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Abstract

This paper addresses the development of a nonlinear control design for attenuating structural vibrations

using magnetostrictive transducers operating in nonlinear and highly hysteretic operating regimes. We consider

as a prototype a thin plate subjected to exogenous pressure waves and controlled via Terfenol-D transducers at

the plate edges; however the methodology is sufficiently general to encompass a wide range of structures and

magnetic transducer designs. Hysteresis inherent to the transducer materials is quantified using a homogenized

energy framework and the resulting nonlinear constitutive relations are used to construct a PDE representation

and corresponding finite dimensional model of the structural system. We employ optimal control theory to

construct nonlinear open loop control inputs which accommodate the hysteresis inherent to the transducers but

are not robust with regard to unmodeled dynamics or disturbances. Robustness is incorporated by employing

perturbation techniques to provide linear feedback laws acting on measured disturbances. As illustrated via

numerical examples, the resulting hybrid control design provides excellent control authority and robustness for

transducers operating in hysteretic and nonlinear regimes.

Keywords: Nonlinear optimal control, perturbation control, hysteresis, nonlinear magnetic transducers

1. Introduction

The active and passive attenuation of vibrations in aeronautic, aerospace, automotive, and industrial systems

constitutes a fundamental component of structural and structural acoustic design. These vibrations can be due

to a wide range of exogenous inputs including adjacent machinery, environmental inputs, or impinging acoustic

or fluid fields, and can be periodic, quasiperiodic, or random in nature. For certain systems, passive damping
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techniques prove adequate and are advantageous due to their simplicity and robustness. However, passive

vibration control often comes at the cost of added weight and size, and this approach often proves inadequate in

moderate to high frequency regimes. For such applications, active or semi-active vibration control is required.

Consideration of active designs is further motivated by increased development and utilization of highly flexible

and lightweight structural components having little inherent damping — e.g., composites and polymers - and

increasingly stringent design criteria and operating regimes.

Over the past two decades, a range of smart materials — including piezoelectric compounds, relaxor fer-

roelectric materials, magnetostrictive compounds, and shape memory alloys (SMA) — have emerged as viable

alternatives for both passive and active vibration control. Their advantages arise from number of factors in-

cluding multifunctionality (e.g., both actuator and sensor capabilities), large force or strain generation, high

frequency and broadband actuator capabilities (excluding SMA), and the potential for minimal weight increase.

At low drive levels, the dynamics of ferroelectric and ferromagnetic actuators can often be adequately approx-

imated using linear constitutive relations which subsequently form the basis for linear structural models and

control designs. In moderate and high drive regimes, however, inherent hysteresis and constitutive nonlinearities

sufficiently dominate material behavior to require inclusion in models and model-based control designs.

As detailed in [40], there exists a wide range of techniques for modeling the hysteresis inherent to ferro-

electric (e.g., PZT, PMN below the glass transition temperature), ferromagnetic (e.g., Terfenol-D, steel) and

ferroelastic (e.g., SMA) compounds. Three modeling classes which provide unified characterization frameworks

for ferroelectric, ferromagnetic, and ferroelastic—collectively termed ferroic - compounds are domain wall mod-

els [25, 28, 42], Preisach models [22, 35, 37], and homogenized energy models [38, 41, 44, 45]. The domain wall

models are efficient to implement but require a priori knowledge of turning points to guarantee closure of biased

minor loops. For feedback design, this can prove problematic since turning points are dictated by state mea-

surements or estimates for the underlying structure. For certain operating regimes, the utility of a model-based

optimal control design utilizing a domain wall model is illustrated in [39] — for general tracking and regulation

application however, feedback control laws exploiting domain wall models should be used with care due to the

inherent nonclosure property. Preisach models were originally developed for magnetic materials [17, 35] and

have been exploited for model-based control design for all three classes of compounds. The primary advantage

of this technique is also one of its primary limitations, namely its general mathematical nature. For systems in

which the physics is poorly understood or difficult to quantify, this generality is a definite advantage. However,

it is difficult to correlate parameters in the framework with measured quantities, and extensions to the theory

are required to accommodate noncongruency, reversibility, nonclosure due to relaxation mechanisms, and stress

or temperature dependencies [15, 16, 40]. In this paper, we employ the homogenized energy framework due to
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its energy basis and flexibility with regard to numerous operating conditions. Details regarding this framework,

including its relation to certain extended Preisach formulations, can be found in [40].

The majority of control designs utilizing smart material transducers have focused on linear models which

are effective in low to moderate drive level regimes [4, 6, 32, 33, 34]. Within the context of nonlinear hysteresis

models, there are two primary approaches: (i) linear control design utilizing model inverses employed as inverse

filters to approximately linearize the transducer response, and (ii) nonlinear control design. An overview of the

former approach using a piecewise linear Preisach representation can be found in [46] and the use of this technique

for robust control design utilizing the homogenized energy framework is detailed in [29]. This technique has the

advantage that it permits linear adaptive, optimal, classical or robust control design. The primary disadvantage

resides in the fact that inputs to the model inverse often are more difficult to interpret physically than direct

inputs to the transducer. In category (ii), nonlinear control theory is used to ascertain inputs to the actuator

which yield the desired system response — e.g., effective vibration attenuation or high accuracy tracking. This

category includes the domain wall-based optimal design in [39] as well as nonlinear designs of the type detailed

in [21, 3, 23]. Schematics illustrating the two approaches are provided in Figure 1.

In this paper, we develop a nonlinear optimal control technique for magnetostrictive transducers which

utilizes the homogenized energy framework to quantify the hysteretic map between input magnetic fields H

time

time

time

time
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Hysteretic

(ii)
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Linear Control
Input
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Input to plant
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Transducer

Control Input
Nonlinear

Figure 1: (i) Linear control design employing an inverse filter, and (ii) nonlinear control design.
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and the magnetization M and quadratic magnetization - strain (M − ε) relation. Magnetostrictive actuators

have been considered for a number of vibration attenuation applications including the reduction of chatter in

machining operations, vibration attenuation in transmissions and axle differentials, and damping of large flexible

structures [12, 13, 36]. To provide a prototype for which the structural physics is well-understood but finite-

dimensional models are relatively high-order, we consider the control of vibrations in a cantilever plate using

edge-mounted Terfenol-D transducers as depicted in Figure 2. This simplified construct permits us to focus the

discussion on attributes of the nonlinear control design for a 2-D structure without the more complicated system

models required for the previously mentioned applications. In this context, we illustrate the effectiveness of the

technique for systems having over 150 degrees of freedom which provides an indication that the control method

will be feasible when applied to finite element models for more complex applications and designs.

The hybrid nonlinear control design is comprised of an open loop component, derived from nonlinear, finite-

dimensional control theory, and a feedback component obtained through perturbation techniques. The open loop

control accommodates the hysteresis and constitutive nonlinearities inherent to magnetostrictive transducers

but is not robust with regard to unmodeled dynamics or uncertainties in operating conditions. Robustness is

obtained by linearizing the system about the optimal trajectory and control, and feeding back on perturbations

from the open loop system — e.g., see [5] for analysis of perturbation control for general nonlinear systems or [27]

for certain algorithms. This approach has the advantage that the resulting perturbation system is linear with

quadratic constraints and hence LQR theory can be applied to facilitate implementation. The implementation

procedure can be summarized as follows. (i) The nonlinear two-point boundary value problem required to

obtain an open loop control is solved off-line and the resulting optimality system is stored. (ii) During numerical

or experimental implementation of the method, perturbations from the optimality system are measured and

feedback via either LQR or classic methods to compensate for unmodeled dynamics or uncertainties in operating

conditions. As demonstrated through numerical examples, the resulting hybrid control method is robust and

efficient to implement. Hence it presents an efficient alternative to dynamic programming solutions [5] or

state-dependent Ricatti solutions [1] for real-time implementation of nonlinear control laws.

The results presented here differ from those of [39] in two fundamental aspects: (i) the homogenized energy

framework provides significantly more flexibility for control design using a range of smart material actuators

than the domain wall model employed in [39], and (ii) the development and illustration of the theory in the

context of a 2-D plate model rather than the 1-D beam model employed in [39] demonstrates the potential for

implementing the method with larger scale FE models used to model the dynamics of more general vibration

attenuation systems.

The development of the optimal control method is presented as follows. Section 2 summarizes magne-
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tostrictive material behavior and the homogenized energy model. The magnetically actuated plate structure is

developed in Section 3. In Section 4, the optimal control problem is discussed. Linear optimal control results

illustrate the need for nonlinear control when field levels reach moderate to high regimes. The nonlinear optimal

control method is then developed and validated numerically for the cases of free and forced vibration. Finally

perturbation control is implemented to improve robustness to operating uncertainties.

2. Material Behavior and Hysteresis Model

Magnetostrictive materials are a special class of magnetic compounds that undergo a shape change when

exposed to a magnetic field. The deformation is a manifestation of local magnetic moments that align with

the applied field. Under small fields, regions of like magnetization called domains move in an approximately

reversible manner — creating small strains and minimal hysteresis. As fields increase, irreversible domain wall

motion and rotation of domains develop creating significant hysteresis and nonlinearity.

The pseudobinary compound Terfenol-D (Tb0.3Dy0.7Fe1.9) is increasingly employed in actuator design due

to its large force and strain response under a magnetic field [6, 9]. Magnetostriction in the approximately linear

range is on the order of 500 microstrain, whereas strain in excess of 1000 microstrain can be achieved in the

nonlinear range. Certain transducer designs can generate forces up to 550 N with broadband capability from

DC up to 20 kHz [20].

The magnetostrictive transducer employed in the structural control problem is described in detail by Dapino

et al. [13]. As shown in Figure 2(a), the actuator primarily consists of a Terfenol-D rod, a surrounding

wire solenoid, a permanent magnet, and a spring washer/compression bolt assembly to prestress the rod. A

current is applied to the solenoid which generates a magnetic field. The magnetic field produces magnetic flux,

magnetization, and strain in the Terfenol-D rod. The rod is prestressed to reduce tensile loads during operation

and to increase actuator displacement [18]. The permanent magnet serves to bias the magnetization on the

Terfenol-D rod such that bi-directional strains are produced by a time-varying magnetic field with zero bias

and to provide uniform flux patterns [11]. Bi-directional strain can also be achieved by biasing the magnetic

field, but this results in substantial power losses from ohmic heating which necessitates use of liquid-cooled

transducers. Trade-offs between size and weight of permanent magnets and power loss from ohmic heating must

be considered for a given application.

2.1 Homogenized Energy Model

A one-dimensional magnetostrictive constitutive law is used to model the Terfenol transducers. The homog-

enized energy model focuses on the nonlinear, hysteretic H −M behavior while assuming linear stress-strain
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Figure 2: (a) Terfenol-D transducer design, and (b) transducer configuration for attenuating transverse plate vibrations.

behavior. A brief summary detailing the constitutive model is presented here. Details regarding the model

development are found in [40, 41].

To summarize, a Gibbs relation at the mesoscopic length scale is used to quantify the local magnetization M

as a function of the applied field H for regimes in which relaxation mechanisms may be negligible or significant.

The model is extended to macroscopic scales through stochastic homogenization techniques. The Gibbs relation

is

G(M) = Ψ(M)− µ0HM (1)

where Ψ(M) is the Helmholtz energy [40] and µ0 is the permeability of free space.

As detailed in Chapter 7 of [40], the constitutive relations are

σ(t) = EMε(t)− a1 ([M(H)] (t)−M0)
2

[M(H)] (t) =

∫ ∞

0

∫ ∞

−∞

ν1(Hc)ν2(HI)
[
M (H +HI ;Hc, ξ)

]
(t)dHIdHc

(2)

where σ(t) is the uniaxial stress, ε(t) is the elastic strain, EM is the elastic modulus at constant magnetization, a1

is the magnetostrictive coefficient, M is the magnetization and M0 includes magnetization from the permanent

magnet and the initial internal state of the material. Here, HI is the interaction field, Hc is the coercive field
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and ξ denotes the initial distribution of magnetic variants. The stochastic homogenization technique used to

formulate the macroscopic magnetizationM in terms of local valuesM is based on the assumption that the local

coercive field Hc and interaction field HI are manifestations of underlying distributions rather than constants to

accommodate a myriad of local material inhomogeneities such as intergranular residual stress, impurities, and

certain anisotropies . The corresponding densities are designated by ν1(Hc) and ν2(HI). As detailed in [41],

one choice for these densities is

ν1(Hc)ν2(HI) = c1c2e
−[ln(Hc/Hc)/2c]

2

e−H
2

I /2b
2

(3)

whereHc is the average coercive field, c quantifies the coercive field variability, b is the variance of the interaction

field, and c1 and c2 are scaling parameters. The proposed densities are implemented to reduce parameter

estimation. Model comparison to experimental results can be found in [41].

For many operating regimes, thermal activation mechanisms such as magnetic after-effects and accommoda-

tion [24] significantly affect the constitutive behavior. These effects are incorporated in the framework through

Boltzmann’s relations

µ(G) = Ce−GV/kT (4)

which balances the Gibbs and relative thermal energies. Here G is the Gibbs energy, V is a representative volume

element, k is Bolztmann’s constant, and T is temperature. The constant C is specified to ensure integration to

unity.

In this case, the local magnetization is defined by

M = x+〈M+〉+ x−〈M−〉 (5)

where x+ and x− respectively denote the volume fraction of moments having positive and negative orientations.

The variables 〈M+〉 and 〈M−〉 are the average magnetizations corresponding to the volume fractions of moments.

The differiential equations governing evolution of x+ and x− is based on material-dependent parameters that

define the likelihoods that moments switch from positive to negative, and conversely. These likelihoods account

for the observed thermal relaxation mechanisms. Details describing the governing equations are given in [41].

In certain operating regimes, thermal relaxation is negligible and in which case the relation (5) limits to the

piecewise linear relation

M(H +HI ;Hc, ξ) = χm(H +HI) +MRδ(H +HI ;Hc, ξ) (6)
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where MR is the magnitude of the local magnetization variant. The variable δ is equal to one if the magneti-

zation variant is in the positive direction and negative one if oriented in the negative direction. The magnetic

susceptibility is defined by χm.

The local magnetization MR given in (6) will switch when magnetic variants diametrically opposed to the

effective field (He = H + HI) reach the coercive field. The switching behavior is modeled by introducing a

semi-infinite set of magnetic variants that correspond to the distribution of effective fields and coercive fields.

Details regarding the numerical implementation of the switching behavior and the numerical integration of (2)

are provided in [40, 45]. The constitutive response predicted by the homogenized free energy model is illustrated

in Figure 3. The local magnetization given by (6) has been used. Although this is a linear piecewise function,

the typical nonlinearities associated with magnetostrictive materials are captured by the local relation for M .

For purposes of developing the structural model and control design, the local magnetization given by (6) is

implemented where thermal activation mechanisms are neglected.
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Figure 3: (a) Macroscopic magnetization M versus magnetic field H computed using (2), and (b) microstrain µε versus

magnetic field H computed from (2) under zero external stress.

8



3. Structural Model

The structure under consideration consists of Terfenol transducers positioned along two fixed edges of a

thin plate as depicted in Figure 2. Eight transducers are oriented in four pairs with each pair attached to the

plate by a moment arm that is perpendicular to the plate. Diametrically out-of-phase currents applied to each

actuator couple generate a moment on the plate.

3.1 Plate With Nonlinear Actuators

The thin plate structure is modeled using classical plate theory [47]. The equation of motion describing

transverse plate displacement w is decoupled from in-plane displacements by focusing on small strain induced

by plate vibration. Since the control problem is concerned with transverse plate vibration, we focus only on the

dynamic equation for w.

The balance of forces and moments for the plate result in the strong form of the equation of motion,

ρp
∂2w

∂t2
−
∂2Mint

x

∂x2
− 2

∂2Mint
xy

∂x∂y
−
∂2Mint

y

∂y2
=
∂2Mmag

x

∂x2
+
∂2Mmag

y

∂y2
+ g (7)

where ρp denotes the density of the plate, Mint
x and Mint

y include the internal elastic and damping moment

components in the x and y directions, and Mint
xy is the in-plane twisting moment. The external moments

generated by the Terfenol transducers are represented byMmag
x andMmag

y in the x and y directions, respectively.

No twisting moments are applied by the transducers, so the componentMmag
xy is zero. The external disturbance

load distributed along the plate surface is denoted by g. A detailed description of the equations describing the

moment-displacement relations are given in the Appendix. Spatial variations in density, moment of inertia and

compliance near the Terfenol transducers and connecting moment arms are assumed to be negligible.

The plate geometry is represented by the length `x, width `y and thickness h. Values used in the model are

given in Table 1. The plate is assumed to be clamped along the fixed edges [x, 0] and [0, y] and free along [`x, y]

and [x, `y] as shown in Figure 2(b). The cross-sectional area of the Terfenol rod is denoted by Amag and we let

`r deonote the length of the moment arm from the actuator to the surface of the plate. The location of the four

connecting rods are designated by Ωi, i = 1, . . . , 4. Let H1(i) and H2(i), i = 1, . . . , 4 respectively denote the field

inputs to the top and bottom actuators in each pair and let H(t) =
[
H1(1)(t), H2(1)(t), . . . , H1(4)(t), H2(4)(t)

]

denote the complete set of inputs. The external moments generated by the Terfenol actuators can then be

expressed as
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Mmag
x (H(t), x, y) = −KM

4∑

i=1

[M2
1(i)

(
H(i)(t)

)
−M2

2(i)

(
H(i)(t)

)
]χx(i)(x, y) (8)

Mmag
y (H(t), x, y) = −KM

4∑

i=1

[M2
1(i)

(
H(i)(t)

)
−M2

2(i)

(
H(i)(t)

)
]χy(i)(x, y) (9)

where KM = a1Amag (h/2 + `r) and M1(i)(t) and M2(i)(t) are the magnetizations modeled by (2). The charac-

teristic functions

χx(i)(x, y) =





1 , (x, y) ∈ Ωi, i = 1, 2

0 , otherwise
(10)

χy(i)(x, y) =





1 , (x, y) ∈ Ωi, i = 3, 4

0 , otherwise
(11)

designate that actuators 1 and 2 along [0, y] generate moments in the x-direction whereas actuators 3 and 4

along [x, 0] generate moments in the y-direction.

The control design is simplified by reducing the number of control inputs from eight to four. The time

varying control inputs are computed for each of the four top transducers and the control inputs on the bottom

four actuators are defined by H2(i)(t) = −H1(i)(t). The magnetization is then defined by the relation M1(i) =

M̃(i) +M0 and M2(i) = −M̃(i) +M0 which assumes negligible differences between the magnetization driven by

the fields applied on the top and bottom actuators. This yields the relation

Mmag
x (H(t), x, y) ∼=

4∑

i=1

M(i)(H(i)(t))χx(i)(x, y) (12)

Mmag
y (H(t), x, y) ∼=

4∑

i=1

M(i)(H(i)(t))χy(i)(x, y) (13)

where

M(i)(H(i)(t)) = −K
M [4M0M̃(i)

(
H(i)(t)

)
] (14)

which is an approximation of actual magnetostrictive material behavior when hysteresis and nonlinearities are

present. The control law can be improved by including all eight transducers as individual inputs, but for the

purposes of demonstrating the control design the simpler four input model is used.

As detailed in [40], the strong model formulation (7) can be rewritten in the weak form
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∫

Ω

(
ρ
∂2w

∂t2
Φ−Mint

x

∂2Φ

∂x2
− 2Mint

xy

∂2Φ

∂x∂y
−Mint

y

∂2Φ

∂y2

)
dω =

∫

Ω

(
Mmag

x

∂2Φ

∂x2
+Mmag

y

∂2Φ

∂y2
+ gΦ

)
dω (15)

where Φ ∈ H2
0 (x, y) and Ω = [0, `x]× [0, `y] denotes the plate region.

3.2 Approximation Method

The plate displacements can be approximated using either cubic B-splines or cubic Hermite elements. Cubic

B-splines are chosen for the control problem primarily because cubic Hermite elements require solving for

approximately twice the number of unknown coefficients which may affect computation speed for real-time

control. Details describing the attributes of cubic B-splines as well as comparisons to cubic Hermite elements

are given in Chapter 8 of [40].

The cubic B-splines are defined over the plate geometry, Ω = [0, `x]× [0, `y]. The plate is discretized using

the points xm = mhx and ym = nhy with hx = `x

Nx
, hy =

`y

Ny
and m = 0, ..., Nx and n = 0, ..., Ny. The cubic

spline product space is defined by

Φ(x, y) = φ(x)φ(y). (16)

The approximate solution to (15) is subsequently given by

w(t, x, y) =

Nw∑

k=1

wk(t)Φk(x, y) (17)

where Nw = (Nx + 1)(Ny + 1) and wk(t) are the coefficients to be determined through solution of the weak

model formulation.

Approximation of the infinite dimensional model (15) yields the ODE system

Mẅ + Cẇ + Kw = bM (H(t)) + g (18)

where M, C, and K are the mass, damping and stiffness matrices. The vector w = [w1(t), ..., wNw
(t)]T represents

the coefficients in (17) and g consolidates disturbance loads. Details describing the components of these matrices

and vectors are given in the Appendix and in [40]. As indicated in (54) in the Appendix, the (Nw + 1) × 4

matrix b specifies the spatial components of the inputs. The 4× 1 input vector

M (H(t)) =
[
M(1)

(
H(1)(t)

)
, . . . ,M(4)

(
H(4)(t)

)]T
(19)
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designates the time-dependent influence of the field inputs.

The second-order system can be formulated as a set of first-order equations for implementation in the control

design

ẏ(t) = Ay(t) + [B(u)](t) +G(t)

y(0) = y0

(20)

where y(t) = [w1(t), · · · , wNw
(t), ẇ1(t), · · · , ẇNw

(t)]. The system matrix and input vector are given by

A =




0 I

−M−1C −M−1K


 , B(u) =




0

M−1b


 M(u) (21)

with a similar definition for the disturbance load G(t). The identity matrix, with dimension Nw×Nw, is denoted

by I. The control input u is the magnetic field H applied to each transducer.

3.3 Structural Parameters

Physical parameters employed in the control design are summarized in Table 1. The Terfenol material

parameters implemented in the homogenized free energy model are within the range obtained for model fits to

an experimental transducer [8]. The plate modulus Ep, Poisson ratio νp and density ρp are typical for aluminum.

The internal damping is assumed to be linear and is represented by cp while viscous air damping is given by

γ. The center location of the four actuator pairs was (0.105, 0.2), (0.105, 0.3), (0.15, 0.105) and (0.25, 0.105) in

millimeters where the coordinate origin was located at the top left corner of the plate as shown in Figure 2(b).

The moment arm is assumed to be rigid with cross-sectional area denoted by Ar. The cross-section area is

used to determine the region over which the moment is applied. Plate dynamics were sufficiently resolved by

choosing Nx = Ny = 4 in the frequency range considered. The dimension of the state vector y was then 50× 1

due to the inclusion of both displacement and velocity components. When determining the convergence of the

numerical approximations, however, we have both simulated and run control problems with state vectors up to

Nx = Ny = 8 for a total of 162 degrees of freedom.
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Table 1: Parameters for the plate and Terfenol transducer.

Plate Terfenol Transducer

Ep = 4.1× 1010 N/m2 EM = 7.00× 1010 N/m2

νp = 0.345 c1 = c2 = 6.1× 10−5 m/A

ρp = 2700 kg/m3 Hc = 3.3× 103 A/m

cp = 2.5× 105 Ns/m2 c = 0.4

γ = 0.18 Ns/m2 b = 1.5× 104 A/m

`x = 0.4 m M0 = 6.618× 104 A/m

`y = 0.6 m a1 = 0.006 N/A2

h = 0.0016 m Amag = 0.0064 m2

`r = 2.54 cm χm = 1

Ar = 1 cm2

4. Control Design

The optimal control problem is first summarized to elucidate the technique used in developing the nonlinear

control design [5, 26, 27, 31]. The following performance index

J(u) =
1

2
yT (tf )Πfy(tf ) +

∫ tf

t0

[
H(y, u, t)− λT (t)ẏ

]
dt (22)

is used to develop the optimal control design, where the positive definite matrix Πf penalizes large terminal

values of the state, H(y, u, t) is the Hamiltonian, and λ(t) ∈ lR2Nw is a set of Lagrange multipliers.

The Hamiltonian is

H(y, λ, u, t) = L(y, u, t) + λT [Ay(t) + [B(u)](t) +G(t)]

=
1

2

[
yT (t)Qy(t) + uT (t)Ru(t)

]
+ λT [Ay(t) + [B(u)](t) +G(t)]

(23)

where the Lagrangian L includes the penalties on the states and inputs through the semi-definite maxtrix Q

and the positive definite matrix R.

The optimal control problem requires solution of the two-point boundary value problem governed by (20)

and the adjoint or Lagrange multiplier condition

dλ

dt
= −

∂H

∂y

λ(tf ) = Πfy(tf ).

(24)
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The optimal control is determined from the stationary condition,

∂H

∂u
= 0 (25)

which results in the nonlinear optimal control input

u∗(t) = −R−1 ∂B(u)T

∂u
λ(t). (26)

4.1 Control Parameters

The penalties on the states and inputs are adjusted in the linear and nonlinear control simulations to assess

the effect of the hysteretic constitutive behavior of the magnetostrictive transducers on vibration attenuation.

Values for each case are given in Table 1. In the linear simulations, two sets of values are used to show

control performance when nonlinearity and hysteresis are negligible or significant. The values used in the linear

simulations as well as the open loop nonlinear control and perturbation control are given in Table 2. The matrix

Q in (23) is given by

Q =



q1K 0

0 q2M


 .

The penalties on the inputs are given by Rij = riδij where δ is the Kronecker delta symbol with i, j = 1 to 4

for the inputs on the four Terfenol-D transducer couples. The penalty on the final state is defined by Πf = q3Π

where Π is the solution to the algebraic Ricatti equation described in the following section.

Table 2: Parameters used to penalize the states and inputs in the linear and nonlinear control simulations. The penalty

on the final state is q3 = 5× 10−8.

Linear Control Linear Control Nonlinear Control Perturbation Control

Linear Constitutive Behavior Nonlinear Constitutive Behavior

q1 = 5.00× 101 q1 = 5.00× 101 q1 = 5.00× 102 q1 = 5.00× 104

q2 = 5.00× 100 q2 = 5.00× 100 q2 = 5.00× 101 q2 = 5.00× 103

r1 = 5.00× 10−6 r1 = 1.25× 10−6 r1 = 2.50× 10−6 r1 = 2.50× 10−6

r2 = 3.33× 10−6 r2 = 8.33× 10−7 r2 = 1.67× 10−6 r2 = 1.67× 10−6

r3 = 2.50× 10−6 r3 = 6.25× 10−7 r3 = 1.25× 10−6 r3 = 1.25× 10−6

r4 = 5.00× 10−6 r4 = 1.25× 10−6 r4 = 2.50× 10−6 r4 = 2.50× 10−6

14



4.2 Linear Optimal Control

Linear theory provides acceptable control when input currents to the solenoid are small. It has been experi-

mentally shown that a nearly linear relation exists between magnetic field and strain in the Terfenol transducer

when the field is small. In this situation, an approximate model can be attained through linearization about

some biased magnetization. In the linear model, the biased magnetization M0 includes the fully magnetized

internal state of the material and the magnetization from the permanent magnet. This results in a linear input

operator where the linear H −M relation M̃(i)(t) = χmH(i)(t) is been substituted into (14) where the macro-

scopic magnetic susceptibility is χm = 0.72. This value is determined numerically from (2) for small field inputs.

In this case, the moment from each actuator couple is

Mmag
(i) (H(i)(t)) = −K

M [4M0χmH(i)(t)] (27)

which is substituted into (12) and (13) to obtain the total applied moment.

Due to the linearity of the constitutive law used here, the input operator is

B = −4KMM0χm




0

M−1b


H(t) (28)

where the 4× 1 vector

H(t) =
[
H(1)(t), . . . , H(4)(t)]

T (29)

represents the magnetic field on each actuator couple.

With this approximation, the corresponding first-order system is

ẏ(t) = Ay(t) +Bu(t) +G(t)

y(0) = y0 .

(30)

The state constraint in (30) and adjoint condition in (24) yields the optimality system



ẏ(t)

λ̇(t)


 =




A −BR−1BT

−Q −AT






y(t)

λ(t)


+



G(t)

0




y(t0) = y0

λ(tf ) = Πfy(tf ) .

(31)
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Computing the optimal control requires solution of the two-point boundary value problem defined by the

optimality system. In the linear case, a fundamental solution matrix can be obtained by solving the differential

Ricatti equation

−Π̇ = ATΠ+ΠA−ΠBR−1BTΠ+Q

Π(tf ) = Πf .

(32)

The optimal control input is then defined by,

u∗(t) = −R−1BT [Π(t)y(t)− r(t)] (33)

where the variable r(t) ∈ lR2Nw is the solution to the auxiliary differential equation

ṙ(t) = −
[
A−BR−1BTΠ

]T
r(t) + ΠG(t)

r(tf ) = 0 .

(34)

The linear control theory can be further simplified through the assumption that the disturbance force G is

periodic on the time interval [t0, tf ]. In this case, the appropriate performance index is given by

J(u) =

∫ tf

t0

1

2

[
yT (t)Qy(t) + uT (t)Ru(t)

]
dt. (35)

This leads to a steady-state controller gain where the fundamental solution matrix is now governed by the

algebraic Ricatti equation where Π̇ = 0 in (32). The resulting control input is

u∗(t) = −R−1BT [Πy(t)− r(t)]. (36)

Details regarding this approach are given in [2, 14].

The control trajectory determined by (36) is used in the following numerical examples to illustrate the need

for nonlinear control when the input field reaches a magnitude that induces hysteresis.

4.2.1 Numerical Example – Truncated External Force

We first consider the case in which the plate is excited with an external force for a short time interval and

then the force is subsequentially set to zero. The disturbance load G(t) was spatially discretized and applied

uniformly to the plate with magnitude 25 N by a summation of five equally weighted frequencies (f e =10, 12,

19, 26, 37 Hz) as given by
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g(t, x, y) =





25
∑5

i=1 [sin(2πf
e
i t)] , t ≤ 0.45

0 , 0.45 < t ≤ 2.5
(37)

where
∑5

i=1 [sin(2πf
e
i t)] = [sin(2π10t) + · · ·+ sin(2π37t)].

The uncontrolled and controlled displacements at the plate tip [`x, `y] are plotted in Figure 4(a). The

penalties on the states Q and inputs R are adjusted to ensure the constitutive response computed using (2) is

linear. Marginal vibration control is obtained under small input fields. The linear H−M response corresponding

to the input control for each actuator pair is illustrated in Figure 4(b).

In Figure 5, the linear control is increased by adjusting Q and R (see Table 2) to illustrate the effect of

hysteresis on controlling vibration. The increase in magnetic field creates hysteresis which is not accounted

for in the linear control design. When this occurs, the vibration control initially improves, but subsequently

degrades due to the phase shift induced by the hysteresis illustrated in Figure 5(b).

4.2.2 Numerical Example – Periodic External Disturbance Force

Secondly, we consider the case in which the plate is continuously excited with the external disturbance

force (37) (as shown in Figure 2(b)) during the entire simulation. The control is again applied at t0=0.45 s and
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Figure 4: Performance of the linear feedback control law using the controller gain in (33). The resulting plate displacement

for the uncontrolled ( ) and controlled response ( ) are shown in (a). The relationship between magnetic field and

magnetization is shown in (b) for each actuator pair.
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Figure 5: Linear feedback control law at levels where the transducer model exhibits hysteresis. In this simulation, Q and

R were adjusted to increase the input field. The resulting plate displacement for the uncontrolled ( ) and controlled

response ( ) are shown in (a) and the corresponding hysteretic M-H behavior is shown in (b).

vibration attenuation is marginal as shown in Figure 6. Additionally, the disturbance forces induce nonlinearities

in the magnetostrictive actuators from larger field inputs necessary to minimize vibration which is not properly

accounted for in the linear control design.

4.3 Nonlinear Control Method

The nonlinear control method previously discussed by Smith [39] is applied to the Terfenol plate structure.

Key equations describing the numerical technique are summarized to elucidate the approach used. The input

operator B(u) contains nonlinearities from the magnetostrictive constitutive law which does not lead to a

fundamental matrix solution; therefore an efficient solution in terms of the Riccati equation is not possible.

This issue is resolved by solving the optimality system numerically while ensuring the boundary conditions at

the initial and final times are satisfied. The first order system of equations is formulated as,

ż(t) = F (t, z) (38)

where z = [y, λ]T and
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Figure 6: Performance of the linear feedback control law in the presence of a periodic external force of 25 N. The resulting

plate displacement for the uncontrolled ( ) and controlled response ( ) are shown in (a). The relationship between

magnetic field and magnetization is shown in (b) for each actuator pair.

F (t, z) =



Ay(t) + [B(u)](t) +G(t)

−ATλ(t)−Qy(t)




y(t0) = y0 , λ(tf ) = Πfy(tf ) .

(39)

The system of equations given by (38) are solved using a finite difference discretization of the time interval

[t0, tf ] with a uniform mesh having stepsize ∆t and points t0, t1, · · · , tN = tf . The approximate values of z at

these times are denoted by z0, · · · , zN . A central difference approximation of the temporal derivative yields the

system

1

∆t
[zj+1 − zj ] =

1

2
[F (tj , zj) + F (tj+1, zj+1)]

E0z0 = [y0, 0]
T

EfzN = [0, 0]T

(40)

for j = 0, · · · , N − 1. The matrices E0 and Ef represent the boundary conditions at the initial and final times

which are given by the relations
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E0 =



I 0

0 0


 , Ef =




0 0

−Πf I


 . (41)

Here I denotes a 2Nw × 2Nw identity matrix where Nw denotes the number of basis functions employed

in the spatial approximation of the state variables given in Section 3.2. The boundary conditions are written

in this form to ensure the initial plate displacement and velocity are fixed according to the prescribed initial

condition in (39), while the solution to λ(tf ) is related to the unknown plate displacement and velocity at tf

which must be determined according to the optimality system.

The determination of a solution vector zh = [z0, · · · , zN ] in (40) can be expressed as the problem of finding

zh which solves

F(zh) = 0 (42)

where the system of equations given in (42) is represented by F(zh) ∈ lR4(N+1)Nw ,

F(zh) =




F0

F1
...

Fj
...

FN−1

b(z0, zN )




,

Fj ≡
1

∆t
[zj+1 − zj ]−

1

2
[F (tj , zj) + F (tj+1, zj+1)]

b(z0, zN ) = E0z0 + EfzN −


 y0

0


 .

(43)

A quasi-Newton iteration of the form zk+1h = zkh + ξkh, where ξ
k
h solves

F ′(zkh)ξ
k
h = −F(zkh), (44)

is used to determine the solution to the nonlinear system (42). The Jacobian F ′(zkh) has the structure

F ′(zh) =




S0 R0

S1 R1

. . .
. . .

SN−1 RN−1

E0 Ef



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where

Si = −
1

∆t
I −

1

2
A(ti)

Ri =
1

∆t
I −

1

2
A(ti+1) .

The matrix A(ti) is the linearization

A(ti) =
∂F

∂z
(ti, zi)

which yields the representation

Si = −
1

∆t



I 0

0 I


−

1

2




A ∂
∂λB[u∗i ]

−Q −AT




for Si. The representation for Ri is similar.

Direct solution of (44) is infeasible due to the large number of basis functions and time increments required

to resolve the solution over a reasonable time interval. The structure of the Jacobian can be employed to reduce

both memory and computational requirements to the level of solving 4Nw × 4Nw systems. Following [39], this

is accomplished by expressing the Jacobian in terms of an analytic LU decomposition

F ′(zkh) = LU (45)

where

L =




S0

S1

. . .

SN−1 0

E0 −E0(S
−1
0 R0) · · · E0

N−2∏

i=0

(−1)i(S−1
i Ri) Ef + E0

N−1∏

i=0

(−1)i(S−1
i Ri)



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U =




I S−1
0 R0

I S−1
1 R1

. . .
. . .

I S−1
N−1RN−1

I




.

The direct solution of the lower triangular system Lζkh = −F(zkh) is first obtained followed by direct solution

of the upper triangular system Uξkh = ζkh . This leads to the solution of the system (44).

Remark 1: The nonlinear optimal control problem includes certain approximations to improve numerical

efficiency. For example, the term ∂
∂λB[u∗] in Si and Ri is not trivial and is assumed to be linear in the present

model. This leads to a suboptimal nonlinear controller where Si = S and Ri = R for all time steps. Furthermore,

the condition number on the matrices S and R is partially dependent on the time step used in the simulations.

In the simulations presented here, the time step ∆t = 0.01 s was employed. Simulations using smaller time

steps resulted in practically the same dynamic response until S and R become ill-conditioned which introduced

a numerical instability. This occurred when ∆t < 0.005 s.

The term BT
u (u

∗) in (26) contains nonlinearites and hysteresis domain switching which occurs at moderate

to high field levels. This value can be computed by numerically by differientiating the constitutive response

during the control simulation, although numerical errors may introduce instabilities. Because the control input

is considered for biased minor hysteresis loops, potential numerical instabilities are mitigated by assuming

the tangential magnetic susceptibility is equal to the linear coefficient χM . Unmodeled dynamics resulting

from both the approximation in the Jacobian and the tangential magnetic susceptibility are addressed through

perturbation feedback control presented in Section 4.3.

In Section 3, a reduction in the number of control inputs was implemented in the control design by assuming

diametrically opposed magnetic fields on each top and bottom actuator pair resulted in diametrically opposed

magnetization. Although this simplifies the control design, nonlinear H−M behavior may give rise to differences

in magnetization under moderate to high magnetic field inputs. In the present model, the unmodeled dynamics

are addressed through perturbation feedback, although the control design could also be modified to include the

additional degree of freedom on each actuator couple.

Remark 2: The analytic LU decomposition previously developed by Smith [39] allows good spatial and

time resolution of the plate dynamics. When considering the time step ∆t = 0.01 s over the time interval
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[0.45, 2.50] s and spatial approximation with 4Nw = 100, approximately 30,000 unknown coefficients must be

determined. The LU decomposition method reduces the matrix system to solving 100 unknowns for each time

step. Numerical stabilities were also checked for larger system sizes. The time step was decreased to 0.005 s and

the number of basis functions increased to 8 (4Nw = 324). This resulted in determining over 130,000 coefficients

which was possible by solving the 324 coefficients for each time step separately. A stable solution was obtained

that was practically identical to the one where 4Nw = 100 and ∆t = 0.01 s over the same time interval.

4.3.1 Numerical Example - Truncated External Force

Enhancement of active vibration damping is significant when the nonlinear control method is employed. In

Figure 7, the same disturbance load (37) used in the linear model is applied to the Terfenol plate structure.

When t0 = 0.45 s, the disturbance load is again set to zero and control is instantaneously applied. By increasing

the penalty on the states through Q and relaxing the penalty on u through R as given in Table 2 , the control

input reaches moderate to high drive levels. Although this creates nonlinearity and hysteresis in the Terfenol

transducers similar to that shown in Figure 5(b), the nonlinear control method effectively compensates for this

behavior. The plate vibration at the point [`x, `y] is eliminated in less than half the time relative to the linear

simulation in Figure 4.
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Figure 7: Nonlinear feedback control law for the open loop control. (a) Plate displacement for the uncontrolled ( )

and controlled response ( ). (b) Relationship between magnetization and magnetic field.
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4.3.2 Numerical Example - Periodic External Disturbances and Operating Uncertainties

The effect of disturbances on the plate is investigated using the nonlinear control method by applying a

nonzero G(t) in the optimality system given by (39). A disturbance load of 25 N is again applied uniformly to

the plate at the previously noted frequencies. Figure 8 illustrates significantly improved vibration attenuation

when the nonlinear method is employed. Further details regarding the level of vibration attenuation attainable

is discussed in Remark 3 of Section 4.4.1.

The previous simulations have focused on nonlinear open loop control design which raises the question

regarding robustness to operating uncertainty. To investigate this issue, the open loop control trajectory is

applied 0.05 s late. In addition, the multiple frequencies of excitation computed in the open loop case in

(37) are perturbed in the frequency domain by +4 Hz. In the simulation, the plate is initially excited at the

unperturbed periodic force and then the frequency perturbation is applied. Continuity in the perturbed and

unperturbed disturbance forces is ensured at the onset of turning on the control signal through the disturbance

force

g(t, x, y) =





25
∑5

i=1 [sin(2πf
e
i t)] , t ≤ .45

25
∑5

i=1 [sin(2πf
a
i t− 1.8π)] , .45 < t ≤ 2.5

(46)

where fei are the expected frequencies given in Section 4.1.1 and f ai are the ‘actual’ frequencies shifted by +4 Hz.

The factor 1.8π ensures continuity of g.

Figure 9 illustrates complete degradation in control authority when operating uncertainties are present.

In Figure 9(a) the effect of turning on the control signal 0.05 s is simulated. It is illustrated that complete

loss of control authority occurs when open loop control is applied. In Figure 9(b), the additional effect of

perturbations in the assumed force excitation is simulated. In this case, the control is again turned on 0.05 s

late and disturbance loads from (46) are applied. Complete loss of control authority again occurs as illustrated

in Figure 9(b).
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Figure 8: Performance of the nonlinear control law when disturbance loads are present. (a) Plate displacement for the

uncontrolled ( ) and controlled response ( ). (b) Relationship between magnetization and magnetic field.
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Figure 9: (a) Performance of the nonlinear control law when the control is turned on 0.05 sec late. (b) The additional

effect of perturbed periodic disturbance loads. The operating uncertainty causes a complete loss of control authority.
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4.4 Perturbation Control

Open loop control suffers from a lack of robustness to operating uncertainties and unmodeled dynamics. It

has been shown that robustness to various types of uncertainties can be significantly improved by considering

perturbation control techniques [5, 27]. The feedback control input is determined from a linearization of the

system about the optimal control pair (u∗(t), y∗(t)). Feedback control δu∗(t) is designed to attenuate pertur-

bations in the system that may originate from external forces or initial conditions described in the previous

section. Since the theory is based on a linearized system with quadratic constraints, LQR theory can be utilized.

This provides an efficient algorithm for implementing the control design in real-time by first computing the open

loop control offline and using online feedback of δu∗(t).

The modified cost functional given by (22) and constraint given by (20) are used to determine the pertur-

bation feedback control. Since the optimal control pair (u∗(t), y∗(t)) minimizes the first order variation in J ,

the second-order terms are expanded to determine (δu∗(t), δy∗(t)). The second-order variation in J and the

first-order variation in the constraint are given by,

δ2J =
1

2

∫ tf

t0

[
δyT δuT

]

 Hyy Hyu

Huy Huu




 δy

δu


 dt (47)

and

δẏ(t) = Aδy(t) +Bδu(t) + δG(t)

δy(0) = ŷ0

(48)

where δu and δy are first-order variations about u∗ and y∗. The optimal perturbation control δu∗ is that which

minimizes (47) subject to (48).

For the Hamiltonian given by (23), the second variation δ2J is,

δ2J =
1

2

∫ tf

t0

{
δyTQδy + δuTRδu

}
dt (49)

so that the LQR theory outlined in Section 4.2 can be directly employed to obtain δu∗(t) and δy∗(t). The

overall control for the system is then taken to be u∗(t) + δu∗(t) with the optimal state given by y∗(t) + δy∗(t).

4.4.1 Numerical Example

The robustness of the perturbation control method is compared to the previous example where a perturbed

initial value and disturbance load are introduced. As illustrated in Figure 9, perturbation in initial conditions

and external disturbances is sufficient to destroy the authority of the open loop nonlinear control. The two
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previous cases are again considered. First perturbations in only the initial value are considered and then the

additional effects of perturbations in the expected periodic disturbance load are evaluated.

When perturbations in the disturbance load are absent, the control law is given by,

δu∗(t) = −R−1BTΠδy(t) (50)

where Π is the solution of the algebraic Ricatti equation for the perturbed system.

The perturbation in disturbance loads is represented by the relation

δg(t, x, y) = 25

5∑

i=1

[sin(2πfai t− 1.8π)− sin(2πf ei t)] (51)

.45 < t ≤ 2.5 where the ‘actual’ frequencies fai have again been shifted by +4 Hz relative to the expected

frequencies fei .

The control law

δu∗(t) = −R−1BT [Πδy(t)− δr(t)] (52)

compensates for the disturbance loads where δr(t) is governed by the following auxiliary equation,

δṙ(t) = −
[
A−BR−1BTΠ

]T
r(t) + ΠδG(t)

δr(0) = δr(τ) .

(53)

The resulting vibration control is illustrated in Figure 10. In comparison to Figure 9(a), the effect of

turning on the control input 0.05 s late is effectively compensated using perturbation feedback as illustrated in

Figure 10(a). In Figure 10(b), the additional effect of perturbations in the disturbance load is simulated. The

perturbation control input computed using (52) is shown to effectively compensate for turning on the control

late as well as perturbation in the disturbance loads. This demonstrates significant enhancement in control

authority in comparison to Figure 9(b). It is noted that through the use of the perturbation feedback control,

vibration attenuation comparable to that in the unperturbed system in Figures 7 and 8 is obtained.

Remark 3: The open loop nonlinear control and perturbation feedback simulations given in Figures 8

and 10(b) do not completely eliminate plate vibration. This is not a deficiency in the control design, but a

physical limitation of the Terfenol actuators. The current location and number of actuators have not been

optimized. Improvements can be made by determining the appropriate location and number of actuators for a

given application.
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Figure 10: Performance of the perturbation feedback control law when operating uncertainties are present. (a) The

open loop control is turned on 0.05 sec late and zero disturbance loads are present. (b) The perturbation in expected

disturbance loads given by (51) is included.

5. Concluding Remarks

A model-based nonlinear optimal control method was developed to actively attenuate plate vibration using

magnetostrictive materials. While linear control methods provide marginal vibration attenuation when the input

field is limited to the linear regime, performance improvements can be obtained by driving the transducers at

higher field levels. While moderate to high field inputs provide the potential for improved vibration control,

the resulting nonlinear and hysteretic constitutive behavior cannot be effectively compensated using linear

control methods. This constitutive behavior was directly incorporated into the optimal control design which

significantly improved vibration control. Moreover, robustness to operating uncertainties was obtained by

feedback of perturbations around the optimal trajectory, thus providing a hybrid optimal control strategy for

real-time applications.

Whereas the nonlinear control design for vibration attenuation is developed in the context of magnetic

transducers, the unified nature of the framework permits direct extension of the models and model-based

control methods to ferroelectric and ferroelastic compounds [40, 43, 44]. The extension of the control theory

to specific PZT and SMA applications and experimental implementation of the control designs for a range of

ferrioc transducers operating in hysteretic and nonlinear regimes is under present investigation.

A complementary control problem is that of tracking a reference trajectory. In the context of smart material
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actuators, such tracking problems include high accuracy and high frequency machining of out-of-round ingots

using Terfenol-D transducers as well as nanoscale positioning of PZT stages in an atomic force microscope

(AFM). Whereas the form of complementary ‘tracking equations’ is analogous to the disturbance differential

equations employed here, the implementation of the tracking problems differs fundamentally in the perturbation

control formulation. The development of a complementary nonlinear optimal control design for high accuracy,

high frequency tracking using a Terfenol-D transducer is addressed in [30].
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Appendix

We summarize here the moment-displacement relations used in formulating the thin plate structure; details

can be found in [40]. The moment components are given in terms of the stiffness and damping relations,

Mint
x = −

Eph
3

12(1− ν2p)

(
∂2w

∂x2
+ νp

∂2w

∂y2

)
−

cph
3

12(1− ν2p)

(
∂2w

∂x2∂t
+ νp

∂3w

∂y2∂t

)

Mint
y = −

Eph
3

12(1− ν2p)

(
∂2w

∂y2
+ νp

∂2w

∂x2

)
−

cph
3

12(1− ν2p)

(
∂3w

∂y2∂t
+ νp

∂3w

∂x2∂t

)

Mint
xy = −

Eph
3

24(1 + νp)

(
∂2w

∂x∂y

)
−

cph
3

24(1 + νp)

(
∂3w

∂x∂y∂t

)
.

These relations are substituted into the weak form of the model given by (15) to obtain the governing

equations in terms of the plate displacement w and the test functions Φ. The approximate solution to this

equation is obtained by substituting the plate displacements given in (17) into (15). This gives rise to the finite

dimensional formulation in (18). The resulting mass, damping, and stiffness matrices in (18) are given by

[M]jk =

∫

Ω

ρpΦjΦkdω

[K]jk = [K1]jk + [K2]jk + [K3]jk + [K4]jk + [K5]jk

where
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[K1]jk =

∫

Ω

(
Eph

3

12(1− ν2p)

)
∂2Φj

∂x2
∂2Φk

∂x2
dω

[K2]jk =

∫

Ω

(
νpEph

3

12(1− ν2p)

)
∂2Φj

∂x2
∂2Φk

∂y2
dω

[K3]jk =

∫

Ω

(
Eph

3

12(1− ν2p)

)
∂2Φj

∂y2
∂2Φk

∂y2
dω

[K4]jk =

∫

Ω

(
νpEph

3

12(1− ν2p)

)
∂2Φj

∂y2
∂2Φk

∂x2
dω

[K5]jk =

∫

Ω

(
Eph

3

12(1 + νp)

)
∂2Φj

∂x∂y

∂2Φk

∂x∂y
dω

The damping matrix C is constructed in a manner similar to the stiffness matrix K. The disturbance load

is defined by

[g]j =

∫

Ω

gΦjdω

where g is the magnitude of the disturbance load and the input matrix is

[b]ji =

∫

Ω

(
χx(i)(x, y)

∂2Φj

∂x2
+ χy(i)(x, y)

∂2Φj

∂y2

)
dω. (54)

where the characteristic functions are defined in (10) and (11). This ensures consistency with the applied

moment components in the x and y directions.
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