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Abstract
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development of mathematical models for progression of HIV infection and treatment, we
discuss mathematical and statistical ideas relevant to Structured Treatment Interruptions
(STI). Among these are model development and validation procedures including parameter
estimation, data reduction and representation, and optimal control relative to STI. Results
from initial attempts in each of these areas by an interdisciplinary team of applied mathe-
maticians, statisticians and clinicians are presented.

Key words: HIV models, parameter estimation, data and model reduction, structured treat-
ment interruptions, optimal control

1Email: bmadams3@unity.ncsu.edu
2Email: htbanks@unity.ncsu.edu
3Email: davidian@unity.ncsu.edu
4Email: hkwon@unity.ncsu.edu
5Email: tran@math.ncsu.edu
6Email: snwynne@unity.ncsu.edu
7Email: erosenberg1@partners.org

1



1 Introduction – HIV Modeling and STI

Although the correlates of immune protection in HIV infection remain largely unknown, our
knowledge of viral replication dynamics and virus-specific immune responses has grown. Con-
current with these advances, there has been an abundance of mathematical models that attempt
to describe these phenomena. The models proposed have principally been linear and nonlinear
ordinary differential equation models, both with and without delay terms. While data fitting
problems motivated the development of some models, others have been proposed in a more ab-
stract sense to suggest new experiments or possibilities for ways in which the body interacts with
this pathogen. Mathematical models alone cannot answer questions about the pathogenesis of
HIV infection or similar biological processes. But when used in conjunction with data as part of
designed experiments, models can be a powerful tool in understanding mechanisms in complex
systems. Moreover, data-oriented mathematical models can also stimulate further clinical and
laboratory research. In any discussions of mathematical modeling of complex systems, it is ap-
propriate to point out that while complex models may be needed to provide accurate descriptions
of the underlying dynamics, the models are most useful when they can be compared to clinical
and/or experimental data. In developing models for HIV infection and treatment, this requires
that a balance be struck between complexity and utility.

We begin this paper with a brief summary of issues that have arisen in the development of
models for HIV infection and motivate the model fitting problem. We also offer an introduction
to STIs as a potentially improved treatment strategy and indicate how mathematical control
theory can be helpful in finding treatment schemes. This background will set the stage for the
model- and data-based examples that follow.

1.1 Models for HIV Infection

Numerous factors have been considered in modeling HIV infection as one must typically choose
only a critical subset of the many possible biological compartments and interactions. Moreover,
scale is important in that one must decide whether to model at the micro level of viral RNA or
more at the systemic level. Our focus is on compartmental models in which compartments each
typically correspond to a type of cell population throughout the body. We do not attempt to
provide a comprehensive survey of the extensive collection of mathematical models used with HIV
infection. Rather, we refer the reader to one of the excellent survey articles already published;
see, for example, [14] and [53]. We provide a brief overview of some important developments
here.

Investigations of the kinetics of virus and CD4+ T-cell populations using mathematical mod-
els with data from patients undergoing Highly Active Anti-Retroviral Therapy (HAART) support
the theory of very rapid and constant turnover of the viral and infected cell populations in all
individuals studied; see, for example, Ho, et al., [29], Wei, et al., [65] and Perelson, et al., [55].
This contrasts with researchers’ previous assumptions that the stable viral and CD4+ T-cell
concentrations seen during the period of clinical latency of chronic HIV infection were due to
the absence of any significant viral replication. The studies by Ho, Wei and Perelson indicate
that both the viral and infected cell populations are turning over rapidly and continuously. Fur-
ther work by Perelson, et al., [54] revealed a second population of longer lived infected cells
contributing to the population of viral RNA. Since these reports, numerous groups have used
mathematical models to estimate decay rates for infected cell populations [41, 43, 45, 46, 68].
In Section 2 we present a model that can predict the observed persistent low-level replication of
virus and includes multiple infected cell populations.
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The early linear models developed in [65, 29, 55, 54] are approximations to more realistic
nonlinear models for viral and infected cell decay, and thus are applicable only over short peri-
ods of time, most likely on the order of days. While these linear models have been extremely
useful in characterizing short-term dynamics of HIV infection after therapy, several researchers
have attempted to use these models to estimate time to eradication of virus from individuals.
Such predictions involve periods of time which extend beyond that which is appropriate for
approximation of the nonlinear dynamics by a linear model.

To model data over longer periods of time and make predictions about long term outcomes,
nonlinear mathematical models are necessary. In addition to the unrealistic simplifying assump-
tions that make it difficult for linear models to accurately describe long-term HIV infection
dynamics, factors that could play an important role in dynamic disease outcomes may be omit-
ted in linear models. For example, several authors have raised the question as to whether or
not these linear mathematical models have adequately described the decay of compartments
relevant to HIV infection dynamics. The authors of [8] argue that more complex nonlinear mod-
els are needed to accurately describe long-term viral decay. In [41] the authors point out that
the biphasic pattern which has been attributed to two populations of infected cells could be
the result of exponential decay of a single population of infected cells with decreasing exponent
over time. This phenomenon is well-known in population biology, and is often referred to as
density-dependent decay.

Viral production by cells infected with HIV depends on the “age” (e.g., time since infection) of
the infected cells and there are several different biological aspects of this age dependence. Intra-
cellular delay due to viral reverse transcription, integration, transcription, and virion formation
is described by Mittler [44], extending the work of Perelson, et al., [54]. Mittler allows intra-
cellular delay to vary across cells, and estimates these delays to be more significant than the
pharmacological delays associated with drug absorption. Recent efforts [5] with in vitro data
suggest the importance of modeling these distributed delays with some care. Incorporation of
this variability of delays into models may lead to improved estimates of the half-life of free virus
from short-term clinical data on patients undergoing HAART.

Since the qualitative behavior of a dynamical system is determined by its underlying param-
eters, knowledge of the bifurcation properties of the system is important for understanding the
associated characteristics of the biological system described by the model. If the range of model
parameters for a population is such that dramatically different outcomes are predicted for differ-
ent individuals, bifurcation values for different parameters could suggest target interventions for
continued successful treatment. For example, loss of stability of the zero steady state for viral
load could be reversed by treatments affecting the parameters which influence this stability. In
addition, variability in initial conditions, which one can consider as parameters in the model, can
lead to trajectories of the system lying in different regions of attraction, i.e., different initial pop-
ulation sizes can lead to dramatically different qualitative outcomes in a nonlinear model. Such
situations are described in [9, 67] for Structured Treatment Interruption (STI) studies, discussed
below. The models in these reports and that discussed in Section 2 have multiple equilibria; dif-
ferent equilibria describe the success or failure of the immune system to control infection and the
initial conditions and parameters of the system determine which equilibrium is realized. Careful
qualitative analysis of mathematical models that describe HIV infection dynamics can contribute
to understanding of fundamental qualitative features of infection, and possibly suggest targets
for improved disease monitoring and/or treatment.

In using any of these complex models, one would like to understand the identifiability of
parameters, i.e., which parameters can be successfully estimated and with what type of data. In
Section 3, we examine the ability to estimate parameters in a typical nonlinear model of HIV
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infection dynamics. In doing so, we describe a relevant inverse problem methodology, including
sensitivity analysis, the generalized least squares method, and estimation of standard errors in
the estimation process.

The complexity of nonlinear HIV models and data sets may necessitate the extraction of
only essential states or information in order to successfully fit models to data. In Section 4 we
demonstrate the use of the proper orthogonal decomposition (POD) method to capture essential
elements of actual HIV patient time series data. This data reduction technique is similar to the
singular value decomposition or principal component analysis often seen in statistical literature
and could be used to reduce the dimensionality of ODE model solutions as well. While this
tool may not be helpful for determining variability of individuals in a population, it can help
determine the essential characteristics which pervade the entire population. One possibility is
to fit ODE models to the obtained essential basis elements, rather than to the noisy aggregate
population data.

1.2 STIs and Control Theory

In spite of the early hopes of a cure for HIV infection with potent antiretroviral therapy, it
has become apparent that suppression, and not eradication, is most likely the best that can be
achieved with this strategy. The current strategy of continuous combination therapy is difficult to
maintain for long periods of time due to short- and long-term toxicities (metabolic abnormalities,
body habitus changes, lipid abnormalities, mitochondrial toxicity and liver toxicity) as well as
adherence challenges inherent in these complicated pill regimes, cost, and the development of
resistance to medications.

Consequently, strategies have been sought that can decrease the side effects for and medica-
tion burden placed on patients while maintaining some control over HIV replication through an
individual’s immune system. Excitement for such strategies surfaced with the reporting of the
“Berlin patient” [36], a patient initially treated during the course of seroconversion, who inter-
rupted therapy temporarily twice within the first 6 months of treatment and then permanently
stopped treatment and maintained control of HIV replication.

Numerous authors have discussed the effect on immune response as antigen declines [18, 12,
17, 48, 49, 15, 25, 32, 61, 51, 56, 10, 59], which suggests that viral replication is required to
maintain an HIV-1 specific Cytotoxic T Lymphocyte (CTL) response. These observations are
supported by data in [32, 61] where it is observed that HIV-specific CTL activity increases in
patients who experience viral rebound, either as a spike during ongoing suppression or as the
result of changes in treatment regimen. These results, combined with the data on the “Berlin
patient,” have led a number of investigators to propose methods of immune stimulation through
vaccine or structured treatment interruption (STI) once patients have successfully suppressed
viral replication. Hence, an underlying premise in treatment interruption is that allowing virus
to replicate stimulates the immune system and may even cause some patients to “self-vaccinate.”

In an ideal scenario, individual immune response would be stimulated and augmented suf-
ficiently through a number of interruptions to the point where patients control their infections
without need for the cumbersome treatment regimens currently available. Initial investigations
aimed at assessing immune response to viral replication through treatment interruptions offer
promise. Control of viremia during therapy discontinuation has been associated with successful
HIV-1 specific immune response [36, 17, 50]. A good overview of the concept of STI and its
promise in several scenarios is offered by Lisziewicz and Lori [37].

Many studies of treatment interruption assess changes in HIV-specific immune response [58,
27, 52, 23]. In investigations of treatment interruption in acutely infected individuals [50, 57],
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HIV-specific immune responses were associated with control of viremia. Ortiz, et al., [50] note
the role of broad and strong CTL response in tandem with neutralizing antibodies in association
with control of viremia after drug discontinuation. Rosenberg, et al., [57], report increased and
sustained HIV-specific CTL response during one, two, or three treatment interruptions, and,
once CTL response was established, eventual control of viremia in all 8 patients studied. These
examples support the inclusion of immune response as a factor in any model of HIV infection to
be used in STI studies. They also suggest that a realistic model should take into account the
possibility of little or no immune response in some situations and a strong HIV-specific immune
response in others. The model discussed in Section 2 below tries to capture these features.

The cited studies have involved small numbers of patients and most do not employ stan-
dardized protocols for interruption schedules (e.g., see [58]). Two of the primary questions
associated with STI are: (i) Is there an optimal duration of therapy needed in order to benefit
from structured treatment interruption? (Shorter lengths of initial therapy may limit the number
of toxicities and inconveniences experienced by patients but may not be sufficient to maximally
suppress HIV in all body compartments to allow for controlled viral replication in a structured
interruption setting); (ii) Can the host immune system be augmented through repeated exposure
to viral antigens so as to control HIV infection without the use of anti-retroviral therapies? There
is data to suggest that repeated exposure to antigen stimulates the immune system. Moreover,
some individuals appear to control their infections after treatment interruptions with little or no
need for further treatment.

In principle, these questions may be addressed using standard comparative statistical analysis
techniques if sufficient numbers of subjects are randomized to different regimens (e.g., length of
therapy). However, questions about the relationship between antigen level and immune response
or factors which influence biological mechanisms associated with host immune control of infection
may be more appropriately addressed through the use of mathematical modeling (including such
models as those referenced above in Section 1.1) with formal estimation of and inference on
biologically meaningful parameters combined with control theory.

Previous efforts on mathematical modelling of treatment interruption have been reported in
[67] and [9]. Wodarz and Nowak [67] employ a mathematical model which represents uninfected
CD4+ T-cells, infected CD4+ T-cells, CTL precursors (immune memory), and CTL effectors.
Bonhoeffer, et al., [9] use a model incorporating uninfected, actively infected, and latently in-
fected T-cells, as well as immune response (CTL effectors). Both investigations offer important
theoretical insights into immune control of virus based on treatment strategies. In what follows,
we utilize another model that incorporates some of the ideas from these papers in the context of
STI scenarios.

A number of researchers [11, 13, 20, 31, 35, 66] have begun to consider theoretical control of
HIV infection models in attempts to suggest optimal treatment strategies. Open loop control
for differential equation models is considered in [13, 35, 20] to develop strategies for treatment
in primary infection. Other authors [11, 66] use feedback controls, i.e., control laws chosen in a
real-time fashion based on current observations of the (full) state of the underlying dynamical
systems. In these studies the “controls” range from chemotherapy to combination strategies,
e.g., see [31], in which treatments enhancing the immune system component of the model are
combined with those that directly delay progression of disease.

For example, to control the dynamics of the mathematical system that describes the viral
and immune system dynamics during structured treatment interruption, one might consider a
scaled periodic control input u(t) (therapy) that is zero for some time ∆t1 and then rises with
constant slope (linearly) to a value of one, remains there for time ∆t2, and then ramps linearly
back to zero. This input affects states and parameters in the dynamic model that are related
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to infectivity. A cost functional, established in collaboration with clinicians, subject to the
infection dynamics, could then be investigated. In a typical situation one might minimize the
cost functional over permutations of treatment schedules; the free parameters would then be ∆t1
and ∆t2 in the control u(t), yielding a treatment that is in some sense, optimal. We demonstrate
open loop control theoretic techniques for solving this problem with examples of continuously
variable drug control (Section 5) and discrete (STI-like) control (Section 6).

Eventually, one should investigate these types of control problems in the context of patient
data. Since patient data for immune response and antigen behavior are collected relatively
infrequently and involve only partial state observations, a compensator theory combined with
state feedback for nonlinear systems must be developed. Mathematical tools for closed-loop or
feedback control of Structured Treatment Interruption for specific models are still needed. One
must also determine the type and quantity of data on a patient’s current health that would be
required to successfully carry out an optimal or sub-optimal feedback control-based STI.

In the remainder of this paper, we discuss mathematical issues and tools relevant to STIs
for HIV infection. Rather than purporting to provide a specific solution for HIV treatment,
the nature of our presentation is more to demonstrate these tools with examples that may be
pertinent to data available from clinicians. We suggest mathematical methods for solving some
of the related problems and point out where further developments are needed.
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2 A Model for Control and Parameter Estimation

In this section we discuss a number of important issues encountered in attempting to formulate a
dynamic model of HIV progression in an individual. Desirable features in a model to be used with
clinical observations of treated and untreated patients are presented. In addition to summarizing
some of the difficulties in choosing a model, we ultimately must formulate a “typical” model to be
employed in the subsequent discussions of mathematical and statistical methodologies presented
in the remaining sections of this paper. Given this goal and given the existence of several recent
survey papers on models noted in the Introduction, we do not include here discussions of all the
important aspects of modeling of HIV. Nor do we represent that we have a good model of HIV
progression and treatment; rather we have a model that contains some of the more desirable
features one could expect!

A wide variety of mathematical models have been proposed to describe various aspects of
in-host HIV infection dynamics. The most basic of these models typically include two or three
of the key dynamic compartments: virus, uninfected target cells, and infected cells. A model
used for estimation and control should include these compartments at a minimum. Infected and
uninfected CD4+ T-cells are not usually censused separately, so they may need to aggregated for
purposes of model fitting, i.e., the estimation of mechanisms and parameters in a model. However,
current knowledge of the infection process justifies incorporation of three distinct physiologically
relevant compartments. In addition, the documented importance of the immune system in re-
sponding to HIV infection (and especially its aparent crucial role during structured treatment
interruptions) strongly motivates the inclusion of at least one model compartment representing
immune response to the pathogen. We thus seek a model that includes some measure of cyto-
toxic T-lymphocyte (CD8) response to HIV infection. The incorporation of these compartments
is important when relating the model to observable quantities in patient data.

A model used to suggest treatment strategies should be capable of incorporating the action
of commonly used reverse transcriptase (RT) inhibitors and protease inhibitors (PIs). Inclusion
of the latter usually implies inclusion of a compartment for virus rendered non-infectious by the
PI. Given the predominance of HAART in the form of drug cocktails combining two or more
drugs, the model should behave reasonably when simulating multi-drug therapy. In spite of these
comments, the model we will employ herein only includes RT inhibitors, but this aspect could
be readily generalized.

As pointed out by Callaway and Perelson [14] in their 2002 review paper, a reasonable model of
HIV infection predicts a non-zero steady-state viral load in the presence of drug therapy. Patients
who are subject to drug therapy often successfully suppress virus for a long time, potentially
at undetectable levels. However, some reservoir exists which almost always causes the virus to
grow out again upon removal of drug therapy. Hence we do not expect incorporation of drug
therapy in the model, at a sensible efficacy, to drive the viral load to zero, but rather reduce it
considerably, perhaps below the assay limits of detection. The authors of [14] note that many
models typically employed to describe HIV infection do not exhibit a reasonable relationship
between drug efficacy and the viral load. In these models, a very slight change in drug efficacy
can yield a drastic change in the viral load equilibrium. This has important consequences for
the control problem – a successful model must exhibit reasonable sensitivity of the viral load
equilibrium to treatment efficacy.

The model we provide as an example is adapted from one proposed by Callaway and Perelson
(denoted (5.3) in [14]). Our modified system of ODEs is given by
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Type 1 target: Ṫ1 = λ1 − d1T1 − (1− ε)k1V T1

Type 2 target: Ṫ2 = λ2 − d2T2 − (1− fε)k2V T2

Type 1 infected: Ṫ ∗1 = (1− ε)k1V T1 − δT ∗1 −m1ET ∗1

Type 2 infected: Ṫ ∗2 = (1− fε)k2V T2 − δT ∗2 −m2ET ∗2

Free virions: V̇ = NT δ(T ∗1 + T ∗2 )− cV − [(1− ε)ρ1k1T1 + (1− fε)ρ2k2T2] V

Immune effectors: Ė = λE + bE(T∗1 +T∗2 )
(T∗1 +T∗2 )+Kb

E − dE(T∗1 +T∗2 )
(T∗1 +T∗2 )+Kd

E − δEE.

(2.1)

This model entails two co-circulating populations of target cells, perhaps representing CD4
T-lymphocytes (T1) and macrophages (T2). The drug efficacy parameter ε models a reverse
transcriptase (RT) inhibitor that blocks new infections and is potentially more effective in pop-
ulation 1 (T1, T

∗
1 ) than in population 2 (T2, T

∗
2 ), where the efficacy is fε, with f ∈ [0, 1]. As

in the Callaway–Perelson paper, we only model an RT inhibitor, though again, it is simple to
incorporate a PI. The populations of uninfected target cells T1 and T2 may have different source
rates λi and natural death rates di.

As is common in models of HIV infection, infected cells T ∗i result from encounters between
uninfected target cells Ti and free virus V . The natural infection rate ki may differ between
the two populations, which could account for believed differences in activation rates between
lymphocytes and macrophages. The differences in infection rates and treatment efficacy help
create a low, but non-zero, infected cell steady state for T ∗2 , which is commensurate with the
idea that macrophages may be an important source of virus after T-cell depletion. Infected cells
may be removed from the system via either natural death or by the action of immune effector
cells E described below. For our efforts here we assume that both target cell types have the same
death rate δ, though this could be readily generalized as well.

To preserve simplicity in the model, we omit the chronically infected cell compartments
proposed in the original Callaway–Perelson model. The important qualitative behaviors seem
preserved in the model we propose and specifically modeling this feature is not essential to
our present work. In particular, the existence of a low steady-state viral load equilibrium and
sensitivity of the viral load equilibrium to the drug efficacy is obtained with or without such
compartments. We note that while removing the chronically infected compartments does not
affect the sensitivity to treatment, the addition of immune response terms does, as discussed
below.

Free virus particles are produced by both types of infected cells, which we assume produce
virus at the same rate (again this could be easily generalized to account for different productivity).
In the Callaway–Perelson model, virus only leaves the V compartment via natural death at rate
c; there is no removal term in the V̇ equation representing loss of virus due to infection of a cell.
One potential justification for this omission is offered by Nelson and Perelson [53] (page 10) who
suggest that this term can be ommitted since the term kiTiV is small in comparison to cV in
the typical HIV-infected patient. They further assert that if Ti is approximately constant, one
can absorb the loss of virus due to infection into the cV term, thus making it account for all
clearance processes.

While the arguments offered by Nelson and Perelson could justify the exclusion of the virus
removal term, we investigate situations where treatment is interrupted abruptly, potentially
effecting drastic changes in all of the cell populations under consideration. We therefore include
the term [(1− ε)ρ1k1T1 + (1− fε)ρ2k2T2] V in the V̇ equation to account for the removal of
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free virus that takes place when free virions infect a T1 or T2 cell. We make the simplifying
assumption ρi = 1, i.e., one free virus particle is responsible for each new infection. This could
easily be adapted for multiple virus particles being responsible for each new infection by choosing
ρi > 1.

Finally, the immune effectors E, or cytotoxic T-lymphocytes, are produced in response to the
presence of infected cells and existing immune effectors. The immune response assumed here is
similar to that suggested by Bonhoeffer, et al., in their 2000 paper [9], with a Michaelis-Menten
type saturation nonlinearity. The infected cell dependent death term in the immune response
represents immune system impairment “at high virus load”. In [9], the authors demonstrate that
a model with this structure of immune response and a latently infected cell compartment can
exhibit transfer between “healthy” and “unhealthy” stable steady states via STI, making it a good
candidate for our investigation. We also add a source term λE to create a non-zero off-treatment
steady state for E. While immune effectors are not inherently present, some small persistence of
them is to be expected during infection. We note that other immune responses models, such as
those considered by Wodarz-Nowak [67] or Nowak-Bangham [47] could be substituted, if desired.
However, the latter does not appear to admit multiple stable off-treatment steady states.

The immune response we model is that of cytotoxic T-lymphocytes (CTL). CTL act by
lysing infected cells, causing them to explode. Thus CTL remove infected cells from the system
in the equations for Ṫ ∗1 and Ṫ ∗2 , at rates m1 and m2, respectively. Unlike interferons, they do
not directly target free virus, so there is no interaction term with the virus compartment. As
with any immune system responders, we suspect that CTL sometimes mistarget or misidentify
receptors and thus kill healthy cells or misidentify self versus antigen. But again for the sake of
simplicity, we do not attempt to model that here.

2.1 Parameter Specifications

The model (2.1) contains numerous parameters that must be assigned values before simulations
can be carried out. In specifying model parameters, to the greatest extent possible we employ
values similar to those reported or justified in the literature. The parameters indicated in Table
1 are principally extracted from the Callaway–Perelson [14] and Bonhoeffer, et al., [9] papers.

Callaway and Perelson point out that several model parameters are not available from human
or animal data. They choose the parameters λ1, k1, λ2, and k2 such that several conditions on
target cell and viral load equilibria are satisfied for their model. We note that these conditions
are not precisely satisfied by our model which has no chronic cell compartment and an added
immune response. However, the conditions are closely approximated by the model’s behavior and
we believe the parameters could be adjusted to obtain the same qualitative behavior. Further
explanation of these criteria appears below.

In general, immune response parameters are not well known and are thus frequently chosen to
demonstrate model behavior in simulations. The parameters m1 and m2 represent cytopathicity
of the immune effectors. Their common value was taken from [14] where the authors note that
the value was suggested originally by Nowak and Bangham [47]. We scale the parameter Kb

by a factor of 1000 since the Bonhoeffer paper appears to use units of microliters, whereas we
consider infected cells per milliliter. The parameter Kd is adjusted by a factor of 100 in order to
demonstrate the possibility of multiple stable equilibria for the model.
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parameter value units description
λ1 10,000 cells

ml·day target cell type 1 production (source) rate
d1 0.01∗∗ 1

day target cell type 1 death rate
ε ∈ [0, 1] – population 1 treatment efficacy
k1 8.0× 10−7 ml

virions·day population 1 infection rate
λ2 31.98 cells

ml·day target cell type 2 production (source) rate
d2 0.01∗∗ 1

day target cell type 2 death rate
f 0.34 (∈ [0, 1]) – treatment efficacy reduction in population 2
k2 1× 10−4 ml

virions·day population 2 infection rate
δ 0.7∗ 1

day infected cell death rate
m1 1.0× 10−5 ml

cells·day immune-induced clearance rate for population 1
m2 1.0× 10−5 ml

cells·day immune-induced clearance rate for population 2
NT 100∗ virions

cell virions produced per infected cell
c 13∗ 1

day virus natural death rate
ρ1 1 virions

cell average number virions infecting a type 1 cell
ρ2 1 virions

cell average number virions infecting a type 2 cell
λE 1 cells

ml·day immune effector production (source) rate
bE 0.3 1

day maximum birth rate for immune effectors
Kb 100 cells

ml saturation constant for immune effector birth
dE 0.25 1

day maximum death rate for immune effectors
Kd 500 cells

ml saturation constant for immune effector death
δE 0.1∗ 1

day natural death rate for immune effectors

Table 1: Parameters used in model (2.1). Those in the top section of the table are taken directly
from Callaway and Perelson. Parameters in the bottom section of the table are taken from
Bonhoeffer, et. al., with Kb and Kd scaled to reflect the volumetric units used in our model and
also adjusted. The superscripts ∗ denote parameters the authors indicated were estimated from
human data and ∗∗ denote those estimated from macqaque data.

2.2 Model Steady States and Simulation

Given the specified parameters, in the absence of therapy, the model exhibits several steady
states as shown in Table 2. Equilibrium EQ1 represents the uninfected patient, with healthy
T-cell counts and no virus or infected cells present. When the system is in this state, introduction
of a small amount of virus causes the system to converge to EQ3, where healthy target cells are
substantially depleted and a dangerously high viral load is present. The system also exhibits
a second stable equilibrium EQ4, where a strong immune response has developed, successfully
controlling the virus and consequently restoring target cell (T1) help.

We turn to the criteria on the steady states suggested by Callaway and Perelson. When
ε = 1 and f = 0, they desire a viral load of 100. In this scenario, our model exhibits a viral load
of V = 143 c/ml, which is on that order. The equilibrium is:

T1 = 1000000, T2 = 1314, T ∗1 = 0, T ∗2 = 27, V = 143, E = 20.

When ε = 1 and f = 0.5, they desire eradication of the virus. Our model does not precisely
attain that, though the viral steady state (V = 43 c/ml) is below the limit of detection for most
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EQ1 EQ2 EQ3 EQ4

T1 1000000 664938 163573 967839
T2 3198 50 5 621
T ∗1 0 1207 11945 76
T ∗2 0 11 46 6
V 0 6299 63919 415
E 10 207658 24 353108

local stab. unstable unstable stable stable

Table 2: Off treatment (ε = 0) steady states (c/ml) for model (2.1). Non-physical steady states
have been omitted.

assays currently in use. The complete equilibrium is given by:

T1 = 1000000, T2 = 2627, T ∗1 = 0, T ∗2 = 8, V = 43, E = 12.

Further, by increasing the treatment efficacy factor to f = 0.6, the virus is eradicated because
the uninfected steady state becomes stable.

Figure 1 depicts the sensitivity of the viral load equilibrium to drug efficacy ε. The introduc-
tion of the immune response terms causes a discontinuity in this curve as stability is exchanged
between viral dominant and immune-dominant equilibria. This is in contrast to the sensitiv-
ity curve of the original Callaway–Perelson model which is continuous across the range of drug
efficacies. However, this may be reasonable – a certain amount of drug may be necessary to
augment the immune system to counteract effects of the virus. The low (nonzero) steady state
viral load is maintained across the entire range of reasonable drug efficacies. The model also
exhibits approximately a 1–2 log drop in viral load across the range of drug efficacies, which is
typical for monotherapy with RT inhibitors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

2

10
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10
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10
5

treatment efficacy ε

V
, c
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Figure 1: Sensitivity of stable viral load equilibrium to drug.

A simulation of early infection is shown in Figure 2. Simulation is started near steady state
EQ1, with the addition of one (1) viral copy per ml (V = 1 c/ml). Upon infection, the virus
replicates to a peak before converging in damped oscillations to equilibrium. There is a delayed
initial immune response to the presence of the infected cells, but a sustained and vigorous immune
response does not develop. The higher infection rate in the T2 population is evident in its more
dramatic decline than the T1 cell population.
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Figure 2: Simulation of early infection scenario using model (2.1). Note varying scales in different
subplots.
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3 Sample Inverse Problem Calculation and Standard Error
Estimates

As discussed above, if one wishes to use a mathematical model to make predictions about a
particular individual or population, estimation of model parameters from data is crucial. In this
section, we outline an inverse problem methodology for estimating parameters and associated
uncertainty from single patient data. We use simulated data generated in a manner that respects
conditions encountered in clinical studies. It is generally a standard (and wise) practice to test
one’s inverse algorithms on simulated data before attempting to use them with experimental or
clinical data.

3.1 Simulated Data Generation

In generating simulated data for a single patient, we assume that measurement error is a dom-
inant source of variation and that measurements of different system states (e.g., T1 and V ) are
independent at any given time. This is valid for certain, but not all, assays, and a reasonable
assumption given that the assays here are not performed sequentially but independently on dis-
tinct portions of the same specimen or on entirely different specimens. Measurements over time
in clinical studies are generally taken on a given patient at intervals sufficiently separated in time
that correlation over time may be reasonably taken as negligible. We thus assume further that
measurements over time are independent and take typical measurement intervals of 3 to 10 days.

Assume that the mean response for measurements on a single patient is given by the solution
to the ODE model with some true parameter vector q0. Specifically, let x̄ = (T1, T2, T

∗
1 , T ∗2 , V, E)

be the state vector of the ODE model (2.1), and denote the model response for state i at time
tj by x̄j

i (q0) = x̄i(tj ; q0), so that i = 1, . . . , 6 indexes the state and j = 1, . . . , N indexes the
observation times. Application of an observer matrix C to the model solution to observe only
some states or combination of states results in values xj

i (q0), i = 1, . . . , ρ. This renders the
model consistent with actual patient data where, for example, only the sum of T1 and T ∗1 may be
measured. We then assume that yj

i , observed measurements on xj
i , are independent with mean

E(yj
i ) = xj

i .
Variation introduced by the assay and other sources is acknowledged to increase with the

mean and is commonly represented by the variance model Var(yj
i ) = σ2

i {xj
i}2, where σi is the

(constant) coefficient of variation corresponding to state i. Consistent with this, we take the yj
i

to be independently lognormally distributed, which is accomplished by generating independent
zj
i such that

zj
i ∼ N

(
log xj

i − log(σ2
i + 1)/2, log(σ2

i + 1)
)

(3.1)

and then setting yj
i = exp(zj

i ). It may be verified using moment generating functions that yj
i so

generated have the desired mean and variance. An alternative probability model is the normal
relative error model commonly used in the mathematical literature, where for ej

i ∼ N (0, σ2
i ),

yj
i = xj

i (1 + ej
i ). However, this model allows the possibility of generation of unrealistic negative

measurements, making the lognormal a more natural choice for our systems and data.
We employ this method to generate simulated data with coefficient of variation σi = 0.20 for

each state, which is in the range observed in practice for viral load and CD4 count assays (see,
e.g., [69, 62]). As above, we consider the early infection scenario, with parameters previously
specified. We consider two scenarios – one where all six states are observed and one where there
are only three observed quantities: (T1 + T ∗1 ), V , and E, as is typical in our clinical data sets.

13



3.2 Semi-relative Sensitivity Analysis

As a first step in testing the feasibility of inverse problem calculations, we attempt to estimate
those parameters to which the model solution is most sensitive. These, in turn, are determined
through a semi-relative sensitivity calculation.

To describe this methodology, suppose we wish to determine the relative sensitivity of the
observed model quantities x (and consequently the model solution x̄) to particular parameters
qk, k = 1, . . . , r. The semi-relative sensitivity of the model solution to parameter qk is given by

∂x̄(t; q)
∂qk

· qk (3.2)

(see [4]) and is computed by formally differentiating the ODE model

dx̄

dt
= f(t, x̄; q)

x̄(0) = x̄0,

with respect to qk and interchanging the order of the time and parameter derivatives as outlined
in [4, 19, 22]. In the case of r parameters and n state variables, we thus obtain an (n × r)-
dimensional system of differential equations for the sensitivities x̄q(t; q) = ∂x̄

∂q (t; q), where q is the
vector of parameters considered:

d

dt

(
∂x̄(t)
∂q

)
=

∂f

∂x̄

∂x̄(t)
∂q

+
∂f

∂q
(3.3)

with initial condition
∂x̄(0)

∂q
=

∂x̄0

∂q
= 0. (3.4)

The latter is simply the zero matrix whenever the initial condition is not a function of any of
the parameters estimated. Here ∂f

∂x̄ is the Jacobian of the ODE system, and ∂f
∂q the derivative of

the right side with respect to the parameters considered.
We solve {(3.3),(3.4)} for x̄q(t; q) by coupling it with the original differential equation system

to obtain an (nr+n)-dimensional system which we solve numerically with a Matlab ODE solver.
For another application of this methodology see [1]. Since our observation process on the model
states is linear in these states, we can apply the observer C to these sensitivities to obtain the
sensitivities xq(t; q) for the relevant observed model quantities.

This process yields sensitivity information as a function of time over the interval of interest.
We wish to have some overall measure of the sensitivity of the solution to the parameters, so for
each state / parameter combination, we take a norm in time and then rank the resulting scalars
to determine the most sensitive parameters. We find that these comparisons are similar using
the two or sup norm – and report using the two norm here. Also, most of the interesting system
dynamics occur in the first 50 days, so using a longer time span for these computations does not
affect the results.

Fixing the parameters in (2.1) that have already been estimated from human or monkey
data as known, we find that of the remaining parameters, the model solutions (especially states
T1 and V ) are most sensitive to the parameters k1, λ1, k2, and λ2 (see Table 3). Several other
parameters follow closely with less relative sensitivity, including bE , dE , and δE . Parameters
near the end of the chart are likely more difficult to estimate from data.

Since the parameter ε = 0 for these simulations, we find that as expected the model solution
is completely insensitive to the treatment parameters ε and f . When considering a scenario with
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state xi param qk || ∂xi
∂qk

(t)||2 state xi param qk || ∂xi
∂qk

(t)||2
V k1 3.28488e+07 T∗2 λ1 1.33382e+03
T1 k1 1.04194e+07 E λ1 1.28026e+03
V λ1 6.51520e+06 T∗1 δE 1.24200e+03
V k2 6.43367e+06 T2 λ2 1.08470e+03
T∗1 k1 6.21024e+06 E k1 1.05731e+03
T1 λ1 4.30398e+06 T∗2 λ2 1.03413e+03
T1 k2 1.70261e+06 T∗1 m1 6.32270e+02
T∗1 λ1 1.22538e+06 E λE 6.08686e+02
T∗1 k2 1.21751e+06 E Kd 6.04010e+02
V λ2 2.84012e+05 T∗1 Kd 5.28876e+02
T1 λ2 2.16825e+05 T∗1 λE 5.07648e+02
T∗1 λ2 5.35385e+04 E Kb 3.69105e+02
T2 k1 1.94056e+04 T∗1 Kb 3.20193e+02
V bE 1.76378e+04 V m2 2.41282e+02
T∗2 k1 1.55804e+04 T1 m2 1.21678e+02
T1 bE 1.43228e+04 E λ2 9.11780e+01
V dE 1.12343e+04 T∗1 m2 4.52933e+01
T2 k2 9.81344e+03 E k2 3.11716e+01
T1 dE 9.03250e+03 T2 bE 1.16408e+01
T∗2 k2 8.08379e+03 T2 dE 7.77859e+00
V δE 6.63642e+03 T2 δE 4.38937e+00
T2 λ1 6.27148e+03 T∗2 bE 3.13943e+00
T1 δE 5.40935e+03 T2 m1 3.04099e+00
E bE 3.91597e+03 T2 λE 2.53350e+00
V m1 3.37951e+03 T∗2 dE 2.00294e+00
T∗1 bE 3.30042e+03 T2 Kd 1.55823e+00
V Kd 2.82209e+03 T∗2 δE 1.22305e+00
V λE 2.71019e+03 T∗2 m2 1.13910e+00
T1 m1 2.55536e+03 T2 Kb 9.81833e-01
E dE 2.52360e+03 T∗2 m1 6.96854e-01
T1 Kd 2.31335e+03 T∗2 λE 6.65082e-01
T1 λE 2.27849e+03 E m1 6.28564e-01
T∗1 dE 2.10127e+03 T∗2 Kd 5.07039e-01
V Kb 1.70767e+03 T∗2 Kb 3.34275e-01
E δE 1.46946e+03 T2 m2 2.68566e-01
T1 Kb 1.41645e+03 E m2 3.98107e-02

Table 3: Ranked semi-relative sensitivity of various model states to parameters not previously
estimated from human or monkey data.

treatment ε > 0, the model solutions are highly sensitive to these parameters (results omitted).
We also note that when only making partial state observations, the observables are most sensitive
to these parameters in the same order as reported here.

There are alternate methods for computing the sensitivity matrix – see [6] for another efficient
approach for some systems. For example, in [6], the authors determine the sensitivities xq by
taking forward difference quotient approximations near q. This replaces the sensitivity equation
solution step with r extra solves of the ODE system. We note that for the initial conditions and
parameters considered here it seems to make a considerable difference whether one uses one-sided
(forward) or centered differences to approximate the derivatives. The latter provide much more
accurate derivative information, at twice the computational cost.

3.3 Parameter Estimation Algorithm

We estimate the parameters from ρ observed quantities simultaneously based on data from N
time points. The state variable observations are potentially different from each other by orders
of magnitude, so, intuitively, it is critical that the estimation scheme take this into account. One
way to do this is by appropriately weighting the states in a least squares cost criterion. Formal
statistical large sample theory implies that the optimal (in the sense of yielding the estimator for
the true value q0 making most efficient use of the data when N is large) least squares criterion
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uses weights equal to the inverse of the true model for variance [14]. Such weighting may be
implemented via an iterative generalized least squares (GLS) algorithm based on the mean model

E




yj
1

yj
2
...

yj
ρ


 =




xj
1(q)

xj
2(q)
...

xj
ρ(q)


 (3.5)

and covariance model

V ar


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yj
1

yj
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...

yj
ρ


 =




σ2
1{xj

1(q)}2 0 · · · 0

0 σ2
2{xj

2(q)}2
...

...
. . . 0

0 · · · 0 σ2
ρ{xj

ρ(q)}2




(3.6)

for the data at each time point tj .
To calculate initial weights for the GLS algorithm, we perform a preliminary weighted least

squares estimation. We minimize a least squares objective functional over admissible parameters
q to obtain the initial estimate q(1)

q(1) = arg min
q

ρ∑

i=1

N∑

j=1

{yj
i − xj

i (q)}2
{xj

i (q(0))}2 , (3.7)

where q(0) is the initial iterate for the estimation process.
The estimation proceeds with the following iterative algorithm: Set k = 1.

1. Estimate coefficients of variation σ2
i for each state:

σ2
i =

1
N − r

N∑

j=1

{yj
i − xj

i (q
(k))}2

{xj
i (q(k))}2 , (3.8)

where we recall that r is the dimension of the free parameter vector q;

2. Form estimated weights

wj
i =

1
σ2

i {xj
i (q(k))}2 ; (3.9)

3. Minimize the weighted least squares cost function to obtain the next estimate

q(k+1) = arg min
q

ρ∑

i=1

N∑

j=1

wj
i {yj

i − xj
i (q)}2; (3.10)

4. Set k = k + 1 and repeat steps 1.–3. until convergence. One can use either a fixed number
of GLS iterations, or iterate until the relative change in the parameter vector q is small
(say 10−6). The results that follow use the former criterion with a preliminary estimate
followed by five GLS iterations.

We will denote the resulting optimal parameter vector estimate by q∗.
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3.4 Standard Error Calculation

When estimating parameters using a procedure such as the one given above, it is vital to under-
stand the uncertainty of the estimation process, that is, any estimate of mean model parameters
from data should be accompanied by an estimate of uncertainty. Here we assess the variance in
the estimated model parameters q∗ by computing standard errors. The method here is a more
general version of that described in Davidian and Giltinan [16] and uses sensitivity equations for
derivative information, as described above. An example of this methodology in the single state
case can be seen in [1].

We stack the model responses X =
(
x1

1, . . . , x
N
1 ;x1

2, . . . , x
N
2 ; . . . ; x1

ρ, . . . , x
N
ρ

)T . Let Xq denote
the matrix with entries [Xq]ik = ∂Xi

∂qk
using the solution of the sensitivity equations (3.3). (Thus

Xq is a ρN × r matrix.) To obtain standard errors, this is computed at the optimal estimate for
the parameters: Xq(q∗).

Recall that we assume that the measurement process errors are independently distributed.
With our assumed model for the distribution of the data, we expect the GLS estimate q̂ = q∗ to
be approximately normally distributed (at least asymptotically). Specifically, for large samples,

q̂ = q∗ ∼ N (q0,Σ) , (3.11)

where q0 is the true vector of parameters and the true covariance matrix is

Σ =
{
Xq(q0)T G−1Xq(q0)

}−1
. (3.12)

Here G is the weighting matrix

G = diag
((

σ2
1{x1

1}2, . . . , σ2
1{xN

1 }2;σ2
2{x1

2}2, . . . , σ2
2{xN

2 }2; . . . ; σ2
ρ{x1

ρ}2, . . . , σ2
ρ{xN

ρ }2
))

with σ2
i computed as in the GLS algorithm above. (See [16], Chapter 2 for an explanation of

this idea.)
Having no better approximation to the true values q0 available, we follow standard statistical

practice and substitute the computed estimate q∗ for q0 in the above matrices in (3.12) to
obtain standard errors for our estimates. In particular, taking Σ from (3.12) above (taken with
the described substitutions), we then take

√
Σkk to obtain the standard error for parameter

component k.

3.5 Inverse Problem Results

To illustrate the type of information that can be obtained using the methodology discussed
above, we present results for several inverse problems, considering first the case with full state
observations (T1, T2, T

∗
1 , T ∗2 , V, E) as well as a case with partial state observations (T1+T ∗1 , V, E).

The latter case is representative of the type of clinical data discussed in Section 4. The data
used simulated measurements every five days from 0 to 200 days, inclusive. We estimate three
subsets of the model parameters: k1 only, k2 only, and the pair k1, k2 jointly. Recall that the
simulated data are generated with true parameters k1 = 8.0× 10−7 and k2 = 1.0× 10−4. These
infectivity parameters are important to estimate since they describe the viral infection rate for
the two cell populations and the overall system dynamics are highly sensitive to them.

When estimating k1 only, each of the initial iterates q(0) = 10−2, 10−4, 10−6, 10−8, and 10−10

produces the same optimal parameter estimate. The same is true when estimating only k2

for each of the initial iterates q(0) = 10−1, 10−2, 10−4, 10−6, and 10−8. This robustness of the
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estimation process to the choice of initial iterate would be particularly important when using
clinical data. The resulting parameter estimates, standard errors, and cost function values are
displayed in Table 4. In all four cases, we successfully recover reasonable estimates of the true
parameters. Of course, we do not expect to precisely recover the true parameter values since we
are fitting noisy simulated data (see Section 3.1 above). The standard errors for the full state
data are acceptably small, although those for the partial state data are appreciably larger. These
calculations are based on observing 6 states at each of 41 time points in the full state case (total
246 data points) and 3 states at the same time points in the partial state case (total 123 data
points).

parameter, obs. type q∗ std. err. weighted cost unweighted cost

k1, full state 8.0750e-07 1.1455e-09 120 4.121e+11
k1, partial state 7.9388e-07 1.6828e-07 60 8.209e+10

k2, full state 9.6730e-05 3.1889e-07 120 3.435e+11
k2, partial state 9.1280e-05 5.5781e-04 60 7.390e+10

Table 4: Parameter estimates, standard errors, and cost function values at optimal parameters
when estimating k1 or k2 with either full- or partial-state data. Results obtained with observa-
tions every 5 days (N = 41).

To estimate k1 and k2 jointly, we consider five initial iterates taken as ordered pairs from
the iterates used for single parameter estimation above. When using full state observations,
the algorithm returns the same parameter pair for each initial iterate pair: q∗ = (k1, k2) =
(8.1065×10−7, 9.3961×10−5) with corresponding standard errors (5.0385×10−9, 1.5997×10−6)
and cost function values of 117 (weighted) and 3.7172e+11 (unweighted). The fit to data can
be viewed in Figure 3, where the solid lines are the simulations corresponding to the optimized
parameters q∗.

For partial state observations we obtain similar results, although the initial iterate (10−8, 10−6)
does not lead to convergence within the allotted five GLS iterations. (This is the only such ex-
ception among the results presented here.) Overall though, for the joint estimation case, the
algorithm is relatively robust to the choice of initial iterates (see Table 5). Figure 4 depicts a
typical fit to the partial state data.

q(0) q∗ std. err J(q∗)
[k1, k2] [k1, k2] [k1, k2] weighted unweighted

(10−2, 10−1) (7.9420e-07, 9.9007e-05) (3.0605e-07, 1.0957e-03) 58.5 7.9624e+10
(10−4, 10−2) (7.9420e-07, 9.9007e-05) (3.0605e-07, 1.0957e-03) 58.5 7.9624e+10
(10−6, 10−4) (7.9420e-07, 9.9007e-05) (3.0605e-07, 1.0957e-03) 58.5 7.9624e+10
(10−8, 10−6) (7.9373e-07, 1.0050e-04) (3.0325e-07, 1.1074e-03) 58.0 8.3495e+10
(10−10, 10−8) (7.9420e-07, 9.8996e-05) (3.0607e-07, 1.0956e-03) 58.5 7.9598e+10

Table 5: Resulting parameter estimates, standard errors, and cost function values for partial
state data, simultaneous estimation of k1 and k2.

Even with only observations of T1 + T ∗1 , V, and E, the estimation process yields acceptable
estimates of k2, although the large standard errors do not lend a lot of confidence to their
accuracy.

In a forthcoming paper, we will explore the ability to fit this model with greater numbers of
free parameters and discuss the merits of different weighting schemes in the estimation process.
As an alternative to the methodology presented here, one could use sampling-based methods,
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Figure 3: Fit of model using estimated parameters (solid lines) to data (‘x’ markers) when
jointly estimating k1, k2 using third initial iterate (10−6, 10−4). Estimates are based on full state
observations. Note different scale on each subplot.
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Figure 4: Fit of model using estimated parameters (solid lines) to data (‘x’ markers) when jointly
estimating k1, k2 using third initial iterate (10−6, 10−4). Estimates are based on partial state
observations. Note different scale on each subplot.

such as Monte Carlo Markov Chain algorithms, to obtain parameter information from data.
These methods yield an estimate for the distribution of a parameter (and hence estimates of the
mean and variance similar to those we have reported here). Our group is currently comparing
the efficiency of such methods to those discussed in this paper.
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4 Modeling HIV Dynamics: A POD Approach

There are many families of patterns occurring in both nature and in the sciences for which it is
possible to obtain a useful systematic characterization. Often, the motivation is that the family
is of low dimension, that is, in some sense, any given member of the family might be represented
by a small number of parameters. Examples of these pattern families occur in turbulent flows
[40, 3, 60, 7], image processing [28, 63], data compression [2], human speech [64], and human faces
[34]. In these applications the technique used to represent such characteristics is known as the
proper orthogonal decomposition (POD). In other disciplines it also called the Karhunen-Loève
decomposition [38], principal component analysis [30], and the Hotelling transform [24].

Typically, the POD procedure is implemented in engineering or science applications where
the physical or biological system may be described by a mathematical model, i.e., a nonlinear
distributed parameter system with boundary and initial conditions. The pedagogy to obtain the
governing equations begins with some simplifying assumptions about the physical or biological
system and then applies first principles to derive quantitative models. The POD procedure,
applied together with the Galerkin, finite element, finite volume, or spectral method, results in
a reduced order model which represents the underlying low dimensional system.

On the other hand, many problems in engineering and medicine, including HIV population
level dynamics, are sufficiently complex that a mathematical description is either nearly impos-
sible, or when a model is obtained, it can not be implemented without undue complications. For
example, the degree of freedom of distributed parameter systems is essentially infinite, and in the
case of HIV population level models, the parameters are often formulated as random variables in
order to accurately account for various sources of variability contained in aggregate clinical data.
It is possible to apply the POD method to an ensemble of data (with or without an underlying
model) to extract a basis that characterizes the salient features of the ensemble. In this section,
we assume that the mathematical model for HIV dynamics is not yet known, but data to be
used to guide and validate model development is available. Our primary goal is to show that
characteristic features, extracted from collected data using the POD procedure, can be used to
organize HIV data (RNA viral load values) more efficiently and accurately.

4.1 HIV STI Clinical Data

The data that we employ for our demonstration were collected by one of the authors (Rosenberg)
from patients studied at Massachusetts General Hospital. The ensemble provides RNA viral load,
CD4, and CD8 data for 102 patients. Approximately 40 patients have at least one treatment
interruption, and some have as many as four treatment interruptions. The interruptions are
either approved according to protocol, are due to illness or drug toxicity, or are patient initiated.

The data set contains a high degree of variability. For an individual patient viral load values
may range from a censored value of fifty (c/ml) to several million (c/ml); the duration of the
interruptions range from one week to several years. We have inter-patient variability (long-term
non-progressors versus rapid progressors) as well as intra-patient variability (on treatment, off
treatment, poor adherence, short drug holidays, or structured treatment interruptions).

4.2 The Proper Orthogonal Decomposition

In the following we provide a basic description of the POD method; a more detailed description
is given in [42]. Let Ui = Ui(t), i = 1, 2, . . . , N , denote the set of N observations (also called
snapshots) for t ∈ Ω, Ω bounded. For example, Ui could represent the RNA values observed for
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patient i at times t ∈ Ω. We wish to find an optimal compressed description of the sequence of
data. One description of the process is a series expansion in terms of a set of basis functions.
Intuitively, the basis functions should in some sense be representative of the members of the
ensemble. Such a coordinate system is provided by the Karhunen-Loève expansion, where the
basis functions Φ are, in fact, linear combinations of the snapshots and are given by

Φ =
N∑

i=1

aiUi (4.1)

Here, the coefficients ai are to be determined so that Φ given by (4.1) will most resemble the
ensemble {Ui}N

i=1. Indeed, it follows that (see, e.g., [42]) the coefficients ai are the entries of the
ith eigenvector corresponding to the ith largest eigenvalue of the N ×N covariance matrix

C~u =
1
N

∫

Ω

U(t)U(t)T dt, (4.2)

where U = (U1, U2, . . . , UN )T . It is noted that the covariance matrix is a symmetric and nonneg-
ative matrix and, hence, the eigenvalues, λi are real and nonnegative. We arrange the eigenvalues
in decreasing order as λ1 ≥ λ2 ≥ · · ·λN ≥ 0. Thus Φ1 is the basis function corresponding to the
largest eigenvalue. Any snapshot in the ensemble can be represented as a linear combination of
the basis functions as follows

Ui =
N∑

i=1

< Φk, Ui >L2(Ω) Φk. (4.3)

Employing only the first M POD basis elements, we obtain the approximation UM
i for Ui such

that

UM
i =

M∑

i=1

< Φk, Ui >L2(Ω) Φk. (4.4)

It is well known that (see, e.g., [42]) expansion (4.4) is in some sense optimal. In particular,
among all linear combinations, the POD is the most efficient, in the sense that, for a given
number of modes M, the POD decomposition will capture the most possible kinetic energy. One
way to quantify the error of the approximation is by computing the relative error

ER(UM
i ) =

‖Ui − UM
i ‖L2(Ω)

‖Ui‖L2(Ω)
. (4.5)

4.3 RNA Modeling Results and Discussions

In this section, we demonstrate the effectiveness of using the POD expansion to model RNA
values on an ensemble clinical data set collected at Massachusetts General Hospital. One could
use the entire data set for the ensemble, using each patient as a snapshot. Indeed, initially we
followed this approach with very limited success. This was due to the significant inter-patient and
intra-patient variability observed in the data set. This contributed to the difficulty in representing
the data by a reduced POD basis. Here, we first focus on a subset of the data ensemble – HIV
patients that undergo treatment interruptions. We focus only on data points that correspond to
ON treatment entries. Modeling of the OFF treatment entries will be addressed later.

Before applying the POD method to the restricted set of ON segments (snapshots), we first
perform some preliminary data manipulations to obtain a more realistic “guess” of the OFF/ON
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treatment cycle. For example, in looking at the RNA data we often encountered segments similar
to the following:

date on/off RNA value comment
1/22/02 off 750,000 no medication
1/24/02 on start medication
1/30/02 on 1000

In this example, the 1/24/02 entry has no RNA value, and is ignored (deleted). As a result,
the ON segment begins on 1/30/02 with a relatively low RNA value of 1000. For this example
we would modify the data by copying the previous OFF treatment value as follows:

date on/off RNA value comment
1/22/02 off 750,000 no medication
1/24/02 on 750,000 start medication
1/30/02 on 1000

We feel this is a more realistic guess of the OFF/ON cycle. We did this for patient seg-
ments where a relatively recent OFF value was available, normally within one week of starting
medications. If no recent OFF value was available, we left the data as is.

With these data modifications, we obtain 78 snapshots of RNA data for patients starting and
continuing on treatment. The length of these segments vary from 13 days to 1421 days. The
general ON profile starts with high viral load, it rapidly decreases due to medication, and then
typically stays small (i.e., censored data).

To apply the POD method to the set of HIV ON snapshots, the snapshots should be defined
on a similar time interval, i.e., Ω = [0, T ]. We start all snapshots at day zero, and then interpolate
each snapshot onto a common (merged) set of time points. The ON snapshots are of variable
length, i.e., Ui(t) is defined on [0, Ti] and not on [0, T ], except for T = min{Ti} small. We deal
with the variable data length in one of two ways: we truncate a subset of patient data defined
on [0, TON ] for a set of fixed length snapshots, or we compute the ‘covariance’ matrix C~u with
variable length time series. For the later, C~u is computed as

C~uki =
1
N

∫ Tki

0

Uk(s)Ui(s)ds, Tki = min(Tk, Ti) (4.6)

for Uk(t) and Ui(t) defined on [0, Tk] and [0, Ti], respectively.
To apply the POD method to fixed length vectors, we extract a subset of segments with length

greater than TON and then truncate. For example, if TON = 482 days, the subset includes 18
snapshots. A reduced order basis may be used to approximate the subset of truncated ON
snapshots. The full POD basis may also be used to approximate the additional 60 ON segments,
outside the subset of snapshots used to generate the POD basis, using approximation (4.4)
computed on [0, Ti] for Ti < TON . In general, the relative error for the shorter snapshots is not
great.

The POD method applied to the 78 variable length ON segments produces 78 POD basis
elements defined on Tmax = maxTi. We can reconstruct all 78 ON segments using approximation
(4.4) with M = 18 POD basis elements to obtain a 5% average relative error. Nine snapshots
have a relative error greater than 10%, i.e., ER(UM

i ) > 0.1. In Figure 5 we compare the relative
errors of the fixed length POD approximations to the variable length POD approximations. In
either case, the approximation is computed with M = 18 basis elements. The POD method
based on the variable length snapshots obtains better overall approximations. The ability to
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Figure 5: Relative errors comparing fixed length (circle) POD approximations versus variable
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successfully approximate most ON segments is likely due to the apparently homogeneous nature
of patient profiles while on treatment. With good adherence to drugs, the RNA profile of most
patients on treatment is relatively flat, i.e., the RNA values are (<)50 or (<)400, depending on
the assay.

Given the variability of the data and the sometimes incomplete data records, we relax the
notion of approximating all ON snapshots well. If we delete the nine snapshots with the worst
POD approximation relative error from the ON treatment ensemble, 69 ON snapshots remain.
Applying the POD method to these remaining variable length ON segments, we again use M = 18
basis elements to reconstruct the snapshots. All remaining snapshots have a less than 10%
approximation relative error, with max(ER(UM

i )) = 0.06 and mean(ER(UM
i )) = 0.02 (see Figure

6). Fewer basis vectors may be used, but the relative error increases rapidly for one segment in
particular. See also Figures 7 and 8 for the POD approximation of the 3 ON segments with the
best and worst approximation relative error, respectively.

Next we turn to the original ensemble including all 102 patients, patients with treatment
interruptions and with no treatment interruptions. We repeat the same process: manipulating
the data to more accurately represent the ON/OFF treatment cycle using a slightly more rigorous
protocol, and then extracting the ON segments. We obtain 138 ON segments with lengths varying
from 4 days to 1833 days. We apply the POD method to the variable length ON snapshots, use
M = 33 POD basis elements to approximate the snapshots, and identify and remove the 9
snapshots with more than 10% approximation relative error. If we rerun the POD method,
again using M = 33 POD basis elements for approximation, we obtain good overall relative error
(i.e., max(ER(UM

i )) = 0.084 and mean(ER(UM
i )) = 0.014) (see Figure 9).

Similarly, we have attempted to approximate the OFF treatment snapshots from patients
with treatment interruptions. To date, the results are not as promising; the OFF segments
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Figure 7: Viral RNA (in c/ml) – POD approximation of 3 ON segments with “best” relative
error.

achieve a 20% average approximation error. This is most likely due to the inhomogeneity of the
OFF snapshots. Some patients maintain a low viral load after discontinuing treatment, some
experience viral rebound and decline during treatment interruptions, while others exhibit a slow,
steady increase in viral load. All of these scenarios are included in the OFF treatment ensemble.
Future effort will include the application of the POD method to subgroups within the OFF
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treatment ensemble.
Procedures such as those described here should prove quite useful in selecting subsets of

clinical data for use with the model fitting and validation methods presented in Section 3.
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5 An Optimal Control Problem

In this section, we consider optimal control methods to derive optimal drug treatments as func-
tions of time. We attempt to control HIV populations in finite time intervals using a control
function ε(t) which represents the drug efficacy satisfying 0 ≤ a ≤ ε(t) ≤ b < 1. Here ε(t) = b rep-
resents maximal efficacy, where we tacitly assume that we control efficacy by simply controlling
the dose level.

Together with the model described by equation (2.1) for HIV infection we consider a cost
functional given by

J(ε) =
∫ t1

t0

[QV (t) + Rε2(t)] dt, (5.1)

where Q and R are weight constants of virus and control, respectively. The second term represents
systemic costs of the drug treatment. Our goal is to minimize both the HIV virus population
and the systemic cost to body. We seek an optimal control ε∗ such that

J(ε∗) = min{J(ε)|ε ∈ U},

where U = {ε(t)| ε is measurable, a ≤ ε ≤ b, t ∈ [t0, t1]} is the control set. Given the criterion
(5.1) and the regularity of the system in our model equations (2.1), it is rather straightforward
to establish existence of optimal controls by relying on standard results in control theory (e.g.,
see [21]). We turn therefore to methods for computation of optimal controls.

5.1 Optimality System

Since an optimal control exists for minimizing the cost functional (5.1) subject to (2.1), we
present necessary conditions for optimality (see, e.g., [33] for details on these procedures). These
can be used to compute candidates for optimal controls (which may or may not be uniquely
determined).

Given an optimal control ε∗ and solutions of the corresponding state system (2.1), we can
define adjoint variables ξi, i = 1, · · · , 6, as follows:





ξ̇1 = −
{

ξ1(−d1 − (1− ε)k1V ) + ξ3(1− ε)k1V − ξ5(1− ε)ρ1k1V
}

ξ̇2 = −
{

ξ2(−d2 − (1− fε)k2V ) + ξ4(1− fε)k2V − ξ5(1− fε)ρ2k2V
}

ξ̇3 = −
{

ξ3(−δ −m1E) + ξ5NT δ + ξ6

( bEEKb

(T ∗1 + T ∗2 + Kb)2
− dEEKd

(T ∗1 + T ∗2 + Kd)2
)}

ξ̇4 = −
{

ξ4(−δ −m2E) + ξ5NT δ + ξ6

( bEEKb

(T ∗1 + T ∗2 + Kb)2
− dEEKd

(T ∗1 + T ∗2 + Kd)2
)}

ξ̇5 = −
{

Q− ξ1(1− ε)k1T1 − ξ2(1− fε)k2T2 + ξ3(1− ε)k1T1 + ξ4(1− fε)k2T2

+ξ5

(
− c− (1− ε)ρ1k1T1 − (1− fε)ρ2k2T2

)}

ξ̇6 = −
{
− ξ3m1T

∗
1 − ξ4m2T

∗
2 + ξ6

( bE(T ∗1 + T ∗2 )
T ∗1 + T ∗2 + Kb

− dE(T ∗1 + T ∗2 )
T ∗1 + T ∗2 + Kd

− δE

)}

ξi(t1) = 0, for i = 1, · · · , 6.

(5.2)
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Using these we find that an optimal control ε∗ is given by

ε∗ = max
(
a,min

(
b,
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R

))
. (5.3)

To see this, define the Lagrangian (which is the Hamiltonian augmented with penalty terms
for the constraints) to be:

L(T1, T2, T
∗
1 , T ∗2 , V, E, ε, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

= QV (t) + Rε2 + ξ1

(
λ1 − d1T1 − (1− ε(t))k1V T1

)

+ξ2

(
λ2 − d2T2 − (1− fε(t))k2V T2

)
+ ξ3

(
(1− ε(t))k1V T1 − δT ∗1 −m1ET ∗1

)

+ξ4

(
(1− fε(t))k2V T2 − δT ∗2 −m2ET ∗2

)

+ξ5

(
NT δ(T ∗1 + T ∗2 )− cV − [(1− ε(t))ρ1k1T1 + (1− fε(t))ρ2k2T2]V

)

+ξ6

(
λE +

bE(T ∗1 + T ∗2 )
(T ∗1 + T ∗2 ) + Kb

E − dE(T ∗1 + T ∗2 )
(T ∗1 + T ∗2 ) + Kd

E − δEE
)

−w1(t)(ε(t)− a)− w2(t)(b− ε(t)),

(5.4)

where w1(t) ≥ 0, w2(t) ≥ 0 are the penalty multipliers satisfying

w1(t)(ε(t)− a) = 0 and w2(t)(b− ε(t)) = 0 at optimal controls ε∗.

We differentiate the Lagrangian with respect to states, T1, T2, T ∗1 , T ∗2 , V, and E, respectively,
to obtain the following equations for the adjoint variables

ξ̇1 = − ∂L

∂T1
, ξ̇2 = − ∂L

∂T2
, ξ̇3 = − ∂L

∂T ∗1
, ξ̇4 = − ∂L

∂T ∗2
, ξ̇5 = − ∂L

∂V
and ξ̇6 = − ∂L

∂E
.

By differentiating the Lagrangian L with respect to ε, we also have

∂L

∂ε
= 2Rε + (ξ1 − ξ3 + ρ1ξ5)k1V T1 + (ξ2 − ξ4 + ρ2ξ5)fk2V T2 − w1(t) + w2(t) = 0.

Solving for the optimal control we find

ε∗ =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2 + w1(t)− w2(t)

2R
.

To determine an explicit expression for an optimal control without w1 and w2, we consider the
following three cases:

(i) On the set {t|a < ε∗(t) < b}, we have w1(t) = w2(t) = 0. Hence the optimal control is

ε∗ =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R
.

(ii) On the set {t| ε∗(t) = b}, we have w1(t) = 0. Hence

b = ε∗ =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2 − w2(t)

2R
,
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which implies that

−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R
≥ b since w2(t) ≥ 0.

(iii) On the set {t| ε∗(t) = a}, we have w2(t) = 0. Hence

a = ε∗ =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2 + w1(t)

2R
.

Since w1(t) ≥ 0, it follows that

−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R
≤ a.

Combining these three cases, we obtain the optimal control given by (5.3).
The optimality system thus consists of the state system (2.1) coupled with the adjoint system

(5.2) with the initial conditions and terminal conditions together with the relationship (5.3). Any
optimal controls must satisfy this system.

5.2 Continuous Optimal Treatment

The optimality system is a two-point boundary value problem since it includes initial conditions
specified for the state equations and terminal conditions specified for the adjoint or costate sys-
tem. We use a gradient method for solving the optimality system. The state system (2.1) with
initial conditions is solved forward in time using an initial guess for the control and then the
adjoint system (5.2) with terminal conditions is solved backward in time. The controls are up-
dated in each iteration using the formula (5.3) for optimal controls. The iterations continue until
convergence is achieved. For further discussion of this iterative method we refer the interested
reader to [26]. The parameters used in solving the optimality system are summarized in Table
2.1. Treatment was simulated for 100 days.

We simulate early infection by introducing one virus particle per ml of blood plasma, i.e.,
T1(0) = 106, T2(0) = 3198, T ∗1 (0) = 10−4, T ∗2 (0) = 10−4, V (0) = 1 and E(0) = 10. In addition,
we use a = 0 and b = 0.8. We ran simulations with three different values of weight factor R. The
corresponding optimal control functions are presented in Figure 10. As we increase R, thereby
increasing the cost of therapy, the optimal control function is decreasing. In the other figures
presented in this section, we present only the case Q = 0.1 and R = 10000 for brevity. Since
the magnitude of virus population is much larger than the magnitude of the cost of the drug
treatment in the objective function (5.1), this difference in magnitude is balanced by this choice
of Q and R.

We solve the HIV model (2.1) with no treatment (ε ≡ 0) and with fully efficacious treatment
(ε ≡ 0.8). The numerical results for these two cases as well as the optimal case are presented in
Figure 11 for comparison. The corresponding values of the objective functional for all cases are
given in Table 6. As depicted in Figure 11 the optimal solutions are very close to the solutions
corresponding to the fully efficacious treatment. However, the optimal cost is smaller than the
cost functional corresponding to the fully efficacious treatment case.
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Figure 10: Optimal controls with different weights R on control cost: Q = 0.1.
−−: R = 5000 −: R = 10000 −·: R = 15000

Table 6: The values of objective functional.
optimal control ε(t) = 0 ε(t) = 0.8 STI control

J 9.4438e+05 1.2488e+06 9.6007e+05 1.1495e+06
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Figure 11: Optimal solutions (−); solutions (−·) with full treatment (i.e., ε = 0.8); and solutions
(−−) with no treatment (i.e., ε = 0) of early infection: Q = 0.1 and R = 10000.

31



6 An Optimal STI Control Problem

In Section 5 we formulated and synthesized continuous optimal control solutions for a model-
based infection treatment. However, this type of (continuous) treatment, especially, for long
periods is difficult to maintain due to possible long-term toxicity of the drugs as well as possible
development of resistance to medications. In this section we consider the optimal control of
viremia through a number of drug structured treatment interruptions (STI).

To this end, we assume our control ε is a 1× 100 vector which consists of only 0 or b in each
vector element. If an element of a control vector is 0, it signifies drug treatment being off on that
day and if an element of a control vector is b, it represents full drug treatment being on. Since
we consider a drug treatment strategy over 100 days, the size of ε is 1× 100. The set of all such
control vectors is denoted by Λ. The goal is to seek the optimal control vector ε∗ satisfying

J(ε∗) = min
ε∈Λ

J(ε),

subject to the state system (2.1) and where J(ε) is defined by (5.1).
Since the number of elements of the set Λ is finite, existence of an optimal control solution is

guaranteed. To find the discrete STI optimal solution, we could use a direct search approach and
begin by selecting any element in the set Λ and then solving the state system using this element
as a control. We next would select another element in the set Λ and solve again the state system
using the element as a control. Then we compare the values of the objective functional, J , and
select the element corresponding to the smaller cost functional value. If we iterate this strategy
over all elements in the set Λ, we obtain the optimal control solution ε∗. However, this strategy
to obtain the discrete optimal solution can lead to a large number of cost functional evaluations
(and hence a large number of solutions to equation (2.1)). In our case, where the control vector
ε is a 1 × 100 vector, the number of cost functional evaluations would be 2100, rendering this
approach computationally impractical.

There are several ideas that we considered to reduce the number of iterations. The simplest
approach is to consider, for illustration, a 5 day segment (instead of a one day segment as above).
This is reasonable from a practical point of view because it is not reasonable to have drug on
one day and off the next day. For a 5 day segment, the size of the control vector is reduced to
1× 20 from 1× 100. Hence, the number of iterations to find the discrete optimal STI solution is
now 220 instead of 2100.

Using the above iterative reduction technique, we obtained the optimal 5 day segment STI
control vector

ε∗ = ( 0 0 0 0 0 b 0 0 b 0 b b b 0 b b b b b 0 ),

which is depicted in Figure 12. The associated optimal state solutions are shown in Figure 13.
As depicted in Figure 12, the optimal 5 day segment STI strategy is that drug is off for

the first 25 days, drug is on for the next 5 days, drug is off for the next 10 days, and so on.
In addition, Figure 13 reveals that solutions of the state system with the optimal STI control
are similar to solutions with no treatment up to the 25th day. After that, the population of
uninfected T1 cells with STI approaches the population of uninfected T1 cells with full treatment
and the virus population is also maintained at a low level. Moreover, the immune effectors (E)
with STI have larger values than in the other cases. That is, this optimal STI control boosts the
immune effectors (E) while reducing virus load and increasing uninfected T1 and T2 cells over
the treatment period.
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Figure 12: Optimal STI control with Q = 0.1 and R = 10000 (5 day segments).

6.1 STI Control Problem with Long Time Horizon

The above reduced iterative approach is still not computationally efficient for long time treat-
ment regimens. For example, if one considers a treatment interruption strategy over 400 days
duration of therapy, the resulting required number of cost functional evaluations is 280 for a 5
day segment, which is still considerably large. One approach to mitigate this shortcoming is to
consider subperiods of the given period such as [0, 50], [0, 100], [0, 150], · · · [0, 400]. We then find
an optimal STI control vector, ε∗1 over the first subperiod, [0, 50], using the reduced iteration
technique as above. Since the size of ε∗1 is 1× 10 (for a 5 day segment), its optimal solution can
be obtained very quickly (with only 210 = 1024 iterations). In the second step, we consider our
control vectors over the period [0, 100] as follows:

ε2 = (ε∗1, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) where ? is 0 or b.

That is, we fix the optimal STI ε∗1 as the first 10 elements of the control, and iterate ε2 to find
the last 10 elements of ε2. In this case, the number of iterations is again just 210. We repeat this
process to find an optimal STI control, ε∗3 over [0, 150] , ε∗4 over [0, 200], etc. The STI control
obtained over the entire treatment period [0, 400] is ε∗ = ε∗8. It should be emphasized that ε∗

is only suboptimal. However, our initial efforts suggest that it is a good approximation to the
optimal STI control. In particular, the suboptimal STI control over [0, 100] that is obtained
using the above subperiod method is almost identical (visually) to the optimal control using the
reduced iterative method from above.

Using the subperiod method (which might be viewed as a type of dynamic programming idea),
the suboptimal STI control and its associated suboptimal solutions are depicted in Figure 14
and Figure 15, respectively. It is noted that the dynamics of uninfected T1 cells with suboptimal
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Figure 13: Optimal 5 day segment STI solutions (−); solutions (−·) with full treatment (i.e.,
ε = 0.8); and solutions (−−) with no treatment (i.e., ε = 0) of early infection: Q = 0.1 and
R = 10000.

STI control and full treatment are very close and the virus is also maintained at a low level.
Moreover, the immune effectors with suboptimal STI control are maintained at a high level
while the immune effectors with full treatment are at a lower level.

Finally, we consider a treatment interruption protocol where we apply suboptimal STI for
the first treatment period [0, 300] then follow with full treatment over the final period [300, 400].
As depicted in Figure 16 we see a substantial increase in the population of uninfected T2 cells
with suboptimal STI control followed by full treatment over [300, 400]. In addition, the immune
effectors with the suboptimal STI and full treatment are also much higher on the 400th day.
This increase in immune effectors allows the virus to maintain a small population. However, if
we have full treatment for too long, (for example, if we consider a suboptimal STI over [0, 200]
and follow with full treatment over [200, 400]), the immune effectors are increasing until around
the 300th day and are decreasing after the 300th day.
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Figure 14: Suboptimal STI control with Q = 0.1 and R = 10000 over [0, 400].
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Figure 15: Suboptimal STI solutions (−); solutions (−·) with full treatment (i.e., ε = 0.8); and
solutions (−−) with no treatment (i.e., ε = 0) of early infection: Q = 0.1 and R = 10000.
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Figure 16: STI solution (−) on [0, 300], coupled with full treatment over [300, 400]; solutions(−·)
with full treatment (i.e., ε = 0.8) over [0, 400]; and solutions (−−) with no treatment (i.e., ε = 0)
for early infection scenario: Q = 0.1 and R = 10000.
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7 Concluding Remarks

In this paper we have attempted to discuss a number of important issues relative to the inves-
tigation of HIV infection and treatment. The mathematical and statistical ideas we include are
not meant to be exhaustive; rather they reflect some of those that our own experiences suggest
are relevant. Moreover, the model we employed to illustrate these tools and techniques is not
proposed as a penultimate model; it is simply one that we feel possesses certain features that we
and other investigators believe are relevant in trying to understand quantitative and qualitative
aspects of a very complex immunological process. We do think that the techniques and method-
ologies presented here will be useful as more sophisticated and “biologically correct” models are
developed in the near future.
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