
ABSTRACT

MCALISTER, ALLISON RENEE. Frattini Properties of Leibniz Algebras. (Under the direction
of Dr. Ernest Stitzinger.)

Leibniz algebras are similar in many ways to Lie algebras. When studying these algebras,
a common theme is to determine which properties of Lie algebras also apply to the Leibniz
algebra framework. In particular, we can consider the Frattini subalgebra, an analogue of the
Frattini subgroup introduced in 1885, which has been studied in detail in Lie algebras. In
this work, we obtain properties of Leibniz algebras relating to the Frattini subalgebra and
the intersections of other types of subalgebras.
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Chapter 1

Introduction

Leibniz algebras were first studied by Jean-Louis Loday in 1993 [11]. Using the definition of
Barnes [3], all Leibniz algebras in this work are left Leibniz algebras – algebras in which all
left multiplications are derivations. Many authors instead consider right Leibniz algebras, as
in [11] and [1].

Using notation analogous to Barnes in [3], left multiplication by an element, a, of the
algebra will be denoted La. Similarly, right multiplication by a will be denoted Ra.

Now, we consider the Leibniz identity on Leibniz algebra A:

La(bc) = a(bc) = (ab)c + b(ac) for all a, b, c ∈ A.

A summary of commonly used properties of Leibniz algebras, detailed in [3], follows.
Any product of n copies is 0 unless the product is left normed. Thus, an = a(a(· · · (aa) · · · )).
A1 = A, and inductively define An = AAn−1.

For a Leibniz algebra, A, consider the two-sided ideal

Leib (A) = 〈x2 ∣∣ x ∈ A〉.

A/Leib(A) is always a Lie algebra, and hence, we see that A is a Lie algebra if and only
if Leib(A) = 0.

In any Leibniz algebra that is not Lie, Leib(A) is always a nontrivial ideal. Hence, a
Leibniz algebra, A, is considered simple if the only proper ideals of A are {0} and Leib(A)

[9]. Note that this is slightly different from the analogous Lie algebra definition.

As in Lie algebras, we consider subalgebras, ideals, normalizers, centralizers, and the
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CHAPTER 1. INTRODUCTION

center. Many of these structures can be considered under left multiplication alone, right mul-
tiplication alone, or both multiplications. When discussing an ideal, normalizer, centralizer,
center, or similar structure, it is assumed to be two-sided unless otherwise specified.

Thus, define B as an ideal of A if AB ⊆ B and BA ⊆ B. If only the former holds, B is a
left ideal of A since B is preserved by left multiplication by all elements of A. If only the
latter holds, B is a right ideal of A.

Let W be a subalgebra of A. Then define the left normalizer of W in A to be

Nl
A(W) = {x ∈ A

∣∣ xw ∈W for all w ∈W},

the right normalizer of W as

Nr
A(W) = {x ∈ A

∣∣ wx ∈W for all w ∈W},

and the normalizer of W to be the intersection of the two:

NA(W) = {x ∈ A
∣∣ wx ∈W and xw ∈W for all w ∈W}.

Define the left centralizer of W as

Zl
A(W) = {x ∈ A

∣∣ xW = 0},

the right centralizer of A as

Zr
A(W) = {x ∈ A

∣∣ Wx = 0},

and the centralizer of A as

ZA(W) = {x ∈ A
∣∣ xW = 0 = Wx}.

Similarly, the left center of A is defined as

Zl(A) = {x ∈ A
∣∣ xa = 0 for all a ∈ A},

the right center is defined as

Zr(A) = {x ∈ A
∣∣ ax = 0 for all a ∈ A},
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CHAPTER 1. INTRODUCTION

and the center of A is defined to be

Z(A) = {x ∈ A
∣∣ ax = 0 = xa for all a ∈ A}.

The derived series, lower central series, and upper central series of a Leibniz algebra, A,
are defined as usual in Lie algebras. Related definitions follow in the same vein.

A Leibniz algebra A is nilpotent of class c if Ac+1 = 0, but Ac 6= 0. As usual, A is
nilpotent if and only if the upper central series terminates at A. The largest nilpotent ideal of
A, denoted Nil(A), is called the nilradical of A. Nil(A) contains all nilpotent ideals of A.

A Leibniz algebra A is solvable if A(k) = {0} for some k. The largest solvable ideal of
A, called the solvable radical of A, is denoted Rad(A). Rad(A) contains all solvable ideals of
A. In a slight difference from the Lie algebra definition, a Leibniz algebra is semisimple if
Rad(A) = Leib(A).

A result used often in computations is detailed as Lemma 1.9 in [3]: Let B be a minimal
ideal in Leibniz algebra A. Then either BA = 0 or ba = −ab for all b ∈ B and all a ∈ A.

In Chapter 2, we begin with a discussion of Leibniz algebras generated by one element,
called cyclic Leibniz algebras. Cyclic Leibniz algebras provide counterexamples for many
extensions of results from Lie algebras to Leibniz algebras; hence, they are explored in
their own right in this work. Understanding of these cyclic algebras enables construction
of low dimensional examples of Leibniz algebras that are not Lie. A number of explicit
computations have been detailed for cyclic Leibniz algebras over fields of characteristic 0.
Some of these computations involve the Frattini subalgebra and ideal. The Frattini subalgebra,
F(A), is the intersection of all maximal subalgebras of A. As this is not generally an ideal in
A, we also consider the Frattini ideal, φ(A), the largest ideal of A contained in F(A). Next we
transition to a discussion of results pertaining to the Frattini subalgebra and ideal of general
Leibniz algebras in Chapter 3, including a section devoted specifically to Leibniz algebras
whose Frattini ideal is equal to 0.

Elementary Leibniz algebras, algebras in which the Frattini ideal of all subalgebras
is equal to 0, are discussed and classified in Chapter 4. A concept closely related to an
elementary Leibniz algebra is an E-Leibniz algebra. An algebra is E if φ(M) ⊆ φ(A) for all
subalgebras M of A. A classification of E-Leibniz algebras over a field of characteristic 0 is
given in Chapter 5. Also of interest are Leibniz algebras that are not elementary themselves,
but all proper subalgebras are elementary. These are called minimal non-elementary Leibniz
algebras. Classifications of minimal non-elementary Leibniz algebras over certain fields are
given in Chapter 6.
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CHAPTER 1. INTRODUCTION

The Frattini subalgebra and ideal share many properties with other subalgebras and
ideals. We explore ideals and subalgebras that share these properties in Chapters 7 and 8. In
Chapter 7, the Jacobson radical, first introduced in ring theory, is discussed. The Jacobson
radical in the Leibniz algebra case is the intersection of all maximal ideals, discussed by
Marshall in [12] for Lie algebras. I then consider ideals with properties in common with the
Frattini ideal in Chapter 8. The Frattini subalgebra is supplemented by no proper subalgebra.
Another property of the Frattini subalgebra, shown in Leibniz algebras by Barnes in [3], is
that for any subalgebra W contained in F(A), if A/W is nilpotent, then A is nilpotent. These
ideas have been generalized in the Lie algebra case – ideals that have similar properties are
called generalized Frattini ideals. I explore generalized Frattini ideals in the Leibniz algebra
case.

David Towers introduced other subalgebras similar to the Frattini subalgebra in [20].
These subalgebras, σ(L), sometimes denoted R(L), and T(L), are explored in [20] for various
types of algebras, L. I discuss results relating to R(A), the intersection of all maximal
subalgebras that are ideals, and T(A), the intersection of all maximal subalgebras that are
not ideals, for a Leibniz algebra, A, in Chapter 8.
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Chapter 2

Cyclic Leibniz Algebras

A common theme in research is determining which results from studies of Lie algebras carry
over to the Leibniz algebra framework. Many results carry over successfully, while others do
not. Leibniz algebras generated by one element provide counterexamples to the extension of
several results from Lie algebras to Leibniz algebras. We can also construct examples of low
dimension Leibniz algebras that are not Lie algebras. It would seem to be of interest to find
properties of these particular algebras. In this section we study them in their own right.

Let A be a cyclic Leibniz algebra generated by a, where a2 6= 0, and let La denote left
multiplication on A by a. Let

{a, a2, . . . , an}

be a basis for A, with
aaj = aj+1for 1 ≤ j ≤ n− 1, and

aan = α1a + · · ·+ αnan.

Using the Leibniz identity on a, an, and a, we find that α1 = 0. Consider a(ana). On one
hand, a(ana) = 0 since left multiplication by any power of a higher than 1 is identically 0, as
in [3]. On the other hand, using the Leibniz identity,

a(ana) = (aan)a + ana2 = (aan)a

since ana2 = 0. Thus, equating these two, we see that

0 = (aan)a = (α1a + α2a2 + . . . + αnan)a = α1a2 + 0.

a2 is not 0 by definition. Hence, 0 = α1.
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CHAPTER 2. CYCLIC LEIBNIZ ALGEBRAS

Thus, A2 has basis {a2, . . . , an}. Let T be the matrix for La acting on A with respect to
the basis, {a, a2, . . . , an}. T is the companion matrix for La, and its characteristic polynomial
(also its minimal polynomial) is

p(x) = p1(x)n1 . . . ps(x)ns ,

where the pj are the distinct irreducible factors of p(x).

Consider the following example. This example will flow through the entire piece as a
low-dimensional example of a Leibniz algebra that is not Lie.

Example 1. Let A be the Leibniz algebra over the complex numbers generated by a, with
aa3 = a2.

All multiplications are enumerated below.

1. aa = a2.

2. aa2 = a3.

3. aa3 = a2.

4. Left multiplication by ak is 0 for k > 1, as in all Leibniz algebras.

Then the matrix representing left multiplication by a is

T =

0 0 0
1 0 1
0 1 0

 .

Then the minimal polynomial for the action of La on A is

p(x) = x(x + 1)(x− 1).

Theorem 2. Let A be a cyclic Leibniz algebra generated by a, with characteristic and minimal poly-
nomial for La acting on A given by p(x) = p1(x)n1 · · · ps(x)ns . Then φ(A) = {b ∈ A

∣∣ q(La)(b) =
0}, where q(x) = p1(x)n1−1 · · · ps(x)ns−1.
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CHAPTER 2. CYCLIC LEIBNIZ ALGEBRAS

Proof. Let A = W1 ⊕ · · · ⊕Ws be the associated primary decomposition of A with respect
to La. Then Wj = {b ∈ A

∣∣ pj(La)
nj(b) = 0}. Here, p(x) is also the minimal polynomial for

La on A, and therefore, each Wj is of the form 0 ⊂ Uj,1 ⊂ · · · ⊂ Uj,nj = Wj, where all of the
following hold.

1. Uj,i = {b ∈ A
∣∣ pj(La)i(b) = 0}.

2. Each Uj,i+1/Uj,i is irreducible under the induced action of La.

3. dim(Uj,i) = i deg(pj(x)).

Since x is a factor of p(x), we let p1(x) = x. For j ≥ 2, Wj ⊂ A2, and for i 6= n1, U1,i ⊂ A2.
A2 is abelian, and left multiplication by b ∈ A2 is such that Lb = 0 on A. Hence,

WjWk = 0 for 1 ≤ j, k ≤ s,

WjW1 = 0 for 2 ≤ j,

W1Wj ⊂Wj for 1 ≤ j ≤ s,

and U1,n1−1, Wj = 0 for 2 ≤ j.

Hence, each Uj,i except U1,n1 = W1 is an ideal in A. W1 is generally not a right ideal.

Let Mj = W1 ⊕ · · · ⊕Uj,nj−1 ⊕ · · · ⊕Ws. Since dim(A/A2) = 1, A2 = U1,n1−1 ⊕W2 ⊕
· · · ⊕Ws, and M1 is a maximal subalgebra of A.

We show that Mj, j ≥ 2, is a maximal subalgebra of A. Since a = b + c, where b ∈ W1

and c ∈ A2, La = Lb. It follows that any subalgebra that contains W1 is La-invariant. If
M is a subalgebra of A that contains Mj properly, then M ∩Uj,nj contains Uj,nj−1 properly.
Since Uj,nj /Uj,nj−1 is irreducible in A/Uj,nj−1, M ∩Uj,nj = Uj,nj and M = A. Thus, each Mj

is maximal in A, and φ(A) ⊂
⋂

j

Mj.

Let M be a maximal subalgebra of A. If M = A2, then M = {b
∣∣ g(La)(b) = 0}, where

g(x) = p(x)/x, so M = M1. Suppose that M 6= A2. Then A = M + A2. Hence, a = m + c,
where m ∈ M and c ∈ A2, and La = Lm. Hence, M is invariant under La. Thus, the minimum
polynomial g(x) for La on M divides p(x). If there is a polynomial h(x) properly between
g(x) and p(x), then the space, H, annihilated by h(La) is properly between M and A. H
is also invariant under left multiplications by a and by any element in A2. Hence, H is
invariant under left multiplications by any element in A, and it is then a subalgebra of A.
Since the minimum polynomial and characteristic polynomial for La on A are equal, the
same is true of invariant subspaces of A. Hence, dim(H) = deg(h(x)), and H is properly
between M and A, a contradiction. Thus, M is the space annihilated by g(x) = p(x)/pj(x)
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CHAPTER 2. CYCLIC LEIBNIZ ALGEBRAS

for some j, and M = Mj. Therefore, φ(A) =
s⋂

j=1

Mj = {b ∈ A
∣∣ q(La)(b) = 0} where q(x) =

p1(x)n1−1 · · · ps(x)ns−1.

As a special case, we obtain the following corollaries.

Corollary 3. φ(A) = 0 if and only if p(x) is the product of distinct prime factors.

Example 4. Let A be as in our running example, Example 1. Since p(x) is the product of
distinct linear factors, φ(A) = 0.

Corollary 5. The maximal subalgebras of A are precisely the null spaces of rj(La), where rj(x) =
p(x)/pj(x) for j = 1, . . . , s.

Example 6. Let A be as in our running example, Example 1. To calculate the maximal
subalgebras of A, we must find the nullspaces of rj(La) where rj(x) = p(x)/pj(x).

p1(x) = x.

Then
r1(x) = (x + 1)(x− 1) = x2 − 1,

and hence,

r1(La) = (La)
2 − I.

Any element in A is of the form αa + βa2 + γa3.
Thus, in order for(

(La)
2 − I

)
(αa + βa2 + γa3) = αa3 + βa2 + γa3 − αa− βa2 − γa3

= αa3 − αa

to equal 0, α = 0. Hence, the nullspace is

M1 = span {a2, a3}.
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p2(x) = x + 1.

Then
r2(x) = x(x− 1) = x2 − x,

and hence,

r2(La) = (La)
2 − La.

In order for (
L2

a − La
)
(αa + βa2 + γa3)

= αa3 + βa2 + γa3 − αa2 − βa3 − γa2

= (α− β + γ)a3 − (α− β + γ)a2

to equal zero, α = β− γ.
Thus,

M2 = span{a2 + a3, a− a3}.

p3(x) = x− 1.

Then
r3(x) = x(x + 1) = x2 + x,

and hence,

r3(La) = (La)
2 + La.

In order for (
L2

a + La
)
(αa + βa2 + γa3)

= αa3 + βa2 + γa3 + αa2 + βa3 + γa2

= (α + β + γ)a3 + (α + β + γ)a2

9
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to equal 0, α = −β− γ. Thus,

M3 = span {a− a2, a2 − a3}.

Now, we consider the Fitting decomposition. Let A0 and A1 be the Fitting null and one
components of La acting on A. Since La is a derivation of A, A0 is a subalgebra of A. La

acts nilpotently on A0, and Lb = 0 when b ∈ A2. Therefore, for each c ∈ A, Lc is nilpotent
on A0, and A0 is nilpotent by Engel’s theorem. Let a = b + c, where b ∈ A0 and c ∈ A1.
Lc = 0 because A1 ⊂ A2. Then La = Lb, and then bA1 = aA1 = A1. For any non-zero x ∈ A1,
bx is non-zero in A1, and x is not in the normalizer of A0. Hence, A1 ∩ NA(A0) = 0, and
A0 = NA(A0). Thus, A0 is a Cartan subalgebra of A.

Conversely, let C be a Cartan subalgebra of A, and let c ∈ C. Then c = d+ e, where d ∈ A0

and e ∈ A1. Since A1 ⊂ A2, we see that A1A1 = A1A0 = 0, A0A1 = A1, and A0A0 ⊂ A0.
Therefore, A1 is an abelian subalgebra of A.

Now 0 = Ln
c (c) = Ln

d(c) = Ln
d(d + e) = Ln

d(e) = Ln
c (e), where d ∈ A0, which is nilpotent,

and eA = 0. Since Lc is non-singular on A1, e = 0 and c = d. Hence, C ⊂ A0. Since C is a
Cartan subalgebra and A0 is nilpotent, C = A0, and A0 is the unique Cartan subalgebra of
A. We record this result as the following theorem.

Theorem 7. A has a unique Cartan subalgebra. It is the Fitting null component of La acting on A.

Example 8. Let A be as in our running example, Example 1.
Then the unique Cartan subalgebra of A is

EA(a) = span{a− a3}.

Using these same ideas, we obtain a number of corollaries.

Recall the definition of a minimal ideal H of Leibniz algebra A. Non-trivial ideal H is a
minimal ideal of A if H contains no other proper non-trivial ideals of A.

Corollary 9. The minimal ideals of A are precisely Ij = {b ∈ A
∣∣ pj(La)(b) = 0} for j > 1 and, if

n1 > 1, I1 = {b ∈ A
∣∣ p1(La)(b) = 0}.
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Example 10. To calculate the minimal ideals in our running example, A as in 1, we calculate
I2 and I3, where Ij is the nullspace of pj(La). n1 = 1, so I1 is not one of these minimal ideals.

p2(x) = x + 1⇒ p2(La) = La + I.

In order for
(La + I) (αa + βa2 + γa3)

= αa2 + βa3 + γa2 + αa + βa2 + γa3

= αa + (α + β + γ)a2 + (β + γ)a3

to equal 0, α = 0, and β = −γ. Hence,

I2 = span {a2 − a3}.

p3(x) = x− 1⇒ p3(La) = La − I.

In order for
(La − I) (αa + βa2 + γa3)

= αa2 + βa3 + γa2 − αa− βa2 − γa3

= −αa + (α− β + γ)a2 + (β− γ)a3

to equal 0, α = 0, and β = γ. Hence,

I3 = span {a2 + a3}.

Recall the definitions of Soc(A) and Asoc(A). The socle of A, Soc(A) is the union of all
minimal ideals of A and is the direct sum of some of these minimal ideals. The abelian socle
of A, Asoc(A) is the union of all abelian minimal ideals of A and is the direct sum of some
of them.

Corollary 11. Asoc(A) = {b ∈ A
∣∣ u(La)(b) = 0}, where u(x) = p2(x) . . . ps(x) if n1 = 1 and

u(x) = p1(x) . . . ps(x) otherwise.

11
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Example 12. Continuing with A as in our running example, 1, we compute the abelian socle
of A as follows.

Asoc(A) = {b ∈ A
∣∣ u(La)b = 0}, where u(x) is as defined above. Since n1 = 1 in our

example,

u(x) = (x + 1)(x− 1) = x2 − 1.

Then
u(La) = L2

a − I.

We have already computed the nullspace of u(La) in 6.
Hence,

Asoc(A) = span {a2, a3}.

Corollary 13. The unique maximal ideal of A is M1 = {b ∈ A
∣∣ t(La)(b) = 0}, where t(x) =

p(x)/p1(x).

Example 14. Consider A as in our running example, 1. To compute the unique maximal
ideal of A, we compute M1 as in 6.

Thus, the unique maximal ideal of A is

M1 = span {a2, a3}.

12



Chapter 3

The Frattini Subalgebra and Ideal

Recall that the Frattini subalgebra, F(A), is the intersection of all maximal subalgebras in
Leibniz algebra A. As this is not always an ideal, we consider φ(A), the Frattini ideal, which
is the largest ideal contained in F(A). An example from Lie algebras in which the Frattini
subalgebra is not an ideal is shown:

Example 15. Let L = 〈x, y, z〉 over the field of 2 elements with multiplication xy = z, yx =

−z, yz = x, zy = −x, zx = y, xz = −y. F(L) = 〈x + y + z〉. Consider x(x + y + z) =

xx + xy + xz = 0 + z− y, which is not in F(L). Thus, F(L) is not an ideal in L. In this case,
φ(L) = 0.

3.1 Several Ideals of a Leibniz Algebra

The sum of nilpotent ideals is nilpotent by Corollary 3 of [8]. Therefore, define the nilradical
of A to be the largest nilpotent ideal of A and denote it by Nil(A).

Lemma 16. If B is a minimal ideal in a nilpotent Leibniz algebra A, then

1. B ∩ Z(A) 6= 0.

2. B ⊆ Z(A).

Proof. Since B is minimal, either BA = 0 or ba = −ab for all a ∈ A and b ∈ B, as shown in
[3]. Hence, it is sufficient to work on the left of B. Let Aj+1B = A(AjB). If AB = 0, both
results hold.

13



3.1. SEVERAL IDEALS CHAPTER 3. THE FRATTINI SUBALGEBRA AND IDEAL

Suppose that AB 6= 0. Then there is an integer k such that Ak+1B = 0 and AkB 6= 0.
Hence 0 6= AkB ⊆ B∩ Z(A), so 1 holds. Since Z(A) is an ideal and B is minimal, 2 holds.

Example 17. Let
A = 〈a, a2, a3, a4〉

be the nilpotent cyclic Leibniz algebra generated by a with aa4 = 0. Then by the computations
in Corollary 9, I1 = span {a4} is a minimal ideal of A. Z(A) is also equal to span {a4}.

Clearly, I1 ∩ Z(A) 6= 0, and I1 ⊆ Z(A).

Proposition 18. Let A be a Leibniz algebra, and let B be a minimal ideal of A. Then Nil (A) ⊆
ZA(B).

Proof. Let N =Nil (A). N ∩ B is 0 or B since N and B are both ideals of A, with B minimal
in A. If it is 0, then NB = 0 = BN and N ⊆ ZA(B). If N ∩ B = B, then B is contained in
N, hence B ∩ Z(N) 6= 0 by Lemma 16. Since B is minimal, this implies B ⊆ Z(N). Hence,
NB = 0 = BN, so N ⊆ ZA(B).

Recall the socle of A, Soc (A), and the abelian socle of A, Asoc (A). These concepts have
counterparts in both Lie algebras and group theory. The following several results also have
analogues in Lie algebras and groups.

Proposition 19. Let A be a a Leibniz algebra. Then Asoc (A) ⊆Nil (A) ⊆ ZA(Soc (A)).

Proof. The first inclusion is clear. By definition, Soc (A) = ΣBi where the Bi are mini-
mal ideals of A. By the last proposition, Nil (A) ⊆ ZA(Bi) for each i. Then, Nil (A) ⊆⋂

i

ZA(Bi) = ZA

(
∑

i
Bi

)
= ZA(Soc (A)).

14
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3.2 Leibniz Algebras with φ(A) = 0

Let A be a Leibniz algebra with φ(A) = 0. If W is an abelian ideal of A, then there exists a
subalgebra V of A such that A is the semidirect sum of U and V by Lemma 7.2 of [17].

Theorem 20. Let A be a Leibniz algebra with φ(A) = 0. Then Asoc (A) = Nil (A) = ZA(Soc
(A)).

Proof. By Proposition 19, it is enough to show that ZA(Soc(A)) ⊆ Asoc(A). Let C =

ZA(Soc(A)) and D =Asoc(A). Since D is abelian, A is the semidirect sum of D and a
subalgebra K. Then D + (K ∩ C) = (D + K) ∩ C = A ∩ C = C. Let E = K ∩ C. Since C is an
ideal, E is invariant under multiplication by K and is annihilated by D. Therefore, E is an
ideal in A. Let B be a minimal ideal of A contained in E. Then B2 ⊆ C·Soc(A) = 0. Hence,
B ⊂ D, which implies that B ⊆ D ∩ K = 0. Thus E = 0, so C ⊆ D.

Example 21. Let A be the cyclic Leibniz algebra in our running example, Example 1.

Asoc (A) = span {a2, a3} = Nil (A) = ZA(Soc (A)).

Corollary 22. Let A be a Leibniz algebra with φ(A) = 0. Then Nil (A)/φ(A) ∼=Asoc (A/φ(A)).

Proof. This follows from the last result and Theorem 5.5 of [3].

Theorem 23. Let A be a Leibniz algebra with φ(A) = 0. Then A =Asoc (A)uV where V is a Lie
algebra which is isomorphic to a subalgebra of the derivation algebra of Soc (A).

Proof. Asoc (A) is complemented in A by a subalgebra B by Lemma 7.2 of [17]. For x ∈ A,
let Lx and Rx be left and right multiplication by x on Soc (A), and let L : A→ Der(Soc (A))

be defined as L(x) = Lx. L is a homomorphism, Im(L) is a Lie algebra of derivations of Soc
(A), and Ker (L) = Zl

A(Soc (A)). Soc (A) is the direct sum of minimal ideals of A. Let W be
one of these minimal ideals. When acting on W, either Rx = 0 for all x ∈ A or Rx = −Lx

for all x ∈ A by Lemma 1.9 of [3]. Hence, Zl
A(Soc (A)) = ZA(Soc (A)) =Asoc (A), and Im

(L) ∼= A/Asoc (A) ∼= V.

Corollary 24. Let A be a semisimple Leibniz algebra. Then A is a Lie algebra.

Proof. φ(A) is nilpotent by Theorem 5.5 of [3]; hence, φ(A) = 0. Furthermore, ZA(Soc (A)) =

Asoc (A) = 0. Hence, K in Theorem 23 is equal to A.

15
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From this corollary, we immediately obtain the following extension of the classical Lie
algebra result.

Corollary 25. Let A be a semisimple Leibniz algebra over a field of characteristic zero. Then A is
the direct sum of ideals that are simple Lie algebras.

Corollary 26. Let A be a Leibniz algebra over a field of characteristic zero with φ(A) = 0. Then
A =Asoc (A)u V, where V = S⊕ Z(V) and S is a semisimple Lie algebra.

Proof. By Theorem 23, A =Asoc (A)uV where V is a Lie subalgebra of A that is isomorphic
to a subalgebra D of the derivation algebra of Soc (A) and D consists of left multiplication by
elements of A. Each minimal ideal is a minimal left ideal since right multiplication by x ∈ A
restricted to the minimal ideal is either 0 for all x ∈ A or is the negative of left multiplication
by x for all x ∈ A by Lemma 1.9 of [3]. Hence, D acts completely reducibly on Soc (A).
Therefore, D has the desired form by Theorem 11, chapter 2 of [10].

Theorem 27. Let A be a Leibniz algebra over a field of characteristic 0. Then F(A) is an ideal in A.

Proof. If B is an ideal in A and B is contained in F(A), then F(A/B) = F(A)/B by Proposition
4.3 of [17]. Hence, it is enough to show the result when B = φ(A) = 0. In this case, we need
only show that F(A) = 0. Then A can be written as in Theorem 23 and we use the notation
presented there. Since V is a Lie algebra, F(V) = φ(V). Furthermore, V is the direct sum of
ideals, each of which is simple or one dimensional. Clearly φ(V) = 0. Hence, F(A) ⊆Asoc
(A). Asoc (A) is the direct sum of minimal ideals Bi of A, each of which is abelian. Each
Bi is complemented by the maximal subalgebra Ci, which is the direct sum of V and the
remaining Bj. Then

⋂
i

Ci ⊆ V, and F(A) ⊆ V∩Asoc (A) = 0. Therefore F(A) = 0.

The Frattini subalgebra of a solvable Lie algebra is an ideal, as shown by Barnes and
Gastineau-Hills in [5]. This result does not carry over to Leibniz algebras, as shown in the
following example.

Example 28. Let F be a field of characteristic p where p is prime and V be a vector space
with basis e1, ..., ep. Define:

x(ej) = ej+1 with subscripts mod p
y(ej) = (j + 1)ej−1 with subscripts mod p
z(ej) = ej.

Then [y, x] = z, and the other commutators between x, y, and z are 0.

Let H be the three-dimensional Lie algebra with basis {x, y, z}. Let

L = V u H with [h, v] = h(v) and VH = 0,

16
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and let A be the Leibniz algebra A = V u H. Then

ZA(V) = Zl
A(V) = V.

Since VA = 0, V ⊆ Zl(A), the left center of A. If xA = 0, then xV = 0. Hence, Vx = 0,
and x ∈ ZA(V). Hence, x ∈ V, and V = Zl(A) since V is a minimal ideal in A. By Lemma
5.12 of [3], V is complemented by a unique subalgebra in A, which is H. H is a maximal
subalgebra of A and every other maximal subalgebra of A contains V. These subalgebras are
precisely those of the form V u M where M is maximal in H. Let Ω be the set of all maximal
subalgebras in H. Then

F(A) = H ∩ [
⋂

M∈Ω

(V u M)] = H ∩ [V u
⋂

M∈Ω

M] =
⋂

M∈Ω

M = F(H) = Fz,

which is not an ideal in A.

17



Chapter 4

Elementary Leibniz Algebras

A Leibniz algebra A is called elementary if the Frattini ideal of every subalgebra of A is 0. The
analogous concept has been studied in both group theory and Lie algebras. We first show
that the direct sum of two elementary algebras is also elementary.

Lemma 29. If A = B⊕ C where B and C are both elementary, then A is elementary.

Proof. Let S be a subalgebra of B⊕ C. We show that φ(S) = 0. By the Second Isomorphism
Theorem, S/ (B ∩ S) ∼= (B + S) /B. Consider the projection map from B + S onto (B + S)∩C.
Let x ∈ B + S. Then x = b + c, where b ∈ B, c ∈ C are unique. Suppose that x 7→ c. Note that
c = x− b ∈ C ∩ (B + S). The kernel of this map is B. Hence, S/ (B ∩ S) ∼= (B + S) ∩ C. Now,
(B + S) ∩ C is contained in C. Since C is elementary, φ ((B + S) ∩ C) = 0. This implies that
φ(S) ⊆ B ∩ S and likewise, φ(S) ⊆ C ∩ S. Hence, φ(S) ⊆ B ∩ C = 0.

4.1 A2 Nilpotent

Proposition 30. Let A be a Leibniz algebra such that A2 is nilpotent. Then the following are
equivalent:

1. φ(A) = 0.

2. Nil (A) = Soc (A), and Nil (A) is complemented by a subalgebra C.

3. A2 is abelian, is a semisimple A-module, and is complemented by a subalgebra D.

Furthermore, the complements to A2 are precisely the Cartan subalgebras of A.

Proof. Assume that 1 holds. φ(A) = 0. Then Nil (A) = Asoc (A) = ZA(Soc (A))). Since
A is solvable, Asoc (A) = Soc (A). Hence, Nil (A) is abelian and is complemented by a
subalgebra. Thus, 2 holds.

18
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Assume that 2 holds. Since A is solvable, Nil (A) =Soc (A) = Asoc (A) and, since A2 is
nilpotent, A2 ⊆ Nil (A). Hence, A2 is abelian. Since A acts completely reducibly on Asoc
(A), A acts completely reducibly on A2, and A2 is complemented in Asoc (A) by an ideal B.
Now B + C complements A2, and 3 holds.

Assume that 3 holds. Since φ(A) ⊆ A2 always holds, there exists an A-invariant subspace
B which complements φ(A) in A2. Then B + D complements φ(A) in A. Hence, φ(A) = 0.

Under the conditions of the proposition, Nil (A) = A2 ⊕ Z(A) and both A2 and Z(A)

are the direct sums of minimal ideals of A. If B is one of these minimal ideals, then either B
is central or AB + BA = B.

If H is a Cartan subalgebra of A, then A = H + A2. H ∩ A2 is an ideal in A since A2

is an abelian ideal. Hence, H ∩ A2 is the direct sum of minimal ideals of A. If B is one of
them, then B is a minimal ideal of H which is nilpotent. Hence, B ⊆ Z(A) ∩ A2 = 0. Thus,
H ∩ A2 = 0 and H is a complement to A2 in A.

Conversely, let E be a complement to A2 in A. Let x ∈ NA(E) ∩ A2 where NA(E) is the
normalizer of E in A. Then xE, Ex ⊆ E ∩ A2 = 0. Therefore, x ∈ Z(A) ∩ A2 = 0. Hence,
NA(E) = E and E is a Cartan subalgebra of A.

It is not always the case that if φ(A) = 0 that φ(M) = 0 when M is a subalgebra of A,
even if A is solvable, as the following example shows.

Example 31. Continue with the example from 28. Let H be the three-dimensional Lie algebra
with basis {x, y, z}. Let

L = V u H, with [h, v] = h(v) and [v, h] = −h(v).

In other words, L is a solvable Lie algebra. Let

K = (I + Re2)H.

Re2 is a derivation since L is a Lie algebra; hence, I + Re2 is an automorphism, and K is a
subalgebra with basis x + 3e1, y + e3, z + e2. It is easily checked that H and K are maximal
subalgebras with H ∩ K = 0. Hence, φ(L) = 0, while φ(H) 6= 0.

When discussing Cartan subalgebras of Leibniz algebras, we have the following lemma.
The proof is the same as the Lie algebra proof of Lemma 4 in [2].
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Lemma 32. If W is an ideal in a Leibniz algebra A, U is a subalgebra of A with W ⊆ U, U/W is a
Cartan subalgebra of A/W, and H is a Cartan subalgebra of U, then H is a Cartan subalgebra of A.

Theorem 33. Let A be a Leibniz algebra with φ(A) = 0 and A2 nilpotent. Then A is elementary.

Proof. Let M be a subalgebra of A. Suppose that A2 ⊆ M. Since A2 is nilpotent, φ(A2) is equal
to the derived algebra of A2. Then φ(A2) ⊆ φ(A) = 0 because the derived algebra of A2 is an
ideal in A and by Lemma 4.1 of [17]. Thus, A2 is abelian and A = A2 u H, where H is a Cartan
subalgebra of A by Proposition 30. Then M = M ∩ A = M ∩ (A2 u H) = A2 u (M ∩ H). A
acts completely reducibly on A2 and since A2 is abelian, H acts completely reducibly on A2

as well. Since H is abelian, H ∩M acts completely reducibly on A2 and then also on M2. Thus,
M acts completely reducibly on M2. Furthermore, M = A2 u (M ∩ H) = B⊕M2 u (M ∩ H)

for some ideal B in M. Now B⊕ (M ∩ H) is a complementary subalgebra to M2 in M. Thus,
part 3 of Proposition 30 holds, and φ(M) = 0.

Suppose that M does not contain A2. Then M + A2 falls in the preceding case. Hence, we
may assume that M+ A2 = A. Since A2 is abelian, A2∩M is an ideal in A. Then M/(A2∩M)

complements A2/(A2 ∩ M) in A/(A2 ∩ M), and M/(A2 ∩ M) acts completely reducibly
on A2/(A2 ∩M). Hence, M/(A2 ∩M) is a Cartan subalgebra of A/(A2 ∩M) by the last
proposition. Let H be a Cartan subalgebra of M. By Lemma 32, H is a Cartan subalgebra of A.
Therefore, H is a complement of A2 in A. Furthermore, M = M ∩ (H + A2) = H + (A2 ∩M)

since H ⊆ M. Thus, H is a complement to A2 ∩ M in M. A = A2 + M acts completely
reducibly on A2, and hence, M also acts completely reducibly on A since A2 is abelian.
Therefore, M acts completely reducibly on M2 and A2 ∩ M = M2 ⊕ (A2 ∩ Z(M)). Since
Z(M) ⊆ H, it follows that Z(M) ∩ A2 = 0. Hence, H is a complement to M2 in M. Now M
satisfies part 3 of Proposition 30, and φ(M) = 0.

Example 34. Let A be as in our running example, Example 1.

Recall from Example 4 that φ(A) = 0.

We know that

A2 = span {a2, a3}

from 1.

Thus, A2 is nilpotent, and A is elementary.
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As in Lie algebras, there is a converse to Theorem 33. The Lie algebra result is shown
in [19]. We show the extension to Leibniz algebras in Theorem 38. The following is a direct
extension of a Lie algebra result, and the proof is the same as in the Lie algebra case as
shown in Proposition 2 and Theorem 2 in [15].

Theorem 35. Let A be a Leibniz algebra such that A2 is nilpotent. For any subalgebra M of A,
φ(M) ⊆ φ(A).

The following result is Lemma 7.1 of [17].

Lemma 36. Let A be an algebra and B be an ideal in A. If U is a subalgebra of A which is minimal
with respect to the property A = B + U, then B ∩U ⊆ φ(U).

The next result is shown for Lie algebras as Lemma 2.3 of [18], but the proof is valid for
Leibniz algebras also.

Lemma 37. If A is an elementary Leibniz algebra and B is an ideal in A, then there exists a
subalgebra C such that A = B + C and B ∩ C = 0.

Theorem 38. Let A be a solvable, elementary Leibniz algebra over a perfect field, K. Then A2 is
nilpotent.

Proof. Let A be a minimal counterexample. Since φ(A) = 0, A = B + C, where B = Nil
(A) = Asoc (A) and C is a Lie subalgebra. If C is nilpotent, then it is abelian, A2 ⊆ B and
we are done.

Suppose that C is not nilpotent. Let M1 be a maximal subalgebra of C containing C2 and
M = B + M1. Then A2 ⊆ M. Then M2 is an ideal in A and is nilpotent by induction. Hence,
M2 ⊆ Nil (A) = B. Therefore, M1

2 ⊆ B∩C = 0, so M1 is abelian. Hence, A = B + (M1 + D),
where D is a one dimensional subalgebra with basis x.

We claim that B is the unique minimal ideal of A. Suppose that B = B1 + · · ·+ Bt, where
each summand is a minimal ideal in A and t > 1. Let Sj = Bj + C for each j. Sj

2 is nilpotent
by induction. Since Bj is a minimal ideal in A, Sj

2 = Bj + C2 or C2. Hence S1
2 ∪ · · · ∪ St

2 is a
Lie set whose span is A2 and left multiplication by each s in the Lie set is nilpotent on A2.
Hence, A2 is nilpotent by the theorem in [8], which is a contradiction. Thus, B is the unique
minimal ideal in A.

We claim that M1 = Nil (C) = Asoc (C) is the unique minimal ideal in C. Suppose
that M1 = B1 + · · · + Bt, where each summand is a minimal ideal of C and t > 1. Let
Cj = B + Bj + D. By induction, Cj

2 is nilpotent and Cj
2 = BjB + DB + DBj, since B is an

abelian minimal ideal in A and Bj is an abelian minimal ideal in C. Lc is nilpotent on Cj
2 for

each c ∈ Cj
2. Therefore, Lc is nilpotent on Cj

2 + B since Lc(Cj
2 + B) ⊆ Cj

2. Since BiBj = 0,
Lc is nilpotent on A2 = C1

2 + · · ·Ct
2 for all c ∈ Cj

2. Since C1
2 ∪ · · · ∪ Ct

2 is a Lie set, A2 is
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nilpotent by [8], a contradiction. Hence, t = 1 and A = B + C = B + (M1 + D) where B is a
minimal ideal in A, M1 is a minimal ideal in C, and D is a one dimensional subalgebra with
basis x.

Let E be the algebraic closure of K. We will show that E⊗ A2 is nilpotent, and hence,
that A2 is nilpotent. Since Nil (C) =Asoc (C) = M1, Lx acts completely reducibly on M1. For
each m ∈ M1, Lm acts completely reducibly on B since B ⊆Asoc (B + Km). Passing to E⊗ A,
since K is perfect, the extension of these left multiplications are diagonalizable on E⊗M1

and E⊗ B respectively. In the second case, the Lm commute, so the Lm are simultaneously
diagonalizable on E⊗ B. We will show that (E⊗ A)2 is nilpotent under these conditions,
and hence, assume that K is algebraically closed. Hence, there is a basis of eigenvectors,
m1, . . . mt in M1 for Lx. Therefore, xmj = cjmj for some cj ∈ K. If cj = 0 for any j, then 0 is an
eigenvalue of Lx on M1. Since M1 is irreducible over K, M1 is one dimensional and C is two
dimensional abelian, a contradiction to M1 being the unique minimal ideal in C. Thus, cj 6= 0
for all j. Also, B is the direct sum of root spaces Bαi = {b ∈ B|mb = αi(m)b for all m ∈ M1}.

Let bi ∈ Bαi . Then xbi = b1
′ + · · ·+ bn

′, where bj
′ ∈ Bαj . Then

x(mjbi) = (xmj)bi + mj(xbi),

xαi(mj)bi = cjmjbi + mj

(
∑

k
bk
′
)

,

αi(mj)

(
∑

k
bk
′
)

= cjαi(mj)bi + ∑
k

αk(mj)bk
′,

and cjαi(mj)bi = ∑
k

(
αi(mj)− αk(mj)

)
bk
′.

Since cj 6= 0 for all j, it follows that mjbi = αi(mj)bi = 0 for all i and j. Therefore,
M1B = 0. Since B is a minimal ideal in A, BM1 = 0, and M1 ⊆ ZA(Asoc (A)) =Asoc (A), a
contradiction. Hence, no minimal counterexample exists and the result holds.
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4.2 Classification of Elementary Leibniz Algebras

We first consider solvable Leibniz algebras. A construction of solvable elementary Lie algebras
is given in [19]. Let A be a vector space and let B be an abelian Lie subalgebra of gl(A)

which acts completely reducibly on A. Forming the semidirect sum of A and B, one obtains
an elementary, solvable, almost algebraic Lie algebra L. We can use this construction to
obtain elementary, solvable, Leibniz algebras. Since A = Asoc (L), A is the direct sum of
minimal ideals of L. Let A = A1 + A2, where each summand is an ideal in L. Define the
Leibniz algebra L∗ to be the vector space A + B with the same multiplication as in L except
that A2B = 0. This algebra has φ(L∗) ⊆ (L∗)2 ⊆ A and φ(L∗) ⊆ B. Hence, φ(L∗) = 0, and
therefore, L∗ is elementary. Following [19], such algebras will be called of type I.

Theorem 39. Let A be a solvable Leibniz algebra over a perfect field K. The following are equivalent:

1. A is elementary.

2. φ(A) = 0 and A2 is nilpotent.

3. φ(A) = 0 and A is metabelian.

4. Asoc (A) is complemented by an abelian subalgebra of A.

5. A = B + E, where B is abelian and E is elementary of type I.

Proof. 1 implies 2: Theorem 38.

2 implies 3: By Theorem 20 and Lemma 7.2 of [17], A =Nil (A) + B. Since A2 is nilpotent,
A2 ⊆Nil (A). Hence, B is abelian.

3 implies 4: Using Theorem 20 and Lemma 7.2 of [17], A =Nil (A) + B, and A/Nil (A)

is abelian.

4 implies 5: Let Asoc (A) = Z(A) + K, where K is an ideal of A. Let E = K + B, where B
is as in 4. Then ZA(K) ∩ B ⊆ Z(E) ⊆ Z(A) ∩ E = 0. Hence, B is isomorphic to a subalgebra
of gl(K). Since K is contained in Asoc (A), K is completely reducible as a B-module. Hence,
E is of type I.

5 implies 1: As in Lie algebras, the direct sum of elementary Leibniz algebras is elementary
by Lemma 29; hence, A is elementary.

We now remove the condition of solvability and obtain a classification of all elementary
Leibniz algebras over algebraically closed fields of characteristic 0.

Theorem 40. Let A be a Leibniz algebra over an algebraically closed field K of characteristic 0. Then
A is elementary if and only if either
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1. A is the direct sum of copies of sl2(K), or

2. A has basis ei, f j, for i = 1, . . . m and j = 1, . . . n, with ei f j = λij f j, either ei f j = − f jei or
f jei = 0, and all other products between basis elements equal to 0 or

3. A is the direct sum of an algebra from 1 and an algebra from 2.

Proof. If A is semisimple, then A is a Lie algebra and it is of type 1, which follows from [18].

In general A = B + (Z⊕ S), where B = Asoc (A), Z is abelian, and S is as in 1. Suppose
that S is not 0. We claim that BS = SB = 0. Since S is as in part 1, let T be one of the
simple summands in S. Consider the subalgebra C = B + T and let D be a minimal ideal
of C contained in B. If dim D = p ≥ 2, then there exists t ∈ T = sl2(K) and a1, a2, . . . , ap,
with tai = ai+1 for i = 1, . . . p− 1 and tap = 0. Either Dt = 0 or td = −dt for all d ∈ D.
In either case φ(E) = E2 6= 0, where E is the subalgebra generated by t and the ai. This
contradiction forces p = 1 and TD = 0 = DT. Hence, SB = 0 = BS. Thus, Z acts completely
reducibly on B. Again, since DS = 0 or ds = −sd for all d ∈ D and s ∈ S, Z acts completely
reducibly on the left of B. Hence, Lz is semisimple for each z ∈ Z. Since Z is abelian, the left
multiplications of z ∈ Z are simultaneously diagonalizable on B, and hence, there are bases
for Z and B such that the left multiplications hold as in 2 and then the right multiplications
hold using Lemma 1.9 of [3].

The converse is clear.

We next obtain the result of the last theorem for Leibniz algebras over fields of character-
istic p > 3.

First, we need the following lemma.

Lemma 41. Let K be a perfect field. Let A be an elementary Leibniz algebra over K. Then A = Asoc
(A) + (B + S), where B is abelian, S is semisimple, and BS + SB ⊆ B.

Proof. A = Asoc (A) + C by Lemma 37. Let B = Rad (C). By the same Lemma, C = B + S,
where S is semisimple. Clearly Rad (A) = Asoc (A) + B. Since Rad (A) is solvable and
elementary, (Rad (A))2 is nilpotent by Theorem 38, and hence, B2 ⊆ Nil (A) ∩ B = Asoc
(A) ∩ B = 0.

Theorem 42. Let A be a Leibniz algebra over an algebraically closed field K of characteristic p > 3.
Then A is elementary if and only if either

1. A is the direct sum of copies of sl2(K), or

2. A has basis ei, f j, for i = 1, . . . m and j = 1, . . . n, with ei f j = λij f j, either ei f j = − f jei or
f jei = 0, and all other products between basis elements equal to 0, or
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3. A is the direct sum of an algebra from 1 and an algebra from 2.

Proof. If A is solvable, then A = Asoc (A) + C, where C is abelian by Lemma 41. Let B
be a minimal ideal of A. Then B ⊆ Nil (B + Kc) = Asoc (B + Kc), and Lc acts completely
reducibly on B for each c ∈ C. Hence, Lc acts diagonally on B. Since C is abelian, the Lc are
simultaneously diagonalizable on B and A is as in 2, as follows from Lemma 1.9 of [3].

If A is semisimple, then A is Lie and is as in 1 by Theorem 3.2 of [17].

If A is neither solvable nor semisimple, then A = B + (C + S), where B = Asoc (A) 6= 0,
C is abelian, S is semisimple, and CS + SC ⊆ C by the above lemma. Again S is as in 1. Let
Di = B + Si, where Si is a simple summand of S. Then B = Nil (Di) = Asoc (Di), and B
is a completely reducible Di module. If V is an irreducible submodule of B, then we claim
dim V = 1. Since V is an irreducible left Di Lie module, there exists an e ∈ Di such that V is
a cyclic Ke module on which e acts nilpotently. Now M = V + Ke is a nilpotent subalgebra
since either Ve = 0 or ve = −ev for all v ∈ V. Hence, M is abelian since it is elementary.
Therefore, eV = 0 and dim V = 1. Hence, BS = SB = 0.

If C = 0, we are done. If not, then C + S is elementary, and Nil (C + S) = Asoc
(C + S) = C. Then as in the last paragraph, CS = SC = 0. Then A = (B + C) + S, where
B + C is as in 2, and so A is as in 3.
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Chapter 5

E-Leibniz Algebras

An algebra A is an E-algebra if φ(B) ⊆ φ(A) for all subalgebras B of A. Throughout this
section and the next, we will assume that the algebras are over fields of characteristic 0. Then
the Frattini subalgebra is an ideal by Theorem 2.10 of [6].

5.1 Conditions for a Leibniz Algebra to be E

By Proposition 2 of [15], a Lie algebra L is an E-Lie algebra if and only if L/φ(L) is elementary.
The proof carries over to Leibniz algebras, and we record it as:

Theorem 43. Let A be a Leibniz algebra over a field of characteristic 0. Then A is an E-Leibniz
algebra if and only if A/φ(A) is elementary.

As in Lie algebras, a corollary restating Theorem 35 follows.

Corollary 44. If A2 is nilpotent, then A is an E-Leibniz algebra.

Proof. By Theorem 3.5 of [6], φ(H) ⊆ φ(A) for all subalgebras H of A when A2 is nilpotent.
Thus, A/φ(A) is elementary, and A is an E-Leibniz algebra.
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5.2 Classification of E-Leibniz Algebras

We now provide a classification of E-Leibniz algebras over algebraically closed fields of
characteristic zero.

Theorem 45. Let A be a Leibniz algebra over K, an algebraically closed field of characteristic zero.
Then A is an E-algebra if and only if

1. A is solvable, or

2. A ∼= sl2(K)⊕ . . .⊕ sl2(K), or

3. A = Ru S, where S ∼= sl2(K)⊕ . . .⊕ sl2(K), R is a solvable ideal, and RS + SR is contained
in φ(L).

Proof. Suppose A is solvable. Then A2 is nilpotent, and from Corollary 44, A is an E-algebra.

Let A = sl2(K)⊕ . . .⊕ sl2(K). Then A is Lie, and A is elementary by Theorem 3.2 of [18].
Hence, A is an E-algebra.

Let A = R u S where R is solvable, S is as in 2, and RS + SR ⊆ φ(A). S is elementary as
above. φ(A) is a nilpotent ideal of A; hence, φ(A) ⊆ R. In addition, A/φ(A) ∼= R/φ(A)u S.
Since RS + SR ⊆ φ(A), A/φ(A) is, in fact, the direct sum of R/φ(A) and S. Thus, by
Theorem 4.8 of [17], 0 = φ (A/φ(A)) = φ(S)⊕ φ (R/φ(A)). R/φ(A) is elementary since
R/φ(A) is an E-algebra and φ(R/φ(A)) = 0. Therefore, A/φ(A) is elementary by Lemma
29, and A is an E-algebra by Theorem 43.

Conversely, suppose A is an E-algebra. Then A/φ(A) is elementary from Theorem 43.
A/φ(A) is the direct sum of its radical, R, and a semisimple ideal S = sl2(K)⊕ . . .⊕ sl2(K)
from Theorem 4.1 of [6], either of which may be zero. If S = 0, then A is solvable as in 1.
If R = 0, then A is the direct sum of copies of sl2(K) as in 2. If neither R nor S is 0, then
RS + SR ⊆ φ(A), and since A/φ(A) is a direct sum, A is as in 3.

The following corollary addresses the special case in which A is a perfect Leibniz algebra.

Corollary 46. Let A be a perfect Leibniz algebra (A2 = A) over K, an algebraically closed field of
characteristic zero. Then A is an E-algebra if and only if A = sl2(K)⊕ . . .⊕ sl2(K).

Proof. Let A = R u S be the Levi decomposition for Leibniz algebra A as in [4], where R
is a solvable ideal of A and S is a semisimple subalgebra. A2 = R2 + RS + SR + S2. Note
that R2 + RS + SR ⊆ R since R is an ideal of A. In fact, we see that R2 + RS + SR = R since
A = A2. Since A is an E-algebra, RS + SR ⊆ φ(A). We claim that if R2 + φ(A) = R, then
R = 0. If R2 + φ(A) = R, then R2 + φ(A) + S = R + S = A. This implies that R2 + S = A
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since no subalgebra can supplement φ(A) except A itself. Thus, R2 = R, and hence, R = 0
since R is solvable. Therefore, A = S, and hence, A is Lie. Thus, by Corollary 4.5 of [18],
A = sl2(K)⊕ . . .⊕ sl2(K).
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Chapter 6

Minimal Nonelementary Leibniz
Algebras

6.1 Definitions

A Leibniz algebra A is called minimal nonelementary if A itself is not elementary but every
proper subalgebra H of A is. In [13], conditions for a Lie algebra, L, with L2 nilpotent, to be
minimal non-elementary are discussed in detail. In parts 1(b) and 3 of the following theorem,
the conditions in [13] are generalized to the Leibniz case. We also obtain additional cases.

6.2 Classification of Minimal Non-Elementary Leibniz Algebras

Theorem 47. Let A be a finite dimensional Leibniz algebra over an algebraically closed field. Suppose
that A2 is nilpotent. A is minimal non-elementary if and only if:

1. A is three dimensional non-nilpotent with basis x,y,z and non-zero multiplication as:

(a) xz = z, xy = y + z, zx = 0 and yx = 0, with Leib(A) = 〈y, z〉, or

(b) xz = z, xy = y + z, zx = −z, yx = −y− z, with Leib(A) = 0, or

2. A is Heisenberg, with Leib(A) = 0, or

3. A is generated by a, where a2 6= 0, A is nilpotent, and dim A ≥ 2, with Leib(A) = A2, or

4. A is the four dimensional non-nilpotent algebra generated by a, b, x, and y with multiplication:
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ax = x, ay = y, bx = x, by = y, xa = −x, ya = 0, xb = y− x, and yb = 0, with Leib(A)
= 〈y〉.

Proof. Let A be minimal non-elementary. Since A2 is nilpotent by supposition, A is solvable.
Suppose that A is not nilpotent. Then φ(A) 6= A2, and there exists a maximal subalgebra,
M, of A such that A = A2 + M. Let B be an algebra of minimum dimension such that
A = A2 + B. By Lemma 7.1 of [17], A2 ∩ B ⊆ φ(B) = 0 since B is a subalgebra of A. A2 is
nilpotent and elementary, and hence, it is abelian. Clearly, B is also abelian.

Suppose that dim B > 1. For any a ∈ B , let H(a) = A2 + (a). Then φ(H(a)) = 0 since all
proper subalgebras of A are elementary. Then A2 ⊆ Nil (H(a)) = Asoc (H(a)). A2 is abelian
since it is elementary and nilpotent, and it is completely reducible under the action of a.
On each minimal ideal, either Ra = −La or Ra = 0 as in [3]. Hence, the minimal ideals are
one-dimensional eigenspaces for La and Ra acting on A2, and La and Ra are simultaneously
diagonalizable on A2. This holds for all a in B, and since the left multiplications, La, commute,
they are simultaneously diagonalizable.

Consider B acting on W = A2 by left multiplication, and decompose A2 as the direct sum
of weight modules, Wα = {x ∈W

∣∣ ax = αax for all a ∈ B}. Each of these weight modules is
invariant under Rb, b ∈ B. If there is more than one weight module, then for each weight
α, let Bα = Wα + B. Since φ(Bα) = 0, Wα ⊆ Asoc (Bα) = Nil (Bα), and Wα is completely
reducible as a B-bimodule. Hence W ⊆ Asoc (A). Since B complements W, Asoc (A) is
complemented and φ(A) = 0, a contradiction.

Hence, there is one weight module, and each left multiplication is a scalar. Pick a ∈ B,
and suppose that ax = αx on W. Let W0 = {x ∈W

∣∣ xa = 0} and W1 = {x ∈W
∣∣ xa = −αx}.

Since W is the direct sum of one-dimensional a-invariant submodules, W = W0 + W1. If,
for each a ∈ B, W = W0 or W = W1, then each right multiplication is a scalar on A2, and
A2 ⊆ Asoc (A). Again, Asoc (A) is complemented in A and φ(A) = 0, a contradiction.

Thus, assume there is an a ∈ B such that neither W0 nor W1 is 0. W0 is a submodule. If
W1 is a submodule, then by induction both components are completely reducible under B,
and W ⊆ Asoc (A). Thus, Asoc (A) is complemented, and φ(A) = 0, a contradiction.

Hence, assume there is an x in W1 and a b in B such that xb /∈ W1. Let N = (x, xb),
bx = βx, and set y = βx + xb. The following multiplications hold.

ax = αx, ay = αy, bx = βx, by = βy,
xa = −αx, ya = (βx + xb)a = βxa− b(xa) = 0, xb = y− βx, yb = (βx− b(xb) = 0.

Let C = (a, b). Then N is a C-bimodule, and (y) is a submodule which is not comple-
mented in N, for suppose that σx + τy is C-invariant, where σ 6= 0. Then (σx + τy)a = −σαx,
and hence, τ = 0. Thus, σxb = σy− σβx, and σ = 0 since xb is not in W1. Therefore, no
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complement exists. Hence, Asoc (N + C) is not complemented in N + C, and φ(N + C) 6= 0.
Thus, B = C, N = W = A2, dim B = 2, dim A2 = 2, and the multiplication for B acting on
A2 is the one given in this paragraph.

Let B = (a, b) and A2 = (x, y). From the forgoing,
ax = αx, ay = αy, bx = βx, by = βy,
xa = −αx, ya = 0, yb = 0, xb = y− βx.

N = (y) is a one-dimensional submodule of A, and A2 is not completely reducible under
the action of A. A simple change of basis allows us to take α = β = 1, which yields the
algebra in case 4.

Suppose that dim B = 1. Hence, A = A2 + B, and A2 is abelian. We now show that there
exists a chain of ideals

0 ⊆ A1 ⊆ . . . ⊆ An−1 ⊆= A2 ⊆ An = A,

where dim Ai = i. If P ⊆ Q ⊆ A2 are ideals of A with Q/P irreducible under the action
of A, then dim Q/P = 1 since the action of x on Q/P determines the action of A on Q/P,
and either Rx = −Lx or Rx = 0. Then any eigenvector of Lx in Q/P must span Q/P, and
dim Q/P = 1. Hence, there exists a flag from 0 to L as claimed.

Now M = An−2 + B is a maximal subalgebra of A. Hence, φ(M) = 0 by assumption.
Then, An−2 ⊆ Asoc (M) = Nil (M). Since A2 is abelian and B is one dimensional, Asoc
(M) ⊆ Asoc (A). Thus, An−2 ⊆ Asoc (A). If An−2 6= Asoc (A), then Asoc (A) = An−1 =

Nil (A), and A splits over Nil (A) = Asoc (A). Hence, φ(A) = 0 from Theorem 3.1 of [6],
and A is elementary. Otherwise, Asoc (A) = An−2, and Asoc (A) has co-dimension two
in A. If Asoc (A) is not contained in φ(A), then A splits over Asoc (A) by Theorem 7.1 of
[17]. Again φ(A) = 0, and A is elementary. Thus, assume that Asoc (A) = φ(A). Since all
minimal ideals are one-dimensional, they are eigenspaces for Lx, where B=〈x〉. Note that
Rx = 0 or Rx = −Lx on each of these minimal ideals. Since A2/Asoc (A) is one-dimensional,
there exists a scalar α with (Lx − αI)2 = 0 and Lx − αI 6= 0. Hence, there exist y, z ∈ A2 with
the following possible multiplications.

Case 1: Let

xz = cz, xy = cy + z,
zx = 0, yx = −dcy + ez,

where d = 0 or 1, and c is a non-zero scalar since A is not nilpotent. Using the Leibniz
identity, x(yx) = (xy)x + y(xx). Computations yield −cd + ce = ce. Hence, d = 0. From
y(xx) = (yx)x + x(yx), we see that −cde− cd + ce = 0. Hence, e = 0, and yx = 0. A simple
change of basis allows us to take c = 1.
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Case 2: Let

xz = cz, xy = cy + z,
zx = −cz, yx = −dcy + ez,

where d = 0 or 1, and c 6= 0. Since x(yx) = (xy)x + y(xx) by the Leibniz identity, we
see that −dc = −c. Hence, d = 1. Similarly, y(xx) = (yx)x + x(yx), and hence, cde = −cd.
Hence, e = −1, and yx = −cy− z. Again, a change of basis allows us to choose c = 1.

Hence, H = 〈x, y, z〉 is such that φ(H) = 〈z〉 and A = H, which is the algebra in case 1.

Now let A be nilpotent with all proper subalgebras elementary. If there exists an a ∈ A
with a2 6= 0, then the subalgebra B with basis {a, a2, . . . , an} and aan = 0. In this case,
φ(B) = B2. Since a2 ∈ φ(B), B = A, which is the algebra in case 3.

If no such a exists, then A is Lie and hence, is Heisenberg by Theorem 4.7 of [11], yielding
case 2.

Conversely, in cases 1, 2, and 4, all proper subalgebras are clearly elementary.

Suppose that A is as in case 3. Then A = 〈a, a2, . . . , an〉 with aan = 0. Since A is nilpotent,
A2 = φ(A). Now b = α1a + α2a2 + . . . + αnan is in φ(A) if and only if α1 = 0. If the
subalgebra B contains an element that is not in φ(A), then B + φ(A) = A since A/φ(A) is
one-dimensional. Hence, B = A. Therefore, all proper subalgebras of A are contained in A2,
which is abelian, and hence, are elementary. Thus, A is minimal non-elementary.

We turn to the Leibniz algebra version of a Lie algebra result of Towers from [18].

Theorem 48. Let A be a Leibniz algebra over K, an algebraically closed field of characteristic 0. A
is minimal non-elementary if and only if:

1. A is three-dimensional non-nilpotent with basis {x, y, z} and non-zero multiplication as:

(a) xz = z, xy = y + z, zx = 0, and yx = 0, or

(b) xz = z, xy = y + z, zx = −z, and yx = −y− z, or

2. A is Heisenberg, or

3. A is generated by a, where a2 6= 0, A is nilpotent, and dim A ≥ 2, or

4. A is the four-dimensional non-nilpotent algebra generated by a, b, x and y with multiplication
as: ax = x, ay = y, bx = x, by = y, xa = −x, ya = 0, xb = y− x, and yb = 0.
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Proof. Suppose that A is minimal non-elementary. A is not elementary, so φ(A) 6= 0. Thus,
A/φ(A) can be viewed as a subalgebra of A, and hence, is elementary by assumption. Then
A is an E-algebra by Corollary 44.

Suppose that A is not solvable. Then there exists a positive integer k such that A(k) =

A(k+1). If k = 1, then A is a perfect Leibniz algebra, and A is elementary by Corollary
46, a contradiction. If k ≥ 2, then Ak is perfect, and A(k) ∼= sl2(K)

⊕
. . .
⊕

sl2(K). If R is
the solvable radical of A, then A = R

⊕
A(k). Since both summands are elementary, A is

elementary by Lemma 29, a contradiction. Hence, A must be solvable. The result now follows
from Theorem 47.
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Chapter 7

The Jacobson Radical

7.1 Definitions

Jacobson introduced his radical in ring theory, and we consider an analogous concept in an
algebra. For any algebra, L, the Jacobson radical, denoted J(L), is defined to be the intersection
of all maximal ideals of L. This concept was considered in [12] when L is a Lie algebra.

Barnes showed in [3] that if a Leibniz algebra, A, is nilpotent, that all maximal subalgebras
are ideals. Then J(A) = φ(A).

Lemma 49. For a Leibniz algebra, A, J(A) ⊆ A2.

Proof. Suppose x is not in A2. Then there exists a complementary subspace, M, of x in
A that contains A2. Also, since A2 ⊆ M, M is a maximal ideal of A, and x is not in M.
Thus, if x ∈ M for every maximal subalgebra M, then x ∈ A2. Consequently, we see that
J(A) ⊆ A2.

7.2 Rad(A)

If L is a linear Lie algebra, let R denote the solvable radical of L, Rad(L), and let Rad(L∗)
be the radical of the associative envelope, L∗ of L. Then, by Corollary 2 on p. 45 of [10], L∩
Rad(L∗) is precisely the set of all nilpotent elements of R, and [R, L] ⊆ Rad (L∗).

Theorem 50. Let A be a Leibniz algebra, and let R = Rad (A) be the solvable radical of A. Then
AR + RA ⊆ N = Nil (A).

Proof. Let L (A) = {Lx
∣∣ x ∈ N}. The map π : L→ L (A) is a homomorphism, and L (A)

is a Lie algebra under commutation. Also, π maps R to R(L (A)), the radical of L (A). By
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the result in section 7.1, [L (A), R(L (A))] ⊆ R(L (A)∗). Hence, there exists an n such that
[Lsn , Ltn ] . . . [Ls2 , Lt2 ][Ls1 , Lt1 ] = 0, where either si ∈ A and ti ∈ R, or si ∈ R and ti ∈ A. Then
Lsntn . . . Ls1t1 = 0. Hence, sntn(...(s1t1(x))...) = 0 for all x ∈ A. Putting x = s0t0, we have
sntn(...(s1t1(s0t0))...) = 0. Therefore, (AR + RA)n+1 = 0. Since AR + RA is an ideal in A,
AR + RA ⊆ N.

Proposition 51. If A is a Leibniz algebra over a field of characteristic 0, then A2∩R = AR+ RA ⊆
N.

Proof. A = R + S as in the Levi decomposition for Leibniz algebras in [4]. R = Rad (A),
and S is a semisimple Lie subalgebra of A. Then A2 = S2 + AR + RA. Hence, A2 ∩ R =

S2 ∩ R + (AR + RA) ∩ R = AR + RA since S ∩ R = 0, and AR + RA ⊆ R.

Lemma 52. If Leibniz algebra A is solvable, then J(A) = A2.

Proof. If M is a maximal ideal of A, then A/M is abelian. In fact, since A is solvable, A/M is
of dimension one. Hence, A2 ⊆ M for all M, and A2 ⊆ J(A). Since J(A) is always contained
in A2, we have that A2 = J(A).

Proposition 53. Let A be a Leibniz algebra over a field of characteristic 0. Let R = Rad (A). Then
J(A) = AR + RA.

Proof. Let S be a Levi factor of A as in [4]. Then S is Lie, and S = S1
⊕

. . .
⊕

St where each
Si is simple. Let Mi be the sum of R and all of the Sj except Si. Then Mi is a maximal ideal
of A. Then J(A) ⊆

⋂
i

Mi = R, and J(A) ⊆ R ∩ A2.

If M is a maximal ideal of A, then A/M is either abelian or simple. In the first case,
A2 ⊆ M, and in the second case, R ⊆ M. Clearly, the intersection of all maximal ideals M of
the first type contains A2. Similarly, the intersection of all maximal ideals M of the second
type contains R. Therefore, R ∩ A2 ⊆ J(A), and the result follows.

Corollary 54. Let A be a Leibniz algebra over a field of characteristic 0. Then J(A) is nilpotent.

Proof. J(A) = AR + RA ⊆ Nil(A) by Propositions 51 and 53.

Corollary 55. φ(A) ⊆ J(A) when A is over a field of characteristic 0.

Proof. A = R + S, as in the Levi decomposition in [4], and S is Lie. Hence, φ(S) = 0. Thus,
φ(A) ⊆ R. Since φ(A) ⊆ A2, it follows that φ(A) ⊆ R ∩ A2 = AR + RA = J(A), using
Propositions 51 and 53.

Proposition 56. Let B be a nilpotent ideal in a Leibniz algebra, A. Then J(B) ⊆ J(A).
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Proof. Since B is nilpotent, J(B) = φ(B) = B2, which is an ideal in A. Suppose that x ∈ J(B),
x /∈ J(A). Then let M be a maximal ideal of A such that x is not in M. Then A = J(B) + M,
and B = J(B) + (M∩ B). M∩ B is a proper ideal of B that supplements J(B), a contradiction,
since no proper ideal of B supplements J(B) in B.
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Chapter 8

Extending Frattini Properties

8.1 Generalized Frattini Property

In group theory, the intersection of all maximal subgroups of a group G is denoted Frat(G)
and called the Frattini subgroup of G. From this context, Beidleman and Seo defined a
generalized Frattini subgroup of a group G in [7]. H, a proper subgroup of G, is a generalized
Frattini subgroup if whenever G = HNG(P) for any Sylow p-subgroup P of any normal
subgroup K of G, then G = NG(P). Any generalized Frattini subgroup also satisfies the
following property: If G is a finite group with A, B normal subgroups in G such that B ⊂
Frat(G) and A/B is nilpotent, then A is nilpotent.

As we do not have Sylow p-subgroups in Lie and Leibniz algebras, we utilize the Cartan
subalgebra. A Cartan subalgebra C of a Leibniz algebra A is a subalgebra C ⊂ A such that C
is nilpotent and NA(C) = C. This concept has been explored in the Lie algebra case in [14].
We generalize further to the Leibniz algebra case. Using the definition in [14], we first define
the concept of a generalized Frattini ideal in a Leibniz algebra A as follows. A proper ideal H
in A is a generalized Frattini ideal in A if for each ideal K in A and each Cartan subalgebra,
C, of K, whenever A = H + NA(C), then A = NA(C).
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Theorem 57. Let H be a generalized Frattini ideal in Leibniz algebra A. Then the following are also
true.

1. H is nilpotent.

2. Any ideal of A that is contained in H is also a generalized Frattini ideal in A.

3. H + φ(A) is a generalized Frattini ideal in A.

4. H + Z(A) is a generalized Frattini ideal in A whenever H + Z(A) is a proper subalgebra of
A.

Proof. 1. Let C be a Cartan subalgebra of H. Then A = H + NA(C) by Theorem 6.6 of
Barnes in [3]. H is generalized Frattini in A, and hence, A = NA(C), which in turn
implies that H = NH(C). Since C is a Cartan subalgebra of H, NH(C) = C. Thus,
H = C, and H is nilpotent.

2. Let N be an ideal of A such that N ⊆ H. Let K be an ideal of A, and let C be a
Cartan subalgebra of K such that A = N + NA(C). Then A = H + NA(C), and hence,
A = NA(C) since H is a generalized Frattini ideal in A. Thus, by definition, N is also
generalized Frattini in A.

3. Since H and φ(L) are both ideals in A, H + φ(A) is also an ideal in A. Suppose K
is an ideal in A with a Cartan subalgebra C of K such that A = H + φ(A) + NA(C).
Now suppose that M is a maximal subalgebra with H + NA(C) ⊆ M. φ(A) is certainly
contained in M since φ(A) ⊆ F(A) ⊆ M. Then H + φ(A) + NA(C) = M, which is a
contradiction to the earlier supposition that H + φ(A) + NA(C) = A. Therefore, no
such maximal subalgebra M exists. Hence, A = H + NA(C), and in turn, A = NA(C)
since H is generalized Frattini in A. Thus, by definition, H + φ(A) is generalized
Frattini in A.

4. Since H and Z(A) are both ideals in A, H + Z(A) is also an ideal in A. Suppose K is
an ideal in A, and let C be a Cartan subalgebra of K such that A = H + Z(A) + NA(C).
Z(A) is contained in every normalizer of a subset of A, so Z(A) is certainly contained
in NA(C). Thus, A = H + NA(C), and since H is generalized Frattini in A, A = NA(C).
By definition, H + Z(A) is also generalized Frattini in A.

Corollary 58. In Leibniz algebra A, φ(A) and Z(A) are generalized Frattini ideals in A.

Proof. Take H = 0 in (3) and (4) above.

Theorem 59. Let H be generalized Frattini in Leibniz algebra A. If K is an ideal in A and K/H is
nilpotent, then K is nilpotent.
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Proof. Let K be an ideal in A that contains H such that K/H is nilpotent. Let C be a Cartan
subalgebra of K. Then (C + H)/H is a Cartan subalgebra in K/H. Since K/H is nilpotent,
K/H is contained in the normalizer of (C + H)/H in K/H, which is (C + H)/H. Since
(C + H)/H is also contained in K/H, the two are equal. (C + H)/H is Cartan, and hence is
nilpotent.

Corollary 60. A Leibniz algebra A is nilpotent if and only if A2 is a generalized Frattini ideal in A.

Proof. Suppose A2 is generalized Frattini in A. A/A2 is always nilpotent. Then by Theorem
59, A is nilpotent.

Suppose A is nilpotent. Then for any ideal H in A that contains A2, whenever H/A2 is
nilpotent, then H is nilpotent. Hence, A2 is generalized Frattini in A by definition.

Theorem 61. Let H be a generalized Frattini ideal in Leibniz algebra A. If K is an ideal in A such
that Kω is contained in H, then Kω = 0.

Proof. Suppose K is an ideal of L such that Kω ⊆ H. Then there exists a homomorphism
Π : K/Kω → K/H which sends k + Kω to k + H. Since K/Kω is nilpotent, its homomorphic
image, K/H is nilpotent. Thus, by Theorem 59, K is nilpotent, which is true if and only if
Kω = 0.

Corollary 62. A proper ideal K in Leibniz algebra A is nilpotent if and only if K2 is a generalized
Frattini ideal in A.

Proof. Suppose K2 is a generalized Frattini ideal in A. K/K2 is always nilpotent; hence, by
Theorem 59, K is nilpotent.

Suppose K is nilpotent. Then K2 = φ(K) ⊆ φ(A) [17]. Let J be an ideal in A such that
J/K2 is nilpotent. There exists a homomorphism π : J/K2 → (J + φ(A))/φ(A). Thus, (J +
φ(A))/φ(A) is nilpotent, which in turn implies that J is nilpotent. Hence, K2 is generalized
Frattini in A by definition.

We now introduce an equivalent definition for an ideal being generalized Frattini in
Leibniz algebra A via the following theorem.

Theorem 63. Let H be an ideal in Leibniz algebra A. H is a generalized Frattini ideal in A if and
only if for each ideal J in A that contains H, whenever J/H is nilpotent, then J is nilpotent.

Proof. Let H be a generalized Frattini ideal in A. If J is an ideal in A with H ⊆ J and J/H
nilpotent, then J is nilpotent by Theorem 59.

Conversely, suppose that for each ideal J in A, we have the property that if J/H is
nilpotent, then J is also nilpotent. Let K be an ideal in A, and let C be a Cartan subalgebra
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of K such that A = NA(C) + H. Then (C + H)/H is Cartan in (K + H)/H. (C + H)/H is
an ideal in (K + H)/H. Now NK/H ((C + H)/H) = (K + H)/H, and NK/H ((C + H)/H)) is
also (C + H)/H. Hence, (C + H)/H = (K + H)/H, and hence, (K + H)/H is nilpotent. By
Theorem 59, K+ H is nilpotent. Thus, K is nilpotent, and C = K. Hence, NA(C) = NA(K) = A
since K is an ideal in A. Therefore, H is generalized Frattini in A by definition.

Corollary 64. All proper ideals in a nilpotent Leibniz algebra are generalized Frattini.

Example 65. Let L be the Leibniz (also Lie) algebra 〈x, y, z〉 with multiplications zx = x,
xz = −x, zy = y, yz = −y, and all others 0. L is nilpotent. Then H = 〈x〉 and K = 〈y〉 are
ideals that are generalized Frattini in L.

Note that the sum of two ideals with the generalized Frattini property in a Leibniz
algebra, A, may not be generalized Frattini.

Example 66. In L defined as in the previous example, H and K are both generalized Frattini
ideals in L. However, H + K, while an ideal, is not generalized Frattini in L.

Theorem 67. Let H be a generalized Frattini ideal in Leibniz algebra A, and let K be an ideal in A
that contains H. Then K/H is generalized Frattini in A/H if and only if K is generalized Frattini
in A.

Proof. Suppose K is a generalized Frattini ideal in A. Let J/H be an ideal in A/H such that
(J/H)/(K/H) is nilpotent. Then J/K is also nilpotent. Since K is generalized Frattini in A, J
is nilpotent by Theorem 59, which implies that J/H is nilpotent. Thus, K/H is generalized
Frattini in A/H by Theorem 63.

Conversely, suppose that K/H is generalized Frattini in A/H. Let J be an ideal in A
containing K so that J/K is nilpotent. Then (J/H)/(K/H) is nilpotent as well. Thus, J/H is
nilpotent from Theorem 59. Since H is generalized Frattini in L and J/H is nilpotent, J is
nilpotent by Theorem 59. Therefore, K is generalized Frattini in A by Theorem 63.

Theorem 68. If Nil (A) is a generalized Frattini ideal in A, then every solvable ideal of A is
nilpotent.
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Proof. Suppose Nil (A) is generalized Frattini in A. Let H be a solvable ideal of A, and let
k be the smallest integer such that H(k+1) = 0. H(k) is abelian, and hence nilpotent. Thus,
H(k) ⊆ Nil (A). Since Nil (A) is generalized Frattini in A, H(k) is generalized Frattini in A
by 57. H(k−1)/H(k) is abelian, and hence nilpotent. Thus, H(k−1) is nilpotent by Theorem 59,
and hence, H(k−1) ⊆ Nil (A). Continuing in this manner, we can see that H = H(1) ⊆ Nil
(A). Since H is an ideal in A and Nil (A) is generalized Frattini in A, H is also generalized
Frattini in A by Theorem 57.

Corollary 69. If Nil (A) is generalized Frattini in A, then A is not solvable.

Proof. If A is solvable, then A is nilpotent by Theorem 68. Hence, A = Nil (A). Then Nil (A)

is not a proper ideal in A, and hence, is not generalized Frattini in A.

Example 70. Let L be the Leibniz (also Lie) algebra 〈x, y, z〉 with multiplications zx = x,
xz = −x, zy = y, yz = −y, and all other multiplications 0. L is solvable, and Nil (L) = 〈x, y〉
is not generalized Frattini in L.

Theorem 71. If H is a generalized Frattini ideal in A, then Nil (A/H) = Nil (A)/H.

Proof. Since H is generalized Frattini in A, H is nilpotent and H ⊆ Nil (A). Then Nil (A)/H
is nilpotent, and hence, is contained in Nil (A/H).

Now suppose that B is an ideal in A such that B/H = Nil (A/H). Then, by Theorem 59,
B is nilpotent. Thus, B is contained in Nil (A), and hence, B/H ⊆ Nil (A)/H.

Note that if H is an ideal that does not have the generalized Frattini property in A, it is
possible for Nil (A/H) and Nil (A)/H to be different.

Example 72. Let L be the three dimensional Lie algebra 〈x, y, z〉 with multiplication defined
as

zx = x, xz = −x, zy = y, yz = −y and all others 0.

Let H be 〈x, y〉, which is an ideal that is not generalized Frattini in L. Then Nil (L/H) =

z + H = L, but Nil (L)/H = 0.

Theorem 73. Let A be a non-nilpotent Leibniz algebra. Then Nil (A) is a generalized Frattini ideal
in A if and only if Nil (A) = Rad (A).
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Proof. Let N be an ideal in A containing Nil (A) such that N/Nil (A) is nilpotent. Then
N/Nil (A) is solvable; hence, N is solvable. Then Nil (A) ⊆ N ⊆ Rad (A) = Nil (A), and
N = Nil (A). Thus, N is nilpotent. Therefore, Nil (A) is generalized Frattini in A by Theorem
63.

Conversely, suppose that Nil (A) is generalized Frattini in A. Then Rad (A) is nilpotent
by Theorem 68; hence, Rad (A) ⊆ Nil (A). Since Rad (A) is the maximal solvable subalgebra
of A and Nil (A) 6= A, Rad (A) = Nil (A).

Example 74. Let L = gl(2, F). Z(L) = {αI
∣∣ α ∈ F} = Nil (L) = Rad (L). Hence, Z(L) is

generalized Frattini in L.

Consider EA(c) = {x ∈ A
∣∣ Ln

c (x) = 0 for some n}. Although c is not contained in EA(c),
by Theorem 5.1 of [3], we know there exists a c′ ∈ EA(c) so that EA(c) = EA(c′). Thus, we
delete the primes and suppose that c ∈ EA(c).

Theorem 75. Let H be an ideal in Leibniz algebra A. Then H is a generalized Frattini ideal in A if
and only if for each ideal K of A and each Cartan subalgebra C of K, whenever A = H + EA(c), it
follows that A = EA(c), where c ∈ C is the element such that EA(c) is minimal in the set of Engel
subalgebras of A.

Proof. Let H be a generalized Frattini ideal in A. Let K be an ideal in A, and let C be a
Cartan subalgebra of K such that A = H + EA(c) for c the minimal Engel element in C.
(C + H)/H is a Cartan subalgebra in (K + H)/H by Theorem 6.3 of [3]. C acts nilpotently on
A/H, and hence on (K + H)/H. Thus, (C + H)/H also acts nilpotently on (K + H)/H. Then
(C + H)/H = (K + H)/H, so (K + H)/H is nilpotent. Since H is generalized Frattini in A,
K + H is nilpotent by Theorem 63. Hence, K is nilpotent, and thus, K = C. Thus, A = EA(c).

Conversely, suppose H satisfies the conditions of the theorem. Let K be an ideal of
A with H ⊆ K such that K/H is nilpotent. Let C be a Cartan subalgebra of K, and let
c ∈ C be the element so that EA(c) is minimal in the set of Engel algebras of A. Then
A = K + EA(c) = H + C + EA(c). Now C ⊆ EA(c) since C = NK(C) is nilpotent. Thus,
A = H + EA(c). Hence, A = EA(c) by supposition, and K = KK(c) ⊆ C, so K = C. Therefore,
K is nilpotent. Thus, H is generalized Frattini in A by Theorem 63.

Corollary 76. The hypercenter Z∗(A) is a generalized Frattini ideal in Leibniz algebra A.

Proof. Z∗(A) ⊆ EA(c) for any c ∈ C, a nilpotent subalgebra of A.
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8.2 R(A) and τ(A)

David Towers has explored two ideals that are closely related to the Frattini ideal in his
1980 work, [20]. For any nonassociative algebra L, Towers uses the symbol σ(L) to denote
the structure that we call R(L), in the notation of [14]. R(L) is defined to be the intersection
of all maximal subalgebras of L which are also ideals of L. If no such maximal subalgebra
exists, we define R(L) to be equal to L. Clearly, R(L) is an ideal of L. T(L) is defined to be
the intersection of all maximal subalgebras of L which are not ideals in L. If no such maximal
subalgebras exist, we say T(L) = L. T(L) is clearly a subalgebra, but is generally not an ideal.
Let τ(L) be the largest ideal of L contained in T(L).

The following lemmas are from this paper of Towers, [20]. The first two lemmas are true
for any nonassociative algebra L, and in particular, for any Leibniz algebra.

Lemma 77. F(L) = R(L) ∩ T(L), and φ(L) = R(L) ∩ τ(L).

Lemma 78. Z∗(L) ∩ L2 ⊆ φ(L).

The next two lemmas from Towers [20] require that L be power solvable. An algebra A
is called power solvable if all subalgebras of A that are generated by a single element are
solvable. We first show that a Leibniz algebra of finite dimension is power solvable.

Lemma 79. A Leibniz algebra A of finite dimension is power solvable.

Proof. All finite dimensional Leibniz algebras generated by a single element, a, are cyclic of
the form A = 〈a, a2, . . . , an〉, with aaj = aj+1 for j < n and aan = α1a + α2a2 + . . . αnan, some
linear combination of its basis elements, as in Chapter 2. As before, A2 has basis {a2, . . . , an}.
A2 is abelian, and hence, is solvable. Then A is solvable.

Since Leibniz algebras are power solvable, the following two lemmas from Towers [20]
hold for any Leibniz algebra A.

Lemma 80. A2 ⊆ R(A).

Lemma 81. If φ(A) = 0, then τ(A) = Z(A) = Z∗(A).

We now return to ideals with the generalized Frattini property.

Theorem 82. If φ(A) = 0, then τ(A) is a generalized Frattini ideal in Leibniz algebra A.

Proof. Consider τ(A)/φ(A), which is equal to Z(A)/φ(A) by Lemma 81, and hence, is
equal to Z (A/φ(A)). φ(A) is generalized Frattini in A by Theorem 58. Z (A/φ(A)) is
also generalized Frattini in A/φ(A) by the same theorem. Hence, by Theorem 67, τ(A) is
generalized Frattini in A.
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Theorem 83. Let A be a non-nilpotent Leibniz algebra with φ(A) = 0. Then any ideal H that is
generalized Frattini in A and is maximal with respect to the generalized Frattini property contains
τ(A).

Proof. Let H be as described. Then H + φ(A) = H. H + φ(A) is a generalized Frattini ideal
in A by Theorem 57. H is certainly contained in H + φ(A), and since H is maximal in A with
respect to the generalized Frattini property, H + φ(A) = H. Then φ(A) ⊆ H.

Also, (H + τ(A)) /φ(A) = H/φ(A) + τ(A)/φ(A) = (H/φ(A) + Z (A/φ(A))), which
has the generalized Frattini property in A/φ(A) by Theorem 57. Hence, H + Z(A) =

H + τ(A). Now, H + Z(A) is a generalized Frattini ideal in A by Theorem 57, and hence,
H + τ(A) is also generalized Frattini in A. Since H ⊆ H + τ(A) and H is maximal with
respect to the generalized Frattini property in A, H = H + τ(A), and thus, τ(A) is contained
in H.

Theorem 84. Let A be a non-nilpotent Leibniz algebra with φ(A) = 0. Then any ideal H that is
maximal with respect to the generalized Frattini property in A contains Z∗(A).

Proof. (Z∗(A) + φ(A)) /φ(A) is contained in Z∗ (A/φ(A)), which is equal to τ(A)/φ(A).
Hence, Z∗(A) ⊆ τ(A), which is contained in H by Theorem 83.
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8.3 The M (A) Property

In this section, we consider ideals that satisfy the property M (A). Given a finite-dimensional
Leibniz algebra A, a proper ideal K of A is said to satisfy the property M (A) if and only if
the following hold.

• φ(A/K) = 0,

• A/K contains a unique minimal ideal, and

• dim(A/K) > 1.

Example 85. Let A be as in our running example, Example 1.

Consider K = (a2 + a3), an ideal in A.

First, observe the structure of A/K. In this quotient space, a3 = −a2.

A/K = span {a + K, a2 + K, a3 + K}

= span {a + K, a2 + K,−a2 + K}

= span {a + K, a2 + K}.

For brevity, we suppress the K and view A/K as having basis {a, a2} with multiplication
defined as

aa2 = a3 = −a2.

Now we verify that K is in M (A). Clearly, dim(A/K) = 2 > 1.

Consider left multiplication by a in A/K. The matrix corresponding with this is(
0 0
1 −1

)
.

The characteristic polynomial is

p(x) = x2 + x = x(x + 1).
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Since p(x) is a product of distinct linear factors, φ(A/K) = 0.

Next, we find the minimal ideals of A/K.

By Corollary 9, we know that since n1 = 1, there is one minimal ideal. It is obtained by
finding the nullspace of p2(La), which is span {a2}.

Thus, A/K has a unique minimal ideal, and hence, K is in M .

Note that φ(A) = 0 ⊂ K.

Lemma 86. Let K be a proper ideal of Leibniz algebra A such that K satisfies the property M (A).
Then K contains φ(A) and A/K is non-nilpotent. In particular, A is non-nilpotent.

Proof. φ(A/K) = 0. Hence, φ(A)/K = 0, which in turn implies that φ(A) ⊆ K.

Let B/K be the unique minimal ideal of A/K. Suppose A/K is nilpotent. Then B/K is
abelian by [16]. A/K = Nil (A/K) = B/K. Hence, A/K is abelian, which is true if and only
if dim(A/K) = 1. This is a contradiction to the requirement that A/K must have dimension
greater than 1. Thus, A/K must be non-nilpotent.

Example 87. Let A and K be as in Example 85. Observe that A/K is non-nilpotent.

Recall that
A/K = span {a, a2} with aa2 = −a2.

Then
(A/K)2 = span {a2}.

(A/K)3 = span {a · a2} = span {a2} = (A/K)2 .

Thus, A/K is non-nilpotent.

We can also observe that A is non-nilpotent.

Theorem 88. Let A be a solvable Leibniz algebra, and let K be an ideal of A which satisfies the
property M (A). Then K is generalized Frattini in A if and only if K is a proper subalgebra of
Nil(A).
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Proof. Let B/K denote the unique minimal ideal of A/K. A is solvable, and thus, Nil
(A/K) = B/K.

Suppose that K has the generalized Frattini property in A. By Theorem 71, B/K = Nil
(A/K) = Nil(A)/K. Hence, Nil (A) = B, and K is a proper subalgebra of Nil (A).

Conversely, let K be a proper subalgebra of Nil (A). Then Nil (A)/K = B/K = Nil
(A/K). Let H be an ideal in A such that K is properly contained in H and H/K is nilpotent.
Then H/K ⊆ Nil (A/K) = Nil (A)/K. Consequently, H ⊆ Nil (A), and hence, H is nilpotent.
Therefore, by Theorem 63, K has the generalized Frattini property in A.

Theorem 89. Let A be a solvable Leibniz algebra, and let K be an ideal of A that has the property
M (A). Let B/K be the unique minimal ideal of A/K. Then K has the generalized Frattini property
in A if and only if B = Nil (A).

Proof. Let A be a solvable Leibniz algebra, and let K be an ideal of A that has the property
M (A). Suppose that K also has the generalized Frattini property in A. Then Nil (A/K) =
Nil (A)/K by Theorem 71. Since A is solvable, B/K = Nil (A/K) = Nil (A)/K. Hence, B =

Nil (A).

Conversely, suppose that B = Nil (A). Since A is solvable, Nil (A/K) = B/K. Then we
can say that Nil (A) = Nil (A/K) = B/K = Nil (A)/K. Then K is a proper subalgebra of
Nil (A). Thus, K is a generalized Frattini ideal in A by Theorem 63.

Example 90. Let A be as in our running example, Example 1, and let K be as in 85. A is
generated by one element, and hence, is solvable by Lemma 79.

Call B = (a2). Then B/K = (a2) + K is the unique minimal ideal in A/K. K is a
generalized Frattini ideal in A. B is nilpotent, and hence, is contained in Nil (A).

Corollary 91. Let A be a solvable Leibniz algebra, and let K have the property M (A). If K is a
generalized Frattini ideal in A, then K is maximal with respect to the generalized Frattini property
in A.

Proof. Let H be a generalized Frattini ideal in A such that K ⊆ H. By Theorem 57, H is
nilpotent, and hence, H is contained in Nil (A). Let B/K be the unique minimal ideal in
A/K. By Theorem 89, B = Nil (A). Hence, either H = K or H = Nil (A) since K ⊆ H ⊆ Nil
(A).
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Suppose H = Nil (A). Then by Theorem 68, every solvable ideal of A is nilpotent. In
particular, A, being solvable, must be nilpotent. However, this contradicts Corollary 69, which
says that if Nil (A) is a generalized Frattini ideal in A that A is not solvable. Hence, H = K,
which says that K is maximal with respect to the generalized Frattini property in A.
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