
EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEARSYSTEMS OF CONDUCTIVE-RADIATIVE HEAT TRANSFEREQUATIONS �C. T. KELLEYyAbstract. We prove an existence and uniqueness results for a system of nonlinear integro-di�erential equations that model steady-state combined radiative-conductive heat transfer. Ourapproach uses two di�erent formulations of the system as a compact �xed-point problem. Oneformulation, which has been used in numerical work, is used for uniqueness and a new one is usedfor the existence proof.Key words. radiative-conductive heat transfer, compact �xed point problems, existence-uniquenessAMS(MOS) subject classi�cations. 45G10, 45K05, 82A70,1. Introduction. In [9] and [5] models for coupled radiative-conductive heattransport are discussed. These models can be expressed as nonlinear systems oftransport and di�usion equations. The purpose of this paper is to prove existenceand uniqueness for these systems. In the interests of simplicity, we consider onlyisotropic scattering, homogeneous media, and Dirichlet boundary conditions. Ourapproach may be extended directly to the more complicated cases involving re
ectingboundary conditions, inhomogeneous media, and anisotropic scattering, using themethods described in [3], [7], and [4].In this introductory section we describe the system of equations we seek to solve.In x 2 we reformulate the system as a compact �xed point problem in two ways. The�rst approach has been the basis for numerical results [9], [8]. The second, new inthis paper, is applied to prove existence and uniqueness results in x 3 and x 4.We consider the normalized form of the equations as described in [5], [9], and [8].The radiative transport equation is�@ @x (x; �) +  (x; �) = c2Z 1�1 (x; �0) d�0 + (1� c)�4(x);(1.1)for x 2 (0; � ) with boundary conditions (0; �) = �4l ; � > 0; (�; �) = �4r ; � < 0:(1.2)We assume throughout that c � 1.The temperature � satis�es the di�usion equation.@2�@x2 = Q(x);(1.3)for x 2 (0; � ) with boundary conditions�(0) = �l;�(� ) = �r ;(1.4)� This document was printed on February 19, 1995.y North Carolina State University, Center for Research in Scienti�c Computation and Depart-ment of Mathematics, Box 8205, Raleigh, N. C. 27695-8205, USA. This research was supported byNational Science Foundation grant #DMS-9321938. Computing activity was partially supported byan allocation of time from the North Carolina Supercomputing Center.1



2 C. T. KELLEYand coupling to the radiative transport byQ(x) = 12Nc ddxZ 1�1�0 (x; �0) d�0:(1.5)In (1.5) Nc is the conduction to radiation parameter [5].2. Compact Fixed Point Problem. In this section we show how existence ofa su�ciently regular solution of the system in x 1 can be related to existence of asolution � of a compact �xed point problem in two ways. We apply one of theseformulations to prove regularity of solutions and will use the other to prove existencein x 3.Let � 2 C[0; � ] be given with �(0) = �l and �(� ) = �r. De�ne  by (1.1) and(1.2).  exists since c < 1. It is well known [2], [1], that the 
uxf(x) = 12Z 1�1 (x; �0) d�0(2.1)satis�es f(x) � cZ �0k(x; y)f(y) dy = g(x)(2.2)where k(x; y) = 12E1(jx� yj);E1(jx� yj) = Z 10 exp(�jx� yj=�) d�� ;and g(x) = �4l2 Z 10 exp(�x=�) d�+�4r2 Z 10 exp(�(� � x)=�) d� + (1� c)2 Z �0E1(jx� yj)�4(y) dyWe let K denote the integral operator de�ned for all u 2 L1(0; � ) by(Ku)(x) = Z �0k(x; y)u(y) dy:(2.3)It is known [1] that if � < 1 then K is a compact operator from L1[0; � ] to C[0; � ]and I � cK is a bounded operator on any Lp[0; � ] for 1 � p � 1.We de�ne�(x : �l;�r) = �4l2 Z 10 exp(�x=�) d� + �4r2 Z 10 exp(�(� � x)=�) d�(2.4)and express f in terms of � byf = (1� c)(I � cK)�1K�4 + (I � cK)�1�(� : �4l ;�4r):(2.5)



HEAT TRANSFER 3In Appendix A we show that the formal exchange of di�erentiation and integrationddxZ 1�1�0 (x; �0) d�0 = Z 1�1�0 @@x (x; �0) d�0(2.6)is valid for 0 < x < � . Hence, using (1.1),ddxZ 1�1�0 (x; �0) d�0 = � R 1�1 (x; �0) d�0 + 2cf(x) + 2(1� c)�4(x)= 2(c� 1)f(x) + 2(1� c)�4(x):(2.7)Therefore, setting � = (1� c)=Nc, we can use (2.7) and (1.5) to express Q asQ(x) = (c� 1)f(x) + (1� c)�4(x)Nc= �(�4 � f)(2.8)for 0 < x < � . Using (2.5) we haveQ = �[(I � cK)�1(I � K)�4 � (I � cK)�1�](2.9)where � is given by (2.4). Continuity of � and � therefore imply continuity of Q.We let G be the solution map for the negative Laplacian with homogeneous bound-ary conditions, i. e. �(Gu)xx = u; G(u)(0) = G(u)(� ) = 0:We de�ne the �xed point map F , which depends parametrically on �l, �r and c byF(�) = ��G �(I � K)(I � cK)�1�4 � (I � cK)�1��+�l(� � x) + �rx� :(2.10)Note that if we de�neL = �G(I � K)(I � cK)�1 and � = �G(I � cK)�1�+ ��1(�l(� � x) + �rx)we may write F(�) = �L(�4) + �:(2.11)This formulation is attractive for numerical purposes in that evaluation of the �xedpoint map does not require the solution of a nonlinear equation. This is essentiallythe formulation used in the numerical studies reported in [9] and [8].We can obtain a regularity result directly from (2.10) or (2.11).Theorem 2.1. Let parameters �l, �r and c be given with 0 � c � 1. Let� 2 C[0; � ] be a �xed point of F , where F is given by (2:10). Then � 2 C2[0; � ] andif  is a solution of the boundary problem given by (1.1) and (1.2), the pair (�;  ) isa solution of the system (1.1), (1.2), (1.3), (1.4).Proof. Note that F is a continuous map from C[0; � ] to C2[0; � ]. Hence, if � is a�xed point of F , then � satis�es (1.3) with Q given by (2.8).



4 C. T. KELLEYOne can proceed from (2.8) in a di�erent way. We de�ne F (�4) = f , wheref is the solution of (2.2). F is a completely continuous map on C[0; � ]. With thisnotation, F(�) is the solution T to the linear boundary value problemT 00 = �(�4 � F (�4)); T (0) = �l; T (� ) = �r :Our alternative formulation is to de�ne T (�) to be the unique nonnegative solutionT of the nonlinear problemT 00 = �(T 4 � F (�4)); T (0) = �l; T (� ) = �r :(2.12)Our second compact �xed problem formulation is� = T (�):(2.13)At times in our analysis the dependence of T and F on the boundary data �l and �rwill be important. When that is so we may make that dependence explicit by writingF (�4;�l;�r) and T (�;�l;�r). We must prove, of course, that (2.12) has a uniquenonnegative solution, which we do in the next section.3. Existence of Solutions. Our existence results are based on the �xed pointproblem (2.13). We will apply the Schauder �xed point theorem [6] to the map T .To do this we must �rst show that the map T is de�ned and completely continuous.We de�ne �� = min(�l ;�r) and �+ = max(�l;�r):(3.1)We then show that T maps the convex and bounded setD = fu 2 C[0; � ] j�� � u � �+g(3.2)into itself.3.1. Properties of the map E. We begin with several results on (3.3). Withthese results in hand we will be able to express T as a composition of two nonlinearmaps, F and E, where F takes D to D, whereD = ff 2 C[0; � ] j�4� � f � �4+g:and E : D ! D is de�ned as follows. For f 2 D and�� � �l;�r � �+de�ne T = E(f;�l;�r) as the solution toT 00 = �(T 4 � f); T (0) = �l; T (� ) = �r :(3.3)When we write E(f) it will be understood that �l = �l and �r = �r . Our �rstresults use standard methods [6] to show that (3.3) has a unique nonnegative solutionT 2 D satis�es monotonicity properties with respect to its data. Hence E is wellde�ned.Lemma 3.1. Let ur ; ul � 0, [a; b] a bounded interval, � a strictly increasing andbounded function de�ned on (�1;1). Let f 2 C[a; b] be such that�(min(ul; ur)) � f � �(max(ul; rr))(3.4)



HEAT TRANSFER 5everywhere in [a; b]. Then the boundary value problemu00 = �(u)� f ; u(a) = ul; u(b) = ur(3.5)has a solution u. Moreover any solution u is continuous and satis�esmin(ul; ur) � u � max(ul; ur):(3.6)Proof. Let G be the inverse of �d2=dx2 with homogeneous Dirichlet boundaryconditions on [a; b]. The boundary value problem (3.5) is equivalent to the compact�xed point problem u = G(f � �(u)) + ul(b� x) + ur(x� a)b� a(3.7)which has a solution in C[a; b] by the boundedness of � and the Schauder �xed pointtheorem. Clearly any such solution is in C2.Now let u� = min(ul; ur) and u+ = max(ul; ur). If u(�x) < u� for some x 2 [a; b]then there is an interval [c; d] such that u < u� on (c; d) and u(c) = u(d) = u�.Then (3.4) implies that u00 < 0 and hence u is concave on [c; d]. This implies thatu(�x) � u�, a contradiction. Hence u � u� on [a; b]. Similarly u � u+ everywhere on[a; b].As an easy consequence, we see that (3.3) has a unique solution in D for f 2 D.Theorem 3.2. Let f 2 D. Then (3.3) has a unique nonnegative solution T 2 D.Proof. De�ne �(�) = 8>>>>><>>>>>: �4� � (����)1+(����) ; � < ���4; �� � � � �+�4+ + (���+ )1+(���+ ) ; � > �+:� is strictly increasing, bounded, and�(T ) < �4� if T < ���(T ) > �4+ if T > �+Now, consider the equationT 00 = �(�(T )� f); T (0) = �l; T (� ) = �r :(3.8)Since f 2 D, (3.8) has a solution in D by Lemma 3.1. Since T 2 D, �(T ) = T 4 and(3.8) is equivalent to (2.12).To prove the uniqueness assertion, let T and S be two nonnegative solutions of(3.3). Then w = T � S solves the boundary value problemw00 = �pw;w(0) = w(� ) = 0:The function p = (T 4 � S4)=(T � S) = (T + S)(T 2 + S2) � 0



6 C. T. KELLEYbecause T; S � �� � 0. A convexity argument similar to those above implies thatw = 0. Hence (3.3) has a unique nonnegative solution. This completes the proof.At this point we have shown that E(f) is well de�ned. An argument similar tothe uniqueness part of the proof of Theorem 3.2 provesCorollary 3.3. Let f � g � 0, Tl � Sl � 0, Tr � Sr � 0, and � � 0. Let Tand S solve the boundary value problemsT 00 = �(T 4 � f); T (a) = Tl; T (b) = Tr and S00 = �(S4 � g); S(a) = Sl ; S(b) = Sr :Then T � S in [a; b]. This can be restated in terms of E(f;�l;�r) asLemma 3.4. Let c 2 [0; 1], � 2 (0;1), f; g 2 D, f � g and�� � �l � �l � �+�� � �r � �r � �+then E(f;�l;�r) � E(g;�l;�r):for all x 2 [0; � ].We close our discussion of E with a continuity, di�erentiability, and compactnessresults.Theorem 3.5. E is a completely continuous Fr�echet di�erentiable map from Dto D, E0 is Lipschitz continuous, and E0(f) is injective.Proof. Let f 2 D and let T = E(f) 2 D. By (3.3)T = ��G(T 4 � f)and hence T 2 C2[0; � ]\D. ThereforejT 00j � 2��4+for all � 2 D. Hence T maps D into the setfT 2 C2[0; � ] j jT 00j � 2��4+gwhich is precompact in C[0; � ].We now show that E is continuous. Let f; g 2 D, U = E(f), V = E(g), andS = V � U . S is a solution to the boundary value problemS00 = �(pS � (f � g)); S(0) = S(� ) = 0:(3.9)where 0 � p = (V + U )(V 2 + U2) � 4�3+:Letting D2 be the second derivative operator with homogeneous Dirichlet boundaryconditions we have S = (�D2 + p)�1(f � g)and therefore kSk2 � Ckf � gk2



HEAT TRANSFER 7where C = kD�2k2 is independent of f and g. We may multiply both sides of (3.9)by S and integrate by parts to obtainkS0k2 � �(kpk1kSk22 + kSk2kf � gk2) � �(C + 4�3+C2)kf � gk22:Since S 2 C2[0; � ], S is absolutely continuous and is the integral of its derivative.Hence for all x 2 [0; � ] S(x) = Z x0 S0(y) dyand jS(x)j � kS0k2 � [�(C + 4�3+C2)]1=2kf � gk2:Noting that kf � gk2 � �1=2kf � gk1completes the argument.Finally we prove the di�erentiability assertions. One can compute the Gâteauxderivative dE(f ;w) of E at f 2 D in the direction w 2 C[0; � ] by inspection. S =dE(f ;w) is the solution of the boundary value problemS00 = �(4E(f)3S � w); S(0) = S(� ) = 0:(3.10)It is easy to see that dE(f ;w) is continuous in f and linear in w and is thereforethe Fr�echet derivative. Moreover, one can see directly that E0(f) is injective for allf 2 D, for if E0(f)w = 0 the the solution S of (3.10) vanishes and and w = 0.3.2. Properties of the map F . We will make use of the monotonicity proper-ties of the solution f = F (�) of (2.2). The following lemma is a direct consequenceof well known properties of the operator K [1].Lemma 3.6. Let c 2 [0; 1], � 2 (0;1), �l;�r � 0, and � 2 D, where D is givenby (3.2). Then the map F that takes � to the solution of (2.2) is a monotone functionof �l;�r;� in the sense that if �l � �l, �r � �r , and � � � thenF (�4;�l;�r)(x) � F (�4;�l;�r)(x)for all x 2 [0; � ]. Moreover if � = �l = �r , then f(x) = �4.The consequence of Lemma 3.6 of most importance to us isCorollary 3.7. Let c 2 [0; 1], � 2 (0;1), �l;�r � 0, and � 2 D, where D isgiven by (3.2). Then f = F (�4) satis�es�4� � f(x) � �4+:(3.11)Proof. The result follows from�4� = F (��;��;��) � F (�;�l;�r) � F (�+;�+;�+) = �4+as stated in the lemma.We close with a di�erentiability theorem.Theorem 3.8. The map A(�) = F (�4) is a Fr�echet di�erentiable map from Dto D. A0 is Lipschitz continuous, and for all w 2 C[0; � ],A0(�)w = 4(I � cK)�1K(�3w)



8 C. T. KELLEY3.3. The map T and Existence of Solutions. Our main result in this sectionis that the map T is well de�ned and maps D into itself. The complete continuity ofT follows from that result. We begin withCorollary 3.9. Let c 2 [0; 1], � 2 (0;1), �l ;�r � 0, and � 2 D, whereD is given by (3.2). Then (2.12) has a unique nonnegative solution T = T (�) andT (�) 2 D.Proof. We apply Theorem 3.2 with f = F (�4) 2 D.Existence of a solution to (2.13) will follow from the Schauder theorem andTheorem 3.10. Let c 2 [0; 1], � 2 (0;1), �l;�r � 0, and D be given by (3.2).Then T is a completely continuous, Fr�echet di�erentiable map from D into itself andhence �xed point problem (2.13) has a solution � 2 D, which is also a solution of thesystem (1.1), (1.2), (1.3), (1.4).Proof. The di�erentiability and complete continuity of T follow from Theo-rems 3.5 and 3.8. Since T (�) = E(F (�4)), the existence follows from Theorem 3.5and Lemma 3.6 and the Schauder �xed point theorem.We will use the following monotonicity result for T in our uniqueness result.Corollary 3.3 and Lemma 3.6 together clearly implyLemma 3.11. Let c 2 [0; 1], � 2 (0;1), and �l;�r�l;�r � 0. Then if �l � �l,�r � �r, 0 � � � � thenT (�;�l;�r)(x) � T (�;�l;�r)(x)for all x 2 [0; � ].4. Uniqueness. In this section we address the uniqueness question. We showthat T has a unique �xed point in D and therefore the the system (1.1), (1.2), (1.3),(1.4) has a unique solution subject to the constraint that � 2 D.We can use Lemma 3.11 in a direct way to prove our uniqueness result.Theorem 4.1. Let c 2 [0; 1], � 2 (0;1), �l;�r � 0. Then the solution to (2.12)(and hence of the system (1.1), (1.2), (1.3), (1.4)) is unique subject to the requirementthat � 2 D.Proof. Lemma 3.11 implies that the sequence de�ned by U0 = �� and for n � 1by Un = T (Un�1)is increasing and hence converges to a limit in U 2 L1[0; � ]. Since the sequence Unlies in a compact subset of C[0; � ] by the complete continuity of T , U is continuousand U = T (U ). Similarly the sequence de�ned by V0 = �+ and for n � 1 byVn = T (Vn�1)is decreasing and converges to V = T (V ) 2 C[0; 1]. Moreover if � = T (�) thenU � � � V:We complete the proof by showing that U = V . Using the �rst formulation as acompact �xed point problem we see that the di�erence W = V � U � 0 satis�esW 00 = �(I �K)(I � cK)�1pW ; W (0) = W (� ) = 0:(4.1)where p = (V + U )(V 2 + U2) � 0.



HEAT TRANSFER 9Now, [1], I �K is a self-adjoint positive de�nite operator in L2[0; � ], kKkL1 < 1,and (I � cK)�1 maps nonnegative functions to nonnegative functions. It is easy tocheck that K(1)(x) � 1. Hence,W 0(� )�W 0(0) = R �0 W 00(x) dx= � R �0 (I �K)(1)(x)(I � cK)�1(pW )(x) dx � 0:(4.2)Since W � 0 and W (0) =W (� ) = 0, we must haveW 0(� ) = W 0(0) = 0:(4.3)Therefore (4.2) and the nonnegativity of pW imply thatk(I � cK)�1pWkL1 � kK(I � cK)�1pWkL1;which, together with the fact that kKkL1 < 1, implies that W = 0.Our �nal result concerns the dependence of � on the boundary data �l;�r. Fora given c 2 [0; 1], � 2 (0;1), and Nc > 0 we de�ne �(x; �l;�r) as the unique solutionof (2.12) with boundary data �l;�r.Our monotonicity result says that the solution is increasing in �l and �r . Thetheorem follows directly from Lemma 3.6, Corollary 3.3.Theorem 4.2. Let c 2 [0; 1] and � > 0 be given. Let 0 � �l � �l, and0 � �r � �r. Then �(x; �l;�r) � �(x; �l;�r)for all x 2 [0; � ].Acknowledgments. The author thanks JimBanoczi, BobMartin, Necati �Oz��s�k,Fernando Reitich, and Chuck Siewert for many helpful conversations about this work.Some of the computations that lead to the theoretical results in this paper were doneat the North Carolina Supercomputing Center.REFERENCES[1] I. W. Busbridge, The Mathematics of Radiative Transfer, no. 50 in Cambridge Tracts, Cam-bridge Univ. Press, Cambridge, 1960.[2] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.[3] C. T. Kelley, Multilevel source iteration accelerators for the linear transport equation in slabgeometry, Tech. Report CRSC-TR93-5, North Carolina StateUniversity, Center for Researchin Scienti�c Computation, April 1993. Trans. Th. Stat. Phys., to appear.[4] E. W. Larsen and P. Nelson, Finite di�erence approximations and superconvergence for thediscrete ordinate equations in slab geometry, SIAM J. Numer. Anal., 19 (1982), pp. 334{348.[5] M. N. �Oz��s�k, Radiative Transfer and Interaction with Conduction and Convection, John Wileyand Sons, New York, 1973.[6] R. H. Martin, Nonlinear Operators and Di�erential Equations in Banach Spaces, Wiley-Interscience, New York, 1976.[7] J. Pitk�aranta and R. Scott, Error estimates for the combined spatial and angular approx-imations of the transport equation in slab geometry, SIAM J. Numer. Anal., 20 (1983),pp. 922{950.[8] C. E. Siewert, An improved iterative method for solving a class of coupled conductive-radiativeheat transfer problems. Submitted for publication, 1994.[9] C. E. Siewert and J. R. Thomas, A computational method for solving a class of cou-pled conductive-radiative heat transfer problems, J. Quant. Spectrosc. Radiat. Transfer, 45(1991), pp. 273{281.



10 C. T. KELLEYA. Proof of (2.6). Following [2] we de�ne for x > 0El(x) = Z 10e�x=� d��l :(A.1)Note that ddxE�1 = �E0 and ddxE0 = �E1:(A.2)Let q 2 L1([0; � ]). De�neTl(q)(x) = Z x0E0(x� y)q(y) dy:Analyticity of E0 in the right half plane, E0(0) = 1, and (A.2) imply thatdTl(q)(x)dx = q(x) � Z x0E1(x� y)q(y) dy:(A.3)Similarly, if Tr(q)(x) = Z �xE0(y � x)q(y) dythen dTr(q)(x)dx = �q(x) + Z �xE1(y � x)q(y) dy:(A.4)Set S = cf + (1� c)�4:For � > 0 we integrate (1.1) forward in x, obtaining (x; �) = 1�Z x0 exp(�(x � y)=�)S(y) dy + exp(�x=�)�4l :(A.5)Similarly, for � < 0, we integrate backwards to obtain, (x; �) = � 1�Z �x exp(�(x� y)=�)S(y) dy+exp((� � x)=�)�4r :(A.6)Using (A.5) and (A.6) we haveZ 10�0 (x; �0) d�0 = Z x0E0(x � y)S(y) dy +E�1(x)�4landZ 0�1�0 (x; �0) d�0 = �Z �xE0(y � x)S(y) dy +E�1(� � x)�4r :(A.7)



HEAT TRANSFER 11We apply (A.3) and (A.4) to (A.7) and obtainddxZ 10�0 (x; �0) d�0 = S(x) � Z x0E1(x � y)S(y) dy �E0(x)�4landddxZ 0�1�0 (x; �0) d�0 = S(x) � Z �xE1(y � x)S(y) dy �E0(� � x)�4r :(A.8)Adding the two equations in (A.8) givesddx R 10 �0 (x; �0) d�0 = 2((I � K)S)(x) �E0(x)�4l �E0(� � x)�4r= 2(I � cK)f(x)� 2g(x) + 2(S(x) � f(x)):Recalling that (I � cK)f(x) = g(x),S � f = (c � 1)f + (1� c)�4;and using (2.7) completes the proof.


