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Abstract

Time series measurements are often observed with data irregularities, such as censoring due
to a detection limit. Practitioners commonly disregard censored data cases which often result
into biased estimates. We present an attractive remedy for handling autocorrelated censored
data based on a class of autoregressive and moving average (ARMA) models. In particular,
we introduce an imputation method well suited for fitting ARMA models in the presence of
censored data. We demonstrate the effectiveness of the technique in terms of bias, efficiency,
and information loss, and describe its adaptation to a particular data on a meteorological
time series of cloud ceiling height, which are measured subject to the detection limit of the
recording device.
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1 Introduction

Observations collected over time or space are often autocorrelated rather than independent.

Time series data analysis deals with temporally collected observations by modeling their

autocorrelations. Autoregressive moving average (ARMA) models for time series data devel-

oped by Box and Jenkins (1970) have been widely used as a basic approach. The ARMA(p,q)

model for a time series, {Yt, t = 0,±1,±2, · · · } is defined as,

Ỹt = ρ1Ỹt−1 + · · ·+ ρpỸt−p + εt − ψ1εt−1 − · · · − ψqεt−q, (1)

where Ỹt = Yt− µ, µ is the mean parameter, ρk, k = 1, · · · , p are the autoregressive parame-

ters, and ψl, l = 1, · · · , q are the moving average parameters. The error process εt is assumed

to be a white noise with mean 0 and variance σ2. This model is reduced to an AR(p) model

when q = 0 or an MA(q) model when p = 0.

Time series measurements are often observed with data irregularities, e.g. observations

with a detection limit. For instance, a monitoring device usually has a detection limit and it

records the limit value when the true value exceeds/precedes the detection limit. This is often

called censoring. Censoring happens in various situations such as physical science, business,

and economics. The measurement of rainfall is often limited due to the size of the gauge

and signals may intentionally be made limited for convenience in storage or processing (for

further examples, see e.g. Robinson, 1980). Our motivation is the analysis of cloud ceiling

height, which is an important variable accounting for weather-related accidents and flight

delays, provided by the National Center for Atmospheric Research (NCAR), measured at

San Francisco. Due to an upper detection limit of the device, many observations are censored

and this will potentially lead to biased estimates when we implement classical analysis tools

that ignore censoring.

There may be two naive approaches to handle censoring. One is to discard the censored

observations and the other is to treat the censored values as observed. However, both ap-

proaches produce biased and inefficient estimates and lead to unreliable results; see Section

5.2. Thus it is necessary to use an alternative approach to improve the performance of the

parameter estimation for the time series containing censored observations. One of the sim-

plest methods to account for censoring is to substitute the censored values with a constant

exceeding/preceding the detection limit. This has been done under the belief that the cen-

soring rate might not be large and the effect on the inference might be insignificant (Helsel,

1990). However, such beliefs are not true in general and the results will highly depend on
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the strength of such model assumptions. Thus the key issue for estimating the parame-

ters of time series models based on censored data is to obtain estimates that are at least

(asymptotically) unbiased and more efficient than some of the ad-hoc methods described

above.

Robinson (1980) suggested imputing the censored part with its conditional expectation

given the completely observed part. Since the conditional expectation has the form of mul-

tiple incomplete integrals, he subgrouped the data vector so that each subgroup includes

one censored observation, and thus requires a single integral. However, the method may

not be feasible for many consecutive censored observations. Zeger and Brookmeyer (1986)

suggested a full likelihood estimation and approximate method for an autoregressive time

series model. However, the authors have pointed in their article that the method may not

be feasible when the censoring rate is very high (Zeger and Brookmeyer, 1986, p.728). To

overcome this limitation the authors have suggested the use of pseudolikelihood estimation.

Hopke et al. (2001) used multiple imputation based on a Bayesian approach. However,

little explanation was provided about the theoretical properties of the estimators, such as

unbiasedness and efficiency.

We present an attractive remedy for handling censored data based on a class of Gaussian

ARMA models. In particular, we introduce an imputation method well suited for fitting

ARMA models. In this method, the observed time series data is regarded as a realization

from a multivariate normal distribution. Next, we impute the censored values with a random

vector from the conditional multivariate normal distribution given the observed part.

In Section 2, we define a censored time series model and its multivariate normal rep-

resentation when the white noise is Gaussian. Then we introduce the imputation method

to estimate the parameters of censored time series models. In Section 3, an algorithm is

described to generate random samples from a truncated multivariate distribution and its

adaptation to implement the imputation method. In Section 4, we discuss how censoring

affects the efficiency of the parameter estimation in terms of the observed Fisher information

matrix. A simulation study was conducted based on an AR(1) process to study the perfor-

mance of the imputation method and the results are presented in Section 5. Our imputation

method is of course not limited to AR processes and we illustrate its use on a meteorological

time series of cloud ceiling height, measured with a detection limit, using an ARMA(1,1)

model in Section 6. Finally, in Section 7, we discuss some general issues related to the

imputation method.
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2 Models for Censored Time series

2.1 Censored ARMA models

Consider an ARMA(p,q) model defined in (1). In many practical situations we may not be

able to observe Yt directly. Instead, we may observe Yt only when Yt precedes/exceeds a

constant value c. Let Xt be the value we observe instead of Yt due to censoring. Then there

are mainly three types of censoring given by,

Xt =





min(Yt, c), in case of left censoring,

max(Yt, c), in case of right censoring,

median(Yt, c1, c2), in case of interval censoring,

(2)

where the constants c, c1, c2 ∈ R are the cutoff values, that is, the detection limits. If the

detection limit is a random variable, say Ct, rather than a constant, it is called a random

censoring. Although our proposed method can be applied to randomly censored data, we

restrict our discussions to only fixed censoring.

We will call the process {Xt} a censored autoregressive and moving average model and

denote it by CENARMA(p,q). The models corresponding to AR(p) and MA(q) will be

denoted by CENAR(p) and CENMA(q), respectively. It is straightforward to see that, for the

types of censoring given by (2), the process {Yt} and {Xt} have different distributions. Thus

we cannot use Xt directly to make inference about the parameters of the model described

by the Yt’s.

2.2 Conditional distribution of the censored part of an ARMA

Notice that if Y = (Y1, · · · , Yn)T is a realization from a stationary stochastic process de-

scribed by an ARMA(p,q) model with Gaussian white noise, we can write

Y ∼ Nn (µ,Σ) , (3)

where Nn represents an n-dimensional multivariate normal distribution with mean µ = µ1n

and stationary n×n covariance matrix Σ whose elements are given by, {Σ}ij = γ(|i− j|) =

γ(h), where γ(h) is the autocovariance function at lag h. By using a permutation matrix

we can re-arrange the order of the data so that we can partition the data vector into an

observed part Y O and a censored part Y C given by

PY =

(
P O

P C

)
Y =

(
Y O

Y C

)
. (4)
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Then PY also follows a multivariate normal distribution given by

PY ∼ Nn

(
µP1n,

[
P OΣP T

O P OΣP T
C

P CΣP T
O P CΣP T

C

]
=

[
ΣOO ΣOC

ΣCO ΣCC

])
. (5)

It follows (see e.g. Anderson, 1984) that the conditional distribution of Y C given Y O is

also a multivariate normal distribution whose mean and covariance matrix are functions of

Y O and the parameters µ and Σ. Applying the permutation matrix to the observed data

X = (X1, · · · , Xn)T , we have

PX =

(
P O

P C

)
X =

(
XO

XC

)
d
=

(
Y O

XC

)
, (6)

where
d
= represents equality in distribution. The purpose of deriving the above conditional

multivariate normal distribution is to find an appropriate substitute for XC . The basic idea

is to replace XC by sampling values from the conditional distribution of Y C given XO and

XC , a truncated multivariate normal distribution,

Y C |XO,XC ∈ DC ∼ TNnC
(ν,∆, DC) ,

where nC is the number of censored observations and TNnC
denotes the truncated multivari-

ate normal distribution of dimension nC . The parameters ν and ∆ are the conditional mean

and covariance of a non-truncated version of a conditional multivariate normal distribution.

DC is the censoring region.

We illustrate our method with an AR(1) process in order to keep the notations simple, but

the extension to ARMA(p,q) models is straightforward. Let us suppose we have an AR(1)

time series process with mean µ, variance σ2, and autocorrelation ρ. We can consider the

data as a random vector from a multivariate Gaussian distribution as in (3) where µ = µ1n

and {Σ}ij = σ2

1−ρ2ρ
|i−j|, i, j = 1, · · · , n. For example, the conditional distribution of Xk given

other observations is a univariate normal distribution whose mean is a function of Xk−1 and

Xk+1 since the inverse of the covariance matrix Σ is tridiagonal. If Xk is censored then the

conditional distribution is a truncated univariate normal distribution.
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3 Imputation Method

3.1 Generation from a truncated multivariate distribution

Let g(x) be the density of a random variable defined on the n-dimensional Euclidean space,

Rn, and let

f(x) =
g(x)IA(x)∫

A
g(z)dz

, A ⊆ Rn,

denote the density of a truncated distribution. Assume that A =
⊗n

j=1Aj, where
⊗

de-

notes the Cartesian product and Aj ⊆ R, j = 1, · · · , n and it is easy to sample from full

conditionals, g(xi|x−i)IAi
(xi), where the vector x−i = (x1, · · · , xi−1, xi+1, · · · , xn)T . Note

that f(xi|x−i) ∝ g(xi|x−i)IAi
(xi). We describe a Gibbs sampling (Gelfand and Smith, 1990)

to generate random samples from f(x):

(0) Set x(0) =
(
x

(0)
1 , · · · , x(0)

n

)T

.

(1) For, k = 1, 2, · · · , sample

x
(k)
1 ∼ g

(
x1|x(k−1)

−1

)
IA1(x1)

x
(k)
2 ∼ g

(
x2|x(k)

1 , x
(k−1)
3 , · · · , x(k−1)

n

)
IA2(x2)

...

x
(k)
n ∼ g

(
xn|x(k)

−n

)
IAn(xn)

(2) Repeat until the samples follow the stationary distribution with density f(x).

In particular, when g(x) is the density of Nn(µ,Σ) and Aj = [cj,∞], we can sample from

g(xj|x−j) by generating Uj ∼ U(0, 1) and setting

xj = νj + τjΦ
−1

[
Uj

{
1− Φ

(
cj − νj

τj

)}
+ Φ

(
cj − νj

τj

)]
, (7)

where νj = µj − σT
j Σ−1

−j(x−j − µ−j), τ
2
j = σjj − σT

j Σ−1
−jσj,

µ−j = (µ1, · · · , µj−1, µj+1, · · · , µn)T , σj = (σ1j, σ2j, · · · , σj−1,j, σj+1,j, · · · , σnj)
T , and Σ−j is

the matrix Σ with j-th row and column deleted (see Robert, 1995).

3.2 Imputation algorithm to fit a CENAR(1) model

The main idea of the algorithm is to update the parameter estimates by imputing the cen-

sored values with the conditional sample. The method is mainly divided into two parts:
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i) Data Augmentation; and

ii) Parameter Estimation.

For data augmentation, we need to use a random sample generated from a truncated

multivariate normal distribution. For parameter estimation we can use any conventional

method.

We describe the imputation algorithm to fit the CENAR(1) model as an illustration. The

extension to CENARMA(p,q) models is straightforward.

Step 1. Compute the permutation matrix P C and P O so that we can construct XC and

XO similar to (4).

Step 2. Obtain the initial estimates µ̂(0), ρ̂(0), and {σ̂(0)}2 (e.g. see Step 6). Then construct

the following mean vector and covariance matrix Σ̂
(0)

,

µ̂(0) = µ̂(0)1n

{Σ̂(0)}ij =
{σ̂(0)}2

1− {ρ̂(0)}2
{ρ̂(0)}|i−j| i, j = 1, · · · , n.

Step 3. Calculate the conditional mean, ν̂(0), and variance, ∆̂
(0)

, of the censored part using

the following relationship,

ν̂(0) = µ̂
(0)
C + Σ̂

(0)

CO

(
Σ̂

(0)

OO

)−1 (
xO − µ̂

(0)
O

)

∆̂
(0)

= Σ̂
(0)

CC − Σ̂
(0)

CO

(
Σ̂

(0)

OO

)−1

Σ̂
(0)

OC , (8)

where the covariances are defined in (5).

Step 4. Generate a random sample x
(1)
C from TNnC

(
ν(0),∆(0), DC

)
, whereDC = (c,∞)nC =

(c,∞)× (c,∞)× · · · × (c,∞).

Step 5. Construct the augmented data from the observed part and imputed sample for the

censored part,

X(1) = P−1

(
XO

X
(1)
C

)
,

where P is defined in (4).

Step 6. Re-estimate the parameters µ, ρ, and σ based on X(1) and update the parameters

Σ, ν, and ∆ (see e.g. Fuller, 1996). If a least squares approach is used we use the following
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estimates,

µ̂(1) = n−1

n∑
t=1

X
(1)
t ,

ρ̂(1) =

{
n∑

t=2

(
X

(1)
t−1 − X̄

(1)
−n

)2
}−1 {

n∑
t=2

(
X

(1)
t − X̄

(1)
−1

)(
X

(1)
t−1 − X̄

(1)
−n

)}
,

{σ̂(1)}2 = (n− 3)−1

n∑
t=2

[
X

(1)
t − µ̂(1) − ρ̂(1)

(
X

(1)
t−1 − µ̂(1)

)]2

,

where X̄−n = (n− 1)−1
∑n

t=2Xt−1 and X̄−1 = (n− 1)−1
∑n

t=2Xt.

Step 7. Repeat Step 3 ∼ Step 6 until the parameter estimates converge. We use the

following convergence rule,

(θ̂
(k+1) − θ̂

(k)
)T (θ̂

(k+1) − θ̂
(k)

)

{θ̂(k)}T θ̂
(k)

< tol,

where θ̂ = (µ̂, ρ̂, σ̂)T . In our simulation, tol=0.001 was used.

The imputation method works by maximizing an approximate full-likelihood, which is

obtained iteratively based on simulations of the censored part of the data. One of the benefits

of the imputation method is that we are not limited to a specific procedure for the estimation

step. In other words, once we augment the data, any suitable method (such as Yule-Walker

method, least squares, maximum likelihood, etc.) can be used for the parameter estimation.

4 Effect of the censoring rate

4.1 Fisher information matrix for correlated observations

This section introduces the calculation of the Fisher information matrix of a stationary time

series model to give more insight on the effect of censoring. The joint probability density

of a stationary Gaussian time series of size n can always be represented via a multivariate

normal distribution. The log-likelihood of a Nn(µ,Σ) is given by

L(µ,Σ|y) = −n
2
log(2π)− 1

2
log|Σ| − 1

2
(y − µ)T Σ−1 (y − µ) ,

where µ and Σ are given by (3) and y is a realization of a time series {Yt, t = 1, · · · , n}.
Let θ denote the vector consisting of all parameters in the model. Then the expected Fisher

information matrix can be obtained by,

In(θ) = E

[
−∂

2L(θ|Y )

∂θ∂θT

]
,
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where the expectation is taken with respect to the Nn(µ,Σ) if we had a complete data

without censoring. However, the computation of the expectation gets very complicated in the

presence of censoring, where Xt’s are collected instead of Yt’s, because multiple incomplete

integrals are involved. As the expectation is difficult to calculate, we use the observed Fisher

information,

În(θ) =

[
−∂

2L(θ|x)

∂θ∂θT

]
, (9)

since it converges in probability to the expected Fisher information (Hogg and Craig, 1995,

Sec 8.3). For example, for an AR(1) process the conditional distribution of Yt given Yt−1 is

independent of Ys, s < t−1. Thus, in a CENAR(1) model we need to consider four scenarios

(See the Appendix) to compute (9).

4.2 Fisher information matrix for Gaussian CENAR(1)

We derive the observed Fisher information matrix based on a realization from a Gaussian

CENAR(1) process and examine how the information changes as a function of the censoring

rate changes. The details of the calculation are described in the Appendix. Let In,C(µ, σ, ρ)

be the Fisher information matrix, where C stands for “censored”. Then,

In,C(µ, σ, ρ) =



Dµ2 Dµ,σ Dµ,ρ

Dµ,σ Dσ2 Dσ,ρ

Dµ,ρ Dσ,ρ Dρ2


 , (10)

whereDµ,σ =
∂2logL(µ,σ,ρ|x)

∂µ∂σ
, and so on. It is not analytically feasible to calculate the expected

Fisher information matrix since the expectations of the second derivatives with respect to

the censoring part involve complicated incomplete integrals. However, it is relatively simple

to calculate the observed Fisher information matrix since we can just plug-in sample values

in the derivatives.

A simulation was conducted in order to illustrate the change of the Fisher information as

a function of the censoring rate. A sample size of n = 200 and a simulation of size N = 500

were used to study the Fisher information. The parameters were set to µ = 0, σ = 1, and

ρ = 0.1, 0.3, 0.5. We changed the censoring rate from 0% to 100% to examine the behavior

of information as a function of increasing rate of censoring. Figure 1 presents the trace of

the inverse of the information matrix. Notice that the trace is the sum of the variances of

the estimates of the parameters. Thus high values of the trace indicates high uncertainty
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and hence less informative estimates. Each point represents the median of 500 traces. We

used the median instead of the mean because for few samples a negative definite information

matrix was observed especially when the censoring rate was very high. It appears that

the curve increases steadily up to 40% of censoring and then increases rapidly after 50% of

censoring. Overall, the trace appears to increase exponentially as censoring rate increases.

The figure was truncated at the censoring rate 80% since the trace values increase very

rapidly for censoring rates larger than 80%, which suggests that the parameters cannot be

estimated with reliable accuracy beyond 80% of censoring.

Let In(µ, σ, ρ) represent the Fisher information matrix for the completely observed case.

It is not analytically shown that In,C(µ, σ, ρ) is positive definite. However, the simulation

suggests that the observed Fisher information is positive definite. If A and B are positive

definite matrices, then A ≥ B if and only if A−1 ≤ B−1 where A ≥ B means that A−B

is a non-negative definite matrix (see Horn, 1991). And if A ≥ B then det A ≥ det B

and tr(A) ≥ tr(B). Numerically we checked that In(µ, σ, ρ) ≥ In,C(µ, σ, ρ). Notice that this

inequality quantifies the loss of information due to censoring.

5 A Simulation Study

We present the data generation for the Gaussian CENAR(1) and the results of our simulation.

5.1 Data generation

For the data generating step, we need to set up the cutoff point c which is obtained by solving

Pr(Yt > c) = α, where {Yt} is a Gaussian AR(1) process and α is the censoring probability.

We call α×100% the average censoring rate. For the Gaussian CENAR(1) model, the cutoff

point c can be derived easily:

c = µ+ σ
Φ−1(1− α)√

1− ρ2

√
1− ρ2(n+1), (11)

where Φ(·) is the standard normal distribution function and
√

1− ρ2(n+1) is a correction

factor for a finite sample size. Another possible criteria to find the cutoff point is to calculate
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c for every size of the time series and summarize it with an average or median:

ca = µ+
σΦ−1(1− α)√

1− ρ2

{
1

n

n∑
j=1

√
1− ρ2(j+1)

}
, or

cm = µ+
σΦ−1(1− α)√

1− ρ2
×Median

{√
1− ρ2(j+1), j = 1, · · · , n

}
.

Now we describe the data generating process.

Step 1. Generate a time series data from a Gaussian AR(1) process using a traditional

method (e.g. arima.sim in the statistical software R).

Step 2. Construct the censored time series Xt = Yt · (1−Ct) + c ·Ct, where Ct = I(Yt > c).

For comparison purpose, we calculated the parameter estimates from the original com-

plete data, that is Yt, which is obtained before censoring. Also, we calculated the parameter

estimates from treating the censored values as observed, that is Xt. For convenience, we de-

note the former by θ̂raw and the latter by θ̂cen. The estimates from the imputation method

are denoted by θ̂imp.

5.2 Results of the simulation study

In this simulation study we set µ = 0 and σ = 1. The sample size is set to n = 200 and the

simulation size is set to N = 200. We repeated the simulation for ρ equal to 0.3 and 0.7, and

an average censoring rate c of 20% and 40%. To maintain the targeted average censoring we

used the cutoff point derived in (11). The main findings from the simulation are summarized

numerically and graphically. The tables and figures are based on the comparison between

the imputation method and treating the censored part as observed. For convenience, we call

the latter method the naive method.

Table 1 displays the biases of the parameter estimates and the standard deviations from

the simulation and Figure 2 shows the box-plots of the parameter estimates. The results

suggest that the imputation method improves the performance of the parameter estimation

in terms of bias and mean square error (MSE). Table 1 suggests that some of the parameter

estimates are biased when we use the naive method. For example, µ̂cen becomes highly biased

when the censoring rate is 40% while µ̂imp seems unbiased. The estimates for σ are always

biased low for both censoring rates of 20% and 40%. It seems that the inference on σ is more

significantly affected by censoring than µ and ρ.

The imputation method presents another benefit in terms of the relative efficiency. We

use the ratio of the estimated MSE’s to calculate the relative efficiency. The estimated MSE
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for µ is calculated by

ˆMSE(µ̂1, · · · , µ̂N) =
(
¯̂µ− µ

)2
+

1

N − 1

N∑
i=1

(
µ̂i − ¯̂µ

)2
, (12)

where ¯̂µ = N−1
∑N

i=1 µ̂i and N is the simulation size. Similarly, the estimated MSE’s for ρ

and σ are computed. The relative efficiency in Table 2 is the ratio of the estimated MSE’s

from the imputation method to those from the naive method. It follows from Table 2 that

the efficiency for ρ̂ is almost the same when ρ = .3 and the censoring rate is 20%. However,

in other cases such as ρ = .7 or 40% of censoring, the efficiency of the imputation method is

better than the naive method, especially for µ and σ.

Overall, Table 1 implies that we get biased estimators for µ and σ using the naive esti-

mates and Table 2 implies that we loose efficiency when the naive method is used. Clearly,

the use of the imputation method reduces the biases and increases the efficiency.

The box-plots in Figure 2 depict that the distribution of the parameter estimates from the

imputation method are similar to those obtained from complete data. However, the distribu-

tions of the parameter estimates from the naive method are significantly biased compared to

those from complete data, especially for µ and σ. The dispersion of the parameter estimates

from the naive method is smaller than those from the imputation method. However, it does

not mean that estimates are more efficient since the estimates from the naive approach are

significantly biased.

Next we compare the Fisher information based on the imputation method to that based

on the naive method. Figure 3 presents the comparison through box-plots, between the

observed Fisher information and the plug-in version, denoted by În(θ̂), of the observed

Fisher information. The plot suggests that the distributions of the trace of the inverse of the

Fisher information matrix from the imputation method are very similar to those from the

complete data case. Especially for 20% of censoring, the results appear almost equivalent.

Thus this suggests that the imputation method recovers the censored part well enough to

mimic the estimation based on complete data.

6 Application to a meteorological time series

Ceiling Height (CH) is defined as the distance from the ground to the bottom of a cloud

measured in hundreds of feet. The CH is one of the major factors contributing to weather-

related accidents and one of the major causes of flight delays. Moreover, adverse ceiling
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condition can seriously affect the general aviation pilot on account of the fact that it can

lead to the risk of disorientation, loss of control, and flight into obstructed terrain. Thus an

accurate determination of the CH is important.

The data on CH, collected by the National Center for Atmospheric Research (NCAR),

is observed hourly in San Francisco and collected in the month of March 1989, consisting

of n = 729 observations. The observations have a detection limit at c = 12, 000 feet and

hence the data can be considered as a right-censored time series data. The censoring rate is

41.62% and there are three missing observations. For our imputation method corresponding

to the missing observations, we use Aj = [−∞,∞].

The data was fitted by using three candidate models, AR(1), AR(2), and ARMA(1,1),

and the results are displayed in the first panel of Table 3. The ARMA(1,1) model gives

the minimum AIC and hence we choose the ARMA(1,1) as the best model based on the

naive approach. Then we use the imputation method to analyze the data. The results are

displayed in the second panel of Table 3.

We observe very different results between the naive approach and the imputation method.

The estimates of µ and σ based on the imputation method are inflated compared to those

based on the naive method. For instance, the average CH based on the imputation method

is about 8,333 feet., whereas the average CH based on naive method is about 6,706 feet.

This is consistent with results we observed in the simulation study. Thus the naive method

will mistakenly estimate the average CH to be lower than what it should be. Consequently,

under-estimation of µ can lead to higher risk for the general aviation pilot. Using the naive

approach, the ARMA(1,1) model seems to fit the data better than other candidate models

in terms of AIC. However, using the imputation method, an AR(2) model seems to fit the

data better.

Figure 4 displays the original data and the augmented data based on the parameter

estimates of a CENAR(2) model using the imputation method. To obtain the augmented

data, we generate 20 realizations of the time series for the censored and missing parts and

calculate the average. This figure depicts what CH observations would have been observed

if the device would not have had a detection limit.

From the simulation study, we observed that the parameter estimates may be biased

when we treat the censored part as observed. In addition we note that the naive approach

can also lead to selecting an incorrect model. In the CH data case, we have a difference in the

decision for the model selection between the naive method and the imputation method. Since
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the imputation method gives more consistent estimation result than the naive approach, it

will be more reasonable to choose the AR(2) model as the best model for the data rather

than the ARMA(1,1).

7 Discussion

The main message of the imputation method is that we should account for the variability

of the censored part of the data by mimicking the complete data. That is, we impute the

incomplete part with a conditional random sample rather than the conditional expectation

or certain constants. Simulation results suggest that the imputation method reduces the

possible biases and has similar standard errors than those from complete data.

In order to use the imputation method, we have used the fact that a Gaussian ARMA

model can be related to a multivariate Gaussian distribution. We use this property to

characterize the variance-covariance matrix for time series models. It may be noticed that our

imputation method is not limited to generating samples from truncated multivariate normal

distributions. We can easily extend it to other multivariate distributions, e.g. multivariate

t-distributions.

Our method is obviously not restricted to ARMA models and can be directly extended

to several other settings. For example, vector ARMA time series models can easily be fitted

to censored data with our imputation approach. The analysis of spatial censored data by

means of regression models with spatially correlated errors is also straightforward. Finally,

parametric models of spatial or temporal covariances can be replaced by nonparametric esti-

mators as long as the corresponding covariance matrix is guaranteed to be positive definite.

Such extensions will be the topic of future investigations.
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Appendix: Derivation of the Fisher Information matrix

for the Gaussian CENAR(1) Process

A.1 Likelihood of the Gaussian CENAR(1) process

We treat the time series data from an AR(1) process as a random vector from the multivariate

normal distribution as in (3), where µ = µ1n and {Σ}ij = σ2

1−ρ2ρ
|i−j|. Using the fact that,

|Σ| = σ2n
(
1− ρ2

)−1
, and

(x− µ)T Σ−1 (x− µ) = (1− ρ2) (x1 − µ)2 +
n∑

t=2

[(xt − µ)− ρ (xt−1 − µ)]2 .

The density of Nn(µ,Σ) can be written as,

f(x|µ, σ2, ρ) = f0(x1)
n∏

t=2

f(xt|xt−1),

where f0(x1) =
√

1−ρ
σ
φ

(
(x1−µ)

√
1−ρ2

σ

)
, f(xt|xt−1) = 1

σ
φ

(
(xt−µ)−ρ(xt−1−µ)

σ

)
, and φ(·) denotes

the standard normal density function (Wei and Reilly, 1990). Since some observations are

right censored at c, we need the last expression to be modified in order to set up the correct

likelihood for the following four cases:

(1) Both Xt and Xt−1 are observed

f(xt|xt−1) =
1

σ
φ

(
(xt − µ)− ρ (xt−1 − µ)

σ

)
; (A.1)

(2) Xt is observed but Xt−1 is censored

f(xt|xt−1 > c) =

{
1− Φ

(
(c − µ)

√
1− ρ2

σ

) }−1
√

1− ρ2

σ
φ

(
(xt − µ)

√
1− ρ2

σ

)

×
{

1− Φ

(
(c − µ)− ρ (xt − µ)

σ

)}
; (A.2)

(3) Xt is censored but Xt−1 is observed

f(xt > c|xt−1) = 1− Φ

(
(c − µ)− ρ (y − µ)

σ

)
; (A.3)
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(4) Both Xt and Xt−1 are censored

f(xt > c|xt−1 > c) =

∫∞
c

∫∞
c

1−ρ2

σ2 φ

(
(x−µ)

√
1−ρ2

σ
,

(y−µ)
√

1−ρ2

σ
; ρ

)
dxdy

∫∞
c

∫∞
−∞

1−ρ2

σ2 φ

(
(x−µ)

√
1−ρ2

σ
,

(y−µ)
√

1−ρ2

σ
; ρ

)
dxdy

=
K

1− Φ

(
(c−µ)

√
1−ρ2

σ

) , (A.4)

where

φ(t, u; ρ) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(t2 − 2ρtu+ u2)

}
.

We also need to consider whether X1 is observed or censored. Denote by dt = 1 if xt ≤ c

and 0 otherwise. Then the log-likelihood that accounts for censoring is represented by

logL = logf0(x1)I(d1 = 1) + logf0(x1 > c)I(d1 = 0)

+
n∑

t=2

{
logf(xt|xt−1)

}
I(dt = 1, dt−1 = 1)

+
n∑

t=2

{
logf(xt|xt−1 > c)

}
I(dt = 1, dt−1 = 0)

+
n∑

t=2

{
logf(xt > c|xt−1)

}
I(dt = 0, dt−1 = 1)

+
n∑

t=2

{
logf(xt > c|xt−1 > c)

}
I(dt = 0, dt−1 = 0). (A.5)

The Fisher information will be obtained from the separate second derivatives of each term.

A.2 Derivatives calculation based on truncated distributions

It is straightforward to calculate the second derivatives for the observed case but it is neces-

sary to use the following fact for the censored case. Let λ(z) = φ(z)/{1− Φ(z)}. Then,

∂ log{1− Φ(z)}
∂z

= −λ(z), and (A.6)

∂λ(z)

∂z
= λ(z)

{
λ(z)− z

}
. (A.7)

Due to space limitation, we only display the second derivatives with respect to µ as an

example. Other derivatives can be obtained similarly.
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(1) Derivatives corresponding to X1

If X1 is observed, then we have

∂2logf0(x1)

∂µ2
= −1− ρ2

σ2
. (A.8)

If X1 is censored then, using (A.6) and (A.7), the second derivative with respect to µ

is

∂2logf0(x1 > c)

∂µ2
= −1− ρ2

σ2
λ(cµ)

{
λ(cµ)− cµ

}
, (A.9)

where cµ =
(c−µ)

√
1−ρ2

σ
.

(2) Both Xt and Xt−1 are observed

The log-likelihood follows from (A.1) and the second derivatives are obtained similarly

to the previous case. For example, the second derivative with respect to µ is

∂2logf(xt|xt−1)

∂µ2
= −(1− ρ)2

σ2
. (A.10)

(3) Xt is observed but Xt−1 is censored

The log-likelihood follows from (A.2). Using (A.6) and (A.7), the second derivatives

are obtained. For example, the second derivative with respect to µ is

∂2logf(xt|xt−1 > c)

∂µ2
= −1− ρ2

σ2
+

1− ρ2

σ2
λ(cµ)

{
λ(cµ)− cµ

}

−(1− ρ)2

σ2
λ(c∗µ)

{
λ(c∗µ)− c∗µ

}
, (A.11)

where c∗µ = {(xt − µ)− ρ (c − µ)} /σ.

(4) Xt is censored but Xt−1 is observed

The log-likelihood follows from (A.3). Using (A.6) and (A.7), the second derivatives

are obtained. For example, the second derivative with respect to µ is

∂2logf(xt > c|xt−1)

∂µ2
= −

(
1− ρ

σ

)2

λ(c∗∗µ )
{
λ(c∗∗µ )− c∗∗µ

}
, (A.12)

where c∗∗µ =
{

(c − µ)− ρ (xt−1 − µ)
}
/σ.
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(5) Both Xt and Xt−1 are censored

The log-likelihood follows from (A.4) and we need to calculate the derivatives of K

with respect to the parameters. Using Leibnitz’ rule, the first derivative with respect

to µ is obtained by

∂K

∂µ
=

2
√

1− ρ2

σ
φ(cµ)

{
1− Φ(c†µ)

}
,

where c†µ = cµ(1− ρ)/
√

1− ρ2.

Then the second derivatives is obtained by

∂2K

∂µ2
=

2(1− ρ2)

σ2
cµφ(cµ)

{
1− Φ(c†µ)

}
+

2(1− ρ)
√

1− ρ2

σ2
φ(cµ)φ(c†µ).

(A.13)

Finally the second derivatives with respect to µ is

∂2logf(xt > c|xt−1 > c)

∂µ2
= K−1

{
∂2K

∂µ2

}
−K−2

{
∂K

∂µ

}2

− ∂2log
{
1− Φ(cµ)

}

∂µ2
.

(A.14)

We also confirmed all algebraic calculations by using the software Mathematica r©.

A.3 Observed Fisher information Matrix

We combine all the results from the previous section to construct the observed Fisher infor-

mation matrix as in (10). For example, Dµ2 is the sum of the second derivatives as in (A.8),

(A.9), (A.10), (A.11), (A.12), and (A.14) corresponding to one of four cases.
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Figure 1: Plot of the median of the trace of the inverse of the observed Fisher information

matrix by censoring rate from 0% to 80% of censoring. ρ = 0.1, 0.3, 0.5, µ = 0, and σ = 1

were used for the simulation with 500 replications.
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Figure 2: Box-plots of the estimation for ρ (top), µ (middle), and σ (bottom). The reference

lines in plots are the true values of the parameter. The index ‘cen’ means the results from

the naive approach and ‘imp’ represents the results from the imputation method.
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Figure 3: Box-plots of the trace of the inverse of the observed Fisher information matrix and

the plug-in version of the observed Fisher information matrix by censoring rate. The far left

box-plots show the trace of the inverse of the observed Fisher information matrix evaluated

with the true parameter.
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Figure 4: The super-imposed time plots of the original series containing censored observations

and the augmented series based on a Gaussian CENAR(2) model fit.



Table 1: Bias and standard deviation (in the parenthesis) from the simulation results for

a Gaussian CENAR(1). The results ‘naive’ are based on treating the censored values as

observed and the results ‘imputed’ are based on the imputation method. The column ‘0%’ is

for all observed data (complete-case analysis). The columns of ‘20%’ and ‘40%’ correspond

to the censoring rate. The autocorrelations used for the simulation are 0.3 (top) and 0.7

(bottom).

ρ = .3

0% 20% 40%

ρ −.018(.069) −.032(.067) −.062(.070)

naive µ −.003(.107) −.074(.093) −.267(.070)

σ .002(.093) −.203(.070) −.504(.065)

ρ −.018(.069) −.022(.071) −.027(.080)

imputed µ −.003(.107) −.011(.107) −.019(.106)

σ .002(.093) −.022(.117) −.034(.149)

ρ = .7

0% 20% 40%

ρ −.018(.052) −.043(.054) −.075(.058)

naive µ −.001(.251) −.170(.204) −.407(.159)

σ .003(.098) −.266(.088) −.493(.092)

ρ −.018(.052) −.023(.053) −.024(.058)

imputed µ −.001(.251) −.025(.246) −.035(.239)

σ .003(.098) −.022(.127) −.035(.159)

Table 2: Relative efficiency based on the ratio of MSE defined in (12) from the simulation.

20% 40%

ρ 1.00 0.80

ρ = 0.3 µ 0.83 0.15

σ 0.31 0.09

ρ 0.71 0.42

ρ = 0.7 µ 0.87 0.31

σ 0.21 0.10



Table 3: Parameter estimates for the cloud ceiling height data. Three candidate models

were used and AIC is displayed as a criteria for the model selection (bold fonts represent the

“best” model).

Results based on the naive approach

µ̂ ρ̂1 ρ̂2 ψ̂ σ̂ AIC

AR(1)
67.06

(5.077)

0.78

(0.024)
NA NA 30.47 6904

AR(2)
67.06

(6.110)

0.63

(0.037)

0.18

(0.037)
NA 29.95 6881

ARMA(1,1)
67.06

(6.85)

0.89

(0.022)
NA

−0.29

(0.048)
29.80 6874

Results based on the imputation method

µ̂ ρ̂1 ρ̂2 ψ̂ σ̂ AIC

AR(1)
93.76

(11.44)

0.86

(0.019)
NA NA 42.39 7405

AR(2)
83.33

(10.57)

0.68

(0.037)

0.19

(0.037)
NA 37.07 7215

ARMA(1,1)
93.13

(13.29)

0.90

(0.019)
NA

−0.19

(0.044)
42.05 7395




