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exible 
lass of skew-symmetri
 distributions for whi
h theprobability density fun
tion has the form of a produ
t of a symmetri
 density and a skewingfun
tion. By 
onstru
ting an enumerable dense subset of skewing fun
tions on a 
ompa
tset, we are able to 
onsider a family of distributions whi
h 
an 
apture skewness, heavytails, and multimodality systemati
ally. We present three illustrative examples for the�ber-glass data, simulated data from a mixture of two normal distributions, and Swissbills data.Key Words: dense subset; generalized skew-ellipti
al; multimodality; skewness; skew-normal.1 Introdu
tionA popular approa
h to a
hieve departures from normality 
onsists of modifying the probability densityfun
tion (pdf) of a random ve
tor in a multipli
ative fashion. Wang, Boyer, & Genton (2004) showedthat any p-dimensional multivariate pdf g(x) admits, for any �xed lo
ation parameter � 2 Rp , a uniqueskew-symmetri
 (SS) representation: g(x) = 2f(x� �)�(x� �); (1)where f : Rp ! R+ is a symmetri
 pdf and � : Rp ! [0; 1℄ is a skewing fun
tion satisfying �(�x) =1� �(x). Vi
e-versa, any fun
tion g of the type de�ned by (1) is a valid pdf. By symmetri
, we meanf(x) = f(�x) and we will use \symmetri
 pdf" and the property f(x) = f(�x) inter
hangeably inthe sequel. Throughout this paper, we restri
t our interest on fun
tions f 2 C0(Rp ) and 
ontinuousskewing fun
tions �(x), where C0(Rp ) denotes 
ontinuous fun
tions on Rp with the property f(x) ! 0when kxk2 !1, and k � k2 denotes the L2 norm. Genton & Loper�do (2002) 
onsidered the subfamilyof generalized skew-ellipti
al (GSE) distributions for whi
h the pdf f in (1) is ellipti
ally 
ontouredrather than only symmetri
. Many de�nitions of skewed distributions found in the literature 
an bewritten in the form of a skew-symmetri
 distribution (1). For instan
e, Azzalini & Dalla Valle's (1996)multivariate skew-normal distribution 
orresponds to f(x) = �p(x;0;
) and �(x) = �(�Tx), where�p(x;�;
) is the p-dimensional multivariate normal pdf with mean ve
tor � and 
orrelation matrix 
,1



� is the standard normal 
umulative distribution fun
tion (
df), and � is a shape parameter 
ontrollingskewness. Similarly, multivariate distributions su
h as skew-t (Bran
o & Dey, 2001; Azzalini & Capitanio,2003; Jones & Faddy, 2003; Sahu, Bran
o, & Dey, 2003), skew-Cau
hy (Arnold & Beaver, 2000) andother skew-ellipti
al ones (Azzalini & Capitanio, 1999; Bran
o & Dey, 2001; Sahu et al., 2003) 
an berepresented by the skew-symmetri
 distribution (1) with appropriate 
hoi
es of f and �.In this arti
le, we propose a 
exible 
lass of distributions (1) by 
onstru
ting an enumerable densesubset of the skewing fun
tions � on a 
ompa
t set. The result is a family of distributions whi
h
an 
apture skewness, heavy tails, and multimodality systemati
ally. The 
onstru
tion of the subset isthrough polynomials, whi
h has a similar 
avor as the seminonparametri
 (SNP) representation proposedby Gallant & Ny
hka (1987). The latter is de�ned as the produ
t of the standard normal pdf and thesquare of a polynomial. The SNP distribution requires the 
oeÆ
ients in the polynomial to be 
onstrainedin order to yield a valid density. It also relies on reje
tion sampling s
hemes to simulate random samples.These diÆ
ulties do not o

ur with our 
onstru
tion.The 
ontent of the paper is organized as follows. In Se
tion 2, we des
ribe a subset of skewingfun
tions based on odd polynomials and prove that it results in a dense subset of the skew-symmetri
distributions. In parti
ular, we de�ne 
exible skew-normal and skew-t distributions that 
an have morethan one mode. This is an essential property for some situations and provides an alternative to modelingwith mixtures of distributions. The 
exibility and possible multimodality of the new 
lass of distributionsis illustrated in Se
tion 3. We present three illustrative examples in Se
tion 4, and a dis
ussion in Se
tion5.2 A dense subset of skew-symmetri
 distributionsIn this se
tion, we 
onstru
t a dense subset of skew-symmetri
 distributions through approximating theskewing fun
tion � on a 
ompa
t set. Any 
ontinuous skewing fun
tion � 
an be written as:�(x) = H(w(x)); (2)where H : R ! [0; 1℄ is the 
df of a 
ontinuous random variable symmetri
 around 0, and w : Rp ! Ris an odd 
ontinuous fun
tion, that is w(�x) = �w(x). In fa
t, for a 
hosen H su
h that H�1 exists,w(x) = H�1(�(x)) is a 
ontinuous odd fun
tion. This representation has been used by Azzalini &Capitanio (2003) to de�ne 
ertain distributions by perturbation of symmetry. Note however that therepresentation (2) is not unique due to the many possible 
hoi
es of H .Let PK(x) be an odd polynomial of order K. A polynomial of order K in Rp is de�ned as a linear
ombination of terms of the form Qpi=1 xrii , where k =Ppi=1 ri � K. If ea
h term has an odd order (allk's are odd), then the polynomial is 
alled an odd polynomial, whereas if ea
h term has an even order(all k's are even), it is 
alled an even polynomial. We de�ne 
exible skew-symmetri
 (FSS) distributions2



by restri
ting (1) to: 2f(x� �)�K(x� �); (3)where �K(x) = H(PK(x)) and H is any 
df of a 
ontinuous random variable symmetri
 around 0. Notethat there are no 
onstraints on the 
oeÆ
ients of the polynomial PK in order to make (3) a validpdf. In parti
ular, (3) de�nes 
exible generalized skew-ellipti
al (FGSE) distributions when the pdf f isellipti
ally 
ontoured. For instan
e, 
exible generalized skew-normal (FGSN) distributions are de�nedby: 2�p(x; �;
)�(PK(A(x� �))); (4)and 
exible generalized skew-t (FGST) distributions are de�ned by:2tp(x; �;
;�)T (PK(A(x� �));�); (5)where we use the Choleski de
omposition 
�1 = ATA, tp denotes a p-dimensional multivariate t pdf,and T denotes a univariate t 
df, both with degrees of freedom �. Note that we 
ould use �, or anyother symmetri
 
df, instead of T for the skewing fun
tion in (5). In pra
ti
e, a popular 
hoi
e for the
df H would be � or the univariate 
df 
orresponding to the symmetri
 pdf f . E�e
tively, the followingproposition shows that FSS distributions 
an approximate skew-symmetri
 distributions arbitrarily well.Proposition 1 Let the 
lass of 
exible skew-symmetri
 (FSS) distributions 
onsist of distributions withpdf given in (3) and the 
lass of skew-symmetri
 (SS) distributions of distributions with pdf given in (1),where f 2 C0(Rp ) in both 
lasses and � is 
ontinuous. Then the 
lass of FSS distributions is dense inthe 
lass of SS distributions under the L1 norm.Proof: An arbitrary distribution in the SS 
lass 
an be written as 2f(x��)H(w(x��)), where f and Hare 
ontinuous, H�1 exists, and w is a 
ontinuous odd fun
tion. Be
ause f 2 C0(Rp ), for any arbitrary� > 0, we 
an �nd a 
ompa
t set D whi
h is symmetri
 around � (if x�� 2 D then ��x 2 D), su
h thatfor any x�� =2 D, f(x��) < �=4. Thus, for any x�� =2 D, j2f(x��)�(x��)�2f(x��)H(P ((x��))j < �for any odd polynomial P .Sin
e f is 
ontinuous, f is bounded on D. We denote the bound by C, i.e. f(x � �) � C for anyx � � 2 D. We use D1 to denote the image spa
e of w, i.e. D1 = fw(x)jx 2 Dg. Be
ause of the
ontinuity of w, whi
h is a result of the 
ontinuity of both H and �, D1 is also 
ompa
t. The 
ontinuousfun
tion H is uniformly 
ontinuous on the 
ompa
t set D1. Hen
e there exists � > 0 su
h that forany y1, y2 2 D1 and jy1 � y2j < �, we get jH(y1) � H(y2)j < �=(2C). From the Stone-Weierstrasstheorem (see e.g. Rudin, 1973, p. 115), there exists a polynomial P su
h that jw(x� �)�P (x� �)j < �for any x � � 2 D. We de
ompose P into an even term Pe and an odd term Po, i.e. P = Pe + Po.Then jw(x � �) � Pe(x � �) � Po(x � �)j < � and jw(� � x) � Pe(� � x) � Po(� � x)j < �. Be
ausew and Po are odd, and Pe is even, we get j � w(x � �) � Pe(x � �) + Po(x � �)j < �. Noti
e that2jw(x��)�Po(x��)j � jw(x��)�Pe(x��)�Po(x��)j+ j�w(x��)�Pe(x��)+Po(x��)j < 2�,3



so jw(x � �) � Po(x � �)j < �. Combining these results, we know that for an arbitrary member2f(x � �)H(w(x � �)) in SS and an arbitrary � > 0, we 
an �nd a member 2f(x � �)H(Po(x � �)) inFSS su
h that j2f(x� �)H(w(x � �))� 2f(x� �)H(Po(x� �))j < � for any x� � 2 D.Hen
e FSS is dense in SS with respe
t to the L1 norm.Remark 1 The requirement f 2 C0(Rp ) in proposition 1 
an be relaxed to allow that f has a �nitenumber, m say, of poles. In this 
ase, FSS is dense in SS with respe
t to almost uniform 
onvergen
e(uniform in a set whose 
omplement is of measure arbitrarily small). Indeed, let Rp (r) denote Rp minusthe union of m open balls of radius r 
entered at the m poles. Then FSS is dense in SS on Rp (r) underthe L1 norm. Letting r ! 0, the result follows.Proposition 1 shows in parti
ular that the 
lass of generalized skew-ellipti
al, skew�t, and skew-normal distributions 
an be approximated arbitrarily well by their 
exible versions.3 Flexibility and multimodalityIn Figure 1, we illustrate the shape 
exibility of the FGSN distribution in the univariate 
ase. Its pdffor K = 3 is de�ned by: 2�1(x; �; �2)�(�(x � �)=� + �(x� �)3=�3): (6)Figure 1 should be here.Figure 1(a) depi
ts the pdf of the FGSN model for � = 0, �2 = 1, � = 4, and � = 0, i.e. it redu
esto Azzalini's (1985) univariate skew-normal distribution. However, when � 6= 0, the pdf (6) 
an exhibitbimodality as shown in Figure 1(b) with � = 1, and � = �1. In general, as the degree K of the oddpolynomial in the skewing fun
tion be
omes large, the number of modes allowed in the pdf in
reases,thus indu
ing a greater 
exibility in the available shapes. Unfortunately, the number of modes dependson the degree K of the odd polynomial, on the symmetri
 pdf f , and on the 
df H of the skewingfun
tion �K in a 
omplex fashion. Indeed, even for the univariate situation given by p = 1, the modesare determined by zeros of the �rst derivative of the FSS distribution (3) given by:2f 0(x)H(PK (x)) + 2f(x)H 0(PK(x))P 0K (x); (7)for whi
h the number of zeros 
annot be easily 
omputed. Even with restri
tions to some spe
i�
 f andH fun
tions, a general statement on the relation between the number of modes and the order of thepolynomial seems not available. However, in the univariate 
ase, if we 
onsider a normal pdf f = �1 anda standard normal 
df H = � with an odd polynomial of orderK = 3, we have the following proposition.Proposition 2 The 
lass of 
exible generalized skew-normal (FGSN) distributions with pdf 2�1(x; �; �2)�(�(x��)=� + �(x� �)3=�3) has at most 2 modes. 4



Proof: Without loss of generality, we 
an set � = 0, � = 1, assume � > 0, and only need to prove that (x) = 2�(x)�(�x + �x3) has at most two modes. We prove this by 
ontradi
tion. If  (x) has morethan two modes, then  0(x) has at least �ve zeros. In the following proof, we show that this 
annot bethe 
ase. We have  0(x) = 2�(x)((� + 3�x2)�(�x + �x3) � x�(�x + �x3)) and need to 
onsider three
ases:
ase 1: � = 0We write  0(x) = 2x�(x)�(x), where �(x) = 3�x�(�x3) � �(�x3). We 
an verify that �0(x) =3��(�x3)�1(y) where y = x2 and �1(y) = 1 � y � 3�2y3. Sin
e �1(y) is a de
reasing fun
tion ony � 0, �0(x) has at most two zeros. Thus, �(x) has at most three zeros, hen
e  0(x) has at most fourzeros.
ase 2: � > 0Noti
e that  0(x) > 0 for x � 0. For 
1(x) =  0(x)=(2x�(x)) = �(�x+�x3)(�+3�x2)=x��(�x+�x3),we get 
01(x) = �(�x + �x3)=(�9�x2)
2(y), where y = � + 3�x2 > 0 and 
2(y) = y4 + �y3 + (3 �2�2)y2 � (3� + 9�)y + 18��. Sin
e 
002 (y) = 12y2 + 6�y + (6 � 4�2) has at most 1 positive zero, and
02(y) = 4y3 +3�y2 + (6� 4�2)y� (3�+9�) < 0 at y = 0, we know that 
02(y) has at most one positivezero. Thus 
2(y) has at most 2 positive zeros. This means 
01(x) has at most two positive zeros, so  0(x)has at most three (positive) zeros.
ase 3: � < 0Noti
e that  0(x) < 0 for x 2 [0;p��=(3�) ℄ and  0(x) > 0 for x 2 (�1;�p��=(3�) ℄. So we onlylook for solutions x 2 (p��=(3�);1) and x 2 (�p��=(3�); 0). Let y = �+ 3�x2, then there is a oneto one mapping between the x in the above range and y 2 (�;1). Let 
1(x) and 
2(y) have the sameexpressions as in 
ase 2. We have that 
2(y) has at most four zeros sin
e it is a fourth order polynomial.Noti
e that 
2(�) < 0; 
2(�1) > 0, so 
2(y) has at most three zeros in (�;1). This means 
01(x) hasat most three zeros, hen
e  0(x) has at most four zeros.Figure 1 illustrates the result of proposition 2 by depi
ting a unimodal and a bimodal pdf from theunivariate FGSN with K = 3. For K = 1, the pdf is always unimodal as was already noted by Azzalini(1985) for the univariate skew-normal distribution.Next we investigate the 
exibility of the FGSN distribution in the bivariate 
ase. Its pdf for K = 3,� = 0, and 
 = I2 is given by:2�2(x1; x2;0; I2)�(�1x1 + �2x2 + �1x31 + �2x32 + �3x21x2 + �4x1x22): (8)Figure 2 should be here.Figure 2 depi
ts the 
ontours of four di�erent pdfs (8) for various 
ombinations of values of theskewness parameters �1, �2, �1, �2, �3, and �4. In parti
ular, for �1 = �2 = �3 = �4 = 0, thepdf is exa
tly the bivariate skew-normal proposed by Azzalini & Dalla Valle (1996), and known to beunimodal, see Figure 2(a). However, Figures 2(b)-(d) show that many di�erent distributional shapes 
anbe obtained with the parameters �1; : : : ; �4, in parti
ular bimodal and trimodal distributions. Additional5




exibility 
an be imposed on the tail behavior by 
hoosing pdfs other than the normal for the symmetri
pdf f , for example a t distribution. This yields 
exible generalized skew-t distributions (FGST) and willprove useful for appli
ations sin
e they 
an allow for both fat tails and skewness, see Se
tion 4, example1. Finally, note that the sto
hasti
 representation of FSS distributions follows from the sto
hasti
 rep-resentation of SS distributions des
ribed by Wang et al. (2004), see also Azzalini & Capitanio (2003).It provides a qui
k way to generate pseudo-realizations from the FSS distribution (3).4 Model �tting and examplesIn this se
tion, we present three appli
ations of 
exible generalized skew-ellipti
al distributions. We
arry out the estimation and model �tting by maximizing the likelihood fun
tion 
orresponding to (3)for a given order K. Unlike SNP distributions, there are no 
onstraints on the parameters of the skewingfun
tion �K and standard optimization te
hniques are used. To avoid lo
al maxima, we 
arry out theoptimization routine with several di�erent starting values widely s
attered in the feasible region. Theorder K is 
hosen adaptively via model sele
tion strategies. Be
ause for a given symmetri
 pdf f andskewing fun
tion �K the models indu
ed by (3) are nested whenK de
reases, likelihood ratio tests 
an beused to identify an appropriate value of K. Model sele
tion 
riteria su
h as AIC (twi
e the loglikelihoodminus twi
e the number of parameters) and BIC (twi
e the loglikelihood minus the number of parameterstimes the logarithm of the sample size) 
an be used as well. In pra
ti
e, K = 3 seems to provide enough
exibility to model unimodal and bimodal pdfs.4.1 Example 1: �ber-glass dataThis example is 
on
erned with a unidimensional data set of breaking strengths values of 1.5
m longglass �bers. Jones & Faddy (2003) and Azzalini & Capitanio (2003) �t two forms of skew-t distributionsto these data. They both noted skewness on the left as well as heavy tail behavior.We �t a 
exible generalized skew-t (FGST) distribution (5) with pdf:2t1(x; �; �2; �)T (PK((x � �)=�); �); (9)for K = 1 and K = 3. The �tted parameters, obtained by maximizing the 
orresponding likelihoodfun
tion, are listed in Table 1.Table 1 should be here.Note the small values for �̂ indi
ating tails mu
h heavier than the normal distribution. The �ttedpdfs are depi
ted in Figure 3 for K = 1 (solid line) and K = 3 (dotted line), along with a histogram ofthe �ber-glass data.Figure should be here. 6



There appear to be not too mu
h di�eren
e between the two models. We use a likelihood ratio test(LRT) for the null hypothesis H0 : � = 0 with the approximate asymptoti
 distribution �21 and use theAIC, BIC 
riteria for model sele
tion. The results are tabulated in Table 1. All three methods favor theFGST model with K = 1 whi
h does not allow for bimodality.4.2 Example 2: mixture of normalsThis example illustrates that FSS distributions 
an be used as an alternative to mixtures of distributionsin situations where multimodality is desirable. We 
onsider a simulated data set of size 100 from amixture of two bivariate normal distributions:(1� ")N2(�1;�1) + "N2(�2;�2); (10)with " = 0:4, �1 = (0; 0)T , �2 = (5; 4)T , and:�1 = 0� 2 11 4 1A ; �2 = 0� 3 22 6 1A : (11)Figure 4 shoube be here.Figure 4(a) depi
ts the 100 simulated data along with the bivariate 
ontours of the pdf 
orrespondingto (10), whi
h shows bimodality.We �t a bivariate 
exible generalized skew-normal (FGSN) distribution (4) with K = 1 and K = 3.The parameters, estimated by maximizing the 
orresponding likelihood fun
tion, are listed in Table 2.Table 2 should be here.The 
ontours of the �tted bivariate pdfs are depi
ted in Figure 4(b) for K = 1 and in Figure 4(
)for K = 3. The 
ase K = 1 
orresponds to Azzalini & Dalla Valle's (1996) bivariate skew-normaldistribution, whi
h 
annot 
apture the bimodality. The �t with K = 3 
aptures the bimodality andadapts 
losely to the shape of the simulated data. We test the model with the likelihood ratio test andAIC, BIC 
riteria, and �nd that all three sele
t the model with K = 3. We further �t a model withK = 5 and �nd that the likelihood ratio test and AIC s
ore indi
ate that K = 5 is a better �t for thedata, while BIC suggests that K = 5 imposes too mu
h model 
omplexity for the gain. We de
ide toadopt a more 
omplex model only when all three methods indi
ate so, hen
e we keep K = 3 as our �nalmodel. The results of the model sele
tion are tabulated in Table 3.Table 3 should be here.4.3 Example 3: old Swiss 1,000 fran
 bills dataThis example 
onsists of measurements on 100 genuine and 100 forged old Swiss 1,000 fran
 bills analyzedby Flury & Riedwyl (1988). We 
onsider two variables: the distan
e X1 from the inner frame to thelower border, and the length X2 of the diagonal of the bills.Figure 5 should be here. 7



Figure 5 depi
ts s
atter plots of (X1; X2) along with �tted FGSN pdfs for various orders of thepolynomial PK in the skewing fun
tion. Panel (a) represents a �t with K = 1 whi
h 
orresponds toAzzalini & Dalla Valle's (1996) bivariate skew-normal pdf and implies unimodality. Therefore, this �t
annot 
apture the di�eren
e between the genuine and forged bills. Panel (b) represents a �t with K = 3whi
h takes into a

ount the bimodality arising from the two types of bills. A �t with K = 5 is presentedin Panel (
). It shows a 
omplex distributional pattern in the data and dete
ts a third mode. Althoughthis additional mode appears to be lo
ated over a hole of the s
atter plot, it suggests a possible thirdgroup near that region. This pattern has also been dis
overed by various nonparametri
 kernel densityestimators, see Simono� (1996, p. 111-114). Likelihood ratio tests and AIC favor the model with K = 5while BIC favors K = 3. We keep the model with K = 3 in Panel (b), that is the bimodal pdf whi
hdete
ts the two groups of genuine and forged Swiss bills.5 Dis
ussionWe have investigated FSS distributions, a 
exible 
lass that 
an take skewness, heavy tails, and mul-timodality, into a

ount. It is based on an approximation of the skewing fun
tion by a univariatesymmetri
 
df evaluated at odd polynomials. Using the Stone-Weierstrass theorem, we have provedthat this approximation 
an be made arbitrarily a

urate by in
reasing the order of the odd polynomial.However, the number of 
oeÆ
ients of the polynomial in
reases qui
kly with its order K, espe
ially sowhen the dimension p of the distribution is large as well. In this 
ase, Monte Carlo Markov Chainmethods might be more appropriate than dire
t likelihood maximization. In light of the examples inSe
tion 4, it seems that K = 3 is suÆ
ient for unimodal and bimodal pra
ti
al appli
ations.The 
hoi
e of the symmetri
 pdf f is of pra
ti
al importan
e. Although it has been shown thatany multivariate pdf g 
an be represented by a skew-symmetri
 distribution, a parametri
 form for thepdf f needs to be spe
i�ed for our appli
ations. It turns out that the normal and the t pdfs are themost natural ones, yielding the 
exible models FGSN and FGST. The latter model is parti
ularly wellsuited to 
apture heavy tails, possibly Cau
hy-like, in addition to skewness and multimodality. Moresophisti
ated symmetri
 pdfs f 
ould be used as well, e.g. su
h as the slash distribution. The 
hoi
e ofthe 
df H has theoreti
ally no impa
t, but in pra
ti
e it 
an in
uen
e the order K of the polynomialPK . For appli
ations, H should be 
hosen to fa
ilitate 
omputations. A natural 
hoi
e is H = � or the
df 
orresponding to the symmetri
 pdf f .A
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Figure 1: Two members of the univariate FGSN family of distributions with K = 3, � = 0, �2 = 1: (a)� = 4, � = 0 (skew-normal); (b) � = 1, � = �1.
Table 2: Fitted values of the bivariate FGSN model for K = 1 and K = 3 on the simulated mixturedata. �̂1 �̂2 â11 â12 â22 �̂1 �̂2 �̂1 �̂2 �̂3 �̂4K = 1 -1.64 -1.93 0.36 -0.29 0.28 2.42 6.84 | | | |K = 3 1.72 2.08 0.42 -0.26 0.27 -0.78 -1.60 0.21 0.40 0.31 0.56

Table 3: Model sele
tion 
riteria for K = 1; 3; 5 on the simulated mixture data.LRT (p-value) AIC BICK = 1 | -898.7 -916.9K = 3 0.0009 -888.0 -916.7K = 5 0.0085 -882.8 -927.0
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Figure 2: Four members of the bivariate FGSN family of distributions with K = 3, � = 0, and 
 = I2:(a) �1 = 2, �2 = 3, �1 = 0, �2 = 0, �3 = 0 , �4 = 0 (skew-normal; unimodal);(b) �1 = 0, �2 = 2, �1 = 0, �2 = �1, �3 = 0 , �4 = 1 (bimodal);(
) �1 = 1, �2 = 1, �1 = �2, �2 = �2, �3 = �1 , �4 = �1 (bimodal);(d) �1 = 1, �2 = 0, �1 = �1, �2 = 2, �3 = �4 , �4 = �1 (trimodal).
11



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

Figure 3: Histogram of the �ber-glass data and �tted pdfs of the FGST model with K = 1 (solid line)and K = 3 (dotted line) by maximum likelihood.
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Figure 4: Simulated data set of size 100 from a mixture of two normal distributions, with 
ontours ofthe 
orresponding bivariate pdf in panel (a). Contours of the bivariate �tted pdf from the FGSN modelwith K = 1 in panel (b) and with K = 3 in panel (
).
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Figure 5: Contours of the bivariate FGSN pdf �tted by maximum likelihood for (a) K = 1; (b) K = 3;(
) K = 5.
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