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In estimating and comparing the rates of change of a continuous variable
between two groups, the unweighted averages of individual simple least squares
estimates from each group are often used. Under a linear random effects model,
when all individuals have complete observations at identical time points these
statistics are maximum likelihood estimates for the expected rates of change.
However, with censored or missing data, these estimates are no longer efficient
when compared to generalized least squares estimates. When, in addition, the
right censoring process is dependent upon the individual rates of change (i.e.,
informative right censoring), the generalized least squares estimates will be
biased. Likelihood ratio tests for informativeness of the censoring process and
maximum likelihood estimates for the expected rates of change and the parameters
of the right censoring process are developed under a linear random effect models
with a probit model for the right censoring process. In realistic situations, we
illustrate that the bias in estimating group rate of change and the reduction of
power in comparing group difference could be substantial when strong dependency

of the right censoring process on individual rates of change is ignored.

Some Key Words: Informative right censoring; Linear random effect; Probit right

censoring; Rate of change.
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-SECTION 1 © Introduction -

In clinical trials and longitudinal studies it-is often of interest to
estimate and compare the rates -of -change of one or more variables between groups.
in e.g.. lung function or tumor growth, Furthermore, ccmparing the rates of
change of a continuous response variable between twop treatment groups is of ten
the primary objective. Death or withdrawal may cause some observations of the
primary variable to be right censored. -

Crowth curve methods for comparing rates of change have been studied
extensively, see Rao (1965), Fearn (1975) and Schlesselman (1973). Most of ihese
analyses assume that there are Do right censored or missing observations.
Maximum likelihood and generalized weighted least squares provide alternative
approaches to simple least squares for the .analysis of series measurements when
some observations are right censored or missing. Koziol. et al. (1981) proposed
a distribution-free test for the comparisan of growth ‘curves with incomﬁlete
data. In order to be valid, these procedures reguire that the probabilities of
right censoring or missing do not depend on the parameter values of the response
under investigation, i.e., they are non-informative with respect to 'the response
parameters.

In this paper we are primarily interested in right censoring caused by the
participant’'s death or withdrawal, to be referred “to as the primary right
censoring process. The~primary~right:hensoring-proceSS'could be informative with
respect to the response parameters. In our development, staggered entry and
other missing value processes, if incorporated, are assuméd to be non-informative
and independent of the primary right censoring process.

Under a linear random effects model. we propose a model which can depend
both on the individual’'s initial value and slope. ‘A likelihood ratio ‘test for

informativeness and maximum likelihood estimates for the response parameters and
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the primary right censoring process coefficients are derived under a probit model

for the probability of primary right censoring.

The right censoring is considered to be non-informative with respect to the
response parameters if the likelihood function can be factored into two
independent parts, one corresponding to the response parameter and the other
corresponding to censoring parameters.

We show that when the primary right censoring is non-informative, the
maximum likelihood estimates for the average linear regression coefficients of
the response are weighted linear combinations of the simple least squares
estimates. In the case of complete observations at identical time points among
all individuals, these estimates are just the unweighted averages of the
individual simple least squares estimates.

The proposed method is applied to data on patients with PiZ phenotype,
gathered by the works;h{op"'br‘i"VNa‘ﬁtural History of PiZ Emphysema (1983). To..
illustrate the effect of informative right censoring, maximum likelihood and the
weighted and unweighted least squares procedures are applied to a set of
simulated clinical trialsy with 'prfmary right censoring generated from a
non-informative probit process and then to another set of simulated trials with
primary right censoring genef;tedgfromb an -informative probit process. Mean
squared error and power gompé;@spﬁs are made among the different statistical

»

procedures and between these two: sets.

AN

SECTION 2 : Linear Random Effects and Informative Right Censoring

We assume that the participants of a longitudinal study are divided into two

treatment groups of sample sizes n. for k = 1,2. The combined sample size is n

= n1+n2. Let there be J identical mortality (and withdrawal status) follow-up
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time points, tj' with t = 0 and tJ = the length of the study. Each participant

can have at most R measurements of the response during the study. The
measurement time need not be identical among individuals. Let v, = total number
of measurements made for the ith individual. Let Yiv and tiv be the vth response
and the corresponding measurement time for the ith participant in the combined

sample for v=1.2,....vi and i=1.2,...,n. With ti1=0. let tivi < tj if death,

withdrawal, or right censoring due to staggered entry occurred for the ith

participant between time tj and tj+1; otherwise tiv = tJ if the ith participant
i

was not right censored and tiy = tiR = tJ if the ith participant had complete
i

observations.

It is assumed that the serial measurements of the primary variable follow a

linear function of time. Let B.t = (B“.Biq)t be the unobservable vector

A

representing the true initial value and slppgﬁpf.thg primary variable for the ith

individual in the combined sample. For.i;€.k. and k =1,2;
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The notation, i € k, is used to denote that the ith participant in the combined

sample belonged to the kth treatment group.

We further suppose that the probability of being primarily right censored

due to death or withdrawal during a specified time interval (O,tj). given ﬁi. is

M(atB.. tj). Here at = (al.az) is the vector of "regression parameters” relating
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this probability to the primary variables Bi. Examples of logical choices for M

are proportional hazards regression (Cox 1972), logistic regression (Walker and
Duncan (1967)) and probit regression (Halperin, Wu and Gordon (1979)). For

instance, under probit regression M(atB. tj) = ¢KatB + an)' where ¢ is the .

cummulative probability of a standard normal variate.

Since for each Ei' (i) the simple least squares estimates éi =
(XitXi)-l(Xitzi) (ii) censoring time and (iii) survival time are sufficient
statistics for Ei' it suffices to consider the joint distribution of éi’ Ei and
the primary right censoring process. The marginal likelihood for Ek and a for

~

the ith individual can be expressed as

~ J ) .
by = DI¢2(E1’ Py C 1”’2“3 EK Eﬁ) II (1M, _ 1)C(I-J 1) ‘
(M - M _ 1)z(i I 1)) e J(l m(l))dﬁ (2.2) |

where Mj = M(a'Bi'tj).;fofu-i €k, g?i;2. j=1.....J; M, = 0. Here C(i.j) is the

indicator function: that-~sthe -ith .individual was censored in the jth interval
because of staggered entry,-Z(i.j) is: the indicator function that death or
withdrawal occurred in the;; jth interval for the ith individual, D is constant

with respect to Bi’ a and B, -and

~

¢, =00 (% X)) m(1) = .3: {C(i.4) + 2(i.9)} -

The notation ¢2(Y, B. Z) represents the bivariate normal density with mean vector

B and covariance matrix 3. On the right hand-side of equation (2.2), under the

integration sign, the first factor represents the conditional probability
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distribution of B, given B, , C(i.j) and Z(i,j) for j=1....,J-1. The second
~1 ~1

factor is the probability distribution of Bi. The third factor of products

corresponds to the conditional probabilities that the ith participant survived
the (j-i)th time point and then was censored by staggered entry or death (or
withdrawal) between the (j-1)th and the jth time points, respectively for

j=2,....J given Bi' The last factor represents the conditional probability that
the ith participant survived the entire study, given ﬁi. Therefore the product

of these four factors is proportional to the joint distribution of ﬁi' Bi. Z(i.J)

~

and C(i,j). because the staggered entry process and the missing value process are
assumed to be non-informative and independent of the primary right censoring
process. Hence, integration with respect to the vector Bi provides the marginal
likelihood of Bi. Z(i,j) and C(i,j) with respect to Ek and a.

e

This notation can be used for those measured only at baseline. Equating all
elements except the (1,1)th of Cli ana;§B!§oiié;oJénd letiing the (1,1)th element

of C equal 062 and 5i2 = ﬁi2 = O. The marginal likelihood for all n

1i
individuals is the product of the individhal iik;?ihoodsL

Joint estimation of the parameters depends ‘on'the ability to evaluate (2.2)
and its derivatives. For this section we'assume that EB and 052 are known. The

more realistic case will be discussed in the next two sections. In principle

(2.2) can be evaluated by numerical integration. When the primary right

" censoring process is a probit model, (2.2) can be evaluated explicitly: for i € k

and k = 1,2,

In{L,} = In{D} + In{A;} - o.s(éi - Ek)‘czgl(gik - B + T, (2.3)

where

1
—_1
= 2 -
A = (2016, 12) 7. €y =€y + 35
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J
T, = 22 {C(i,j-1) 1n[1—¢>(uij D1+ 2(1.3-1) ln[¢KUiJ) ¢(Uij_1)]}
+ (1 - 3Z(1.9) - 2 C(1.4) ) In[1-§U; ]
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When there are right censored or missing observations, C3i will differ among
individuals. Hence, the primary right censoring contribution to the likelihood,
Ti' is in the form of a non-linear probit model. Maximum likelihood estimation
of the parameters can be made in principle provided that the number of time

intervals is small. Otherwise, some contraints could be imposed on the a’s to
reduce the number of parameters.

Likelihood ratio tests for the hypothesis (H.: a, = a, = 0) versus (H,: a, =
0 1 2 1 "2 "l’.

conducted. When HO is true, the primary right censoring will be non-informative .

0 and a, # 0) and the hypothesis H1 versus (H2= a, # 0 and a, # 0) can be

with respect to Ek for k:Iﬁagéizﬁj However, when H1 is true, it can be shown that
the coefficient of §2kﬁin\2id?°f g?.B)»is non-zero even when 93 Bz = O. Hence

the primary right cehédffng wiliibe informative with respect to Bk2 for k=1,2.

When H is true, ands,az .=.0z g - = 0, the primary right censoring is

non-informative with'résﬁéct’fé‘ﬁsz

SECTION 3 : Estimation and Testing for Noninformative Censoring .

When HO is true, the maximum likelihood estimate of Ek is
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the generalized least squares estimate (GLSE). When all individuals have

complete observations measured at identical time points, c2i will be the same

among individuals, in which case (3.1) reduces to

Bwk= 2 B/ ™

i€k

the unweighted least squares estimate (UWLE). The covariance matrices are,

-1
-1 -2
C = [ 2 C,, ] and = [ z C,, ] . (3.2)
GL.k = lig 21 Cow. x e 2tk
When Eﬁ and 062 are unknown,. the following unbiased estimators can be
substituted, LR irar
, ad?
~ 2 2 [3 3 :
o =s, /[.E (vi - 2)], Eﬁ = sg /(n-1): = E{;@Ii/n . (3.3)
i=1 i=1
2 ~ ~ ~ ~ t 2 o n B ’ t t ~
s, =2 2 (B; - Y(B, - )" and s “ = I (Y, Y, -Y. XPB.) .
B2 o B Pl B Buw. k e Tt T Ti

However, EB has the disadvantage that it‘is;not{ necessarily positive definite.

The procedure given by Bock and Peterson (1975) for constructing an estimate that

is at least semi-definite will be used.

When the goal of a study is to compare differences in rate of change between
two groups, we wish to test the null hypothesis, HN : B12 = B22 against the

alternative hypothesis, HA : 812 < B22. The test statistic is of the form,
(B, - Byoy)/(on +05 )2,
12 22 B12 822

with Bk2 = BGL.k2' and BUW.k2 respectively. For shifted alternatives, sample
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size, power and significance level of the test can be related according to the ‘

approximate formula,

2, A

(55, 2+ o5 D+ 2

)2 = A2, (3.4)
12 22 B

where A is the difference in expected rates of change we wish to detect, @ and f8
are the Type I and Type II errors of the test with Za and Z’3 the unit normal

deviates corresponding to a and j.

REMARKS : We have by assumption that an individual’s coefficient estimate is

unbiased, i.e.,

E[Bi | B, ] = B,
Thus the unweighted least squares estimate is unbiased for Bk There are two

cases. When the primary 'riéht‘;ée‘ﬁ‘soring is non-informative, the distribution of‘ .

0321 in (3.1) does not depend on Bi’ so that the GLSE and UWLE are both consistent
-‘1( Ty

and unbiased estimators of ék aIthoug,h of course the UWLE is less efficient.

B

e Vs 1) ‘4'_
Furthermore, the relative differences between the variances and hence the

YR NI v

required sample sizes of the UWLE and the GLSE for the slope or initial value are
a function of (o 2/crp 2) or (a 2/aB ) respectively. When the primary right
. 1

censoring process is.;_iqf_or;n'a!:ive.‘_;he unweighted least squares estimate is still

ST ;'

unbiased, although the GLSE is, not because 0321 and ﬁi are dependent.

SECTION 4 : Examples and Simulations

This paper was motivated by design and analysis problems encountered in many

clinical trials concerning lung diseases, e.g., the Intermittent positiv’

pressure breathing trial (IPPB 1983) for chronic pulmonary diseases. One
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specific example was the feasibility study of an anti-proteolytic replacement
therapy trial among individuals with PiZ phenotype, conducted by the Workshop on
the Natural History of PiZ emphysema. The association between severe alpha1 -
antitrypsin deficiency and lung diseases, particularly pulmonary emphysema, has
been observed since the early 1960's (Laurell and Eriksson (1963)). Individuals
with PiZ phenotype tend to develop severe alpha1 antitrypsin deficiency and hence
pulmonary emphysema and more rapid decline in lung function. The planned trial
was designed to detect differences in rates of decline of a one second forced
expiratory volume (FEVI) between a control and a  therapeutic group.
Retrospective data on PiZ individuals were gathered from the ten participating
institutions (see Workshop on Natural History of PiZ Emphysema (1983)) to provide

crude estimates of parameter values required for sample size calculations.

4.1 : Estlmation and Testxgg

L) .(x,‘.

e N .
g Xa SIS TESLT
s § [ AR RSN

A Fortran program was develcped for esfimation when there is no staggered

LA S

entry. The method of pseudo maximum likelihood estimation (PMLE - see Gong and

TLite

Samaniego 1981) was used. Estimates of 062 and EB were made according to (3.3)

and the Bock and Peterson (1975) procedure and substituted into (2.3), which was

4 Py

then maximized by the Newton-Raphson method. The algorithm first calculates the
simple least squares intercept and slope for each individual and estimates o_

and EB. The UWLE of Ek is used as initial value for Ek in calculating Sik and

C3i for each individual according to (2.3). Partial derivatives of the log
likelihood for the Newton-Raphson iterative procedure are then calculated using
initial values for a. a. Qyge ++++ Aoy Formulae for these partial derivatives
are presented in the Appendix. Note that the initial values for the a’'s can be

chosen arbitrarily with the constraint %59 < ay3 ... K< aOJ'

This algorithm was applied to the PiZ emphysema data. Among the data
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gathered for 294 PiZ individuals by the ten U.S. institutions, initial and

follow-up FEV, values (with the initial and the last measurements at least 6

1
months apart) were available on 117 individuals. The number of FEV1 measurements
ranged from 2 to 12 (mean number of measurements = 3.8). The duration between
the initial and the last measurement ranged from 6 to 227 months (mean duration =
52 months). Since the proposed trial duration was between three and six years,
an analysis, corresponding to a three year follow-up study, was first made using
the initial and all follow-up FEV1 measurements made within three years of the
initial measurement. Since many did not have reported follow-up FEVl's within
three years of the initial measurement, only 81 individuals with 8 deaths were
included in this analysis. A second analysis, corresponding to a six year
follow-up study, was also made among those with a minimum follow-up of six years
or a reported death within the first six years. Follow-up FEVl's within six
years of the initial measurement were used. This analysis included 65“
individuals with 19 gga%ﬁ;fag Because of the small number of deaths, mortality
follow-ups were groﬁﬁéd 1n€3't§3£gqaéiflength intervals for both analyses. The
average number of 'fﬁvifﬂgegggggﬁeﬁté were 2.9 and 3.6 and the average duration
between the initial éﬁﬁgghév};s%P?EVi;s were 28 and 48 months for the 3 and 6
year follow—ups, réébéé%i;eiyf ﬁTﬂBée individuals with only one FEV1 measurement
were not included ihméie;é;éngiyéésiwﬁThis has the effect of causing a slight
bias in the unweight;dfiéagfiéahares analysis and a slight loss of efficiency in
the informative censoring analysis.
0e0000000000000¢  Table 1 about here  eoeoo600600606t

The purpose of these analyses was to test for informativeness of the right
censoring caused by participant’s death with respect to FEV1 initial value and
slope, obtained from 3 and 6 year fdllow-ups. respectively; and to derive crude

estimates of the primary right censoring coefficients. The initial values used.

for the iterative procedure were Too = -1.35, o3 = -0.90 and a =ay = 0. The
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algorithm converged after 12 and 10 iterations for the first and second analyses,
respectively. The results are presented in Table 1. The estimated probit right
censoring coefficients for FEV1 initial value and slope (al and a2) were -3.8,
-11.3 and -4.6, -13.8 for the two analyses, respectively. Likelihood ratio tests
indicated that the coefficients for FEVI initial value (al) were statistically
significantly different from zero in both analyses. Although the chi-squared
statistic (with one degree of freedom) of 2.8 for the slope coefficient (a2) of
the first analysis was not statistically significant at a 5% level, the
chi-squared statistic of 7.1 for the slope coefficient of the second analysis was
statistically significant. The significance of the initial value coefficients
and the large negative slope coefficients obtained from both analyses, the
significance of the slope coefficient from the second analysis indicated that the
right censoring by participants’ deaths could be informative with respect to both
FEV1 initial value and slﬁpe. S

Survival probability distribu;igggg estégg;gd by the product limit method
(Kaplan and Meier, 1958), for the entigﬁpgag%jSﬁgd?fjggi individuals, for those
individuals included in the first an§%§§gggg:anal¥§gs of Table 1, respectively;

and for the 117 individuals with two or more FEVI,@easurements are displayed in

dFe it

Figure 1. Since these data were col}gcged rg;£9§pg9;iyely. mortality follow-ups
were not as complete and rigorous as.one\yop}éh%ike\them to be for the proposed
prospective study. Hence, survival grobabilitiés in Figure 1 could be
optimistic.

The estimates we have proposed are of course sensitive to model
misspecification. When using the estimation and test procedures derived under
the probit model, goodness-of-fit to the data should be checked. One approach is
to note that the estimated probability for the ith individual being primarily

right censored in the jth time interval, for given Bi. is Pij = ¢KUij+l) -

¢(UU). for j=1,...,J-1: where Uij is uiJ of (2.3) with a and ag, and the
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expected intercept and slope for the primary variable being replaced by their.

MLE’s. Therefore, group the ¢K61J) into groups and compute for each group, EJ =
ziﬁij. Then compare EJ with the observed deaths and dropouts between the jth and
(j+1)th time points.

For the PiZ six year follow-up data of Table 1, the observed number of
deaths among those whose estimated probabilities of death in six years were above
the 85th percentile, between the 70th and 85th percentiles and below the 70th
percentile (for the entire 65 individuals) were 4, 2, 2 and 3, 4, 4 for the first
and second three year intervals, respectively. The corresponding expected
numbers of death were 4.47, 1.82, 0.85 and 2.98, 3.70, 3.88 for the two time
intervals, respectively. Hence, the probit model seems to fit the data
reasonably well.

Graphical comparison of the actual versus expected cumulative numbers of
death by the estimated: probability of death in six years for the six year‘~
follow-up data is displayed in Fdigure 2A. Comparisons of the actual versus
expected cumulative numbers:of death in the first and second three year intervals
by the estimated p;?bgb}}jtyvgﬁidegth.in the corresponding time intervals, for
the same six year follow-up data, aré.shown in Figure 2B. The overall fits of
the data from both’fikd}égﬁ%éfe“ggﬁin reasonably good.

HEEE SN ST

e

4.2 : The effect of informative censoring

The UWLE, GLSE, and the PMLE were compared in simulated experiments based on

the model (2.2) with the following primary right censoring processes: (1)

probit non-informative censoring with a = a, = 0; (2) probit informative
censoring with coefficients a, = -3.8, ay = 11.3; (3) probit informative
censoring with coefficients a = -4.6, ay = -13.8, corresponding to the two‘

analyses of Section 4.1; and (4) probit informative censoring with a, = -3.8 and
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a, = 0. Similar to the IPPB trial (1983), the study duration was assumed to be
three years with four FEV1 measurements per year. The expected FEV1 slope and
initial value in the control group and the within and between individual
variances used were all estimated from the PiZ data. A 50% reduction in FEV1
rate of decline was assumed in the treatment group. Equal sample sizes of 100
each were generated for the two groups. In the IPPB trial, similar to the
proposed trial, patients were required to have their FEV1 values less than 65%
predicted at entry and the comparison of FEV1 annual rates of decline between two
randomized treatment groups was the primary objective of the trial. The primary
right censoring rate for the IPPB trial was more than 12% per year. For these
illustrations the probability of primary right censoring was assumed to be 16%
each year for all individuals under the non-informative right censoring process.
When the informative probit model was used, this probability was assumed to be
16% for an individual whose initial value @nd slope were equal to the expected

values for the control group. It:2 wak ~further ~assumed that there is no

correlation between the slope and the ihitfal:welue (aB B. = C). The decision
172

[

. wiv b e T Tl -, ~
value used for rejecting the null 'hYpothégis of no difference was (B12 -

1 N S S
B,,)/ (o 2 o 2)2 < -1.645. Normal random nymbers were generated by the IMSL
22)\%8., * “B,, random nymbers 3

routine GNPM. The experiments were repeated 600 times.

The results in Table 2 indicate that 'the UWLE procedure remained relatively
unbiased in estimating the mean FEV1 slope for each group and the between group
difference in slopes. However, the PMLE clearly had much smaller mean squared
errors in estimating the individual group mean slopes and the between group
differences, and much higher statistical power in detecting the between group
differences in all four censoring processes considered. The GLSE, although most
efficient under non-informative censoring, resulted in large under-estimations of

individual group mean FEV1 rates of decline (24-46%). under the two probit
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informative censoring processes with non-zero coefficients for FEV1 slope. The
under-estimation for the between group differences were much smaller (11-13%), ‘
because under the shifted alternative of equation (3.4), the biases in the two
group estimates tend to cancel with each other. The GLSE had smaller mean
squared errors in estimating the between group differences and higher statistical
power to detect these differences than the UWLE in all four censoring processes -
considered. Compared to the PMLE, under the two probit informative censoring
processes with non-zero slope coefficients, the GLSE had much larger mean squared
errors (39-69%) in estimating the individual group mean slopes and (14-22%) in
estimating the between group differences; and lower statistical power (10-15%) in
detecting the between group differences. The expected power for the proposed
study, calculated according to (3.4) using the assumed parameter values, was 0.85

for the GLSE under the non-informative censoring process. The simulated power

for the GLSE under non-informative censoring, using the estimated within and N

between individual variances aecording to (3.3) and the Bock and Peterson (1975)
procedure for constructing eovariance matrices that were at least semi-definite
was 0.81, and not very-different fram the expected power. Using the PMLE when
the censoring process . was:-non~informative or when the probit censoring slope
coefficient was zero could result in larger mean squared errors than the GLSE, in
estimating the group slopés...The simulated significance levels were not much

different from the expected 5% level for all procedures in Table 2.

ISOGHIREE Table 2 about here IOV

SECTION 5 : Discussion

The probit model used in Sections 2 and 4 is not necessarily meant to be‘

biologically valid for describing the underlying right censoring process.
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Indeed, the choice of the probit was made primarily on computational grounds, and
because logistic and probit regressions give similar estimates of event
probabilities (Halperin, et al. (1979)).

When using the estimation and test procedures derived under the probit
model, goodness-of-fit to the data should be checked as suggested in Section 4.1.
However the distribution of the chi-squared goodness-of-fit test statistic for
this situation cannot be obtained from a straightforward application of the usual
theory because (i) parameter estimates are determined using likelihood functions
for ungrouped data; and (ii) random cell boundaries. Moore (1971) and Moore and
Spruill (1975) derived large sample distribution of the usual chi-squared
goodness—of-fit statistics under these two problems. Their basic result is that
under appropriate regularity conditions the large sample distribution of the
goodness—-of-fit statistic is that of a central chi-squared with the usual
reduction in degree of freedom due to estimatéd parameters plus a weighted sum of
independent chi-squared random variables -oeach .with one degree of freedom.
Application of their result to this problemvis under: investigation.

Although the estimation and test procedires- of Sections 2 and 4 were
developed for k=2 groups, they could be extended:easily to the case of k > 2
groups. To test for equality or linear trend among the expected slopes of the
k>2 groups, the likelihood ratio chi-squared:statbstic could be used.

The standard errors provided in Table 1 for estimates based on the probit
right censoring model and those used in computing the test statistics for the
PMLE in Table 2 were estimated from the sample Information matrix based on the
pseudo maximum likelihood, by assuming that the estimated between and within
individual error variances were the true values, rather than based on the maximum

likelihood. The bootstrap (Efron, 1979) could be used to improve these
2

estimates. Alternatively, the maximum likelihood procedure, treating 062. aB
1

and aB 2 as additional parameters, could also be used.
2
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Table 1

Estimation for the Expected FEV1 Slope, the Missing Value Coefficients
and Likelihood Ratio Tests Statistics for the Coefficients

Three Year Mortality Six Year Mortality

Estimates and Three Year FEV1 Six Year FEV1
Test Statistics Follow-Up Follow-Up

Estimated FEV1 change/vear

Unweighted -0.093 (.0164) -0.078 (0.0138)*
Weighted -0.090 (.0151) -0.076 (0.0136)
Probit Informative Missing -0.095 (.0152) -0.085 (0.0133)

Estimated Missing Value Coefficients

FEV1 Initial Value -3.80 (2.01) -4.61 (1.70)
FEV, Slope -11.30 (7.46) -13.80 (6.76)
oo -0.53 (1.10) . 1.25 (0.93)
%03 0.42 (1.10) 2.42 (1.05)

L.R. Test Statistics

Initial Value, Hl vs.

H, (X°1) 11.02 26.97

2
Slope, H2 vs. HI(X 1) 2.81 _ 7.13
No. at risk at baseline 81 65
No. of Deaths 8 19

2%
Numbers in parentheses are estimated standard errors.



Table 2

Comparison of Simulated Results Among Different Procedures Under a Linear Random Effe
Model with Non-Informative Versus Probit Informative Missing Values with Parﬁt

Values Estimated from PiZ Emphysema Data’®

Informative Censoring

Statistical Non-Informative a1=—3.8 a1=—4.6 a1=3.8
Procedures & Censoring !
greatment a1 = a2 =0 a2=—11.3 a2=-13.8 a2=—0.0
roups
FEV1 FEV1 FEV1 FEV1 -
Slope MSE Slope MSE Slope MSE Slope MSE

Control Group

UWLE -89.3 465.4 -88.9 645.7 -88.3 719.4 -89.2 570.4
GLE -90.3 156.3 -68.3 634.9 -63.7 883.3 .90.7 164.6
PMLE -89.4 200.6 -83.6 455.0 -81.2 597.8 -90.2 210.6
Treatment Group

UWLE -46.5 442.3 -45.9 444.9 -46.2 489.8 -46.9 444.7
GLE -45.9 148.2 -28.2 423.1 -24.4 576.0 -46.3 150.7
PMLE -44.6 194.4 -39.7 288.4 -38.8 340.6 -44.3 162.9
Between Group Differences

UWLE -42.8 935.8 ffl,I?.O 1059.3 -42.11 1210.9 -42.3 1052.‘
GLE -44.5 361.8 -40.1 339.0 -39.3 377.8 -44.4 313.0
PMLE -44.8 267.4 1 297.3

-43.9 297.1 -42.4 309.0 -44.

Simulated Power & Significance lLevel

Power Signif Power Signif Power Signif Power Signif

UWLE 0.45 - 0.05 0.39 0.05 0.36 0.05 0.40 0.05

GLE(0.85)™¢ 0.81 & 0.06 0.72 0.07 0.67 0.07 0.77 0.06

PMLE 0.80 -. 0.0 0.80 0.06 0.79 0.06 0.78 0.07

B

, i . . =
The parameter values used were: Measurement error standard deviation o, = 0.155

FEV1 initial value standard‘deviation aB = 0.39L., FEV1 slope std. dev. Uﬁ
1 2
0, expected FEV

0.091L/yr., o 0.0QIL/yr..

By ~ p1.p2 ©
0.96L, control and treatment group expected FEV

initial value B11 = B21

1

1 slopes 812 = -0.09L/yr. and B22

-0.045/yr. For significance level, B,, = B,, = -.09L/yr. The probability of missing
»

21 22
16%/yr. and n =n, = 100.

3¢
Expected power under non-informative missing process, calculated according to (3.4
using the actual parameter values.
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FIGURK 2B

ACTUAL VsS. EXPECTED DEATHS
B+ EXPECTED RISK OF DEARTH IN EACH OF THE TWO THREE YEAR INTERVALS
- 9 2
X.B: ACTUAL NUMBER OF DEATHS AHONG THOSE WHOSE RISK OF DYING _$50
104 HWERE RS INDICATED BY THE HORIZONTAL AXIS OR GREATER
0.R: EXPECTED NUMBER OF DEATHS AMONG THOSE WHOSE RISK OF DYINO o
g. WERE AS INDICRTED BY THE HORIZONTAL AXIS OR GRERTER
c
o8-
¥
R 7+
T
I
V 6
3
0 §-
E
A
T 4.
m FIRST INTERVAL
3
2 -
14
| v T 1 1 ) 1 T T
1.0 0.3 0.2 0.1 0.0
NA 11 18 21 34 65
NB 1 7 17 30 33

NARt NUHBER OF INDIVIDUALS NHOSE RISK OF
NOs NUNBER OF INDIVIDUALS WHOSE RISK OF

T Y < 0 G r—— 3 1 1

RISK OF DERTH IN THE INTERVAL

OYINO IN THE FIRST INTERVAL WERE RS INDICATED BY THE NORIZunTAL HAIS OR F-
OYINO IN THE SECOND I"“SRVAL WERE RS INDJCATED BY THE WORIZONTAL RX1S OR

‘nIER
ERTER



