
A Flexible Class of Skew-Symmetri Distributions(running head: exible skew-symmetri distributions)YANYUAN MANorth Carolina State UniversityMARC G. GENTONNorth Carolina State UniversityABSTRACT. We propose a exible lass of skew-symmetri distributions for whih theprobability density funtion has the form of a produt of a symmetri density and a skewingfuntion. By onstruting an enumerable dense subset of skewing funtions on a ompatset, we are able to onsider a family of distributions whih an apture skewness, heavytails, and multimodality systematially. We present three illustrative examples for the�ber-glass data, simulated data from a mixture of two normal distributions, and Swissbills data.Key Words: dense subset; generalized skew-elliptial; multimodality; skewness; skew-normal.1 IntrodutionA popular approah to ahieve departures from normality onsists of modifying the probability densityfuntion (pdf) of a random vetor in a multipliative fashion. Wang, Boyer, & Genton (2004) showedthat any p-dimensional multivariate pdf g(x) admits, for any �xed loation parameter � 2 Rp , a uniqueskew-symmetri (SS) representation: g(x) = 2f(x� �)�(x� �); (1)where f : Rp ! R+ is a symmetri pdf and � : Rp ! [0; 1℄ is a skewing funtion satisfying �(�x) =1� �(x). Vie-versa, any funtion g of the type de�ned by (1) is a valid pdf. By symmetri, we meanf(x) = f(�x) and we will use \symmetri pdf" and the property f(x) = f(�x) interhangeably inthe sequel. Throughout this paper, we restrit our interest on funtions f 2 C0(Rp ) and ontinuousskewing funtions �(x), where C0(Rp ) denotes ontinuous funtions on Rp with the property f(x) ! 0when kxk2 !1, and k � k2 denotes the L2 norm. Genton & Loper�do (2002) onsidered the subfamilyof generalized skew-elliptial (GSE) distributions for whih the pdf f in (1) is elliptially ontouredrather than only symmetri. Many de�nitions of skewed distributions found in the literature an bewritten in the form of a skew-symmetri distribution (1). For instane, Azzalini & Dalla Valle's (1996)multivariate skew-normal distribution orresponds to f(x) = �p(x;0;
) and �(x) = �(�Tx), where�p(x;�;
) is the p-dimensional multivariate normal pdf with mean vetor � and orrelation matrix 
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� is the standard normal umulative distribution funtion (df), and � is a shape parameter ontrollingskewness. Similarly, multivariate distributions suh as skew-t (Brano & Dey, 2001; Azzalini & Capitanio,2003; Jones & Faddy, 2003; Sahu, Brano, & Dey, 2003), skew-Cauhy (Arnold & Beaver, 2000) andother skew-elliptial ones (Azzalini & Capitanio, 1999; Brano & Dey, 2001; Sahu et al., 2003) an berepresented by the skew-symmetri distribution (1) with appropriate hoies of f and �.In this artile, we propose a exible lass of distributions (1) by onstruting an enumerable densesubset of the skewing funtions � on a ompat set. The result is a family of distributions whihan apture skewness, heavy tails, and multimodality systematially. The onstrution of the subset isthrough polynomials, whih has a similar avor as the seminonparametri (SNP) representation proposedby Gallant & Nyhka (1987). The latter is de�ned as the produt of the standard normal pdf and thesquare of a polynomial. The SNP distribution requires the oeÆients in the polynomial to be onstrainedin order to yield a valid density. It also relies on rejetion sampling shemes to simulate random samples.These diÆulties do not our with our onstrution.The ontent of the paper is organized as follows. In Setion 2, we desribe a subset of skewingfuntions based on odd polynomials and prove that it results in a dense subset of the skew-symmetridistributions. In partiular, we de�ne exible skew-normal and skew-t distributions that an have morethan one mode. This is an essential property for some situations and provides an alternative to modelingwith mixtures of distributions. The exibility and possible multimodality of the new lass of distributionsis illustrated in Setion 3. We present three illustrative examples in Setion 4, and a disussion in Setion5.2 A dense subset of skew-symmetri distributionsIn this setion, we onstrut a dense subset of skew-symmetri distributions through approximating theskewing funtion � on a ompat set. Any ontinuous skewing funtion � an be written as:�(x) = H(w(x)); (2)where H : R ! [0; 1℄ is the df of a ontinuous random variable symmetri around 0, and w : Rp ! Ris an odd ontinuous funtion, that is w(�x) = �w(x). In fat, for a hosen H suh that H�1 exists,w(x) = H�1(�(x)) is a ontinuous odd funtion. This representation has been used by Azzalini &Capitanio (2003) to de�ne ertain distributions by perturbation of symmetry. Note however that therepresentation (2) is not unique due to the many possible hoies of H .Let PK(x) be an odd polynomial of order K. A polynomial of order K in Rp is de�ned as a linearombination of terms of the form Qpi=1 xrii , where k =Ppi=1 ri � K. If eah term has an odd order (allk's are odd), then the polynomial is alled an odd polynomial, whereas if eah term has an even order(all k's are even), it is alled an even polynomial. We de�ne exible skew-symmetri (FSS) distributions2



by restriting (1) to: 2f(x� �)�K(x� �); (3)where �K(x) = H(PK(x)) and H is any df of a ontinuous random variable symmetri around 0. Notethat there are no onstraints on the oeÆients of the polynomial PK in order to make (3) a validpdf. In partiular, (3) de�nes exible generalized skew-elliptial (FGSE) distributions when the pdf f iselliptially ontoured. For instane, exible generalized skew-normal (FGSN) distributions are de�nedby: 2�p(x; �;
)�(PK(A(x� �))); (4)and exible generalized skew-t (FGST) distributions are de�ned by:2tp(x; �;
;�)T (PK(A(x� �));�); (5)where we use the Choleski deomposition 
�1 = ATA, tp denotes a p-dimensional multivariate t pdf,and T denotes a univariate t df, both with degrees of freedom �. Note that we ould use �, or anyother symmetri df, instead of T for the skewing funtion in (5). In pratie, a popular hoie for thedf H would be � or the univariate df orresponding to the symmetri pdf f . E�etively, the followingproposition shows that FSS distributions an approximate skew-symmetri distributions arbitrarily well.Proposition 1 Let the lass of exible skew-symmetri (FSS) distributions onsist of distributions withpdf given in (3) and the lass of skew-symmetri (SS) distributions of distributions with pdf given in (1),where f 2 C0(Rp ) in both lasses and � is ontinuous. Then the lass of FSS distributions is dense inthe lass of SS distributions under the L1 norm.Proof: An arbitrary distribution in the SS lass an be written as 2f(x��)H(w(x��)), where f and Hare ontinuous, H�1 exists, and w is a ontinuous odd funtion. Beause f 2 C0(Rp ), for any arbitrary� > 0, we an �nd a ompat set D whih is symmetri around � (if x�� 2 D then ��x 2 D), suh thatfor any x�� =2 D, f(x��) < �=4. Thus, for any x�� =2 D, j2f(x��)�(x��)�2f(x��)H(P ((x��))j < �for any odd polynomial P .Sine f is ontinuous, f is bounded on D. We denote the bound by C, i.e. f(x � �) � C for anyx � � 2 D. We use D1 to denote the image spae of w, i.e. D1 = fw(x)jx 2 Dg. Beause of theontinuity of w, whih is a result of the ontinuity of both H and �, D1 is also ompat. The ontinuousfuntion H is uniformly ontinuous on the ompat set D1. Hene there exists � > 0 suh that forany y1, y2 2 D1 and jy1 � y2j < �, we get jH(y1) � H(y2)j < �=(2C). From the Stone-Weierstrasstheorem (see e.g. Rudin, 1973, p. 115), there exists a polynomial P suh that jw(x� �)�P (x� �)j < �for any x � � 2 D. We deompose P into an even term Pe and an odd term Po, i.e. P = Pe + Po.Then jw(x � �) � Pe(x � �) � Po(x � �)j < � and jw(� � x) � Pe(� � x) � Po(� � x)j < �. Beausew and Po are odd, and Pe is even, we get j � w(x � �) � Pe(x � �) + Po(x � �)j < �. Notie that2jw(x��)�Po(x��)j � jw(x��)�Pe(x��)�Po(x��)j+ j�w(x��)�Pe(x��)+Po(x��)j < 2�,3



so jw(x � �) � Po(x � �)j < �. Combining these results, we know that for an arbitrary member2f(x � �)H(w(x � �)) in SS and an arbitrary � > 0, we an �nd a member 2f(x � �)H(Po(x � �)) inFSS suh that j2f(x� �)H(w(x � �))� 2f(x� �)H(Po(x� �))j < � for any x� � 2 D.Hene FSS is dense in SS with respet to the L1 norm.Remark 1 The requirement f 2 C0(Rp ) in proposition 1 an be relaxed to allow that f has a �nitenumber, m say, of poles. In this ase, FSS is dense in SS with respet to almost uniform onvergene(uniform in a set whose omplement is of measure arbitrarily small). Indeed, let Rp (r) denote Rp minusthe union of m open balls of radius r entered at the m poles. Then FSS is dense in SS on Rp (r) underthe L1 norm. Letting r ! 0, the result follows.Proposition 1 shows in partiular that the lass of generalized skew-elliptial, skew�t, and skew-normal distributions an be approximated arbitrarily well by their exible versions.3 Flexibility and multimodalityIn Figure 1, we illustrate the shape exibility of the FGSN distribution in the univariate ase. Its pdffor K = 3 is de�ned by: 2�1(x; �; �2)�(�(x � �)=� + �(x� �)3=�3): (6)Figure 1 should be here.Figure 1(a) depits the pdf of the FGSN model for � = 0, �2 = 1, � = 4, and � = 0, i.e. it reduesto Azzalini's (1985) univariate skew-normal distribution. However, when � 6= 0, the pdf (6) an exhibitbimodality as shown in Figure 1(b) with � = 1, and � = �1. In general, as the degree K of the oddpolynomial in the skewing funtion beomes large, the number of modes allowed in the pdf inreases,thus induing a greater exibility in the available shapes. Unfortunately, the number of modes dependson the degree K of the odd polynomial, on the symmetri pdf f , and on the df H of the skewingfuntion �K in a omplex fashion. Indeed, even for the univariate situation given by p = 1, the modesare determined by zeros of the �rst derivative of the FSS distribution (3) given by:2f 0(x)H(PK (x)) + 2f(x)H 0(PK(x))P 0K (x); (7)for whih the number of zeros annot be easily omputed. Even with restritions to some spei� f andH funtions, a general statement on the relation between the number of modes and the order of thepolynomial seems not available. However, in the univariate ase, if we onsider a normal pdf f = �1 anda standard normal df H = � with an odd polynomial of orderK = 3, we have the following proposition.Proposition 2 The lass of exible generalized skew-normal (FGSN) distributions with pdf 2�1(x; �; �2)�(�(x��)=� + �(x� �)3=�3) has at most 2 modes. 4



Proof: Without loss of generality, we an set � = 0, � = 1, assume � > 0, and only need to prove that (x) = 2�(x)�(�x + �x3) has at most two modes. We prove this by ontradition. If  (x) has morethan two modes, then  0(x) has at least �ve zeros. In the following proof, we show that this annot bethe ase. We have  0(x) = 2�(x)((� + 3�x2)�(�x + �x3) � x�(�x + �x3)) and need to onsider threeases:ase 1: � = 0We write  0(x) = 2x�(x)�(x), where �(x) = 3�x�(�x3) � �(�x3). We an verify that �0(x) =3��(�x3)�1(y) where y = x2 and �1(y) = 1 � y � 3�2y3. Sine �1(y) is a dereasing funtion ony � 0, �0(x) has at most two zeros. Thus, �(x) has at most three zeros, hene  0(x) has at most fourzeros.ase 2: � > 0Notie that  0(x) > 0 for x � 0. For 1(x) =  0(x)=(2x�(x)) = �(�x+�x3)(�+3�x2)=x��(�x+�x3),we get 01(x) = �(�x + �x3)=(�9�x2)2(y), where y = � + 3�x2 > 0 and 2(y) = y4 + �y3 + (3 �2�2)y2 � (3� + 9�)y + 18��. Sine 002 (y) = 12y2 + 6�y + (6 � 4�2) has at most 1 positive zero, and02(y) = 4y3 +3�y2 + (6� 4�2)y� (3�+9�) < 0 at y = 0, we know that 02(y) has at most one positivezero. Thus 2(y) has at most 2 positive zeros. This means 01(x) has at most two positive zeros, so  0(x)has at most three (positive) zeros.ase 3: � < 0Notie that  0(x) < 0 for x 2 [0;p��=(3�) ℄ and  0(x) > 0 for x 2 (�1;�p��=(3�) ℄. So we onlylook for solutions x 2 (p��=(3�);1) and x 2 (�p��=(3�); 0). Let y = �+ 3�x2, then there is a oneto one mapping between the x in the above range and y 2 (�;1). Let 1(x) and 2(y) have the sameexpressions as in ase 2. We have that 2(y) has at most four zeros sine it is a fourth order polynomial.Notie that 2(�) < 0; 2(�1) > 0, so 2(y) has at most three zeros in (�;1). This means 01(x) hasat most three zeros, hene  0(x) has at most four zeros.Figure 1 illustrates the result of proposition 2 by depiting a unimodal and a bimodal pdf from theunivariate FGSN with K = 3. For K = 1, the pdf is always unimodal as was already noted by Azzalini(1985) for the univariate skew-normal distribution.Next we investigate the exibility of the FGSN distribution in the bivariate ase. Its pdf for K = 3,� = 0, and 
 = I2 is given by:2�2(x1; x2;0; I2)�(�1x1 + �2x2 + �1x31 + �2x32 + �3x21x2 + �4x1x22): (8)Figure 2 should be here.Figure 2 depits the ontours of four di�erent pdfs (8) for various ombinations of values of theskewness parameters �1, �2, �1, �2, �3, and �4. In partiular, for �1 = �2 = �3 = �4 = 0, thepdf is exatly the bivariate skew-normal proposed by Azzalini & Dalla Valle (1996), and known to beunimodal, see Figure 2(a). However, Figures 2(b)-(d) show that many di�erent distributional shapes anbe obtained with the parameters �1; : : : ; �4, in partiular bimodal and trimodal distributions. Additional5



exibility an be imposed on the tail behavior by hoosing pdfs other than the normal for the symmetripdf f , for example a t distribution. This yields exible generalized skew-t distributions (FGST) and willprove useful for appliations sine they an allow for both fat tails and skewness, see Setion 4, example1. Finally, note that the stohasti representation of FSS distributions follows from the stohasti rep-resentation of SS distributions desribed by Wang et al. (2004), see also Azzalini & Capitanio (2003).It provides a quik way to generate pseudo-realizations from the FSS distribution (3).4 Model �tting and examplesIn this setion, we present three appliations of exible generalized skew-elliptial distributions. Wearry out the estimation and model �tting by maximizing the likelihood funtion orresponding to (3)for a given order K. Unlike SNP distributions, there are no onstraints on the parameters of the skewingfuntion �K and standard optimization tehniques are used. To avoid loal maxima, we arry out theoptimization routine with several di�erent starting values widely sattered in the feasible region. Theorder K is hosen adaptively via model seletion strategies. Beause for a given symmetri pdf f andskewing funtion �K the models indued by (3) are nested whenK dereases, likelihood ratio tests an beused to identify an appropriate value of K. Model seletion riteria suh as AIC (twie the loglikelihoodminus twie the number of parameters) and BIC (twie the loglikelihood minus the number of parameterstimes the logarithm of the sample size) an be used as well. In pratie, K = 3 seems to provide enoughexibility to model unimodal and bimodal pdfs.4.1 Example 1: �ber-glass dataThis example is onerned with a unidimensional data set of breaking strengths values of 1.5m longglass �bers. Jones & Faddy (2003) and Azzalini & Capitanio (2003) �t two forms of skew-t distributionsto these data. They both noted skewness on the left as well as heavy tail behavior.We �t a exible generalized skew-t (FGST) distribution (5) with pdf:2t1(x; �; �2; �)T (PK((x � �)=�); �); (9)for K = 1 and K = 3. The �tted parameters, obtained by maximizing the orresponding likelihoodfuntion, are listed in Table 1.Table 1 should be here.Note the small values for �̂ indiating tails muh heavier than the normal distribution. The �ttedpdfs are depited in Figure 3 for K = 1 (solid line) and K = 3 (dotted line), along with a histogram ofthe �ber-glass data.Figure should be here. 6



There appear to be not too muh di�erene between the two models. We use a likelihood ratio test(LRT) for the null hypothesis H0 : � = 0 with the approximate asymptoti distribution �21 and use theAIC, BIC riteria for model seletion. The results are tabulated in Table 1. All three methods favor theFGST model with K = 1 whih does not allow for bimodality.4.2 Example 2: mixture of normalsThis example illustrates that FSS distributions an be used as an alternative to mixtures of distributionsin situations where multimodality is desirable. We onsider a simulated data set of size 100 from amixture of two bivariate normal distributions:(1� ")N2(�1;�1) + "N2(�2;�2); (10)with " = 0:4, �1 = (0; 0)T , �2 = (5; 4)T , and:�1 = 0� 2 11 4 1A ; �2 = 0� 3 22 6 1A : (11)Figure 4 shoube be here.Figure 4(a) depits the 100 simulated data along with the bivariate ontours of the pdf orrespondingto (10), whih shows bimodality.We �t a bivariate exible generalized skew-normal (FGSN) distribution (4) with K = 1 and K = 3.The parameters, estimated by maximizing the orresponding likelihood funtion, are listed in Table 2.Table 2 should be here.The ontours of the �tted bivariate pdfs are depited in Figure 4(b) for K = 1 and in Figure 4()for K = 3. The ase K = 1 orresponds to Azzalini & Dalla Valle's (1996) bivariate skew-normaldistribution, whih annot apture the bimodality. The �t with K = 3 aptures the bimodality andadapts losely to the shape of the simulated data. We test the model with the likelihood ratio test andAIC, BIC riteria, and �nd that all three selet the model with K = 3. We further �t a model withK = 5 and �nd that the likelihood ratio test and AIC sore indiate that K = 5 is a better �t for thedata, while BIC suggests that K = 5 imposes too muh model omplexity for the gain. We deide toadopt a more omplex model only when all three methods indiate so, hene we keep K = 3 as our �nalmodel. The results of the model seletion are tabulated in Table 3.Table 3 should be here.4.3 Example 3: old Swiss 1,000 fran bills dataThis example onsists of measurements on 100 genuine and 100 forged old Swiss 1,000 fran bills analyzedby Flury & Riedwyl (1988). We onsider two variables: the distane X1 from the inner frame to thelower border, and the length X2 of the diagonal of the bills.Figure 5 should be here. 7



Figure 5 depits satter plots of (X1; X2) along with �tted FGSN pdfs for various orders of thepolynomial PK in the skewing funtion. Panel (a) represents a �t with K = 1 whih orresponds toAzzalini & Dalla Valle's (1996) bivariate skew-normal pdf and implies unimodality. Therefore, this �tannot apture the di�erene between the genuine and forged bills. Panel (b) represents a �t with K = 3whih takes into aount the bimodality arising from the two types of bills. A �t with K = 5 is presentedin Panel (). It shows a omplex distributional pattern in the data and detets a third mode. Althoughthis additional mode appears to be loated over a hole of the satter plot, it suggests a possible thirdgroup near that region. This pattern has also been disovered by various nonparametri kernel densityestimators, see Simono� (1996, p. 111-114). Likelihood ratio tests and AIC favor the model with K = 5while BIC favors K = 3. We keep the model with K = 3 in Panel (b), that is the bimodal pdf whihdetets the two groups of genuine and forged Swiss bills.5 DisussionWe have investigated FSS distributions, a exible lass that an take skewness, heavy tails, and mul-timodality, into aount. It is based on an approximation of the skewing funtion by a univariatesymmetri df evaluated at odd polynomials. Using the Stone-Weierstrass theorem, we have provedthat this approximation an be made arbitrarily aurate by inreasing the order of the odd polynomial.However, the number of oeÆients of the polynomial inreases quikly with its order K, espeially sowhen the dimension p of the distribution is large as well. In this ase, Monte Carlo Markov Chainmethods might be more appropriate than diret likelihood maximization. In light of the examples inSetion 4, it seems that K = 3 is suÆient for unimodal and bimodal pratial appliations.The hoie of the symmetri pdf f is of pratial importane. Although it has been shown thatany multivariate pdf g an be represented by a skew-symmetri distribution, a parametri form for thepdf f needs to be spei�ed for our appliations. It turns out that the normal and the t pdfs are themost natural ones, yielding the exible models FGSN and FGST. The latter model is partiularly wellsuited to apture heavy tails, possibly Cauhy-like, in addition to skewness and multimodality. Moresophistiated symmetri pdfs f ould be used as well, e.g. suh as the slash distribution. The hoie ofthe df H has theoretially no impat, but in pratie it an inuene the order K of the polynomialPK . For appliations, H should be hosen to failitate omputations. A natural hoie is H = � or thedf orresponding to the symmetri pdf f .AknowledgmentsThe authors thank the Editor, the Assoiate Editor, and four anonymous referees for helpful sugges-tions and omments that improved this artile. The authors are also grateful to Subhashis Ghosal foromments on proposition 1. The work of Yanyuan Ma is supported by grant NIGMS 1 R01 Gm67299-01.8



ReferenesArnold, B. C. & Beaver, R. J. (2000). The skew-Cauhy distribution, Statist. Probab. Lett., 49, 285-290.Arnold, B. C. & Beaver, R. J. (2002). Skewed multivariate models related to hidden trunation and/orseletive reporting, Test, 11, 7-54.Azzalini, A. (1985). A lass of distributions whih inludes the normal ones, Sand. J. Statist., 12,171-178.Azzalini, A. & Dalla Valle, A. (1996). The multivariate skew-normal distribution, Biometrika, 83,715-726.Azzalini, A. & Capitanio, A. (1999). Statistial appliations of the multivariate skew normal distribution,J. Roy. Statist. So. Ser. B, 61, 579-602.Azzalini, A. & Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasison a multivariate skew t distribution, J. Roy. Statist. So. Ser. B, 65, 367-389.Brano, M. D. & Dey, D. K. (2001). A general lass of multivariate skew-elliptial distributions, J.Multivariate Anal., 79, 99-113.Flury, B. & Riedwyl, H. (1988). Multivariate statistis, a pratial approah, Cambridge UniversityPress, Cambridge.Gallant, A. R. & Nyhka, D. W. (1987). Seminonparametri maximum likelihood estimation, Eono-metria, 55, 363-390.Genton, M. G., He, L. & Liu, X. (2001). Moments of skew-normal random vetors and their quadratiforms, Statist. Probab. Lett., 51, 319-325.Genton, M. G. & Loper�do, N. (2002). Generalized skew-elliptial distributions and their quadratiforms, Institute of Statistis Mimeo Series #2539, under review.(http://www.stat.nsu.edu/�mggenton/publiations.html)Jones, M. C., Faddy, M. J. (2003). A skew extension of the t distribution, with appliations. J. Roy.Statist. So. Ser. B, 65, 159-174.Rudin, W. (1973). Funtional analysis, MGraw-Hill, In. New York.Sahu, S. K., Dey, D. K. & Brano, M. D. (2003). A new lass of multivariate skew distributions withappliations to Bayesian regression models. Canad. J. Statist., 31, 129-150.Simono�, J. S. (1996). Smoothing methods in statistis, Springer. New York.Wang, J., Boyer, J. & Genton, M. G. (2004). A skew-symmetri representation of multivariate distribu-tions, Statist. Sinia, to appear.Reeived January, 2003, in �nal form January, 2004Yanyuan Ma, CRSC, North Carolina State University, Box 8205, Raleigh, NC27695-8205, USA. Email:yma�unity.nsu.eduTable 1: Fitted values of the univariate FGST model for K = 1 and K = 3 for the �ber-glass data, aswell as model seletion riteria.�̂ �̂ �̂ �̂ �̂ LRT (p-value) AIC BICK = 1 1.67 5.14 -0.60 | 2.05 | -31.9 -40.4K = 3 1.60 5.43 0.07 -0.04 2.11 0.42 -33.2 -43.99
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Figure 1: Two members of the univariate FGSN family of distributions with K = 3, � = 0, �2 = 1: (a)� = 4, � = 0 (skew-normal); (b) � = 1, � = �1.
Table 2: Fitted values of the bivariate FGSN model for K = 1 and K = 3 on the simulated mixturedata. �̂1 �̂2 â11 â12 â22 �̂1 �̂2 �̂1 �̂2 �̂3 �̂4K = 1 -1.64 -1.93 0.36 -0.29 0.28 2.42 6.84 | | | |K = 3 1.72 2.08 0.42 -0.26 0.27 -0.78 -1.60 0.21 0.40 0.31 0.56

Table 3: Model seletion riteria for K = 1; 3; 5 on the simulated mixture data.LRT (p-value) AIC BICK = 1 | -898.7 -916.9K = 3 0.0009 -888.0 -916.7K = 5 0.0085 -882.8 -927.0
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Figure 2: Four members of the bivariate FGSN family of distributions with K = 3, � = 0, and 
 = I2:(a) �1 = 2, �2 = 3, �1 = 0, �2 = 0, �3 = 0 , �4 = 0 (skew-normal; unimodal);(b) �1 = 0, �2 = 2, �1 = 0, �2 = �1, �3 = 0 , �4 = 1 (bimodal);() �1 = 1, �2 = 1, �1 = �2, �2 = �2, �3 = �1 , �4 = �1 (bimodal);(d) �1 = 1, �2 = 0, �1 = �1, �2 = 2, �3 = �4 , �4 = �1 (trimodal).
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Figure 3: Histogram of the �ber-glass data and �tted pdfs of the FGST model with K = 1 (solid line)and K = 3 (dotted line) by maximum likelihood.
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Figure 4: Simulated data set of size 100 from a mixture of two normal distributions, with ontours ofthe orresponding bivariate pdf in panel (a). Contours of the bivariate �tted pdf from the FGSN modelwith K = 1 in panel (b) and with K = 3 in panel ().
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Figure 5: Contours of the bivariate FGSN pdf �tted by maximum likelihood for (a) K = 1; (b) K = 3;() K = 5.
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