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Abstract 

Fluxes of atmospheric ammonia-nitrogen p - N ,  where NH3-N = (14/17)NH3) from an 
anaerobic - 2.5 hectares (1 ha = 10,000 m ) commercial hog waste storage lagoon were measured 
during the summer of 1997 through the spring of 1998 in order to study the seasonal variability 
in emission of NH3-N and its relationship to lagoon physicochemical properties. Ammonia- 
nitrogen fluxes were measured during each season (summer, fall, winter, and spring) using a 
dynamic flow through chamber system. Measured lagoon physicochemical parameters included 
surface lagoon temperature (Th 'C, -1 5 cm below surface), lagoon pH, and Total Kjeldahl 
Nitrogen (TKN). Tte  pH and TKN of the surface lagoon water ranged from 7 to 8 pH units, and 
500 to 750 mg N L- , respectively. The larg%st f lu~es  were observed during the summer (August 
'97) (mean NH3-N flux = 4017+987pg N T- mi:- ). Fluxes decreased through the fall 
(December '97) months (84424Flpg m- min- ) to a minimum flux during the winter (February 
'98) months (305+124 pg,N m- min' ). Emission rates increased during spring (May '98) 
(17062552 pg N m- min- ), but did not reach the magnitude of fluxes observed during the 
summer. Lagoon emissions in Eastern North Carolina were estimated to constitute -33% of total 
NH3-N emissions from commercial hog operations in North Carolina based on current 
inventories for NH3-N emissions published by the North Carolina Division of Air Quality 
(NCDENR). The ammonia flux may be predicted by an observational model loglo (NH3-N 
Flux) = 0.048 Th + 2.1. 

Keywords: ammonia flux, swine lagoon, dynamic chamber, flux model. 
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Conclusions 

The data presented in this paper adds to the growing knowledge of NH3 flux from animal 
agricultural practice. The intensive measurements conducted during 1 August-15 August, 1997, 
presented us with typical summer temperatures observed in North Carolina and gave the highest 
flux estimates of the year. Using the dynamic chamber system, the average flux measured in the 
summer of 1997 was 4017987pg N m'* min". The averages during the spring, fall, and winter 
seasons were 17065552, 844+4Ol, and 3055154 p g  N m'2 m i d ,  respectively. We found that the 
NH3 flux displays a diurnal variation which is highly correlated with lagoon surface water 
temperature and reaches a maximum between 3 and 6 PM. Ammonia flux is found to vary 
exponentially with lagoon surface water temperature. The pH and TKN levels in the lagoon 
remained relatively constant at an average value of -7.5 pH, and -650 mg N L", respectively. 

The emission factors obtained by this research and other similar measurements on swine 
agriculture are summarized in Table 5. In general, there is reasonable agreement between 
researchers making NH3 flux measurements from swine agriculture. The emissions factors listed 
represent emissions values from varying locations around the globe. The scatter in the emission 
factors may be explained by differences in meteorology, management practices, animal feeds, 
and experimental error. Using remotely sensed lagoon surface area data we have also estimated 
that lagoon ammonia emissions in eastern North Carolina comprise approximately 33% of total 
swine NH3 emissions in North Carolina. 

It is reasonable to assume that animal agriculture will be a continued source of significant 
atmospheric NH3 emissions in Eastern North Carolina. Moreover, Walker et al. (1998) have 
demonstrated that increasing trends in ammonium concentration in precipitation in eastern North 
Carolina are directly correlated to the ever-expanding hog population in this region. 
Atmospheric deposition of NH, wi 11 undoubtedly continue to impact nearby ecosystems with the 
potential of enhancing eutrophication and soil acidification. Furthermore, enhanced NH3 
emissions will enhance particulate matter formation in the region, which reduces visibility 
(Barthelmie and Pryor, 1998) and also causes health problems for workers in livestock 
agriculture (Reynolds and Wolf, 1988; Michaels, 1999). Another concern associated with NH3 
emission is its potentially harmful odor. To address these concerns and outline possible control 
strategies, further research is required in modeling the fate of NH, with regional deposition 
models. 

v i i i  



1. Introduction 

1.1 Background 

Atmospheric ammonia (NH3) emissions have garnered increased interest in the past few years, due in part 
to the detrimental effects of excess nitrogen deposition to nutrient sensitive ecosystems (Aneja et al., 
1998a; Asman et al., 1998; Nihlgard, 1985; Van Breemen et al., 1982). Moreover, NH3 is the primary 
gaseous base found in the atmosphere, and it is therefore fundamental in determining the overall acidity 
of precipitation (Warneck, 1988), cloudwater (Li and Aneja, 1992), and atmospheric aerosols (Lefer et 
al., 1999). Ammonia emissions contribute substantially to atmospheric nitrogen loading and may 
contribute about the same order of magnitude as emissions of NO in some parts of the world (Asman et 
al., 1998; Steingrover and Boxman, 1996). The impact of atmospheric NH3 deposition may be 
substantial, as reduced nitrogen species are thought to be more biologically active than oxidized nitrogen 
species in coastal and estuarine ecosystems (Paerl, 1997). In the atmosphere, NH3 can react with acidic 
species to form ammonium sulfate, ammonium nitrate or ammonium chloride, or it may be deposited to 
the earth's surface. The spatial scale of a particular NH3 source's contribution to atmospheric nitrogen 
deposition will be governed in part by the gas-to-particle conversion rate of NH3 to m+. Because of the 
short lifetime of NH3 in the atmosphere (z = 1-5 days or less) (Warneck, 1988), low source height, and 
relatively high dry deposition velocity (Asman and van Jaarsveld, 1992) it may deposit near its source. 
However, ammonium (mt) aerosols, with atmospheric lifetimes on the order of z = 1-15 days (Aneja et 
al., 1998b) will deposit at larger distances downwind of sources. 

There are several environmental consequences associated with atmospheric NH3 and its deposition; 
including particulate matter formation, soil acidification, aquatic eutrophication, and, near strong sources, 
odor emanation. In Great Britain and the Netherlands, which have dense spatial distributions of animal 
operations, soil acidification is a major environmental problem (Aben and Dekkers, 1996; Van Breemen 
et al., 1982). Van Breemen et al., 1982 identified deposition of ammonium sulfate as the major cause of 
soil acidification in the Netherlands because the oxidation of N&+ via nitrifying bacteria releases 2 H+ 
ions into soil. Nihlgard (1 985) implicates N&+ in Europe's forest decline, as nitrogen "over-saturated" 
trees succumb to wind, drought and parasitic damage. Coastal Plain river systems in North Carolina (NC) 
have been under the influence of nutrient loading for several years (Aneja et al., 1998c; Paerl, 1997, 
1995). Estimates suggest that atmospheric deposition may contribute 35-60% of total nitrogen loading to 
North Carolina coastal waters (Paerl, 1995). The increase in nutrient loading over the past several years 
is related to agricultural management, human population growth, and increasing animal production. In 
July 1995, the appearance of the dinoflagellate Pfiesteria and its association with several large fish kills 
have resulted in efforts to reduce nitrogen loading into the Neuse River Basin (Burkholder and Glasgow, 
Jr., 1997). A successful reduction strategy requires an accurate nitrogen budget for affected ecosystems 
and reliable source apportionment of nitrogen inputs to such systems. From an atmospheric standpoint, 
accurate emission factors for NH3 sources, as well as measurement-based estimates of wet atmospheric 
deposition and dry deposition to various surface types are essential. This study addresses NH3 emissions 
from swine waste lagoons, as this source is believed to contribute a substantial fraction of total NH3 
emissions in North Carolina (Aneja et al., 1998b). 



1.2 Ammonia Emissions 

Ammonia is an important contributor to the atmospheric nitrogen budget; however, its sources and their 
emission strengths have received scant attention in the United States. The major global sources of 
ammonia include the decay of domestic livestock waste, volatilization losses from fertilizers, emissions 
from soils and biomass burning. However, the largest contributor of ammonia to the global budget is 
domestic animal waste (Bouwman et al., 1997; Dentener and Crutzen, 1994; Schlesinger and Hartley, 
1992; Wameck, 1988; Buijsman et al., 1987). A preliminary nitrogen emission inventory for North 
Carolina (Table l), suggests that ammonia emissions are primarily associated with livestock farming. 
Table 1 also reveals that swine operations contribute -20% towards North Carolina' s nitrogen emissions 
inventory and comprise -47% of total NH3 emissions in the state. 

North Carolina has witnessed intense growth in its hog industry over the last decade (Figure 1). 

Year 

Figure 1. Trends in swine population in North Carolina, 1960-1997. (Source: NCDA, 1998). 

More than 90% of the states hog population resides in the Coastal Plain region (Walker et al., 1998; 
Walker, 1998) where there is greater potential to directly impact coastal estuaries (Figure 2). The six 
most highly populated counties in this region have an average hog population density of -528 hogs lmY2 
(Table 2), whereas the average hog population density for the remainder of the Coastal Plain region is -65 
hogs km-2 (Walker et al., 1998). Ammonia emissions from these six Coastal Plain counties account for 
approximately 36% of total statewide NH3 emissions, with emissions from swine operations accounting 
for 77% of total NH3 emissions within this six county region. Using source-receptor modeling, Walker et 



Table 1. Sources and estimates of nitrogen emissions for North Carolina. Adapted from Aneja et 
al., 1998. 
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Table 2. Top six North Carolina county hog population densities. 

i 

Swine population statistics provided by the North Carolina Department of Agriculture (NCDA, 
1998) for animal populations as of 1997. 

Lenoir 

al. (1998) have shown that under certain meteorological conditions NH3 emissions from this six county 
area enhance wet deposition of N&+/NH~ at National Atmospheric Deposition Program/National Trend 
Network (NADPNTN) sites up to 80 km away. The precipitation samples were collected by wet-only 
collector (AeroChem Metrics Model 301 Wet/Dry Collector, NADPLNTN (1998)). This distance is 
sufficient to allow for deposition to nitrogen sensitive coastal and estuarine ecosystems. This illustrates 
the importance of quantifying MI3 emissions from swine operations and properly relating these emission 
estimates to those factors which control emission rates. This information is necessary as inputs to 
atmospheric transport and deposition models such as the Regional Acid Deposition Model (RADM) 
currently being modified to accurately address the atmospheric transport and deposition of NH, (=NH3 + 
Wt). Such models will help policy makers assess the impact and magnitude of atmospheric nitrogen 
deposition on local and regional scales. 

County 
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Sampson 
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3 04 

Emission factors used thus far for generating preliminary N.C. ammonia emission inventories for various 
animal husbandry operations are largely based on European work (Battye et al., 1994). The European 
factors must be verified or refined for conditions in North Carolina. An initial step in this process is the 
development of swine factors since total emissions from swine are greater than other animal categories in 
North Carolina. There are four principal sources of NH3 emissions on a current commercial hog 
operation: hog production houses, waste storage and treatment lagoon, land application of lagoon slurry to 
adjacent cropland, and subsequent reemission of NH3 from the soil. Lagoon MI3 emissions arise as urine 
and feces are flushed with water from the hog houses and discharged into the lagoon. Gas and liquid 
phase mass transfer processes are thought to be equally important in determining the overall 
desorption/absorption rate of ammonia (Leuning et al., 1984). As the slurry (-98% water (Bicudo et al., 
1999)) is stored in the lagoon, urea is hydrolyzed by the enzyme urease, present in feces, to produce NH3 
and carbon dioxide (Aarnink et al., 1995; Miller and Gardiner, 1998). 
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The primary objective of this study was to measure the atmospheric flux of MI3 from a swine waste 
storage and treatment lagoon during the four predominant seasons at an intensively managed industrial 
hog operation in order to develop emission factors. The secondary objective was to parameterize the NH3 
flux process with respect to changes in lagoon physicochemical parameters (lagoon temperature, pH and 
total Kjeldahl nitrogen (TKN)) for use in air quality models. 



2. Methods and Materials 

2. I Sampling Site 

Flux measurements were made at a farrow to finish commercial hog operation in Sampson County, North 
Carolina. The farm consisted of 13 hog production houses housing approximately 10,000 animals: 1212 
sows and boars (average weight -181 kg each), 7,480 finishers (-61 kg each), and -1410 suckling pigs 
(-1 1 kg each) (R.B. McCulloch, Division of Air Quality, NCDENR, Raleigh, NC, Personal 
Communication, 1998a). The waste from the hog sheds (urine and feces) was flushed out with recycled 
lagoon water and discharged into the lagoon from the top ("top-loading"). The lagoon itself was an above 
ground anaerobic system with sloping sides that reached a maximum depth of -4m at the center. The 
surface area of the lagoon was -25,000 m2 (-100 m x -250 m). 

2.2 Slurry composition and analysis 

To determine the concentration of total nitrogen (aqueous ammonia, ammonium, and nitrates) in the 
slurry, lagoon water samples were taken once every day during the flux sampling periods and submitted 
to the Department of Soil Science, North Carolina State University for analysis. Samples were analyzed 
for total Kjeldahl Nitrogen (TKN) using a digestion procedure, which converts all N in the lagoon sample 
to NK'. The N&+ concentration in the sample was determined by colorimetry. 

2.3 Flux measurements 

Ammonia flux was measured using a dynamic chamber system (Aneja et al., 1996). Summer 
measurements were made from 1 August, 1997 to 15 August, 1997. The fall (December, 1997) and 
winter (February, 1998) measurements lasted intermittently for 6 and 10 days, respectively. Flux 
measurements were discontinued during precipitation events. In spring, ammonia flux measurements 
were made from 16 May, 1998, to 27 May, 1998. In general, lagoon water temperature was monitored 
continuously with a temperature probe (Fascinating Electronics, Deer Island, Oregon) immersed -15 cm 
below the lagoon water surface =. 48 cm from the chamber; and the lagoon pH was monitored 
continuously using a double junction submersible electrode (Cole Parmer, Vernon Hills, Illinois), also 
placed =: 48 cm from the chamber and adjacent to the temperature probe. However, some measurements 
of temperature and pH were recorded manually. 

2.4 Chamber design and operation 

The dynamic chamber used in this study is an FEP Teflon-lined (5 mil thick) open bottom cylinder 
(diameter -27 cm, height -42 cm, and volume -25 liter) inserted into a 1.22 m x 1.22 m floatable 
platform. When the platform and chamber were placed on the lagoon, the chamber penetrated the lagoon 
surface to a depth of -4 cm forming a seal between the lagoon surface and the air within the chamber. 
The placement of the chamber on the lagoon surface was performed in a statistically random manner. 
Figure 3 shows a schematic of the floating dynamic chamber system. Compressed zero-grade air 
(National Welders, Raleigh, NC) was pumped through the chamber at a constant flow rate of - 4.73 h 
min", 4.14 h m i d ,  2.69 h min-', and 2.36 A. rnin" for the summer, fall, winter, and spring field 
measurement periods, respectively. The air in the chamber was well mixed continuously by a motor 
driven Teflon impeller (- 20 cm diameter at -50 rpm). The length of the Teflon tubing (0.64 cm 0.d.) 
connecting the chamber and the ammonia analyzer was less than 10 m. 
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Figure 3. Schematic of a dynamic flow-through chamber. The chamber fits on a floating platform which 
is placed on the surface of the waste treatment lagoon -24 hours prior to start to measurement to 
minimize disturbances. 

2.5 F l u  calculation 

The mass balance for NH3 in the chamber is given by 

where AL is the lagoon surface area covered by the chamber, A, is the inner surface area of the chamber, 
V is the volume of the chamber, Q is the flow rate of carrier gas through the chamber, J is the emission 
flux, [C] is the NH3 concentration in the chamber, [CIf is the NH3 concentration at the outlet of the 
chamber, L is the loss term by the chamber wall per unit area assumed first order in [C] and R is the 
chemical production rate in the chamber. 

Because compressed zero air was used as the carrier gas, there is no inlet concentration of ammonia, [C], 
= 0, and for a well mixed chamber [CJf may be assumed to be equal to the NH3 concentration everywhere 
in the chamber, [C]. Finally, at steady state the above equation reduces to 



where h is the height of the chamber measured from the lagoon surface. The value of the total loss term, 
(L), was obtained (0.079 m mid1 and 0.059 m min" during summer and winter seasons, respectively) by 
conducting the surface loss experiment as proposed by Kaplan et al. (1988) and Aneja et al. (1996). 

Once the chamber reached steady state conditions (-30 min of operation), the outgoing air was conducted 
through Teflon tubes to a Measurement Technologies lOOON stainless steel NH3 converter which 
transformed the NT (=NH3 + R-NH2 + NO+N02) constituents of the sampled air into nitric oxide (NO) at 
- 825'C (Aneja et al., 1978). The sample flow from the NH3 converter was routed to an Advanced 
Pollution Instruments (AH) Model 200 chemiluminescence based NO monitor where the transformed NT 
concentration in parts per billion by volume (ppbv) was determined. Part of the flow from the chamber 
was bypassed directly to the API, which transformed to NO only the NO+N02 (=NOx) portion of NT via a 
molybdenum converter heated to - 350°C (Aneja et al., 1996; Fehsenfeld et al., 1987). The API then 
determined the MI3 concentration in surface lagoon air by subtracting the NOx signal from the NT signal 
(NH3= NT - NOx). The API was calibrated following written protocols using a Thermo Environment 
Instruments Inc. Model 146 gas dilutionltitration instrument with a calibration gas mixture of NO in N2 
i.e., parts per million by volume (734ppmv) and compressed zero-grade air. A multipoint calibration on 
the API analyzer was performed before each set of intensive measurements and the instrument was zeroed 
and spanned daily during each measurement intensive. The early morning data gaps (Figure 4) represent 
the time period during which the daily zerolspan procedure was performed on the ammonia analyzer. The 
efficiency of the ammonia converter was checked regularly using a known ammonia concentration. 
Laboratory tests using a known concentration of NH, have shown no measurable conversion of NH, to 
NO at 350°C within a molybdenum converter. lnstrumentation was housed in a temperature controlled 
mobile laboratory (modified Ford Aerostar van). 



3. Results and Discussion 

The ammonia-water system has been studied in the past because of its industrial importance and as a 
means for studying the absorption/desorption mechanism (Whitman and Davis, 1924; Godfrey, 1973; 
Levenspieal and Godfrey, 1974; Ibusuki and Aneja, 1984; Leuning et al., 1984). All these previous 
studies indicate that generally both the gas and liquid phase resistance are equally important in 
determining the overall desorption/absorption rate. 

The measurements described for determining ammonia flux at the lagoon-atmosphere interface are made 
with the dynamic chamber system with continuous impeller stirring (the carrier gas flow rate through the 
chamber and stirrer speed may be changed). Utilizing the power-law profile which is frequently used in 
air pollution applications (Arya, 1999) we are able to estimate what wind velocities are at a height of 0.1 
m (the height of the impeller above water-air interface) when 10 m wind heights are known. The power- 
law profile is given by: 

where Vr is the wind velocity at a reference height & and m is taken to be 0.1 for water surfaces (Arya, 
1988). 

Throughout the measurement period during this study, mean wind velocities were between 1 and 4 d s  at 
a height of 10 m. Through the power-law profile above this equates to wind speeds between 0.6 and 2.4 
m/s at a height of 10 cm similar to wind speeds inside the chamber (measured with a hot wire 
anemometer between -1 and 2.5 d s )  for our design configuration. 

The dynamic chamber system with continuous impeller stirring meets the necessary criteria for 
performance as a Continuously Stirred Tank Reactor (CSTR). For performance as a CSTR, the chamber 
needs to be "ideally" mixed (Aneja, 1976). In ideal mixing the composition of any elemental volume 
within the chamber is the same as that of any other volume. Tracer experiments (Residence Time 
Distribution) were used to test the flow and mixing characteristics of the system. The results of these 
mixing studies showed that the dynamic chamber behaved as a 'perfect' mixer with negligible stagnancy 
or channeling. 

3. I Seasonal fluxes 

Table 3 summarizes the average fluxes for each season. Using seasonal averages, the percent of total 
yearly flux attributable to summer months is -60%. The change in the daily flux pattern for each season 
can be seen in Figure 4 together with one standard deviation (k 1 s.d.). Each data point in this figure 
represents an average of the flux measured at a particular time over the entire measurement period. In 
general, n=12 (where n is the number of flux values that made up the average) for the summer and spring 
seasons, n=4 for the winter season except between 1 IAM-5PM where n=8, and n=6 for the fall season. 
The morning data gaps (Figure 4) represent the time period during which the daily zerolspan procedure 
was performed on the ammonia analyzer. The analyzer was also multipoint calibrated regularly during 
the same time period. The reasons for the slight flux increase during morning hours, prior to the daily 
zerolspan procedure is not known. However, ammonia desorption from the inner surfaces caused by 
morning temperature increase may be a possibility (Williams et al., 1992, Adema et al., 1990). 



Table 3. Summary table of average daily NH~-N(~ )  fluxes by season. 

( a ' N ~ 3 - ~  flux = (1 41 1 7) NH3 flux. 
'bkJnits of daily flux are pg N  mS2 mid'. 
'c'Numbers in parentheses are one standard deviation. 
( d ) ~ l l  values measured fiom 11AM to 5PM EST. 

Minimum ~ e a n ' ~ )  

Summer '97 

Fall '97'd) 
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Spring '98 

'e)~easurements were made on Feb 1,2,8, 15, 18,20,21,22,23,25, and 26 1998 (1 1 AM-5 PM 
EST) with 2 1,22, and 25 Feb being diurnal variations. 

Maximum 

3.2 Lagoon temperature and ammonia flux 

The pronounced summer maximum flux suggests that temperature is an important factor regulating the 
loss of NH3 from the waste lagoon to the atmosphere. In this study the relationship between lagoon 
temperature and NH3 flux is examined over a relatively wide range of temperatures (-4°C to -40°C). 
Table 4 lists average lagoon surface temperatures measured during each season. We observed an 
exponential (r2 = 0.78) relationship between NH3 flux and lagoon water temperature measured over the 
year as illustrated in Figure 5. Each point in this figure represents an hourly averaged NH3 flux (n=6, 
where n is the number of flux values in an hourly average) plotted against the corresponding hourly 
temperature measurement. A reason for the exponential relationship is that the liquid phase mass transfer 
coefficients of NH3 in water are exponential functions of temperature in the range 5°C to 30°c, (Ibusuki 
and Aneja, 1984), and the dependence of Henry's Law on temperature (Dasgupta and Dong, 1986; Bates 
and Pinching, 1950). Thus, the transfer of NH3 across the liquid-gas interface follows an exponential 
model; and the flux increases exponentially with surface lagoon temperature. The ammonia flux from the 
waste storage and treatment lagoon in North Carolina may be predicted by the observational model 
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1706 (552) 

Loglo (NH3 - N Flux) = 0.048 TA + 2.1 
where, 

I 

8526 

1913 

695 

3594 

NH3 - N Flux, pg N m-2 rnin-' 
TA lagoon surface temperature, 'C. 

The reason for the high NH3 flux during summer is a combination of chemical and physical processes 
occurring within the lagoon. First, the decomposing waste sludge at the bottom of the lagoon acts as a 
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Figure 4. Daily trends of ammonia-N flux from the lagoon during the four predominant seasons. N=12 in summer, n=12 in spring, n=6 
in fall, and n=4 in winter except 11 am and 5 pm where n=8. Vertical lines represent one standard deviation. 



Table 4. Sampling periods for NH3-N flux measurements and the mean, standard deviation, and range of 
lagoon surface (i.e., 15 cm depth) parameters measured during the N-NH3 flux experiments. 

Season Sample Dates 
Lagoon 

~em~erature '~ '  Lagoon pH 

Summer 

Winter 

Fall 

1 1 Feb-26 Feb '98" 

1 Aug-15 Aug '97 

1 Dec-17 Dec '97 

'a'~nits of lagoon temperature are degrees Celsius. 
"units of TKN nitrogen are mg NL. 
  umbers in parentheses are one standard deviation. 

30 (3.3)"' 

25.3-39.1 

Spring 

' d ' ~ l ~ ~  measurements were made on December 1,3,5,7, 15, andl7, 1997 (from 1 1 AM to 5 PM EST). 
" ' ~ 1 1  values of lagoon temperature and pH measured from 11 AM to 5 PM EST manually. 
"~easurements were made on February 1,2,8, 15, 18,20,21,22 23,25, and 26, 1998 (from 11 AM to 5 

PM EST), with 21,22, and 25 February representing diurnal variations. 

11.6 (2.2)(e' 

8.4-15.3 

7.5 (. 18) 

7.1-7.8 

16 May-27 May '98 

648.1 (27.7) 

587-695 

8.0 (0.06) 

7.9-8.1 

663.3 (33.7) 

599-7 15 

24.7 (3.2) 

20.4-35.9 

7.7 (0.06) 

7.64-7.8 1 

603.3 (48.2) 

540-720 





source of NH3, and the rate of decomposition increases with temperature. As NH3 from the surface of the 
lagoon is volatilized, NH3 formed from the decomposition of sludge at the bottom of lagoon diffuses 
upward and replenishes the volatized NH3 in the upper layers of the lagoon. Since this lagoon is not 
physically mixed by forced means, ammonia's principle mode of transport is through diffusion and mass 
transfer processes (Muck and Steenhuis, 1982). As illustrated by Ibusuki and Aneja (1984), higher 
temperatures increase the transfer rate of NH3 across the liquid-gas interface. Thus, summer temperatures 
coupled with a readily available source of NH3 results in summer fluxes (4017 k 987 p g  N m-2 m i d )  
which are about an order of magnitude greater than those observed during the winter (305 k 154 pg N m-2 
min") season. 

Temperature (lagoon surface water andfor ambient) is a controller of NH3 emissions in the boundary 
layer, and therefore NH3 mixing ratios in the lower troposphere. Langford et al. (1992) have suggested 
that the "typical" seasonal and die1 cycles of boundary layer NH3 levels are, in general, a function of air 
temperature, with higher NH3 mixing ratios associated with warmer temperatures. These seasonal NH3 
concentrations should therefore be manifest in ammonium ion concentration [NH~] in precipitation. 

Multiple regression analysis of monthly volume-weighted ammonium concentration in precipitation at the 
National Atmospheric Deposition Program (NADP) site located in close proximity to the flux study, 
NC35 (located in Sampson County, latitude 35' 0 1 ' 33" N and longitude 78' 16' 2 1" W (NADPNTN, 
1998)), during the period 1982-1996 reveals a statistically significant (pc0.01, r2 = 0.29) positive 
correlation between mean monthly surface temperature and log of ammonium concentration (Figure 6). 

Temperature ('C) 

Figure 6. Natural log of monthly volume-weighted ammonia (m) ion concentration in precipitation 
versus mean monthly atmospheric ambient temperature ("C) for the NADP/NTN site NC35, located in 
Sampson County, during the period 1983-1996 ( 0 )  and the corresponding regression line (---). 
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The present study has shown that volatilization of NH3 from swine waste lagoons has a positively 
correlated exponential relationship with lagoon surface water temperature. At sites such as NC35, which 
are likely influenced by multiple nearby swine facilities, this may also contribute to the temperature 
dependence of ambient NH3 concentrations and subsequent NH: concentrations in precipitation. Walker 

(1998) has shown a statistically significant seasonal cycle for [NH:] in precipitation, which maximizes 

during summer months, at NADP sites across North Carolina. 

3.3 Lagoon pH and ammonia_flux 

The highest pH values were observed in the fall and winter seasons and ranged from 7.7 to 8.1 (Table 4). 
Koelliker and Minor (1973) have also observed pH values up to 8 in the fall and winter at a Missouri hog 
lagoon. The relative stability of lagoon pH throughout the year is due to the high buffer capacity of the 
slurry (Olesen and Somrner, 1993). The pH of the lagoon is maintained by the bicarbonate ion, formed as 
a product of the hydrolysis of urea and microbial conversion of organic matter (equation 4), which 
neutralizes the H* ion released into solution by ~&'(aq) as NH3(aq) volatilizes (equation 5) (Sornrner et 
al., 1991; Fordham & Schwerdman, 1977): 

Several published modeling studies (Dewes, 1996; Muck and Steenhuis, 1982; Vlek and Stumpe, 1978; 
Sommer et al., 1991) report a positive relationship between lagoon NH3 flux and pH. In lagoon slurry, 
NH3 will be in solution with m' according to the following equilibrium (Warneck, 1988): 

The direction of the equilibrium in equation 6 depends on the pH. As the pH increases ([OH-] increases), 
the equilibrium shifts toward the left increasing the concentration of NH3 (aq) and hence the potential for 
volatilization. Thus, the proportion of the total NH, concentration that is ionized at any time is a function 
of lagoon pH. Equation 7 provides the theoretical relationship between the aqueous ammonia fraction, F 
= N H ~ ( N H ~ + ~ ' ) ,  and pH of the lagoon (Loehr, 1984): 

where pK, is the negative logarithm of the ionization constant for reaction (6). The relationship between 
flux and the pH over the range observed in this study (7.1 to 8.1) follows the theoretical prediction given 
by equation (7). 

3.4 TKN and ammonia flux 

A plot of the average daily flux over the entire year against TKN nitrogen for lagoon samples collected on 
the same day as the flux measurement is shown in Figure 7. We observed that the TKN levels remain 
relatively constant, varying between -500 and -750 mg N L-' (Table 4). This stability is because the 
lagoon on which our measurements were taken is part of a steady state commercial operation at which 
animal weight and feed distributions are about the same throughout the year. Thus, the fresh waste input 
into the lagoon has a relatively constant nitrogen content which keeps lagoon TKN levels steady 
throughout the year. Across different seasons, the lagoon experiences various rates of evaporation and 





Table 5. Ammonia-nitrogen emissions estimates and comparison of results. 

Author Emission Factors 
(kgN/animaYy ) 

Asman et al., 1992' 

van der Hoek, 1998 

4.4 1 

Battye et al., 1994- 7.58 

ECETOC (1 994'" 1 .O 

Dragosits et al., 1998" 

This Study, 1998" 

3.18 

McCulloch et al., 1998" 

Summer 

4.88-9.52 

Spring 

Winter 

Average 

Fall 

** * Includes emissions from waste lagoons, animal houses, and surrounding crops. 
Includes emissions from waste lagoons only. 
Derived from summer measurements only. 

1.1 



receives varying amounts of precipitation; however, these factors are likely to cause relatively minor 
fluctuations in the nitrogen concentration of the lagoon. 

3.5 Scaling Ammonia Emissions Utilizing Remotely Sensed Data 

Using the GIs spot satellite image of North Carolina for the period 1995-96, a statistically random sample 
of 50 lagoons was obtained for lagoon surface area in Eastern North Carolina 
(http://www.lib.ncsu.edu/stacks/gis). The 50 lagoons sampled for surface area, measured with the help of 
ARCVIEW 3.0, was 54 ha (i.e., - 1 hdlagoon). The number of lagoons in Eastern North Carolina is 
-2500 lagoons (NCDA, 1998). The seasonal average lagoon ammonia emission from this study is -1718 
k 523 pg ~ / m ~ / m i n ;  and the total ammonia emissions from swine operations is -68,540 tons N/yr (Aneja 
et al., 1998 b,c, and Table 1). From the emissions obtained in this study, it is therefore estimated that 
lagoon ammonia emissions in Eastern North Carolina comprise approximately 33% of total swine NH3 
emissions in North Carolina. 
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