EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR
SYSTEMS OF CONDUCTIVE-RADIATIVE HEAT TRANSFER
EQUATIONS *

C. T. KELLEY!

Abstract. We prove an existence and uniqueness results for a system of nonlinear integro-
differential equations that model steady-state combined radiative-conductive heat transfer. Our
approach uses two different formulations of the system as a compact fixed-point problem. One
formulation, which has been used in numerical work, is used for uniqueness and a new one is used
for the existence proof.
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1. Introduction. In [9] and [5] models for coupled radiative-conductive heat
transport are discussed. These models can be expressed as nonlinear systems of
transport and diffusion equations. The purpose of this paper is to prove existence
and uniqueness for these systems. In the interests of simplicity, we consider only
isotropic scattering, homogeneous media, and Dirichlet boundary conditions. Our
approach may be extended directly to the more complicated cases involving reflecting
boundary conditions, inhomogeneous media, and anisotropic scattering, using the
methods described in [3], [7], and [4].

In this introductory section we describe the system of equations we seek to solve.
In § 2 we reformulate the system as a compact fixed point problem in two ways. The
first approach has been the basis for numerical results [9], [8]. The second, new in
this paper, is applied to prove existence and uniqueness results in § 3 and § 4.

We consider the normalized form of the equations as described in [5], [9], and [8].
The radiative transport equation is

0 ¢ [t
(1.1) P+ i =5 [ e dd (1= 08 e),
for # € (0, 7) with boundary conditions

(1.2) U(0, 1) = OF, jt > 0;9(r, p) = OF, < 0.

We assume throughout that ¢ < 1.
The temperature © satisfies the diffusion equation.

(1.3) 27? =Q(x),

for # € (0, 7) with boundary conditions
(1.4) 0(0) = 0;,0(r) = O,,

* This document was printed on February 19, 1995.

t North Carolina State University, Center for Research in Scientific Computation and Depart-
ment of Mathematics, Box 8205, Raleigh, N. C. 27695-8205, USA. This research was supported by
National Science Foundation grant #DMS-9321938. Computing activity was partially supported by
an allocation of time from the North Carolina Supercomputing Center.

1



2 C. T. KELLEY

and coupling to the radiative transport by

1 d [!
(1.5) Q) = N, %/_1/1'1/)(1‘,#/) du'.

In (1.5) N, is the conduction to radiation parameter [5].

2. Compact Fixed Point Problem. In this section we show how existence of
a sufficiently regular solution of the system in § 1 can be related to existence of a
solution © of a compact fixed point problem in two ways. We apply one of these
formulations to prove regularity of solutions and will use the other to prove existence
in § 3.

Let © € C[0, 7] be given with ©(0) = ©; and ©(7) = O,. Define ¢ by (1.1) and
(1.2). ¢ exists since ¢ < 1. Tt is well known [2], [1], that the flux

(2.1) flz) = %/_11/)(96,#’) dy’
satisfies

(2) fo) = e [ ks dy = o(2)
where

Ke,) = 51— )

Bile =) = [ expi—le = ul/n)

)
0 1%
and

g(z) = %/0 exp(—x/v)dv

+ 5 [ exnictr = oo+ B2 [ e = e

We let K denote the integral operator defined for all u € L(0, 7) by

(2.3) (Kue) = [ Kty dy.

0

It is known [1] that if 7 < oo then K is a compact operator from L[0, 7] to C[0, 7]
and I — ¢K is a bounded operator on any LP[0, 7] for 1 < p < oo.
We define

(2.4) ¢(r:01,0,) = %/ exp(—x/v)dv+ %/0 exp(—(r—a)/v)dv

0

and express f in terms of © by

(2.5) f=0—e)(I—cK)'KO* 4 (I —cK) 1o(-: 0f, 0.
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In Appendix A we show that the formal exchange of differentiation and integration

d [* oo
« / / r_ / / /
(2.6) ) P Pz, p') dp —/_1u 52 V(@ 1) dp

is valid for 0 < # < 7. Hence, using (1.1),
d 1

o T _1//1/)(1‘, wydy' =-— f_ll Y(x, 1) dp' + 2¢f(z) +2(1 — )0 (x)

=2(c—1)f(z) +2(1 — ¢)©*(x).
Therefore, setting o = (1 — ¢)/N,, we can use (2.7) and (1.5) to express @ as
Q) = (c=1Df(x) 4];](1 — 0)0%(x)

(2.8) ¢

=a(0*-f)

for 0 < # < 7. Using (2.5) we have
(2.9) Q=a[(l —cK)"HI-K)0* — (I —cK)™ 4]

where ¢ is given by (2.4). Continuity of © and ¢ therefore imply continuity of Q.
We let G be the solution map for the negative Laplacian with homogeneous bound-
ary conditions, 1. e.

—(Gu)er = u;  G(u)(0) = G(u)(r) = 0.
We define the fixed point map , which depends parametrically on ©;, ©, and ¢ by
F(O) =—aG (I —K)(I—cK)10* = (I - cK)~1¢)
(2.10) L O —a) + O,

T

Note that if we define
L=—GI—-K)I—-cK)™ and 8=0aG(l—cK) ¢+ 77101 — )+ O,2)

we may write

(2.11) F(©) = al(0%) + 8.

This formulation is attractive for numerical purposes in that evaluation of the fixed
point map does not require the solution of a nonlinear equation. This is essentially
the formulation used in the numerical studies reported in [9] and [8].

We can obtain a regularity result directly from (2.10) or (2.11).

THEOREM 2.1. Let parameters ©;, O, and ¢ be gwen with 0 < ¢ < 1. Let
© € C[0,7] be a fized point of F, where F is given by (2.10). Then © € C?[0, 7] and
if ¢ is a solution of the boundary problem given by (1.1) and (1.2), the pair (©,v) is
a solution of the system (1.1), (1.2), (1.3), (1.4).

Proof. Note that F is a continuous map from C[0, 7] to C?[0, 7]. Hence, if © is a
fixed point of F, then © satisfies (1.3) with @ given by (2.8). O
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One can proceed from (2.8) in a different way. We define F(©%) = f, where
f is the solution of (2.2). F' is a completely continuous map on C[0,7]. With this
notation, F(©) is the solution 7" to the linear boundary value problem

T" = a(0* — F(0%); T(0) = 6;,T(1) = O,.

Our alternative formulation is to define 7(0) to be the unique nonnegative solution
T of the nonlinear problem

(2.12) T = a(T* = F(0Y); T(0) = 01, T(r) = ©,.
Our second compact fixed problem formulation is
(2.13) 0 =17(0).

At times in our analysis the dependence of 7 and F on the boundary data ©; and O,
will be important. When that is so we may make that dependence explicit by writing
F(0',0,,0,) and 7(©,0;,0,). We must prove, of course, that (2.12) has a unique

nonnegative solution, which we do in the next section.

3. Existence of Solutions. Our existence results are based on the fixed point
problem (2.13). We will apply the Schauder fixed point theorem [6] to the map 7.
To do this we must first show that the map 7 1s defined and completely continuous.

We define

(3.1) O_ = min(0;,0,) and O = max(0;, 0,).
We then show that 7 maps the convex and bounded set

(3.2) D={ueC0,7]|O0-<u<0O;}

into 1tself.

3.1. Properties of the map E. We begin with several results on (3.3). With
these results in hand we will be able to express 7 as a composition of two nonlinear
maps, F' and F, where F' takes D to D, where

D={feclo,7]|el < f<Oi}.
and £ : D — D is defined as follows. For f € D and
O_ <X,% <04
define T'= E(f, X;,X,) as the solution to
(3.3) T = a(T* = f); T(0) = X, T(1) = %,

When we write E(f) it will be understood that ¥; = ©; and X, = O,. Our first
results use standard methods [6] to show that (3.3) has a unique nonnegative solution
T € D satisfies monotonicity properties with respect to its data. Hence FE is well
defined.

LEMMA 3.1. Let up,u; > 0, [a,b] a bounded interval, ¢ a strictly increasing and
bounded function defined on (—oo,00). Let f € Cla,b] be such that

(3.4) o(min(ur, u,)) < f < g(max(ur,r,))
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everywhere in [a,b]. Then the boundary value problem
(3.5) W' = $(u) — 3 ula) = w, u(b) = u,
has a solution u. Moreover any solution u is continuous and satisfies

(3.6) min(ug, ) < u < max(ug, ty).

Proof. Let G be the inverse of —d?/dx? with homogeneous Dirichlet boundary
conditions on [a, b]. The boundary value problem (3.5) is equivalent to the compact
fixed point problem

(b—2)+u(z—a)

(3.7) u=G(f = o) +

which has a solution in Cla, b] by the boundedness of ¢ and the Schauder fixed point
theorem. Clearly any such solution is in C?.

Now let u_ = min(w, u,) and uy = max(ur, u,). If w(Z) < u_ for some z € [a, b]
then there is an interval [¢,d] such that « < u_ on (¢,d) and u(c) = u(d) = u_.
Then (3.4) implies that «” < 0 and hence w is concave on [¢,d]. This implies that
uw(Z) > u_, a contradiction. Hence u > u_ on [a,b]. Similarly v < uy everywhere on
[a,b]. O

As an easy consequence, we see that (3.3) has a unique solution in D for f € D.

THEOREM 3.2. Let f € D. Then (3.3) has a unique nonnegative solution T € D.

Proof. Define

O_-0
@i - m, 0<O_

6(0)=1{ 01, 0.<0<0,

-0
@i + ﬁ, o> ®_|_.

¢ 1s strictly increasing, bounded, and
p(T) <0 T <O_
o(T)>0% ifT>0,
Now, consider the equation
(3.8) T" = a(¢(T) = £), T(0) = O, T(r) = O,.

Since f € D, (3.8) has a solution in D by Lemma 3.1. Since T'€ D, ¢(T') = T* and
(3.8) is equivalent to (2.12).

To prove the uniqueness assertion, let 7" and S be two nonnegative solutions of
(3.3). Then w = T — S solves the boundary value problem

w” = apw;w(0) = w(r) = 0.

The function

p=(T* = SY/(T = 8) = (T + $)(T* + 5%) > 0
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because 7,5 > ©_ > 0. A convexity argument similar to those above implies that
w = 0. Hence (3.3) has a unique nonnegative solution. This completes the proof. O
At this point we have shown that E(f) is well defined. An argument similar to
the uniqueness part of the proof of Theorem 3.2 proves
COROLLARY 3.3. Let f>g >0, 171> 5>0,T. >S5 >0, and a > 0. Let T
and S solve the boundary value problems

T =a(T* = f); T(a) = T, T(b) = T, and S" = a(S* — g); S(a) = S;, S(b) = S,.

Then T' > S in [a,b]. This can be restated in terms of E(f, X1, X,) as
LEMMA 3.4. Letc€[0,1], 7€ (0,0), f,ge D, f< g and

0. <X <0, <04

0. <Y <0, < ®+
then
E(fazlaET) S E(gaelaer)~

for all z € 10, 7].

We close our discussion of £ with a continuity, differentiability, and compactness
results.

THEOREM 3.5. F is a completely continuous Fréchet differentiable map from D
to D, E' is Lipschitz continuous, and E'(f) is injective.

Proof. Let f € D and let T = E(f) € D. By (3.3)

T =—aG(T* - f)
and hence T' € C?[0, 7] N D. Therefore
IT"| < 2007
for all © € D. Hence 7 maps D into the set
{T € C?[0, 7] | |T"] < 2003}

which is precompact in C[0, 7].
We now show that F is continuous. Let f,g € D, U = E(f), V = E(g), and
S =V —U. S is asolution to the boundary value problem

(3.9) S" =a(pS —(f —g)); S(0) = S(r) = 0.
where
0<p=(V+U)V*+U?) <407.

Letting D? be the second derivative operator with homogeneous Dirichlet boundary
conditions we have

S=(=D*+p)(f-g)
and therefore

1512 < C|If = gl
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where C' = ||D72||z is independent of f and g. We may multiply both sides of (3.9)
by S and integrate by parts to obtain

15112 < allplloo 15155 + IS1l211f = gll2) < a(C + 403 CF)|f — g5

Since S € C?[0,7], S is absolutely continuous and is the integral of its derivative.
Hence for all z € [0, 7]

s@ = [ Sy
0
and
[S(@) < (15']]2 < [o(C + 405 A2 f = gl
Noting that

17 =gl < 72N = glleo

completes the argument.

Finally we prove the differentiability assertions. One can compute the Gateaux
derivative dE(f;w) of E at f € D in the direction w € C[0, 7] by inspection. S =
dE(f;w) is the solution of the boundary value problem

(3.10) S = a(4E(f)*S — w); S(0) = S(r) = 0.

It is easy to see that dF(f;w) is continuous in f and linear in w and is therefore
the Fréchet derivative. Moreover, one can see directly that E'(f) is injective for all

f € D, forif B'(f)w = 0 the the solution S of (3.10) vanishes and and w = 0. O

3.2. Properties of the map F. We will make use of the monotonicity proper-
ties of the solution f = F/(O©) of (2.2). The following lemma is a direct consequence
of well known properties of the operator K [1].

LEMMA 3.6. Letc€0,1], 7 € (0,0), ©;,0, >0, and © € D, where D is given
by (3.2). Then the map F that takes © to the solution of (2.2) is a monotone function
of ©;,0,,0 in the sense that if L; < O, X, < 0O,, and ¥ < O then

F(S'5,5)(2) < F(0,01,0,)()
Jor all x € [0, 7]. Moreover if © = ©; = ©,, then f(r) = O1.

The consequence of Lemma 3.6 of most importance to us is
COROLLARY 3.7. Let ¢ € [0,1], 7 € (0,00), ©;,0, > 0, and © € D, where D is
given by (3.2). Then f = F(©%) satisfies

(3.11) 0! < f(z) < O%.

Proof. The result follows from
0 =F(6.,60_,0_)< F(0,0,,0,) < F(04,0,,0,) =0}

as stated in the lemma. O

We close with a differentiability theorem.

THEOREM 3.8. The map A(O) = F(0©) is a Fréchet differentiable map from D
to D. A’ is Lipschilz conlinuous, and for all w € C[0, 7],

A(©)w = 4(I — cK) 'K (0%w)
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3.3. The map 7 and Existence of Solutions. Our main result in this section
is that the map 7 is well defined and maps D into itself. The complete continuity of
T follows from that result. We begin with

COROLLARY 3.9. Let ¢ € [0,1], 7 € (0,), ©;,0, > 0, and © € D, where
D is given by (3.2). Then (2.12) has a unique nonnegative solution T = T(O) and
7(©)€eD.

Proof. We apply Theorem 3.2 with f = F(0*) € D. O

Existence of a solution to (2.13) will follow from the Schauder theorem and

THEOREM 3.10. Let ¢ € [0,1], 7 € (0,00), 01,0, > 0, and D be given by (3.2).
Then T is a completely continuous, Fréchet differentiable map from D into itself and
hence fized point problem (2.13) has a solution © € D, which is also a solution of the
system (1.1), (1.2), (1.3), (1.4).

Proof. The differentiability and complete continuity of 7 follow from Theo-
rems 3.5 and 3.8. Since 7(©) = E(F(©%)), the existence follows from Theorem 3.5
and Lemma 3.6 and the Schauder fixed point theorem. O

We will use the following monotonicity result for 7 in our uniqueness result.
Corollary 3.3 and Lemma 3.6 together clearly imply

LEMMA 3.11. Let ¢ € [0,1], 7 € (0,0), and ©;,0,%;, %, > 0. Then if T; < Oy,
¥ <0,, 0<X <O then

T(3,%,5,)(z) < T(0,0;,0,)(z)

for all z € 10, 7].

4. Uniqueness. In this section we address the uniqueness question. We show
that 7 has a unique fixed point in D and therefore the the system (1.1), (1.2), (1.3),
(1.4) has a unique solution subject to the constraint that © € D.

We can use Lemma 3.11 in a direct way to prove our uniqueness result.

THEOREM 4.1. Let e € [0,1], 7 € (0,0), 07,0, > 0. Then the solution to (2.12)
(and hence of the system (1.1), (1.2), (1.3), (1.4)) is unique subject to the requirement
that © € D.

Proof. Lemma 3.11 implies that the sequence defined by Uy = ©_ and for n > 1
by

Up =T (Un—1)

is increasing and hence converges to a limit in U € L°°[0, 7]. Since the sequence U,
lies in a compact subset of C[0, 7] by the complete continuity of 7, U is continuous

and U = 7(U). Similarly the sequence defined by V5 = ©4 and for n > 1 by
Vo =T (Vio1)
is decreasing and converges to V. =T (V) € 0, 1]. Moreover if © = 7(0) then
r<e<v

We complete the proof by showing that /' = V. Using the first formulation as a
compact fixed point problem we see that the difference W =V — U > 0 satisfies

(4.1) W" = a(I = K)(I — cK)™'pW; W(0) = W(r) = 0.

where p = (V + U)(VZ+ U?) > 0.
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Now, [1], I — K is a self-adjoint positive definite operator in L2[0, 7], ||K||z: < 1,
and (I — ¢K)~! maps nonnegative functions to nonnegative functions. It is easy to

check that K(1)(#) < 1. Hence,

" Wi(r)— W0) =[] W(z)de
| = a [ (1= K)V)@)I - k) (pW) () dz > 0.

Since W > 0 and W(0) = W(r) = 0, we must have
(4.3) W'(r) = W'(0) = 0.
Therefore (4.2) and the nonnegativity of pW imply that
(1 = eK)™ pWlles < IR — k)™ pWlLs,

which, together with the fact that ||K||p1 < 1, implies that W = 0. O

Our final result concerns the dependence of © on the boundary data ©;,©,. For
a given ¢ € [0,1], 7 € (0,0), and N, > 0 we define ©(z; 0y, ©,) as the unique solution
of (2.12) with boundary data ©;,©,.

Our monotonicity result says that the solution is increasing in ©; and ©,. The
theorem follows directly from Lemma 3.6, Corollary 3.3.

THEOREM 4.2. Let ¢ € [0,1] and 7 > 0 be given. Let 0 < X < Oy, and
0<%, <0,. Then

e(xa Ela 27‘) S e(xa ela 67‘)

for all z € 10, 7].
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A. Proof of (2.6). Following [2] we define for # > 0

1
dv
(A.1) E,(x):/oe—f/v7.
Note that
d d
A2 —F =—-F d —Fy=—-F,.
( ) de 1 o at de ° !

Let ¢ € L(]0, 7]). Define

xr

Ti(g)(x) = / Folx — y)a(y) dy.

0

Analyticity of Ey in the right half plane, E(0) = 1, and (A.2) imply that

(A.3) T — o) [ Bt =ty o

dx 0

Similarly, if

T

T (q)(x) =/ Eo(y — x)q(y) dy

xr

then
(A4) D) — gy + [ Bty =) dy
Set

S=cf+(1-c)o™

For p > 0 we integrate (1.1) forward in z, obtaining

(A.5) 6o = o [ exp(—(e = )/u)S(w) dy +exp(—2/n)0].

0

Similarly, for p < 0, we integrate backwards to obtain,

T

(A5) v = 1 [ exp(- = /s dy
+exp((r — 2)/1)0.
Using (A.5) and (A.6) we have
[ weteatyan = [ B -5 dy + 2107

o] 0]
(A7) and

| sy == [ By -8 dy+ Bir - 00,

xr
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We apply (A.3) and (A.4) to (A.7) and obtain

d ! / / / v 4

[ v =@ - [ B -0y - Eo@e;
0 0

(A.8) and

d 0 T

| et =56 - [ Bw- 08 dy - Elr - 20},
1 il

Adding the two equations in (A.8) gives
Ly e,y dy' = 2((1 = K)S)(w) — Eo(w)0f — Eo(r — 2)©]
= 2(I — k) f(z) — 29(z) + 2(S(z) — f(2)).
Recalling that (I — ¢K)f(x) = g(x),
S—f=(c—1)f+(1-c)0%

and using (2.7) completes the proof.



