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ABSTRACT

A priority regime is envisaged for single server queueing systems composed
of two customer populations with Poisson arrivals which is intermediate between
the two extreme doctrines: a) head of the line priority, b) pre-emptive priority.
The state of intermediacy is represented by discretionary powers vested in the
server to interrupt recently initiated - and not to interrupt almost completed -
service to a low priority customer upon the arrival of a high priority customer.
For the case of constant service times the discretionary rule is defined and the
ensuing queueing characteristics analyzed; in particular, the average total queue
lengths of both high and low priority customers are derived for two different
cases: a) the resume situation where service renewed to a low priority customer
starts at the point of interruption; b) the repeat situation where service given
to a low priority customer before an interruption, is completely lost. Optimisa-
tion procedures are outlined and for the resume situation a simple optimal dis-

cretionary rule is obtained.

l'I‘his research was supported by the Office of Naval Research under contract No.
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I. Introduction

In the literature on queueing theory mention is made of two types of priori-
ties: a) head of the line priority, and b) pre-emptive priority. The rule per-
taining to type a) is that the service rendered to a low priority* customer is never
interrupted if a high priority* customer arrives; rather the HP customer is placed
at the head of the waiting line and is dealt with only after completion of service
to the IP customer at the station. In other words, the newly arriving HP cus-
tomer does not take precedence over the IP customer in service. The rule per-
taining to type b) is that a newly arriving HP custamer always displaces an
IP customer from the station.

Now in many practical situations in the business, industrial and military
fields neither of these two extreme rules is called for, even though some priority
regime must prevail. Intuitively, one is inclined to prefer the type a) rule at
times when the service to the IP customer is almost completed; if, on the other

hand, service to the IP customer has hardly started application of the type b)

rule seems to be the proper course of action.

*
In this study "low priority" and "high priority" will be shortened to IP

and HP , respectively.
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Thus it appears desirable to leave same discretion to the server (or to who-
ever is in charge of the system) as to the administration of the priority regime.
To exercise his discretion the server must possess some further knowledge regarding
the character of the serving process,actual past performance on the customer in
service and future expectation of the serv;ce duration. Furthermore, the variocus
cost components should be known to him so that the cost implications of each of
the possible decisions may be evaluated.

The purpose of this study is to analyze discretionary powers with which we
endov the server for the particular case of constant service times (for each
priority class). A discretionary rule is easily defined and simply parametrized
in such priority queueing models. The rule defined will Dbe applied to two dif-
ferent situations. One of them is characterized by the (more common but frequently
less realistic) assumption that interrupted service may be resumed at convenience
without any loss. In the second situation it is assumed that a customer, whose
gervice has been interrupted and later renewed, starts all over again, i.e.,
service must be repeated. The analysis of the resume situation leads - on intro-
troducing reasonable costs - to a simple optimal rule regarding the use of the
discretionary powers vested in the server. The repeat situation is much more
complex and no simple optimisation rule can be provided. However, the analysis
of the repeat situation is carried to a*point where knowledge of the numerical

values of the operative parameters and of the costs enables the attainment of the

optimum.

II. Model A: Two Priority Classes, Constant Service Times,

Resume Situation

Consider a service station rendering service to two Poisson streams (HP and

IP) of incoming customers with parameters ), and KE’ respectively. Service

1

times are constant within each class of customers and their designation is Sl and
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82, respectively. Now a customer of class 1(HP) takes precedence over one of class
2 (IP); however an IP customer in service is not necessarily displaced by an
incoming HP custome?. Rather the server uses his discretion in the following
manner: If the service time already devoted to the IP customer at the station
is equal to or exceeds a value of ¢S2, where ¢ dis an arbitrary, discretionary
constant (0 < 4 < 1), the HP custamer is placed at the head of the waiting
line; if, on the other hand, the partial service time already elapsed falls short
of ¢ 82 the IP customer is replaced by the incoming HP customer and moves
to the head of the waiting line (of his own class). On returning later to the
station his service is resumed at the point of interruption. To sum up, during
the first stage (of duration ¢Sg) of service to an IP customer the pre-emptive
priority rule is followed; during the second stage (of duration (1 - ¢)82) of
service to an IP customer the head of the line priority rule is followed.

Now the fraction of time bl’ during which the station is busy giving service

to HP customers is clearly equal to

b, = A, S (1)

b = A~ S (2)

Without any formal proof we equate the existence of steady state conditions

with non-saturation the criterion of which is obviously

1-b -b, >0 (3)

Let the number of HP customers in the line waiting for initiation of ser-

vice be denoted by w,; the expectation of the waiting time le, (up to initia-

1
tion of service) of a customer is connected with the expected value of Wy by



B(wy) = 2E(e, ) (1)
A further relation between E(@lw) and E(wi) may be obtained by the
following line of reasoning. An incoming HP customer will encounter an average

waiting line of length E(wl); this will contribute E(wl)S to his average

1
waiting time. In addition, with probability bl’ he will find an HP custoumer
being serviced and, with probability (1 - ¢)b2, he encounters an IP customer

in the second stage of his service. The average contributions of these two events
if they occur, to the average waiting time are 31/2 and (L - ¢)82/2, respective-
ly.

Thus we establish

S

_ 1 5
B(6y,) = E(v))s; + b, = + (1-¢)b, (1-4)-5 (5)

Combination of (4) and (5) yields

2 2
Bw) = bl + xlsgbe(l - @) (6
L 2(1 - bl)

The total expected queue, 9 of HP customers at the station equals

2 2
by + A.8.b.(1 - ¢)
a4 b, + E(wl) = by + = 122 (7)
2(1 - bl)

Choosing ¢ = 1 1is equivalent to the establishment of a pre-emptive priority
regime and the HP customers' average queue length should be equal to that of a
simple queueing model with Poisson input and constant service times. This is

‘indeed the case.
Selecting ¢ = 0 is equivalent to the establishment of a head of the line

priority regime. The average gueue length reduces to
2
b + A,8.b
1 1721
s (8)

= =D
4 (4 =0) =D, + 2(v)
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and this may also be obtained from Cobham's (195k) study who deals with arbi-
trary distributions of service times in a head of the line priori%y regime.
For the evaluation of the average queue length of IP customers we note,

first, that a relation parallel to (L) holds
B(v,) = ny B(6y,) (9)

where Vs and ng represent the waiting line of IP customers and the waiting
time of a single IP customer, respectively.

Next we observe that E(GEW) is invariant under the various priority rules.
This must be the case since IP customers whose service has not started yet -
and only these are defined as walting - are completely unaffected by changing the
regime from one extreme through states of intermediacy (g # O, 1) to the other
extreme. Indeed Cobham (1954) and Miller (1960) were concerned with the cases
¢ = 0 and ¢ = 1, respectively, and both of them obtained the first moment* as

2 2
xlsl + xesg

2(l—bl)(l-bl-b

(10)

E(sz) )
2

Obviously (10) must hold also in the intermediate model under consideration .

Combination of (9) and (10) generates the average waiting line

2 2 2
AA-ST + NS b.AS, + b
B(w,) - 211 272 _ 1271 2 (11)
2(l-bl)(l-bl-b2) 2(1-bl)(l~bl-b2)

Consider now the residence time, T, of an IP customer at the station;

this is defined as the time which elapses from initiation to termination of ser-

vice. The residence time is made up of the time devoted to the service of the

*
Miller (1960) also obtained higher moments.
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IP customer himself and of the service times of HP customers who arrive during
the time at which it is possible to displace the IP customer or to keep him in
his displaced position. Now whenever an IP customer is displaced from the

station a period t, elapses until service to him is renewed. Miller (1960)

1
and Avi-Itzhak and Naor (1962) obtained the expected value of tl as
51

If an IP customer is displaced k +times from the service station the
expected value of his residence time equals

k S
E(T|k) = 85, + k B(t)) = 8+ 5, (13)

The number of displacements, k, is, of course, & Poisson-distributed ran-

dom variable with parameter xl¢32

k
p(k) = e s fﬁ}éﬁgl__ ()

The unconditional expected residence time is then equal to

B(T) - 2 B() B(T[) - S, o p(k) ¢ —E 2k p(k) = 5,(1 ! ) (15)
I - = A m—— &= 4 rr———
rmo 2,20 p 1B, P 2 15,

The average queue length of IP customers, qg, is now obtained as

2
b b S b
4 = My B(T) + E(We) 2(1 + ;?Fl) + 121 %2 (16)
1 2(l-bl)(l-bl-b2)

]
o’

Again, setting ¢ 0 and ¢ = 1, respectively, leads to well-known re-

sults relating to the two extreme priority regimes.
We can now turn to economic considerations and arrive - on making cost
*
assumptions - at an optimal value of ¢, ¢§ say. One reasonable cost structure

only will be dealt with here: 1t will be assumed that the cost of delaying a
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single HP customer in the queue equals ¢, per unit time; and the cost of

1

delaying a single IP customer is taken to be c2 per unit time. Thus the

average total cost, ¢ , per unit time is equal to

2 2
b b (1- b
C = Cyq) + €y = C4by 4 2% * %) + egby(1 f-bl ) +
2(1 - bl) 1
c.b.ANS. + ¢ b2
. 2P1MP1 %P (17)

2(l—bl)(l-bl-b2)

*
On differentiating and setting the derivative equal to zero ¢ is

evaluated as

£ . 21 (18)

This result is meaningful if, and only if, the following ineguality holds

(
8, < o8, (19)

If inequality (19) is not realized it may be shown by elementary but lengthy
considerations that the optimum is reached if class 1 and class 2 customers
exchange their priority categories. The optimum value of ¢ is still given by
(18) with indices interchanged.

It is interesting to note that ¢* is independent of the arrival rates,

and A. .

M o

LIIT. Model B: Two Priority Classes, Constant Service Times, Repeat

§}tuat@g§

“The priority queueing model with which we deal in this Section is identical

with Model A in all but one respect. In the following it will be assumed that

interrupted service is virtually lost. Whenever an IP customer is displaced
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in the midst of his service he will - on renewal of service - reguire the atten-
tion of the station during an uninterrupted period of duration SQ; prior ser=-
vice must be repeated.
We obserje that the average queue length (and, indeed, all other properties)
of the HP customers is the same in both resume and repeat situations. Thus
relation (7) holds in Model B as well.

To evaluate properties of the queve of IP customers the concept of gross

service time, Sg’ must be developed.
An IP customer is served by the station and his service is subjected to
k(:O, 1,...) interruptions by HP customers where k is a geometrically distri-

buted random variable

k
-\, &3 et
pk) = e & Hi-e TP (20)
the expected value of which equals
© }\¢S
Bk) = £ kp(k) = e + 2.1 (21)

k=0
*
Now whenever displacement has taken place the partial service time
T(O.f T < ] 82) expended is lost., This partial service time, T, is a random

variable with a density

-\, T
hl e 1
h(t) = (22)
A 5,
l1-¢
and an expectation
¢ s,
Jf P 1 $ S,
B(t) = T b(7) dr) = > TS, (23)
0 e -1

An IP customer occupies the service station during a period of duration
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k

S = 8, + Z T,° (24)
& S

where both k and Ti are random variables; the expected value of Sg is

obtained as

E(Sg) = 150 p(k) E(Sg[k) = ;O p(k) [32 + k E(T)\_7 =
M% Sy
= 5, + E(k) E(T) = (1-g)s, + L.X;_L_:__% = (1-g)s, + E}Si) (25)

This is the expected value of the gross service time.

The fraction of time, b2, during which the station is engaged in giving
service to IP customers equals

S
by =2y E<Sg) = MB,(1 - 4) + ;:']g. (ekl?‘ 2.1 (26)

The busy fraction, bl’ relating to HP customers is given, of course, by
relation (l). Non-saturation is again assumed to be equivalent to the existence
of steady state conditions; the criterion continues to be inequality (3) with b2
redefined by (26).

To gain further physical insight into the model we wish to determine the
average residence time, E(T), of an IP custamer at the station and the average
time interval, E(U), which elapses from the initiation of service to an IP
customer to that epoch at which the station is prepared to give service (if re-
quested) to the next IP customer.

Consider an IP customer whose service is interrupted (and repeated) k
times. The arrival of (and interruption by) an HP customer causes the station
to be engaged to HP customers during an average time interval E(tl) given by

expression (12). Clearly the expected residence time of the IP customer who is
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interrupted k times equals
B(T|k) = E(Sg]k) + k B(t)) (27)
and the expected unconditional residence time 1is obtained as

B(T)

; p(k) B(T|k) = ; p(k) le(sg[k) + k E(t,)7 =
k=0 k=0

i}

B(S,) + B(s) B(t;) = (1-g)s, + ZEL o ERIRL (o
» 1-b

1 1
Further rearrangement yilelds
E(k
a(r) - 26 (1. g, | (29)

The first term on the right hand side of (29) measures the average time
which elapses frow the initiation of service to an IP customer up to the time
at which he overcomes his inferior standing by completing the vart ¢ 82 of his
service, The second term represents the remaining part of his service during
which it is no longer possible to displace him. At the beginning of this latter
part no HP customers are present at the station. Hence;on the average, the
number of HP customers in the waiting line at the time of termination of ser-

vice to the IP customer equals
E(wl] at termination of service to IP customer) = Al(l —gf)S2 (30)

As a single new HP customer gives rise to an HP-busy period of average
duration E(tl), completion of service to an IP customer will be followed by
an HP-busy period the avérage length of which is given by the product of the
right hand sides of (12) and (30). For the evaluation of E(U) this must be

added to the average residence time.
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n (1-4)s.8 b, (1-4)s
E(U) = B(T) + L — bg I kl?g%%l) + (1 - gﬁ)s2 + —Efo—;—g =
1 1
- ke m(i:i)se - E(I;)(i-tlgl-mse - (51)
1 1 1V 1

An alternative definition of non-saturation (and the existence of steady

state conditions) is then given by

A B(U) < 1 (32)

It is not difficult to see that (3) and (32) are equivalent.

To evaluate the average queve of IP customers we proceed by considering the
possible states of the system in some more detailed fashion. In the following
we shall distinguish between unprimed states, Emn’ and primed states, Eén.
Whenever the system is in an unprimed state Emn (0 <o, an<a)wthere are t HP
customers and n IP customers in the queue; if m > 0 an HP customer is .
being served, and if m = 0 (and n > 0) an IP customer is being served but the
future service required of the station exceeds (l-¢)82. Whenever the systenm is
in a primed state Eén (0‘5 m<e, 1<n <) there are again m HP customers
and n IP customers in the queue but the customer in service is of the Ip
variety.

In other words, a state is considered unprimed if the shortest future service
time of an IP customer exceeds (l-¢)82; it is considered primed if this .
shortest future service time of an IP customer falls short of (or is equal to)
(1-¢)s,-

The stationary probabilities pertaining to these events will be designated as

pmn and p;n, respectively. Clearly the following must held
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[o0] =] [++] L]

1 -
£ £ p,+ L p o =1 (33)
m=0 n=0 m=0 n=1

It is useful to introduce further definitions

P, = nio 1 (34)
P, = mcéo P (35)
P = noél Prn (36)
', = IEO 1M (37

The fraction of time during which the station is HP-busy, bl’ must equal

by =M5 = I By (38)
m=1
It may be shown in a straightforward manner that
kg ©
—®k) = I p_=D =-7D (39)
Kl ney OB Q. fole}
and
x
- = !
N1 = £)S, Z op' (ko)
m=1

The fraction of time during which the station is IP-busy, b2, is equal

to the sum of (39) and (L40)

7\ @ @
= 2 = 1
by = = B(k) +ASy(1-¢)= T p+ B Pl (41)
1 n=1 n=1

In principle, the average queue length of IP customers obtained is given

by
[2]

6, = E(n) = ilJn (p,+9) v(’+2)
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. In practice we proceed as follows: Consider an IP customer who arrives
at the service station while service is given to an HP customer; in other
words his arrival occurs when the system is in an unprimed state (excluding Eon)'
His (average) total queueing time is made up of three components:
a) On the average the time he waits for termination of service to
the HP customers who are physically present at the time of his arri-

val equals £ S, (for the HP customer in service) plus

2
<0 [o's]
Sl( Z yp )"l 2 (m-1)p_ (for the HP customers in the waiting
ool M ol m.
line). However, by an argumentation similar to that leading to (12)

and (31) this average is increased by a factor of (l-bl)—l; this

Tactor is introduced to take into account that further HP custo-~

mers arrive while service is rendered to HP customers present

. at the time of the IP customer's arrival. Thus the contribution of
this term to average total queueing time of an IP customer egquals
1 -1 2 -l
8. (-v.)" /[ =+ (z p_ ) 2 (m1l)p 7.
1 1 2 . m.
mn=1 m=1

'b) Each IP customer who is in the queue at the time of the new IP
customer's arrival delays service for an average period E(U);
this quantity was evaluated in equation (31). The average number

of IP customers present in the queue at that time equals

foe] o]
Z X n Prn’ Thus the contribution of this term to the average
n=1l n=0 ® o o -1
total queueing time equals E(U)S fSnp_ (Z p )~ .
mn m.
n=1ln=0 m=1

¢) The third term contributing to the average total queueing time is

the residence time, E(T), of the new IP customer.

Thus we obtain the average of the total queueing time of an IP customer

' who arrives while service is rendered to an HP customer as
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£ (m-i)p
wf 2 bl . Sl m=l n.
xb(sg l o ) = + — 4
T ™ 2(1-b,) 1-by -
n>0 it} Pn.

m=l n=o m ol
P +  B(T) (43)

Now if an IP customer arrives while the system is in a primed state (that
is, service in its terminal stage is rendered to an IP customer) a relation

parallel to (1#3) mey be set up by a similar line of argumentation

e

o . Z np
b (1-¢)s, 51 m=o
E(92 | o mn) = + — +
T D 2(1-b,) b5
n=Q pm
mM=0
20 <0
E(u) = = (n-1)p
m=0 n=1 ma Ll
+ = + E(T) (k)
. p'
n:l . n

An IP customer who arrives when the system is in state Eoo goes imme-

diately into "residence". Thus his average total queueing time equals
H ’ —4
E(QEq‘Eoo) E(T) (45)

The last case to be considered is the encounter of the newly arriving IP
customer with a state Eon(n > 0). Such a state is characterized by the possi-
bility that the IP customer in service will be displaced from the service
station; this contingency will occur if an HP customer arrives before completion
of partial service time ¢Se. Consider, then, the two subcases: a) the IP

customer in service is able to complete it; b) the IP customer in service is
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displaced by an incoming HP customer.
The probability, =, of subcase a) to occur may be obtained by observing

i 1
that the average time the system spends in t,’ EOn within the average gross

n>0
service time to an IP customer equals E(k) E(T) + ¢ S,- The first of these
two terms indicates, of course, the occasions on which service to the IP cus-

tomer is interrupted; the second term represents the successful "breakthrough" of

the IP customer towards unhampered completion of service. Hence the probability

K equals
.. ¢ S, } M # So (46)
é S, + E(k)E(T) E(k)

The average total queueing time for subcase a) is derived in the usual

fashion

P ¢ s (1-4)s
{;' L subcase a)) = 2 + _ e +

I
>0 o 1-b,

E(e2

fes]

E(U) = (n-1) p
. n=1 2 D (47)
P
1

™8

on
n

In subcase b) we note that the new IP customer arrives during a T-interval
and the "future tail", T*; of this interval possesses a density which is the
random modification of the original demsity k(t). The quantity of interest is
the expected value of T* and for its derivation the second moment of the

original density is required. On making use of (22) we obtain

#s, # S, - ¢5,)
E(Te) = u/\ T° n(r)a v = "N

0

(48)

> im
= ol
1

E(k)
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*
The expected value of 1 is then equal to
2

—.—.——2 -
2
2 A E(k
B(r") = E) L ) (49)
T 5 548 2
2E(T) =~ - 2
. B(k)
The average total queuveing time is derived
| % s
! 1
E(o I Lu/ E_, subcase b)) = EB(v ) + =—— +
29" 3o on 1-b;
[+
E(U) Z =n Pop,
s = (50)
L D
n=l OB

We are now in a position to establish an equaticn evalvating the uncondi-

tional average total queueing time of an IP customer

[ | ®
E(e, ) = Ele, |/ B ) £ 5 p_ +
2q 24 m>0 " =1 n=o ™
120
by © =)
+ Bo, | 4B )= = p' + Ele, |E )p_ +
2q mEO mn m=0 n=1 mn 2a 00’00
n>0
5 L .
; P . _ o
+ [« E\Qeqin;g B, subcase a)+(1 ﬂ)E(ng]n;O E > subcase bl7n§lpon

(51)
On using relations obtained earlier in this paper equation (51) is simpli-

fied to
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b b b E(k)n
1 1 1 2 2,1
Be,) = v [ 5= (¢ ) + = (o, + 1)+ == - 8,) -
2 b £ 3 "1 2 Rp 2 " ;e
g5, N A S
- —5E .- hsyp, + 2E) T (52)
Ay 2

Under conditions of statistical equilibrium the average queuve and the

average queueing time are connected by

q, = B(n) = Mo E(qu) (53)
Thus multiplication of (52) by xg and rearrangement leads to
xl+x2 XSSE L
" se+(1-¢)2x252 by = - - [ E(k)+1/ - (1-¢)x238[”bl+(1-¢)x282;7
17271 2 1 1 _
9 = / + e (51)
z\l-bl)(l-bl-bg) 1-b =0,

If the value ¢ = O is chosen and inserted in (54) Cobham's (1954) formula
for the head of the line priority case is obtained as in Section II. If the
value ¢ = 1 is selected the model reduces to a special case of pre-emptive
repeat priority queueing. Indeed the relation generated from (54) is equivalent
to a specialization of a result of Avi-Itzhak (1962).

The selection of an optimal ¢ - assuming that some cost structure similar
to (17) properly describes the state of affairs - is not simple and no compact
formula of type (18) is attainable. However, for any given set
(kl, 812 Cys My 8y Cg) numerical computation of ¢* is not beyond the reach

of a simple desk calculating machine.
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IV. Conclusion

The models discussed in this paper represent special (and relatively simple)
cases of a wider field designated here as "discretionary priority queueing". In
actual practice a priority regime prevails in most queueing situations, and
some discretion is allowed to the server (or to the agency which actually controls
the situation) with respect to the exercise of the priority doctrine.

The purpose of this study was to define possible (discretionary) courses
of action and to analyze the consequences of the actual choice taken. However, 8s

sid before, two specialized models only were considered and future research will
have to generalize the analysis in (at least) three directions:
a) The replacement of the two customer populations assumption by a
many customer populations assumption.
b) The introduction of variability into service times,
¢) The exercise of the server's discretiomary powers not only on the
basis of actual past and expected future attention time to the
customer in service but also consideration of the state of the

vhole system.

Furthermore, the problems may be posed when many servers are available. Also
cost structures other than (17) may reveal the true state of affairs and a wide
range of such alternatives may be worth investigation.

Some further study is in progress.
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