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ABSTRACT

Several agents, each with his own opinion (probability measure), make decisions
in order to maximize their expected utility. A super partes person, “the chief,”
releases information with the goal of maximizing a social expected utility, which is
an increasing function of the agents’ utilities. Additional bits of information are
individually beneficial to each agent, but might be socially detrimental if the social
utility is concave and therefore diversification is valuable.

In this paper, information is modelled by filtrations on a suitable probability
space, and the problem of establishing how much information ought to be released
is tackled. Two situations are examined, in which the chief either updates or does
not update her opinion.
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1. Introduction.

In a village, k shepherds pasture their flocks. At some point, the grazing grounds
become parched, and the chief of the village decides that all the shepherds must
move to a different area. It is known that wolves dwell in all but one of the n
available paths, but it is not known which path is free. Each shepherd has his own
opinion (i.e. his own subjective probability) about the free path, and so does the
chief. A scout can be sent by the chief to examine the paths, but the information
that he reports is unreliable, namely the probability of it being correct is less than
one. Nevertheless, the information provided by the scout accrues, and is beneficial

for the choice of each individual shepherd, even if it never leads to certainty.

The chief knows everything relevant about the shepherds, namely their
subjective probabilities, their utility functions and therefore the way information
affects their decisions. The chief embodies a social utility, which is a monotone
function of the sum of the shepherds’ utilities. This means that ceteris paribus
any increase in the utility of any shepherd increases the social utility, and that all
shepherds are alike in the eye of the chief. Since it is socially important that at
least one flock survive, the social utility function is concave. The behavior of the

shepherds and of the chief is inspired by maximization of expected utility.

Information is released by the chief coram populo, namely every shepherd
receives the same amount of information. The chief faces two contrasting tendencies
as she releases more information: the more each shepherd is informed, the more
likely he is to make the good decision, and this is socially desirable; on the other
hand, the more the shepherds know, the less likely they are to diversify their
behavior. This, in view of the concavity of the social utility function, is in general

socially detrimental.

All information which is acquired is released, but the chief has the power to
limit the information acquisition process at any time ¢ by not sending out the scout
anymore and forcing the shepherds to act, i.e. to choose a path, on the basis on the

information reported by the scout up to time ¢.

The purpose of this paper is to determine the (socially) optimal amount of

information to be released.



The “fairy tale” of the shepherds and the chief is taken from Erev, Wallsten
and Neal (1991), whose aim is to study qualitative models of information release
from a psychological viewpoint. Qur mathematical formulation is suitable for
some economic applications. For instance, consider the following research and
development problem: the Government gives grants to several research laboratories
to develop a therapy for some disease. The different laboratories act in complete
autonomy, and can choose among several techniques. The Government might obtain
some side information about the techniques (their expected effectiveness, expected
cost, etc.). Should the Government get this information and release it? This
would imply that some low-probability-of-success-techniques would be discarded,
in favor of better ones; this would benefit, most likely, the individual laboratories
that switch, but not the whole society, since one of the discarded techniques could
actually prove successful. As a further example, think of a country which allows
several oil companies to drill on its territory. The more information it releases, the
more the companies will concentrate in the “most favorable” area, and this might

prove very bad if the area turns out to be dry.

Kadane (1993) contains a nice survey of models with several agents having
different subjective opinions. The topic we consider in this article is related to
the problem of opinion merging (see e.g. Blackwell and Dubins (1962), Kalai and
Lehrer (1991), Lehrer and Smorodinsky (1993)). In our framework the conditions for
merging of the opinions of the shepherds to the opinion of the chief are satisfied (the
measure of the chief is absolutely continuous with respect to the other measures).
Our concern, though, is not the merging itself, but to stop the flow of information
before the opinions merge “too much”, if this leads to a behavior that is socially

dangerous, and if diversification has an intrinsic value.

We examine two different learning mechanisms for the chief: in the first one

the accruing of information does not alter her opinion, in the second one it does.

Section 2 illustrates the general model and the particular example that will be
dealt with in the rest of the paper: two shepherds have to select one path out of two,
namely they have to predict the outcome of a binary random variable Xj; the flow

of information will be represented by a sequence of random variables, exchangeable
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among themselves and with Xy. In Section 3 we consider the case in which the chief
does not learn, and we give some sufficient conditions under which it is optimal to
release all the available information. Typically, these conditions will depend on
the degree of concavity of the social utility function. In Section 4 the chief will be

allowed to update her opinion.

2. The model.

Let us fix first some notation. The measurable space in the background will be
denoted by (2, F), and P(2, F) will denote the space of all s-additive probability
measures on it. We shall consider k¥ 4+ 1 probability measures Py, Py,...,Px €
P(R, F), representing the opinions of the chief of the village (Py) and of k shepherds
(Pi,...,P:). The space (2, F) will be endowed with a filtration {F; | t € T}, and
P}(-) ( = 0,1,...,k) will denote a regular version of the conditional probability
Pj(- | ¢). The parameter ¢ will be interpreted as time and, to keep things simple,
will be assumed to be discrete (e.g. the number of times the scout goes out to get
information), T'= IN U {o0}.

In order to describe the behavior of the shepherds, we introduce a space A
of actions, k utility functions u,...,ux : A X € — IR and k decision functions
di,...,dr : P(,F) — A, to be defined below.

The space of bounded utility functions u : 4 x 2 — IR will be denoted by U.
Without loss of generality, we may assume that 0 <u <1Vu elf.

Given a measure P € P(2, F) and an integrable function f, we write

Pifl= [ sar.

The decision of the j-th shepherd will be to adopt the action that maximizes his
expected utility P; [u;], namely

d;(P;) = argmax P; [u;(a,-)].
aG.A

Conditioning on the information F;, we can define the (random) optimal decision
d; by
d5(Pj,w) = di(Pf) = argmax P; uj(a,) | 7). (2.1)

2
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The maximum expected utility of the j-th shepherd at time ¢ is given by
P; [u;(dj(P;),-) | F] = max P;[uj(a,") | Fi] = max P} [uj(a,-)].
aEA aE.A

We assume that the conditions for the existence of the above maxima are satisfied.
The social utility will be personified by the chief of the village, with utility
ug : U* x A*¥ x @ = R given by

k
uo(U1, ..., U, Q1,. .., Qp,w) = g( Zuj(aj,w)),
Jj=1

where ¢ : IR — R is increasing and bounded.

The maximum conditional expected social utility is represented by a function
WU x P¥ x T x Q@ — IR given by

W(ul,...,uk,Pl,... ,Pk,t,w) = Po [uo(ul,.. . ,uk,di(Pl),.. .,dz(Pk), ) | ft]

9( Zk:uj(dﬁ'(Pj)’ ‘)) | Fe

=1

=P,

The aim of the chief is to maximize, with respect to ¢ her (social) expected utility.

The chief will make her decision about how much information to release
(namely, will pick an “optimal” t) once and for all at time 0. Thus her goal is
to find

argrpea,}cPo (W(ui,...,ux, Pr,...,Pg,t,)] = argr?ea%cPo

g(iuju;-(m-))} -

=1

In the sequel, for the sake of simplicity, we shall consider a model with only
k = 2 shepherds, who must choose which of the two available narrow paths, labeled
0 and 1, they should go through with their sheep, knowing that in one of them there
are wolves. The action space is formed by the two points by and b;, denoting which
path they choose to follow. On 2, we define a random variable X, which takes the
value 1 if path 1 is free of wolves, and 0 if path 0 is free of wolves. At each time ¢
the scout tells the chief where he thinks that the wolves are, i.e. he makes known

to her the value of the random variable X;, which has the same distribution as Xp.

4



The fact that the scout yields valuable information is modelled by assuming
that X, X;,Xs,... is an exchangeable family. The filtration {F; |t € T} is the
natural filtration for the process {X; | t=1,2,...}:

.7:¢=0'({X1,X2,...,Xt}), f°°=Utft.

Notice that X is not assumed to be F; measurable, Vt € T'.

In fact, if Xy, were F;-measurable, for some ¢t € T, then the problem would
be trivial: Releasing as much information as possible would lead to certainty, and
therefore would be optimal. The exchangeability assumption allows us to avoid
this trivial case, and at the same time allows for dependence among the random
variables involved, which is necessary for the information to be influential.

In ordér to shed light on the above assumptions, consider the following example.
The life or death of an agent depends on the outcome of a toss of a certain coin. He
is entitled to perform as many trial tosses of that coin as he wants in order to choose
heads or tails, before the “true” toss. The tosses are not i.i.d., but exchangeable.

The utilities of the two shepherds represent a death-life situation, namely

1 if X =3 .
ur(bi,w) =us(biw) = {§ 8 Kol) =2 g (2.2)

The utility of the chief, in turn, is

1 if ui(a),w)+ uz(az,w)=2
uo(uy,u2,a1,a2,w) =4 8 if ui(ar,w)+uz(az,w)=1 (2.3)
0 if uy(ay,w)+ us(az,w)=0
where 0 € [0,1]. The parameter 6 can be interpreted as an index of her risk-aversion
in the Arrow-Pratt sense: the higher 6, the more she values the fact that at least
one flock survives.

The fact that the shepherds consider the infinite sequence {X, | n € IN}
exchangeable implies, by de Finetti’s Theorem (de Finetti (1930,1937)) that
E:=1 X; / t converges almost surely and in r-th mean (r € IN) to a random variable
A, and, conditionally on A, {X,, | n € IN} is an ii.d. Bernoulli sequence, with

probability of success equal to A, namely

Pi[Xo|o(A)]=Aas. j=1,2. (2.4)
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If furthermore we assume that, for all ¢, P;[X,|F:] is an arithmetic mean of the

prior opinion P;[X,] and the observed frequency Y i_, Xi/t, i.e.
t
. . X,
PiXolFd = 1 PXo] + (1 - 9f?) 2z Xt (25)

then, by a result of Diaconis and Ylvisaker (1979), according to the j-th shepherd

the random variable A has a beta distribution with parameters (a;, 8;), where

o
Pi[Xo] = —

’ a; + B;
Do _%t+B;
P+ Bitt

This particular form of updating opinions has an intuitive appeal and allows
simplified computations, but it is not really crucial in the analysis. Less regular
prior distributions for A lead to qualitatively similar results.

In this particular setting, the model described in Section 2 reads as follows:
First of all, since the beta is conjugate for the Bernoulli model, conditionally on F,
the Pj-distribution of A is again a beta with parameters (o + Zf=1 Xi,B; +t—
i1 X:). Furthermore, a direct inspection of the definition of d% shows that

smo-{ SBEIASE

To be precise, we notice that the case P;[Xo | F¢] = § cannot be decided
upon according to (2.1). This problem could have been tackled via randomization,
but this would have led to unnecessary cumbersome computations. The choice of
selecting b; in this case is ad hoc, but creates no substantial harm.

In view of (2.4) and of the considerations above, we see that, for j = 1,2,

BiXo | Fi = B[PlXe | o) | 7] = Bija | )= St ZemXs o
7 <20 t] =L ;145|120 t) — 45 t—aj+,3j+t’ .
and therefore (2.6) can be written as
. t
- dt P —_ b() lf 2i=1 Xi < (t + B] - a,)/Z .
i(Fs) {bl otherwise ’ (28)

For the sake of clarity, we collect here the assumptions made so far:
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H1. The utilities of the shepherds and of the chief are given by (2.2) and (2.3),
respectively.

H2. The two shepherds maximize their respective expected utilities and the chief
maximizes the social expected utility.

H3. The chief decides in advance the number of times she is going to send out the
scout before forcing the shepherds to act.

H4. Xo,X;,X,,... is an exchangeable sequence, with respect to each of the
measures Py, P, and P,.

H5. For all t, P;[X|F;] is an arithmetic mean of P;[X,] and 3;_, Xi/t as in (2.5).

3. The chief does not learn.

In this section, we consider the case in which the opinion of the chief does not
evolve with time, i.e. is not affected by the information progressively reported by
the scout. In other words, we assume
H6. P} = P,,Vt € IN.

Notice though that the chief knows that the opinions of the shepherds do evolve.

Since P{ = Py, for all t, the infinite exchangeable sequence Xy, X1, X>,... is
necessarily seen by the chief as an i.i.d. sequence of Bernoulli random variables with
P[Xi]=PR(X1=1)=1-P(Xi =0)=p (p€[0,1]).

Recall, by (2.8), that the j-th shepherd will choose path 0 at time ¢ if
(Xioy Xift) < 1/2+ (B; — a;)/2t. Ast increases, the influence of the parameters
(aj, B;) of the initial opinions decreases. By the law of large numbers (writing 14

for the indicator function of the set A)

DD (A
Py (tlilgo—tl_— <g|= L1(0,1y(P) (3.1)
so that the chief expects the shepherds to choose, in the long run, b if p < -;- and
b, otherwise.

In order to simplify the notation in the analysis of the expected utility, we write

‘I,(t) =P0 [W(UI,U2,P1,P2,t,')] (32)
and
¥(o0) = lim ¥(t) = Py [tlim W (u1,uz, P, P, t, .)] , (3.3)

7



Notice that the interchange of limit and expectation is allowed, in view of the
boundedness assumptions made.

The function U(t) represents the expected social utility if the chief forces the
shepherds to act at time {. The following proposition quantifies its limit, when all

available information is released.
Proposition 3.1. Assume HI-H6, and let ¥(co) be as in (3.3). Then ¥(c0) =
max(p, 1- P)
Proof. For t € IN, let
t
A(t)=Po( Xi<';'+ min (ﬂ,—a,))

= j€{1,2}

¢ . Bi— ¢y ¢ Bi — o
= _— —_——— < . —_ .
B P°(2+jé‘<‘i‘,%}( 7)< 2%+ e (25 @4

t
t ,8'—Olj
ctr=r (L2 (55%))

i=1

It is easy to realize that A(t), B(t) and C(t) represent the probabilities that, at
time ¢, both shepherds choose path 0, that they go on different paths and that they
both choose path 1, respectively. If they both select path 1, say, then the utility W
is 1 with probability p and 0 with probability 1 — p. If they choose different paths,
then W = @ with probability one. Therefore

P(t) = A(t)(1 - p) + B(t)6 + C(t)p. (3.5)
From (3.1) we deduce that
tl_i_flc}oA(t) = 1(0,1)(p)
lim B(t) =0 (3.6)
Jm C(t) = 113 1y(p)-

The claim follows easily.

PR

By the above proposition, the chief is sure that (in expectation) she can

guarantee the society at least max(p,1 — p). All that she has to do is just let
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the information flow indefinitely. Stopping at some finite time will be rational only
if, in this case, more than max(p,1 — p) can be achieved. It is rather intuitive that
the more unbalanced the opinion of the chief is (i.e. the further p is from 1/2), the
more she expects to be able to get for the society by letting information flow. This
will have other implications, that will be made clear in Proposition 3.3.

We partition the interval [0,1] in two sets: T, the set of possible values of
p for which it is convenient to release as much information as possible, and its

complement Z;. More precisely,
Too = oo, B1,02,2,0) = {p € [0,1] | ¥(t) — ¥(o0) < 0,Vt € N} (3.7)
and
Z; =[0,1)\ Zoo = {p € [0,1] | 3t < 0o such that ¥(t) > ¥(c0)}. (3.8)

In the following propositions, we shall study the structure of Z.,, and show
that there are cases in which Z; # . In particular, in some instances it will be
convenient not to release any information, namely ¥(0) > ¥(t), Vt € N, and in some
other instances it will be optimal to release only a partial amount of information.

First we determine a topological property of the set 7.
Proposition 3.2. Assume HI1-H6. The set I, defined in (3.7) is closed.

Proof. We notice that ¥ depends on p through P, and the function p — ¥(t) —
¥(00) is continuous, since it depends continuously, through A(t), B(t) and C(t), on
the cumulative distribution function of a binomial distribution with parameters t
and p, which is continuous in p. Therefore, the set {p € [0,1] | ¥ () — ¥(c0) < 0}
is closed, and Zeo = [\, 1P € [0,1] | ¥(2) — ¥(o0) < 0} is closed as well.

Next we show that if the chief has a sufficiently strong opinion about which of
the two paths is the good one (p very close to 0 or 1), then it is optimal to release as
much information as possible. How “strong” the opinion should be for this property

to hold, depends on the degree of her risk-aversion.
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Proposition 3.3. Assume H1-H6, and let T, be defined as in (3.7). Then, for all
values of ay, Py, a9, 32 and 6,

([0, 1-— 0] U [0, 1]) - Ioo(al, ﬂ],az, ,32, 0)

Proof. It will be given in the Appendix.

Remark 3.4. If the social utility is convex, namely if § < 7, then T, = [0,1].
Therefore, only if the chief is risk-averse it might be optimal not to fully inform the
shepherds. This is indeed the core of the whole issue: only the desire to avoid the
risk of the extreme situation in which all the shepherds die might lead to withold
some beneficial additional information; and the degree of this desire is quantified

by the concavity of the social utility.

In the following example we shall present a non-trivial case (i.e. § > ) in which

[0,1—-6]U[6,1] = .. We shall see in the sequel a case in which [0,1-6]U[d, 1] ;Ioo.

Example 3.5. Let 6 > % and let a3 /(o +61) < % < az/(az+B2). Then B(0) =1
and ¥(0) = 6. Thus

¥(0) — ¥(o0) = § — max(p,1 — p) = min(6 — p,6 — 1 + p).

This is less than zeroif and onlyif p>6orp<1-—46.

The next proposition shows that the learning processes of the shepherds are
a crucial factor in deciding how much information ought to be released. If the
opinions of the shepherds are too close and are not bound to lead to different
actions, no matter what the X’s turn out to be, then it is optimal to release all the
information. Conversely, if there is hope of diversification in the behavior of the
shepherds (B(t) > 0), and if the chief is risk-averse (§ > 1/2) and does not have

extreme opinions (p close to 1/2), then it might be optimal to withold information.

Proposition 3.6. Assume HI-H6, and let I; and B be defined as in (3.8) and
(3.4), respectively. Then I; # 0 if and only if § > 1/2 and there exists a t, such
that B(to) > 0. In such case, for some € > 0,(1/2 —¢,1/2+¢€) C I;.
Proof. Let us prove first that, if B(t) = 0 Vt, then Zy = 0. Let p > 1. Then

U(t) — ¥(o0) = A(t)(1-p)+ C(t)p—p=A(t)(1 —2p) <O0Vte N
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so that [1,1] C Z. Similarly, if p < 7, then
U(t)—¥(c0)=A)1-p)+Ct)p—1+p=C(t)(2p—-1)<0 VteN

so that also [0, 3] C Ze.

Conversely, let us show that, if 3tg : B(tp) > 0, then Zy # 0. Let p= 3,6 >
and let a;, as, f1, B2 be such that there exists ¢, with B(tg) > 0. Then

D =

¥(to) ~ ¥(00) = 3 (A(to) + Clt)) + B20)6 — 3 = B(to)(6 — 5) > 0.

Therefore, % € I¢(a1,az,P1,P2,0). The claim follows from the fact that T is
closed. ]

Remark 3.7. B(t) = 0 Vt if, for instance, f; — a1 < B2 — a3 and the interval

[81 — a1, B2 — a3] contains no integers (positive or negative).

Remark 3.8. Although [0,1 — 8] U [0,1] C T, the set T, is not necessarily

L
13110

but 0.4 € Z:(2,4,6, 12, I7T) This should not surprise, since the two agents are not

symmetric about 1. It can be shown, for instance, that 0.6 € Z,(2,4,6,12
2

identical. In the above case the initial opinion about the expected value of X, is the
same for both shepherds: P;[X,] = P2{X,] = 1/4, but shepherd 1 is less opinionated
than shepherd 2, namely the weight given to the empirical evidence in the updating
is higher for the first shepherd than for the second one (1 — 751) =t/(2+6+1),
1- 752) =1/(4 4+ 12 + t)). This difference tends to vanish, as information accrues.
If p = 0.4, than, at time 0 both shepherds will make the same decision that they
would make in the long run (with Py-probability 1), i.e. they will go on path 0,
guaranteeing an expected social utility of 0.6. So zero information in this case has
the same effect as all information. But something more can be achieved, since, for
some t, the probability that the two shepherds will make different decisions will be
positive, but the probability that both will choose path 1 will be zero. Therefore,
for these values of t, the expected social utility will be strictly more than 0.6 (and
strictly less.than 6 = 7/11). On the other hand, if p = 0.6, the initial decision
(at time 0) of the shepherds will guarantee a social expected utility of 0.4, whereas

the long run decision (after all information is released) will guarantee 0.6. At some
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time ¢ the event that the two shepherds make different decisions will have positive
probability, but the event that they will both go on path 0 will always have positive
probability. For these particular values of the parameters, it will always be safer
for the chief to let information flow and get 0.6, rather than betting on the event of
different decisions of the shepherds and risking instead that they both go on path
0.

Remark 3.9. If B(0) = 0 and if B(t) > 0 for some ¢t € IN, then the Proposition
above implies that % € I; and, for p = %, there exists an optimal strictly positive
finite 2o, i.e. it is optimal to release some information (as opposed to none or all).

Furthermore, notice that whenever B(0) # 0, then B(0) = 1, and this happens if

i s s < g — 5 ).
i85 = o) <02 e, (s =)

Example 3.10. This clarifies the content of the preceding remark. Let p =
%,9 > %,al = 2,61 = 8,a2 = 4,8; = 6. It will be shown in the Appendix
that ¥(2k) > ¥(2k +1), Vk € NN, and that

T@k+2) | o1 s 39

Therefore, it is optimal to release either 6 or 8 units of information. Notice,

incidentally, that ¥(0) = ¥(co0) = 0.5 and ¥(6) = ¥(8) ~ 0.574574.
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4. The chief learns.

Now the flow of information will change not only the opinion of the shepherds, but
that of the chief as well. She updates her opinion like the shepherds, namely she
considers Xy, X3, X2,... exchangeable and such that

a0 + b, X:
ap+ Bo +1
This is equivalent to assuming X,, X;,X,,... Py-i.i.d conditionally on a

H6bis. Po [Xo I ft] =

ag,Bo > 0.

parameter A, which is distributed according to a Beta(ag, 8p). Nonetheless, the
chief is still forced to decide at the beginning the amount of information she is

going to release. Let

AA(t)=P0< t Xi<z+ min (ﬂf;“") ‘U(A))

i=1 16{1!2}

t, . (Bi—a; t 4 max (2%
H=PFP | - : 1)< i 9 ! ’ A
Ba(t) =Py (2"',—5{%( 2 ) s 2 X< 2+jgfl,2}( 2 ) la( ))

=1

t " B; — a;
Ca(t) =Py (;Xiz §+J_‘IEI%?~’>§}( 2 5 ]> ’U(A))-

See formula (3.4) for related definitions. Let also py = Py[Xo] = ao/(a0 + Bo).

Then (3.5) becomes, in this setup,

¥(t) = P, [Po [W(u1,us, Py, Py,t,-) | A]]

(4.1)
= Py [Ar(t)(1 — A) + Ba(2)8 + Ca(t)A]
Hence
{ Py[1-A]j=1-py if minjep 2y (8; —a;)>0
(0)=4"6 if minje(1,2) (85 — ;) < 0 <maxje(,2) (Bj — o)
Py[A] = po if max;eq1,2) (65 — ;) < 0.

By letting t — oo, we obtain the following result about the limit of the expected
social utility. Let B(a, 8) = I'(a)(T'(B8)/T(a + B) be the beta integral, and let

Bu(a )= [ A== 2/ dx

be the incomplete beta function. Let also

- Il(aa ﬂ) = %((:”g)

be the cumulative distribution function of a Beta distribution with parameters «

and S, evaluated at z.
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Proposition 4.1. Assume H1-H5 and H6bis. Let U be as in (4.1). Then

271}

ag + By

¥(oo) = —E Ty (a0, o + 1)+

Qg

[1 — (a0 +1, ﬂo)] (4.2).

Proof. By conditioning on A, we can use (3.6) and we obtain

¥(c0) = Po[(1— ALy 1)(A) + ALy y(A)] (4.3)
_ [FPamtia - n® (1 — A
= [ “Hem 2, Blao, fo)
3 By(ao,B0+1) B(ao+1,60)— Bi(ao +1, o)
- B(aO,ﬂO) + B(ao’ﬂO)
_ B(ao, 50 +1) Blao +1,6) B(ao+1,6),
- B(aOaﬂO) I%(QOaIB0+1)+ B(ao,ﬂo) B(ao,ﬂo) Ii(a0+1)50)

and the claim follows easily.

Remark 4.2. The case of Section 3 can be obtained by letting ag — o0, By — oo,
with ao/(ao + o) = po. In fact, both I_%(ao,ﬂo +1) and Iy (ao + 1, Bo) converge to
1[0,12.)(p0), which yields the value at z = 1 of the cumulative distribution function

of a random variable degenerate at py. Therefore, ¥(c0) — max(pg, 1 — po).

Remark 4.3. As og,8p — 0 (with ao/(ao + 8o) = po) the law of the sequence
{Xn | n € IN} tends to the maximum of its Fréchet class, namely for every n € IN

we have, in the limit,
Po(.Xo‘—'-‘Xl =X2==Xn=1) =po=1—P0(Xo=X1 =X2==Xn=0)

This can be easily shown considering that, with respect to P,

Cov(X1,X2)  Po[Cov(X1,X; | A)] + Cov(Py[X, | Al, By[X2 | A))
Var(X;) Py [Var(X; | A)] + Var(Ro[X; | A))

_ Var(A) _ 1

T PR[A(1 - A)] 4+ Var(A) T ao+Bo+1

P(X1>X2) =

so that lime, g,—o p(X1,X2) = 1.
In this case all the random variables of the sequence are equal Py-almost surely,

and ¥(oo) = 1, since the chief expects to see (almost surely) a sequence of identical
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random variables, all equal to Xo. Therefore she knows that, whatever the initial
opinion of the shepherds is (provided it is nondegenerate), their distribution for X,
will converge to a degenerate distribution on the correct value. This will render the

expected social utility equal to its maximum possible value.

Remark 4.4. We can show that the learning chief can guarantee in the long run
a higher social utility than the nonlearning one, i.e. ¥(c0) > max(pg,1 — pg), with
¥(o0) given in Proposition 4.1. In fact, by formula (4.3) and Jensen inequality

\I’(OO) = Po [(1 - A)l{o’%)(A)] + Po [AI[%,I](A)]

( (4.4)
= Py[max (A, (1 — A))] > max (Po[l — A}, Py[A]) = max(po, 1 — po)

with strict inequality holding whenever A is nondegenerate. The above phenomenon
is not due to the fact that a learning chief can take advantage of the information
that becomes available. In fact her decision is made once for all at the beginning
and she cannot change her mind subsequently, no matter what she sees. The real
reason is the following. A nonlearning chief knows that A = py a.s., whereas a
learning chief only knows that Py[A] = po and therefore A can assume different
values, smaller and larger than py. The decision of the learning chief will therefore
involve an integration of the social utility over the possible values of A. Since the
social utility is a convex function of A, its expected value will be larger than the
function computed at the expected value of A (py). Similar phenomena in the

framework of exchangeable coin tossings have been studied by Scarsini (1984).

We shall show now that whenever the social utility function is convex, it is

more convenient to release as much information as possible.

Proposition 4.5. Assume H1-H5 and H6bis. Let ¥ be as in (4.1), and let 6 < 1.
Then

U(t) < ¥(oo)  Vao,fo € Ry, Ve € IN.
Proof. It will be given in the Appendix.

Remark 4.6. Arguments similar to those used to prove Proposition 4.5 lead to a

15



lower bound for ¥ when the social utility is concave. For 6 > %,

1 % oo _ Bo—1 ! ap—1 _ Bo
‘I,(t)z_——_B(ao,ﬁo){/(; A%(1 = ) d/\+/l/\ 1= d)\} s

Bo
a0 + Bo [1- I-zl(ao,ﬂo +1)].

Qo
=—"2 TI.(a+1,8)+
a0 + o 30 H L)

Notice that, as ag, 8y — o0, with ag/(as + By) = po, then the lower bound

becomes min(pg,1 — po).

Example 4.7. As in the previous section, we exhibit a case in which it is optimal
not to release all available information. Let oy = By = 5,6 = %,,31 - =
4,82 — ay = 8. It can be shown that ¥(5) — ¥(oo) = 0.0088133. The existence
of such an example is not at all surprising, given Example 3.10 for the nonlearning
chief and Remark 4.6: The behavior of the nonlearning chief can be obtained as a
limit of the behavior of a learning chief. Some continuity arguments provide the

result.

5. Conclusions.

We have considered a situation in which a central planner (the chief) aims at
influencing the decisions made by several agents (the shepherds), each of which
maximizes his own expected utility with respect to his own subjective probability.
The planner maximizes the expected social utility function, which is increasing and
symmetric in the utilities of the various agents. Typically the social utility function
will be concave, so some diversification in the strategies of the agents will be socially
beneficial. Several scenarios could be conceived. One of them is the dictatorial
situation where the planner can select the strategy for each agent. According to
the concavity of the social utility function, the strategies that the planner choses
for the agents will be more or less diversified. If the dictator is benevolent, she will
assign the strategies taking into account the agents’ utility functions and subjective
probabilities, so that, even if some agents will not be assigned their first choice
strategy, still they will not be completely unhappy.

In a different scenario the agents cannot be forced to act against their self

interest, but the chief exerts her influence on the agents indirectly by correlating
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information. In this scenario, different possibilities can be examined. For instance
the chief could provide the agents with different streams of information. If the
information is censored, namely the chief releases a random bit of information to a
certain shepherd only if the value of that bit is the desired one, then we are de facto
back to the trivial case of dictatorship. Even if the information is not censored,
still the chief could decide to give different agents different amounts of information
(or the same amount of bits, but from different sets of data). This would allow
the chief more freedom than the case we have considered in this paper, where the
information that is released is not only uncensored, but also the same for all the
agents. Surprisingly, even in this very restrictive scenario for the planner, the flow

of information can be used to maximize the social expected utility.

Spreading information has the effect of making the probability distributions of
the agents more concentrated on the same states of nature. This is due to the fact
that the information is the same for all agents and the conditions for merging of
opinions are satisfied. Information is free, so it would seem that the more the better.
This is actually the case when the accruing of information leads to the complete
elimination of uncertainty. When it doesn’t (as in the situation we examined), the
merging effect and the effect of improving the opinion of each agent conflict. As
information increases, the random variable that determines the social utility (the
number of agents who make the right decision) tend to have higher mean, but also
to be more dispersed over extreme values: if all the agents make the same decision,
they are either all right or all wrong. Therefore, if the utility is very concave, then
the uniformity of the agents’ decision could become socially dangerous, even if on

the average the number of agents that get it right increases.

We have considered a case where the opinion of the chief is affected by
observations of the information released to the agents, and a case where it is not.
In both cases we have shown the existence of situations where it is socially better
to withdraw some information from the public. Nevertheless, even if the planner
is required.to make her decision once and for all at the beginning of the game,
the case of the learning chief and the case of the nonlearning chief differ somehow.

When the chief learns from experience, she can achieve a higher expected social
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utility than when she does not learn. This is not due to the learning itself, since the
decision is made before the information is obtained, but rather to the fact that the
learning chief, being more uncertain, sees the observations as positively correlated
and therefeore assigns higher probability to the event that all the agents make the
same decision and hence is less hopeful in diversification.

As a final comment it is worth noticing that the assumption of concavity of
the social utility function is crucial for the optimality of withdrawing information.
We have proved that if the social utility function is not concave, then it is optimal
to release full information, since in this case diversification of the agents’ strategies
would not be of any use. It’s only when diversification is needed that withdrawing

information could be useful as an instrument to achieve it.
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Appendix.

Notation. In the sequel, we shall write ¥, ¢ instead of ¥ whenever it is appropriate
to emphasize the dependence on p and 6.

Proof of Proposition 3.3.The proof relies on the following lemmata.

Lemma A.1. If6, < 6y, then

To(ay, B, 02,82,00) C Zoo(a1, b1, 2, B2,61).

Proof. By (3.5) and Proposition 3.1, we see that the function § — ¥, 4(t)—¥ o(c0)

is increasing. If, furthermore, p € T (a1, f1, a2, 82,60), then
‘IlP,91 (t) < \PP,eo(t) < ‘IIP,ao(oo) = \IJP»Ol (OO) vVt € IN,

so that p € T (a1, £, @z, B2, 6y).

Lemma A.2. For all values of ay, 1,0, B, and 6,

6 eIoo(al,:BIaa2a182,9) (Al)
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and

1-6¢€ Ioo(al,,Bl, 012,,32,9). (A2)

Proof. Let us start with the case § > 7. If p = 6, then ¥, y(c0) = 6. Recalling
that A(t) + B(t) + C(t) = 1, we get
Up,0(t) — ¥p,0(c0) = A(t)(1 — 0) + B(2)0 + C(t)6 — 6
=0(B(t)+ C(t) — A(t) — 1) + A(2)
= —20A(t)+A(t) <0 VieNN
which implies (A.1).
If p=1-0, then again ¥, 4(c0) = 6, and
Tpo(t) — Ypo = A)0 + B + C(t)(1—6) — 0
=C(t)(1-20)<0 VtelN
Thus, (A.2) is also proved.

In the case § < 7, we have ¥;_g¢(c0) = ¥g9(c0) = 1 — 6, and the proof is

similar.

Proof of Proposition 3.3. Let p > §. By Lemma A.2, p € Z(a1, 51, az,B2,p)
Thus, we have proved that [0, 1] C Zo(01, b1, a2, 52,0).

It remains to prove that p <1 — 60 = p € Too(aa, B1, a2, 52,9). The arguments
are similar to those above: by Lemma A.2, p € Too(a1,51,02,82,1 — p). Since
6 <1—p, Lemma A.l1 implies p € Too(aq, f1, @2, F2,6).

Example 3.10. Recalling (2.7) and (2.8),

d&(P) = {bo if i, Xi < 5 +3

by otherwise

ey ot
d;(P2)={b0 1f2i=1X1<2+1

b; otherwise.
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Thus

0 Y, Xi<i+landXo=1
or Et-= Xi>if+3and Xy =0
: 1 =1 2
wo(u, ug,di(P1),dy(P2)) =41 i3, Xi<i+1and X, =0
or i Xi>f+3and Xp=1
6 otherwise.

Therefore

‘I’g,o(t)=1'§{Po (Z-Xi<%+1) + P, <zt:Xi2%+3)}
>

—

=1 i=1

t
2

1 : t 1 : ¢
—-2'Po (in < §+1> —§Po (ZXi > §+3>}

=1

=9+[—;——e] {Po (gxi<%+1> + P (ztjxiz%+3>}.

=1

Denoting by [x] the ceiling of z (i.e. the smallest integer greater or equal to

z), we may write

(5N t
1 1/t 1/t
V0 =0+ (5-9) { Yx()r > 2"@}
j=0 i=($)1+3
Let us distinguish the cases of ¢ even and t odd:

e =ex (3-0)3:{5)- £ ()

j=0 j=k+3

-0+ (3-0) (-3 (3]

k+1 2k+1
1 1 2k+1 2k+1
““%’9<2’°“>="+(5‘9>_22k+1{Z( 72 j)}

j=0 j=k+4

1 1 (2k+2
=0+ (3= - (G5}

It is now easy to verify that W1 4(2k) > W1 o(2k+1), Vk € IN and that (3.9)
holds.
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Proof of Proposition 4.5. Define

_It . B; — a; _ [t B; — a;
o= 5+ min, (B5%)] and w= |5+ me (552

By (4.1), we have

W“Y— {Si()AKI M““*+GZ:Q>M0 )t

Jj=0 j=z
t

Eper

By using the well-known formula for the cumulative distribution function of

the binomial distribution

(A.3).

z—-1

2 (?)”j (1=p)" =1-L(zn—-2+1),

=0

(see, for example, Feller (1970) or Selby (1967)), formula (A.3) reduces to

¥(t) = /01 {(1 -1 —IA(z,t—g+1)] +8[In(2,t — 2+ 1) — I\(w,t — w +1)]

/\ao—l(l _ /\)ﬂo—l

B(ao, Bo) @

+ M(w,t —w + 1)}
(A4)
When 6 = %, we can bound 6 from above with 1 — A for A < % and with A for

A > 2. Thus

tob-a

U(t) <
Aze=1l(1 — )P
B(ao,ﬂo)
xeo=1(1 — )P
B(ao, Bo)

dA

/5 {@ =M1 - I\(w,t —w+1)] + Ma(w,t —w + 1)}

dA.

+ [V Bet= 4] 42— + 1)

Since z — (1 — A)(1 — z) + Az is decreasing for A € [0, 1) and increasing for
A€ (%, 1], we can bound the quantities between braces with their maxima, namely

1 — X in the first integral and A in the second one. Therefore

/\°‘°—1(1 _ /\)ﬂo /\a°(1 )\)ﬂo—l _
¥(t) < /0 Bloo, Bo) d\ + / Blae. Bo) d\ = ¥(o0). (A.5)




Hence, the claim is proved for § = % The case 6 < % can be dealt with by

considering that Lemma A.1 applies also to the situation in which the chief learns:
The function 8 — ¥, ¢(t) — ¥, ¢(c0) is increasing also for the learning chief (see
formulas (A.4) and (4.2)). Therefore, if 6; < 6y and if oy and fBp are such that
VU,.00(t) < ¥y 9,(00) ¥Vt € IN, then T, 4, (t) < ¥, 6,(00), too.
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