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ABSTRACT

The 1985 SAS User’'s Guide: Statistics provides a method for computing

robust regression estimates using iterative reweighted least squares and the

nonlinear regression procedure NLIN. We show that, while the estimates are

asymptotically correct, the resulting standard errors are not. We also discuss

computation of the estimates.



Section 1 : Introduction

Parameter estimates for generalized linear models (McCullagh & Nelder,
1983) and robust regression (Hampel, et al., 1986) can be computed by
iteratively reweighted least squares techniques using the SAS nonlinear
regression procedure NLIN. Examples of these computations are given in the
1985 SAS User's Cuide: Statistics (pages 597 - 605). Despite the fact that the
User's Guide makes no mention of standard errors, casual readers may assume
standard errors from such a fitting algorithm are correct. In fact this is the
case only for generalized linear regression models. That such an algorithm
works for generalized linear regression models is shown by McCullagh & Nelder
(1983); see also Carroll & Ruppert (1987) for similar results. In this
section, we show that the standard errors in the SAS wuser’s guide are
inconsistent for robust regression. In section 2, we discuss computation of
the estimates. In section 3, we present an example to show that the use of
these standard errors can give results noticably at variance with the usual

formula.

Consider an ordinary robust regression. Here the model is written as
=X tB + oe
Yi =% i’

where the errors {ei} are independent and identically distributed. For a given

estimate o of the scale parameter o, the classic M-estimate of the regression

parameter B solves the equation
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The M-estimators defined by equation (1) are not robust against the effects of
leverage, 1i.e., wunusual design points. For discussion of M-estimates which
control for leverage, see Hampel, et al. (1986). In equation (1) the function
¥ is usually bounded. Typical choices include y(u) = max(-k, min(u,k))
(Huber's function), Tukey’s biweight as in the SAS User’s Guide and the Hampel

function
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The solution is usually computed by the following algorithm, see Holland &

G

Welsch (1977) :

(a) 'Begiﬁxﬁith'aﬁLiﬂiziai?égfiﬁaté'ﬁ of B.

(b) Form the resi&dalgxri = (yi - xitﬁ)/; .

(c) Def1ne we1ghts W, w(r )/r

(d) Update the estlmate ﬁ by performing a weighted least
squares regression with the weights LA

(e) Iterate until convergence.

A
Choices of o, which may also involve iteration, are discussed in section 2.




Let ¢ be the derivative of . It is well known (Bickel (1976) and
Schrader & Hettmansperger (1981)) that the final estimate B 1is asymptotically

normally distributed with mean B and covariance AR, where

) N
2) Ay = o E{y2(e)} [ [E ¥(e) T2 3 % xit]
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Estimated standard errors are formed by making the following substitutions, see

Bickel (1976) and Schrader & Hettmansperger (1981).

N A.,: o ;
(3.1) a=N13¥(r,) —EH#e): ©—0:
i=1 o
‘ ‘Eﬁ R TR
(3.11) A b —> Ey2(e) . where
g Nogia s ey L
(3.iii) b = (N-p) Sy (ri); A =1+ (p/N)(1-a)/a .
i=1

The procedure NLIN treats,the»weight§.{w$} as if they were fixed and known

a priori. This is the crux of the problemﬂ_because robust regression is one
instance where the randomness of thékweights is crucial. As shown in the
appendix, NLIN pretends that B is asymptotically normally distributed with mean

B and covariance ANLIN’ where

(4) Ay gy = 4 Ag- and



If one runs a linear regression replacing the responses {yi} by the pseudo

values {yi}, the estimated covariance is asymptotically correct, being

~ ~ o N ¢ -1
(5) AR = bAN(0o/a) [ 3 X, % ]
Tests and confidence intervals using the pseudo values are also asymptotically
correct. Auxiliary quantitites such as R2 would not be meaningful when
computed using pseudo values. An alternative approach to hypothesis testing is
discussed by Schrader & Hettmansperger (1980).°"

It thus remains to consider numerical’ ealéul#tioh of ; and B. For a given
value of ;, the algorithm discussed in- the& first settien can be employed. For
a given B, there are two comméit estimitesiof! ¢3/0Thé first is based on the

median absolute deviation (MAD). The resulting estimate of o is defined by

(6) o = WAD / .6745 = median{ |y, - x; B| } / .6745 .
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The division by .6745 is made so that for normally distributed data o is an
estimate of the standard deviation. Hill & Holland (1977) suggest that for

smaller sample sizes the MAD in (6) be réplaced By 'the modified estimator
(Normalized) MAD = median{ largest N-p+l of the |yi - x; Bl } .
The MAD and normalized MAD are easily calculated.

An alternative estimate of o is Huber's Proposal 2, the usual form of

which is the solution to the equation
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where EZ¢ (e) is the expected value of y“(e) when e has a standard normal
distribution. The right hand side of (7) is again chosen so that for normally
distributed data, o estimates the standard deviation. Solving (7) requires
iteration. If o, is the present estimate of o, then the next step in the

iteration is defined by

~ - _4 N ~
(8) o = (p)REW® (v, - xE B 7 Epice).
' i=1 i i Z
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where as before w, = w(r (05)/r (07. with r - (o) = (y. - XF B)/a .
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In practice, one would calculate o and B for a fixed number of iterations

o LA fmensond oo RS T S
or until convergence. The calculat1on is easily programmed in any matrix
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language such as SAS/IML, GAUSS or‘APL
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SECTION 3 : An Example

To illustrate the foregoing remarks, we computed estimates and standard
errors for the data used in the SAS/NLIN example, namely a regression of the US

population against time. The model is




2
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where {yi} is the US population in millions at year t, = 1780 + 10i, i =
1,...,19. Rather than use the actual year, we centered and standardized so
that

x; = (t; - 1880)/90 .

As with any polynomial model with equally spaced time points, there is a bit of

a problem with leverage here, since . the !hxghesf“ leverage value 1is 0.38.

# 5 -

However, we will procede with the usual analyses. We computed parameter
estimates and standard errors usingsleast squares, the)Huber method with ¥(x) =
max(-1.25, min(x,1.25)) and the Hampel method w1th a—l 25 b=3.5 and ¢=8.0.

volen blooe o

The robust methods computed estlmates of o4 by Proposal 2 see equations (7) and
. celnciss & i

(8). The results of the calculations are given iP Tagle 1. For purposes of
CA 1o @FUAD wNER

comparison, we also reproduce the results using the Tukey biweight as in the

SAS/NLIN manual, where o = 2. The SAS/NLIN standard errors are about 30%

larger than our estimates when using the Huber method, while they are about 20%

smaller for the Hampel method. C g
| S LOITOR:



APPENDIX :

If we pretend that the weights are fixed, then the estimated covariance

matrix is A, where

N N -1
-1 th-2 t
A= (N-p) = W, [yi - X, B] [ b X; X, W, ]
i=1 i=1

By standard asymptotic theory,
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This verifies (4).
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TABLE 1

Parameter Estimates and Standard Errors for the Example

Least uares
Estimates

Standard Errors

Huber Method

Estimates
Std. Err. as in (5)

Std. Err. via SAS/NLIN

Hampel Method

Estimates
Std. Err. as in (5)

Std. Err. via SAS/NLIN

Tukey Biweight with g = 2

Estimates
Std. Err. as in (5)

Std. Err. via SAS/NLIN

By By By
50.73 97.09 51.40
0.96 1.05 1.93
50.98 98.37 52.44
0.45 0.49 0.90
0.56 0.64 1.12
51.08 98.85 52.83
0.36 0.39 0.73
0.30 0.35 0.60
51.14 08.82 52.68
0.39 0.43 0.79
0.35 0.41 0.71




