about
the experimental process.

In this section we consider five candidate models for the fibril data: exponential distribution, Weibull
distribution, Gamma distribution, logistic decay and Gompertz decay models. The exponential model has
only two parameters which must be estimated while each of the other models involve three parameters. The
exponential distribution probability density is given by E(x;λ) = λe−λx, but we consider the model

E(x;A, λ) = Aλe−λx (23)

where A is an additional parameter. For modeling purposes, we also add an additional parameter to the
Weibull distribution model and simplify the parameter estimation by considering λ̃ = 1

λ is the traditional
equation for the probability density. Therefore, we consider the model

W (x;A, λ̃, k) = Akλ̃(λ̃x)k−1e−(λ̃k)k . (24)

The traditional formula for the probability density function of the gamma distribution is defined as

G(x; k, θ) =
xk−1e−x/θ

θkΓ(k)
for x > 0 and k, θ > 0.

Again, we add an additional parameter A and simplify the formula by allowing θ = 1
λ . Therefore, we consider

the Gamma distribution model

G(x;A, k, λ) = A
λk

Γ(k)
xk−1e−λx. (25)

The two final models are the logistic decay model,

L(x; a, b, c) =
c

1 + ae−bx
, (26)

and the Gompertz decay model,
D(x;A, λ, k) = A exp (−λe−kx). (27)

Using ordinary least squares parameter estimation and the formula for AICOLSc in Eq. (17), we obtain the
fitted models in Figure 1. Table 1 gives the AICOLSc values and weights for each model.
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Data

Figure 1: This figure shows experimental fibril data along with the fitted models given by Eqs. (23) - (27).
For each model, the AICc (Eq. (17)) and the model weight (Eq. (20)) are given.

Table 1: Comparison of AICOLSc Values for each Candidate Model for the Fibril Size Data

Model AICOLSc wi

Exponential -227.70 0.138

Weibull -228.97 0.259

Gamma -229.09 0.276

Logistic -228.39 0.194

Gompertz -227.64 0.133

As indicated in Table 1, the Gamma distribution model has the lowest AICOLSc value and therefore
would be considered the ‘best’ of the candidate models for this data, closely followed by the Weibull model.
However, heuristically speaking, using the evidence ratio in Eq. (21), the Gamma model is only 1.1 times
more likely to be the best model in terms of the Kullback-Leibler discrepancy than the Weibull model with
a normalized probability of only 0.52 (using Eq. (22)). This low normalized probability is evidenced in
Figure 1 where all the fitted curves are practically identical. We note that the only discernable difference in
curve fits is with the exponential distribution model, the model with the greatest AICOLSc value out of the
candidate models. However, comparing the normalized probability of the Gamma distribution model to the
exponential distribution model, there is still only a 0.59 probability of the Gamma distribution model as the
preferred model over the exponential distribution model. We now do a similar comparison for algae growth
data.
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5.4 Algae growth data

In a paper by Banks et. al. [11], longitudinal data was collected from four replicate population experiments
with green algae, formally known as Raphidocelis subcapitata. The authors were concerned with the growth
dynamics of the algae as this is the major feeding source for Daphnia magna [1] in experimental settings. In
ecology, D. magna can be thought of as the modern day “canary in the mine shaft”, because changes in the
daphnia population can alert ecologists to changing dynamics in the environment.

In this paper, we compare three different dynamical population models for algae growth using the AIC:
logistic model, Bernoulli model, and Gompertz model. The logistic model is given by

dx

dt
= rx(t)

(
1− x(t)

K

)
, x(0) = x0 (28)

where r is the growth rate and K is the carrying capacity for the population. The Bernoulli model contains
one additional parameter β and is given by

dx

dt
= rx(t)

(
1−

(
x(t)

K

)β)
, x(0) = x0.

Note that the logistic growth model is obtained from the Bernoulli growth model by setting β equal to 1.
In standard form, the parameters K and β are are found jointly in the denominator causing a problem with
identifiability. To address this issue, we let K̃ = Kβ and instead consider the model

dx(t)

dt
= rx(t)

(
1− (x(t))β

K̃

)
, x(0) = x0 (29)

where K can be obtained from K̃ using K = K̃(1/β). The final model considered is the Gompertz model,

dx(t)

dt
= κx(t) log

(
K

x(t)

)
, x(0) = x0, (30)

where K is the carrying capacity as in the other two models and κ scales the time. We note that both
the logistic and Gompertz models contain only two parameters while the Bernoulli model contains three
parameters.

In terms of modeling the algae data, it is demonstrated in the paper by Banks et. al. [11] that the
appropriate statistical model for this data is a parameter dependent weighted error statistical model with
γ = 1 in Equation (11). Therefore, we use AICIRWLSc in Equation (19) to compare models as this is a small
data set with only 36 data points for each of the four replicates. The results for each replicate are given in
Table 2 with the fitted models and data for replicate 1 plotted in Figure 2.

As shown in Table 2, there is minimal difference across the four replicates and in each case, the smallest
AIC value is given by the Gompertz model followed closely by the Bernoulli model. Recall that the Gompertz
model has 2 parameters; whereas the Bernoulli model has three; therefore, although the two curves are lying
on top of one another in Figure 2, the Bernoulli model is penalized more by the extra parameter. If we
heuristically compare the Gompertz and Bernoulli models using the evidence ratio in Equation (21) and the
normalized probability in Equation (22), we see that the Gompertz model is only 1.03 times more likely
with a normalized probability of only 0.51 (only slightly more than equal probability). Therefore, either the
Gompertz or the Bernoulli model appears to be a good model of the candidate models examined.
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Table 2: Comparison of AICIRWLSc Values for each Candidate Model for the Algae Data

Replicate 1 Replicate 2 Replicate 3 Replicate 4

Model AICIRWLSc wi AICIRWLSc wi AICIRWLSc wi AICIRWLSc wi

logistic -127.42 2.7e-05 -117.07 1.5e-07 -117.02 1.5e-07 -104.24 2.5e-10

Bernoulli -147.05 0.492 -147.05 0.492 -147.05 0.492 -147.05 0.492

Gompertz -147.11 0.508 -147.11 0.508 -147.11 0.508 -147.11 0.508
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Gompertz Growth Model Fit; AIC
c
: -147.1148; w = 0.50791

Data

Figure 2: This figure shows experimental algae data along with the fitted models given by Eqs. (28) - (30).
For each model, the AICc (Eq. (11)) and the model weight (Eq. (20)) are given.

6 Conclusions

To summarize, given the traditional form of the AIC, we derived a concise formulation applicable when
parameter estimation is performed in the framework of a least squares estimation problem. We derived
the formulation under three different types of statistical models: one which utilizes ordinary least squares
(OLS), another for weighted least squares (WLS) and a final formulation using iterative reweighted weighted
least squares (IRWLS). Finally, we illustrated the effectiveness of the formulation using two experimental
data sets, one which required ordinary least squares estimation and one which required iterative reweighted
weighted least squares estimation. In both cases, we could identify ‘best’ models from the candidate models
and heuristically discuss the normalized probability of one model choice over another model choice.
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