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Abstract

The theory of elliptically contoured distributions is presented in
an unrestricted setting (without reference to moment restrictions or
assumptions of absolute continuity). These distributions are defined
parametrically through their characteristic functions, and then studied
primarily through the use of stochastic representations which naturally
follow from the seminal work of Schoenberg on spherically symmetric
distributions, appearing in 1938. It is shown that the conditional
distributions of elliptically contoured distributions are elliptidally
contoured, and the conditional distributions are precisely identified.
In addition, a number of the properties of normal distributions (which
constitute a type of elliptically contoured distributions) are shown, in
fact, to characterize normality. A by-product of the research is a neﬁ
(and useful) characterization of certain classes of characteristic

functions appearing in Schoenberg's work.
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1. Introduction.

The elliptically contoured distributions on 'R" (n- dimensional
Euclidean space) are defined as follows. If X is an n-dimensional random
(row) vector and, for some HeR and some nxn nonnegative definite matrix
L, the characteristic function ¢X-u(t) of X - |y is a function of the
quadratic form t I t', ¢X-p(t) = ¢(tIt'), we say that X has an elliptically
contoured distribution with parameters u, % and ¢, and we write _

X ~ ECn(u,Z,¢). When ¢(u) = exp(-u/2), ECn(u,Z,¢) is the normal
distribution Nn(u,z); and when n = 1, the class of elliptically contoured
distributions coincides with the class of one-dimensional symmetric

distributions. The location and scale parameters y and I can be any

. n . . . .
vector in IR" and any n>n nonnegative definite matrix, while the class ‘

of admissible functions ¢ will be discussed below. -
It is clear that for any ¢ >0, ECn(u,2,¢(~)) = ECn(u,cZ,¢(c_1!)).
It is shown in Theorem 1 that this is the only redundancy in the parametric
representation of a nondegenerate elliptically contoured distribution. The
scale parameter I is proportional to the covariance matrix of X when the
latter exists. Excluding the degenerate case I = 0, all of the components
of X have finite second moments if and only if ¢ has a finite right-hand
derivative ¢'(0) at zero, and in this case the covariance matrix is
-2¢'(0)I. (See Theorem 4.) When the components of X have finite first
moments, it is clear that the location parameter u is the mean of X.
Several properties of elliptically contoured distributions have been
obtained by Kelker (1970) and by Das Gupta et al. (1972) when I is -

invertible and a density exists. Here, we consider the general case of .



elliptically contoured distributions and, by making use of a convenient
stochastic representation which follows from the results of Schoenberg
(1938), we show that their conditional distributions are also elliptically
contoured and permit an intuitively appealing stochastic representation.
From this work follow several new characterizations of the normal
distributions. Section 2 deals with the theory of stochastic
representations; Section 3 is concerned with the subject of conditional
distributions; Section 4 discusses densities and the circumstances of
their existence; and Section 5 is concerned witﬁ characterizations of
normality.

In addition to the references already cited, there is an interesting
discussion of a subclass of the elliptically contoured distributions by

Dempster (1969).

2. Stochastic representations.

Our approach to defining elliptically contoured distributions by
means of parametric triplets (u,I,¢), besides providing greater
generality than other approaches which require X to be absolutely
continuous, has the advantage that the class of distributions is closed
under linear transformations of X with ¢ preserved under such
transformations and with y and I transformed in the same way as a mean
vector and covariance matrix. Nevertheless, many of the properties of
these distributions are more easily studied and described by means of

stochastic representations of the form

(1) x4+ ey,



where U(R) is a random vector of dimension & which is uniformly

distributed on the unit sphere in H{Q (221), where R, independent of

U(z), is a nonnegative random variable, and where y and A are a

nonstochastic vector and matrix of appropriate dimensions.
Denoting the characteristic function of g by QQ(IItIIZ), ter?,
and the distribution function of R by F, it easily follows that a random

vector XeR" which is representable as in (1) is distributed as

BCn(u,Z,d))f,‘, where I = A'A and

v
(=]

(2) 60 = [rg oy QWD ,  u

Thus every random vector X which is representable as in (1) is

elliptically contoured. )

Let @2, 2 = 1, denote the class of functions ¢ : [0,¢) » IR which
are expressible as in (2) for some distribution function F on [0,®); and
let ¢ _ denote the same kind of class when Ql(rzu) is replaced by
exp(-rzu/z). Schoenberg (1938) showed that for each £ = 1, ¢(|]t||2),
teR”, is a characteristic function if and only if ¢ed,, and thaf‘@g,;,égﬁfWN
as § > o,

Let X ~ ECn(u,Z,¢) and the rank r(Z) of £ be k > 1, Further let
L = A'A be a "rank factorization" of %, i.e., a factorization such that

A is k x n, necessarily of rank k. Then Y = (X-p)A™, where A™ is a

generalized inverse of A, has characteristic function

9,(s) = O(sA™ TATs') = O(sA” A AATs') = 6(|[s]|D),  semk

3

since AA” equals the k x k identity matrix Ik’ due to the fact that A is

of full rank k. (Cf., Rao and Mitra (1971), page 23.) Thus



k

Y ~EC, (0,1,,9) and ¢(||sl|2), selR", is a characteristic function on rK,

Consequently ¢e¢k, and it assumes the form (2) for % = k and some
distribution function F on [0,»). Thus if R is independent of U(k) and

has the distribution function F, then u + RU(k)A ~ ECn(u,Z,¢), and

therefore

(3) x ¢+ ru®p |

In summary, X ~ ECn(u,Z,¢) with t(Z) = k if and only if X ig representable
as in (3), where R is a nonnegative random variable which is independent
of U ond 1 = A'A 48 g rank factorization of T (A:kxn,r(A)=k). The
function ¢ and the distribution function F ave related through (2) with

2 = k. (When T is the zero matriz, k = 0 and X = u a.s.) Also, it
follows from (3) that the class of admissible ¢ in the parametric
representation ECn(u,2,¢), when r(L) =k, ig & .

We shall refer to the representation given in (3) as a canonical
repregentation of X. (It is not unique.) It is to be distinguished from
the more general representation in (1) which might hold for & > k = r(%).
Observe, for instance, that if u + RU(k)A is a canonical representation
of Xand Y = XB + C is a linear transformation of X, then the
representation (uB + C) + RU(k)(AB) of Y is canonical if r(AB) = k, and
noncanonical if r(AB) < k. For every index & 2 k for which ¢e®2, there
is a representation of the type shown in (1). (See Corollary 2 below.)
The distribution of R in (1) depends on &, which is apparent from (2).
There are precise relationships between the corresponding parts of any two
representations of an elliptically contoured random vectorj'these-éreuwr'

described in Theorem 3 below.



When £ is of full rank n, then X ~ ECn(u,Z,cb) has a canonical .

representation taking the form

i
(4) X d u o+ RU(n)Z2 .

The distribution function F appearing in (2) for & = k = r(Z) will
be called the canonical distribution function associated with X. Its
special significance is made clear in the following lemma.

Lemma 1. If F is the canonical distribution function assoctiated with

X ~ ECn(u,Z,¢) and k = v(T) 2 1, then the quadratic form

(5) QX) = (X~-pw)z (X-w)'

where I is any generalized imverse of I, has the distribution funetion

F(v/ ). 1"}
Proof. From the canonical representation (3), one obtains )
(X-w) T (X-u)"' d RZU(k)A(A'A)-A'U(k)'. According to Rao (1973, page 26,
(vii)), A(A'A) A' does not depend upon the particular generalized inverse
chosen. Choosing the Moore-Penrose generalized inverse Z+, for which
(A'A)* = ATAT' (cf., Boullion and Odell (1971), page 8), we have

2

AGA'MTA = AATAY = LI = I Thus Q(X) ¢ R%, and the theorem

follows. ' 0

Remarks. The distribution function F and the quadratic form Q(X) are
both defined with respect to the parameters (u,Z,¢) used to describe the

distribution of X. As Theorem 1 below points out, other parameterizations

are possible. If k = r(Z) = 0, then X = u a.s. and Q(X) = 0 a.s.




In the remainder of this section, we develop the theory germane to

stochastic representations of elliptically contoured random vectors.

Theorem 1. If X ~ ECn(u,Z,¢) and X ~ ECn(uo,Zo,¢o), then

(6) C Hg T M.

(o)

Moreover, if X ie nondegenerate, then there exists a ¢ > 0 such that

(7 I, =c
and
(8) NOERICRD

Proof. By examining characteristic functions, one can easily see that

d d «
X-u=-(Xp) =pu-u - (Xu) =u-u + (X-p) = X - (2u-u), from

. . o
which (6) follows. Write I = (oij), Zo = (cij), n o= (ul,...,un). If
X = (xl,...,xn) is not degenerate, then one of its components Xj is not

degenerate, and the characteristic function of Xj - uj is given by
9o, u?) = ¢ (0°.u? ueR
U = 90550, ;

with o, ., 0. > 0, which establishes (8) with ¢ = 09./0.. . The -
JJ JJ ' J3 1]

hypotheses and (8) imply that the characteristic function of X - p

satisfies
9) B(tIt') = ¢ (tI t!) = ¢>(c'1tzot) , telR

Now, if (7) is not true then for some toe]Rl1

2 -1 2
(a”=) toZté ZC tozoté (=b™)



Substituting ut (ueIR) for t in (9) leads to ‘

(o s2u?) = ob%ud),  ueR .

Then for d = bZ/a’<l if b? < a2, or for d = a’/b’<l if a’ < b%, it follows

recursively from (10) that
o) = o(d™?,  uwer, n=1,2,...,

which in the limit, as n - «, yields cb(uz) = 1, u€lR.. This contradicts

the nondegeneracy of X, and hence (7) follows. : g

Thus the distribution of an elliptically contoured random vector X
does not uniquely determine the parameters (I,¢) in ECn(u,Z,ctz) . This
redundancy has its analogues in (1) and (3), where it is apparent that if
R is multiplied by a.positive constant and A is multiplied by the o ‘
constant's reciprocal, then the distribution of X is unchanged. Except
for this indeterminancy in scale, the distributions of R in (1) and (3)
are determined by the distribution of X when X is not degenerate. This

is a consequence of Corollary 2 below.

Theorem 2. A function ¢:[0,2) + IR belongs to &, if and only if ¢ is

continuous and

v
(=]
-

(11) fo o(2sv)g, (V)av , s

ig the Laplace transform of a nonnegative random variable, where gy

denotes the chi-squared density with % degrees of freedom (158<) .

Proof. The normal random vector X ~ NQ(O,II) is elliptically contoured

EC2(0,12,¢) where ¢(u) = exp(-u/2). This cbe%, and (2) yields the identity — -



v
[
-

exp(-u/2) = j‘;’ 2, (w)g, (V)dv , u

where gy is the density of the quadratic form Q(X) = XX' (see Lemma 1),

or, what is more convenient for our purposes:
(12) exp(-srz) = fw Q (Zsrzv)g (v)dv s 20, reR
0 "% L ’ =T mETT

Now suppose ¢ is an arbitrary member of @2 and F is the distributién
function on [0,») associated with ¢ through (2). It follows immediately
from (2) and (12) that (11) is the Laplace t;ansform of R2 where R has
the distribution function F. Conversely, suppose (11) is the Laplace
transform of a nonnegative random variable S and ¢ is continuous on [0,%).
Let F be the distribution function of S%, and let ¢o€®l be the function
defined in (2). We shall show that ¢o = ¢. 'From the first part of the

proof we have

v
(=]
-

ﬁ; ¢o(25v)g2(v)dv = ﬁ;¢(25v)g2(v)dv , 3

which yields
L
ﬁ; h(u)-u2 e W44y = o s s>0,

where h = ¢0 - ¢, and u = 2sv desgribes a change of variables. The latter
5 -1

is the Laplace transform of h(u)u2 in the variable 1/4s, and hence

h(u) = 0 a.e. on [0,9). Since ¢ is continuous by assumption, and ¢° is

. . 2, . s . .
continuous in as much as ¢o(u ) is a characteristic function, it follows

that ¢o = ¢, and hence ¢e¢g. 0

Remarks.

1. It is apparent in the proof of Theorem 2 that for each fixed %



(1<h<w), there is a ome-to-ome correspondence between functions ¢Je<I>z and .
distribution functions F: Equation (2) defines ¢ in terms of F, and (11)
describes the Laplace transform of the distribution function F(/* ) in
terms of ¢.

2. According to Lemma 1, (11) is the Laplace transform of the quadratic
form Q(X) = (X-w)I (X-p)' when X is not degenerate and ¢ = k=1r(). It
follows, in particular, that an elliptically contoured random vector X
has a nondegenerate normal distribution if and only if Q(X) is a positive
multiple of a chi-squared random variable with k = r(I) degrees of
freedom. (The multiple is one if I is the covariance matrix of X. This
corresponds to ¢(u) = exp(-u/2), u = 0.)

3. Theorem 2, together with Bernstein's theorem (cf., Feller (1971),
page 439), can be used effectively to show when a candidate ¢ belongs to

the class @Q. For instance, it is easy to check that -

$(*) = (l-oa-)exp(—~/2)e®2 if and only if 0 < af <1 (1<),

Corollary 2. Suppose X ~ ECn(u,Z,¢) and X 18 nondegenerate. Then X is
representable as in (1) if and only if & 2 r(Z) and bed; equivalently,

if and only if & 2 r(I) and (11) is the Laplace transform of a nonnegative
random variable. If X is representable as in (1), then A'A is a positive
miltiple of L. Moreover, if A is scaled so as to make A'A = L, then the
square of the random variable R appearing in (1) must have the Laplace

transform given in (11).

Proof. We have already shown that (1) leads to X ~ ECn(u,Zo,¢0) where

Zo = A'A and ¢o is the function defined in (2). Since, by assumption,

X ~ ECn(u,Z,cb), it follows from Theorem 1 that ¢€®5L and .
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L

v

r(A) 2 r(Zo) = r(Z). Conversely, if ¢e¢£ and R is a random variable,
independent of U(z), whose distribution function is the F appearing in

(2), then rRu(¥

~ ECQ(O,I£,¢) (a restatement of (2)), and hence

U+ RU(Q)A ~ ECn(u,Z,¢), where A is £ X n . and chosen so as to make

A'A = L. That A can be so chosen is easily established when & > r(%).
The remaining part of the first sentence, following the semi-colon, in the
statement of the corollary then becomes an immediate application of
Theorem 2. Now suppose X is representable as in (1), so that

X ~EC (I, ) with I = A'A. Then A'A is a positive multiple of I, and
it is apparent that A can be rescaled so as to make A'A = I and ¢o'= )
(cf., Theorem 1). Then it follows from the first remark following the

proof of Theorem 2, that the square of the random variable R appearing in

(1) has the Laplace transform given in (11). 8]

Thus 7f a nondegenerate elliptically contoured random vector X has

two representations X 2 H o+ RUcz)A and X g My * ROUUL)Ao and Ao = A (or

1
-3

d d
! = = = ! = ' = i
AOAO = A'A), then By = M and Ro R. (If AOA0 CA'A, then Ro c. % R))
d .. (n) -
Lemma 2. Suppose X = RU ~ ECn(O,In,¢) and P(X=0) = 0. Then

d d
fxi]Sr, wiixf £o®™,
and they are independent.

Proof. Since the mapping x - (||x||, x/||x||) is Borel measurable on
R" - {0}, it follows from the representation X ¢ ru™ that

Ulxlls x/11x D d (R,U(n)), which proves the lemma. g

Write U(n) = (Ugn),ugn)) vhere Ufn) is m-dimensional (l<m<n)..



11

where an (=0), U(m) and U(n-m) are independent, and

2 m n-m
an ~ Beta(—z—,—-‘-?——),

t.e., R has the density fumection

n-m

-1
rm-1(1~r2) 2

(3
R 0<r<l1.

rGregy

Proof. Let X = (Xl,Xz) ~ Nn(O,In), where the dimension of X1 is m. Since

X1 and X2 are independent, it follows from Lemma 2 that
L STARR TN I VA1 D ¥ P RPN | BRI A P )
are jointly independent and
d
X /1% |1 £ ™, w11,

(n-m)

In what follows, we set ™ and u equal to Xl/llxlil and XZ/IIXZlI,

respectively, and define R as [[X;|[/]|X]] (=|[Xlll/(||X1|]2+[Ilelz)%h.

Clearly R_, ™ apg gt

are independent, and an has the required
distribution since []Xlllz and |lX2||2 are independent chi-squared
variables with degrees of freedom m and n - m respectively. Finally,

applying Lemma 2 again, we obtain
d
(Ugn),ug‘n)) -y d ﬂ%’f /X X/ 1xED

_ (m) 2 % ,(n-m)
= (R U, (1-R )* U )
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Remark. If ¢e¢N (N<»), then for eachn, 1 <n <N, ¢e¢n and, according

to (2),

IO P Qn(rzu)an(r) , uz0,

for some unique distribution function Fn on [0,x). Fm and Fn (1<m<nz<N)
are related in the following way: If Rm and Rn have distribution

functions F_ and F_, then
mn n

e

(13) Rm Ranm

where an, distributed as in Lemma 3, is independent of Rn‘” Consggpgp;}y
(cf., Lemma 4 below), R has an atom of size P(Rn=0) at zero if this
probability is positive, and it is absolutely continuous on (0,») with

the density

o asmlp Lo | ._
(14 £ () = _.S_’__(Zl_ : o~ (=2) (2 2y 2 aF_(r) , 0<s<w.
rEPregy
Thus Fm takes the form
2T (). A im ,
Fple) = F (0) + fg f: ___ffL_____sm-lr-(n-Z)(TZ_SZ) 2 dF_(r)ds
rEHrEs -0
2r3) ~(n-2),.2 5 -l
= F (0) + —_——t (t7-1) df_(pt) , p 20 .
n f; TP n

- d (n) .
To show (13), let X = (Xl,Xz) = RnU ~ ECn(O,In,¢), where Xl is of

‘dimension m. Then X d RmU(m) ~ ECm(O,Im,¢). But, on the other hand, we

1

have from Lemma 3,
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d g ym d (m)
Xl = Rnul = RanmU s
wherean, an and U(m) are independent. Thus X has two canonical

representations, RmU(m) and RanmU(m), and (13) follows from the remark

following Corollary 2. u

On the basis of this remark and the foregoing discussion, we are

able to easily justify the following theorem and its corollaries.

Theorem 3. Suppose the nondegenerate elliptically contoured random vector
L)

X has two representations X d u o+ RU(Q)A and X d u, + R U ° A,> where

L 2 20. Then

(1) w, =u,

(ii) A'A = CAéAo for some ¢ > 0 ,

... L d
F?%l) “9 RR££ = RO

» where Roo ©8 independent of R and
) o

% 20 - .
R ~ Bet:,a(T,_—-z———).. . (Set Rmo =1 4f 2’0 = 2.)
(9} .

Corollary 3a. If the elliptically conmtoured random vector X has the

representation (1) and X is not degenerate, then X has a canonical
representation | + RRku(k)Ao where k = Tv(A'A), Ac"Ao i8 a rank
factorization of A'A, the stochastic entities R, Rox and U(k) are

: 2 k 2-k e oy
independent, and Rop ~ Beta(f,T) . (R.Qk =14f 2 =k.)

Corollary 3b. If X ~ EC_(W,I,) has the representation (1) with
A'A =T 'and k = v(Z) 2 1, then the quadratic form

QX) = (X~ (X-w)' d RzRik, where T 1is any generalized inverse of I,

R and Ry, are independent, and Rﬁk ~ Beta(_lzi, 9;k) Ry =13 2 = W ‘
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Suppose X ~ ECn(u,Z,¢) is nondegenerate and, for convenience, R and
A in (3) are scaled (see the remark following Theorem 1) so that A'A = I
and R has the distribution F appearing in (2) when £ = k = r(Z). Since,

from (3),
X' (x) § RZarg() gy

it follows that the covariance matrix of X, denoted Zo, exists if and only

if ER2 < o, In this case EX = p and

2 . 1 1
ER™ A" d1agCF,...,E9A

™
"

(15)

rlemees = oz (say).

Because the distribution function of R (i.e., F) cannot be readily
expressed in terms of ¢, it is desirable to relate the existence of Zo and

the constant ¢ to ¢ directly.

Theorem 4. Let X ~ ECn(u,Z,¢) with X nondegenerate. The covariance
matriz I of X existe if and only i1f the right-hand derivative of-¢(U) at

u = 0, denoted ¢'(0), exists and is finite. When it exists and is finite,

Zo = -2¢'(0)L .

Proof. We continue with the setting and facts established in the

paragraph preceding the theorem. Clearly

Z, exists <=> ER2 € o =B E(Rugk))2 < .,

where ng) denotes the first component of U(k). Since RU(k) has the
characteristic function ¢(|]t||2), tenﬂ‘, Rugi) has the characteristic



15

function

2
o) (k) (v = ¢(u™) , ucR .
RU v
1
If ¥ exists, then ¢ is twice differentiable and
° ru{k)
1

2 2
k" 1zR? = E(nu%k))2v= 9" (1 (0 = -lim oth) - 2¢(O% * OCCh) ) o 341 (0)

"
RU1 h+0 h

Thus the existence of Zo implies the existence and finiteness of ¢'(0),

and, moreover, -2¢'(0) = k_lERz, so that (cf., (15))

Zo = -2¢'(0)T .

Conversely if ¢'(0) exists and is finite then for h=z0,

4 M+ 26 (0 = ¢ g ()
Rng) Rng) RU:Ek)

1 - (9
2

h 2h?

- fjw 1 - cgs hx dH(x) ,
h

()

1 Then by Fatou's Lemma,

where H is the distribution function of RU

Eru)? < 7 a0 = 2f7, 1im 22505 X gy
T h0 h

-2¢' (0)

2<

8

Thus E(Rugk)) and, hence, Zo exists.
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When the covariance matrix Zo of X ~ ECn(u,Z,¢) exists, choosing I to
be Z, has special appeal. This occurs (automatically) if and only if ¢ is
chosen so as to make -2¢'(0) = 1. This happens, for instance, in the case
of normality when, among the possibilities {exp(-cu), c>0}, one chooses

¢(u) = exp(-u/2), u 2 0.

3. (Conditional distributions.

In this section, it is shown that if two random vectors have a joint
elliptically contoured distribution, then the conditional @istribution of
one given the other is also elliptically contoured. The location and
scale parameters of the conditional distribution do not depéhdﬂhbdﬁ the
third parameter ¢ of the joint distribution and, consequently, the
formulas which apply in the normal case apply in this more general setting
as well, The situation with the third parameter of the cohditional
distribution is much more complicated, unfortunately, and needs further
discussidn. The case in which the scale parameter I of the joint
distribution is an identity matrix is considered first in Theorem 5, and
the general case is handled in Corollary 5. The statement of each
includes parametric and stochastic descriptions of all distributiéns,»the
latter being made in terms of canonical representations.

The following lemma, whose proof is straightforward and therefore

omitted, is needed in the proof of Theorem 5.

Lemma 4. Suppose R is a nomnegative random variable with (right
continuous) distribution function F, and S is an independent random
variable which is nommegative and absolutely continuous with density g.

Then the product T = RS has ai atom of size F(0) at zero if F(0) > 0, and
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it i8 absolutely continuous on (0,%) with density h given by
B(t) = [ T B(/D)ARE)

Moreover, a regular version of the conditional distribution of R given

T = t is expressible as

0 for p < 0 ;

(16) P(R<p|T=t) = 1 for t = 0, or t > 0 with h(t) = 0, p 2 0 ;

(h(t))'lfco,p]r_lg(t/r)dF(r) for t > d with
' h(t) =0, p =20 .

Theorem 5. Let X = RU(n) ~ ECn(O,In,¢) and X = (xl,xz), where Xl 18 M-
dimensional, 1 <m < n. Then a regular conditional distribution of Xl
given X, = X, is given by

(17) (X[ Xy=x,) ~ EC (0,1 ,¢ | Il2)
X

with canonical representation

: - d (m)
(18) (X 1%,=x,) &R ,U m
szil

where for each a 2 0, R 2 and U(m) are independent, the distribution of
a

R 5 is given by (21) (below),
a

d

R 5 & (R %] 15 x,2x))
1

(19)
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and the function ¢ , is given by (2) with & =m and F replaced by the
a .
distribution function of R ,.

a

Proof. From Lemma 3,

(%%, = ROM,uM) € R u™, 1-r2 5% 0B,

where R, R__, ™ ang u(P® are independent. Observe that
= (R® 2,4 2 4 (n-m) _
RR = (R°-||x,|[%) when R(1-R )™ U = x,. Thus
-x) ¢ (m) 2 4 y(n-m)_
(X1|xz‘xz) = (RR__U IR(l-an) U =X,)

Q.

((Rz_l lle Iz);i U(m) IR(I_RIZIm)li U(H-lﬂ) =X2)

o

(R x| |2 RA-RE )% 0D o yy ™

d ()
[1x11°
2
which is the canonical representation described in (18); where RII []2
b
is distributed as expressed in (19). That R ||2 depends 2
X
upon x, only through the value of lezllz, as >

the notation indicates, is obvious when X, = 0. When X, # 0, this

follows from

[{{=N

(R, 0y & (R [y | RA-RG)E 0 o)

e

(20) (R [, | | HIRAGoRE =[x, | |20 ™/ [, )

[1{=N

(211D IR a-r2 H=llx |y,
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since U(n—m) is independent of R and an. Clearly (17) follows from (18) .

with ¢]] ] 2 defined in the manner described. Finally from (19), (20),
x :
2

and Lemma 4 with the density of (I'Rim)z given by (cf., Lemma 3)

m

= -1
tn-m-l(l_tZ)Z

m, . N-m
352235_3_1 , ‘0<t<1,

g(t) =
rx

(zero elsewhere) and the distribution function of R given by F, one

obtains
R 9 = 0 a.s. when a = 0 or F(a) =1,
a
o, .
2 2.2 -(n-2)
2 2 - .
PR gp) = LaupTra® 1 GTRDT TR
(21) _Vazp . R y
’ 2 -7 -(n=2
f(a w)(r -az)2 T (n )dF(r)
" p20,a>0andF(a) <1. 0
Remarks.

1. There is no simple way (that we know of) to explicitly express ¢ 2
in terms of ¢ (together with m, n and a) when a > 0. The:relationSh?p
arises implicitly as follows: (i) ¢ determines the Laplace transform of
R (see the first remark following Theorem 2) which implicitly determines

the distribution function F; (ii) F determines F 9 the distribution
a
function of R 29 by means of (21); (iii) F 2 determines ¢ 2 by means of
a a a

(2) (letting & = m and replacing F by F 2). One complication is that the

a .
values of F on [0,a) influence all of the values of ¢ (apparent from (2) .

with & = n), while these same values of F have no effect on F 2 (see (Qﬁ))
a
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and, therefore, no effect on ¢ 2 Thus the mapping ¢ -+ ¢ 2 is many-to-one
-in a very complicated manner. aIﬁ contrast, the descriptizn of (X1[X2=x2)
through (19) and the canonical representation given in (18) is quite
explicit and straightforward, as far as it goes.

2. While (21) shows that the distribution function F 2 (of R 2) is
determined by F (together with m, n and a), in the co:verse d?rection we
have the following which is germane to Theorem 7 below: Denoting the

denominator in (21) by C 2 We obtain from (20):
a

n

= -1
(22) 1 - F ,(x) = ¢ (0%+a®y2 o~ (m-2)4p NOW r>a,
a a

2/ >
a t rz'az,m)

which is valid for all a > 0. Thus, when a > 0, F 2

- a

interval [a,~) up to the unknown multiplicative factor C 5 2 0, and, of
a

course, it contains no information about the values of F on [0,a). If

determines F on the

F(r) is known for some r 2 a and F(r) < 1, then F 2 determines F uniquely
a

on [a,») by means of (22).

Corollary 5. Let X = u + RU(k)A ~ ECn(U,Z,¢) with A'A = T and

r(A) = r(%) = k 2 1. Further, let
X = (xl’xz) s H = (ul:uz) ’ L= 3

where the dimensions of Xl, My and 211 are, respectively, m, m gnd m X m,
and assume k, = r(Z,,) 21 and ky =k -k, 21. Finglly let S denote the
row space of L,,. Then a regular conditional distribution of X, given

X, = X,, 18 given by
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(23a) (X; [X,=x,) ~ Ecm(uxz,z*,¢q(x2)) for X,eu, + S,

y d
(23b) (X1|X2=x2) = for X fu, + S,

with a canonical representation

d (ky)
= = *
(Xllx2 x,) uxz + Rq(xz)u A*  for X,eU, + S ,

where, with 252 denoting any generalized inverse of I,,,

= - - * = - -
He = Mg+ (XpmH)ZonTs L* = 21y - Iyplaolag o

2

Q(xz) = (xz'uZ)zgz(xz-UZ)' ’

and A* ig a k; X m matriz of full rank k, satisfying A*'A* = T*. g
(k;)
Moreover, for each a 20, R , is independent of U 1 and its
a

distribution is given by (21) withn = k and m = k3

d . o2 o
Rq(xz) = ((R -QCXZ)) 'XZ—XZ) for xzeuz + S
and the function ¢ , ie given by (2) with & = Ki;gnd'F replaced by the
a | ;
distribution function of R ,.

a

Remarks.

1. The description of (X1]X2=x2) given in (23a) is of-priﬁ;r&”interest
since Xyel, + S a.s. (apparent from the proof below).

2. The excluded cases k2 = 0 and k1 = 0 are trivial and largely

uninteresting: If k2 = 0, then X2 = U, a.s., and the conditional

distribution of X1 given X2 is that of xl. If k1 = 0,
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then X1 = uxz =Yyt (Xz—u2)222221 a.s., and the conditional distribution

of X, given X

1 is degenerate a.s.

2

Proof of corollary. Write RU(k) = (Zl,ZZ), where Z. is kl—dimensional,

1

be a rank factorization of 222, so that A2 is

= At
and let 22 AZA

2 2
k2 X (n-m) and r(AZ) = kz, It is easily checked through their

characteristic functions that

. i
(X2 X)) = (Up+ZiAR+Z AL 2505 Up42 A )

Thus

= g % - =
(X [ Xg=x5) = (uy*Z A2 AT T 51 |2 0A07%5 1))

e

(ip* (XpmHp)Zpn851) + (Zq|Z A =x,m1,) A%

= - *
Me, (Zy |28 ,=x,-1))A

Since AJA, = Z,,» the row space of A, is also S, and it follows that the

equation z Xy = Uy admits a solution for z, if and only if -

Az = %
X €U,y + S. Moreover, when a solution exists, it follows from Theorems

2.2.1 and 2.3.1 of Rao and Mitra (1971), pages 23-24, that it is unique

2 is any generalized

and assumes the form z, = (xz—uz)A2 , where A

inverse of AZ' Thus

(X11X2=x2) ux + czllzz=(x2'U2)A2)A* s Xzeu +S .

2

But by Theorem 5,
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(k

- ZU
[ xpmua™ |

)
(22,7 (x,7u A0 € R !

(k)
where for each a 2 0, R 2 is independent of U , and its distribution
a
is given by (21) withn =k, m = kl' Also for X,€l, + S, Xy = Uy = zzA2

for some Z,s and hence

- 2 IR B R | - [ ]
[ Ggrud o 17 = 28085 Mgz, = 2AE5082 = a(x))

- =1
since A A2 is a generalized inverse of 222, and the value of the

- ' -
product Ayl A, is independent of which generalized inverse I  one chooses.

(Cf., Rao (1973), page 26, (vii).) Thus the claims for x €M, + S are

2
true. Since P(X25u2+s) = P(ZZAZeS) = 1, the conditional distribution

2

. In particular, definition (23b) leads to a regular version of the

of X1 given X, = X, may be defined arbitrarily on the complement Q’f S. ‘

conditional distribution. i

4. Densities.

Here, we discuss the densities of elliptically contoured
distributions with an emphasis on their relationship to the random
variable R appearing in their canonical representations. Much of this
material appears elsewhere, such as in Kelker (1970), with a somewhat
different emphasis. It is included here because we shall have occésion
to refer to it, and, in part, for the sake of éompletenessl

If X ~ ECn(O,In,¢) is absolutely continuous, its density is

invariant under all orthogonal transformations and thus is expressible

in terms of a function gn:[O,w) + [0,°) as
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2 2 n
(24) gn(x1+...+xn) s X = (xl,_,.,xn)en{ .

@)

Moreover X has a canonical representation of the form Rn , where Rn

is also absolutely continuous, and its density fn is expressible as

n-1

(25) £f(r) =srT gn(rz) , r20,

n

where S, denotes the surface area of the unit ball in R" (sl=l). Thus
g, must satisfy the integrability condition fz rnnlgn(rz)dr < » ., (The
special case gn(u) = (Zﬂ)'n/2 exp(-u/2) corresponds to normality:.and,
as we have noted for this case, fn is a chi-density with n degrees of
freedom.) Conversely, if R is absolutely continuous,‘then so is X and
their densities are related through (25).

If an absolutely continuous random vector X ='(Xif...,xn),hgs”a
density of the form shown in (24), then fn; defined by (25), is a density
of a nonnegative random variable R, and X_-ECﬁ(Q,In{¢), where ¢ is’
defined by (2) with & = n and dF(x) = fn(x)dx .

Let Y ~ ECm(O,Im,¢) denote an arbitrary marginal of X of dimension .
m (1<m<n). Y has the canonical representation RanmU(m), where Rn’ an
and U(m) are independent, and an ~ Beta(932599 (see (13) and the
adjacent discussion). Consequently, Y is absolutely continuous if and
only if P(Rn=0) = 0. When this occurs, the density fm of Rm is given
in (14), where Fn denotes the distribution function of Rn,;and thus the
density of Y takes the form

e B r-m ,
26) g (|lyl1% = st S cnemy ¢ Dy 2 dF (1) ,

Hyl)?

YeIRm
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When, moreover, Rn is absolutely continuous, this simplifies to

@ g Uyl = s fo gyl [Zerhr® ™ tar

More generally, if X ~ ECn(u,Z,¢) with Z of full rank n, then

1
=2

X~z 2 ~ ECn(O,In,¢). Thus the density of X exists and assumes the
form

-y -1
(28) 12177 g ((x-W)Z77 (x-1))

: 1
if and only if R, appearing in the canonical representation u + RU(n)Zé,#
is absolutely continuous with the density fn defined in (25). Since

R2 d Q(X) = (X-u)Z'l(X-u)', it is seen that X is absolutely continuous

if and only if its quadratic form is, and that when they are absolutely ‘

continuous, the quadratic form Q(X) has a density of the form

L |

S
2 d
g,(@ , q

=2
fQ(q) =54

v
[=]

The occurrence of absolute continuity for Y, when Y is a marginal

of X ~ ECn(u,Z,¢), is as one would expect, and it follows that, in terms

of the notation of Corollary 5, the conditional density of X, given

1
X2 = X, is given by

-1 -1 -1 -1
8 ([Xy =1y~ (Rpmp) 208 oy 12% 7 [xy -y = (Xp=hp) DpoZ o 1Y+ (X5m1p) 255 (Xm0 ')

2 2 -1 n-1
spl 217 Jo g (r e ) By (o) 2™ e

when T is of rank n and X is absolutely continuots. ' .




26

Finally, suppose X ~ ECn(u,Z,¢) with r(Z) = n and ¢e¢ . By the

definition of ¢ _, there exists a distribution function F_ such that
) .
¢(u) = f[o,w) exp(-ur”/2)dF_(r) , uz0.

Since ¢ (tIt'), teIRn, is the characteristic function of X - u, X is

absolutely continuous and has the density

217 g (ew)z ™ (x-) )
(29)

= IZj'15 f(o’w)(2wr2)'n/2 exp{-(x-u)z'l(x-u)'/2r2}dﬁ;(r)

if and only if F_(0) = 0. Otherwise X is absolutely continﬁous away from
the origin with the density given in (29), and it is atomic at the origin

with atom F_(0).

5. Characterizations of normality.

In this section we focus attention on several properties of the
normal distributions which do not extend to other elliptically contoured
distributions. We have already discussed one of these in the second remark

following Theorem 2, appearing in Section 2. .

(a) When X = (xl,xz) is normally distributed, then, of course, the
conditional distribution of X1 given X2 is normally distributed and the

function ¢q(x in Corollary 5 assumes the form ¢q(x2)(u) = exp(-cu/2),

)
2
where ¢ 2 0 is independent of X,e The failure of ¢q(x ) to depend upon

2

the value of q(xz) characterizes normality:



Theorem 6. Assume the rank valuee kg and k, appearing in Corollary 5 ‘
are strictly positive. Then ¢q(x )(u) 18 degenerate for each u 2 0 if
2 v )

and only if X 18 normally dietributed.

Proof. In view of the foregoing discussion, it is only necesséry to show

the "only if" part. By Corollary 2, for all t = (tl,tz)eﬂfu '

¢(tIt') = E exp[it(X-u)'] = E exp[it, (X;-u,)"' + itz(xé-uz)']

E{exp[itz(xz-uz)']E(exp[itl(xl-ul)']|X2)}

E{exp[itz(xz-uz)' + itl(uxz-ul)']¢ 2)(t12*t1)} .

q(X

Hence, putting, for each u 2 0, ¢q(X )(u) =y(u) a.s., it follows that
2

¢(tIt') = w(tlz*ti)E exp[i(t2+t1212252)(Xz-uz)']

= V(g I*e ) o1t 4t T 0 )T 0 (o4t 3y 08000 ']

And since

| - *4t - R X
tIt! = IVt o+ (bt Ty 0o B, (tyrt 2y 0000

it follows that ¢(u+v) =y (u)¢(v), u,v 2 0. (Here, one makes usé of
the assumption k,,k, 2 1.) Setting v = 0, yields ¢ = ¥, and thus.
¢(u+v) = ¢(u)¢(v), wu,v =2 0. Since ¢ is continuous with ¢(0) = ; and
|¢(u)] s 1, it follows that ¢(u) = exp (-cu/2) for some c > 0, and thus

X ~ N (,e8). | : 0
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(b) It is apparent from (21) that the normality of (X1|X2=x2)rdoes
not entail the normality of X, for the distribution function F 2
NENY
can be that of a chi-variable without F being that of a chi- 2

variable, or a multiple of a chi-variable. (See the remarks following

Theorem 2.) Nevertheless, the following is true:

Theorem 7. Assume X = (Xl,XZ) has a nondegenerate elliptically contoured
distribution and the rank values k, and k,, appearing in Corollary 5, are
both positive. Then X ig8 normally distributed if and only if, with
probability one, the conditional distribution of X, given Xé i8

nondegenerate normal.

Proof. The "only if" part states a well-known fact, and so we will only
show the "if" part. We shall refer freely to the notation and results
appearing in the statement and proof of Corollary 5. For X,€l, + S,

q(x,) = II(XZ-UZ)AEIIZ = ||z2||2, and, consequently,

(30) a(x,) € [1z,]1%,

where 22 denotes the vector consisting of the last k2 components of
RU(k). Thus P(q(X2)=0) a P(R=0) < P((Xllxz) is degenerate) = 0, and
hence q(XZ) >0 a.s. Also, since (Xllxz) is nondegenerate normal

a.s., the function ¢ (+) must assume the form
a(X,)
¢q(x2) (U) = exp(-C(q(XZ))U/Z) > u=z=0 _ a.s.

for some function c:(0,*)} » (0,). If it can be shown that c(q(xz)) is

a degenerate random variable, then the normality of X follows from
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Theorem 6. Let A be the set of all a > 0 such that

(31) ¢ () = exp(-c(az)u/Z) s uz>0.
a

1 .
Note P(q(xz)ﬁeA) = 1. Now (31) 1mp11es that the distribution function F 2
T - 1

of R 2, acA, is that of a chi-squared varlable w1th k degrees of

1
freedom times c(a’ )’i Combining this with (22), when n = k and m = kl,

we have for acA

1 - F(r) = Const. f: Sk_1 exp(-Sz/Zc(az))dS s T2>a

2,, .2
(32 F'(r) = Const. rk'le'r /2c(a”) s
It is obvious from (32) that c(az) is a constant for all aeA, and the

degeneracy of c(q(Xz)) follows. 0

Remarks.

1. An alternative proof of the "if" part of Theorem 7 without using

Theorem 6 can be given as follows. (32) implies
k-1 _-r2/2

(33 F'(r) = const. r e <, T >a

where ¢ is some positive constant and a, is the infimum of A. Since,
1

on account of (30), P(o<q(x2)4<e) >0 for every £ > 0, we have

An(0,e) = P for every € > 0 and, therefore, a = 0. Now it follows from

(33 and the fact F(0) = P(R=0) = 0, as noted in the previous proof, that




30

F is the distribution of a chi-squared variable with k degrees of freedom
times c%. Thus X must have a normal distribution. (See the second
remark following Theorem 2.)

2. The reasoning in the previous remark can be used undér weaker
assumptions. X is normal if X1 given X2 = X, is nondegenerate normal for
all x,ep, + S for which [x,-u,| < e for some ¢ > 0. |

3. The restriction in the statement of Theorem 7 that the conditional
distribution of Xy given X2 be nondegenerate is neceséary: Suppose R in
(3) has a mass F(0) at zero with 0 < F(0) < 1 and a density of the form
(33) on (0,°). Then the conditional distribution of X1 given X2 is
normal with probability one, but X is not normally distributed. (Of
course, if F(0) = 1, then X is normally distributed, but degenerate.)

4. Theorem 7 was obtained by Kelker (1970) under the assumptions that I

is nonsingular and X has a density.

(c) We shall refer to the function gn(-), appeéring in (28) as the
functional form of the density of ECn(u,Z,¢) whenever it exists. -
Naturally its specification is arbitrary on a Lebesgue null subset of
[0,2). In addition, it is apparent from Theorem 1 that for any c > O,

- 1 . - . . - -
c 2 g(ce) is also a functional form for a different parameterization of

- EC (W,Z,9).

Theorem 8. ECn(u,Z,¢) with *(X) 2 2 18 a normal distribution if and only
1f two marginal densities of different dimensions exist and have

functional forms which agree up to a positive multiple.

Proof. The "only if" part is obvious, so we shall only show the "if"
part. Suppose X ~ ECn(u,Z,¢) has marginals of dimensions p and p + q

with functional forms g_ and g , and
P p+q



31

(34) gp+q(u) = Const. gp(u) s uz0.

(Here and below, '"Const." stands, generically, for a positive constant,
not always the same.) Without loss of generality we assume that

r(Z) = n and, in fact, that y = 0 and ¥ = In' (Otherwise, we could
consider Y = (X-u)A™ ~ EC, (0,1,,9), where k = r(i) and A'A is a rank
factorization of r£.) Then

2
p+q’ Tp+l’ p+q

2 2 2
gp (X1+. . .+xp) f]Rq gp+q(xl+ c WX

=Const. [ g (x5+...+x° Jdx_ ....dx__
- ‘r% P11

which implies

v
(=]

gp(h) = Const. f q gp(u+zf+...+zé)dzl...dzq p u

IR

It follows that

2

(x2+ +X
15" X5

2 2
) = Const, {mg gp(x1+...+xp_'_2q)dxpqui'_l...dxp+2q .

Epeq

Thus a multiple of gp(xi+...+x2 ) is a density of an elliptically

P*2q

p+2q(0,1p+2q;p)(see the third paragraph Qf

Section 4 ), and Z has the (p+q)-dimensional marginal density

contoured random vector Z ~ E

(xi+...+x2 ). Consequently, ¢ = yed Similarly it follows that

Ep+q p+q p+2q’

¢€®p+jq for all j = 1,2,.... Hence ¢ed and there exists a distribution
function F_on [0,©) such that (cf., (29))

8 = [(gm @) 2 exptwzhiar, (), w20,  j=ppa.
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By the uniqueness of Laplace transforms and (34), we obtain
r-dew(r) = Const. r—(p+q)dFm(r) ,

from which it follows that F_ is degenerate at some point ¢ > 0. Thus
gp(u) = exp[-u/(Zcz)] and X is normally distributed. (Observe that in

(34) the constant must be unity.) 0

(d) Because of the one-to-one correspondence between functions ¢
and distribution functions F described in the remark following Théorem
2, it is easily seen from Theorem 6, that, wunder the assumbtions of
Theorem 6, the conditional distribution of R

q(X
5) given X, te independent of X, if and only if X ie normally

) (defined in Corollary
2

distributed. Thus if X is normally distributed, then every conditional

moment of positive order of Rq(X ) given X, is nonstochastic
2

2

(degenerate). This invites the following characterization of normality:

Corollary 8a. Suppose X = (Xl,XZ) ~ ECn(u,Z,¢) and the ranks k1 and k2

appearing in Corollary 5 are strictly positive. Then, for any fixzed
positive integer p, E((Rq(X ))Plxz) is finite and degenerate (i.e.,
2

independent of XZ) if and only if X ie normally distributed.

Proof. Just the '"only if" part requires proof. From the proof of

Corollary 5, it is apparent the assumption "E((Rq(x ))P[xz) is finite
2

and degenerate" is equivalent to "E([[ZIIIPIZZ) is finite and

degenerate', where Z = (Zl,ZZ) ~ ECk(O,Ik,¢) with Z1 and Z2 of dimensions
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k, and k2 respectively. Moreover, if Z is normally distributed, so is X. .

1
Thus, without loss of generality, we may assume X = (xl,xz) ~ ECn(O,In,¢),
where Xl is of dimension m (l<m<n), as in Theorem 5, and show that the
normality of X is implied by the finiteness and degeneracy of

ECL %] IP]xz). The latter permits two cases: P(X=0) = 1 and P(X=0) = 0.

The first case is trivial: X is degenerate normal. In the second case,

P(| [XZI |=0) = 0, and according to (18) and (21),

Ll ]
2 2 -(n-
RIS LGt I (R
(Hxlllplxz) = - when F(||x2|[) <1,

L |
2 2.7 " _(n-2)
f(lllel,oo)(r —szll ) T dF(I‘)

=0 when F(||X2H)‘ s

where F is the distribution function of R in the canonical representation

x $rRu™ . Thus

mp
Ty o &1 2 O Darc)

m
5 -1
= Const. f(HXzH,W)(rZ‘HXZIlz)Z r-(n_z)dF(I‘) a.s.

which implies

mp m o,
)(rz-uz) 2 T (n'z)dF(r) = Const. f(u ) (1‘2—u2)2 r'(n"z)dF )

,f(u,°°
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for almost every u > 0 (Leb.), since ||X,|| is absolutely continuous on
(0,) with (according to (14)) a positive density at every u > 0 for
which F(u) < 1. It follows that

m+

-1
(35) f(u’m) (rz_uz) 2 - (n+P-2) an+p (dr)

m
= -1
= Const. f(u’w)(rz—uz)2 r-(n+p-2)an+ (1)

P
for almost every u > 0, where Fn+p(p) = fco,p]rde(r)/fco,m)rde(rQ
defines the distribution function Fn+p' (That f(O’w)rPdF(r) > 0 is
because P(X=0) = 0; that it is finite is because
E[|X1||p = E[E(IlellPIXZ)] = E([|X1|lp|X2) a.s., and hence is finite.)
It is apparent from (26) that the left and right integrals of (35) are
functional forms for marginal densities of Z ~ EC_. _(0,I_ _,¥) of

n+p n+p

dimensions n - m and n - m + p respectively, where ¥ (u) is defined by

the right side of (2) with 8 =n + pand F = F Hence by Theorem 8,

n+p’
Z is normally distributed. Thus, Fn+p is the distribution functibn of
a multiple of a chi-variable with n+p degrees of freedom. This iﬁplies

F is the distribution function of a multiple of a chi-variable with n

degrees of freedom, and, in turn, implies X is normally distributed.

Remarks. We suspect that the corollary would hold for any real p > 0,
not necessarily an integer. The size and nature of the collection of
functions h:[0,) + IR which guarantee that "E(h(llxll])lxz) is finite

and degenerate" =b "X is normal" is unknown.
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(e) For X = (XI,XZ) ~ Nn(u,):), it is well-known that the conditional .
central moments of all orders of X1 given X, are finite and independent

of Xz. This fact characterizes normality:

Corollary 8b. Suppose X = (X;,X,) ~ EC_(u,X,9), the ranks k; and k,

appearing in Corollary 5 are strictly positive, and p 18 a positive
integer. Then a p-th order conditional central moment of X, given X, is
finite and degenerate (i.e., independent of Xz) if and -only if X is

normally distributed.

Proof. Just the "only if" part requires proof. From Corollary 5 we have
the canonical representation

(k)

d
(Xllxz—xz) = uxz + Rq(xz)U A*

valid for all x, in a set u, + S for which P(X,eu,+S) = 1. Putting
2 2772

2
X1 = (Xl,...,Xm), U, = (ul,...,um) and A* = (a,,...,a_), where a, is
X, 1 m i
the i-th column of A, we have for Py*e--*Py = Ds

1 1.P1 nPm, ., d p.k) Py (k) Py
(O 08D ) £ Ry PO Tap T ey
(k)
Since Rq(x ) and U are independent, the normality of X is immediate
2

from Corollary 8a. O

(f) The following, while not a characterization of normality, is an

interesting extension of Theorem 6.

Theorem 9. Let X = (xl,xz) ~ ECn(u,Z,¢) and assume the ranks k1 and k2

appearing in Corollary S5 are strictly positive. Then
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o
-

(36) 6(w) = [[g,4) SXP(-ur’/2d6E) ,  u

for some distribution function G on [0,°) if and only if

=
%
o
-

Q
®

2
BT bqexyy @ = J 0, expCu/286, ¢y 3 ()

where G , is a distribution function on [0,») given by
a

Go(p)=l p 20,
(38)

r 2 exp[-a%/(2r?)1dG(r)

[0, T 2 expl-a%/(2r9)1d6(r)

Proof. By Lemma 5 below the distribution function G is related to the

distribution function F of R, appearing in the canonical representation

X d U+ RU(k)A with A'A = I, through the relationships
F(0) = G(0)
(39)
rk-l -k 2 2 .
£(0) = 5= 0,0y 0 exp[-T/(2001d6(0) , r>0,
= -1 X ,
22 r2)

where f is the density of F on (0,«) on which it is absolutei&'caﬁtihudﬁEZM7

If F 2 denotes the distribution function of R 2 appearing in Corollary 5,
a a
then it follows from (21) that

Fy(0) = 1,
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k.-1
T . f(()’oo) p—k exp [-(r2+a2)/(2p2)]dG(p)

f 2(r) =5
a

s a>0,rz0,"
1

k

5 -1 VP T2 2,2
2 I (ky /20,0y P ° expl-a"/(207)1dG(p)

where f 2 denotes the density of F 2 (which is absolutely continuous when
a

a
a >0 ). Again by Lemma 5, the latter is equivalent to (37) and (38). 0

Lemma 5. Suppose X ~ EC_(u,X,9) has the canonical representation
d k . . . . .
X=u+ RU( )A with A'A = I. Then ¢ is given by (36) <f and only if G

is related to the distribution function F of R as described in (39).

Proof. Now RU) ~ EC,(0,I,,9). If ¢ is given by (36), then rut®) ¢ vz

where Y and Z are independent, Y has distribution function G, and

z ~ N (0,1 Setting W = [|2||, we have R d YW which implies

k)'

F(r) = G(O) + [ o oy £,(x/0)dG(p) , r>0,

where fw is the density of W, and the result follows from

k-1 2
£ (r) = L_expler /2) r>0
W X
71 &
2 r'z 0
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