
ABSTRACT 

JIMENEZ MADRIGAL, JOSE PABLO. Next-Generation Sequencing Technologies in Tree 

Improvement and Conservation Genetics of Dipteryx oleifera Benth. (under the direction of 

Theodore H. Shear and Ross W. Whetten). 

 

Dipteryx oleifera Benth. is a tropical tree species, endemic to the Caribbean lowlands, 

ranging from Nicaragua to Colombia. This keystone tree species provides food and shelter for 

many mammals and birds, including the endangered great green macaw. In addition, its high-

quality wood has significant economic value. However, illegal logging and habitat fragmentation 

have diminished natural populations to the point that trade of the wood is now controlled by 

international treaty (CITES). To help this species conservation, GENFORES, a forestry industry 

– university co-operative program based in Costa Rica, started a D. oleifera breeding program. 

My research is part of that broader effort led by GENFORES. The goal of this dissertation was to 

explore innovative technologies and develop genomic resources to expedite the selection process 

and breeding program. Next-generation sequencing technologies provide an ideal platform to 

accomplish this goal, because it allows for whole-genome study at relatively low cost. 

Furthermore, it enables the identification of thousands of single nucleotide polymorphisms 

(SNPs) in multiple individuals simultaneously. SNPs are ubiquitous, codominant, and can be in 

functional parts of the genome, thus making them suitable markers for both tree improvement 

and conservation genetics. 

The first objective of this dissertation was to determine D. oleifera genome size. Relative 

DNA nuclear content (2C) was estimated at 3.86 pg using flow cytometry and confirmed with 

sequencing data. Genome size variation is a common phenomenon among all organisms. In 

plants, many phenotypic traits show a correlation with genome size. One such trait is seed size, 

which in turn influences many aspects of plant ecology. In addition to genome size, I explored 



the evolution of this trait along with seed size in the Dipterygeae clade. Although a small sample 

set, the results from this study show a moderate correlation between seed size and 2C-values, as 

well as a similar evolutionary history, i.e., species with larger genomes also have bigger seeds. It 

is hypothesized that one or more polyploidization event may account for the variation seen in the 

traits. 

The second objective of this dissertation was to generate the first draft genome sequence 

of D. oleifera. For the assembly, I used a combination of short Illumina reads and additional 

coverage in long PacBio reads. With a total of 1, 166,468,433 bp in 381,857 contigs, this 

assembly corresponds to 62% of the estimated 1C genome size. Although still fragmented, the 

resulting assembly contains 70.7% of complete single-copy and duplicated conserved 

orthologous genes (BUSCOs). In addition, I used short Illumina reads data and the resulting 

assembly to estimate ploidy level for this species. Based on biallelic markers frequency 

distribution, from the sequence data, D. oleifera is a tetraploid species, most likely an 

autopolyploid. 

Finally, the third objective of this dissertation was to identify SNPs for marker-informed 

breeding. For DNA sequence variant discovery, I used a Genotyping-by-Sequencing approach in 

a D. oleifera progeny open-pollinated progeny trial. This resulted in 2,612 SNPs identified and 

185 individuals genotyped. Marker data was used to estimate the realized genomic relationship 

among individuals in the progeny trial. Results between pedigree-based (A matrix) and 

pedigreed-based marker corrected (H matrix) models were compared for three traits: stem 

diameter, tree height, and total volume. Although a low-density panel, these markers were able to 

accurately estimate the genetic relationship among individuals in the progeny trial. The use of a 

marker-corrected relationship matrix improved model fit and parameter estimation accuracy. 



More importantly, it highlighted a major constraint when working with open-pollinated progeny 

collected from natural populations. Under these conditions the assumptions of traditional 

pedigree-based models are most likely unrealistic, and marker data can capture better the true 

relationship among individuals.  
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CHAPTER 1: Next-Generation Sequencing Technologies and Forestry Applications 

 

At the beginning of the decade a total of 55 plant genomes had been sequenced and new 

DNA sequencing technologies were expected to increase that number rapidly (Michael and 

Jackson 2013). Today, a quick search of the major databases (e.g., NCBI, Phytozome, Ensembl, 

PlantGBD, etc.) shows the number of complete and partial plant genomes sequences in the 

hundreds. These genomic data have revolutionized the understanding of plant functions, both at 

the individual and population level, led to the discovery of new genes and metabolic pathways, 

and opened the doors to a new way of selection in plant breeding and genetic improvement 

programs (Desta and Ortiz 2014). However, of the plants that have had their genomes sequenced, 

only a few are timber species, such as eucalypt (Eucalyptus grandis) and loblolly pine (Pinus 

taeda) (Myburg et al. 2014; Neale et al. 2014). 

In this chapter, I briefly describe the principal technologies involved in DNA sequencing, 

their applications in forestry, and present my case for their use in a Dipteryx oleifera Benth. 

breeding program. D. oleifera is a tropical timber species with ecological and commercial value. 

The main goal of this dissertation is to develop genomic resources that can help D. oleifera 

breeding and conservation. 

 

A brief history of DNA sequencing 

DNA sequencing refers to the process of determining the arrangement of nucleotides (nt) 

in a DNA molecule. The process consists of three basic steps: (i) sample preparation, during 

which the DNA strand is broken into multiple small fragments; (ii) the actual reading of the 

fragments by a combination of physical methods and chemical reactions to determine the precise 
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order of the nucleotides, and (iii) the reassembly of the sequence, currently involving the use of 

bioinformatics software to align the overlapping reads into a contiguous sequence (Schadt et al. 

2010). The details of sample preparation, reading, and reassembly change considerably from 

technique to technique, but the overall process remains the same. 

The so-called first generation of DNA sequencing started over 40 years ago with the 

seminal work of Sanger et al. (1977). Their publication describes a method for sequencing DNA 

by use of nucleotide analogs that acted as specific chain-terminating inhibitors of DNA 

polymerase. The product of these prematurely-terminated amplifications could be visualized by 

gel electrophoresis, compared, and recorded manually to generate a sequence. Although time-

consuming and with limited throughput (up to 300 nt per run), it was a simple and accurate way 

to obtain sequence data. Nowadays, automated Sanger sequencing can generate sequence reads 

above 1000 nt and at a faster rate; however, the cost of this technique is still too high to be 

widely used for whole genome sequencing (Hert et al. 2008). Cost aside, Sanger sequencing 

dominated the field for almost 30 years. It continues to be considered the “gold standard” due to 

its accuracy, and it is still used for validation of many plant sequencing projects. 

In response to the limitations of Sanger sequencing, and fueled by grants from the United 

States National Human Research Institute, new sequencing technologies were developed 

(Schloss 2008). These next-generation sequencing technologies (NGS), also known as second-

generation technologies, vastly increased the output by sequencing many DNA fragments in 

parallel reactions. The principle behind these is commonly known as “wash-and-scan” since the 

process involves attaching several DNA fragments to a substrate, applying chemical agents such 

as labeled nucleotides and enzymes, and stopping the amplification reaction by washing away 

the excess reagent. This cycle is repeated until the reaction is no longer viable while scanning in 
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between cycles to read the newly incorporated nucleotides (Schadt et al. 2010). Several 

platforms used variants of this procedure; this review will focus on the most widely-used, i.e., 

454 Roche, Illumina/Solexa, Ion Torrent, SOLiD, and PacBio. 

The first NGS to be commercially available was pyrosequencing, as implemented in the 

454 Roche platform. This method generates close to 200,000 reads with up to 330 nt each. In 

pyrosequencing, the DNA fragments are captured on a bead. Each bead, along with amplification 

reagents (enzymes and primers), is dropped into a well of a fiberoptic slide and exposed to a flow 

of unlabeled nucleotides, each time a nucleotide is incorporated into the new DNA strand a 

pyrophosphate molecule is released, leading to a light emission that is monitored in real time, 

hence the name pyrosequencing. One advantage of the method is longer reads obtained in a short 

time. However, it has a high cost in term of reagents, and is prone to errors in homopolymer 

repeats (Metzker 2010; van Dijk et al. 2014). 

Following shortly after the release of the 454 Roche platform was the Illumina/Solexa 

platform. Illumina works by the principle of sequencing by synthesis (SBS, as described by Ju et 

al. 2006). Like pyrosequencing, DNA fragments are bound to a solid surface coated with adapter 

oligonucleotides. These fragments are then treated with nucleotide analogs that possess both a 

fluorescent dye label and terminating/inhibiting group halting the reaction. At each cycle, the 

luminous signal is monitored, and then the terminating/inhibiting group is cleaved and washed 

away to allow the reaction to continue. Since each nucleotide is marked with a distinct color dye, 

it is possible to track the sequence of nucleotides. Illumina is currently the most used NGS 

technology due to its high throughput and low per-base cost. However, Illumina is technically 

challenging and prone to error in low complexity samples (Metzker 2010; van Dijk et al. 2014). 
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Another NGS technology that depends on binding the DNA fragments to a surface is Ion 

Torrent. This method differs from the 454 Roche platform by the use of an ion sensor instead of 

imaging technology to detect the release of protons during the nucleotide incorporation. This 

technology suffers from the same setbacks as pyrosequencing, mainly a high error rate associated 

with homopolymers. On the other hand, ion sensor detection reduces run time considerably (van 

Dijk et al. 2014). 

The SOLiD platform, which stands for Sequencing by Oligo Ligation Detection, is 

comparable to Illumina’s SBS. Though in this case sequencing is done by ligation (SBL), it uses 

DNA ligase and either one-base-encoded or two-base-encoded probes. The probes are labeled 

with a fluorophore and hybridized to their complementary DNA sample. The probes that do not 

ligate to a template are washed away, and the fluorescent signals from the ones that do are 

recorded. The process is repeated for multiple cycles, removing the probes by cleavage and 

adding new ones. The SOLiD platform has one of the highest accuracies, 99.94%. Nevertheless, 

run times are long and read lengths are among the smallest at approximately 75 nt (Metzker 

2010; van Dijk et al. 2014). Despite its shortcomings, SOLiD has been used successfully for 

genome sequencing in model organisms such as the roundworm Caenorhabditis elegans 

(Valouev et al. 2008). 

Finally, Pacific Bioscience has developed a new and exciting third-generation sequencing 

technology. The PacBio platform relies on single polymerase molecule sequencing (SMS) (Eid 

et al. 2009). What is revolutionary about this technology is the amplification reaction does not 

need to be halted between reading steps. Furthermore, nucleotide readings are done in real time. 

These allow for a reduction in run times. SMS can be accomplished in diverse ways: (i) with 

SBS technologies at a single molecule level, (ii) with nanopore-sequencing technologies, or (iii) 
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with advanced microscopy techniques that use direct imaging of individual DNA molecules. 

Regardless of the method, read lengths in this platform can reach averages of 10 to 20 Kilobases 

(Kb). Longer reads mean assembly and sequence alignment are more straightforward, which may 

be ideal for de novo genome sequencing projects. On the downside, this technology is more 

expensive than some of the second-generation technologies, and the reads have a higher error 

rate (Schadt et al. 2010). 

 

NGS applications in tree breeding and forest management 

Many authors have suggested that DNA sequencing technologies and genomic 

information can benefit the forest industry (Neale and Kremer 2011) by providing insight into 

growth traits (Grattapaglia et al. 2009), by illuminating the relationship between genotypic and 

phenotypic diversity (Neale and Ingvarsson 2008), and by improving breeding of domesticated 

trees (Neale 2007). So, how can NGS technologies be used in forest tree breeding? The answer is 

threefold: (i) gene discovery, (ii) next-generation Ecotilling in candidate genes, and (iii) high 

throughput genotyping. 

Our study of genes and regulatory networks in trees has been limited, mainly because of 

their large genome size, long generation times, and limited molecular genetic knowledge base. 

NGS technology opens the door to a new set of tools for gene discovery. For example, in black 

cottonwood (Populus trichocarpa, the first tree species to have its genome sequenced) a high 

number of expressed sequence tags (EST) have been identified and are publicly available in gene 

databases worldwide. Since then, significant advances in poplar functional genomics have been 

accomplished, which range from transgenic trees used for biofuel production (e.g., cellulose and 

lignin content modification) to understanding how adaptations to environmental factors and 
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productivity are controlled. Poplar is considered a model organism to study adaptive traits in 

woody plants, epigenetic regulation, and life history of trees (Brunner et al. 2004). 

In the same way, high-throughput sequencing using the 454 Roche platform facilitated 

the discovery of genes and single nucleotide polymorphisms (SNP) in flooded gum (Eucalyptus 

grandis) (Novaes et al. 2008). The number of EST sequences available in the GenBank is in the 

tens of thousands; many are used in expression quantitative trait loci (eQTL) studies. Genes 

involved in xylem and wood-forming tissues, biotic stress resistance, and cold tolerance have 

been annotated and characterized. Identification of SNPs associated with complex traits, such as 

wood density and microfibril angle, has also been accomplished (Grattapaglia and Kirst 2008; 

Neale and Kremer 2011). 

Norway spruce (Picea abies) was the first genome of a gymnosperm to be sequenced 

(Nystedt et al. 2013). The information provided great insight into the evolution of conifers, for 

instance, that the large genome size is not due to whole-genome duplication but rather to steady 

accumulation of transposable elements (mostly long terminal repeat-retrotransposons or LTR-

RT’s, though that may not be the case for other gymnosperms). This work also allowed the 

comparison of gene homologs between gymnosperms and angiosperms. 

An alternative approach to gene discovery, where no reference genome exists, is 

transcriptome analysis. RNA sequencing, like NGS genomic approaches, allows de novo 

sequencing of an organism’s transcriptome. While it will not represent the full set of genes 

encoded in the genome, it does provide insight into the metabolic capabilities of an organism in 

response to different environmental conditions. This approach was used successfully both in 

annual plants (Arabidopsis thaliana) and fungi (Verticillium dahliae) (Landesfeind and Meinicke 

2014), but it is just beginning to be tested in tree species. 
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In cases where genes have already been identified, the interest may lie in determining the 

range of mutations present in each species. Sequencing candidate genes in a large natural 

population can be used to screen for possible variants of both common and rare alleles. Once all 

polymorphisms are identified, the information can be used in breeding programs. This technique 

is called next-generation Ecotilling and relies on the analysis of pooled samples. Four conditions 

are needed for Ecotilling: (i) validated genes for a trait of interest, (ii) a large population of trees 

that can be crossed, (iii) effective methods to evaluate the effect of different mutations on the 

individual’s phenotype, and (iv) an appropriate crossing scheme to introduce the selected 

mutations in the breeding population. An example comes from a set of black poplar trees 

(Populus nigra), where a nonsense mutation was detected on a gene involved in the lignin 

biosynthesis pathway (HCT1). Homozygous individuals for this mutation were selected and 

evaluated for wood quality (Harfouche et al. 2012). Lower lignin content is a desirable trait in 

the pulp and paper industry as well as in biofuel production. 

Finally, another application of NGS technologies in tree breeding is high-throughput 

genotyping. There are different procedures for genetic marker discovery and genotyping 

individuals from NGS data, for example, reduced-representation libraries (RRLs), complexity 

reduction of polymorphic sequences (CRoPS), and restriction-site-associated DNA sequencing 

(RAD-seq) (Davey et al. 2011). Furthermore, many bioinformatic and statistical tools have been 

developed for genotyping, SNP calling, and overall analysis of NGS data (Nielsen et al. 2011). 

In general, genotyping-by-sequencing (GBS) uses restriction endonucleases to target only a 

small portion of the genome, hence the reduction in complexity. The enzyme digestion is 

coupled with DNA barcoded adapters to produce multiplex libraries of samples ready for most 

NGS platforms. The approach is high-throughput and efficient. GBS results in thousand or even 
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millions of short DNA sequences which share a restriction site and can be compared within or 

among different individuals, allowing the identification of polymorphisms in the sequence that 

can be used as molecular markers. Moreover, it does not require previous knowledge of the 

genome sequence; de novo discovery is crucial in uncharacterized species, which is the case of 

most forest trees. If a well-defined reference genome exists, it can be combined with GBS data to 

create a genetic map, that makes population characterization easier (Poland and Rife 2012). 

The best attribute of GBS is the vast amount of molecular markers that it generates and 

how those markers can be used for marker-assisted selection (MAS) or even genomic selection 

(GS). Genomic selection assumes that every trait locus, i.e., the gene or location in the genome 

influencing the expression of a phenotypic trait, has the probability of being in linkage 

disequilibrium with at least one of the molecular markers in the entire target population. 

Therefore, the use of high-density markers is a fundamental feature, especially in tree species 

where low LD is commonly reported. Furthermore, GS could potentially accelerate breeding 

cycles, in some cases even reducing it by half, which represents considerable gain since most 

tree breeding cycles are measured in decades rather than months or years like most crops (Desta 

and Ortiz 2014). Another advantage is the accuracy of the predictions. For example, preliminary 

studies in loblolly pine found that the accuracy of estimations of breeding values for traits 

associated with wood properties (cellulose and lignin content) using GS were comparable with 

the accuracy of breeding values based on pedigree and phenotype information (Isik 2014). 

Overall, marker-assisted selection and genomic selection are promising applications in tree 

improvement, but we still need to be cautious of some of its caveats. For instance, it is not yet 

known how accurate the genomic predictions will be on trees several generations removed from 

the training or reference population (Grattapaglia and Resende 2011). 
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A lesser-explored but equally important application of NGS and GBS is in ecological 

restoration. Some of the practical applications of this discipline are: (i) the delineation of local 

genetic provenance seed sourcing zones, (ii) comparative assessment of genetic diversity in 

restored sites versus natural populations, and (iii) detection of genetic changes over generations 

(Williams et al. 2014). However, the most useful contribution could be in testing putatively 

adaptive markers associated with performance, not just for commercial traits but environmental 

resilience as well. With changes in global climate conditions, the ability to identify provenances 

best adapted to restoration or plantation sites will be essential. 

 

The case for NGS in tree improvement and conservation of Dipteryx oleifera 

Dipteryx oleifera Benth., formerly known as D. panamensis, is a large canopy-emergent 

tropical tree that can reach up to 50 m in height and 1.6 m in diameter. It is endemic to 

Nicaragua, Costa Rica, Panama, and Colombia. It can be found in humid and very humid tropical 

forests in the lowlands of the Atlantic plains, where annual precipitation ranges from 3500 to 

5500 mm and temperatures fluctuate between 24 and 30 °C. It grows in a variety of soils, from 

sandy alluvial soils to acidic and clayey soils, at elevations ranging from 20 to 1300 m above 

mean sea level (masl), but it is most commonly found below 600 masl (Flores 1992; Vozzo 

2010). 

The trunk is straight with ample basal roots, the bark is yellowish and granular with 

vertical lenticels, and the crown is semispherical. It flowers annually, between late May and 

August, though blooming is highly dependent on weather conditions (temperature and 

precipitation). The tree is pollinated by up to 18 distinct species of bees but is also visited by 

hummingbirds and butterflies. Fruiting is annual with peak production between February and 
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March (González and Origgi 2003). Fruits have a single big seed with a thin layer of brown pulp 

surrounding it. The seed has an average fat content of 25%, making it a highly nutritious food 

(Murillo Gómez and Atehortúa 2013). 

D. oleifera is considered a keystone species. It provides an ample food source during the 

dry season to 16 different species of mammals, including bats, rodents, and monkeys 

(Bonaccorso et al. 1980). Moreover, it is visited by over 100 different bird species, most notably 

the endangered great green macaw (Ara ambiguus). The great green macaw not only feeds on the 

fruits, but it nests almost exclusively in cavities in D. oleifera trunks. The relationship between 

A. ambiguus and D. oleifera has been thoroughly documented (Madriz Vargas 2004; Chun 2008; 

Gomez Figueroa 2009; Chassot and Arias 2012; Monge et al. 2012). 

In addition to its ecological value, D. oleifera has very hard, dense wood with a specific 

gravity ranging from 0.83 to 1.09 (Vozzo 2010). The wood is durable and high in mechanical 

resistance; consequently, it is used for industrial floors, marine construction, machines, and 

sports equipment. The timber is harvested mostly from natural populations, although in Costa 

Rica this practice was restricted in 1996 and banned in 2008. When available in the local 

markets, D. oleifera wood is the most expensive, prized higher than native and introduced timber 

species such as acacia, eucalypt, and teak. Even the wood waste has potential economic value as 

fuel for energy generation (Gaitán-Álvarez 2015). Non-timber products are also valuable; in 

Colombia the seeds are roasted for food products, e.g., candies and beverages (Murillo Gómez 

and Atehortúa 2013). 

Despite the importance of D. oleifera, in both ecological and commercial terms, the 

amount planted is minimal, especially compared to non-native species like teak. Moreover, just a 

few studies have evaluated, directly or indirectly, its performance in a plantation setting 
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(Butterfield and Mariano 1995; Andrade Naveda 2002; Petit and Montagnini 2006; Schmidt 

2009) or its potential for improvement (Martínez-Albán et al. 2016). NGS technologies can aid a 

D. oleifera tree improvement program by developing genomic resources. To develop such 

resources and direct applications, some fundamental information must be gathered first. The 

steps to follow are: 

1. Determine the genome size and ploidy level of D. oleifera. For a breeding 

program to work, it is crucial to know ploidy because it influences fertility, crossability, 

and even gene expression (Adams and Wendel 2005). Correspondingly, genome size 

provides insight into the species genetic diversity, evolution, and taxonomic relationships 

(Balao et al. 2009; Shearer and Ranney 2013). Furthermore, knowledge of genome size is 

essential for genome sequencing since it determines the amount of effort and resources 

required to achieve the desired coverage or quality. 

2. Generate a draft sequence for D. oleifera genome. Genome sequence data not 

only improves our understanding of tree genome structure and evolution, it also allows 

for the identification of new genes and metabolic pathways (Ellegren 2014). For breeding 

purposes, whole-genome sequence data can be used as a reference for discovery of 

variants and marker development. 

3. Identify molecular markers for genetic characterization and marker-informed 

breeding. High-throughput sequencing techniques can be used to identify thousands of 

single nucleotide polymorphisms. SNPs are ubiquitous, codominant, and can be in 

functional parts of the genome, thus making them the ideal marker for tree improvement 

and conservation genetics (Poland and Rife 2012; Narum et al. 2013). Using molecular 
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markers could improve the accuracy of selection model predictions while reducing the 

breeding cycle time. 

These steps represent the core objectives of this dissertation and will be addressed in the 

following chapters.  
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CHAPTER 2: Genome and Seed Size Evolution in the Dipterygeae Clade, Fabaceae-

Papillionoideae 

 

Abstract: 

Genome size variation is a common phenomenon among all organisms. In plants, 

many phenotypic traits show a correlation with genome size. One such trait is 

seed size, which in turn influences many aspects of plant ecology. The objective 

of this chapter was to determine genome size in the Dipterygeae clade and to 

investigate the evolution of this trait along with seed size. Although a small 

sample set, the results from this study show a moderate correlation between seed 

size and 2C-values, as well as a similar evolutionary history. It is hypothesized 

that one or more polyploidization events may account for the variation in the 

traits. Other mechanisms involved are not clear. 

 

Introduction 

Genome size variation is a common phenomenon among all organisms. Genome size is 

usually reported in terms of C-values. The 2C-value refers to the total amount or DNA content of 

a cell nucleus expressed in picograms (pg). Alternatively, if ploidy level is known, genome size 

can be reported as 1C-values representing the unreplicated gametic chromosome set. In 

flowering plants, both genome size and chromosome number (ploidy) can vary greatly. For 

example, the difference between large bitter-cress, the smallest reported C-value plant 

(Cardamine amara, 1C = 0.05 pg), and fritillary, the largest reported C-value plant (Fritillaria 

assyriaca, 1C = 127.4 pg), is over 2500-fold (Soltis et al. 2003). The main known mechanisms 
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for genome size variation are polyploidization, transposable elements amplification, and different 

patterns of insertion and deletions (indels). However, the cause or driving forces behind these are 

less known. Theories that explain genome size variation can be framed in terms of maladaptive, 

neutral, or adaptive evolutionary models (Lynch and Conery 2003; Whitney et al. 2010). 

Adaptive evolutionary models state that the accumulation of nuclear DNA may serve a 

purpose based on the amount of extra DNA, not only its informational content. Many different 

phenotypic traits, such as duration of mitosis and meiosis, minimum generation time, and 

response of annual plants to CO2 are correlated with genome size (Petrov 2001). Another 

important trait correlated with relative genome size is seed size. Seed size, or mass, influences 

many aspects of plant ecology. In general, small seeds are produced at a lesser cost to the 

individual allowing for large numbers, while larger seeds are costly to produce but improve 

seedling establishment and survival rates in harsh or shifting environments. Seed mass correlates 

well with other traits such as dispersal syndrome, plant size and form, plant life-span, and the 

ability to form a persistent seed bank (Moles et al. 2005). Beaulieu et al. (2007) found that 

genome size could explain up to 6.2% of the variation in seed mass among 1,222 different plant 

taxa, making it the second most important factor for seed mass evolution. The relation is stronger 

with intraspecific variation. For example, the relative nuclear DNA content of soybean (Glycine 

max (L.) Merr.) is strongly correlated (r = 0.97) with seed size in twelve different cultivars 

(Chung et al. 1998). 

The Dipterygeae clade is monophyletic and commonly placed as one of the earlier 

branching groups within the papilionoid legumes (Fabaceae - Papilionoideae). The group is 

comprised of four genera, following Cardoso et al. (2012) nomenclature: Dipteryx Schreb., 

Monopteryx Spruce ex Benth., Pterodon Vogel, and Taralea Aubl. This is an exclusively 
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Neotropical clade, with a distribution ranging from Nicaragua to Brazil (Fig. 2.1). The clade is 

comprised of 25 woody species, mostly trees but also shrubs. Characteristic features are a two-

lipped calyx, monadelphous androecium, and the typical papilionate corolla differentiated into 

standard, keel, and wing petals (except in Monopteryx). Dipteryx is the most diverse genus 

within the clade, with twelve recognized species (Cardoso et al. 2012; Cardoso et al. 2013). 

Additionally, several species within this genus are important for their ecological and commercial 

value. For example, D. oleifera Benth. possesses high density wood, a desirable trait in the 

timber industry, and produces nutritious seeds which constitute a significant part of the diet of 

many animals in the forest (Bonaccorso et al. 1980). Other species within the genus also produce 

edible seeds with commercial value like the famously fragrant Tonka beans, mostly from D. 

odorata (Aubl.) Willd. D. rosea Spruce ex Benth. and D. punctata (S.F. Blake) Amshoff seeds 

possess similar traits (Ducke 1940). 

Here I describe determination of D. oleifera DNA nuclear content and ploidy level, 

followed by comparison of genome size among species in the Dipterygeae clade and exploration 

of the relationship between genome size, seed size, and fruit size. It is expected that the ancestor 

of the Dipterygeae clade had a smaller genome than current taxa since gaining nuclear DNA 

content can be achieved more readily by the current known mechanisms (e.g., polyploidization 

events) than reducing genome size. Correspondingly, if DNA nuclear content influences seed 

size it is expected that species with larger genomes also have larger seeds. 
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Materials and Methods 

Flow cytometry 

I determined relative DNA nuclear content for ten of the fifteen Dipterygeae species 

using flow cytometry. For a detailed review on genome size estimation through flow cytometry 

please see Doležel and Bartoš (2005). I collected silica-dried tissue samples from D. oleifera 

seedlings grown in a greenhouse in Costa Rica. Dr. Domingos Cardoso from the Herbarium of 

Universidade Estadual de Feira de Santana (HUEFS) in Bahia, Brazil, provided herbarium 

specimens for the other species. I followed the protocol for preparation of aqueous cell 

suspensions described by Shearer and Ranney (2013). The cell nuclei were stained using 4’,6-

diamidino-2-phenylindole (DAPI) staining buffer Sysmex CyStain® UV Precise. The samples 

were tested on different days, with two technical replicates each time, to avoid any experimental 

or equipment bias. I used fresh tissue from Pisum sativum var. Ctirad (2C = 8.75pg) as an 

internal control. The samples were processed and analyzed on a Partec PA II flow cytometer 

using the manufacturer’s proprietary software. The resulting data represent the average 2C 

values (pg) per species, calculated from different day measurement and technical replicates for 

all accessions tested. The number of accessions tested per species ranged from one to six, with 

two accessions per species on average. I conducted the sample preparation and flow cytometry 

analysis at the Mountain Horticultural Crops Research & Extension Center at Mills River, NC. 

The 2C value for outgroup species Bauhinia tomentosa (2C = 1.26 pg) was retrieved from the 

Kew Royal Botanical Gardens - Plant DNA C-values database (release 6.0). 
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Chromosome counts 

I collected fresh root tips from D. oleifera seedlings. The seedlings were grown in 

nursery beds and containers in Costa Rica. Root tips were cleaned of dirt and debris and then 

fixed, first using a 2mM 8-hydroxyquinoline and 0.24mM cycloheximide solution and then a 

three-parts 95% ethanol: one-part glacial acetic acid solution. Root tips were then washed and 

stored in 70% ethanol for later use (Shearer and Ranney 2013). I conducted the staining and 

visualization using a modified carbol fuchsin dye and a light microscope at the Mountain 

Horticultural Crops Research & Extension Center at Mills River, under Dr. Thomas Ranney’s 

supervision. 

 

Fruit and seed size data 

The Fabaceae family is distinctive for its legume fruit. In Dipterygeae, the fruit is a 

single-seeded pod. I measured fruit length (FL) and fruit width (FW), from all available digital 

herbarium specimens (N = 183) at the Tropicos database (Missouri Botanical Garden), C.V. Starr 

Virtual Herbarium (New York Botanical Garden), and the REFLORA Virtual Herbarium (Rio de 

Janeiro Botanical Garden). Only mature fruit were considered. Similarly, I measured seed length 

(SL) and seed width (SW), from all digital specimens that presented an open fruit and exposed 

mature seeds (N = 75). I used image processing and analysis software ImageJ version 1.52a 

(Schneider et al. 2012) for measurements, calibrated with the scale included in each herbarium 

specimen. The fruit and seed size data were complemented with taxonomic descriptions 

available in the literature. Fruit and seed size values presented are the average of all 

measurements per species. Pearson’s correlation coefficients were calculated among traits. I used 

a linear regression to predict missing seed size values. Linear regression and correlation 
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estimation were performed using statistical analysis software R version 3.5.0 (R Core Team 

2018). 

 

MatK gene sequence data 

Previous studies have demonstrated that DNA barcode sequences from plastid matK 

protein-coding genes provide adequate resolution at many taxonomic levels in the legume family 

(Wojciechowski et al. 2004). Complete and partial matK sequences were retrieved from the 

GenBank, fifteen species within the Dipterygeae clade and one species from the Cercidoideae 

clade. The Cercidoideae clade is considered one of the earlier branching and basal groups in 

Fabaceae. I selected Bauhinia tomentosa, currently classified within the Cercidoideae clade, as 

the outgroup for phylogeny inference and reconstruction. Taxa and GenBank accession numbers 

are presented in Table 2.1. Dipterygeae sequence data, i.e. the matK accessions used in this 

analysis, correspond for the most part to those first presented by Cardoso et al. (2012; 2013; 

2015). 

 

Sequence alignment and phylogenetic analysis 

I compiled the DNA barcode sequences into a single fasta format file and used the 

MUSCLE algorithm, with default parameters, as implemented in the freely available MEGA7 

software package (Kumar et al. 2016) to perform multiple sequences alignment. Data 

manipulation, i.e., sequence adjustments or edge trimming, was also done with MEGA7. The 

resulting alignment was used for phylogeny inference. Tree construction was performed in 

MEGA7 using two different methods:  
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(i) Maximum Parsimony (MP), using the Subtree-Pruning-Regrafting (SRG) 

algorithm. The consensus tree from the bootstrap analysis is presented. 

(ii) Maximum Likelihood (ML) based on the Tamura-Nei model. The initial 

tree for the heuristic search was obtained automatically by applying Neighbor-Join 

and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum 

Composite Likelihood (MCL) approach, and then selecting the topology with 

superior log likelihood value. The consensus tree from the bootstrap analysis is 

presented. 

In addition, I conducted phylogeny inference using the Randomized Accelerated 

Maximum Likelihood (RAxML) method, as implemented on CIPRES (RAxML-HPC2 on 

XSEDE), with default parameters. The best scoring ML tree with bootstrap support values is 

presented. For all methods, positions containing gaps and missing data were eliminated. There 

were a total 16 taxa and 1158 characters per taxa in the final dataset used for tree inference. B. 

tomentosa was set as the outgroup and used to root the trees. 

Finally, I used Mesquite version 3.40 (Maddison and Maddison 2018) to trace seed and 

genome size evolutionary history. The phylogenetic tree was modified manually to resemble the 

ML phylogeny reconstructed. Genome and seed size were analyzed as continuous characters. 

 

Results and Discussion 

Genome size 

Relative DNA nuclear content, expressed as 2C-values, ranged from 1.26 pg to 3.86 pg, 

with an average of 2.5 pg for the taxa in this study. The selected outgroup species, B. tomentosa, 

has the smallest genome size. Genome size variation within the Dipterygeae clade was small, 
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with D. magnifica (2C-value of 1.96 pg) and D. oleifera (2C-value of 3.86 pg) in opposite 

positions of the range. Base ploidy reported for the Dipterygeae tribe is n =8, that is 2n=16 

chromosomes for diploid species and 4n=32 chromosomes for tetraploid species. While there are 

no specific reports on the ploidy level of D. magnifica, based on genome size it could be inferred 

to be a diploid. Chromosome counts from D. oleifera root tips were inconclusive (Fig. 2.2). 

However, based on molecular marker data, D. oleifera was reported as a potential tetraploid 

(Hanson et al. 2008a). The same is true for D. odorata (Vinson et al. 2009). A different ploidy 

level, in these cases tetraploid, could account for them having almost twice as much DNA 

content than D. magnifica. Taxa and 2C-values are summarized in Table 2.1. 

I estimated relative DNA nuclear content from silica-dried tissues and herbarium 

samples. However, the age of some of the herbarium specimens and degradation level of the 

tissue made it impossible to isolate intact nuclei, properly stain them, or get a distinct signal in 

the flow cytometer. Best practices in flow cytometry dictate that fresh tissue should be used for 

genome size estimation; this represents a major constraint in the study of many taxa (e.g., species 

that can only be found in tropical forest miles away from a research facility and are not easily 

grown in greenhouse conditions are difficult to study under laboratory conditions). Luckily, rapid 

desiccation of plant tissue using silica gel is an effective way to preserve tissue samples for flow 

cytometry analysis. Previous studies have demonstrated that rapid drying with silica gel 

introduces minor error (<10%), comparable to other sources of variation like instrument or 

staining protocol (Bainard et al. 2011). Traditionally, herbarium specimens are not subject to 

rapid desiccation but a rather slow pressing and drying process that may include a heat treatment, 

i.e., warm air blowing from an electric fan. This results in degradation of the sample as 

evidenced by browning of the specimen. Tissue browning is commonly caused by polyphenols, 
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which contribute to the degradation of DNA as oxidizing agents. Compounds like flavonoids, 

terpenoids, and tannins occur widely in plants; such compounds can be released from the cell 

vacuole shortly after collection in older herbaria dried samples (Varma et al. 2007). 

 

Fruit and seed size 

I obtained fruit size data for all taxa (N = 16 species), but seed sizes for only a subset (N 

= 10 species). Pearson’s correlation coefficients for pairwise comparisons among traits are 

summarized in Table 2.2. Both SL and SW showed moderate correlation with relative DNA 

nuclear content (2C) values (r = 0.83 and 0.70, respectively). These results support previous 

reports in the literature (Chung et al. 1998; Beaulieu et al. 2007). While most Dipterygeae 

species have one-seeded pods, Monopteryx spp is the exception with multiple seeds per pod. The 

same is true for the outgroup species B. tomentosa. This difference in fruit-seed ratio could 

account for the weaker correlations between fruit dimensions and 2C values. Since FW showed a 

stronger correlation with SL and SW I used a linear regression and FW values to extrapolate SL 

and SW missing data (Fig. 2.3). A summary of the average sizes per character is presented in 

Table 2.1. 

 

Dipterygeae phylogeny 

The phylogeny reconstruction using both Maximum Parsimony (MP) and Maximum 

Likelihood (ML) methods confirms the monophyly of the tribe, with species within each genus 

clustering together and supported by the bootstrap values (Fig. 2.4 to 2.6). However, 

relationships within the Dipteryx genus are not well resolved. For the MP tree (Fig. 2.4), the 

consistency index is 0.935, the retention index is 0.971, and the composite index is 0.908 for all 
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parsimony-informative sites. For the ML trees, the highest log likelihood are -2600.59 (Fig. 2.5) 

and -3395.81 (Fig. 2.6). There are no relevant differences in tree topology between the ML trees 

constructed using different software, i.e., MEGA7 or CIPRES. Furthermore, tree topology 

strongly resembles that of previous published studies in the group that used similar Maximum 

Parsimony methods or sophisticated Bayesian inferences models (Cardoso et al. 2012; Cardoso 

et al. 2013; Cardoso et al. 2015). This should come as no surprise since the matK sequence data 

used in this study corresponds, for the most part, to the same accessions used by Cardoso et al., 

only the analysis method differs. Since Maximum Likelihood represents a more robust method 

for phylogeny inference, only those results were used in subsequent analysis and discussion. 

The genus Dipteryx and Pterodon were shown to be sister groups in the ML inferred 

phylogeny (Fig. 2.5, 26). The close relation between these two genera is also evident in their 

morphological features Pterodon only differs from Dipteryx in the more petaloid nature of the 

calycine lobes, flattened fruit, and in foliage (Hooker 1850). These minor differences led to the 

wrong identification of some Pterodon species. For example, P. emarginatus was previously 

placed in the genus Dipteryx or Coumarouna (Dipteryx basionym) based on vegetative features 

and geographical distribution. Molecular data from recent studies clearly separates the two 

genera. The genus Taralea was shown to be a sister to the Dipteryx and Pterodon clade. Some 

Taralea species are shrubs or have climbing habits which differ from the mostly large trees 

found in Dipteryx or Pterodon. Finally, Monopteryx represents the most basal and early 

diverging lineage within the tribe. In the past, this genus was placed within the Sophoreae clade 

(Pennington et al. 2001). Monopteryx differs from the previous genera in its non-papilionate 

corolla with wing petals reduced and keel petals connate and open out exposing the free stamens. 
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Despite the morphological differences, phylogenetic analysis of plastid matK and trnL intron 

sequences place Monopteryx as a sister group to the rest of Dipterygeae (Cardoso et al. 2015). 

 

Genome and seed size evolution 

Results from the evolutionary history trace analysis for genome and seed size within 

Dipterygeae support the initial hypothesis. The parsimony reconstruction indicates that the 

ancestor to Dipterygeae had a smaller genome size than current taxa (Fig. 2.7). This trend in 

DNA nuclear content increase was only reverted in D. magnifica. For seed size, the evolutionary 

trend was similar, that is, seed size tends to increase from the previous ancestor with few 

exceptions (Fig 2.8). 

The increase in relative DNA nuclear content in this group may be due to 

polyploidization events. Polyploidization is the process of duplication of the whole or partial 

genome. Polyploid individuals possess more than two sets of chromosomes. This condition is 

heritable and can confer advantages in terms of evolutionary flexibility. For example, genes that 

are duplicated by a polyploidization events may retain their original function, undergo 

diversification in protein function/regulation, or get silenced through mutational or epigenetic 

mechanisms. Both duplicate gene expression and redundancy can influence fitness, thus creating 

a selective pressure that would favor polyploidization (Wendel 2000). Furthermore, polyploidy is 

an important force in angiosperm evolution. It is now believed that all angiosperm lineages have 

gone through at least one polyploidization episode; whole or partial genome duplication is both 

frequent and ubiquitous in angiosperms history. Polyploidy in angiosperms contributed greatly to 

the group diversification (Soltis et al. 2009). As stated before, cytological studies have estimated 

the base chromosome number for the Dipterygeae group as n=8, with diploids members having 
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2n=16, like Pterodon spp (Bandel 1974), while there are some tetraploid species in the Dipteryx 

genus. 

Another source of nuclear DNA content variation, usually associated with genome size 

increase, is accumulation of repetitive DNA. There are diverse types of repetitive DNAs, but 

most notable are the transposable elements. In addition to increasing genome size following 

transposition, transposable elements can induce chromosomal rearrangements resulting in 

deletions, duplications, inversions, and reciprocal translocations. In plants, transposable elements 

activity can be controlled through epigenetic silencing by siRNA that initiates methylation of the 

transposable elements and limits transposition. Therefore, it is possible that genome size 

variation in plants can be the result of differential efficiency in transposable element silencing. 

For example, half the genome of Arabis alpina (genome size = 375 Mbp) is comprised of 

transposable elements. The difference in genome size with close relative Arabidopsis thaliana 

(genome size = 135 Mbp) was linked to a reduced capacity for silencing and removal of long 

terminal repeat retrotransposons (LTR-RTs) (Ågren and Wright 2015). 

Conversely, there are mechanisms that could explain the reduction in DNA nuclear 

content. The indel bias refers to difference in patterns of insertion and deletions (indels). In 

plants, deletions are far more common than insertions in both protein-coding sequences and non-

coding regions. However, DNA loss by indel bias is a slow process and it is questionable how 

relevant it can be to genome size variation (Gregory 2004). More plausible mechanisms that 

decrease DNA nuclear content are unequal homologous recombination and illegitimate 

recombination. Unequal homologous recombination between chromatids yields reciprocal 

duplication/deletions that do not provide any net change in DNA content. Nevertheless, when 

unequal homologous recombination occurs within a single chromatid it preferentially leads to 



 

25 

deletions (Bennetzen et al. 2005). In the case of illegitimate recombination, the mechanism of 

action is not fully understood; it could be by an error in DNA replication or by double-strand 

break repair. What has been established is the effect it can have on genome size variation. In 

Arabidopsis, for example, illegitimate recombination removes at least fivefold more DNA than 

unequal homologous recombination (Devos et al. 2002). 

In the case of Dipterygeae, the most likely explanation for the variation in DNA nuclear 

content is one or more polyploidization events in the lineage, after those events, the different 

groups underwent a process of mutation, purging selection, and replication of transposable 

elements that would account for the small variation. Two notable exceptions are D. magnifica 

and D. oleifera. Based on data I present here, I hypothesize that D. magnifica is a diploid species, 

and may have undergone genome size reduction relative to other diploid species in the clade. 

However, the mechanisms involved are not clear. Conversely, D. oleifera showed the largest 2C-

value and is likely to be a tetraploid. This may indicate that D. oleifera is prone to DNA 

accumulation or that it is the product of recent polyploidization, either whole genome duplication 

or a hybridization event. 

Seed size was moderately correlated with 2C-values. The correlation is stronger than 

reported for distantly related taxa (Beaulieu et al. 2007), but weaker than at the intraspecific level 

(Chung et al. 1998). This result is relevant because it indicates that DNA nuclear content may 

indeed affect seed size in closely related taxa. In Dipterygeae, seed size increase seems to be the 

product of multiple independent events in the evolutionary history of the clade, but it does 

coincide with larger DNA nuclear content. However, it is not clear what drives this relation. If 

polyploidization is the main cause for increase in DNA nuclear content, with the current data it is 

impossible to distinguish whether increase seed size is a function of the additional DNA content 
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or a matter of gene dosage. According to the nucleoskeletal theory, the amount of DNA 

determines the nucleus and cell size. Theoretically, non-coding DNA has a structural role in the 

nucleus as a nucleoskeleton, in a way that the amount of DNA can determine the nucleus size 

which in turn influences the cell size. So, if genome size determines cell size, it could also 

influence seed size. Besides, a selective pressure on species that have large cells may explain the 

expansion in DNA content (Gregory 2001; Cavalier-Smith 2005). Future cytological studies 

should focus on whether the correlation I found between genome size and seed size is influenced 

by the size of the cells and cell’s nucleus. This would help prove or disprove the nucleoskeletal 

theory. On the other hand, polyploid plants are known to be larger than their diploid 

counterparts, due to a gene dosage effect. The additional gene copies encoded in the 

homeologous chromosomes result in duplication of gene products, i.e., double the genes may 

equal double the transcripts encoded, proteins, and byproducts. This could also translate into 

additional resources stored in the seed, making for bigger seeds. 

 

Conclusion 

DNA nuclear content increase is the evolutionary trend in the Dipterygeae clade, with 

just a few exceptions. One or more complete or partial polyploidization events are believed to 

drive this size increase. Seed size was moderately correlated with 2C-values, supported by the 

evolutionary history of both traits. However, this was just an exploratory study and is limited by 

a small dataset. Further study and a greater number of replicates are needed to fully resolve the 

evolution of these traits.  
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Table 2. 1. Average genome, fruit, and seed size for Dipterygeae taxa and outgroup. 

Taxa 
2C (pg) 

Fruit 

Length 

(cm) 

Fruit 

Width 

(cm) 

Seed 

Length 

(cm) 

Seed 

Width 

(cm) 

GenBank 

Accession 

Bauhinia tomentosa 1.26 10.50 1.75 0.78 0.63 AY386893 

Dipteryx magnifica 1.96 4.03 3.25 2.62 1.69 JX295871 

Monopteryx uaucu 2.10 10.94 3.12 2.50 1.61 KP177915 

Taralea cordata 2.20 3.06 1.78 1.23 0.88 JX295872 

Monopteryx inpae 2.40 9.19 2.38 1.57 0.92 JX295876 

Dipteryx rosea 2.58 5.26 2.90 2.30 1.46 JF491268 

Pterodon abruptus 2.60 4.51 2.59 2.11 1.22 JX295873 

Taralea oppositifolia 2.82 4.07 3.07 2.11 1.62 JF491275 

Dipteryx odorata 3.26 4.48 2.78 3.50 1.41 JF491266 

Dipteryx oleifera 3.86 7.00 4.50 5.25 3.25 JX295933 

Dipteryx alata - 4.96 3.76 3.07 2.03 JF491265 

Dipteryx polyphylla - 4.73 2.85 2.26 1.43 JX295870 

Dipteryx punctata - 5.23 3.17 2.54 1.64 JF491267 

Pterodon emarginatus - 5.11 3.07 2.27 1.50 JF491272 

Pterodon pubescens - 5.64 3.21 3.47 2.31 JF491273 

Taralea rigida - 3.48 2.01 1.36 0.95 JX295934 

 

Note: 2C = average nuclear DNA content, GenBank accession = accession number for matK gene sequence Table is 

sorted by increasing genome size (2C). Values in red represent extrapolated data.  
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Table 2. 2. Pearson’s correlation coefficient among genome, fruit, and seed size for Dipterygeae 

taxa and outgroup. 

 2C Fruit Length Fruit Width Seed Length Seed Width 

2C 1.00     

Fruit Length -0.25* 1.00    

Fruit Width 0.27** 0.29*** 1.00   

Seed Length 0.83*** 0.03 0.72*** 1.00  

Seed Width 0.70*** 0.02 0.83*** 0.83*** 1.00 

 
Note: 2C = average nuclear DNA content. * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001  
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Figure 2. 1. Dipterygeae range distribution based on herbaria records.  
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Figure 2. 2. Chromosome count from D. oleifera root tip. Cells nuclei were stained with a solution of modified carbol fuchsin.  
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Figure 2. 3. Linear regression for fruit width (FW) and seed length (SL), and fruit width (FW) and seed width (SW). Red line 

represents linear fit.  
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Figure 2. 4. Dipterygeae tribe phylogeny inferred using the Maximum Parsimony (MP) method, as implemented in Mega7 software 

package. The percentage of trees in which the associated taxa clustered together is shown next to the branches (bootstrap values). Tree 

rooted with Bauhinia tomentosa as an outgroup.  
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Figure 2. 5. Dipterygeae tribe phylogeny inferred using the Maximum Likelihood (ML) method based on the Tamura-Nei model, as 

implemented in Mega7 software package. The percentage of trees in which the associated taxa clustered together is shown next to the 

branches (bootstrap values). Tree rooted with Bauhinia tomentosa as an outgroup.  
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Figure 2. 6. Dipterygeae tribe phylogeny inferred using the Randomized Accelerated Maximum Likelihood (RAxML) method, as 

implemented on CIPRES (RAxML-HPC2 on XSEDE). Best scoring ML tree with bootstrap support values drawn as node labels. Tree 

rooted with Bauhinia tomentosa as an outgroup.  
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Figure 2. 7. Relative DNA nuclear content (2C-value) evolutionary history reconstruction using a Parsimony method. Character was 

treated as a continuous variable. Genome size ranged from 1.26 to 3.86 pg. Warmer colors (red) represent larger genome size, grey 

color represents missing data. Tree rooted with Bauhinia tomentosa as an outgroup.  
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Figure 2. 8. Seed size evolutionary history reconstruction using a Parsimony method. Character was treated as a continuous variable. 

Seed length ranged from 0.78 to 5.25 cm. Warmer colors (red) represent larger seed length. Tree rooted with Bauhinia tomentosa as 

an outgroup. 
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CHAPTER 3: First Draft Genome Sequence of Tropical Tree Dipteryx oleifera Benth. 

 

Abstract: 

In this chapter I describe the sequencing and assembly of the first draft genome of 

Dipteryx oleifera, an ecologically and economically important tropical timber 

species. For the assembly, I used a combination of short Illumina reads and 

additional coverage in long PacBio reads. With a total of 1,166,468,433 bp in 

381,857 contigs, this assembly corresponds to 62% of the estimated genome size. 

Although still fragmented, the resulting assembly contains 70.7% of expected 

component of complete single-copy and duplicated conserved orthologous genes. 

In addition, I used short Illumina reads data and the resulting assembly to 

corroborate genome size and ploidy level for this species. 

 

Introduction 

Dipteryx oleifera (Fabaceae) is a tropical tree species endemic to the Caribbean lowlands, 

ranging from Nicaragua to Colombia (Flores 1992). It is a keystone species, providing food and 

shelter to many mammals (Bonaccorso et al. 1980) and birds, including the endangered great 

green macaw (Chassot and Arias 2012; Monge et al. 2012). In addition to its ecological value, D. 

oleifera possesses high quality wood. However, illegal logging and habitat fragmentation have 

diminished natural populations to the point that trade of the wood is now controlled by 

international treaty (CITES Appendix III) (Hanson et al. 2008b). GENFORES, a forestry 

industry – university co-operative program based in Costa Rica, is working in the development 

of genomic resources to aid tree improvement and conservation of this species. 
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In general terms, a genome can be defined as all the information (i.e., genes and 

regulatory regions) needed to build and maintain a cell or an organism, usually encompassed in 

the haploid chromosome set. Although this definition is an oversimplification (Goldman and 

Landweber 2016), it is still widely used. In the era of high-throughput DNA sequencing 

technologies, a genome has become synonymous with the actual DNA sequence coding all that 

information. Genome assemblies are composed of contigs and scaffolds. Contigs are contiguous 

consensus sequences derived from collections of overlapping reads. The maximum length of a 

contig is usually determined by the amount of repetitive sequences flanking it. If the length of 

the repetitive sequences exceeds that of the average read length, most assemblers would not be 

able to extend the contig sequence any further. Scaffolds are ordered and oriented sets of contigs 

that are linked to one another leaving gaps, filled with N’s, where the sequences are unknown. 

To assemble scaffolds, most assemblers require libraries with large insert size, such as mate-

pairs or long reads, to help bridge the gaps created by repetitive sequences. Hence, the growing 

popularity of hybrid assembly approaches, that combine accurate Illumina short-read with 

PacBio long-read. 

In this chapter, I describe the sequencing and assembly strategy used to generate the first 

draft sequence for D. oleifera. In addition, I used the sequence data and the resulting assembly to 

corroborate D. oleifera genome size and ploidy level. 

 

Materials and Methods 

DNA isolation 

I collected plant material in Costa Rica in July 2015. The leaf tissue was silica dried and 

then stored at -70°C. I isolated high molecular weight genomic DNA using a Wizard® Genomic 
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DNA purification kit (Promega, US) following the manufacturer instructions and assessed DNA 

quality and quantity using a NanoDropTM (Thermo Scientific TM, US). The DNA sample used 

comes from a single individual, a 5-year-old tree planted as part of a provenance-progeny trial 

managed by GENFORES (Martínez-Albán et al. 2016). 

 

Library preparation and sequencing 

The short-read library was prepared using Illumina’s DNA TruSeq Nano Library 

preparation kit and following the manufacturer instructions. Final average library size, i.e., after 

DNA fragmentation, end repair, size selection, and adapter ligation, was 550 bp. The library was 

normalized to 2 nM prior to loading onto the flow cell, then sequenced in the Illumina 

HiSeq2500 platform using SBS sequencing kit version 4. The 150 bp paired-ended (PE) single 

index library was sequenced for 308 cycles. In addition, a long-read library was prepared using 

PacBio’s template preparation kit and following the manufacturer instructions. The library was 

size-selected for fragments ranging between 10 Kb to 50 Kb. The library was normalized to two 

different concentrations, 10 pM and 15 pM, and loaded onto two separate SMRT cells 

respectively. The PacBio run length was set to 600 minutes for both cells. Next-generation 

sequencing was performed by the NC State University Genomic Sciences Laboratory (Raleigh, 

NC, USA). 

 

Draft sequence assembly 

I performed quality assessment of the raw Illumina reads with FastQC version 0.10.1 

(Andrews 2010). Quality control identified a small percentage (< 1%) of TruSeq Adapter, Index 

2 contamination. I used BBMap/BBtools suite with BBduk version 36.27 package (Bushnell 
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2015) for quality trimming and adapter removal. The raw PacBio subreads were filtered for reads 

with sequences length ≥ 1000 bp and then converted from bam format to fastq format using 

BamTools (Barnett et al. 2011). I used both the clean Illumina reads and the filtered PacBio 

reads as input for sequence assembly. 

I tested three different software packages for genome sequence assembly, two open 

source and freely available: SOAPdenovo2 version 2.04 (Luo et al. 2012) and ABySS 2.0 

(Jackman et al. 2017); and one licensed and proprietary: CLC Genomics Workbench version 

10.1.1 with the Finish Module version 1.7 plug-in (https://www.qiagenbioinformatics.com). Both 

ABySS 2.0 and CLC Genomics workbench incorporate short and long reads into the assembly, 

however, SOAPdenovo2 only works with short read data. Despite its limitations, SOAPdenovo2 

was tested since it is generally regarded as a good benchmark assembler. For each software, I 

conducted a series of experiments to optimize parameter setting, for example testing different k-

mer sizes. As a final step, I used Sealer (Paulino et al. 2015) to close gaps in the assemblies. 

Optimal parameter setting for each assembler are detailed in Appendix 1, Assembly scripts. The 

best resulting assemblies from each software are presented in the results. 

 

Draft sequence evaluation 

I used QUAST version 4.6.0 (Gurevich et al. 2013) to estimate summary statistics for 

each assembly. Quality statistics include: total length, number of contigs, largest contig, N50, 

N75, L50, L75, GC (%), and number of N’s per 100 Kbp. The Nx statistics refers to the largest 

contig or scaffold length, y, such that using contigs/scaffolds of length ≥ y accounts for at least 

x% of the bases of the assembly. The Lx count refers to the smallest number of contigs or 

scaffolds whose length sum produces Nx. These are commonly regarded as measurements of the 
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assembly contiguity. Further properties of the assembly composition and quality were obtained 

using KAT (Mapleson et al. 2017). Finally, to assess the completeness of the assembly I ran a 

Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis using the Embryophyta 

orthologs database as a reference (Simão et al. 2015). The embryophyta_odb9 is comprised of 

1440 conserved orthologous genes commonly found in species across the plant kingdom. 

 

Genome size and ploidy validation 

For genome size estimation, I used the clean Illumina reads as input and Jellyfish version 

2.2.7 (Marçais and Kingsford 2011) for k-mer counting with k-mer size ranging from 18 to 22. 

For each k-mer size, the depth distribution was counted, and the peak values identified. Since the 

Illumina short reads are randomly generated, the depth of coverage should follow a Poisson 

distribution. The genome size can then be calculated as: 

𝐺𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾 − 𝑚𝑒𝑟

𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑘 − 𝑚𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 

The genome size presented in the results is the average from all k-mer sizes tested. 

To determine ploidy, I aligned the clean short reads to the CLC Genomic Workbench 

assembly using BWA version 0.7.17-r1194-dirty (Li and Durbin 2009), marked and removed 

duplicates with SAMBLASTER version 0.1.24 (Faust and Hall 2014), and removed the 

unaligned reads using SAMtools version 1.3.1 (Li et al. 2009). The resulting bam file was used 

as input for nQuire (Weiß et al. 2018). nQuire estimates ploidy by assessing the distribution of 

allele frequencies at biallelic single nucleotide polymorphism (SNPs). It assumes that allele 

frequency distributions occur at different ratios for each ploidy level, i.e. 0.5/0.5 for diploids, 

0.33/0.67 in triploids, and a mixture of 0.5/0.5 and 0.25/0.75 for tetraploids. I used nQuire to 

clean the data and estimate ploidy. The nQuire lrdmodel subcommand uses a Gaussian Mixture 
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Model (GMM) and maximum likelihood to assess empirical data under the assumptions of 

diploidy, triploidy, and tetraploidy. In addition, I used a linear regression test against the three 

fixed models (nQuire histotest subcommand). 

 

Results and Discussion 

Draft sequence assembly 

Using flow cytometry (see chapter 2), I determined Dipteryx oleifera relative DNA 

nuclear content (2C) as 3.86 picograms (pg), or 1.93 pg for the 1C = 2n genome. Genome size 

can also be expressed in terms of base pairs (bp), where 1 pg DNA equals 0.978x109 bp, hence 

D. oleifera 1C =2n genome size can be expressed as 1,887,540,000 bp or 1.89 Gb. The Illumina 

HiSeq run generated 275 million 150 bp paired-ended reads; based on the previously estimated 

genome size, this represents a coverage of approximately 44x. The PacBio Sequel run generated 

5.82 Gb and 3.71 Gb respectively for each SMRT cell; combined this represents a coverage of 

approximately 5x. After quality trimming and adapter removal, 98% of the total reads were 

retained. These were used as input for the assembly. All the software produced an assembly, 

although of varying quality. Table 3.1 presents QUAST summary statistics for each assembly. 

Assembly quality is evaluated in terms of contiguity, completeness, and correctness. 

Contiguity refers to the length of the sequences assembled. Nx statistics are commonly used to 

evaluate contiguity, in particular N50 which represents the smallest scaffold or contig length 

above which 50% of the assembly would be represented. Completeness can be interpreted in two 

senses: genome coverage and gene coverage. Genome coverage is the percentage of the genome 

that is contained in the assembly and can be estimated by comparing the assembly total length to 

the estimated genome size calculated from a different source, like flow cytometry. Gene 
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coverage is the percentage of genes in the genome that are contained in the assembly. This can 

be assessed using a BUSCO analysis (Yandell and Ence 2012; Simão et al. 2015). Finally, 

correctness is the hardest to estimate since it refers to misassemblies and errors in the sequence. 

A widespread practice is to compare the assembly to a reference sequence. Unfortunately, that is 

impossible for de novo assemblies of non-model organisms. One alternative is to use the read 

spectrum and assembly copy number to validate the assembly. These provides insight into the 

composition and quality of the assembly (Mapleson et al. 2017). 

Despite its reputation, SOAPdenovo2 produced the assembly with the least favorable 

statistics. With 354,749,605 bp, it yielded the smallest and most incomplete assembly. Moreover, 

it is highly fragmented, as evidenced by the low N50 value and large number of contigs. ABySS 

2.0 resulted in a similar assembly, although less fragmented as evidenced by the larger N50 

values and smaller number of scaffolds. At 414,066,313 bp, it is slightly larger but still 

significantly incomplete. Since neither of these assemblies represents more than 20% of the 

estimated genome size, I conducted no further quality assessment. 

The CLC Genomic Workbench assembly is the most complete and least fragmented with 

1,166,468,433 bp in length, 62% of the estimated 1C genome size. Accordingly, universal 

orthologs analysis identified 1,019 complete conserved orthologous genes out of 1,440 total 

groups searched. Of the identified conserved orthologous genes, 889 are complete and single 

copy (S, 61.7%) and 130 are complete and duplicated (D, 9.0%). Fragmented (F, 10.6%) and 

missing orthologous genes (M, 18.7%) account for roughly 30%, which may correspond to the 

missing part of the assembly based on sequence length. Conserved orthologous genes in the 

OrthoDB come from sampling hundreds of genomes and selecting orthologous groups with 

single-copy orthologs in more than 90% of the species. A small number of duplicates reflects the 
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quality of the assembly since conserved orthologous genes are evolving under single-copy 

control. In the case of D. oleifera, the duplicates can be a result of its ploidy level. In terms of 

contiguity, the CLC Genomics assembly has the largest N50 values, the largest scaffold length, 

and less than 2% gaps in the whole sequence. Since there is no reference genome sequence 

available for D. oleifera, it is difficult to assess the correctness of the draft sequence. However, I 

validated the assembly by comparing the short reads k-mer spectrum and the assembly copy 

number. Fig. 3.1 represents how many elements of each frequency in the reads spectrum were 

included in the assembly once (red), twice (purple), three (green) or four (blue) times, or none 

(black). The quality of the assembly can be inferred from this distribution. A small amount of 

non-incorporated reads is desirable, since it indicates that most of the information was included 

in the assembly. For a haploid genome, when the assembler is performing well, sequencing 

errors should be absent and the genuine content present once, with duplications or repeated 

content centered around multiples of the sampling frequency for unique content. In the case of D. 

oleifera, the distribution of elements repeated up to four times is consistent with the ploidy level, 

i.e., tetraploid, and indicates that the assembly is correctly representing the multiple haplotypes 

present. 

 

Genome size and ploidy validation 

The average genome size estimated from the k-mer frequency distribution is 3.78 Gb. 

This value is almost identical to the genome size (2C=3.86 pg or 3.78 Gb) estimated from flow 

cytometry data (see chapter 2). Ploidy estimates, from both the lrdmodel (lowest delta-log 

likelihood) and histotest (highest R2 value), support D. oleifera tetraploidy. nQuire uses a 

Gaussian Mixture Model (GMM) approach in its lrdmodel subcommand. The GMM models read 
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frequency as a mixture of Gaussian distributions that are scaled by a mixture proportion. The 

GMM along with an Expectation-Maximization (EM) algorithm can be used for parameter 

estimation and model comparison when specific expectations about the data are known. For D. 

oleifera, the expectation is a mixture of three Gaussian distributions with means of 0.25, 0.5, and 

0.75 for a tetraploid. The delta log-likelihoods estimated by the lrdmodel represent the distances 

between each fixed model and the best fit under the assumption of the GMM. The histotest 

subcommand uses a simple linear regression-based test against the three fixed models, i.e. 

diploidy, triploidy, and tetraploidy. Results from lrdmodel and histotest are summarized in Table 

3.2 and Table 3.3 respectively. 

 

Conclusion 

I produced an assembly that could be considered a high-quality draft, sensu Chain et al. 

(2009), and prove useful for downstream application, although it may still lack full genome 

coverage. Short-read sequencing data corroborate D. oleifera estimated genome size and ploidy 

level. Future work should focus on improving the assembly quality by increasing coverage with 

both short and long read libraries. In addition, Hi-C libraries should be implemented to assemble 

scaffolds into pseudo-chromosome scale sequences (Burton et al. 2013; Kaplan and Dekker 

2013). Finally, RNA sequencing experiments and de novo transcriptome assembly have not been 

conducted for this species but would greatly aid the genome annotation process and should be a 

priority.  
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Table 3. 1. Dipteryx oleifera draft assembly summary statistics per software used. 

 SOAPdenovo2* ABySS 2.0** CLC Genomics** 

No. of contigs/scaffolds 386,703 213,641 381,857 

Largest contig/scaffold (bp) 43,094 167,819 397,587 

Total length (bp) 354,749,605 414,066,313 1,166,468,433 

GC (%) 32 32 33 

N50 (bp) 878 8,084 8,194 

N75 (bp) 629 902 2,385 

L50 105,744 10,205 31,993 

L75 227,249 53,597 100,363 

No. of N’s per 100 Kb 0 1,362.23 1,460.97 

 

Note: No. of contigs/scaffolds = the total number of contigs or scaffold in the assembly. Largest contig/scaffold = the 

length, in base pair (bp), of the largest contig or scaffold in the assembly. Total length = the total number of bases in 

the assembly. GC (%) = the total number of G and C nucleotides divided by the total length of the assembly. Nx 

(where 0 ≤ x ≤ 100) = the largest contig or scaffold length, y, such that using contigs/scaffolds of length ≥ y accounts 

for at least x% of the bases of the assembly. Lx (where 0 ≤ x ≤ No. of contigs/scaffolds) = the smallest number of 

contigs or scaffolds whose length sum produces Nx. No. of N’s per 100 Kbp = is the average number of uncalled 

bases (N’s) per 100,000 assembly bases, usually related to average gap size in the scaffolds of the assembly. * 

SOAPdenovo2 assembly is comprised of contigs only. ** ABySS 2.0 and CLC Genomics assemblies are comprised 

of both contigs and scaffolds.  
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Table 3. 2. Log likelihood estimates from the Gaussian Mixture Model test for ploidy level of 

Dipteryx oleifera, as implemented by the nQuire software package (lrdmodel). 

Free model maximized log-likelihood 7,211,920 

Diploid fixed model maximized log-likelihood 407,096 

Triploid fixed model maximized log-likelihood 2,786,286 

Tetraploid fixed model maximized log-likelihood 6,689,204 

Diploid delta log-likelihood 6,804,823 

Triploid delta log-likelihood 4,425,634 

Tetraploid delta log-likelihood 522,716 

 

Note: Lowest delta log-likelihood indicates most likely ploidy level based on biallelic frequency distribution 

observed.  
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Table 3. 3. Simple linear regression test for ploidy level of Dipteryx oleifera, as implemented by 

the nQuire software package (histotest). 

 Diploid Triploid Tetraploid 

Norm SSR 0.0706 0.0386 0.0051 

Slope -0.2197 -0.1781 1.0072 

Slope Std. Error 0.0684 0.1054 0.1051 

R2 0.1487 0.04628 0.6089 
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Figure 3. 1 Read k-mer frequency versus assembly copy number stacked histograms for the CLC 

Genomics Workbench assembly of Dipteryx oleifera. Read content in black is absent from the 

assembly, red occurs once, purple twice, green three times and blue four times. K-mer spectra 

show an error distribution under 10x, heterozygous content around 20x and homozygous content 

around 70x. Distribution is consistent with a tetraploid organism.  
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CHAPTER 4: Single Nucleotide Polymorphism (SNP) Discovery and Marker-Informed 

Breeding in a Dipteryx oleifera Benth. Open-Pollinated Progeny Trial 

 

Abstract: 

This chapter describes the discovery of DNA sequence variants, using a 

Genotyping-by-Sequencing approach, in a Dipteryx oleifera progeny trial. This 

resulted in 2,612 SNPs identified and 185 individuals genotyped. Marker data 

were used to estimate the realized genomic relationship among individuals in the 

trial. Results between pedigree-based (A-matrix) and pedigreed-based marker-

corrected (H-matrix) models were compared. Estimated genetic parameters and 

predicted breeding values for tree diameter, total height, and volume are similar 

between models; however, marker-corrected relationships resulted in increased 

accuracy in the predictions. Ranking of the individuals based on volume breeding 

values and selection of the top 30 in the ranking results in an expected genetic 

gain of 7.7% in volume. 

 

Introduction 

Dipteryx oleifera Benth. is a large canopy-emergent tree naturally occurring in the 

Caribbean lowlands and very humid tropical forest of Costa Rica. The tree possesses hard, dense 

wood with a specific gravity of 0.83 to 1.09 (Vozzo 2010). The wood is durable and rates high in 

mechanical resistance, which makes it highly sought after in local markets. Based on its energy 

properties, i.e., combustibility index and calorific value, even D. oleifera sawdust has potential 

economic value as fuel for energy generation (Gaitán-Álvarez 2015). Non-timber products are 
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also valuable; in Colombia the seeds are roasted for food products, such as candies and 

beverages (Murillo Gómez and Atehortúa 2013). 

D. oleifera timber was harvested mostly from natural populations, although in Costa Rica 

this practice was restricted in 1996 and banned in 2008. There are exploratory studies evaluating 

D. oleifera performance in a plantation setting (Butterfield and Mariano 1995; Petit and 

Montagnini 2006; Gamboa-Badilla and Arias Le Claire 2008), however, the amount planted is 

still small compare to non-native species like teak. To reverse this trend, GENFORES, a forestry 

industry – university co-operative program based in Costa Rica, has started a breeding program 

for D. oleifera. The research I describe here is part of GENFORES efforts to develop molecular 

markers that can aid D. oleifera selection process. 

In recent years, next-generation sequencing (NGS) technologies have shown a trend of 

increasing availability and throughput together with decreasing overall cost. This has allowed 

breeding programs to incorporate such technologies in their marker discovery and genotyping 

pipelines. For example, reduced representation techniques like genotyping-by-sequencing (GBS) 

(Elshire et al. 2011), and double digest restriction-site-associated DNA sequencing (RAD-seq) 

(Peterson et al. 2012) allow for easy discovery of single nucleotide polymorphism (SNP). SNPs 

are ubiquitous, codominant, and can be in functional parts of the genome, thus making them 

ideal markers for tree improvement and conservation genetics (Poland and Rife 2012; Narum et 

al. 2013). In general, these techniques use restriction endonucleases to target only a small portion 

of the genome, hence the reduction in complexity. The enzyme digestion is coupled with DNA 

barcoded adapter ligation to produce multiplex libraries of samples ready for most NGS 

platforms. The approach is rapid, robust, and high-throughput, producing thousands of molecular 

markers. Furthermore, these markers can be used to estimate the genetic relationships among 
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individuals in a breeding program and contribute to the accuracy of the selection model 

predictions (Habier et al. 2007). 

A previous study demonstrated the potential for tree improvement in D. oleifera 

(Martínez-Albán et al. 2016), however, its conclusions were based on a traditional model that 

relied only on pedigree information. Here, I compare the use of pedigree and molecular markers 

in modeling the relationship among individuals in a D. oleifera progeny trial and discuss the 

advantages of using marker data in breeding value predictions. 

 

Materials and Methods 

Progeny trial data 

An open pollinated (OP) progeny trial comprised of two plantings of Dipteryx oleifera 

Benth. was established in Costa Rica in 2010 (Fig.4.1). The first planting (NA) is located within 

the species natural range in the North Atlantic lowlands (10.370372° N, 84.515622° W). It is 

comprised of 29 families from 3 provenances. The provenances are Coopesanjuan (La Gloria de 

Aguas Zarcas, San Carlos, Costa Rica), Crucitas (Pocosol de San Carlos, Costa Rica), and Puerto 

Viejo (Sarapiquí, Costa Rica). These provenances represent natural populations, with a mixture 

of trees found in old growth forest patches, secondary forest, and remnant trees in cattle grazing 

pastures. The second planting (SP) is in the South Pacific lowlands (8.661508° N, 83.471102° 

W). Due to seed availability and mortality, this planting includes 19 of the 29 families present at 

the NA planting, with representatives of all provenances. 

Both plantings have a randomized complete block design (RCB), with 6 blocks and 3 

pairs of trees per family per block. More information on the experimental design, planting 

conditions, and provenances can be found in Martínez-Albán et al. (2016). The NA planting was 
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thinned at year four, and only the best tree of each pair was left. The SP did not undergo 

thinning. 

GENFORES provided measurements for diameter at breast height (1.3. m above the 

ground level) over bark (DBH, cm) and total height (H, m) at year six for all surviving trees. I 

estimated total volume (V, m3) using the following taper equation (León et al. 2017): 

𝑉 = (
𝐷𝐵𝐻

100
)2 ×

𝜋

4
× 𝐻 × 𝐹𝐹 Eq. 4. 1 

where FF (form factor) is a constant (here 0.6) that accounts for the conical shape of the trunk. 

 

Molecular markers 

I collected plant material from a subset of the progeny trial at both plantings between 

June-July 2015 and June-July 2016. The leaf tissue was dried with silica gel and then stored at -

70°C. I isolated high molecular weight genomic DNA using two commercial kits, Wizard® 

Genomic DNA purification kit (Promega) and DNeasy® Plant Mini kit (Qiagen), and a CTAB 

(Cetyl trimethylammonium bromide) method (Lodhi et al. 1994). DNA quality and quantity were 

assessed using a NanoDropTM spectrophotometer (Thermo Scientific). 

I prepared a reduced representation library according to the two-enzyme protocol 

described in Poland et al. (2012), with minor modifications. In brief, restriction was carried out 

followed by adapter ligation, then by PCR amplification and size selection. First, 10 μl of DNA 

(30-60 ng/ μl, 300-600 ng total) per sample were pipetted into a well on a 96-well plate that 

contained the restriction master mix. The restriction master mix consisted of 2 μl 10x Promega 4-

CORE® Buffer System (Buffer B, final concentration 1x), 0.2 μl acetylated BSA (10 μg/μl), 0.2 

μl (2 U) of each Promega Restriction Enzyme (PstI and MspI), and 6.8 μl of sterile deionized 

water per reaction. The samples were placed in a thermal cycler at 37°C for two hours. After 
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restriction, 20 μl of ligation master mix was added to each well and incubated overnight at room 

temperature. The ligation master mix consisted of 4 μl Promega T4 DNA Ligase 10x Buffer 

(final concentration 1x), 0.4 μl 100 mM ATP (final concentration 1 mM), 1 μl Promega T4 DNA 

ligase (3 Weiss Units), 4.6 μl of sterile deionized water, and 5 μl of each adapter. The barcoded 

adapters were designed to anneal to the PstI cut site. The common adapter annealed to the MspI 

cut site. A complete list of the sequences of the adapters used is in Appendix 2, GBS Adapters. 

Next, 5-10 μl of each restriction-ligation sample were pooled, cleaned, and concentrated using a 

DNA Clean & Concentrator™ kit (Zymo Research). I prepared pools of 32 samples or three 

pools per 96-well plate. PCR amplification was performed using 10 μl of pooled sample, 25 μl 

NEB Q5® High-Fidelity 2X Master Mix (final concentration 1x), 10 μl of nuclease free water, 

and 5 μl 10 μM forward and reverse primers (2.5 μl each, final concentration 0.5 μM). I prepared 

a separate reaction for each pooled sample and used different NEBNext Illumina primers for 

each reaction, so samples can be identified by their specific barcode-index combination. PCR 

settings for amplification were 98 °C for 30s, 16 cycles alternating temperatures (98°C for 10s, 

62°C for 30s, 72°C for 30s), 72°C for 2 m, followed by 10°C until sample recovery. PCR 

products were pooled, cleaned, and concentrated using a DNA Clean & Concentrator™ kit 

(Zymo Research). Finally, the pooled PCR products were selected for fragments ranging from 

400 to 600 bp, using the BluePippin System (Sage Science). The recovered fragments were used 

as the input library. The library was normalized to 2 nM prior to loading onto the flow cell, then 

sequenced in the Illumina HiSeq2500 platform using SBS sequencing kit version 4. The multiple 

index library ran for 132 cycles to produce single-end 124-nt reads and 8-nt index reads. Next-

generation sequencing was performed by the NC State University Genomic Sciences Laboratory 
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(Raleigh, NC, USA). Only the samples with the highest coverage were retained. This resulted in 

sequence reads from a total of 185 trees from 19 different families in the progeny trial. 

I used Stacks version 2.0 for demultiplexing, data cleaning, and variant calling (Catchen 

et al. 2011; Catchen et al. 2013). Stacks software was developed for the analysis of reduced 

representation Illumina sequence data such as GBS or RAD-seq. It uses short read sequence data 

to identify and genotype loci in a set of individuals. Stacks works by assembling loci from each 

sample, either by comparison to a reference genome or de novo, grouping together loci across 

samples to build a catalog, and then comparing each sample to the catalog for variant calling and 

genotype inference. I used the step by step de novo pipeline with these parameters: -m, minimum 

stack depth or minimum depth of coverage, set to 3; -M, distance allowed between stacks, set to 

4; and -n, distance allowed between catalog loci, set to 4. For more details on the commands and 

parameters used for demultiplexing, cleaning, and variant calling see Appendix 3, 

Demultiplexing and variant calling script. 

Finally, I used statistical analysis software R (R Core Team 2018) and R package Updog 

(Gerard et al. 2018) to validate genotypes, impute missing data, and get allele dosage values. 

Updog uses a variational Bayes approach to estimate the allele dosage and associated posterior 

probabilities for each genotype per individual. Furthermore, Updog accounts for locus-specific 

allele bias, locus-specific sequencing error, locus-specific overdispersion, and correlation 

between samples while jointly estimating each genotype. The resulting genotypes were filtered, 

retaining only loci with mean posterior probabilities ≥ 0.9.  
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Statistical analysis 

For the computation of the realized relationship matrix (G-matrix) I used the allele 

dosage data from the 185 genotyped trees. For genetic parameters estimation I used a subset of 

the total phenotyped trees; this subset includes only trees in families with genotyped individuals 

(N = 625). 

I estimated variance components with restricted maximum likelihood (REML) and 

breeding values (BVs) with best linear unbiased prediction (BLUP), as implemented in statistical 

analysis software ASReml® version 4.0 (VSNi), for stem diameter, total height, and total 

volume. The univariate linear mixed model used for the analysis corresponds to the Individual 

(“Animal”) Model:  

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝐵𝑖 + 𝑃𝑗 + 𝑆𝑘 + 𝑇𝑙 + 𝜀𝑖𝑗𝑘𝑙         Eq. 4. 2 

where, 𝑦𝑖𝑗𝑘𝑙 is the vector of observations of the trait (i.e. DBH, height, volume), 

μ is the overall mean, 

𝐵𝑖 is the random ith block effect ~N (0, 𝜎𝑏
2), 

𝑃𝑗 is the fixed provenance effect (j = 1, 2, 3), 

𝑆𝑘 is the fixed site effect (k = 1, 2), 

𝑇𝑙 is the random lth tree effect ~ N (0, 𝜎𝑇
2), 

and 𝜀𝑖𝑗𝑘𝑙 is the residual term ~ N (0, 𝜎𝜀
2). 

Both 𝑃𝑗 and 𝑆𝑘 were included in the model to account for provenance effect, and site 

effect due to the difference between environment and silvicultural treatment in the two plantings. 

The model can be written in matrix form as: 

𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒   Eq. 4. 3 

where, y is the vector of observations, 
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b is a vector of fixed effects, 

u is a vector of random effects,  

e is a vector of random residuals,  

and X and Z are incidence matrices that assign each element of b and u to their 

corresponding element in y. 

The Z matrix specifies the covariance structure use to model the tree effects in relation to 

the observations. This relationship can be based on the pedigree, molecular markers, or a 

combination of both. I used R package AGHmatrix (Amadeu et al. 2016) to compute the 

relationship matrices used in the linear mixed models. AGHmatrix was design to work with 

polyploids, thus it was adapted to account for tetrasomic inheritance patterns in tetraploid 

species, such as D. oleifera. I tested the model using three different relationship matrices: (i) a 

pedigree-based relationship matrix, A-matrix; (ii) a pedigree-based, molecular-marker-corrected 

relationship matrix, H-matrix, considering only additive effects; and (iii) a pedigree-based, 

molecular-marker-corrected relationship matrix, H-matrix, considering both additive and non-

additive effects. The models were compared based on the converged log likelihood (LogL), the 

Akaike information criterion (AIC), and the Bayesian information criterion (BIC). The R script 

used to generate the relationship matrices, as well as the ASReml script to run the model can be 

found in Appendix 4, Relationship matrix and linear mixed model. 

The heritability for each trait was calculated from the model’s variance components as 

follows: 

ℎ𝑖
2 =

𝜎𝑇
2

𝜎𝑇
2+𝜎𝜀

2    Eq. 4. 4 

where, 𝜎𝑇
2 is the variance of the tree effects, and 𝜎𝜀

2 is the residual variance. 
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The accuracy of the breeding value predictions for individuals in the model was calculated as: 

𝑟 = √
𝑆2

(1+𝐹)×𝜎𝑇
2    Eq. 4. 5 

where, S is the standard error of the prediction, F is the inbreeding coefficient of the individual 

being predicted, and 𝜎𝑇
2 is the tree effect variance. Equations 4.2 to 4.5 follow Isik et al. (2017) 

notation. 

I used volume BVs and accuracies from the best fitting model to construct a ranking of 

the individuals in the progeny trial. Genetic gain was estimated using the breeder’s equation: 

𝐺 = ℎ𝑖
2 × 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 Eq. 4. 6 

where, G is the expected genetic gain, ℎ𝑖
2 is the individual tree heritability estimated from the 

model, and the selection differential represents the difference between the mean value of the 

selected individuals and the mean value of the population. Genetic gain was estimated based on 

selection of the top 30 individuals and top 100 individuals in the ranking. 

 

Results and Discussion 

Molecular marker development 

The reduced representation library contained 722,398,562 short read sequences from the 

sampled individuals. After demultiplexing and cleaning, 90.9 % of the reads were retained, 4.9 

% were dropped due to ambiguous barcodes, 0.9 % were dropped due to low quality, and 3.2 % 

were dropped to ambiguous RAD-tags. Only the individuals with the highest coverage were 

retained, resulting in 185 samples with a mean coverage per sample of 21.7x. These samples 

were used as input in the Stacks pipeline. Despite the low coverage, Stacks identified a total of 

4,676 SNPs with missing data ≤ 10 %. The Stacks filter parameters were set to look for SNPs 
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present in individuals from at least two of the three provenances in this study. This reduces, 

although it does not eliminate, the occurrence of private alleles or alleles with low frequencies in 

the progeny trial. 

There are low to moderate levels of allelic bias, sequencing error, and overdispersion 

(Fig. 4.2.). These factors are expected to modify the allele proportion at each genotype but are 

accounted for and corrected in the Updog model. Moreover, Gerard and collaborators (2018) 

found Updog accurately estimates the allele frequency even for large levels of overdispersion 

and bias. For example, Fig. 4.3 depicts an average SNP from the D. oleifera dataset. Colored 

dots indicate individual genotypes based on the allele dosage (number of copies of the alternate 

allele). Color intensity indicates the posterior probability, i.e. the probability of correctly 

assigning the allele dosage or genotype. This example shows low levels of allelic bias (0.84), 

sequencing error (0.02), and overdispersion (0.01). As a result, most of the individuals are 

genotyped with high confidence (max posterior probability ≥ 0.75). Although Updog was able to 

estimate allele dosage values for all individuals and all loci, in some cases the posterior 

probabilities of the imputed genotypes were low. Therefore, the dataset was filtered for 

genotypes with max posterior probabilities ≥ 0.9. This resulted in a subset of 2,612 SNPs with 

high confidence genotype calls. 

 

Relationship matrix effects on genetic parameters and breeding values 

The resulting SNP markers were used to construct the genomic relationship matrix, or G-

matrix. The main difference between a relationship matrix based on pedigree records and one 

based on SNP marker genotypes is that the former represents the expected relationship, while the 

latter represents the realized relationships. Put differently, pedigree-based estimators of the 



 

60 

relationship provide theoretical expectations of genetic similarity between individuals, for 

example among full-sib individuals the expected proportion of the genome that is identical-by-

descent is 0.5. Conversely, SNP marker-based estimators provide a better representation of the 

real proportion of the genome shared between individuals. Moreover, using dense SNP marker 

data it is possible to estimate identical-by-descent probabilities even without knowledge of the 

pedigree (Powell et al. 2010). 

For open-pollinated (OP) families, as in the D. oleifera progeny trial, a relationship 

matrix based on SNP marker genotypes provides an accurate and precise representation of the 

relationship among individuals. A pedigree-based approach would assume the family to be 

composed exclusively of half-sibs and each pair-wise kinship within family assigned a fixed 

expected value for allele-sharing based on that similarity (0.25 for half-sibs), however, this may 

not be the case. An OP family may include a mixture of offspring from crosses with unrelated 

male parents (true half-sibs), offspring from crosses with related male parents (half-cousins, full-

cousins, etc.); multiple offspring from crosses to single individual males (full-sibs), and even 

some offspring from self-pollination. In this scenario, a SNP marker relationship matrix would 

be able to better capture the true relationship among individuals and should therefore increase the 

accuracy with which genetic parameters are estimated and breeding values are predicted. 

This is exemplified in Fig. 4.4, which compares the results of the A-matrix (pedigree-

based) and G-matrix (marker-based) from the D. oleifera dataset. The A-matrix in the figure 

depicts the idealized scenario with 19 distinct families. The G-matrix depicts quite a different 

scenario, where the relationships among individuals are much more complex. The G-matrix-

based analysis detects individuals from different families that show various levels of 

relationships, and even individuals within families that differ in their degree of relationship. The 
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family boundaries and structure imposed by the pedigree information are no longer as clear, thus 

the assumptions of unrelated individuals between families and only half-sibs within families are 

not realistic. The G-matrix-based analysis also points to potential errors in the pedigree, e.g. 

mislabeled individuals assigned to families to which they are not truly related. 

I tested the utility of the relationship matrix based on pedigree and corrected with marker 

information on three phenotypic traits: diameter, height, and volume. Table 4.1 presents 

summary statistics for the traits. I used a univariate linear mixed model to estimate the variance 

components for each trait. I compared three different relationship matrices in the model, a 

pedigree-based (A-matrix) and two pedigree-based, marker-corrected (H-matrix). The two H-

matrices differ in the elements included; Ha considers only additive effects while Hf consider 

both additive and non-additive effects. Table 4.2 presents estimators of relative quality for the 

statistical models, as well as variance components and individual heritability estimated for each 

trait and each model. The models do not differ in the number of parameter or sample size. The 

only change between models was the covariance structure used to estimate the tree effects. 

Therefore, the difference in AIC or BIC can be attributed to the model’s goodness of fit to the 

data. In general, using the H matrix results in a significant improvement in model fit, except for 

diameter where the differences are minor. Hf provides the best fit for height, while Ha provides 

the best fit for volume (Table 4.2). Individual heritability estimates are lower with the H-matrices 

than the A-matrix. This is likely to be the result of individuals having increased kinship that 

accounts for similarity of phenotypes in the H-matrix-based analyses. For individuals more 

closely related, as indicated by the H-matrix, a larger proportion of the variance could be 

ascribed to environmental factors rather than genetic contributions. More important, while the 
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tree effect variance and heritability values may decrease, the accuracy of those estimations 

increased; that is, standard errors are reduced by the used of either H-matrix (Table 4.2). 

Provenance did not have a significant effect in any of the models or traits. Again, this is 

likely to be the result of individuals having increased kinship, and evidence of gene flow 

between the provenances, despite the distance. Planting site did have a significant effect on 

diameter (A: F = 114.44, p-value  < 0.001; Ha: F = 107.82, p-value < 0.001; Hf: F = 111.89, p-

value < 0.001) and volume (A: F = 70.03, p-value  < 0.001; Ha: F = 65.47, p-value < 0.001; Hf: F 

= 68.11, p-value < 0.001), but not in tree height. The trees in the SP planting (site 2) have, on 

average, smaller diameter and volume estimates. However, it is impossible to determine whether 

the effect is due to environmental factors (e.g. soils, precipitation, etc.) or silvicultural 

management (thinning). Both factors are confounded. 

Tables 4.3 to 4.5 present the mean breeding value and accuracy per family for diameter, 

height, and volume, respectively. In general, mean breeding value predictions do not change 

much between A and H models. However, Ha does result in higher accuracy values, which 

indicates a better prediction of the true value. 

Finally, since volume is a function of the tree diameter and height, as well as a 

commercially relevant trait, I created a ranking based on volume breeding values. Expected 

genetic gain by selecting the top 30 individuals in the ranking was 0.008 m3, that is a 7.7% 

increase over the population mean. However, the top 30 individuals come from 7 families with 

an overrepresentation of individuals from family PV3 (20/30 individuals). If selection is 

expanded to the top 100 individuals, the expected genetic gain drops to 0.006 m3 or 5.3% over 

the population mean, but 14 of the original 19 families are included. There is still an 

overrepresentation of individuals from only 3 families (PV3 = 33 individuals, 10 = 17 
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individuals, and CSJ2 = 13 individuals) among the top 100 individuals. A complete list of the top 

100 trees from the progeny trial ranked by their Hf volume breeding values is presented in 

Appendix 5, Ranking. Moving forward in the D. oleifera breeding program, careful 

consideration should be put in selecting individuals for controlled crosses to maintain a 

genetically diverse population (to avoid inbreeding depression) while still making genetic gain 

on the traits of interest. The breeding program may consider linear deployment (Lindgren 1993), 

stratified sub-lining (Ruotsalainen and Lindgren 2000), or  two-stage selection strategies 

(Danusevicius and Lindgren 2002) to manage genetic gain and diversity in the breeding 

population. Further study is necessary to determine which strategy will constitute the best 

approach. 

 

Conclusion 

Discovery of variants and marker development from sequencing data is a challenging 

endeavor in polyploid species. Distinct inheritance patterns, like tetrasomic inheritance and 

double reduction in autotetraploids, increase the complexity of the genotyping process. In this 

research I have proved that Stacks, a bioinformatic tool originally designed for variant detecting 

and genotyping in diploid species, can be used in combination with R software package Updog 

to produce accurate genotypes in tetraploid D. oleifera. Although a low-density panel (N = 2,612 

SNPs), the molecular marker data has the potential to improve model fit and accuracy of the 

genetic parameters, even when only a fraction of the population was genotyped. This is 

consistent with previous reports in animal (Badke et al. 2014) and plant (Beaulieu et al. 2014) 

breeding programs. Moreover, marker data proves particularly useful when working with natural 

population for which little to no information is available on their genetic background and mating 
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patterns. Relationship matrices corrected with marker data provide a better representation of the 

covariance structure of tree effects in those population. Future work should focus on increasing 

the number of markers and individuals genotyped. As the genetic information on this progeny 

trial increases, the accuracy and predictive power of the models are expected to improve as well.  
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Table 4. 1. Dipteryx oleifera open-pollinated progeny trial summary statistics for diameter 

(DBH), total height (H) and volume (V) at year six for genotyped and non-genotyped individuals 

in the dataset. 

 N 

Mean (SD) 

DBH (cm) H (m) V (m3) 

All trees with phenotype 1032 11.59 (3.15) 13.41 (2.18) 0.0957 (0.05) 

Trees in families with genotyped 

individuals 

625 11.70 (3.12) 13.33 (2.16) 0.0965 (0.05) 

Genotyped individuals 185 11.60 (3.25) 13.26 (2.41) 0.0957 (0.05) 

Total number of families 29 - - - 

Total number of families with 

genotyped individuals 

19 - - - 

 

Note: N = number of records, SD = standard deviation  
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Table 4. 2. Linear mixed model comparison, variance components, and heritability estimation for diameter, height, and volume in a 

Dipteryx oleifera progeny trial. Models differ in the relationship matrix used to estimate the individual tree effects. 

Trait: Diameter (cm) Height (m) Volume (m3) 

Model: A Ha Hf A Ha Hf A Ha Hf 

LogL -966.43 -966.42 -966.47 -791.385 -790.90 -788.92 1554.93 1553.23 1553.69 

AIC 1938.85 1938.83 1938.958 1588.77 1587.79 1583.83 -3103.85 -3100.46 -3101.37 

BIC 1952.15 1952.13 1952.24 1602.06 1601.09 1597.13 -3090.56 -3087.17 -3088.08 

𝜎𝑇
2 (𝑆𝐸) 

2.64 

(1.27) 

1.57 

(0.56) 

1.84  

(0.67) 

0.85 

(0.49) 

0.53 

(0.26) 

0.92 

(0.37) 

8.6x10-4 

(4.0x10-4) 

4.4x10-4 

(1.6x10-4) 

5.3x10-4 

(1.9x10-3) 

𝜎𝜀
2 (𝑆𝐸) 

5.75 

(1.07) 

6.66 

(0.58) 

6.08  

(0.74) 

3.76 

(0.46) 

4.03 

(0.31) 

3.51 

(0.41) 

1.6x10-3 

(3.4x10-4) 

2.0x10-3 

(1.7x10-4) 

1.8x10-3 

(2.1x10-4) 

ℎ𝑖
2 (𝑆𝐸) 

0.31 

(0.14) 

0.19 

(0.06) 

0.23  

(0.08) 

0.18 

(0.10) 

0.12 

(0.05) 

0.21 

(0.08) 

0.34 

(0.15) 

0.18 

(0.06) 

0.23 

(0.08) 

 

Note: A = model using A matrix, Ha = model using H matrix, considering only additive effects; Hf = model using H matrix, considering both additive and non-

additive effects, LogL = log likelihood at which the model converged, AIC = Akaike information criterion, BIC = Bayesian information criterion, 𝜎𝑇
2 = variance 

of the tree effects, 𝜎𝜀
2 = residual variance, ℎ𝑖

2 = individual tree heritability, and SE = standard error.  



 

67 

Table 4. 3. Dipteryx oleifera open-pollinated progeny trial mean breeding values and accuracy 

per family for diameter (cm). 

 Mean BV (r) 

Family A Ha Hf 

4 12.70 (0.80) 12.73 (0.85) 12.72 (0.84) 

6 13.22 (0.80) 13.17 (0.85) 13.19 (0.84) 

8 11.54 (0.80) 11.65 (0.82) 11.64 (0.86) 

9 11.94 (0.80) 12.10 (0.84) 12.03 (0.84) 

10 13.23 (0.80) 13.17 (0.85) 13.20 (0.83) 

CSJ1 12.56 (0.79) 12.64 (0.83) 12.58 (0.84) 

CSJ2 13.27 (0.79) 13.28 (0.83) 13.24 (0.83) 

CSJ3 12.43 (0.79) 12.52 (0.83) 12.45 (0.83) 

CSJ4 12.18 (0.79) 12.31 (0.84) 12.24 (0.83) 

CSJ6 12.68 (0.79) 12.74 (0.83) 12.70 (0.83) 

CSJ7 12.78 (0.79) 12.85 (0.84) 12.79 (0.82) 

CSJ8 12.29 (0.79) 12.34 (0.83) 12.29 (0.82) 

SM9 11.99 (0.79) 12.23 (0.84) 12.09 (0.83) 

PV2 11.37 (0.79) 11.55 (0.83) 11.49 (0.85) 

PV3 14.39 (0.79) 14.05 (0.84) 14.18 (0.83) 

PV4 11.54 (0.80) 11.69 (0.83) 11.63 (0.86) 

PV8 12.70 (0.79) 12.75 (0.85) 12.73 (0.83) 

PV9 12.44 (0.79) 12.47 (0.84) 12.45 (0.84) 

PV10 12.76 (0.79) 12.65 (0.83) 12.73 (0.84) 

 

Note: BV = breeding value, r = accuracy of breeding value (larger values indicate a better estimation), A = model 

using A matrix, Ha = model using H matrix, considering only additive effects; Hf = model using H matrix, 

considering both additive and non-additive effects.  
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Table 4. 4. Dipteryx oleifera open-pollinated progeny trial mean breeding values and accuracy 

per family for height (m). 

 Mean BV (r) 

Family A Ha Hf 

4 13.28 (0.86) 13.28 (0.90) 13.30 (0.85) 

6 13.45 (0.86) 13.44 (0.90) 13.49 (0.85) 

8 12.75 (0.87) 12.76 (0.88) 12.70 (0.87) 

9 12.7 (0.87) 12.79 (0.89) 12.68 (0.86) 

10 13.56 (0.86) 13.50 (0.90) 13.58 (0.85) 

CSJ1 13.02 (0.86) 13.10 (0.88) 13.03 (0.85) 

CSJ2 13.34 (0.86) 13.37 (0.88) 13.37 (0.85) 

CSJ3 12.96 (0.86) 13.04 (0.88) 12.96 (0.85) 

CSJ4 13.19 (0.86) 13.23 (0.89) 13.21 (0.84) 

CSJ6 13.1 (0.86) 13.17 (0.88) 13.11 (0.84) 

CSJ7 13.38 (0.86) 13.42 (0.89) 13.43 (0.84) 

CSJ8 13.18 (0.86) 13.22 (0.89) 13.20 (0.84) 

SM9 13.01 (0.86) 13.11 (0.89) 13.03 (0.85) 

PV2 12.67 (0.86) 12.76 (0.88) 12.65 (0.87) 

PV3 14.03 (0.86) 13.84 (0.89) 14.04 (0.85) 

PV4 12.39 (0.87) 12.48 (0.88) 12.32 (0.88) 

PV8 13.07 (0.86) 13.16 (0.89) 13.11 (0.84) 

PV9 13.34 (0.86) 13.32 (0.89) 13.35 (0.86) 

PV10 13.40 (0.86) 13.28 (0.88) 13.37 (0.85) 

 

Note: BV = breeding value, r = accuracy of breeding value (larger values indicate a better estimation), A = model 

using A matrix, Ha = model using H matrix, considering only additive effects; Hf = model using H matrix, 

considering both additive and non-additive effects.  
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Table 4. 5. Dipteryx oleifera open-pollinated progeny trial mean breeding values and accuracy 

per family for volume (m3). 

 Mean BV (r) 

Family A Ha Hf 

4 0.11 (0.78) 0.11 (0.86) 0.11 (0.84) 

6 0.12 (0.78) 0.12 (0.86) 0.12 (0.84) 

8 0.09 (0.78) 0.09 (0.83) 0.09 (0.86) 

9 0.10 (0.78) 0.10 (0.85) 0.10 (0.84) 

10 0.12 (0.78) 0.12 (0.86) 0.12 (0.84) 

CSJ1 0.11 (0.77) 0.11 (0.84) 0.11 (0.84) 

CSJ2 0.12 (0.77) 0.12 (0.83) 0.12 (0.84) 

CSJ3 0.11 (0.77) 0.11 (0.84) 0.11 (0.84) 

CSJ4 0.10 (0.77) 0.1 (0.85) 0.10 (0.83) 

CSJ6 0.11 (0.77) 0.11 (0.84) 0.11 (0.83) 

CSJ7 0.11 (0.77) 0.11 (0.84) 0.11 (0.83) 

CSJ8 0.10 (0.77) 0.10 (0.84) 0.10 (0.83) 

SM9 0.10 (0.77) 0.10 (0.85) 0.10 (0.84) 

PV2 0.09 (0.78) 0.09 (0.83) 0.09 (0.85) 

PV3 0.14 (0.78) 0.14 (0.85) 0.14 (0.84) 

PV4 0.09 (0.78) 0.09 (0.83) 0.09 (0.86) 

PV8 0.11 (0.78) 0.11 (0.85) 0.11 (0.83) 

PV9 0.10 (0.78) 0.11 (0.85) 0.11 (0.85) 

PV10 0.11 (0.78) 0.11 (0.84) 0.11 (0.84) 

 

Note: BV = breeding value, r = accuracy of breeding value (larger values indicate a better estimation), A = model 

using A matrix, Ha = model using H matrix, considering only additive effects; Hf = model using H matrix, 

considering both additive and non-additive effects.  
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Figure 4. 1. Dipteryx oleifera progeny trial planting sites and provenances location. 
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Figure 4. 2. Histograms of allelic bias, sequencing error, and overdispersion for the Dipteryx oleifera genotyped samples. Values 

estimated from 4676 loci and 190 individuals using R package Updog. Allelic bias value center around 1, where 0.5 means that a 

reference allele read is twice as probable to be correctly observed than the alternate allele read, while 2 means the opposite scenario. 

Sequencing error rates are considered low for values between 0.5 and 1%. Overdispersion ratio, values closer to 0 indicate less 

overdispersion and values closer to 1 indicate greater overdispersion.  
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Figure 4. 3. Genotype plot of one SNP in a tetraploid Dipteryx oleifera. Each point is an individual with the number of alternative 

reads along the x-axis and the number of reference reads along the y-axis. The dashed lines represent the expected proportions for 

each genotype (aaaa, Aaaa, …, AAAA).  
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Figure 4. 4. Heat map of additive relationship matrix based on pedigree (A-matrix) and realized genomic relationship matrix (G-

matrix) based on marker information (2,612 SNPs) from 185 individuals in the Dipteryx oleifera progeny trial.  
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CHAPTER 5: Concluding Remarks 

Dipteryx oleifera Benth. is an important timber species that has been, paradoxically, 

overexploited and overlooked at the same time. Illegal logging and habitat fragmentation have 

diminished D. oleifera natural populations to the point that trade of the wood is now controlled 

by the Convention on International Trade in Endangered Species of Wild Fauna and Flora 

(CITES), Appendix III (Estrada-Chavarria et al. 2005). Yet, the amount planted by the forest 

industry in Costa Rica is minimal, despite its positive performance in plantation settings 

(Butterfield and Mariano 1995; Andrade Naveda 2002; Petit and Montagnini 2006; Gamboa-

Badilla and Arias Le Claire 2008; Schmidt 2009). According to Costa Rica’s Oficina Nacional 

Forestal (National Forestry Office), the market share of D. oleifera wood has steadily decreased 

since 2011. Today, the volume sold is so low that it is not included in the country’s wood price 

statistics. 

One reason why D. oleifera was overlooked by plantation forestry was the absence of a 

breeding program to provide improved plant material and reduce the impact on the natural 

populations. This changed when GENFORES, a forestry industry – university co-operative 

program that works in tree improvement and germplasm conservation of native timber species in 

Costa Rica (Murillo et al. 2001; Murillo et al. 2010), planted its first D. oleifera provenance-

progeny trial in 2010. My research is part of that broader effort led by GENFORES. The goal of 

this dissertation was to explore innovative technologies and develop genomic resources to 

expedite the selection process and breeding program. 

In doing so, I have determined D. oleifera genome size with flow cytometry and 

corroborated it with sequencing data. Ploidy level was also determined with sequencing data, 

which indicates D. oleifera is tetraploid and most likely an autopolyploid. Furthermore, 62% of 
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the genome has been sequenced and assembled into scaffolds. This first draft of the genome 

sequence, although incomplete, has proved useful for downstream application, such as marker 

discovery. In the future this draft could be used, in combination with gene expression and 

transcriptome analysis, to improve our understanding of the genetic mechanisms involved in 

high density wood formation, one of the most appealing traits of D. oleifera. 

Information generated in this research on genome size, ploidy level, and seed size, may 

also be relevant if considering hybrid crosses among D. oleifera congeners. For example, D. 

odorata’s fragrant fruits are harvested for their coumarin content, which is used in perfumes and 

as food additive. Hybrid crosses with D. odorata, which has similar genome size and ploidy, 

could add value to D. oleifera non-timber products. Breeding for higher coumarin content in D. 

oleifera fruits could provide an additional source of income and serve as an incentive to plant 

this species. 

However, the genomic resource with the most direct application to D. oleifera breeding 

program is the panel of 2,612 SNPs markers identified using a Genotyping-by-Sequencing 

(GBS) approach. These markers were able to accurately estimate the genetic relationship among 

individuals in the progeny trial. The use of a marker-corrected relationship matrix improved 

model fit and parameter estimation accuracy. More importantly, it highlighted a major constraint 

in the D. oleifera progeny trial. The traditional pedigree-based models can provide accurate 

estimations of genetic parameters and predicted breeding values; however, they rely on deep 

pedigree information. When dealing with an open-pollinated progeny trial, where the seeds were 

collected from natural population and at best only the female tree is known, these models must 

rely on unrealistic assumptions. In the case of this D. oleifera open-pollinated progeny trial the 

assumption is that every individual in a family (i.e. seeds collected under the same alleged 
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mother tree) are half-sibs. Now, D. oleifera is primarily pollinated by bees (Perry and Starrett 

1980), and pollen dispersal can reach distances of up to 2.3 Km for trees growing in isolated 

pastures. While previously considered an obligate outcrosser species, a study by Hanson et al. 

(2008b) found increased inbreeding rates due to selfing for those trees growing in isolated 

pastures, and moderate structure in the overall population. Their study area overlaps with one of 

the provenances in the D. oleifera progeny trial. Hence, the assumption of half-sibs within family 

and completely unrelated families are likely to be inaccurate. The SNPs markers developed 

provided a better representation of the true relationships (Fig. 4.4). 

As stated before, marker data can be used to infer coancestry among individuals, even in 

the absence of pedigree information (Powell et al. 2010). Using the same genotyping strategy 

described here, we could still estimate breeding values, make selections, and predict genetic 

gains from new collections or older D. oleifera trials for which pedigree information is not 

available or was lost. This would allow expansion of the genetic base of the D. oleifera breeding 

program. 

In terms of discovery of variants and marker development for D. oleifera, much work is 

still needed. As the price of DNA sequencing continues to decrease, I hope to expand the SNP 

marker panel and number of genotyped individuals to get us closer to a true genomic selection 

model. The ideal scenario would be a breeding program as technologically advanced as 

Eucalyptus or pine species. In addition, new traits should be included, in particular traits related 

to stress responses and climate resilience. 

The GENFORES D. oleifera breeding program is just starting, and more work is needed 

before the first generation of improved material can be deployed for commercial planting. 

Nevertheless, their efforts combined with this research could, in a near future, alleviate logging 
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pressure on natural populations by providing better-quality seeds for plantation forestry. An 

additional opportunity is to breed for climate resilient genotypes, a much needed trait since 

extreme weather conditions - higher temperatures, drier summers, and wetter winters - are 

expected to become more frequent in the tropical and subtropical areas (IPCC 2014; Fu 2015). 

Costa Rica made the global news by announcing their commitment to carbon neutrality 

by 2021. Tropical forest has an important role in climate change mitigation, as it accounts for a 

25% of the terrestrial carbon pool (Corlett 2016). Out of seven native tree species evaluated, 

Redondo-Brenes (2007) found D. oleifera to be the best option for long term carbon 

sequestration. By advancing D. oleifera breeding program GENFORES is not only aiding this 

species conservation but also the country’s climate mitigation goals.  
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Appendix 1: Assembly scripts. 

This section contains the scripts used for assembly with the different software and the last 

step with Sealer. Pieces of bash code are enclosed by {} brackets and in monospaced font, 

comments are preceded by the # symbols, while commands are preceded by the $ symbol. 

Unless otherwise specified the parameters presented here represent the optimal after a series of 

trials. All computing was performed on a Linux-based system with 64 processors and 345 Gb of 

available RAM. 

 

SOAPdenovo2 v2.04: 

{ 

$ SOAPdenovo-63mer all -s <path to config file> -K 63 -p 32 -R -o <output dir 

name> 

#Configuration file parameters: 

    max_rd_len=150 

[LIB] 

avg_ins=350 

reverse_seq=0 

asm_flags=3 

rd_len_cutoff=150 

rank=1 

pair_num_cutoff=3 

map_len=32 

q1=/path/to/short/reads/R1.fq.gz 

q2=/path/to/short/reads/R2.fq.gz 

} 

SOAPdenovo2 took approximately 1440 processor hours (45 hours, 32 threads) to finish 

and reached peak memory consumption at 345Gb (RAM).  
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ABySS v2.0.2: 

{ 

$ abyss-pe j=12 name=<output dir name> k=64 in=’/path/to/short/reads/R1.fq.gz 

/path/to/short/reads/R2.fq.gz’ long=pacbio 

pacbio=’/path/to/long/reads/long.fq’ B=60G H=3 kc=3 v=-v 

} 

ABySS 2.0 took approximately 672 processor hours (56 hours, 12 threads) to finish and 

reached peak memory consumption at 60Gb (RAM).  
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CLC Genomics Workbench v10.1.1 with Finish Module v1.7 plug-in (trial version): 

CLC Genomics is implemented through a graphical user interface (GUI), not the 

command line. The following represent the menus, submenus, and options selected at each step. 

For every process if a parameter or option value is not specified then assume defaults. 

 

File > Import > Illumina 

input = short reads, with remove failed reads = enable and PE insert = 1-1000, output = 

PE_reads (R1.fq.gz and R2.fq.gz paired in a single file). 

De Novo Sequencing > De Novo Assembly 1.3 

input = PE_reads, word size = auto (26), bubble size = auto (50), contig length = 200, 

mapping mode = create simple contig sequence (fast), Perform scaffolding = Yes, 

Auto-detect paired distances = Yes, Guidance only reads = No, Min distance = 1, 

Max distance = 1000, output = PE_contigs 

Finishing Module > Error correction 

input = pacbio subreads, coverage = 40% (corrects 40% of the longest reads using the 

remaining ones), output = pacbio_corrected 

Finishing Module > Join Contigs 

input = PE_contigs + pacbio_corrected + pacbio subreads, based contig joining on long 

reads support, Output = clc_assembly.fa 

 

CLC Genomics took approximately 119 processor hours (119 hours, single thread) and 

reached peak memory consumption at 48Gb.  
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Sealer (as implemented in ABySS 2.0.2): 

{ 

#First run: test broad range of k-mer sizes. 

#-k needs to be: k-mer used in assembly < -k < 100. 

#For example, optimal k-mer size +11, +21, +31, etc.  

$ /abyss-2.0.2/Sealer/abyss-sealer -b90G -k<+11> -k<+21> -k<+31> -k<+41> -o 

<output dir name> -S <path/to/assembly> -j 32 -P 10 

<path/to/short/reads/R?.fq.gz> 

 

#Second run: test narrow range of -k, based on best results from 1st run. 

#For example, k-mer size which close the most gaps -4, -2, +2, +4, etc. 

$ /abyss-2.0.2/Sealer/abyss-sealer -b90G -k<-4> -k<-2> -k<+2> -k<+4> -o 

<output dir name> -S <path/to/assembly/from/first/run> -j 32 -P 10 

<path/to/short/reads/R?.fq.gz> 

} 

 

The k-mer size selected at each run and for each assembly varied depending on the 

optimal parameters used to generate the assembly. For example, in the case of the CLC 

Genomics assembly the first run used k-mer sizes values (-k) of 31, 41, 51, 61, 71, 81 and 91. 

This resulted in 299,629 gaps closed (44.22% of total gaps detected), with -k = 51 closing the 

most gaps. For the second run -k values were set to 47, 49, 53 and 55. This resulted in 1,786 

additional gaps closed (0.47% of total gaps detected). The process can be continued for a third or 

fourth run, but the gains are minimal.  
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Appendix 2: GBS Adapters. 

Barcoded adapter sequences: 

PstI_topA01 5' - CAC GAC GCT CTT CCG ATC TAT GTC CTG CA - 3' 

PstI_botA01 5' - GGA CAT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topA02 5' - CAC GAC GCT CTT CCG ATC TAG ATG CAT GCA - 3' 

PstI_botA02 5' - TGC ATC TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topA03 5' - CAC GAC GCT CTT CCG ATC TTT CTG AGG TGC A - 3' 

PstI_botA03 5' - CCT CAG AAA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topA04 5' - CAC GAC GCT CTT CCG ATC TAG GTG TAC GTG CA - 3' 

PstI_botA04 5' - CGT ACA CCT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topA05 5' - CAC GAC GCT CTT CCG ATC TTC CTA AGC ACT GCA - 3' 

PstI_botA05 5' - GTG CTT AGG AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topA06 5' - CAC GAC GCT CTT CCG ATC TCG CCA GAC TTA TGC A - 3' 

PstI_botA06 5' - TAA GTC TGG CGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topA07 5' - CAC GAC GCT CTT CCG ATC TGT TGG ATG CA - 3' 

PstI_botA07 5' - TCC AAC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topA08 5' - CAC GAC GCT CTT CCG ATC TCG CTG ATT GCA - 3' 

PstI_botA08 5' - ATC AGC GAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topA09 5' - CAC GAC GCT CTT CCG ATC TCA CAG ACT TGC A - 3' 

PstI_botA09 5' - AGT CTG TGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topA10 5' - CAC GAC GCT CTT CCG ATC TAC CAG TCC ATG CA - 3' 

PstI_botA10 5' - TGG ACT GGT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topA11 5' - CAC GAC GCT CTT CCG ATC TAA GTG TGA ACT GCA - 3' 

PstI_botA11 5' - GTT CAC ACT TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topA12 5' - CAC GAC GCT CTT CCG ATC TGT CGC AGA GAA TGC A - 3' 

PstI_botA12 5' - TTC TCT GCG ACA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topB01 5' - CAC GAC GCT CTT CCG ATC TAA TCG CTG CA - 3' 

PstI_botB01 5' - GCG ATT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topB02 5' - CAC GAC GCT CTT CCG ATC TCG CAA TTT GCA - 3' 

PstI_botB02 5' - AAT TGC GAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topB03 5' - CAC GAC GCT CTT CCG ATC TCT CAG AAG TGC A - 3' 

PstI_botB03 5' - CTT CTG AGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topB04 5' - CAC GAC GCT CTT CCG ATC TCT CAT GCA GTG CA - 3' 

PstI_botB04 5' - CTG CAT GAG AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topB05 5' - CAC GAC GCT CTT CCG ATC TCA TGG CGA ATT GCA - 3' 

PstI_botB05 5' - ATT CGC CAT GAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topB06 5' - CAC GAC GCT CTT CCG ATC TCA ATC TCA GGA TGC A - 3' 

PstI_botB06 5' - TCC TGA GAT TGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topB07 5' - CAC GAC GCT CTT CCG ATC TTA TGC GTG CA - 3' 

PstI_botB07 5' - CGC ATA AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topB08 5' - CAC GAC GCT CTT CCG ATC TAA GCT GCT GCA - 3' 

PstI_botB08 5' - GCA GCT TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topB09 5' - CAC GAC GCT CTT CCG ATC TTA AGC GCA TGC A - 3' 

PstI_botB09 5' - TGC GCT TAA GAT CGG AAG AGC GTC GTG - 3' 
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PstI_topB10 5' - CAC GAC GCT CTT CCG ATC TTC GGA CAA CTG CA - 3' 

PstI_botB10 5' - GTT GTC CGA AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topB11 5' - CAC GAC GCT CTT CCG ATC TAA CCT CGC ACT GCA - 3' 

PstI_botB11 5' - GTG CGA GGT TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topB12 5' - CAC GAC GCT CTT CCG ATC TAA TCC ACC AGT TGC A - 3' 

PstI_botB12 5' - ACT GGT GGA TTA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topC01 5' - CAC GAC GCT CTT CCG ATC TAA GCG ATG CA - 3' 

PstI_botC01 5' - TCG CTT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topC02 5' - CAC GAC GCT CTT CCG ATC TAA TCA GGT GCA - 3' 

PstI_botC02 5' - CCT GAT TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topC03 5' - CAC GAC GCT CTT CCG ATC TCA ACC GTA TGC A - 3' 

PstI_botC03 5' - TAC GGT TGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topC04 5' - CAC GAC GCT CTT CCG ATC TAT GAG GAA CTG CA - 3' 

PstI_botC04 5' - GTT CCT CAT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topC05 5' - CAC GAC GCT CTT CCG ATC TTC ATC GGA ATT GCA - 3' 

PstI_botC05 5' - ATT CCG ATG AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topC06 5' - CAC GAC GCT CTT CCG ATC TAC AAC TCC AAC TGC A - 3' 

PstI_botC06 5' - GTT GGA GTT GTA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topC07 5' - CAC GAC GCT CTT CCG ATC TTC GAC TTG CA - 3' 

PstI_botC07 5' - AGT CGA AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topC08 5' - CAC GAC GCT CTT CCG ATC TAC TGA GCT GCA - 3' 

PstI_botC08 5' - GCT CAG TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topC09 5' - CAC GAC GCT CTT CCG ATC TCA TTC GTC TGC A - 3' 

PstI_botC09 5' - GAC GAA TGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topC10 5' - CAC GAC GCT CTT CCG ATC TAG TGT GCC ATG CA - 3' 

PstI_botC10 5' - TGG CAC ACT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topC11 5' - CAC GAC GCT CTT CCG ATC TTA AGC GGC ATT GCA - 3' 

PstI_botC11 5' - ATG CCG CTT AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topC12 5' - CAC GAC GCT CTT CCG ATC TCA TCA GGA CAC TGC A - 3' 

PstI_botC12 5' - GTG TCC TGA TGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topD01 5' - CAC GAC GCT CTT CCG ATC TGA ACG TTG CA - 3' 

PstI_botD01 5' - ACG TTC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topD02 5' - CAC GAC GCT CTT CCG ATC TGG ACA AGT GCA - 3' 

PstI_botD02 5' - CTT GTC CAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topD03 5' - CAC GAC GCT CTT CCG ATC TTC GTG CAT TGC A - 3' 

PstI_botD03 5' - ATG CAC GAA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topD04 5' - CAC GAC GCT CTT CCG ATC TTT CTA TCC GTG CA - 3' 

PstI_botD04 5' - CGG ATA GAA AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topD05 5' - CAC GAC GCT CTT CCG ATC TTC GAC TAC ATT GCA - 3' 

PstI_botD05 5' - ATG TAG TCG AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topD06 5' - CAC GAC GCT CTT CCG ATC TAC AAG GCA CGT TGC A - 3' 

PstI_botD06 5' - ACG TGC CTT GTA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topD07 5' - CAC GAC GCT CTT CCG ATC TCG GAA TTG CA - 3' 

PstI_botD07 5' - ATT CCG AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topD08 5' - CAC GAC GCT CTT CCG ATC TGT TAC GTT GCA - 3' 

PstI_botD08 5' - ACG TAA CAG ATC GGA AGA GCG TCG TG - 3' 
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PstI_topD09 5' - CAC GAC GCT CTT CCG ATC TGG TTG AAC TGC A - 3' 

PstI_botD09 5' - GTT CAA CCA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topD10 5' - CAC GAC GCT CTT CCG ATC TCC TGA CAC ATG CA - 3' 

PstI_botD10 5' - TGT GTC AGG AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topD11 5' - CAC GAC GCT CTT CCG ATC TTC TCA AGA ACT GCA - 3' 

PstI_botD11 5' - GTT CTT GAG AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topD12 5' - CAC GAC GCT CTT CCG ATC TAA GGT AAC CAC TGC A - 3' 

PstI_botD12 5' - GTG GTT ACC TTA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topE01 5' - CAC GAC GCT CTT CCG ATC TTG ACC ATG CA - 3' 

PstI_botE01 5' - TGG TCA AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topE02 5' - CAC GAC GCT CTT CCG ATC TTG GAG TAT GCA - 3' 

PstI_botE02 5' - TAC TCC AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topE03 5' - CAC GAC GCT CTT CCG ATC TGT GTC CTT TGC A - 3' 

PstI_botE03 5' - AAG GAC ACA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topE04 5' - CAC GAC GCT CTT CCG ATC TCC GTT AAG GTG CA - 3' 

PstI_botE04 5' - CCT TAA CGG AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topE05 5' - CAC GAC GCT CTT CCG ATC TTG GTT GGA ATT GCA - 3' 

PstI_botE05 5' - ATT CCA ACC AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topE06 5' - CAC GAC GCT CTT CCG ATC TGG ACA TGA TGT TGC A - 3' 

PstI_botE06 5' - ACA TCA TGT CCA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topE07 5' - CAC GAC GCT CTT CCG ATC TCC ACA ATG CA - 3' 

PstI_botE07 5' - TTG TGG AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topE08 5' - CAC GAC GCT CTT CCG ATC TAG AGT GGT GCA - 3' 

PstI_botE08 5' - CCA CTC TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topE09 5' - CAC GAC GCT CTT CCG ATC TCG GTA ATC TGC A - 3' 

PstI_botE09 5' - GAT TAC CGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topE10 5' - CAC GAC GCT CTT CCG ATC TAG TGT CAA CTG CA - 3' 

PstI_botE10 5' - GTT GAC ACT AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topE11 5' - CAC GAC GCT CTT CCG ATC TTT CAG AAC AGT GCA - 3' 

PstI_botE11 5' - CTG TTC TGA AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topE12 5' - CAC GAC GCT CTT CCG ATC TAA CAC CGC TTC TGC A - 3' 

PstI_botE12 5' - GAA GCG GTG TTA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topF01 5' - CAC GAC GCT CTT CCG ATC TCT CAC ATG CA - 3' 

PstI_botF01 5' - TGT GAG AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topF02 5' - CAC GAC GCT CTT CCG ATC TCA AGA TGT GCA - 3' 

PstI_botF02 5' - CAT CTT GAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topF03 5' - CAC GAC GCT CTT CCG ATC TAC ACC TCA TGC A - 3' 

PstI_botF03 5' - TGA GGT GTA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topF04 5' - CAC GAC GCT CTT CCG ATC TGA CGT GAT GTG CA - 3' 

PstI_botF04 5' - CAT CAC GTC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topF05 5' - CAC GAC GCT CTT CCG ATC TGT CAA TGC ACT GCA - 3' 

PstI_botF05 5' - GTG CAT TGA CAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topF06 5' - CAC GAC GCT CTT CCG ATC TGT GTT ACC TGA TGC A - 3' 

PstI_botF06 5' - TCA GGT AAC ACA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topF07 5' - CAC GAC GCT CTT CCG ATC TGT GAT GTG CA - 3' 

PstI_botF07 5' - CAT CAC AGA TCG GAA GAG CGT CGT G - 3' 
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PstI_topF08 5' - CAC GAC GCT CTT CCG ATC TTG AGT CCT GCA - 3' 

PstI_botF08 5' - GGA CTC AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topF09 5' - CAC GAC GCT CTT CCG ATC TGT CGT TAC TGC A - 3' 

PstI_botF09 5' - GTA ACG ACA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topF10 5' - CAC GAC GCT CTT CCG ATC TGA TCA GGT GTG CA - 3' 

PstI_botF10 5' - CAC CTG ATC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topF11 5' - CAC GAC GCT CTT CCG ATC TGT AGG CGA ACT GCA - 3' 

PstI_botF11 5' - GTT CGC CTA CAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topF12 5' - CAC GAC GCT CTT CCG ATC TCA ACC TAC TCT TGC A - 3' 

PstI_botF12 5' - AGA GTA GGT TGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topG01 5' - CAC GAC GCT CTT CCG ATC TGT TAG GTG CA - 3' 

PstI_botG01 5' - CCT AAC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topG02 5' - CAC GAC GCT CTT CCG ATC TGC ACG AAT GCA - 3' 

PstI_botG02 5' - TTC GTG CAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topG03 5' - CAC GAC GCT CTT CCG ATC TGT CCT TGA TGC A - 3' 

PstI_botG03 5' - TCA AGG ACA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topG04 5' - CAC GAC GCT CTT CCG ATC TGA CAT ACA CTG CA - 3' 

PstI_botG04 5' - GTG TAT GTC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topG05 5' - CAC GAC GCT CTT CCG ATC TGG TCT CCA AGT GCA - 3' 

PstI_botG05 5' - CTT GGA GAC CAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topG06 5' - CAC GAC GCT CTT CCG ATC TGC TGG AAG TGT TGC A - 3' 

PstI_botG06 5' - ACA CTT CCA GCA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topG07 5' - CAC GAC GCT CTT CCG ATC TGA CTT CTG CA - 3' 

PstI_botG07 5' - GAA GTC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topG08 5' - CAC GAC GCT CTT CCG ATC TAC GAT CCT GCA - 3' 

PstI_botG08 5' - GGA TCG TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topG09 5' - CAC GAC GCT CTT CCG ATC TGC GCA TAT TGC A - 3' 

PstI_botG09 5' - ATA TGC GCA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topG10 5' - CAC GAC GCT CTT CCG ATC TGG TAT GGA ATG CA - 3' 

PstI_botG10 5' - TTC CAT ACC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topG11 5' - CAC GAC GCT CTT CCG ATC TTT GCG CCA AGT GCA - 3' 

PstI_botG11 5' - CTT GGC GCA AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topG12 5' - CAC GAC GCT CTT CCG ATC TCC TCT TCT TCC TGC A - 3' 

PstI_botG12 5' - GGA AGA AGA GGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topH01 5' - CAC GAC GCT CTT CCG ATC TCC ATA CTG CA - 3' 

PstI_botH01 5' - GTA TGG AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topH02 5' - CAC GAC GCT CTT CCG ATC TTC CAC CTT GCA - 3' 

PstI_botH02 5' - AGG TGG AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topH03 5' - CAC GAC GCT CTT CCG ATC TCC TAA CAG TGC A - 3' 

PstI_botH03 5' - CTG TTA GGA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topH04 5' - CAC GAC GCT CTT CCG ATC TTG GTA CGT CTG CA - 3' 

PstI_botH04 5' - GAC GTA CCA AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topH05 5' - CAC GAC GCT CTT CCG ATC TAG AAC CAC ATT GCA - 3' 

PstI_botH05 5' - ATG TGG TTC TAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topH06 5' - CAC GAC GCT CTT CCG ATC TCG AAC GCG TAT TGC A - 3' 

PstI_botH06 5' - ATA CGC GTT CGA GAT CGG AAG AGC GTC GTG - 3' 
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PstI_topH07 5' - CAC GAC GCT CTT CCG ATC TGA TGA CTG CA - 3' 

PstI_botH07 5' - GTC ATC AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topH08 5' - CAC GAC GCT CTT CCG ATC TGG TAT TGT GCA - 3' 

PstI_botH08 5' - CAA TAC CAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topH09 5' - CAC GAC GCT CTT CCG ATC TAC AGC ACT TGC A - 3' 

PstI_botH09 5' - AGT GCT GTA GAT CGG AAG AGC GTC GTG - 3' 

PstI_topH10 5' - CAC GAC GCT CTT CCG ATC TTT GTA CCG GTG CA - 3' 

PstI_botH10 5' - CCG GTA CAA AGA TCG GAA GAG CGT CGT G - 3' 

PstI_topH11 5' - CAC GAC GCT CTT CCG ATC TTT ACA CCA ACT GCA - 3' 

PstI_botH11 5' - GTT GGT GTA AAG ATC GGA AGA GCG TCG TG - 3' 

PstI_topH12 5' - CAC GAC GCT CTT CCG ATC TGG AGT TAG TCC TGC A - 3' 

PstI_botH12 5' - GGA CTA ACT CCA GAT CGG AAG AGC GTC GTG - 3' 

 

Common adapter sequence: 

MspI_top2.01 5' - GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T - 3' 

MspI_Newbot 5' - CGA GAT CGG AAG AGC ACA CGT CTG AAC TCC AGT C - 3' 
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Appendix 3: Demultiplexing and variant calling script. 

This section contains the scripts used for demultiplexing, cleaning, and variant calling 

with Stacks version 2.0. Pieces of bash code are enclosed by {} brackets and in monospaced 

font, comments are preceded by the # symbols, while commands are preceded by the $ symbol. 

Unless otherwise specified the parameters presented here represent the optimal after a series of 

trials. All computing was performed on a Linux-based system with 64 processors and 345 Gb of 

available RAM. 

 

Cleaning and demultiplexing: 

GBS files were split by index by the GSL. The process of demultiplexing and cleaning is 

the same for each library index, just the barcode file changes. Barcode files are composed of two 

columns, tab separated; the first column contains the barcode sequence while the second column 

has the corresponding sample name. 

{ 

$ mkdir clean_reads 

$ process_radtags -f path/to/raw/reads/*.fq.gz -i gzfastq -o clean_reads/ -b 

path/to/barcode_file -e pstI -E phred33 -c -q -r -t 80 

} 

After demultiplexing and cleaning, 656,660,293 or 90.9 % of the reads were retained, 4.9 

% were dropped due to ambiguous barcodes, 0.9 % were dropped due to low quality, and 3.2 % 

were dropped to ambiguous RAD-tags. 
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Variant calling: 

{ 

#Call variants using Stacks v2.0, without a reference, step by step 

#Create popmap with 1=PV, 2=CSJ+SM, and 3=Crucitas 

#Create unique stacks (ustacks) 

$ mkdir stacks_results 

$ ID=1 

$ for file in clean_reads/*.fq.gz; do ustacks -f ${file} -o stacks_results/ -

i $ID -t gzfastq -p12 -d -m 3 -M 4 --max_locus_stacks 4 --gapped; ID=$(expr 

$ID + 1); done 

#Build catalog (cstacks) using only a fraction of the samples (n=85). 

$ cstacks -b 1 -P stacks_results/ -M path/to/popmap/ -n 4 -p 12 

#Create population stacks (sstacks) 

$ sstacks -b1 -P stacks_results/ -M path/to/popmap/ -p 12 

#Transpose the data so it is stored by locus (tsv2bam) 

$ tsv2bam -P stacks_results/ -M path/to/popmap/ -t 12 

#Build a contig from the metapopulation data, align stacks per sample, #call 

variant (gstacks) 

$ gstacks -P stacks_results/ -M path/to/popmap/ -t 12  

#Run populations module Calculate F statistics and output a vcf file. 

$ populations -P stacks_results/ -M path/to/popmap/ -t 12 -r 0.9 -p 2 --

fstats --hwe --vcf 

} 

The mean coverage per sample was 21.7x. Despite the low coverage, this produced a 

total of 4,691 SNPs calls with missing data ≤ 10 %.  
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Appendix 4: Relationship matrix and linear mixed model 

This section contains the scripts used to estimate the allele dosage information with R 

package Updog, generate the relationship matrices with R package AGHmatrix, and to run the 

linear mixed model with ASReml. Pieces of code are enclosed by {} brackets and in 

monospaced font, comments are preceded by the # symbols. Unless otherwise specified the 

parameters presented here represent the optimal after a series of trials. All computing was 

performed on a Windows10 based system with 4 processors and 16 Gb of available RAM. 

 

Allele dosage 

{ 

#Set working directory 

setwd("Path/to/working/directory/”) 

#Load required library 

library(ggplot2) 

library(reshape2) 

library(dplyr) 

library(tibble) 

library(updog) 

library(AGHmatrix) 

 

#Load data into R, a table with total counts and reference allele counts 

#per individual per locus extracted from the Stacks vcf file. Also, header 

#information per variable. 

snps <- read.table("stacks.snp.data", as.is=TRUE) 

header <- scan("stacks.header.line", what="character", sep="\t") 

names(snps) <- header 
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#Format data for mupdog (Multi-SNP updog). Requires a list of 3 matrix: 

#sizemat= a matrix of total read depth (DP), refmat= a matrix of reference 

#allele counts (AD), and ploidy= value or vector. Individuals in rows and 

#SNPs in cols. 

loci.ID <- paste(snps$POS, snps$ID, sep="_") #A vector of snp ID 

sample.ID <- header[6:195]    #A vector of samples ID 

ref <- snps[,196:385] 

ref <- as.matrix(as.data.frame(lapply(ref, as.numeric))) 

colnames(ref) <- sample.ID 

rownames(ref) <- loci.ID 

ref <- t(ref)      #=refmat 

size <- snps[,6:195] 

size <- as.matrix(as.data.frame(lapply(size, as.numeric))) 

colnames(size) <- sample.ID 

rownames(size) <- loci.ID 

size <- t(size)      #=sizemat 

 

#First run, use default parameters, includes missing data. 

test.all <- mupdog(refmat=ref, sizemat=size, ploidy=4, verbose=TRUE, 

control=list(obj_tol=10^-4)) 

#Finished after 29 iterations, takes about 6 hours. 

#iteration: 29, objective: -1755856, err: 9.762214e-05  

 

#Summaries of output 

plot(test.all, 10) 

hist(test.all$bias, xlab="Allelic Bias", main=NULL) 

hist(test.all$seq, xlab="Sequencing Error", main=NULL) 

hist(test.all$od, xlab="Overdispersion", main=NULL) 

hist(test.all$inbreeding, xlab="Inbreeding", main=NULL) 
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hist(test.all$allele_freq) 

 

#Filter data by max post prob. First, transpose matrix so loci are in rows 

#and ind.id in columns. Add rownames as a column and transform to data 

#frame for easier manipulation. 

mpp <- test.all$maxpostprob 

colnames(mpp) <- loci.ID 

mpp <- t(mpp) 

mpp <- as.data.frame(mpp) 

mpp <- rownames_to_column(mpp) 

colnames(mpp) <- c("loci", sample.ID) 

#Remove 5 ind (trees were cut in 2015) 

mpp$do_322 <- NULL 

mpp$do_368 <- NULL 

mpp$do_505 <- NULL 

mpp$do_545 <- NULL 

mpp$do_690 <- NULL 

 

#Estimate average max post prob per locus across all ind. 

means.mpp <- data.frame(loci=mpp[,1], mean.mpp=rowMeans(mpp[,-1])) 

 

#Filter the map dosage matrix by max post prob. 

md <- test.all$map_dosage 

colnames(md) <- loci.ID 

md <- t(md) 

md <- as.data.frame(md) 

md <- rownames_to_column(md) 

colnames(md) <- c("loci", sample.ID) 

#Remove 5 ind (trees were cut in 2015) 
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md$do_322 <- NULL 

md$do_368 <- NULL 

md$do_505 <- NULL 

md$do_545 <- NULL 

md$do_690 <- NULL 

#then add new column with mean mpp 

md$mean.mpp <- means.mpp$mean.mpp 

 

#Filter by mpp (max.prob > 0.9), map dosages, transpose so ind are in row 

#and markers in columns 

 

md9 <- filter(md, mean.mpp>=0.9) 

md9 <- column_to_rownames(md9, var="loci") 

md9 <- md9[,1:185] 

md9 <- t(md9)      #Results in 2612 SNPs 

}  
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Relationship matrix 

{ 

###G-Matrix 

#Additive relationship matrix 

Gv9 <- Gmatrix(SNPmatrix=md9, method="VanRaden", maf=0, ploidy=4) 

#Full-autopolyploid matrix 

Gf9 <- Gmatrix(SNPmatrix=md9, method="Slater", maf=0, ploidy=4) 

 

###A-Matrix 

#Load data, pedigree file from 19 parents + 625 progeny 

ped.dipteryx19 <- read.csv("ped_dipteryx19.csv", header = TRUE) 

#Compute A-matrix, as in Kerr et al (2012) - additive 

Ak19 <- Amatrix(ped.dipteryx19, ploidy=4)              #  

#Compute A-matrix, as in Slater (2014) - full 

As19 <- Amatrix(ped.dipteryx19, ploidy=4, slater=TRUE) #  

 

###H-Matrix 

#Compute H-matrix (additive = Ha) 

H.ak19.gv9.maf0 <- Hmatrix(A=Ak19, G=Gv9, markers=md9, maf=0, ploidy=4) 

#Compute H-matrix (full = Hf) 

H.as19.gf9.maf0 <- Hmatrix(A=As19, G=Gf9, markers=md9, maf=0, ploidy=4) 

 

#Format the matrix to import into ASReml 

formatmatrix(H.ak19.gv9.maf0, round.by=12, exclude.0=TRUE, name="Ha.grm") 

formatmatrix(H.as19.gf9.maf0, round.by=12, exclude.0=TRUE, name="Hf.grm") 

}  



 

110 

Linear mixed model 

{ 

!WORKSPACE 100 !RENAME !DOPART 1 

Title: Almendro_2016. 

#treeid,fam,prov,site,block,diameter,height,volume 

 Treeid     !P     #Tree ID=do_xxx, !P=link to pedigree file 

 Fam        !A 19  #Fam=Female/Family ID, !A=alphanumeric 

 prov       !I 3   #Provenance (1=#, 2=CSJ+SM, 3=PV), !I=integer 

 site       !I 2   #Planting sites (1=NA, 2=SP), !I=integer 

 block      !I 6   #Blocks, 6 per site, !I=integer 

 diameter          #DBH (in cm) 

 height            #Total height (in m) 

 volume            #Total volume (in m3) 

 

ped_dipteryx19.csv   !ALPHA !SKIP 1 #Alphanumeric, skip header 

Ha.grm               !NSD           #!NSD=Allow negative numbers in matrix 

#Hf.grm              !NSD           #!NSD=Allow negative numbers in matrix 

Almendro_2016.csv    !SKIP 1        #Data file, skip header 

 

#Individual model, A-matrix 

#use nrm=numerator matrix, estimated from the pedigree file 

 

!PART 1 

!CYCLE diameter height volume 

$A ~ mu prov site !r block nrm(treeid) 

     residual units 

#Calculates heritability from variance components, output in .pvc file 

VPREDICT !DEFINE 
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F Additive nrm(treeid) 

F Pheno nrm(treeid) + Residual 

H h2i Additive Pheno 

 

#Individual model, H-matrix 

#use grm=genomic relationship matrix (Ha=additive, Hf=full) 

#for Hf uncomment line and comment out Ha.grm, redo part 2 

!PART 2 

!CYCLE diameter height volume 

$A ~ mu prov site !r block grm(treeid) 

     residual units 

#Calculates heritability from variance components, output in .pvc file 

VPREDICT !DEFINE 

F Additive grm(treeid) 

F Pheno grm(treeid) + Residual 

H h2i Additive Pheno 

}  
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Appendix 5: Ranking. 

Top 100 individuals ranked based on Hf model volume breeding values: 

Rank Tree ID Family BV Accuracy 

1 do_536 PV3 0.1593 0.81 

2 do_310 PV3 0.1584 0.84 

3 do_802 PV3 0.1548 0.84 

4 do_381 PV3 0.1500 0.84 

5 do_050 6 0.1496 0.83 

6 do_828 PV3 0.1493 0.84 

7 do_005 PV3 0.1485 0.85 

8 do_521 PV3 0.1480 0.84 

9 do_569 PV3 0.1456 0.84 

10 do_658 CSJ2 0.1454 0.83 

11 do_155 PV3 0.1452 0.83 

12 do_326 PV10 0.1452 0.75 

13 do_057 10 0.1446 0.85 

14 do_818 PV3 0.1431 0.84 

15 do_592 PV3 0.1427 0.84 

16 do_475 PV3 0.1421 0.84 

17 do_705 PV3 0.1421 0.84 

18 do_509 PV3 0.1414 0.84 

19 do_835 PV3 0.1407 0.84 

20 do_308 PV3 0.1407 0.84 

21 do_510 10 0.1404 0.83 

22 do_234 PV3 0.1397 0.84 

23 do_024 CSJ2 0.1395 0.86 

24 do_441 CSJ6 0.1391 0.83 

25 do_819 PV3 0.1383 0.84 

26 do_574 10 0.1377 0.84 

27 do_613 PV3 0.1365 0.83 

28 do_085 PV3 0.1349 0.83 

29 do_034 CSJ7 0.1346 0.85 

30 do_826 CSJ2 0.1344 0.83 

31 do_809 PV3 0.1340 0.84 

32 do_309 PV3 0.1339 0.84 

33 do_524 CSJ2 0.1334 0.83 

34 do_540 9 0.1333 0.82 

35 do_225 10 0.1332 0.84 

36 do_655 PV3 0.1331 0.84 

37 do_678 PV3 0.1324 0.84 
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38 do_191 CSJ7 0.1324 0.86 

39 do_068 CSJ3 0.1323 0.84 

40 do_372 10 0.1323 0.84 

41 do_422 CSJ1 0.1321 0.88 

42 do_079 10 0.1316 0.78 

43 do_734 10 0.1316 0.84 

44 do_233 PV3 0.1313 0.84 

45 do_227 10 0.1311 0.84 

46 do_548 4 0.1309 0.87 

47 do_074 4 0.1307 0.85 

48 do_638 PV3 0.1303 0.84 

49 do_253 CSJ1 0.1303 0.83 

50 do_721 10 0.1301 0.84 

51 do_064 PV8 0.1298 0.86 

52 do_745 PV3 0.1297 0.87 

53 do_215 6 0.1290 0.84 

54 do_620 PV9 0.1288 0.82 

55 do_829 4 0.1287 0.84 

56 do_363 6 0.1283 0.84 

57 do_256 CSJ2 0.1281 0.83 

58 do_462 PV3 0.1280 0.84 

59 do_834 CSJ2 0.1279 0.83 

60 do_391 PV8 0.1278 0.84 

61 do_427 CSJ2 0.1277 0.83 

62 do_485 PV8 0.1276 0.85 

63 do_616 CSJ1 0.1275 0.83 

64 do_841 CSJ7 0.1268 0.83 

65 do_840 CSJ2 0.1268 0.83 

66 do_031 CSJ6 0.1268 0.84 

67 do_727 PV3 0.1266 0.84 

68 do_006 PV3 0.1266 0.84 

69 do_822 4 0.1265 0.84 

70 do_146 10 0.1265 0.84 

71 do_343 CSJ7 0.1265 0.82 

72 do_838 CSJ7 0.1263 0.83 

73 do_420 10 0.1262 0.84 

74 do_424 CSJ1 0.1262 0.83 

75 do_328 CSJ2 0.1259 0.83 

76 do_711 10 0.1259 0.84 

77 do_562 CSJ3 0.1256 0.88 

78 do_636 PV8 0.1256 0.74 

79 do_380 PV3 0.1256 0.84 

80 do_561 10 0.1255 0.86 

81 do_702 6 0.1253 0.84 

82 do_319 PV8 0.1252 0.84 
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83 do_396 PV10 0.1251 0.76 

84 do_448 SM9 0.1250 0.90 

85 do_696 10 0.1248 0.84 

86 do_692 PV3 0.1247 0.84 

87 do_717 CSJ2 0.1247 0.83 

88 do_378 PV3 0.1247 0.84 

89 do_418 10 0.1241 0.84 

90 do_549 CSJ2 0.1239 0.83 

91 do_676 6 0.1237 0.84 

92 do_515 CSJ7 0.1235 0.88 

93 do_598 10 0.1235 0.84 

94 do_597 CSJ3 0.1235 0.86 

95 do_459 CSJ2 0.1232 0.83 

96 do_147 10 0.1230 0.84 

97 do_176 CSJ2 0.1228 0.87 

98 do_527 6 0.1228 0.85 

99 do_641 6 0.1227 0.84 

100 do_106 CSJ1 0.1226 0.83 

 


