
ABSTRACT

BATTEN RAY, CHELSIE ANN. Complemented Leibniz Algebras. (Under the direction
of Dr. Ernest Stitzinger.)

Leibniz algebras were introduced by Jean Loday in 1993 as a noncommutative gener-

alization of Lie algebras. The theory of Leibniz algebras has been studied for twenty-one

years, and during this time many results from the theory of Lie algebras have been

extended. In the present work, we make contributions to the theory of Complemented

Algebras and introduce Leibniz algebra generalizations, which have Lie and Group theory

counterparts.
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Chapter 1

Introduction

1.1 History of Leibniz Algebras

Leibniz algebras were introduced by Jean Loday in [12] as a noncommutative generaliza-

tion of Lie algebras. Previously, they had been studied by A.M. Bloch who called them

D-algebras [7]. He gave the algebras the name of D-algebras due to their connection with

derivations. It was much later when Loday independently rediscovered Leibniz algebras.

While studying the properties of the homology of Lie algebras, Loday discovered that the

antisymmetry property was not needed to prove the derived property defined on chains.

This discovery motivated the introduction to the notion of Leibniz algebras. He called

the algebras Leibniz since it was Leibniz who proved the ’Leibniz rule” for differentiation

of functions.

With this being the case, a natural problem arises for Leibniz algebras in order to

obtain analogues of results from the theory of Lie algebras. The theory of Leibniz algebras

has been studied for 21 years, and during this time many results from the theory of Lie

algebras have been extended. There are many cases where it has been shown that certain
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results from Lie algebras can not be extended to Leibniz. The issues are rooted in the lack

of antisymmetry. In this work, our principal aim is to focus on complemented Leibniz

algebras extended from Lie algebra. Throughout this work, unless indicated otherwise,

all algebras are assumed to be finite dimensional over a field of characteristic zero.

1.2 Preliminaries

We begin with the basic definitions and properties of Leibniz algebras in this section.

Let L be an algebra over a field F . We denote the left multiplication by La for a ∈ L,

where La(x) = [a, x] for all x ∈ L. Similarly, the right multiplication is denoted by Ra

for a ∈ L, where Ra(x) = [x, a] for all x ∈ L.

Definition 1.2.1. A (left) Leibniz algebra is an algebra L which satisfies the Leibniz

identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]]

for all a, b, c ∈ A.

This definition is equivalent to saying La is a derivation of L. Many authors chose to

work with right Leibniz algebras. In this case, Ra is a derivation of L. The right Leibniz

algebra results can be proven for left Leibniz algebras. The same is true of left Leibniz

algebra results. In this work, we will work with only left Leibniz algebras and will simply

call them Leibniz algebras.

Example 1.2.2. Let L be a 2-dimensional algebra with the following multiplications.

[x, x] = 0, [x, y] = 0, [y, x] = x, [y, y] = x
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L is a left Leibniz algebra, but it is not a right Leibniz algebra, since [[y, y], y] 6= [y, [y, y]]+

[[y, y], y] which implies 0 = [x, y] 6= [y, x] + [x, y] = x+ 0 = x.

Further we note that any Lie algebra is a Leibniz algebra. Also, if a Leibniz algebra

L additionally satisfies [a, a] = a2 = 0 for a ∈ L, then the Leibniz identity will be the

same as the Jacobi identity [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0. Hence Leibniz algebra L

is a Lie algebra.

Definition 1.2.3. Let I be a subspace of a Leibniz algebra L. Then I is a subalgebra if

[I, I] ⊆ I. I is a left (resp. right) ideal if [L, I] ⊆ I (resp. [I, L] ⊆ I). I is an ideal of L if

it is both a left and right ideal.

As is the case in Lie algebras, the sum and intersection of two ideals of a Leibniz

algebra is an ideal; however the product of two ideals need not be an ideal.

Example 1.2.4. Let A = span{x, a, b, c, d} with multiplications [x, b] = c, [b, a] =

d, [x, a] = a = −[a, x], [x, d] = d, [c, x] = d, [d, x] = −d, and the rest are zero.

Let I = span{a, c, d} and J = span{b, c, d}.

Then I and J are ideals, but [I, J ] = span{c} which is not an ideal.

Let L be a Leibniz algebra. Then the series of ideals L ⊇ L(1) ⊇ L(2) ⊇ . . . where

L(1) = [L, L], L(i+1) = [L(i), L(i)] is called the derived series of L.

Definition 1.2.5. A Leibniz algebra L is solvable if L(m) = 0 for some integer m ≥ 0.

As is in the case of Lie algebras, the sum and intersection of two solvable ideals of a

Leibniz algebra is solve. Hence any Leibniz algebra L contains a unique maximal solvable

ideal rad(L) called the radical of L which contains all solvable ideals.
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For a Leibniz algebra L the series of ideals L ⊇ L1 ⊇ L2 ⊇ . . . where L2 = [L, L] and

Li+1 = [L, Li] is called the lower central series of L.

Definition 1.2.6. A Leibniz algebra A is nilpotent of class c if Ac+1 = 0 but Ac 6= 0.

As in Lie algebras, the sum and intersection of two solvable (resp. nilpotent) ideals of a

Leibniz algebra are solvable (resp. nilpotent).

1.3 Cyclic Leibniz Algebras

An algebra L is called Leibniz if it sastifies the identity x(yz) = (xy)z + y(xz). Thus

left multiplication is a derivation. If the algebra also satisfies xy = −yx, then it is a

Lie algebra. Results on low-dimensional classification, nilpotency, solvability, derivations,

and semisimplicity of these algebras are found throughout this section.

Cyclic Leibniz algebras, those generated by a single element, are especially basic in

structure. In this case L has a basis {a, a2, . . . , an} and aan = α1a + α2a
2 + · · ·+ αna

n.

The Leibniz identity on a, a2, and a,

0 = [a, [an, a]] = [[a, an], a] + [an, [a, a]] = [α1a+ . . . αna
n, a] = α1[a, a]

we see that α1 = 0. A particularly important ideal of any Leibniz algebra L is the

span of the squares of the elements of L, called Leib(L). Since ajL = 0 for all j >

1, Leib(L) is abelian and it is the smallest ideal of L for which the quotient is Lie.

Thus for cyclic Leibniz algebras the left multiplication by a, characterized by the above

polynomial, determines the algebra. The matrix for this multiplication is the companion

matrix for the polynomial, hence the polynomial is both the characteristic and minimum
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polynomial for the matrix. Consequences of this are summarized in [5]. In particular,

the number of maximal subalgebras, Engel subalgebras, and Fitting null components of

left multiplications are greatly restricted and easily computed. Thus Frattini subalgebras,

Cartan subalgebras, and minimal Engel subalgebras [1] are easily found. Throughout this

section all algebras are taken over the field of complex numbers.

Let L = span{a1, a2, a3} be a Leibniz algebra. Then aa3 = αa2 + βa3 for some

α, β ∈ C. In fact, choosing any α and any β yields a Leibniz algebra [5]. However, differing

choices for α and β are not guaranteed to yield non-isomorphic Leibniz algebras. In [8],

the 3-dimensional cyclic Leibniz algebras were classified up to isomorphism.

First, the case when α = β = 0 is the nilpotent cyclic Leibniz algebra of which there

is only one up to isomorphism. In the case where α = 0 and β 6= 0, let x = 1
β
a. Then

xx3 = x3. For the case when α 6= 0, let x = 1√
α
a. It follows that xx3 = x2+ β√

α
x3. Thus any

3-dimensional non-nilpotent cyclic Leibniz algebra with α 6= 0 has a generator x which

either has multiplication xx3 = x2 + γx3 for some γ ∈ C, or multiplication xx3 = x3.

The following theorem, given in [8], completes the classification of 3-dimensional cyclic

Leibniz algebras up to isomorphism.

Theorem 1.3.1. Let L be a 3-dimensional cyclic Leibniz algebra. Then L has a generator

a with one and only one of the following multiplications:

(i) aa3 = 0

(ii) aa3 = a3

(iii) aa3 = a2 + γa3 for precisely one γ ∈ C.

Let L be a cyclic Leibniz algebra generated by a, and let T be the matrix for La
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with respect to the basis {a, a2, . . . , an}. Then T is the companion matrix for p(x) =

xn − αnx
n−1 − · · · − α2x = p1(x)

n1 · · · px(x)
ns, where the pj are the distinct irreducible

factors of p(x). Let rj(x) = px/pj(x) for 1 ≤ j ≤ s. The maximal subalgebras of L are

the null spaces of each rj(T ), and the Frattini subalgebra F (L) is the null space of q(T )

where q(x) = p1(x)
n1−1 · · · ps(x)

ns−1 [5].

As an example of these results, we directly compute the maximal subalgebras and

the Frattini subalgebra for each 3-dimensional algebra from Theorem 1.3.1. The results

are summarized below. Note that if L is an n-dimensional algebra, it has no more than

n maximal subalgebras (since p(x) has no more than n distinct irreducible factors). In

this example, the greatest number of maximal subalgebras is three.

Example 1.3.2. For 3-dimensional cyclic Leibniz algebras we find the following:� For the type (i) 3-dimensional cyclic Leibniz algebra, the maximal subalgebra is L2

and the Frattini subalgeba is L2.� For the type (ii) 3-dimensional cyclic Leibniz algebra, the maximal subalgebras are

L2 and span{a− a2, a− a3}, and the Frattini subalgebra is span{a2 − a3}.� For the type (iii) 3-dimensional cyclic Leibniz algebra with γ = 2i, the maxi-

mal subalgebras are L2 and span{ia − a2, a + a3}, and the Frattini subalgebra is

span{ia2 − a3}.� For the type (iii) 3-dimensional cyclic Leibniz algebra with γ = −2i, the maxi-

mal subalgebras are L2 and span{ia + a2, a − a3}, and the Frattini subalgebra is

span{ia2 + a3}.� For the type (iii) 3-dimensional cyclic Leibniz algebra with all other γ ∈ C, the
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maximal subalgebras are L2, span{r1a
2 − a3}, a + r2a

2, span{r2a
2 − a3, a + r1a

2},

and the Frattini subalgebra is 0.

Recall that if L is a cyclic Leibniz algebra, then L2 = Leib(L) is abelian. A Leibniz

algebra with L2 nilpotent is elementary if and only if its Frattini subalgebra is trivial

[4]. Thus the only algebras in Table 1 which are elementary are those of type (iii) with

γ 6= ±2i.

1.4 Overview

In [19], Towers gave a characterization of complemented Lie algebras over any field of

characteristic zero. This was accomplished by considering the results known about el-

ementary and φ-free Lie algebras and further extending them to incorporate this idea

of complemented Lie algebras. His main result was that complemented lie algebras and

φ-free Lie algebras are the same over any field of characteristic zero. We were able to

show an equivalent theorem in Leibniz algebras.

In Chapter 3, we continue to look at the theory of complemented Leibniz algebras

based off of the work done by Towers in [20]. The focus is strictly on solvable comple-

mented Leibniz algebras. Similar to Towers, we break this chapter up into two sections.

The first section involves complements of subalgebra intervals. We begin by defining a

complemented subalgebra interval. At first the results are similar to those found in group

theory for the same topic, but later the theory diverges from that of groups. We use our

study of these complements of subalgebra intervals to introduce the concept of prefrat-

tini subalgebras of L. Before introducing the definition of prefrattini subalegbra, it was

necessary to investigate the idea of a Frattini chief factor and when it is complemented.

This leads to the definition of a U-Frattini chief factor, which in turn allows us to develop
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enough material to define a U-prefrattini subalgebra. We proved a lemma that gives us

the ability to calculate the dimension of our U-prefrattini subalgebra which lead to a se-

ries of lemmas that gave way to an important result. We find that the set of U-prefrattini

subalgebras of L are exactly the same as the minimal elements in the set of subalgebras

that are complemented in an interval.

Further, in Chapter 4, we employ what we developed involving prefrattini subalge-

bras in the previous chapter to study complemented solvable Leibniz algebras following

Towers’ work from [21]. The ultimate goal set before us in this section is to give a charac-

terization of solvable complemented Leibniz algebras following Towers’ lead in Lie theory.

The chapter is divided up into three sections. The first pulls together all developed ideas

involving prefrattini subalgebras of solvable Leibniz algebras. Building on these ideas

about prefrattini subalgebras, we move into the second section devoted to the prefrattini

residual. From here we are able to prove two classification theorems, one for completely

solvable Leibniz algebras and another for solvable Leibniz algebras. Finally we consider

decomposition results for complemented Leibniz algebras in the third section.

During the development of this work, we came across several topics that were related

to our study but was not directly involved. These results are shared in Chapter 5. The

section on Cartan subalgebras supports the work completed in the decomposition results

in Chapter 4.
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Chapter 2

Complemented Leibniz Algebras

2.1 Introduction

Assume L is a finite-dimensional Leibniz algebra over a field F . For the main results in

this section, assume F is a field of characteristic zero. We will call L complemented if its

subalgebra lattice is complemented; that is, if, given any subalgebra A of L there is a

subalgebra B of L such that A ∩ B = 0 and 〈A,B〉 = L. The Frattini subalgebra, F (L),

of L is the intersection of the maximal subalgebras of L; the Frattini ideal, φ(L), is the

largest ideal of L contained in F (L). We say that L is φ−free if φ(L) = 0, and that L is

elementary if every subalgebra of L (including L itself) is φ−free.

Unlike in groups, F (L) is not always an ideal. This is the case in both Lie and Leibniz

algebras. The only known example where the Frattini subalgebra of a Lie algebra is not

an ideal is as follows:

Example 2.1.1. For the 3-dimensional algebra L = 〈x, y, z〉 over the field of 2 elements

with multiplication [x, y] = z, [y, z] = x, [z, x] = y, F (L) = 〈x + y + z〉, which is not an
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ideal. In this example, Φ(L) = 0.

We will now consider an example of determining the Frattini subalgebra and ideal of a

cyclic Leibniz algebra.

Example 2.1.2. Let A be a 2-dimensional cyclic Leibniz algebra with multiplication

aa = a2 and aa2 = a2. We find there are two maximal subalgebras: 〈a − a2〉 and 〈a2〉.

This implies F (A) = 0 and φ(A) = 0.

2.2 Complemented Leibniz Algebras

Theorem 2.2.1. Let L be a Leibniz algebra over a field of characteristic zero.

1. If L is complemented, then L is φ−free.

2. If L is elementary, then L is complemented.

3. Suppose L is solvable. Then L is elementary if and only if L is complemented if

and only if L is φ−free.

Proof. 1. Assume φ(L) 6= 0. Let H ⊆ L. Then L = 〈φ(L), H〉. Let H be contained in

the maximal subalgebra, M . This implies L = 〈φ(L),M〉. But φ(L) ⊆ M . Thus,

M = L. Contradiction.

2. Let H be a subalgebra of L. Then φ(L) = 0 implies that there exists a proper

subalgebra K such that L = 〈H,K〉. If H ∩ K 6= 0, then there exists a proper

subalgebra S such that S ⊂ K such that K = 〈H ∩ K,K1〉. This implies L =

〈H,H ∩ K,K1〉 = 〈H,K1〉 and dim(K1) < dim(K). If H ∩ K1 6= 0, then there
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exists a proper subalgebra K2 of K1 such that K1 = 〈H ∩ K1, K2〉. This implies

K = 〈H,H ∩K1, K2〉 = 〈H,K2〉 and dim(K2) < dim(K1). Continue and we get Kt

such that L = 〈H,Kt〉 and H ∩Kt = 0.

3. Assume L is solvable. The assume that L is φ-free. Since L2 is nilpotent and φ(L) =

0, L is elementary by Theorem 3.4 of [4]. Therefore, when L2 is nilpotent, we know

elementary iff complemented iff φ(L) = 0.

Lemma 2.2.2. Let L be a complemented Leibniz algebra (over any field F ). Then every

factor algebra of L is complemented.

Proof. Assume K is an ideal in L. Assume H is a complemented subalgebra in L that

contains K. Let H/K be a subalgebra of L/K. Then L = 〈H, J〉 and H ∩ J = 0, where

H and J are subalgebras of L, since L is a complemented Leibniz algebra. Consider

H ∩ (K + J) = K + (H ∩ J) = K. This implies L = 〈H,K + J〉 and H ∩ (K + J) = K.

Thus, L/K = 〈H/K, (K + J)/K〉 and H/K ∩ (K + J)/K = 0.

The following three lemmas were originally proved in [17] for algebras in general over

any field.

Lemma 2.2.3. If C is a subalgebra of L and B is an ideal of L contained in F (C), then

B is contained in F (L).

Lemma 2.2.4. Let B be an ideal of an algebra L and let U be a subalgebra of L which

is minimal with respect to the property that L = B + U. Then B ∩ U ⊆ φ(U).
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Proof. Suppose that B ∩ U * φ(U). Then, since B ∩ U is an ideal of U , B ∩ U * F (U).

It follows that there is a maximal subalgebra M of U such that B ∩ U * M . Clearly,

B ∩ U +M = U , so L = B + (B ∩ U +M) = B +M , which contradicts the minimality

of U . Thus, B ∩ U ⊆ φ(U).

Lemma 2.2.5. Let B be an abelian ideal of an algebra such that B ∩ φ(L) = 0. Then

there exists a subalgebra C of L such that L = B + C.

Proof. Choose C to be a subalgebra of L which is minimal with respect to the property

that L = B +C. Then by Lemma 2.2.4, B ∩C ⊆ φ(C). Now B ∩C is an ideal of C and

(B ∩ C)B + B(B ∩ C) ⊆ B2 = 0, so B ∩ C is an ideal of L. Hence, by Lemma 2.2.3,

B ∩ C ⊆ φ(L) ∩B = 0 and L = B + C.

Lemma 2.2.6. Let A be a minimal abelian ideal of L. Then L is complemented if and

only if there is a subalgebra B of L such that L = A + B where A ∩ B = 0 and B is

complemented.

Proof. Suppose that L is complemented. Then φ(L) = 0 by Theorem 2.2.1. This implies

that there exists a maximal subalgebra M , A * M such that L = A+M and A∩M = 0.

Since M ∼= L/A, M is complemented by Lemma 2.2.2.

Conversely, assume L = A+B and A∩B = 0, and B is a complemented subalgebra

of L. Let U be a subalgebra of L. Since B complemented, there exists a subalgebra

x of B such that 〈B ∩ (U + A), x〉 = B and (U + A) ∩ x = B ∩ (U + A) ∩ X = 0.

Hence 〈U + A,X + A〉 = L and (U + A) ∩ (X + A) = 0. Let V = X + A. Then

L = 〈U, V 〉 = 〈U +A, V 〉 and (U +A)∩ V = A. Suppose that A ⊆ U . Take W = V ∩B.
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Then V = V ∩L = V ∩(A+B) = A+(V ∩B) and L = 〈U, V 〉 = 〈U,A+(V ∩B)〉 = 〈U,W 〉

and U ∩W = U ∩ V ∩B = A ∩ B = 0. Hence W is a complement of U .

Suppose A ∩ U = 0. Then 〈U, V 〉 = L and V ∩ U = V ∩ U ∩ (U + A) = A ∩ U = 0,

since V ∩ (U + A) = A. So, V is a complement of U .

Suppose A ∩ U 6= 0 (and A * U). Put W = V ∩ B. Assume A * 〈U,W 〉. Let

〈U,W 〉 ⊆ M , where M is a maximal subalgebra of L. This implies 〈U,W,A〉 = 〈U, V ∩

B,A〉 = 〈U, V ∩ (A+B)〉 = 〈U,A, V 〉 = L, so A * M . Thus, L = A+M and A∩M = 0.

This implies U ∩ A ⊂ M ∩ A = 0. Contradiction. Hence, A ⊆ 〈U,W 〉. Thus, 〈U,W 〉 =

〈U,W+A〉 = 〈U, V 〉 = L and U∩W = U∩V ∩B ⊆ A∩B = 0. Hence W is a complement

of U .

Theorem 2.2.7. Let L be a semisimple Leibniz algebra over a field F of characteristic

zero, and let x be any element of L which has non-trivial projections on each of the simple

ideal of L. Then there is a y ∈ L such that x and y generate L.

Proof. Let L be a semisimple Leibniz algebra over a field of characteristic zero. This

implies that L is a Lie algebra. Thus, by Theorem 5 of [19], there is a y ∈ L such that x

and y generate L.

Corollary 2.2.8. Let L be a semisimple Leibniz algebra over a field of characteristic

zero. Then L is complemented.

Proof. Let L be a semisimple Leibniz algebra over a field of characteristic zero. This

implies that L is a Lie algebra. Hence, by Corollary 6 in [19], L is complemented.
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Theorem 2.2.9. If a field F is of characteristic zero, then the class of complemented

Leibniz algebras is equivalent to the class of φ−free Leibniz algebras.

Proof. Assume L is a minimal counterexample. L is not semisimple. Let A be a minimal

abelian ideal of L. Since L is φ−free, L = A + M where M is a subalgebra of L and

A ∩ M = 0. Clearly M must be complemented. This means, by Lemma 2.2.6, L is

complemented.
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Chapter 3

Complements of Intervals and

Prefrattini Subalgebras of Solvable

Leibniz Algebras

3.1 Introduction

Throughout this section, L will denote a solvable Leibniz algebra over a field F of charac-

teristic zero. For a subalgebra U of L we denote by [U : L] the set of all subalgebras S of

L with U ⊆ S ⊆ L. We will call this set an interval. We say that [U : L] is complemented

if, for any S ∈ [U : L] there is a T ∈ [U : L] such that S ∩ T = U and 〈S, T 〉 = L. We set

out to study the set:

Ω(U, L) = {S ∈ [U : L] | [S : L] is complemented}.

Example 3.1.1. Let L be the Leibniz algebra with basis {x, y1, y2, y3} with multiplica-
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tions [x, y1] = y2, [x, y2] = y3, and all other 0. Let U = {y2, y3}. The general subalgebra

of L in [U : L] is {αx+ βy1, y2, y3}.

There is a difference of two dimensions between U and L. We need to consider only

the proper subalgebras. Consider the following:

Let S = {αx+ βy1, U}. To find a complement of S we must determine a subalgebra

T such that S ∩ T = U and 〈S, T 〉 = L. Now consider all possibilities for α and β. If

α = 0, T = {x, y2, y3}

β = 0, T = {y1, y2, y3}

α = 0, β = 0, T = L

α 6= 0, β 6= 0, any linearly independent vector containing U will be a complement of S

In any case, the criterion for S to be complemented is satisfied. Hence every possible

subalgebra, S, between U and L is complemented in [U : L].

Thus, [U : L] is complemented when U = {y2, y3}.

Example 3.1.2. Let L be the Leibniz algebra with basis {x, y1, y2, y3} with multiplica-

tions [x, y1] = y2, [x, y2] = y3, and all other 0. Let U = {y2}.

(i) Let S = {y1, y2}. Note that S is a subalgebra between U and L. To find a comple-

ment, T , of S it must contain U and 〈S, T 〉 must equal L. Thus, T must contain y2,

as well as x and y3. Hence T = {x, y2, y3}. Then S ∩ T = U and 〈S, T 〉 = L. Thus

S complemented in [U : L].
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(ii) Now let S = {y1, y2, y3}. When we consider what T must contain in order to com-

plement S, we know that again it must contain x and y2 by nature of containing U

and 〈S, T 〉 needing to equal L. If T contains x and y2, it must also contain y3 due to

the multiplications and requirement that T be a subalgebra. Hence T = {x, y2, y3}.

Then S ∩ T 6= U . Thus, S is not complemented in [U : L].

Therefore, [U : L] is not complemented when U = {y2} because there is a subalgebra

in [U : L] that is not complemented.

Now let’s consider the set Ω(U, L) = {S ∈ [U : L]|[S : L] is complemented}.

Example 3.1.3. Using a previous example where U = {y2}. We will consider various

choices of S and then determine whether or not [S : L] is complemented. Provided that

it is, we will have found a subalgebra contained in Ω(U, L).

(i) Consider S = {y1, y2}. Recall that S is complemented in [U : L]. Let S1 ∈ [S : L].

Let S1 = {y1, y2, y3}. For T to complement S, it must contain a vector x which ap-

pears nontrivially and it must contain y1 and y2. Due to the multiplications and ne-

cessity for T to be a subalgebra, T must also contain y3. Thus, T = {x, y1, y2, y3} =

L. Then S1 ∩ T 6= S. Hence [S : L] is not complemented for S = {y1, y2}.

Therefore S is not contained in Ω(U, L).

(ii) As in example 3.1.1, consider S = {y2, y3} ∈ [U : L]. It was previously determined

that the only proper subalgebra between Sand Lmust be {αx+βy1, y2, y3}. Further-

more, it was determine that for every choice of α and β an appropriate complement

could be found.
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Therefore, we can conclude that S = {y2, y3} is contained in Ω(U, L).

Now we want to consider an S with lower dimension.

(iii) Consider S = {y2}. Let S1 = {y1, y2, y3} and T = {x, y2, y3} (see example ii for

explanation of T ). Then S1 ∩ T 6= S. Thus, [S : L] is not complemented and hence

S = {y2} is not in Ω(U, L).

Therefore, when U = {y2, y3} = Ω(U, L)min = F (U, L).

We denote by [U : L]max the set of maximal subalgebras in [U : L]; that is, the set

of maximal subalgebras of L containing U . Note that if L = A + B where A and B are

subalgebras of L and A ∩B = 0, then we will write L = A⊕ B.

3.2 Complements of subalgebra intervals

Lemma 3.2.1. If S ∈ Ω(U, L), S 6= L then S =
⋂
{M |M ∈ [S : L]max}.

Proof. Let T =
⋂
{M |M ∈ [S : L]max}. Then [S : L] is complemented, since S ∈ Ω(U, L),

by definition, and so T has a complement C ∈ [S : L].

If C 6= L, then C ⊆ M for some M ∈ [S : L]max. Then 〈T, C〉 = M , which contradicts

that C is a complements of T in [S : L]. Hence C = L and S = T ∩ C = T ∩ L = T , as

required.

Example 3.2.2. As in example 5.3.ii, let U = {y2} and S = {y2, y3}. Previously it was

determined that S ∈ Ω(U, L). Clearly, S 6= L. Now consider [S : L]max. The maximal
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subalgebras between S and L are M1 = {y1, y2, y3} and M2 = {x, y2, y3}. Note that

M1 ∩M2 = {y2, y3} = S.

Lemma 3.2.3. If I is an ideal of L and S ∈ Ω(U, L), then S + I ∈ Ω(U, L).

Proof. Let B ∈ [S + I : L] ⊆ [S : L]. Since S ∈ Ω(U, L), B has a complement D ∈ [S : L];

this implies B ∩ D = S and 〈B,D〉 = L. Let C = D + I. Then 〈B,C〉 = L and

B ∩C = B ∩ (D+ I) = B ∩D+ I = S+ I. Thus, C is a complement for B in [S + I : L]

and S + I ∈ Ω(U, L).

Example 3.2.4. Consider ideals of L, where L is the Leibniz algebra with basis

{x, y1, y2, y3} with multiplications [x, y1] = y2, [x, y2] = y3 and all others 0. The only

ideals are {y2, y3}, and {y2, y3}. As in example 5.3.ii, let U = {y2} and S = {y2, y3}. Pre-

viously it was determined that S ∈ Ω(U, L). Regardless of the choice from the possibilities

of ideals, S + I = {y2, y3} ⊆ Ω(U, L).

Lemma 3.2.5. Let A be a minimal ideal of L and let M be a complement of A in L

containing U . Then Ω(U,M) = {S ∈ Ω(U, L)|S ⊆ M}. In particular, Ω(U,M)min =

{S ∈ Ω(U, L)min|S ⊆ M}.

Proof. Since L is solvable, M is a maximal subalgebra of L and L = A⊕M . Suppose that

S ∈ Ω(U, L) with S ⊆ M . Then by the previous lemma, S + A ∈ Ω(U, L). The interval

[S : M ] is lattice isomorphic to [S + I : L] and so is complemented. Hence S ∈ Ω(U,M).

Conversely, let S ∈ Ω(U,M). Then [S : M ] is complemented. (WTS: S ∈ Ω(U, L)

where [S : L] is complemented.) Let B ∈ [S : L]. Then B ∩M ∈ [S : M ], so there exists

a subalgebra D ∈ [S : M ] such that 〈B ∩M,D〉 = M and B ∩D = B ∩M ∩D = S.
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If B * M , thenM is a proper subalgebra of 〈B,D〉. ButM is a maximal subalgebra of

L, so 〈B,D〉 = L and D is a complement of B in [S : L]. Hence [S : L] is complemented.

If B ⊆ M , put C = D + A. Then L = A ⊕M ⊆ 〈B,A〉 ⊆ 〈B,D + A〉 = 〈B,C〉, so

〈B,D+A〉 = L. Also, B∩C = B∩(D+A) = B∩M∩(D+A) = B∩(D+M∩A) = B∩D =

S, yielding that C is a complement of B in [S : L] and [S : L] is complemented.

Example 3.2.6. Let U = {y2}. Let A = {y3}, a minimal ideal in L. Then M = L, is a

complement to A since M must contain U , as well as x and y1. Thus Ω(U,M) = Ω(U, L),

so as seen in previous examples, Ω(U,M) = Ω(U, L) = {y2, y3}.

Lemma 3.2.7. Let A be a minimal ideal of L and let S ∈ Ω(U, L)min with A * S. Then

there is an M ∈ [S : L]max such that A * M .

Proof. The proof follows from Lemma 3.2.1.

Example 3.2.8. Let L = L1 ⊕ L2 where L1 = 〈a, a2〉 and L2 = 〈b, b2, b3〉 with multipli-

cations aa = a2, aa2 = a2, bb = b2, bb2 = b3, bb3 = b3 and all other multiplications are 0.

Let U = {b2}. If A is the minimal ideal of L, then A = {a2}. If S ∈ Ω(U, L)min, then

S = {b2, b3}. Note that A * S.

Consider [S : L]max. Then M = L2 ⊕{a− a2} ∈ [S : L]max. Note that A * M . Hence

we have an example of Lemma 3.2.7.

Example 3.2.9. Let L = 〈a, a2, a3〉 with multiplications aa = a2, aa2 = a3, aa3 = a3.

Then let U = {a2 − a3}. Note that if A is the minimal ideal of L that A = {a3}. Now

consider the set Ω(U, L)min. If S ∈ Ω(U, L)min, then S = {a − a2, a − a3}. Note that

A * S. S is also equal to [S : L]max. Hence M = S and A * M .
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Lemma 3.2.10. Let A be a minimal ideal of L. Then the following are equivalent:

(i.) A * S for some S ∈ Ω(U, L)min;

(ii.) A * M for some M ∈ [U : L]max; and

(iii.) for every S ∈ Ω(U, L)min there is a complement of A in L containing S.

Proof. (i → ii) This follows from Lemma 3.2.7.

(ii → iii) Assume A * M for some M ∈ [U : L]max. Then L = A ⊕ M . Let

S ∈ Ω(U, L)min. Suppose A ⊆ S. Then S = A⊕M ∩ S and M ∩ S = S/A so the interval

[S : L] is lattice isomorphic to [M ∩S : M ]. It follows that M ∩S ∈ Ω(U,M). But Lemma

3.2.5 gives that M ∩ S ∈ Ω(U, L) which contradicts the minimality of S. Hence A * S

and Lemma 3.2.7 gives a complement of A containing S.

(iii → i) Trivial.

Lemma 3.2.11. If A is an ideal of L and S ∈ Ω(U, L)min then S+A ∈ Ω(U +A,L)min.

Proof. We want to show (S + A)/A ∈ Ω((U + A)/A, L/A)min and so we can suppose A

is a minimal ideal of L. The result is clear is A ⊆ S, since then U + A ⊆ S (because

U ⊆ S too). So, assume A * S. Then there is a complement M of A in L, by Lemma

3.2.10, and L = A ⊕M . Moreover, S + A ∈ Ω(U + A,L). Choose C ∈ Ω(U + A,L)min

such that C ⊆ S+A. Then U ⊆ M ∩C ⊆ S ⊆ M and the interval [M ∩C : M ] is lattice

isomorphic to [C : L]. It follows that M ∩ C ∈ Ω(U,M) and so M ∩ C ∈ Ω(U, L), by

Lemma 3.2.5. But S ∈ Ω(U, L)min, which yields that M ∩C = S; hence, C = S +A.

We say that L is completely solvable if L2 is nilpotent. If char(F ) = 0, then all Leibniz

algebras are completely solvable because L2 is always nilpotent.
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Theorem 3.2.12. Let L be completely solvable and let U be a subalgebra of L. Then

Ω(U, L)min = {F (U, L)}. In particular, if U = 0 then Ω(U, L)min = {F (L)}.

Proof. Put B = Ω(U, L)min, C = F (U, L). Then F (U, L) ⊆ B and so C ⊆ B, by Lemma

3.2.1. We use induction on the dimension of L. Suppose first that there is a minimal

ideal A of L with A ⊆ C. Then B/A ∈ Ω((U +A)/A, L/A)min, by Lemma 3.2.11, and so

B/A = F ((U + A)/A, L/A), by the inductive hypothesis. Then it is clear that B = C.

Now suppose that no such minimal ideal exists. Then L is φ-free and so L is com-

plemented by Theorem 2.2.1. Thus there is a subalgebra V such that 〈C, V 〉 = L and

C ∩ V = 0. It follows that 〈C,U + V 〉 = L and C ∩ (U + V ) = U + C ∩ V = U , hence

C ∈ [U : L] and [C : L] is complemented. Thus, C ∈ Ω(U, L) and the minimality of B

yields that B = C.

Example 3.2.13. Let L be a Leibniz algebra with basis {x, y1, y2, y3} with multiplica-

tions [x, y1] = y2, [x, y2] = y3 with all others 0. Recall that the Frattini subalgebra of a

Leibniz algebra is the intersection of maximal subalgebras. Consider the following:

(i) Let U = {0}. Then F (U, L) = {y2, y3} since the maximal subalgebras are {x, y2, y3}

and {y1, y2, y3}. As seen in previous examples in this section, Ω(U, L)min = {y2, y3}.

Hence F (L) = Ω(U, L)min when U = {0}.

(ii) Let U = {y2, y3}. Then F (U, L) = F (L) and Ω(U, L)min = {y2, y3}, as in the

previous example. Hence F (U, L) = Ω(U, L)min when U = {y2, y3}.

(iii) Let U = {y1, y2, y3}. Since the set
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Ω(U, L)min = {S ∈ [U : L]|[S : L]is complemented}min,

we find in this case when U contains three elements that Ω(U, L)min = ∅. Also,

F (U, L) = ∅, because there are no subalgebras, hence no maximal subalgebras,

between U and L. Thus, the theorem remains true. A similar argument can be held

for U = {x, y2, y3}.

Example 3.2.14. Let L be the cyclic Leibniz algebra L = 〈a, a2〉 with multiplications

aa2 = a2, aa = a2 and all others 0. Note that the maximal subalgebras of L are 〈a− a2〉

and 〈a2〉. The intersection of these subalgebras is 0. Thus, F (L) = {0}. Consider the

following:

(i) Let U = {0}. In this case, F (U, L) = F (L) = {0}. Consider Ω(U, L)min. Since

nothing is complemented other than {0} when U = {0}, Ω(U, L)min = {0}. Thus,

F (L) = Ω(U, L)min for U = {0}.

(ii) Let U = {a2}. Now if we consider F (U, L), we get only one maximal subalgebra

that contains U and hence F (U, L) = {a2}. Checking to see if {a2} is complemented

in L, we find that it is complemented by all of L. Thus, {a2} ∈ Ω(U, L). Since {a2}

is the only 1-dimensional complemented subalgebra from L when U = {a2}, we can

determine that Ω(U, L)min = {a2}. Thus, F (U, L) = Ω(U, L)min for U = {a2}.
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3.3 U-prefrattini subalgebras

Let 0 = A0 ⊂ A1 ⊂ · · · ⊂ An = L be a fixed chief series for L. We say Ai/Ai−1 is a

Frattini chief factor if Ai/Ai−1 ⊆ F (L/Ai−1); it is complemented if there is a maximal

subalgebra M of L such that L = Ai +M and Ai ∩M = Ai−1. When L is solvable it is

easy to see that a chief factor is Frattini if and only if it is not complemented. This can

be generalized in the following way.

The factor algebra Ai/Ai−1 is called a U-frattini chief factor if Ai ⊆ F (U+Ai−1, L) or

if U+Ai−1 = L. If Ai/Ai−1 is not a U-Frattini chief factor there is anM ∈ [U+Ai−1 : L]max

for which Ai * M ; that is, M is a complement of the chief factor Ai/Ai−1.

Lemma 3.3.1. Let A1, A2 be distinct minimal ideals of the solvable Lie algebra L. Then

there is a bijection θ : {A1, (A1+A2)/A1} → {A2, (A1+A2)/A2} such that corresponding

chief factors have the same dimension and U-Frattini chief factors correspond to another.

Proof. Assume U 6= L. Put A = A1 ⊕ A2. Suppose first that A1 is a U-Frattini chief

factor. Then A1 ⊆ F (U, L). Thus, A ⊆ F (U + A2, L) and A/A2 is a U-Frattini chief

factor.

If A/A1 is also a U-Frattini chief factor, then A ⊆ F (U + A1, L). This implies A ⊆

F (U, L) and all four factors are U-Frattini.

In this case, we can choose θ so that θ(A1) = A/A2 and θ(A/A1) = A2.

If A/A1 is not a U-Frattini chief factor, then nor is A2, by the same argument as

above, and so the same choice of theta is sufficient; likewise if none of the factors are

U-Frattini chief factors.

The remaining case is where A1 and A2 are not U-Frattini chief factors but A/A2 is.
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Then A1 * F (U, L), A2 * F (U, L) and either A ⊆ F (U + A2, L) or U + A2 = L. Thus

there exists M ∈ [U : L]max such that A1 * M , giving L = A1 ⊕M .

Put A3 = M ∩ A. Then A3 ⊕ A1 = M ∩ A ⊕ A1 = (M + A1) ∩ A = A and so

A3
∼= A/A1

∼= A2. If A3 = A2, then U + A2 ⊆ M which gives A ⊆ M - a contradiction.

Hence A3 6= A2, A = A3 ⊕ A2 and A3
∼= A/A2

∼= A1. It follows that all chief factors

have the same dimension.

If U + A1 = L, then A/A1 is a U-Frattini chief factor, so we can choose θ such that

θ(A1) = A2 and θ(A/A1) = A/A2.

If U +A1 6= L, let N ∈ [U +A1, L]max. If A2 * N then L = A2 ⊕N and N ∩A = A1.

But A ⊆ F (U + A2, L) implies that A ⊆ F (U, L) + A2, when A + A2 + F (U, L) ∩ A. It

follows that F (U, L)∩A ⊆ N ∩A = A1, giving F (U, L)∩A = A1. But now A1 ⊆ F (U, L)

- a contradiction. Therefore, we have A2 ⊆ N and so A ⊆ N . Thus, A ⊆ F (U + A1, L);

that is, A/Ai is a U-Frattini chief factor. In this case, we can again choose θ such that

θ(A1) = A2 and θ(A/A1) = A/A2.

Theorem 3.3.2. Let

0 < A1 < A2 < · · · < An = L

0 < B1 < B2 < · · · < Bn = L

be chief series for the solvable Leibniz algebra L. Then there is a bijection between the

chief factors of these two series such that corresponding factors have the same dimension

and such that the U-Frattini chief factors in the two series correspond.

Proof. These two series have the same length by Lemma 3.3.1. We induct on n. This is
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clear for n = 1. Let n > 1 and suppose the result holds for all solvable Leibniz algebras

with chief series of length less than or equal to n− 1.

If A1 = B1, then applying the inductive hypothesis to L/A1 gives a suitable bijection

between factors above A1, and then we can map A1 to B1, and we have the same result.

So suppose A1 and B1 are distinct and put A = A1 ⊕ B1. Then A/A1 and A/B1 are

chief factors of L and there are chief series of the form 0 < A1 < A < C3 < · · · < Cn = L

and 0 < B1 < A < C3 < · · · < Cn = L.

Define an equivalence relation on the chief series of L by saying that two such series

are equivalent if there is a bijection between their chief factors satisfying the requirements

of the theorem.

Since the series 0 < A1 < A2 < · · · < An = L and 0 < A1 < A < C3 < · · · < Cn = L

have a minimal ideal in common, they are equivalent. Similarly, series 0 < B1 < B2 <

· · · < Bn = L and 0 < B1 < A < C3 < · · · < Cn = L are equivalent. Moreover, since

series 0 < A1 < A < C3 < · · · < Cn = L and 0 < B1 < A < C3 < · · · < Cn = L coincide

above A they are also equivalent by Lemma 3.3.1. Hence series 0 < A1 < A2 < · · · <

An = L and 0 < B1 < B2 < · · · < Bn = L are equivalent.

Define the set I by i ∈ I if and only if Ai/Ai−1 is not a U-Frattini chief factor of L.

For each i ∈ I say Mi = {M ∈ [U + Ai−1 : L]max|Ai * M}. Then B is a U-prefrattini

subalgebra of L if B =
⋂

i∈I Mi for some Mi ∈ Mi. If U = {0}, we will refer to B simply

as a prefrattini subalgebra of L.

The subalgebra B avoids Ai/Ai−1 if B ∩ Ai = B ∩ Ai−1; likewise, B covers Ai/Ai−1

if B + Ai = B + Ai−1. Then we have the following important property of U-prefrattini
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subalgebras of L.

Lemma 3.3.3. If B is a U-prefrattini subalgebra of L then it covers all U-Frattini chief

factors of L in 0 < A1 < A2 < · · · < An = L and avoids the rest.

Proof. Let B be a U -prefrattini subalgebra of L and let Ai/Ai−1 be a chief factor of L.

If it is U-Frattini chief factor then either Ai ⊆ F (U + Ai−1, L) or else U + Ai−1 = L. In

the first case, every maximal subalgebra of L that contains U + Ai−1 also contains Ai,

and so Ai ⊆ B. In either case, B covers Ai/Ai−1. If it is not U-Frattini chief factor we

have B ⊆ Mi where L = Ai +Mi and AI ∩Mi = Ai−1. Hence B ∩ Ai = B ∩Mi ∩ Ai =

B ∩ Ai−1 ⊆ B ∩ Ai−1, and so B avoids Ai/Ai−1.

The next four results show how U-prefrattini subalgebras relate to the previous sec-

tion.

Lemma 3.3.4. Let B be a U-prefrattini subalgebra of L. Then

dim(B) =
∑

i 6∈I
(dimAi − dimAi−1);

in particular, all U-prefrattini subalgebras of L have the same dimension.

Proof. We use induction on dim(L). The result is clear if L is abelian, so suppose it holds

for Leibniz algebras of smaller dimension then L. It is easy to check that (B +A1)/A1 is

a (U + A1/A1)-prefrattini subalgebra of L/A1 and so

dim(
B + A1

A1

) =
∑

i∈I,i 6=1

(dim(Ai − dim(Ai−1)

by the inductive hypothesis.
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If A1/A0 is a U-Frattini chief factor of L, the B covers A1/A0, whence B = B + A1

and

dimB = dimA1 + dim(
B + A1

A1
) =

∑

i∈I
(dimAi − dimAi−1).

If A1/A0 is not a U-Frattini chief factor of L, then B avoids A1/A0 whence B ∩ A1 = 0

and

dimB = dim(
B + A1

A1
) =

∑

i∈I
(dimAi − dimAi−1).

Let Π(U, L) be the set of U-prefrattini subalgebras of L.

Lemma 3.3.5. Π(U, L) ⊆ Ω(U, L).

Proof. Use induction on dimL. The result is clear if L is abelian, so suppose it holds for

Leibniz algebras of dimension less than that of L. Let B ∈ Π(U, L). Then

B + A1

A1
∈ Π(

U + A1

A1
,
L

A1
) ⊆ Ω(

U + A1

A1
,
L

A1
)

whence B + A1 ∈ Ω(U, L). If A1 ⊆ B we have B ∈ Ω(U, L). So suppose that A1 * B.

Then B does not cover A1/A0, so A1/A0 is not a U-Frattini chief factor of L.

It follows that 1 ∈ I, and so there is a maximal subalgebra M of L with B ⊆ M and

A1 * M . But now L = A1 ⊕ M and the intervals [B + A1 : L] and [B : M ] are lattice

isomorphic, which yields that [B : M ] is complemented.

By Lemma 3.2.5, B ∈ Ω(U, L) again.

Lemma 3.3.6. Ω(U, L)min ⊆ Π(U, L)
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Proof. Let B ∈ Ω(U, L)min and let Ai/Ai−1 be a chief factor of L. By Lemma 3.2.11,

(B+Ai−1

Ai−1

) ∈ Ω(U+Ai−1

Ai−1

, L
Ai−1

)min. Applying Lemma 3.2.10 to the minimal ideal Ai/Ai−1

of L/Ai−1. If Ai/Ai−1 is a U-Frattini chief factor then it doesn’t have a complement in

L/Ai−1 and Lemma 3.2.10 gives that Ai ⊆ B + Ai−1, whence Ai +B = Ai−1 +B and B

covers Ai/Ai−1.

If Ai/Ai−1 is not U-Frattini chief factor then it has a complement Mi/Ai−1 in L/Ai−1

and Lemma 3.2.10 gives that it has such a complement containing (B+Ai−1)/Ai−1; that

is L = Mi +Ai, Mi ∩Ai = Ai−1, and B+Ai−1 ⊆ Mi. But now B ∩Ai ⊆ B ∩Ai +Ai−1 =

(B + Ai−1) ∩ Ai ⊆ Mi ∩ Ai = Ai−1. It follows that B ∩ Ai ⊆ B ∩ Ai = B ∩ Ai−1 and

B avoids Ai/Ai−1. Clearly, Mi ∈ Mi and B ⊆ C = ∩i∈IMi ∈ Π(U, L). But B covers

or avoids the same chief factors of 0 < A1 < A2 < · · · < An = L as C, so the proof of

Lemma 3.3.4 shows dim B = dim C. It follows that B = C ∈ Π(U, L).

Combining the previous three lemmas we get the following result.

Theorem 3.3.7. Ω(U, L)min = Π(U, L).

This result shows that the definition of U-prefrattini subalgebras does not depend on

the choice of chief series.

Corollary 3.3.8. If A is an ideal of L and S ∈ Π(U, L) then (S + A)/A ∈ Π((U +

A)/A, L/A).

Proof. This follows from Theorem 3.3.7 and Lemma 3.2.11.

Corollary 3.3.9. For every solvable Leibniz algebra L, F (U, L) =
⋂

B∈Π(U,L)B.
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Proof. Put P =
⋂

B∈Π(U,L) B. Then F (U, L) ⊆ P , by Theorem 3.3.7 and Lemma 3.2.1.

Let M ∈ [U : L]max. There is an I such that Ai−1 ⊆ M but Ai * M (1 ≤ i ≤ n). Then

Ai/Ai−1 is not a U-Frattini chief factor of L, so i ∈ I and M ∈ Mi. Thus there exists

B ∈ Π(U, L) such that B ⊆ M , whence P ⊆ M . Hence P ⊆ F (U, L).

Corollary 3.3.10. Let L be completely solvable and let U be a subalgebra of L. Then

Π(U, L) = {F (U, L)}. In particular, Π(0, L) = {F (L)}.

Proof. This follows from Theorem 3.3.7 and Theorem 3.2.12.

3.3.1 Examples

Example 3.3.11. Let L be the cyclic Leibniz algebra L = 〈a, a2〉 with multiplications

aa2 = a2, aa = a2 and all others 0. Note that the maximal subalgebras of L are 〈a− a2〉

and 〈a2〉. The intersection of these subalgebras is contains only 0. Thus, F (L) = {0}. A

fixed chief series for L is 0 ⊆ {a2} ⊆ L. We will consider 0 = A0, {a
2} = A1, and L = A2.

Consider F (A2/A1). We find that F (A2/A1) = {a2}. To determine if A2/A1 is a

Frattini chief factor we consider whether or not A2/A1 ⊆ F (L/A1). In this case we find

that {a2} ⊆ {a2}. Hence A2/A1 is a Frattini chief factor.

Consider F (A1/A0). Here we find F (A1/A0) = {a2}. Further we see A1/A0 ⊆ F (L/A0),

since {a2} * {0}. Thus we determine that A1/A0 is not a Frattini chief factor. This leads

us to considering whether or not the factor algebra is complemented. To be complemented

we must find a maximal subalgebra M such that L = A1 +M and A1 ∩M = A0. If we

take M = {a− a2}, we find that A1/A0 is complemented. This result is consistent with

the fact that we previously determined if L is solvable, a chief Factor is Frattini if and

only if it is not complemented.
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For chief factors that are not Frattini, they still could be U-frattini chief factors. Hence

we next want to determine whether or not A1/A0 is a U-frattini chief factor. We get to

make our own selection for U so long as it is a subalgebra of L. To determine whether or

not a chief factor is U-frattini, we consider a factor algebra Ai/Ai−1 and check to see if

Ai ⊆ F (U + Ai−1, L) or if U + Ai−1 = L. If so, then the chief factor is U-frattini.

For A1/A0, we want to consider a U such that A1 = F (U + A0, L) or U + A0 = L.

In this case, we will use U = {a2}. We check to see if A1 ⊆ F (U + A0, L). Here {a2} ⊆

F (L) = {a2}. Hence A1/A0 is a U-frattini chief factor when U = {a2}.

Now we will consider if A2/A1 is a U-Frattini chief factor when U = {a2}. We find

that A2 * F (U + A1, L) and that U + A1 6= L. Hence A2/A1 is not a U-Frattini chief

factor when U = {a2}.

We defined the set I by i ∈ I if and only if Ai/Ai−1 is not a U-frattini chief factor

of L. Here I = {2} because A2/A1 is not a U-frattini chief factor but A1/A0 is.

From here we consider the set

M2 = {M ∈ [U + A1, L]max : A2 * M}.

M = {{a2}}

.

From here we define B =
⋂

i∈I
Mi for someMi ∈ Mi to be a U-prefrattini subalgebra.

For this example, B = {a2}.

We now turn to Lemma 3.3.4 to check the dimension of B. Lemma 3.3.4 guarantees

that the dimension of our prefrattini subalgebra will be equal to
∑

i 6∈I
(dimAi − Ai−1).
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dimB =
∑

i 6∈I

(dimAi −Ai−1)

1 = (dim(A1)− dim(A0))

1 = (1− 0)

Now we can consider if our prefrattini subalgebra avoids Ai/Ai−1 meaning B ∩ Ai =

B ∩ Ai−1 or if B covers Ai/Ai−1 meaning B + Ai = B + Ai−1. We first consider if

B ∩ A2 = B ∩ A1. This statement is true. Next we consider B ∩ A1 = B ∩ A0. This

statement indicates {a2} = {0}, which is false. Hence we conclude that B avoids A2/A1

but does not avoid A1/A0. Now we consider whether or not B covers A1/A0. We check

B + A1 = B + A0. This is true. Hence B covers A1/A0.

Since B covers A1/A0, we know by Lemma 3.3.3 that B must be a U-frattini chief

factor and since B avoids A2/A1 we know it is not a U-frattini chief factor. This agrees

with all that was previously discussed in this example.

Finally we consider the set Π(U, L) which is the set of U -prefrattini subalgebras. For

this example, Π(U, L) = {a2} for U = {a2}.

Finally, we check to see whether our example validates the important theorem of this

section: Ω(U, L)min = Π(U, L) and even more specifically, we check the corollary that

states that when L is completely solvable Π(U, L) = {F (U, L)}. Recall that solvable

Leibniz algebras are always completely solvable. In each case, the statements are true.

Recall from Example 3.2.14 (ii) that Ω(U, L)min = {a2}. Hence we have connected our
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concept of the set of prefrattini subalgebras in this chapter to our concept of the set of

subalgebras that are complemented in an interval.

Example 3.3.12. We will now consider a 3-dimensional cyclic Leibniz algebra of type (ii)

as mentioned in the Cyclic Leibniz Algebra section of the Introduction chapter. There

it was determined that a cyclic Leibniz algebra, L = {a, a2, a3} with multiplications

aa = a2, aa2 = a3, and aa3 = a3, has maximal subalgebras L2 and {a− a2, a− a3}. This

leads to the fact that its Frattini subalgebra is F (L) = {a2 − a3}.

We want to consider the following fixed chief series: 0 ⊆ F (L) ⊆ {a2, a3} ⊆ L

First we want to check to see if there are any Frattini chief factors. If a chief factor of

this solvable Leibniz algebra is Frattini, we have established that it is not complemented.

If the chief factor is not Frattini, we want to investigate whether or not it is complemented.

Consider F (A3/A2). For A3/A2 to be a Frattini chief factor A3/A2 ⊆ F (L/A2); how-

ever, A3/A2 * F (L/A2). Hence A3/A2 is not a Frattini chief factor.

Consider F (A2/A1). In this case, A2/A1 ⊆ F (L/A1). Hence A2/A1 is a Frattini chief

factor.

Consider F (A1/A0). Here we find A1/A0 ⊆ F (L/A0). Hence A1/A0 is a Frattini chief

factor.

Next we will determine whether the chief factor A3/A2 is complemented. To do this we

are looking to see if there is a maximal subalgebra, M1 = {a2, a3} orM2 = {a−a2, a−a3},

of L such that L = Ai +M and Ai ∩M = Ai−1.
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Since A3/A2 = {a}, we consider M1.

L = A3 +M2 andA3 ∩M2 = A2

Hence A3/A2 is a complemented chief factor.

For chief factors that are not Frattini, they still could be U-frattini chief factors. Hence

we next want to determine whether or not A3/A2 is a U-frattini chief factor. We get to

make our own selection for U so long as it is a subalgebra of L. To determine whether

or not a chief factor is U-frattini, we must consider a factor algebra Ai/Ai−1 to see if

Ai ⊆ F (U + Ai−1, L) or if U + Ai−1 = L. If so, then the chief factor is U-frattini.

We will choose U = {a2, a3}.For A3/A2, we want to consider A3 = F (U + A2, L) or

U + A2 = L. Neither of these are possible for our chosen U . Hence there must be an

M ∈ [U +Ai−1 : L]max for which Ai * M ; meaning that M is a complement of the chief

factor Ai/Ai−1. In this case, M = {a− a2, a− a3}. This holds for any choice of U . Note

that A2/A1 and A1/A0 are both U-Frattini factors under our chosen U .

We defined the set I by i ∈ I if and only if Ai/Ai−1 is not a U-frattini chief factor

of L. Here I = {3} because A3/A2 is not a U-frattini chief factor but A2/A1 and A1/A0

are.

From here we consider the set

M3 = {M ∈ [U + A2, L]max : A3 * M}.

M = {a2, a3}.
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From here we define B =
⋂

i∈I
Mi for someMi ∈ Mi to be a U-prefrattini subalgebra.

For this example, there is only one U-prefrattini subalgebra and it is B = {a2, a3}.

We now turn to Lemma 3.3.4 to check the dimension of B. Lemma 3.3.4 guarantees

that the dimension of our prefrattini subalgebra will be equal to
∑

i 6∈I
(dimAi − Ai−1).

dimB =
∑

i 6∈I

(dimAi −Ai−1)

2 = (dim(A2)− dim(A1)) + (dim(A1)− dim(A0))

2 = (2− 1) + (1− 0)

Now we can consider if our prefrattini subalgebra avoids Ai/Ai−1 meaning B ∩ Ai =

B ∩ Ai−1 or if B covers Ai/Ai−1 meaning B + Ai = B + Ai−1. We first consider if

B ∩ A2 = B ∩ A1. This statement is true. Next we consider B ∩ A1 = B ∩ A0. This

statement is also true. Hence we conclude that B covers A2/A1 and A1/A0. If we consider

the statement B + A3 = B + A2, we will find that it is false. Since B does not cover

A3/A2, we will want to consider whether or not it avoids it. We check B ∩A3 = B ∩A2.

This is true. Hence B avoids A3/A2.

Since B covers A2/A1 and A1/A0, we know by Lemma 3.3.3 that they must be a

U-frattini chief factors and since B avoids A3/A2 we know it is not a U-frattini chief

factor. This agrees with all that was previously discussed in this example.

Finally we consider the set Π(U, L) which is the set of U -prefrattini subalgebras. For

this example, Π(U, L) = {a2, a3} for U = {a2, a3}.
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Finally, we check to see whether our example validates the important theorem of this

section: Ω(U, L)min = Π(U, L) and even more specifically, we check the corollary that

states that when L is completely solvable Π(U, L) = {F (U, L)}. Recall that solvable

Leibniz algebras are always completely solvable. In each case, the statements are true.

Hence we have connected our concept of the set of prefrattini subalgebras in this chapter

to our concept of the set of subalgebras that are complemented in an interval.

Example 3.3.13. We will now consider a 4-dimensional nilpotent Leibniz algebra. This

algebra, L = {x, y1, y2, y3} with multiplications xy1 = y2, xy2 = y3, and xy3 = 0 and all

other multiplication zero and has maximal subalgebras {x, y2, y3} and {y1, y2, y3}. This

leads to the fact that its Frattini subalgebra is F (L) = {y2, y3}.

We want to consider the following fixed chief series:

0 ⊆ {y3} ⊆ {y2, y3} ⊆ {x, y2, y3} ⊆ L

First we want to check to see if there are any Frattini chief factors. If a chief factor of

this solvable Leibniz algebra is Frattini, we have established that it is not complemented.

To determine whether a chief factor is U-Frattini we must select and U and then

check to see for chief factor Ai/Ai−1 if Ai ⊆ F (U +Ai−1, L). We will select U = {y2, y3}.

Going through this process leads us to find that A4/A3 and A3/A2 are U-Frattini chief

factors and A2/A1 and A1/A0 are not U-Frattini chief factors.

We defined the set I by i ∈ I if and only if Ai/Ai−1 is not a U-frattini chief factor of

L. Here I = {3, 4} because A4/A3 and A3/A2 is not a U-frattini chief factor but A2/A1

and A1/A0 are.
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From here we consider the set

M3 = {M ∈ [U + A2, L]max : A3 * M}.

M = {y1, y2, y3}.

We also must consider the set

M4 = {M ∈ [U + A3, L]max : A4 * M}.

M = {x, y2, y3}.

From here we define B =
⋂

i∈I
Mi for someMi ∈ Mi to be a U-prefrattini subalgebra.

For this example, there is only one U-prefrattini subalgebra and it is B = {y2, y3}.

We now turn to Lemma 3.3.4 to check the dimension of B. Lemma 3.3.4 guarantees

that the dimension of our prefrattini subalgebra will be equal to
∑

i 6∈I
(dimAi − Ai−1).

dimB =
∑

i 6∈I

(dimAi −Ai−1)

2 = (dim(A2)− dim(A1)) + (dim(A1)− dim(A0))

2 = (2− 1) + (1− 0)

Now we can consider if our prefrattini subalgebra avoids Ai/Ai−1 meaning B ∩ Ai =

B ∩ Ai−1 or if B covers Ai/Ai−1 meaning B + Ai = B + Ai−1. We first consider if

B ∩ A3 = B ∩ A2. This statement is true. Next we consider B ∩ A3 = B ∩ A4. This
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statement is also true. Hence we conclude that B avoids A4/A3 and A3/A2. If we consider

the statement B∩A1 = B∩A2, we will find that it is false. Since B does not avoid A2/A1,

we will want to consider whether or not it covers it. We check B + A2 = B + A1. This

is true. Hence B covers A2/A1. A similar argument can be made for A1/A0 and we can

determine that B covers A1/A0 also.

Since B covers A2/A1 and A1/A0, we know by Lemma 3.3.3 that they must be a

U-frattini chief factors and since B avoids A3/A2 and A4/A3, we know they are not a

U-frattini chief factors. This agrees with all that was previously discussed in this example.

Finally we consider the set Π(U, L) which is the set of U -prefrattini subalgebras. For

this example, Π(U, L) = {y2, y3} for U = {y2, y3}.

Finally, we check to see whether our example validates the important theorem of this

section: Ω(U, L)min = Π(U, L) and even more specifically, we check the corollary that

states that when L is completely solvable Π(U, L) = {F (U, L)}. Recall that solvable

Leibniz algebras are always completely solvable. Also, recall from Example 3.2.13 that

Ω(U, L)min = {y2, y3}. In each case, the statements are true. Hence we have connected

our concept of the set of prefrattini subalgebras in this chapter to our concept of the set

of subalgebras that are complemented in an interval.
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Chapter 4

Solvable Complemented Leibniz

Algebras

4.1 Introduction

Throughout this chapter, L will denote a solvable Leibniz algebra over a field F of

characteristic zero. We define the nilpotent residual, L∞, of L to be the smallest ideal of

L such that L/L∞ is nilpotent. Clearly this is the intersection of the terms of the lower

central series for L. The derived series for L is the sequence of ideals L(i) of L defined

by L(0) = L, L(i+1) = [L(i), L(i)] for i ≥ 0; we will also write L2 for L(1). If L(n) = 0 but

L(n−1) 6= 0 we say that L has derived length n. We say that L is completely solvable if L2

is nilpotent. Algebra direct sums will be denoted by ⊕, whereas vector space direct sums

will be denoted by ∔.

The Frattini subalgebra of L, φ(L), is the intersection of the maximal subalgebras of

L. When L is solvable this is always an ideal of L. This is true since we are in a field of
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characteristic zero. For a subalgebra U of Lwe denote by [U : L] the set of all subalgebras

S of L with U ⊆ S ⊆ L. We say that [U : L] is complemented if, for any S ∈ [U : L]

there is a T ∈ [U : L] such that S ∩ T = U and 〈S, T 〉 = L. We denote by [U : L]max

the set of maximal subalgebras in [U : L], that is, the set of maximal subalgebras of L

containing U .

Let 0 = A0 ⊂ A1 ⊂ · · · ⊂ An = L be a chief series for L. We say that Ai/Ai−1 is

a Frattini chief factor is Ai/Ai−1 ⊆ φ(L/Ai−1); it is complemented if there is a maximal

subalgebra M of L such that L = Ai +M and Ai ∩M = Ai−1. When L is solvable it is

easy to see that a chief factor is Frattini if and only if it is not complemented.

We define the set I by i ∈ I if and only if Ai/Ai−1 is not a Frattini chief factor

of L. For each i ∈ I put Mi = {M ∈ [Ai−1, L]max : Ai * M}. Then B is a prefrattini

subalgebra of L if B =
⋂

i∈I
Mi for some Mi ∈ Mi. It was shown in the previous section

that the definition of prefrattini subalgebras does not depend on the choice of chief series.

The subalgebra B avoids Ai/Ai− 1 if B ∩Ai = B ∩Ai−1; likewise, B covers Ai/Ai−1

if B + Ai = B + Ai−1. Let Π(L) be the set of prefrattini subalgebras of L.

4.2 Prefrattini Subalgebras

Theorem 4.2.1. Let L be a solvable Leibniz algebra over a field F .

(i) If B is a prefrattini subalgebra of L, then it covers all Frattini chief factors of L

and avoids the rest.

(ii) If B is a prefrattini subalgebra of L, then dimB =
∑

i 6∈I
(dimAi − dimAi−1); in

particular, all prefrattini subalgebras of L have the same dimension.
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(iii) If A is an ideal of L and S ∈ Π(L), then (S + A)/A ∈ Π(L/A).

(iv) F (L) = ∩B∈Π(L)B.

(v) If L is completely solvable, then Π(L) = {F (L)}.

(vi) L is complemented if and only if Π(L) = {0}.

If L2 is not nilpotent, then Π(L) can contain more than one element (see previous

section).

4.3 The Prefrattini Residual

Now we will use the ideas of the previous section to again examine complemented Leibniz

algebras, as previously studied in section 2.

Theorem 4.3.1. Let L be a solvable Leibniz algebra over any field F . Then the following

are equivalent:

(i) L is complemented.

(ii) The prefrattini subalgebras of L are all trivial.

(iii) L and all of its epimorphic images are φ-free.

(iv) L splits over all of its ideals.

Proof. (i) ⇒ (ii): If L is complemented, then Π(L) = {0}, by Theorem 4.2.1 (vi).

(ii) ⇒ (iii): Assume Π(L) = {0}, let L/B be any epimorphic image of L, and suppose

that F (L/B) 6= 0. Then there is a Frattini cheif factor of L, C/B, contained in F (L/B).
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But now any prefrattini subalgebra has dimiension great than or equal to dim(C/B), by

Theorem 4.2.1 (ii), which is a contradiction. Thus, (iii) is established.

(iii) ⇒ (iv): Suppose that L and all of its epimorphic images are φ-free. We use

induction on the dimL. If dimL = 1, then the result is clear. Assume it holds for a

Leibniz algebra of dimension less than dimL, and let B be a non-trivial ideal of L. If

B is a minimal ideal of L, then the result follows from Lemma 4.3.2 found below. If B

is not a minimal ideal, let A be a minimal ideal contained in B. Then L/A splits over

B/A by the inductive hypothesis. Hence there is a subalgebra C of L with A ⊂ C such

that L = B + C and B ∩ C = A. Moreover, there is a subalgebra M of L such that

L = A∔M , by Lemma 4.3.2. But now C = A∔ (M ∩ C), thus, L = B ∔ (M ∩ C) and

(iv) is established.

(iv) ⇒ (i): Suppose that L splits over all of its ideals. We use induction on the dimL

again. Th result is clear if dimL = 1. Assume it holds for a Leibniz algebra of dimension

less than dimL. Then L = A⊕M for some subalgebra M of L. Hence M ∼= L/A splits

over all its ideals and so is complemented by the inductive hypothesis. It follows from

Lemma 2.2.6 that L is complemented.

Lemma 4.3.2. Let B be a zero ideal (B2 = 0) of an algebra L such that B ∩ Φ(L) = 0.

Then there is a subalgebra C of L such that L = B ∔ C.

Proof. Let C be a subalgebra of A that is minimal with respect to the property that

L = B + C. Then, by [[4], Lemma 3.6], B ∩ C ⊆ φ(C). Now B ∩ C is an ideal of C and

(B ∩ C)B + B(B ∩ C) ⊆ B2 = 0, so B ∩ C is an ideal of A. Hence using, [ [4], Lemma

3.7], B ∩ C ⊆ φ(L) ∩ B = 0 and L = B ∔ C.
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We say that L is elementary if φ(B) = 0 for every subalgebra B of L. Let A be a

vector space of finite dimension and letB be an abelian completely reducible subalgebra of

gl(A). A construction of solvable elementary Lie algebras is given in [18]. Let A be a vector

space and let B be an abelian Lie subalgebra of gl(A) which act completely reducibly on

A. Forming the semidirect sum of A and B one obtains an elementary, solvable, almost

algebraic Lie algebra L. We can use this construction to obtain elementary, solvable,

Leibniz algebras. Since A = Asoc(L), A is the direct sum of minimal ideals of L. Let

A = A1 +A2, where each summand is an ideal in L. Define the Leibniz algebra L∗ to be

the vector space A+B with the same multiplication as in L except that A2B = 0. This

algebra has Φ(L∗) ⊆ (L∗)2 ⊆ A and Φ(L∗) ⊆ B, hence Φ(L∗) = 0 and therefore, L∗ is

elementary. Following [18], such a algebras will be called elementary Leibniz algebras of

type I.

Theorem 4.3.3. Let L be a completely solvable Leibniz algebra. The the following are

equivalent:

1. L is complemented;

2. F (L) = 0;

3. L is elementary;

4. L ∼= A⊕ E, where A is an abelian Leibniz algebra and E is an elementary Leibniz

algebra of type I.

Proof. The equivalence of (i), (ii) and (iii) is shown in Theorem 2.2.1. The equivalence

of (iv) follows from [[4], Corollary 3.9].

43



Lemma 4.3.4. Let L be a solvable Leibniz algebra, let B, C be ideals of L with B∩C = 0,

and suppose that L/B and L/C are complemented. Then L splits over B and over C.

Proof. We show that L splits over C. Since L/B is complemented there is a subalgebra

U of L with B ⊆ U such that L = (B + C) + U = C + U and (B + C) ∩ U = B. Hence

C ∩ U ⊆ C ∩ (B + C) ∩ U = C ∩B = 0.

A class H of finite-dimensional solvable Leibniz algebras is called a homomorph if it

contains, along with an algebra L, all epimorphic images of L. A homomorph H is called

a formation if L/M,L/N ∈ H , where M,N are ideals of L, implies that L/M ∩N ∈ H .

If H is a formation, then for every solvable Leibniz algebra L there is a smallest ideal

R such that L/R ∈ H ; this is called the H − residual of L. We denote the class of

solvable complemented Leibniz algebras by C .

Theorem 4.3.5. C is a formation.

Proof. Note that C is a homomorph, by Lemma 2.2.2. Let B,C be distinct ideals of L

with L/B, L/C ∈ C . We want to show that L/B ∩ C ∈ C . Without loss of generality,

assume that B ∩ C = 0. Let 0 ⊂ Bk ⊂ · · · ⊂ B1 = B be part of a chief series for L.

We will induct on k. If k = 1, then B is a minimal idea of L and the result follows from

Lemma 4.3.4 and Lemma 2.2.6. So suppose it holds whenever k < n and that we have

k = n. Then B/Bn, (C + Bn)/Bn are distinct ideals of L/Bn and the corresponding

factor algebras are isomorphic to L/B and (L/C)/((C +Bn)/C) respectively. These are

both complemented (by Lemma 2.2.2 in the second case). It follows from the inductive

hypothesis that L/Bn is complemented. But now L is complemented by Lemma 4.3.4

and Lemma 2.2.6, and the result follows.
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We define the prefrattini residual of a solvable Leibniz algebra L to be

π(L) =
⋂

{B|B is an ideal of L and L/B ∈ C }.

Clearly π(L) is the smallest ideal of L such that L/π(L) ∈ C . It is also the ideal closure

of the prefrattini subalgebras of L, by Theorem 4.3.1.

We define that nilpotent series for L inductively by N0 = 0, Ni+1/Ni = N(L/Ni(L))

for i > 0, where N(L) denotes the nilradical of L, the maximal nilpotent ideal of L. Now

we obtain the following characterization of solvable complemented Leibniz algebras.

Theorem 4.3.6. The solvable Leibniz algebra L is complemented if and only if

F (L/Ni(L)) = 0 for all i ≥ 0.

Proof. Suppose L is complemented. Then L/Ni(L) is complemented, by Lemma 2.2.2

and so F (L/Ni(L)) = 0 by Theorem 4.3.1.

Suppose conversely that F (L/Ni(L)) = 0 for all i ≥ 0. We induct on the dimL. The

result is clear for dimL = 1. Assume the result holds for all solvable Leibniz algebras of

dimension less than that of L. The L/N(L) is complemented, by the induction hypothesis.

Further, we have that L = N(L) ∔ B for some subalgebra B of L and N(L) = AsocL,

by [[4], Theorem 2.4]. Let AsocL = A1 ⊕ · · · ⊕ An. If n = 1, then L splits over A1

and L/A1 is complemented by Lemma 2.2.6. So assume that n > 1 and let Ci = A1 ⊕

· · · ⊕ Âi ⊕ · · · ⊕An, where Âi means that Ai is missing from the direct sum. Then L/Ci

splits over AsocL/Ci and (L/Ci)/(AsocL/Ci) ∼= L/N(L) is complemented, so L/Ci is

complemented, by Lemma 2.2.6 again. It follows from Theorem 4.3.5 that L ∼= L/∩n
i=1Ci

is complemented.
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4.4 Decomposition Results for Complemented Alge-

bras

A Leibniz algebra L is called an A-algebra if every nilpotent subalgebra of L is abelian.

In this section we have a few basic structure theorems. To begin we see that L splits over

the terms in its derived series. To establish this result the following lemma is useful.

Lemma 4.4.1. Let L be a metabelian Leibniz algebra that splits over L2. Then L2 = L∞.

Proof. Since L splits over L2, we have that L = L2 ∔ C, where C is abelian. Then

L2 = [L2, C] = [L2, L] = L3. This implies L2 = L∞.

Theorem 4.4.2. Let L be a solvable complemented Leibniz algebra. Then L splits over

each term in its derived series. Moreover, the Cartan subalgebras of L(i)/L(i+2) are pre-

cisely the subalgebras that are complements to L(i+1)/L(i+2) for i ≥ 0.

Proof. The first assertion comes directly from Theorem 4.3.1 iv. The second assertion

follows from Lemma 4.4.1 and the result proven in the following section on Cartan sub-

algebras.

Now we obtain the following characterization of solvable complemented Leibniz alge-

bras.

Corollary 4.4.3. Let L be a solvable Leibniz algebra of derived length n+ 1. Then L is

complemented if and only if the following hold:

(i) L = An∔An−1∔ · · ·∔A0 where Ai is an abelian subalgebra of L for each 0 ≤ i ≤ n;
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(ii) L(i) = An ∔ An−1 ∔ . . . Ai for each 0 ≤ i ≤ n;

(iii) L(i)/L(i+1) is completely reducible as an (L/L(i+1))-module for each 1 ≤ i ≤ n.

Proof. Assume L is complemented. By Theorem 4.4.2, there exists a subalgebra Bn of

L such that L = Ln ∔ Bn. Put An = L(n). Similarly, Bn
∼= L/L(n) is complemented by

Lemma 3 in [19], so Bn = An−1 ∔ Bn−1, where An−1 = (Bn)
(n−1). Continuing in this

way, we get our result in (i). By induction we can obtain (ii) straightforwardly. Lastly,

L(i)/L(i+1) ⊆ N(L/L(i+1) = Asc(L/L(i+1)), by Theorem 4.3.1 (iii) and Theorem 7.4 in

[4], which gives (iii).

Conversely, assume that (i), (ii), and (iii) hold. Then by repeated use of Lemma 2.2.6

L is complemented.

Our next goal is to show the relationship between ideals of L and the decomposition

in Corollary 4.4.3. To do this we need the following lemmas.

Lemma 4.4.4. Let L be a Leibniz algebra. Then Z(L) ∩ L2 ⊆ φ(L).

Proof. Let M be any maximal subalgebra of L. If Z(L) * M , then L = M + Z(L) and

L2 ⊆ M .
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Chapter 5

A Few Extentions

5.1 Cartan Subalgebras

To get the desired result from Theorem 4.4.2 above, we needed the following lemmas

and theorem. First we give the definition and an example showing a difference between

Cartan subalgebras for Lie algebras verses Leibniz algebras.

Definition 5.1.1. A Cartan subalgebra of a Leibniz algebra L is a nilpotent subalgebra

such that C = NA(C).

Unlike Lie algebras, the sets N l
L(C) and N r

L(C) do not coincide because of the lack

of antisymmetry in Leibniz algebras.

Example 5.1.2. Let L be a Leibniz algebra given by the following multiplications:

[z, x] = x, [z, y] = −y, [y, z] = y, [z, z] = x,

where {x, y, z} is the basis of the algebra L and omitted products are equal to zero. Then
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C = {x− z} is a Cartan subalgebra, but N r
L(C) = {x, z}.

Lemma 5.1.3. Let H be a Cartan subalgebra of L and let A be an ideal of L. Then

(H + A)/A is a Cartan subalgebra of L/A.

Proof. (H+A)/A is nilpotent since (H+A)/A ∼= H/(H∩A). Suppose x+A ∈ NL/A((H+

A)/A). Then (x + A)(H + A) ⊆ H + A. This implies x(H + A) ⊆ H + A and x ∈

NL(H + A) = H + A. Thus, NL/A((H + A)/A) = (H + A)/A. Hence (H + A)/A is a

Cartan subalgebra of L/A.

Lemma 5.1.4. Let A be and ideal of L, A ⊆ U ⊆ L. Suppose U/A is a Cartan subalgebra

of L/A and suppose H is a Cartan subalgebra of U . Then H is a Cartan subalgebra.

Proof. Since H is a Cartan subalgebra of U , H is nilpotent. Suppose x ∈ NL(H). Then

x + A ∈ NL/A((H + A)/A). But (H + A)/A is a Cartan subalgebra of U/A and U/A

is nilpotent. Therefore, H + A = U and x + A ∈ NL/A(U/A) = U/A, since U/A is a

Cartan subalgebra U/A. Therefore, x ∈ U and so x ∈ NU(H) = H. Hence H is a Cartan

subalgebra.

Theorem 5.1.5. Let L be a solvable Leibniz algebra. Then there exists a Cartan subal-

gebra of L.

Proof. Let L be a minimal counterexample and let A be a minimal ideal of L. Then there

exists a Cartan subalgebra U/A of L/A.

If U ⊂ L, then there exists a Cartan subalgebra H of U . By Lemma 5.1.4, H is

a Cartan subalgebra of L contrary to the choice of L. Therefore, U = L and L/A is

nilpotent.
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Let M be a maximal subalgebra of L. If A ⊆ M , then M/A is a maximal subalgebra

of the nilpotent algebra L/A, and it follows that M is an ideal of L. If every maximal sub-

algebra of L is an ideal, then L is nilpotent. Therefore, there exists a maximal subalgebra

H of L which is not an ideal. For this H , we have NL(H) = H and A * H .

Since A is an abelian ideal and L = H + A, it follows that H ∩ A is an ideal of L.

Since A is minimal, H ∩ A = 0. Therefore, H ∼= L/A which is nilpotent, and H is a

Cartan subalgebra of L.

5.2 The Jacobson Radical

The Jacobson radical J(L), is the intersection of maximal ideals of L. This concept was

considered in [9] and [13] when L is a Lie algebra. If L is nilpotent, then J(L) = Φ(L),

since then all maximal subalgebras are ideals [1]. Clearly J(L) ⊆ L2, since if x is not in

L2, then we can find a complementary subspace, M , of x in L that contains L2 and, since

L2 ⊆ M , M is a maximal ideal of L and x is not in M .

If L is a linear Lie algebra, let R = Rad(L), and let Rad(L∗) be the radical of the

associative envelope,L∗ of L. Then, by Corollary 2 p. 45 of [11], L ∩ Rad(L∗) = all

nilpotent elements of R and [R,L] ⊆ Rad(L∗).

Theorem 5.2.1. Let L be a Leibniz algebra and R = Rad(L) be the radical of L. Then

LR +RL ⊆ N = Nil(L).

Proof. Let L (L) = Lx : x ∈ N . The map π : L → L (L) is a homomorphism and L (L)

is a Lie algebra under commutation. Also π : R → R(L (L)), the radical of L (L). By

the result in the first paragraph, [L (L),R(L (L))]⊆R(L (L)∗). Hence there exists an n
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such that [Lsn,Ltn ]...[Ls2 ,Lt2 ][Ls1 ,Lt1 ]=0, where si ∈ L , ti R or si ∈ R and ti ∈ L. Hence

Lsntn ...Ls1t1 = 0. Hence sntn(...(s1t1(x))...) = 0 for all x∈L. Putting x = s0t0, we have

sntn(...(s1t1(s0t0))...) = 0. Therefore(LR+RL)n+1=0. Since LR+ RL is an ideal in L,

LR+RL ⊆ N.

Proposition 5.2.2. If L is of characteristic 0, then L2∩R=LR+RL ⊆N.

Proof. L=R+S as in the Levi decomposition for Leibniz algebras in [2].

Then L2 =S2+LR+RL, and L2∩R=S2∩R+(LR+RL)∩R=LR+RL since S∩R=0 and

LR+RL⊆R.

Lemma 5.2.3. If L is solvable, then J(L)=L2.

Proof. If M is a maximal ideal of L, then L/M is abelian and, in fact, one-dimensional

since L is solvable. Hence L2 ⊆ M for all M and L2 ⊆ J(L). Since J(L) ⊆ L2 always holds,

L2=J(L).

Proposition 5.2.4. Let L be a Leibniz algebra over a field of characteristic 0. Let

R=R(L). Then J(L)=LR+RL.

Proof. Let S be a Levi factor of L. Then S is Lie and S=S1

⊕
...
⊕

St where each Si is

simple. Let Mi be the sum of R and all of the Sj except Si. Then Mi is a maximal ideal

of L. Then J(L) ⊆
⋂

Mi=R and J(L) ⊆ R∩ L2.

If M is a maximal ideal of L, then L/M is abelian or simple. In the first case, L2 ⊆ M,

and in the second case, R ⊆M. The intersection of all of the first type of M contains L2,

and all of the second type contains R. Therefore, R∩ L2 ⊆ J(L) and the result follows.
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Corollary 5.2.5. Let L be a Leibniz algebra over a field of characteristic 0. Then J(L)

is nilpotent.

Proof. J(L)=LR+RL ⊆ Nil(L) by Propositions 5.2.2 and 5.2.4.

Corollary 5.2.6. Φ(L) ⊆ J(L) when L has characteristic 0.

Proof. L=R+S as in the Levi decomposition and S is Lie. Hence Φ(S)=0. Thus Φ(L) ⊆

R. Since Φ(L) ⊆L2, it follows that Φ(L)⊆R∩L2=LR+RL=J(L) using Propositions 5.2.2

and 5.2.4.

Proposition 5.2.7. Let B be a nilpotent ideal in a Leibniz algebra, L. Then J(B) ⊆

J(L).

Proof. Since B is nilpotent, J(B)=B2, which is an ideal in L. Suppose that x ∈ J(B), x

/∈ J(L). Let M be a maximal ideal of L such that x is not in M. Then L=J(B)+M and

B=J(B)+(M∩B). M∩B is a proper ideal of B that supplements J(B), a contradiction.

5.3 Leibniz Algebras With A Unique Maximal Ideal

Lie algebras with a unique maximal ideal were classified in [9] when the field of scalars

has characteristic 0. We extend this result to Leibniz algebras.

Lemma 5.3.1. Suppose that L=N+<x> where <x> is a one dimensional vector space,

x2 6= 0, and N is an abelian ideal. Then xL is an ideal in L.

Proof. Since xL ⊆ N, N(xL)=(xL)N=0. (xL)x=(x(x+N))x=(x2+xN)x=(xN)x=x(Nx)-

N(x2) ⊆ xL since x2 ∈ N and N is abelian. Furthermore x(xL) ⊆ xL. Hence the result

holds.
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Lemma 5.3.2. Suppose that L=N+<x> where <x> is a one dimensional vector space,

x2 6= 0 and N is an abelian ideal. If xL+Lx=N, then xL=N.

Proof. If xL 6= N, then xL is contained in an ideal M of L , M ⊆ N, and N/M is a minimal

ideal of L/M. Note that x2 ∈ M. We may take M=0. Then xN=0, which yields Nx=0 by

[1]. Then Lx=(N+x)x =0. Therefore xL+Lx=0, a contradiction.

We now show the following:

Theorem 5.3.3. Let L be a Leibniz algebra over a field of characteristic 0. L has a

unique maximal ideal if and only if one of the following holds.

1) L is nilpotent and cyclic, or

2) L=Nil(L)+S where S is simple and N/N2=S(N/N2)+(N/N2)S, or

3) L=Nil(L)+< x > where < x > is a one dimensional vector space, x2 /∈ N2, and

N/(N2)=x(L/N2), or

4) L=Nil(L)+< x > where x2 ∈ N2 and N/(N2)=x(N/N2)+(N/N2)x.

Proof. Let L have only one maximal ideal which is then J(L)=J. Then L/J is simple or

one-dimensional. Since J ⊆ Nil(L)=N, if L/J is simple, then J=N and L=J+S=N+S.

To show the second part of (2), assume that N2=0 and let R=Rad(L). Then N=R and

J=LR+RL=SN+NS.

Suppose that dim(L/J)=1. Since J ⊆ N ⊆ L, either J=N or N=L. If N=L, then L is

nilpotent and J=Φ(L)=L2, so L is cyclic generated by some a and L is nilpotent and (1)

holds.

Suppose that N=J.

53



Then L=N+< x > where < x > is a one-dimensional subspace. By Theorem 3.1 of

[5], L/N2 is not nilpotent, hence Nil(L/N2) =N/N2 =J/N2=J(L/N2)=x(L/N2)+(L/N2)x.

Suppose that x2 ∈ N2. Then Nil(L/N2) = x(N/N2)+(N/N2)x, which is as in condition (4).

Then suppose that x2 /∈ N2. Hence, Nil(L/N2) = N/N2 = x(L/N2)+(L/N2)x = x(L/N2)

by Lemma 5.3.2, as in (3).

We now show that each of the algebras in 1-4 have a unique maximal ideal. For the

algebras in (3), we have the following lemma.

Lemma 5.3.4. Suppose that L is Leibniz, and L=Nil(L)+< x > where x2 6= 0. Suppose

that xL=N and N2=0 where N=Nil(L). Then Nil(L)=J(L). The algebras in (3) have a

unique maximal ideal.

Proof. Let J=J(L). Since xL=N, N=L2. Let T be the subalgebra generated by x. Since

dim(Ker Lx|L)=1 and 0 6= Ker Lx|T ⊆ Ker Lx|L, it follows that Ker Lx|T= Ker Lx|L.

Since dim(Ker Lx|T )=1, the Fitting null component of Lx|T is the union T0 ⊆ T1 ⊆ ...Tk

where dim(Tj)=j and xTj ⊆ Tj−1. The same holds for the Fitting null component of Lx

on L where the invariant subspaces end with Lm. Clearly Ti=Li for i ≤ k. We claim that

m=k. There is a Ti that is not contained in N since the Fitting one component of Lx on

T is contained in N. Then αx+n ∈Ti, α 6= 0 n ∈ N. If i 6= k, then there exists βx+p such

that x(βx+p)=αx+n, which is impossible since x(βx+p) ∈ N=L2. Thus Tk−1 ⊆ N while

Tk is not contained in N. Since Tk=Lk is not contained in N, the chain of Li’s must stop

at Lk since only the final term in the string is not in N. Hence the Fitting null component

for Lx acting on L is the same as Lx acting on T and the Fitting null component of Lx

on N and T2 are the same, both equal to Tk−1 ⊆ T2.

Let J=J(L). Since xL=N , N=L2. Let N=N0+N1 be the Fitting decomposition of
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Lx on N. Let K be a maximal ideal of L and suppose that K is not contained in L2.

There exists y ∈ K such that y=αx+n0+n1 where α 6= 0, n0 ∈ N0 and n1 ∈ N1. For any

t∈ N1, there exists s ∈ N1 such that xs=t. Then ys=(αx +n0+n1)s=αt since N2 = 0.

Thus αt ∈ K and N1 ⊆ K. Also n0 ∈ N0=Tk−1 ⊆ T2 by the last paragraph. Hence

n0 = α2x
2 + ... + αtx

t and yx=(αx+α2x
2 + ... + αtx

t +n1)x =αx2 +n1x ∈ K. Since n1x

∈K, αx2 ∈ K. Therefore x2 ∈ K and T2 ⊆ K. Since N0 ⊆ T2 and N1 ⊆ K, N ⊆ K. Since

J(L)=N has codimension 1, J(L)=N=K for all maximal ideals K of L. Hence algebras as

in (3) have a unique maximal ideal.

We now consider the algebras in (1), (2), and (4). Suppose that L is as in (2). We

may assume that N2=0 since N/N2=Nil(L/N2). Thus J=LR+RL=SN+NS=Nil(L) and

J(L) is the only maximal ideal of L. If L is as in (4), then assume that N2=0 since

N/N2=Nil(L/N2). Then J(L)=LR+RL=xN+Nx. Since dim(L/N)=1, N is the only max-

imal ideal of L.

If L is as in (1), then L2=J(L) since L is nilpotent, and J(L) is the unique maximal

ideal.
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