
ABSTRACT

BATSON, SCOTT CHRISTOPHER. On the Relationship Between Two Embeddings of
Ideals into Geometric Space and the Shortest Vector Problem in Principal Ideal Lattices.
(Under the direction of Ernest L. Stitzinger.)

An ideal lattice is the geometric embedding of an ideal in the algebraic integer ring

of some number field. Many recent developments in lattice-based cryptography are cen-

tered around the use of ideal lattices. The shortest vector problem (SVP) is the most

important hard lattice problem. Few algorithms that find a short vector in ideal lattices

exploit their additional algebraic structure, and whether or not the SVP can be solved

algebraically in ideal lattices remains unknown. We study the relationship between the

canonical and coefficient embeddings of ideals in algebraic integer rings of cyclotomic

number fields. We examine the algebraic structure of principal ideal lattices under the

coefficient embedding by considering them as principal ideals of a cyclotomic quotient

ring. Finally, empirical evidence is provided to exhibit a relationship between the alge-

braic structure of a principal ideal in this quotient ring and the geometric structure of its

corresponding ideal lattice. These results demonstrate progress towards solving the SVP

in ideal lattices algebraically.
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Chapter 1

Introduction

Lattices have been a useful tool for mathematicians since their first noted appearance

in the number-theoretic work of LaGrange and Gauss, and have subsequently found

numerous applications across mathematics. During the 1890s, the study of lattices was

greatly advanced in a mathematical theory initiated by Minkowski called the geometry of

numbers. Computational aspects of lattices were not widely studied until the early 1980s.

Applications of lattices to cryptanalysis, among other things, were realized during this

time. Lattice reduction techniques have been used in factoring univariate polynomials

over the integers, factoring bivariate polynomials over the rational numbers, diophantine

approximation, and linear programming [120]. The cryptographic applications of lattices,

however, are the underlying motivation behind our work.

The use of lattices in the cryptanalysis of various cryptographic schemes, including

NTRU, RSA, factoring-based cryptosystems, and discrete-log cryptosystems with groups

of unity can be seen in [25, 30, 53, 71, 84, 88, 107, 110, 111]. It was not discovered until the

mid-1990s that lattices could also be used in the construction of cryptographic primitives

[1], which has developed into a very active area of research. The conjectured hardness
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of the shortest vector problem (SVP) is the basis for many of the lattice-based schemes,

and is the core of many algorithmic applications of lattices [86]. Information regarding

the hardness of the SVP may be found in [2, 56, 60, 77, 79, 83, 107]. Intuitively, one may

envision a public-key cryptosystem where the public key is a lattice represented by very

long basis vectors, and the secret key is given by short lattice vectors. Early public-key

lattice cryptosystems include the Ajtai-Dwork scheme [3], GGH [45], and the ring-based

NTRU [48] scheme.

Lattice-based cryptography has emerged as a strong candidate for post-quantum cryp-

tography [49, 68, 84, 95, 100] because there are currently no known quantum algorithms

for solving lattice problems that perform significantly better than the best known classi-

cal algorithms [84], although one may see [64] for a lattice reduction method that utilizes

a quantum search. Readers are referred to [17] and [46] for a short introduction to post-

quantum cryptography and quantum computing, respectively. Current developments in

lattice-based cryptography, for instance [65, 66, 68, 69, 81, 92, 115], somewhat center

around the use of lattices with a special algebraic structure called ideal lattices.

The algebraic structure of ideal lattices allows for faster computation and more effi-

cient storage of cryptographic primitives [95]. One application of ideal lattices is realized

in the first fully homomorphic public-key encryption scheme, proposed by Gentry in

[43]. In a fully homomorphic scheme, one can manipulate encrypted data without the

decryption key, which allows for computing on encrypted data. There are a number of

potential applications for fully homomorphic encryption, including secure cloud comput-

ing. A fully homomorphic scheme would allow a user to store data on an untrusted server

in encrypted form while still allowing the server to process, and respond to, user data

queries [43].
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Ideal lattices are now widely deployed in lattice-based cryptographic constructions,

but an open question is whether or not they offer the same security as regular lattices [95].

The security of the most efficient lattice-based schemes currently hinges on assuming that

lattice problems are not easier to solve in ideal lattices. The most important hard lattice

problem is the SVP, so we consider this problem in ideal lattices. There are essentially

four different types of lattice reduction algorithms used to find a short lattice vector: the

celebrated LLL algorithm [63] along with its many generalizations and variants, including

[58, 59, 97, 104, 106, 108, 109]; enumeration techniques [31, 34, 41, 54, 96, 98]; sieving

algorithms [4, 5, 8, 18, 47, 90]; and Voronoi-cell based methods [85]. The LLL algorithm is

the most widely known and studied algorithm used for lattice reduction. These existing

algorithms generally operate in a geometric fashion and do not utilize the additional

algebraic structure to find short vectors in ideal lattices.

The focus of our research is to exploit the algebraic structure of ideal lattices in

solving the SVP. This goal could be achieved in one of two ways; either we exploit

certain properties of an ideal lattice to improve upon an existing algorithm (as in [103]),

or we solve the SVP in ideal lattices algebraically. It currently remains unknown whether

or not the SVP can be solved algebraically in ideal lattices. By working with ideal lattices

as algebraic objects, we move towards this result.

1.1 Our Approach and Related Work

The approach taken in this work is to study ideal lattices by viewing them as ideals

in integral polynomial quotient rings. We are particularly interested in the information

that can be obtained on the geometric structure of the ideal lattice by analyzing the

algebraic structure of the corresponding ideal and quotient ring. We also restrict our
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focus to principal ideal lattices to narrow the scope of this research. In light of more

recent works, such as [69] and [93], working with ideal lattices in this regard may seem

a little näıve. We feel that our approach is justified by choosing to only work with rings

of cyclotomic integers, and through a careful examination of the relationship that exists

between the coefficient embedding and canonical embedding of ideals in these rings. The

initial thought behind approaching ideal lattices this way is that the algebraic structure

of ideal lattices corresponding to ideals and/or quotient rings with a certain structure

may lead to a particular family of ideal lattices in which the SVP is easier to solve. We

have also found that this approach may be aimed at solving the SVP algebraically in

ideal lattices, and is conducive to discovering and documenting the algebraic properties

which may be exploited in an algorithm that finds short vectors of ideal lattices. For

more on the idea of exploiting special families of lattices, see [93].

This work is related to [68, 69, 93] because of the number-theoretic approach to

ideal lattices taken in the third chapter. The investigation into the relationship between

the canonical and coefficient embeddings of ideals, and some analysis regarding how

classical lattice quantities and number-theoretic quantities are related, also contribute to

the similarity. There is a short discussion on the relationship between the coefficient and

canonical embedding found in [68] and [69], but our third chapter is devoted to providing a

much more detailed analysis. These aforementioned works were some of the first to bridge

a gap between the algebraic number theory and computer science literature pertaining

to ideal lattices, and the hope is that our work will further connect these two areas. The

fourth chapter of this dissertation is related to works like [95] and [103] because of our

goal to exploit the algebraic structure of ideal lattices in finding short vectors, as well as

the steps we take towards solving the SVP algebraically in (principal) ideal lattices.
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Additional works related to our investigation into the properties of ideal lattices include

those by Bayer-Fluckiger [11] and Lyubashevsky [65].

Since a focus of this work concerns computational aspects of the geometry of numbers,

one may find [24] to be a helpful resource. More recent introductions to lattices include

those found in [65, 77, 82, 83, 118]. Additional information on the LLL lattice reduction

algorithm and its applications can be found in [21, 47, 89, 120]. For more on lattice-based

cryptography and ideal lattices see [49, 82], theses [65, 118], surveys [33, 60, 84, 88, 101],

and the extensive bibliographies contained within. The discussion that follows is a brief

overview of existing works that are relevant to the knowledge and development of ideal

lattices, or that take advantage of a special lattice structure to find short vectors.

Cyclic lattices, considered initially by Micciancio in [80] and then later in [66] and [92],

are defined as lattices closed under a rotation operation acting on its vectors. That is, all

cyclic rotations of a lattice vector are elements of the lattice. In [38] the authors remark

that cyclic lattices are precisely the full-rank sub-lattices of Zn that remain invariant

under the action of the n-cycle permutation (1 . . . n) acting on its vectors. The authors of

[38] then question the potential algebraic structure of a lattice invariant under the action

of other permutations acting on its vectors, which remains open. Micciancio [81] notes the

similarity of cyclic lattices to those used by NTRU in [48]. It was later realized that there

is a correspondence between cyclic lattices and ideals in the quotient ring Z[x]/(xn − 1),

where the rotation operation acting on the vectors is equivalent to multiplying an element

of the ideal by x mod xn − 1.

This idea was generalized in [66] and [81], and ideal lattices were defined as those which

can be equivalently characterized as ideals of a ring Z[x]/(f(x)) for some f(x) ∈ Z[x].

In general, only monic, irreducible polynomials f(x) ∈ Z[x] are used to construct these

rings in practice. Preferred f(x) to use in this construction of ideal lattices include cyclo-
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tomic polynomials, which are always monic and irreducible, and power-of-two cyclotomic

polynomials in particular. For more on ideal lattices in this regard, see [65] and [118].

Identifying whether or not a given lattice is an ideal lattice was considered in [32], which

also included a statistical analysis for several dimensions showing that randomly gener-

ated lattices are practically never ideal.

Algorithmic results that consider a lattice with special structure include [44, 50, 117],

but [72] was the first work concerning the improvement of algorithms working to solve

lattice problems in an ideal lattice. The authors showed that the solution of certain

lattice problems in cyclic lattices of dimension n could be sped up by a factor of n. It was

remarked in [86] that sieve algorithms could also be slightly optimized to take advantage

of lattices with a circular structure, such as the NTRU lattice [48] and cyclic lattices

[81]. In this case all “rotations” of a vector could be used when reducing a point against

the list, meaning each lattice vector in the compiled list represents n points. The idea of

using “rotations” of sampled vectors to improve sieve algorithms on cyclic lattices was

generalized in [103]. Here it is noted that a “rotation” corresponds to multiplication by

x in the quotient ring, which is still an element of the ideal, so all rotations of lattice

vectors can be used in the sieving process. To the author’s knowledge, this is the first

SVP or lattice reduction algorithm that utilizes the special algebraic structure of any

ideal lattice.

As an analogue to the SVP Challenge [42], Plantard and Schneider [95] introduced the

Ideal Lattice Challenge, offering a standard way of generating ideal lattices to allow for

testing algorithms that find short vectors. Ideal lattices are generated using cyclotomic

polynomials to construct a quotient ring from which a corresponding ideal is produced.

Another goal of [95] is to assess whether or not the structure of the polynomial used to

construct the quotient ring changes the hardness of the underlying lattice problems.
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The focus of our work, and many of the works referenced above, is on rings of the

form Z[x]/(Φm(x)) for a cyclotomic polynomial Φm(x). While the majority of literature

available on the cryptographic applications of ideal lattices maintains this quotient ring

characterization, the number-theoretic perspective of viewing these rings as rings of alge-

braic integers in cyclotomic number fields is natural; it lends itself to a different geometric

approach that avoids any dependence on the form of Φm(x), which can be quite irregular

[69]. Defining the norm of an element in accordance with its canonical embedding into

Cn gives a nice way of analyzing norm expansion since all multiplication and addition are

done coordinate-wise [68, 69, 93]. The authors of [68, 69, 93] develop cryptographic tools

around ideal lattices using novel applications of some classical algebraic number theory

notions.

Algebraic number theory is a well-studied branch of mathematics that is rich in

results. There have been very thorough investigations of algebraic number theory from a

computational point of view [26, 62, 112]. Ideal lattices arise naturally in algebraic number

theory, and this view of ideal lattices makes them easy to work with while offering strong

results [69]. Bayer-Fluckiger considered ideal lattices from an algebraic number theory

perspective in several papers that she authored, or co-authored, beginning in the 1990s,

several years prior to the appearance of cyclic lattices in the computer science literature.

A nice exposition on ideal lattices from this number theory viewpoint is found in [11].

Additional works that view ideal lattices as they arise in algebraic number theory include

those found in [6, 22, 36, 37, 38].
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1.2 Summary of Results

The goals of the research performed for this dissertation were to study the relationship

between the canonical and coefficient embeddings, investigate the algebraic structure of

principal ideals in cyclotomic quotient rings, and then exploit this algebraic structure to

find short vectors in principal ideal lattices. It would be of particular interest to solve

the SVP in ideal lattices algebraically rather than to exploit certain algebraic properties

in more geometrically focused algorithms. While the relationship between the coefficient

and canonical embeddings has been considered in previous works [68, 69], Chapter 3 is

devoted to describing this relationship more explicitly. These two embeddings are related

by a fixed linear transformation that depends only on the cyclotomic number field. The

matrix of this transformation is studied, and results on the equivalence of the SVP in

ideal lattices under the two embeddings are provided. We also relate the number of

independent shortest vectors in these two embeddings of an ideal.

Our investigation into the algebraic structure of principal ideals in cyclotomic quotient

rings leads to an interesting connection between a generator of the ideal and a shortest

vector of its corresponding ideal lattice. In particular, a shortest vector of every one- and

two-dimensional principal ideal lattice will always correspond to an associate of the ideal’s

generator. Experimental results suggest that a short vector of principal ideal lattices, as

output by the LLL algorithm on a special lattice basis, will most likely correspond to an

associate of the ideal’s generator in higher dimensions as well. Since all associates of a

principal ideal’s generator will generate the same ideal, this evidence suggests that the

“shortest generator” of a principal ideal will probabilistically correspond to a solution

of the SVP in its associated principal ideal lattice. This observation marks a first step

towards solving the SVP algebraically in principal ideal lattices.
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1.3 Organization

The remainder of this dissertation is organized as follows:

• Chapter 2 defines our notation and covers the necessary background on rings, ideals,

and cyclotomic polynomials; cyclotomic number fields and their embeddings; the

“powerful” basis; lattices; and ideal lattices. A brief discussion on the choice to

work exclusively with cyclotomic number fields is also included.

• Chapter 3 contains an analysis of the relationship between the canonical and coef-

ficient embeddings. We also study the equivalence of the SVP in any two geometric

embeddings of an ideal.

• Chapter 4 connects the algebraic structure of principal ideals in cyclotomic quo-

tient rings Z[x]/(Φm(x)) and the geometric structure of their corresponding ideal

lattices. Empirical evidence is provided to demonstrate a strong correlation between

a generator of the ideal and a shortest vector of the corresponding ideal lattice, as

output by the LLL algorithm. All computations were performed in MapleTM [70].

MapleTM is a trademark of Waterloo Maple Inc.

• Chapter 5 offers concluding remarks on the significance of our results, and outlines

some future work to be done in this area.
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Chapter 2

Preliminaries

This chapter contains the relevant mathematical and lattice background, as well as some

fundamental results that will be needed in the development of ideal lattices. We only re-

view the necessary background for the work presented in this dissertation, which involves

cyclotomic polynomials and cyclotomic number fields. A knowledge and understanding

of abstract algebra and linear algebra up to the graduate level will be assumed. More

background in these areas may be found in references such as [7, 51, 52, 76]. Our algebraic

number theory setting is largely adapted from [69], but one may also refer to [26, 62, 87]

for additional information and proofs. Throughout the chapter we will define the nota-

tion to be used in this dissertation, although this notation is fairly standard across the

literature.

2.1 Algebra Background

We use G to denote a group and R to denote a ring. In this work all rings R will be

commutative rings with unity. There is only one binary operation (+) defined on a group,
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while there are two binary operations (·,+) defined on a ring. Given a commutative ring

R, a non-empty subset I ⊆ R is called an ideal, written I /R, provided the following two

conditions are met:

1. a± b ∈ I for all a, b ∈ I; and

2. r · a = ra ∈ I for all a ∈ I and r ∈ R.

The ideal Ra = aR = {x ∈ R : x = ra for some r ∈ R} is called the principal

ideal generated by the element a ∈ R, written (a) / R. An ideal of R is maximal if it is

not equal to R and not contained in any other ideal. The ring R is Noetherian if every

ideal is finitely generated. For an ideal I / R, the set of cosets of I in R is denoted by

R/I = {a + I : a ∈ R}. This set R/I is a commutative ring, called a quotient ring. A

non-zero ring R is an integral domain if for all a, b ∈ R whose product ab = 0, then either

a = 0 or b = 0. An ideal I / R is prime if the quotient ring R/I is an integral domain.

Assume that the ring R is an integral domain. An element u ∈ R is a unit if u has a

multiplicative inverse in R. For a, b ∈ R we say that a divides b if b = aq for some q ∈ R,

and a is a proper divisor of b if neither a nor q are units. Two elements a, b ∈ R are

associates, written a ∼ b, if b = ua for some unit u ∈ R. An element is irreducible if it is

not a unit and has no proper divisors. The element p ∈ R is prime if p is not a unit and

when p divides the product ab, written p|ab, then either p divides a or p divides b. Two

elements are said to be relatively prime if they have no common factors except units, in

which case 1 is a greatest common divisor. A Dedekind domain is an integral domain R

such that every ideal is finitely generated, every non-zero prime ideal is maximal, and R

is integrally closed in the set {a/b : a, b ∈ R, b 6= 0}.

Let a, b ∈ R and suppose that a 6= 0. If there exists a size function ν on R such that

b = aq+r for some q, r ∈ R, and either r = 0 or ν(r) < ν(a), then R is called a Euclidean
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domain (ED). A principal ideal domain (PID) is an integral domain in which every ideal

is principal. An integral domain R where factoring terminates and each element a ∈ R

may be expressed uniquely (up to multiplication by units) as the product of irreducible

elements is called a unique factorization domain (UFD). These domains are related in

the following manner.

Theorem 2.1.1. A Euclidean domain is a principal ideal domain, and a principal ideal

domain is a unique factorization domain.

Let ζm = e2πi/m be the primitive mth root of unity for some positive integer m. The

mth cyclotomic polynomial is defined as

Φm(x) =
∏

(k,m)=1,k<m

(x− ζkm) =
xm − 1∏

d|m,d 6=m Φd(x)
,

where the product is taken over all integers k < m that are relatively prime to m. The

polynomial Φm(x) ∈ Z[x] is the monic, irreducible (minimal) polynomial of ζm, hence

there is an isomorphism Z[x]/(Φm(x)) ∼= Z[ζm]. Euler’s Phi function ϕ assigns to each

positive integer m the number ϕ(m) of integers i such that 1 ≤ i ≤ m and i is relatively

prime to m. This number ϕ(m) is also the degree of the mth cyclotomic polynomial

Φm(x).

Fact 2.1.2 ([69], Fact 2.11). For any m, we have xm − 1 =
∏

d|m Φd(x), where d runs

over all the positive divisors of m. In particular, Φp(x) = 1 + x + · · · + xp−2 + xp−1 for

any prime p.

Definition 2.1.3. For an integer m, define m̂ = m/2 if m is divisible by 2 and m̂ =

m otherwise. The radical of m, denoted rad(m), is defined as the product of all prime

numbers that divide m.
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Fact 2.1.4 ([69], Fact 2.12). For any m, we have Φm(x) = Φrad(m)(x
m/rad(m)). In partic-

ular, if m is a power of a prime p, then Φm(x) = Φp(x
m/p).

Throughout this dissertation we will be primarily concerned with principal ideals

I = (g(x)) of the cyclotomic quotient ring Z[x]/(Φm(x)), denoted (g(x)) /Z[x]/(Φm(x)).

The choice of Φm(x) in constructing this quotient ring determines the action of mul-

tiplication within the ring. When denoting elements of a polynomial quotient ring, we

somewhat abuse proper notation. The quotient ring Z[x]/(f(x)) is constructed by essen-

tially imposing the relation that f(x) = 0 in Z[x]. If r(x) ∈ Z[x], then the elements in

Z[x] that also map to the image of r(x) in Z[x]/(f(x)) are precisely the elements in the

coset r(x) + (f(x)), which have the form r(x) + q(x) · f(x) for some q(x) ∈ Z[x]. In this

work, the element r(x) ∈ Z[x]/(f(x)) is taken to be the unique polynomial r(x) ∈ Z[x]

of degree less than f(x) that represents the coset r(x) + (f(x)).

2.2 Algebraic Number Theory Background

A complex number α ∈ C is an algebraic number of degree n if it is a root of some

f(x) ∈ Z[x] of degree n and no polynomials of degree less than n. If, in addition, this

polynomial f(x) ∈ Z[x] is monic then α ∈ C is an algebraic integer of degree n. An

algebraic number field K is formed by adjoining an algebraic number to the field of

rational numbers Q. The algebraic integers OK of a number field K form a ring.

2.2.1 Cyclotomic Number Fields

By adjoining ζm to Q we form the mth cyclotomic number field of degree ϕ(m) = n,

written Km = Q(ζm). The algebraic integers OKm in a cyclotomic number field Km, also

13



referred to as the ring of cyclotomic integers, form a commutative ring with unity. The

cyclotomic field Km = Q(ζm) may be viewed as a vector space of dimension ϕ(m) = n

over Q with the basis B = {1, ζm, . . . , ζn−1
m }, called the power basis. The power basis B

is a Q-basis for the cyclotomic field Km and a Z-basis for its ring of algebraic integers

OKm , which implies OKm
∼= Z[ζm]. Define a subspace H ⊆ Cn for some n ≥ 2 as

H =
{
x ∈ Cn : xi = xn−i+1 for all i = 1, . . . , n

}
.

Let H be endowed with the norms induced by Cn. The space H and Rn are isomorphic

inner product spaces. The unitary basis matrix A of this isomorphism maps elements of

H to elements of Rn.

A =
1√
2
·



1 1

. . . . .
.

1 1

i −i

. .
. . . .

i −i


The matrix A is an n × n matrix where the only non-zero elements are found on the

diagonals. One may easily verify that this is a unitary matrix, and that it defines an

isomorphism H ∼= Rn.

An embedding of a cyclotomic number field Km = Q(ζm) into C is a ring homomor-

phism σi : Km → C that fixes every element of Q. The cyclotomic field Km has exactly

ϕ(m) = n embeddings {σi}ni=1 that occur in conjugate pairs. They will be ordered accord-

ing to σi = σn−i+1. These embeddings are defined entirely by their action on the powers
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of ζm. Throughout this work it is common to assume that σ1 is the identity map. We

use the embeddings of a cyclotomic number field to define the canonical embedding. The

canonical embedding σ : Km → H ⊂ Cϕ(m) of an element a ∈ Km is the n-dimensional

vector given by

σ(a) = (σi(a))ni=1 = (σ1(a), . . . , σn(a))

where σ1(a) = σn(a), σ2(a) = σn−1(a) and so on. Let B0 = {b0, . . . , bn−1} be a Z-basis for

the ring of cyclotomic integers OKm . The field discriminant DKm of a cyclotomic number

field Km is defined as the squared determinant DKm = det([σ(OKm)])2, where [σ(OKm)]

is the n× n matrix

[σ(OKm)] =

(
σ(b0) . . . σ(bn−1)

)

=


σ1(b0) . . . σ1(bn−1)

...
. . .

...

σn(b0) . . . σn(bn−1)


having the canonical embedding of bi−1 ∈ B0 as its ith column. For cyclotomic fields with

index m, the following formula may be used to compute the field discriminant.

DKm = (−1)ϕ(m)/2 · mϕ(m)∏
p|m p

ϕ(m)/(p−1)
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The product in the denominator is over all primes p < m that divide m. This quantity

DKm is a measure of the geometric sparsity of the cyclotomic integers σ(B) ⊂ H under

the canonical embedding [69].

σ(B) =


σ1(1) σ1(ζm) . . . σ1(ζn−1

m )

...
...

. . .
...

σn(1) σn(ζm) . . . σn(ζn−1
m )

Zn ⊂ H

Fact 2.2.1. Let K be an algebraic number field with OK = Z[α] for some α ∈ OK. Then

DK is equal to the discriminant of the minimal polynomial of α over Q.

This fact from algebraic number theory yields the following implication: the field

discriminant DKm is equal to the the discriminant of the mth cyclotomic polynomial

Φm(x). This consequence is noted only to remark that the above formula for computing

DKm may also be used to compute the polynomial discriminant of Φm(x).

2.2.2 The Powerful Basis

Another Q-basis for Km and Z-basis for OKm is the powerful basis, which is presented

nicely by the authors in [69]. Defining the powerful basis requires a tensorial decomposi-

tion of cyclotomic fields using the following proposition from algebraic number theory.

Proposition 2.2.2 ([69], Proposition 2.13). Let m have prime-power factorization m =∏
`m`, i.e. the m` are powers of distinct primes. Then Km = Q(ζm) is isomorphic to

the tensor product
⊗

`Km`
of the fields Km`

= Q(ζm`
), via the correspondence

∏
` a` ↔

(⊗`a`), where on the left we implicitly embed each a` ∈ Km`
into Km.

If F and K are two field extensions of Q, then addition and multiplication in F ⊗K

are defined as follows: First, note that F,K are modules over Q [51]. The tensor product
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F ⊗K of these two fields is the set of all Q-linear combinations of tensors a ⊗ b where

a ∈ F and b ∈ K. The tensor operation ⊗ by definition is then Q-bilinear and satisfies

the following relations for all r ∈ Q, all a1, a2 ∈ F , and all b1, b2 ∈ K.

(a1 + a2)⊗ b1 = a1 ⊗ b1 + a2 ⊗ b1

a1 ⊗ (b1 + b2) = a1 ⊗ b1 + a1 ⊗ b2

a1r ⊗ b1 = a1 ⊗ rb1

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2)

Let L = (`ij) be an m × n matrix and R = (rij) a p × q matrix. The Kronecker

(tensor) product of L and R is the mp× nq block matrix

L⊗R =


`11R . . . `1nR

...
. . .

...

`m1R . . . `mnR

 .

Similarly, the Kronecker product of two vectors v = (v0 . . . vn1) and w = (w0 . . . wn2)

is defined as the vector of dimension n1 · n2 given by

v ⊗ w =

(
v0 · w . . . vn1 · w

)
.

The powerful basis of Km = Q(ζm), denoted in this work by B′, is defined as follows

by the authors of [69]. The authors of [69] remark that this basis coincides with the

“canonical basis” of OKm appearing in [20].

Definition 2.2.3. For a prime power m, define B′ to be the power basis B = {ζ im}
ϕ(m)−1
i=0 ,

treated as a ϕ(m)-dimensional vector over OKm. For m having a prime-power factoriza-
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tion given by m =
∏

`m`, define the powerful basis B′ =
⊗

`B′`, the tensor product of

the power(ful) bases B′` of each Km`
= Q(ζm`

).

The tensor product B′ =
⊗

`B′` is a vector of dimension
∏

` ϕ(m`). Specifying an

entry in B′ requires one index j` ∈ {0, . . . , ϕ(m`) − 1} for each prime-power factor of

m to form a tuple (j`). The specified entry is then B′(j`) =
∏

` ζ
j`
m`

. As described in

[69], this vector may be “flattened” to a vector of dimension ϕ(m) by using the relation

ζm`
= ζ

m/m`
m ∈ Km. Specifically, the tuple (j`) of indices from each prime-power factor of

m maps to j =
∑

`(m/m`)j` mod m and then B′ = {ζjm}. Our convention is to arrange

the elements of B′ so that the exponent j ∈ {0, . . . , ϕ(m)−1} of ζm is ordered from least

to greatest.

Example 2.2.4. Consider the cyclotomic index m = 12. The power basis of K12 =

Q(ζ12) is given by B = {1, ζ12, ζ
2
12, ζ

3
12}. To construct the powerful basis, observe that the

cyclotomic field K12
∼= K4 ⊗K3 by the tensorial decomposition. K4 has power(ful) basis

B′4 = {ζ0
4 , ζ4} and K3 has power(ful) basis B′3 = {ζ0

3 , ζ3}. By treating B′4 and B′3 as

vectors, their Kronecker (tensor) product is given by

B′12 = B′4 ⊗B′3 =

(
(ζ0

4 · ζ0
3 ) (ζ0

4 · ζ1
3 ) (ζ1

4 · ζ0
3 ) (ζ1

4 · ζ3)

)
.

Using the relation ζm`
= ζ

m/m`
m yields

B′12 = B′4 ⊗B′3 =

(
(ζ0

12 · ζ0
12) (ζ0

12 · ζ4
12) (ζ3

12 · ζ0
12) (ζ3

12 · ζ4
12)

)
.

Hence the powerful basis of K12 = Q(ζ12) is given by B′ = {1, ζ3
12, ζ

4
12, ζ

7
12}.

Referring to specific power or powerful bases may be useful throughout this disser-

tation. In this event, the cyclotomic index m will be used to denote the power basis
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Bm and the powerful basis B′m of the mth cyclotomic number field. See [69] for a more

detailed discussion on the powerful basis and results pertaining to its algebraic and ge-

ometric properties. The powerful basis exhibits some geometrical advantages over the

power basis, but both bases will be used in this work as it becomes convenient.

2.3 Lattice Background

A lattice is a discrete additive subgroup of some specified geometric space. The primary

focus in this dissertation will be on lattices in Rn, although lattices in the space H ⊂ Cn

will arise as well. We will be concerned exclusively with full-rank lattices. Given a set of

n linearly independent vectors {b1, . . . , bn} ⊂ Rn, the lattice (or Z-module) generated by

these vectors is the set of all integer linear combinations

L =

{ ∑
1≤i≤n

αibi : αi ∈ Z
}
.

A basis of this n-dimensional lattice consists of n linearly independent vectors whose

integer span generates the same set L. It is often convenient to represent the lattice with

a basis matrix B = (bij) having the vectors b1, . . . , bn as columns. This is to be interpreted

as

L = L(B) = (B)Zn =

(
b1 . . . bn

)
Zn.

Intuitively the lattice L is an arrangement of points in Rn. We associate with each of

these points a vector originating from the origin. It is natural to ask which vector of a

given lattice is the shortest. This is the well-known, NP-hard shortest vector problem

(SVP).
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Definition 2.3.1 (Shortest Vector Problem, SVP). Given a basis matrix B ∈ Rn×n and

a p-norm ‖ · ‖p, find a non-zero lattice vector Bx such that Bx = min ‖By‖p for any

y ∈ Zn \ {0}.

The sole norm used in this study of the SVP will be the Euclidean norm (2-norm).

Observe that there is not a unique solution to the SVP. For instance, if v ∈ L solves the

SVP, then so does −v ∈ L. Accordingly, we are interested in a shortest vector instead of

the shortest vector. Approximation versions of this problem are also widely considered

in the literature. The approximate shortest vector problem, denoted appr-SVP, is solved

by finding a non-zero lattice vector whose norm is within some approximation factor to

that of a shortest vector.

Given an n-dimensional non-trivial lattice L define its ith successive minima λi(L)

(for i = 1, . . . , n) as the smallest radius such that the ball B(0, λi) centered at the origin

contains i linearly independent lattice vectors. When the lattice is clear from context

we write λi rather than λi(L). As with the SVP, successive minima can be defined with

respect to any norm, but we again choose to work strictly with the Euclidean norm. Note

that 0 < λ1 ≤ · · · ≤ λn, and the value of λ1 is the length of a solution to the SVP (with

respect to the same norm). A lattice is called well-rounded (WR) if λ1 = λ2 = · · · = λn.

This characterization implies that all WR lattices have a basis consisting of shortest

vectors.

The fundamental parallelepiped, or fundamental domain, is another important concept

in the study of lattices. Given a lattice L with basis {b1, . . . , bn}, the fundamental domain

of L is defined as the region

F(b1, . . . , bn) = {t1b1 + · · ·+ tnbn : 0 ≤ ti < 1 for all i}.
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Lemma 2.3.2 ([120], Lemma 16.2). Let L ⊆ M ⊆ Rn be lattices generated by vectors

`1, . . . , `n and m1, . . . ,mn respectively. Then det(mij)1≤i,j≤n divides det(`ij)1≤i,j≤n.

Proof.

For 1 ≤ i, j ≤ n there exists some aij ∈ Z such that `ij =
∑

1≤j≤n aijmj. Hence

| det(`ij)| = | det(aij)| · | det(mij)| and the claim follows.

In particular, if L = M is taken to be the same lattice, then this result implies that

any two bases for a lattice are related by an integer matrix with determinant ±1. Thus

the absolute value of the determinant of a basis matrix is invariant under the choice of

basis for the lattice and remains constant. Geometrically this quantity corresponds to

the volume of the fundamental parallelepiped. For a lattice L with basis matrix B, define

the norm, or determinant, of the lattice L to be |L(B)| = | det(B)| = vol(F(B)).

Since the volume of the fundamental parallelepiped does not depend on the choice

of basis, pushing the orthogonality of basis vectors creates shorter vectors. This notion

governs the geometric procedures appearing in many lattice reduction algorithms, which

are designed to produce very short vectors. Given a basis for the lattice L, the goal of

lattice reduction is to return a basis consisting of short, reasonably orthogonal vectors.

Lattice reduction algorithms are the most common approach to the SVP. Perhaps the

most significant, and certainly the most noted, lattice reduction algorithm is the LLL

algorithm [63]. We use this algorithm for the experiments described in Chapter 4, however

its functionality is not essential to understanding the work presented in this dissertation.

We turn the reader to our bibliography for references that provide a detailed analysis of

the LLL and its applications, e.g. [21, 89, 120].
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2.4 Ideal Lattices

Let θ : Km → Rn be an additive homomorphism where ϕ(m) = n. This homomorphism

will embed any ideal I /OKm in the ring of cyclotomic integers geometrically into Rn as a

lattice θ(I), called an ideal lattice. The map θ is called a geometric embedding of I. When

the geometric embedding is clear from context, the ideal I will be synonymous with this

lattice. Commonly computed lattice quantities (determinant, successive minima, etc.)

may then be affiliated with the ideal I. If this ideal I is a principal ideal, then we call the

lattice θ(I) a principal ideal lattice. It is of great importance to note that general lattices

have the algebraic structure of a group, but ideal lattices possess the structure of a ring.

This dissertation is aimed at exploiting that additional algebraic structure when solving

the SVP in (principal) ideal lattices.

2.4.1 The Canonical and Coefficient Embeddings

Our primary interests are situated around two particular geometric embeddings. The first

embedding of interest is the canonical embedding σ. Given an ideal I / OKm in the ring

of cyclotomic integers with Z-basis B0 = {b0, . . . , bn−1}, a Z-basis for the ideal lattice

σ(I) ⊂ H under the canonical embedding will be σ(B0) = {σ(b0), . . . , σ(bn−1)}. The

map σ : Km → H may be viewed as a map σ : Km → Rn by using the matrix A as

a transformation A : H → Rn. Henceforth we will assume that σ maps into Rn unless

noted otherwise.

Example 2.4.1. The Canonical Embedding of (3 + 2ζ6) / Z[ζ6].

Consider the power basis B = {1, ζ6} of Z[ζ6]. Let I denote the ideal (3 + 2ζ6) / Z[ζ6].

There are two (complex) embeddings σ1(ζ6) = ζ6 and σ2(ζ6) = σ1(ζ6) = ζ6 associated

with this field extension. The canonical embedding σ of an element a ∈ Q(ζ6) is therefore
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given by σ(a) = (σ1(a), σ2(a)). Since B = {(3 + 2ζ6), (−2 + 5ζ6)} is an integral basis of

(3 + 2ζ6) / Z[ζ6], it follows that σ(B) = {σ(3 + 2ζ6), σ(−2 + 5ζ6)} is an integral basis of

σ(I) ⊂ H.

σ(3 + 2ζ6) = (σ1(3 + 2ζ6), σ2(3 + 2ζ6))

= (4 + i
√

3, 4− i
√

3)

σ(−2 + 5ζ6) = (σ1(−2 + 5ζ6), σ2(−2 + 5ζ6))

= (
1 + i(5

√
3)

2
,
1− i(5

√
3)

2
)

Thus the lattice σ(I) ⊂ H is given by

σ(I) =

4 + i
√

3 1+i(5
√

3)
2

4− i
√

3 1−i(5
√

3)
2

Z2.

By applying the matrix A, this ideal lattice will be viewed as an ideal lattice L ⊂ R2.

[σ(I)]B =
1√
2
·

1 1

i −i

 ·
4 + i

√
3 1+i(5

√
3)

2

4− i
√

3 1−i(5
√

3)
2

 =
1√
2
·

 8 1

−2
√

3 −5
√

3


⇒ L = [σ(I)]BZ2 =

1√
2
·

 8 1

−2
√

3 −5
√

3

Z2

Figure 2.1 depicts the two-dimensional principal ideal lattice corresponding to the prin-

cipal ideal (3 + 2ζ6) / Z[ζ6] under the canonical embedding.
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Figure 2.1: Canonical Embedding of (3 + 2ζ6) / Z[ζ6]

Observe that there are six possible solutions to the SVP in this example. This lattice

is WR, so it admits a basis of minimal vectors. Also note the geometric sparsity of lattice

points. The spacing of points in ideal lattices under the canonical embedding seems to

be more even than in ideal lattices under the second embedding of interest.

Fix a basis B0 = {b0, . . . , bn−1} that is an ordered Q-basis for Km and Z-basis for

OKm where ϕ(m) = n, such as the power basis B or powerful basis B′. The coefficient

embedding c : Km → Rn of an element a ∈ Km is given by its coordinate vector relative

to the basis B0, written [a]B0 . The image of an ideal I / OKm under c is the ideal lattice
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c(I) ⊂ Rn. There is a clear correspondence between vectors of the lattice and elements

of the ideal given by

(
α0 α1 . . . αn−1

)
∈ c(I)↔ α0b0 + α1b1 + · · ·+ αn−1bn−1 ∈ I

where αi ∈ Z.

Example 2.4.2. The Coefficient Embedding of (3 + 2ζ6) / Z[ζ6].

Consider the power basis B = {1, ζ6} of Z[ζ6]. First, find an integral basis for the principal

ideal (3 + 2ζ6) /Z[ζ6], which will correspond to a basis of the principal ideal lattice. Since

ϕ(6) = 2, this will be a two-dimensional lattice. Clearly 3 + 2ζ6 ∈ I, and by the definition

of ideal this implies that ζ6 · (3 + 2ζ6) ∈ I. Recall that

ζ6 = e2πi/6 =
1 +
√
−3

2
⇒ ζ2

6 = e4πi/6 =
−1 +

√
−3

2
.

We must now express ζ6 · (3 + 2ζ6) in terms of the basis {1, ζ6} for Z[ζ6]. Observe

ζ6 · (3 + 2ζ6) = 3ζ6 + 2ζ2
6

= 3ζ6 + 2(−1 + ζ6) relative to the basis {1, ζ6} of Z[ζ6]

= −2 + 5ζ6.

The elements 3 + 2ζ6 ∈ I and −2 + 5ζ6 ∈ I form an integral basis for the ideal. These

polynomials in ζ6 will correspond to vectors that constitute a basis for the associated
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principal ideal lattice under the coefficient embedding.

3

2

 ,

−2

5

 ∈ L ⇒ L =

3 −2

2 5

Z2

Figure 2.2 depicts the two-dimensional principal ideal lattice corresponding to the prin-

cipal ideal (3 + 2ζ6) / Z[ζ6] under the coefficient embedding.

Figure 2.2: Coefficient Embedding of (3 + 2ζ6) / Z[ζ6]
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Note some differences between the canonical and coefficient embeddings of (3 + 2ζ6) /

OK6 presented in Examples 2.4.1 and 2.4.2. First, the ideal lattice c(I) does not have as

many shortest vectors as σ(I). There are only two possible solutions to the SVP, which

are linearly dependent. The ideal lattice c(I) is not WR because there is no lattice basis

of minimal vectors. Finally, the lattice points in c(I) are not as sparse as the points of

σ(I).

2.4.2 Ideal Lattices and Quotient Rings

Recall the isomorphism Z[x]/(Φm(x)) ∼= Z[ζm] ∼= OKm via the mapping x ↔ ζm, and

consider the power basis B = {1, ζm, . . . , ζn−1
m } of Km. The coefficient embedding of an

ideal I/Z[ζm] relative to B is equivalent to the coefficient embedding of the corresponding

ideal I / Z[x]/(Φm(x)) relative to the power basis B = {1, x, . . . , xn−1} of Z[x]/(Φm(x)).

This equivalent characterization will allow us to investigate the algebraic structure of

ideal lattices from a quotient ring perspective.

Example 2.4.3. The Coefficient Embedding of (3 + 2x) / Z[x]/(Φ6(x)).

Use the power basis B = {1, x} of Z[x]/(Φ6(x)). Find an integral basis for the principal

ideal (3 + 2x)/Z[x]/(Φ6(x)), which will correspond to a basis of the principal ideal lattice

L. Since ϕ(6) = 2, this will be a two-dimensional lattice. Clearly 3 + 2x ∈ I, and by the

definition of ideal this implies that x ·(3+2x) mod x2−x+1 ∈ I. We must now compute

x · (3 + 2x) mod x2 − x+ 1. Observe

x · (3 + 2x) mod x2 − x+ 1 = 3x+ 2x2 mod Φ6(x)

= 3x+ 2(x− 1) mod Φ6(x)

= −2 + 5x mod x2 − x+ 1.
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Now that we have a basis for the ideal, one may show that these polynomials will corre-

spond to vectors that constitute a basis for the associated principal ideal lattice under the

coefficient embedding.

3

2

 ,

−2

5

 ∈ L and L =

3 −2

2 5

Z2

Figure 2.3 depicts the two-dimensional principal ideal lattice corresponding to the prin-

cipal ideal (3 + 2x) / Z[x]/(Φ6(x)) under the coefficient embedding.

By looking at the ideal lattices constructed in Examples 2.4.2 and 2.4.3, one may

quickly infer that the coefficient embedding relative to the power basis is indeed equivalent

to a quotient ring perspective of ideal lattices. The quotient ring characterization of an

ideal lattice is a lattice L where every vector v ∈ L corresponds to a polynomial v(x) ∈ I

for some ideal I / Z[x]/(Φm(x)). This correspondence is given by

(
α0 α1 . . . αn−1

)
∈ L ↔ α0 + α1x+ · · ·+ αn−1x

n−1 ∈ I.

Clearly this defines an isomorphism between an ideal of Z[x]/(Φm(x)) and a lattice.

We identify that lattice with its corresponding ideal and quotient ring, and often write

L ∼= I / Z[x]/(Φm(x)).

Proposition 2.4.4. Let f(x) ∈ Z[x] be a monic polynomial of degree n. If v(x) ∈

Z[x]/(f(x)) is any non-zero element relatively prime to f(x), then the vectors corre-

sponding to v(x), x · v(x), . . . , xn−1 · v(x) ∈ Z[x]/(f(x)) in Rn are linearly independent.
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Figure 2.3: Coefficient Embedding of (3 + 2x) / Z[x]/(Φ6(x))

Proof.

Suppose that there is a linear combination of the vectors corresponding to v(x), x ·

v(x), . . . , xn−1 · v(x) ∈ Z[x]/(f(x)) equal to zero.

n−1∑
i=0

αi · xi · v(x) = 0 mod f(x)

Then v(x) · (α0 + α1x + · · · + αn−1x
n−1) = 0 mod f(x). Equivalently, the polynomial

f(x) divides this product f(x)|v(x) · (α0 + α1x + · · · + αn−1x
n−1). Note that Z[x] is a
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unique factorization domain. Since f(x) is relatively prime to v(x) by assumption, f(x)

and v(x) have no common divisors. Thus f(x)|(α0 + α1x + · · · + αn−1x
n−1). However,

(α0 + α1x + · · · + αn−1x
n−1) has degree strictly less than f(x), which is a contradiction

unless (α0 + α1x + · · · + αn−1x
n−1) is 0. Hence (α0 + α1x + · · · + αn−1x

n−1) = 0 and

the vectors corresponding to v(x), x · v(x), . . . , xn−1 · v(x) ∈ Z[x]/(f(x)) are linearly

independent.

Corollary 2.4.5 ([65], Lemma 2.12). Let L be a lattice corresponding to a non-zero ideal

in the ring Z[x]/(f(x)) where f(x) ∈ Z[x] is a monic, irreducible polynomial of degree n.

Then L is a full-rank lattice of dimension n.

Proof.

At least one generator of the ideal is non-zero since the ideal is not trivial, say v(x) ∈

Z[x]/(f(x)). Since f(x) ∈ Z[x] is monic and irreducible by assumption, v(x) and f(x) are

relatively prime. Hence the elements v(x), x · v(x), . . . , xn−1 · v(x) ∈ Z[x]/(f(x)) are both

in the ideal and linearly independent by Proposition 2.4.4. Thus, L is n-dimensional and

hence full-rank.

Corollary 2.4.6. Let L be a lattice corresponding to a non-zero principal ideal I =

(g(x)) in the ring Z[x]/(f(x)) where f(x) ∈ Z[x] is a monic polynomial of degree n and

g(x) ∈ Z[x]/(f(x)). If g(x) and f(x) are relatively prime, then L is a full-rank lattice of

dimension n.

Proof.

Since g(x) ∈ Z[x]/(f(x)) is non-zero and relatively prime to f(x) by assumption, the

vectors corresponding to g(x), x · g(x), . . . , xn−1 · g(x) ∈ Z[x]/(f(x)) are in the ideal
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I = (g(x)) and linearly independent by Proposition 2.4.4, which implies that L is n-

dimensional and hence full-rank.

Corollary 2.4.7. Let m = 2k be a power-of-two cyclotomic index and I / Z[x]/(Φm(x))

be a non-trivial ideal. If L ∼= I /Z[x]/(Φm(x)) is an ideal lattice, then L is well-rounded.

Proof.

Since m = 2k is a power of two, the cyclotomic polynomial has the form Φm(x) = x2k−1
+1.

Let 0 6= g(x) ∈ I be the polynomial in the ideal that corresponds to a shortest vector of L.

Then g(x), x·g(x), . . . , xn−1 ·g(x) ∈ I are all linearly independent and their corresponding

vectors have the same norm as the vector that corresponds to g(x) ∈ I. Thus L has n

linearly independent shortest vectors, and is WR by definition.

In particular, these general results hold if f(x) is taken to be the cyclotomic poly-

nomial Φm(x). The vectors in Proposition 2.4.4 will be used to construct a particular

lattice basis for the principal ideal lattices studied in this work. Consider a principal

ideal (g(x)) /Z[x]/(Φm(x)) generated by the polynomial g(x) ∈ Z[x]/(Φm(x)). The rota-

tion basis matrix of g(x) for the corresponding principal ideal lattice is given by

G =

(
g(x) x · g(x) . . . xn−1 · g(x)

)
,

where the ith column of G is the coefficient vector that corresponds to xi−1 · g(x)

mod Φm(x). When constructing a rotation matrix, we always assume the polynomials

xi · g(x) are reduced mod the appropriate polynomial. This rotation matrix defines the

ideal lattice L ∼= (g(x)) / Z[x]/(Φm(x)).

31



For any monic, irreducible f(x) ∈ Z[x] in general, observe that the vectors cor-

responding to xi · v(x) ∈ Z[x]/(f(x)) for i = 1, . . . , n − 1 will most likely not have

the same norm as v(x) ∈ Z[x]/(f(x)). The form of f(x) determines how multiplication

by x in the ring Z[x]/(f(x)) may expand the coefficients of polynomials, and thus the

norm of their corresponding vectors. Bounding the norm of vectors corresponding to

v(x), x · v(x) ∈ Z[x]/(f(x)) through an expansion factor was considered in [65]. The au-

thors concluded that suitable choices of f(x) include f(x) = xn−1 + xn−2 + · · · + x + 1

where n is prime, and f(x) = xn + 1 where n is a power of two. By Facts 2.1.2 and

2.1.4 these two polynomials are cyclotomic polynomials of prime cyclotomic index and

power-of-two cyclotomic index, respectively.

At this point we would like to address the choice to work exclusively with cyclotomic

fields Km = Q(ζm) in this dissertation. For an algebraic number field K in general, any

additive homomorphism θ : K → Rn (or Cn) will embed ideals of OK as an ideal lattice.

Ideal lattices have been defined in the literature as both a geometric embedding of an

ideal in OK , and also as a lattice whose vectors correspond to elements of an ideal in the

ring Z[x]/(f(x)) for some monic, irreducible f(x) ∈ Z[x]. The algebraic number theory

definition of an ideal lattice is accepted to be the more mathematically correct notion.

However, we desire to investigate ideal lattices algebraically, and geometrically, using the

quotient ring perspective. The following fact provides a connection between algebra and

algebraic number theory.

Lemma 2.4.8. If f(x) ∈ Z[x] is the (monic) minimal polynomial of θ ∈ C, then

Z[x]/(f(x)) ∼= Z[θ].

Proof.

If f(x) is degree n, any α ∈ Z[θ] may be expressed an integer linear combination of
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{1, θ, . . . , θn−1}. Define an isomorphism η : Z[x]/(f(x))→ Z[θ] where p(x) 7→ p(θ).

To have any equivalence between the algebraic number theory and quotient ring

definitions of ideal lattices would require the ring of algebraic integers OK of a number

field K to be expressed as Z[θ] for some θ ∈ OK . Number fields satisfying this condition

are called monogenic number fields. Not all number fields are monogenic, but quadratic

and cyclotomic fields are. Hence, Z[x]/(Φm(x)) ∼= Z[ζm] ∼= OKm for cyclotomic fields

Km = Q(ζm).
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Chapter 3

The Relationship Between the

Canonical and Coefficient

Embeddings

In this chapter, the relationship between the canonical and coefficient embeddings of an

ideal will be explored. It will be shown that these embeddings are related by a fixed linear

transformation that depends only on the cyclotomic number field, and the matrix T of

this transformation will be defined explicitly. The structure of this matrix will be studied

and conditions for when the SVP is equivalent in any two embeddings of an ideal will

be provided. In particular, we will use the 2-norm condition number κ2(T ) of the matrix

T to show that the SVP will be equivalent up to this “distortion” factor. It will also be

shown that the coefficient embedding of an ideal will have no more independent shortest

vectors than the canonical embedding of the ideal.

Developing the relationship that exists between the canonical and coefficient embed-

dings provides a template that may be used to understand the relationship between any

34



two geometric embeddings. For instance, from the work presented here, one may infer

that any two geometric embeddings of an ideal will be related by a fixed linear trans-

formation that depends only on the number field K, which is true by definition, or that

the SVP in these two embeddings will be equivalent up to a factor corresponding to the

distortion between the embeddings (i.e. the 2-norm condition number of the matrix of

the transformation relating them). These inferences are observations that the authors of

[68] made while discussing their choice to work with the canonical embedding. While a

very strong case is made in [68, 69, 93] that the canonical embedding is the best notion to

use in working with ideal lattices, it is more natural from an abstract algebra standpoint

to consider the coefficient embedding, which is the approach taken in the next chapter.

A discussion about how the algebraic number theory perspective of ideal lattices en-

compasses an equivalent of the quotient ring viewpoint may be found in Chapter 2. From

a number-theoretic point of view it is more natural to consider the canonical embedding

of an element as opposed to its coefficient embedding. Hence, to justify working with ideal

lattices as ideals of polynomial quotient rings, the relationship between the canonical and

coefficient embeddings of an ideal in Z[ζm] must be well developed and understood.

3.1 The Transformation Relating the Canonical and

Coefficient Embeddings

Denote the change of basis matrix from B to B′ by [I]B′B . For an ideal J / OKm , let

[c(J)]B and [σ(J)]B denote the matrix of the ideal lattice in Rn under the coefficient and

canonical embeddings relative to integral basis B of OKm
∼= Z[ζm], respectively.
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Theorem 3.1.1. Let J / OKm be any ideal in the ring of cyclotomic integers, and let

B and B′ denote the power and powerful bases of OKm, respectively. The canonical and

coefficient embeddings of J , relative to B, are related by a fixed linear transformation T

given by the matrix T = [σ(OKm)]B. Moreover, the following matrix relations hold.

1. [I]B′B · [c(J)]B = [c(J)]B′

2. [c(J)]B = [I]BB′ · [c(J)]B′

3. [σ(OKm)]B · [I]BB′ = [σ(OKm)]B′

4. [σ(OKm)]B = [σ(OKm)]B′ · [I]B′B

5. [σ(OKm)]B · [c(J)]B = [σ(OKm)]B · [I]BB′ · [c(J)]B′ = [σ(J)]B

6. [σ(OKm)]B′ · [c(J)]B′ = [σ(OKm)]B′ · [I]B′B · [c(J)]B = [σ(J)]B′

Proof.

(1) and (2) are true by the definition of a change of basis matrix. A proof of (5) will be

given because the proof of (6) is similar. It will only be shown that [σ(OKm)]B · [c(J)]B =

[σ(J)]B because [σ(OKm)]B · [c(J)]B = [σ(OKm)]B · [I]BB′ · [c(J)]B′ follows from (1).

Take Km = Q(ζm) ⇒ OKm
∼= Z[ζm] and let ϕ(m) = n. The power basis of OKm

is B = {1, ζm, . . . , ζn−1
m }. Suppose that J is any (not necessarily proper) ideal of OKm

having Z-basis {b1, . . . , b`} where bj ∈ OKm for all j ∈ {1, . . . , `}. We want to show
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[σ(OKm)]B · [c(J)]B = [σ(J)]B. By construction,

[σ(OKm)] = A ·
(
σ(1) . . . σ(ζn−1

m )

)
= A ·


σ1(1) . . . σ1(ζn−1

m )

...
...

σn(1) . . . σn(ζn−1
m )

 ,

[c(J)]B =

(
[b1]B . . . [b`]B

)
,

and [σ(J)]B = A ·
(
σ(b1) . . . σ(b`)

)
= A ·


σ1(b1) . . . σ1(b`)

...
...

σn(b1) . . . σn(b`)

 ,

where A = 1√
2
·



1 1

. . . . .
.

1 1

i −i

. .
. . . .

i −i


is an n× n unitary matrix. Hence it must be

shown that

A ·


σ1(1) . . . σ1(ζn−1

m )

...
...

σn(1) . . . σn(ζn−1
m )

 ·
(

[b1]B . . . [b`]B

)
= A ·


σ1(b1) . . . σ1(b`)

...
...

σn(b1) . . . σn(b`)

 .
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It will suffice to show that
σ1(1) . . . σ1(ζn−1

m )

...
...

σn(1) . . . σn(ζn−1
m )

 ·
(

[b1]B . . . [b`]B

)
=


σ1(b1) . . . σ1(b`)

...
...

σn(b1) . . . σn(b`)


or even 

σ1(1) . . . σ1(ζn−1
m )

...
...

σn(1) . . . σn(ζn−1
m )

 ·
(

[bi]B

)
=


σ1(bi)

...

σn(bi)

 =

(
[σ(bi)]B

)

for an arbitrary i ∈ {1, . . . , `}. Suppose that bi = α1 · 1 + · · · + αn · ζn−1
m , meaning that

the coordinates of bi relative to the power basis B are

(
[bi]B

)
=


α1

...

αn

 .
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Observe 
σ1(1) . . . σ1(ζn−1

m )

...
...

σn(1) . . . σn(ζn−1
m )

 ·
(

[bi]B

)
=


σ1(1) . . . σ1(ζn−1

m )

...
...

σn(1) . . . σn(ζn−1
m )

 ·

α1

...

αn



=


α1σ1(1) + · · ·+ αnσ1(ζn−1

m )

...

α1σn(1) + · · ·+ αnσn(ζn−1
m )



=


σ1(α1 · 1 + · · ·+ αn · ζn−1

m )

...

σn(α1 · 1 + · · ·+ αn · ζn−1
m )



=


σ1(bi)

...

σn(bi)

 .

This relation will hold for all i ∈ {1, . . . , `}, so the claim that [σ(OKm)]B · [c(J)]B =

[σ(J)]B has been shown. Claim (6) may be shown similarly by using the powerful basis

B′ = {ζk0m , . . . , ζkn−1
m } and showing [σ(OK)]B′ · [c(J)]B′ = [σ(J)]B′. Since [I]BB′ = ([I]B′B )−1,

only (3) must be shown to prove both (3) and (4). To prove (3) we will use (5) and

take J = OKm and the specified Z-basis for J to be the powerful basis of OKm . Note

that in this case we have [c(J)]B = [I]BB′ because the ith column of [c(J)]B is given by

[ζkim ]B, which is also defined to be the ith column of [I]BB′. Furthermore, the ith column of

[σ(J)]B is given by σ(ζkim ), which coincides with how [σ(OKm)]B′ was constructed. Thus,
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by substituting into (5), we have

[σ(OKm)]B · [I]BB′ = [σ(OKm)]B′

as required to prove (3). Since (3)⇒ (4) this concludes the proof of Theorem 3.1.1.

Denote the matrix of the transformation that relates the canonical and coefficient

embeddings of an ideal in OKm
∼= Z[ζm], relative to integral basis B of OKm , by [Tm]B.

Corollary 3.1.2. If J / OKm is a proper ideal, then [σ(J)]B = [σ(J)]B′.

Proof.

If J = OKm and ϕ(m) = n, then either [c(J)]B or [c(J)]B′ will be the n × n identity

matrix depending on if the power or powerful basis is used, respectively. Without loss of

generality, if [c(J)]B = In is the n×n identity matrix, then [c(J)]B = [I]BB′ · [c(J)]B′ = In.

However, if J is a proper ideal, then neither [c(J)]B nor [c(J)]B′ will be the identity

matrix. Using Theorem 3.1.1 one may show

[Tm]B · [c(J)]B = [Tm]B · [I]BB′ · [c(J)]B′ = [σ(J)]B by (5) in Theorem 3.1.1; and

[Tm]B[c(J)]B = [Tm]B′ · [c(J)]B′ by (3) in Theorem 3.1.1

⇒ [σ(J)]B = [σ(J)]B′

In general, any additive homomorphism from the ring of algebraic integers to Rn (or

Cn) will give a geometric embedding of an ideal defined entirely by its action on a basis of

the ring. Any two such embeddings of the same ideal will be related by some fixed linear
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transformation, so we can partially understand any embedding through by examining the

transformation that relates it to another [91]. The following example is a continuation

of Examples 2.4.1 and 2.4.2. It shows how the coefficient and canonical embeddings of

the ideal (3 + 2ζ6) / Z[ζ6] are related, and demonstrates the action of [T6]B on the basis

{(3 + 2ζ6), (−2 + 5ζ6)} of this ideal.

Example 3.1.3. The Relationship Between the Canonical and Coefficient Embeddings

of the Ideal (3 + 2ζ6) / Z[ζ6].

As in Examples 2.4.1 and 2.4.2, we will use the power basis B6 = {1, ζ6} for the ring

Z[ζ6]. In Example 2.4.1 it was shown that an integral basis for the principal ideal lattice

σ(I) ⊂ R2 is given by

{
b1 =

 8√
2

−2
√

3√
2

 , b2 =

 1√
2

−5
√

3√
2

}.

The ideal lattice σ(I) may be represented by the matrix [σ(I)]B =

(
b1 b2

)
having vectors

b1 and b2 as columns. Figure 3.1 displays the basis vectors b1 and b2 in the plot of the

ideal lattice σ(I).

Recall from Example 2.4.2 that {v1, v2} is an integral basis for the principal ideal

lattice c(I), where

v1 =

3

2

 and v2 =

−2

5

 .

This principal ideal lattice c(I) may be represented by the matrix [c(I)]B =

(
v1 v2

)
having vectors v1 and v2 as columns. Figure 3.2 displays the basis vectors v1 and v2
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Figure 3.1: A Basis for the Canonical Embedding of (3 + 2ζ6) / Z[ζ6]

in the plot of the ideal lattice c(I). Theorem 3.1.1 states that the matrix [T6]B = A ·(
σ(1) σ(ζ6)

)
will relate these two embeddings of (3 + 2ζ6) / Z[ζ6]. The matrix [T6]B is
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Figure 3.2: A Basis for the Coefficient Embedding of (3 + 2ζ6) / Z[ζ6]

given by

[T6]B =
1√
2
·

1 1

i −i

 ·
σ1(1) σ1(ζ6)

σ2(1) σ2(ζ6)

 =
1√
2
·

1 1

i −i

 ·
1 ζ6

1 ζ6


=

1√
2
·

1 1

i −i

 ·
1 1+

√
−3

2

1 1−
√
−3

2


=

1√
2
·

2 1

0 −
√

3

 .
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One may easily verify that [T6]B · [c(I)]B = [σ(I)]B. In the process of verifying this

relation, observe that the vector v1 ∈ c(I) maps to the vector b1 ∈ σ(I) under [T6]B. Also,

the vector v2 ∈ c(I) maps to the vector b2 ∈ σ(I). The corresponding vectors v1 ∈ c(I)

and b1 ∈ σ(I) are depicted in Figure 3.3, where the principal ideal lattices c(I) and σ(I)

have been plotted together. The solid arrow corresponds to v1 ∈ c(I), and the dashed arrow

corresponds to b1 ∈ σ(I).

Figure 3.3: Corresponding Vectors in Two Embeddings of (3 + 2ζ6) / Z[ζ6]
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3.1.1 Singular Values of this Transformation

For an integer m, recall that m̂ = m/2 if m is divisible by 2, and m̂ = m otherwise.

Also, rad(m) is defined as the product of all prime numbers that divide m. The following

Lemma may be found, along with its proof, in [69].

Lemma 3.1.4 ([69], Lemma 4.3). The largest singular value of σ(B′) ⊂ H is s1(B′) =
√
m̂, and the smallest singular value is sn(B′) =

√
m/rad(m).

The matrix σ(B′) is the matrix of the canonical embedding of the ring of cyclotomic

integers OKm in Cϕ(m) relative to the powerful basis. We would like to translate these

results to the matrix [Tm]B′ = [σ(OKm)]B′, which relates the canonical and coefficient

embeddings in Rϕ(m). The following proposition will imply that [Tm]B′ has the same

singular values as the matrix σ(B′) from Lemma 3.1.4.

Proposition 3.1.5. Two matrices M,N ∈ Cm×n have the same singular values if and

only if there exist unitary matrices P ∈ Cm×m and Q ∈ Cn×n such that M = PNQ.

Proof.

Without loss of generality, suppose that n ≤ m. This means that M,N ∈ Cm×n will have

n singular values.

(⇒) Suppose that M,N have the same singular values. Define the matrix

Σ =


s1

. . .

sn


to be the n × n diagonal matrix with the singular values s1 ≥ · · · ≥ sn on its diagonal.
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Let M and N have singular value decompositions (SVD) given by

M = UM ·

Σ

0

 · VM

N = UN ·

Σ

0

 · VN
where UM , UN ∈ Cm×m and VM , VN ∈ Cn×n are all unitary, and the matrix

(
Σ
0

)
is m× n.

Let P = (UM ·U∗N) and Q = (V ∗N · VM). Note that both P and Q are unitary. Denote the

m×m identity matrix by Im and the n× n identity matrix by In. Then

M = UM ·

Σ

0

 · VM = UM · Im ·

Σ

0

 · In · VM
= UM · (U∗N · UN) ·

Σ

0

 · (VN · V ∗N) · VM

= (UM · U∗N) · UN ·

Σ

0

 · VN · (V ∗N · VM)

= PNQ.

(⇐) Suppose that there exist unitary matrices P ∈ Cm×m and Q ∈ Cn×n such that
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M = PNQ. Define the diagonal matrices

ΣM =


s1(M)

. . .

sn(M)



ΣN =


s1(N)

. . .

sn(N)


where the diagonal entries of ΣM and ΣN are the singular values of M and N , respectively.

Let M,N have SVDs given by

M = UM

ΣM

0

VM

N = UN

ΣN

0

VN

where UM , UN ∈ Cm×m and VM , VN ∈ Cn×n are all unitary, and both
(

ΣM
0

)
and

(
ΣN
0

)
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are m× n. Then, because M = PNQ,

UM ·

ΣM

0

 · VM = P · UN ·

ΣN

0

 · VN ·Q
⇒

ΣM

0

 = U∗M · P · UN ·

ΣN

0

 · VN ·Q · V ∗M
Define the matrices G = (U∗M · P · UN) and H = (VN · Q · V ∗M), which are both unitary.

Then ΣM

0

 · (ΣM 0

)
= (G ·

ΣN

0

 ·H) · (H∗ ·
(

ΣN 0

)
·G∗)

⇒
(

Σ2
M

)
= G ·

(
Σ2
N

)
·G∗

when multiplying both sides by the transpose. Note that this factorization is an SVD of(
Σ2

M

)
because G is a unitary matrix. Since the singular values of a matrix are unique,

and because
(

Σ2
M

)
is a non-negative diagonal matrix, its diagonal entries are equal to

the diagonal entries of
(

Σ2
N

)
, which is another non-negative diagonal matrix. Hence

Σ2 = Σ2
M = Σ2

N is a positive diagonal matrices with the ith diagonal entry given by

Σi,i = si(M)2 = si(N)2, where si(M) and si(N) are the ith singular values of M and

N respectively. Since all singular values by definition are non-negative, it follows that

si(M) = si(N) for all i = 1, . . . , n. Thus M and N have the same singular values as

required.
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Observe that [Tm]B′ = [σ(OKm)]B′] = A · σ(B′) · In where A is the unitary basis

matrix used to map ideal lattices in Cn to ideal lattices in Rn, and In is the n×n identity

matrix. Both A and In are unitary matrices, so the result in Lemma 3.1.4 may be applied

to provide the singular values of [Tm]B′.

Theorem 3.1.6. The largest and smallest singular values of the matrix [Tm]B′ are given

by s1([Tm]B′) =
√
m̂ and sn([Tm]B′) =

√
m/rad(m), respectively.

This theorem defines the singular values of the matrix that relates the canonical and

coefficient embeddings relative to the powerful basis B′, not the power basis B. The

matrices [Tm]B′ and [Tm]B are not equal unless m is a prime-power. Consequently, they

do not necessarily have the same singular values.

3.2 On the Equivalence of the SVP in Ideal Lattices

Under Two Embeddings

We now use the singular values of the matrix [Tm]B′ to study the equivalence of the SVP

under the canonical and coefficient embeddings of an ideal. Some results will be extended

to any two geometric embeddings of an ideal in OKm . This section relies heavily on the

work presented in section 3.1.1, meaning that most results will be centered around the

powerful basis. First, a basic result is given to show how the length of a matrix-vector

product can be bounded using the singular values of the matrix and the length of the

vector. Given a matrix T ∈ Cn×n we use s1(T ) and sn(T ) to denote the largest and

smallest singular values of T , respectively.
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Lemma 3.2.1. For any matrix T ∈ Cn×n and x ∈ Cn,

sn(T ) · ‖x‖2 ≤ ‖Tx‖2 ≤ s1(T ) · ‖x‖2.

Proof.

First, suppose that x ∈ Cn is the zero vector. Then clearly

sn(T ) · ‖x‖2 ≤ ‖Tx‖2 ≤ s1(T ) · ‖x‖2 ⇒ sn(T ) · 0 ≤ 0 ≤ s1(T ) · 0

and the bounds hold. If x 6= 0, then the following is true.

sn(T ) = min
z 6=0

‖Tz‖2

‖z‖2

≤ ‖Tx‖2

‖x‖2

≤ max
z 6=0

‖Tz‖2

‖z‖2

= s1(T )

⇒ sn(T ) · ‖x‖2 ≤ ‖Tx‖2 ≤ s1(T ) · ‖x‖2

Note that sn([Tm]B′) =
√
m/rad(m) ≥ 1, meaning that the matrix [Tm]B′ cannot

shrink any vectors that it maps from the coefficient embedding to the canonical embed-

ding. This hints at an explanation of why lattice points in σ(I) are generally more sparse

than in c(I) for an ideal I /OKm , which was observed through Examples 2.4.1 and 2.4.2.

Let κ2([Tm]B′) denote the 2-norm condition number of the matrix [Tm]B′, defined as the

ratio of its largest singular value to its smallest singular value. Since the largest and

smallest singular values of a matrix give insight as to how much a matrix can stretch or

shrink a vector, respectively, the 2-norm condition number serves as a “distortion” factor

of [Tm]B′. For certain cyclotomic indices m the matrix [Tm]B′ behaves nicely.

Proposition 3.2.2. κ2([Tm]B′) = 1 if and only if m = 2k for some integer k ≥ 0.
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Proof.

Observe that κ2([Tm]B′) =
√
m̂ · rad(m)/m =

√
m̂ · rad(m)/m = 1 ⇔ m̂ · rad(m)/m =

1. Suppose that m is not divisible by 2. Then m̂·rad(m)/m = rad(m) = 1⇔ m = 1. Now

suppose that m is divisible by 2. Then m̂ · rad(m)/m = m · rad(m)/2m = rad(m)/2 =

1⇔ rad(m) = 2⇔ m = 2k for some k ∈ Z≥0. Hence κ2([Tm]B′) = 1⇔ m = 1 or m = 2k

for some k ∈ Z≥1.

Corollary 3.2.3. If m = 2k for some positive integer k and I / OKm is an ideal in the

ring of cyclotomic integers, then the SVP in σ(I) is equivalent to the SVP in c(I).

Proof.

By Proposition 3.2.2 it’s clear that s1([Tm]B) = sn([Tm]B) because κ2([Tm]B) = 1. Apply

Lemma 3.2.1 to see that the matrix [Tm]B will stretch all lattice vectors equally. Since

the matrix of the transformation that relates these two embeddings of an ideal stretches

each vector equally, it’s clear that a solution to the SVP in one embedding will map to

a solution of the SVP in the other embedding under [Tm]B.

Note that the power and powerful bases are the same in the case m = 2k because

the cyclotomic index is a prime-power. While the matrix [Tm]B for m = 2k will stretch

all vectors by the same factor, it is not an isometry since the length of a vector is not

preserved. In fact, [Tm]B will map each vector in c(I) to a vector in σ(I) whose length

is s1([T2k ]B) = sn([T2k ]B) =
√
m̂ = 2k−1 times greater. The only cyclotomic indices for

which it is possible that the matrix [Tm]B′ will not stretch a vector are characterized in

the following lemma.

51



Lemma 3.2.4. The smallest singular value sn([Tm]B′) of the matrix [Tm]B′ is equal to 1

if and only if the cyclotomic index m =
∏`

i pi is the product of distinct primes.

Proof.

sn([Tm]B′) =
√
m/rad(m) = 1 ⇔ m = rad(m) ⇔ m =

∏`
i pi is the product of distinct

primes.

All 2-norm condition numbers of [Tm]B′ will be of the form κ2([Tm]B′) =
√
r ≥ 1 for

some odd positive integer r ≥ 1. This number is minimal when m is a power-of-two, but

the second smallest 2-norm condition number is κ([Tm]B′) =
√

3, which occurs if and

only if m = 2k · 3` for integers k ≥ 0 and ` ≥ 1, according to the following proposition.

Proposition 3.2.5. κ2([Tm]B′) =
√
p for some prime p if and only if m = 2k · p` for

some integers k ≥ 0 and ` ≥ 1.

Proof.

Either the cyclotomic index m is divisible by 2 or not, so first suppose that m is not

divisible by 2. Then

κ2([Tm]B′) =

√
m̂ · rad(m)

m
=

√
m · rad(m)

m
=
√
rad(m) =

√
p⇔ rad(m) = p

which happens ⇔ m = p` = 20 · p`, for some ` ∈ Z≥1 by definition of rad(m). If m is

divisible by 2, then

κ2([Tm]B′) =

√
m̂ · rad(m)

m
=

√
m · rad(m)

2m
=

√
rad(m)

2
=
√
p⇔ rad(m) = 2p.

This happens if and only if m = 2k ·p`, for some integers k ≥ 1 and ` ≥ 1 by the definition

of rad(m).
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The following theorem provides a condition under which the SVP is equivalent in

two geometric embeddings of an ideal. This condition characterizes the circumstances

under which a shortest vector in one embedding will map to a shortest vector in another

embedding.

Theorem 3.2.6. Let I / OK be a non-zero ideal in the ring of algebraic integers with

integral basis B0. For any two geometric embeddings γ, δ of I denote by T the matrix of the

transformation that relates these embeddings, i.e. [T ]B0 · [γ(I)]B0 = [δ(I)]B0. If v ∈ γ(I)

is a shortest vector and κ2(T ) · ‖v‖2 ≤ ‖w‖2 for all 0 6= w ∈ γ(I) with ‖w‖2 > ‖v‖2, then

T will map at least one shortest vector of γ(I) to a shortest vector of δ(I).

Proof.

Let sn = sn(T ) and s1 = s1(T ) be the smallest and largest singular values of the matrix

T that relates the two embeddings, respectively. By Lemma 3.2.1,

sn · ‖x‖2 ≤ ‖T · x‖2 ≤ s1 · ‖x‖2 for any x ∈ γ(I).

Let v ∈ γ(I) be a shortest vector. Using the definition of singular values, if ‖Tv‖2 ≤

s1 · ‖v‖2 ≤ sn · ‖w‖2 ≤ ‖Tw‖2 for all 0 6= w ∈ γ(I) with ‖w‖2 > ‖v‖2, then Tv =

min ‖Tz‖2 ∈ δ(I) is a shortest vector where the minimum is taken over all shortest

vectors z ∈ γ(I). Hence there is at least one shortest vector of γ(I) that will map to

a shortest vector of δ(I) under T . This relation is equivalent to s1
sn
· ‖v‖2 ≤ ‖w‖2 for

all 0 6= w ∈ γ(I) with ‖w‖2 > ‖v‖2. Thus, some shortest vector of γ(I) will map to a

shortest vector in δ(I) if κ2(T ) · ‖v‖2 ≤ ‖w‖2.
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Corollary 3.2.7. Let T be the matrix of the transformation that relates two geometric

embeddings γ and δ. If κ2(T ) = 1, then the SVP is equivalent in the two embeddings.

Proof.

Clearly the condition in Theorem 3.2.6 will always hold if κ2(T ) = 1.

Theorem 3.2.6 applies to an ideal in the ring of algebraic integers of any number field,

not just cyclotomic fields. This theorem provides a condition for which solving the SVP

in one embedding of an ideal will lead to a solution of the SVP in another embedding

of the ideal. Even if this condition holds for one solution to the SVP, it is possible that

not every solution of the SVP in one embedding would correspond to a solution of the

SVP in the other. For instance, one shortest vector may change in length by a factor of

sn(T ) while another changes in length by a factor of s1(T ). This theorem only guarantees

that there is at least one shortest vector in the first embedding that maps to a shortest

vector in the second embedding if the conditions are met. Smaller κ2(T ) values imply a

smaller difference between how far shortest vectors could stretch, or shrink, as they are

being mapped from one embedding to another by the matrix T . If T stretches all shortest

vectors in one embedding equally, then every solution to the SVP in that embedding will

map to a shortest vector in the second embedding.

In particular, Theorem 3.2.6 may be applied to the canonical and coefficient embed-

dings. One may also see how Corollary 3.2.7 may be used to imply Corollary 3.2.3. It is

also of interest to know if either the canonical or coefficient embedding of an ideal will

have more independent shortest vectors than the other. Perhaps more shortest vectors

in a particular embedding of an ideal suggests that the SVP is easier to solve in that

embedding than in a different embedding with fewer shortest vectors.
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To answer the question about the number of independent shortest vectors, first con-

sider another geometric embedding τ : K → Rn where K is a number field of signature

n = r1 + 2r2. That is, K has r1 real embeddings ρ1, . . . , ρr1 and 2r2 complex embeddings

σ1, . . . , σr2 , σ1, . . . , σr2 . Define the geometric embedding τ : K → Rr1 × C2r2 as

τ = (ρ1, . . . , ρr1 ,R(σ1), I(σ1), . . . ,R(σr2), I(σr2))

whereR(σi) and I(σi) are the real and imaginary parts of σi, respectively. Consider how τ

is related to the canonical embedding σ. In general, a number field K will have r1 real em-

beddings ρ1, . . . , ρr1 and 2r2 complex embeddings σ1, . . . , σr2 , σ1, . . . , σr2 . We may define

the canonical embedding σ : K → Rr1 ×C2r2 as σ = (ρ1, . . . , ρr1 , σ1, . . . , σr2 , σr2 , . . . , σ1).

However, if K is a cyclotomic field, note that both τ and σ are defined entirely by com-

plex embeddings, which equates to the definition of the canonical embedding given in

the second chapter.

Let Km = Q(ζm) be the mth cyclotomic number field with ϕ(m) = n. Define the

n× n matrix W as

W =



1 1 0 0 . . . 0 0

0 0 1 1 . . . 0 0

...
...

...
...
. . .

...
...

0 0 0 0 . . . 1 1

0 0 0 0 . . . 1 −1

...
...

...
... . .

. ...
...

0 0 1 −1 . . . 0 0

1 −1 0 0 . . . 0 0


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where the ith row of W is given by

Wi =


(

0 0 . . . 12i−1 12i . . . 0 0

)
if i ≤ n

2(
0 0 . . . 12(n−i)+1 −12(n−i)+2 . . . 0 0

)
if i > n

2

and the index denotes the column position of the 1 (or −1).

Lemma 3.2.8. For an ideal I / OKm, the embeddings τ(I) and σ(I) are related by the

transformation represented by W .

Proof.

Let I be an ideal of OK with basis B = {b1, . . . , bn}. Define a matrix R = [τ(I)]B where

the jth column is τ(bj) given by

Rj =



R(σ1(bj))

I(σ1(bj))

...

R(σr2(bj))

I(σr2(bj)))


Define a matrix S = [σ(I)]B with ij-entry equal to

Sij =


σi(bj), i ≤ n

2

σn−i+1(bj), i > n/2 (complex conjugate)

.

One may easily show that the product of the ith row of T and jth column of R equal

the ij-entry of S, which proves the claim.
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Lemma 3.2.9. If ‖τ(a)‖2
2 = r, then ‖σ(a)‖2

2 = 2r for all a ∈ Km.

Proof.

Suppose that ‖τ(a)‖2
2 = |R(σ1(a))|2 + |I(σ1(a))|2 + · · ·+ |R(σr2(a))|2 + |I(σr2(a))|2 = r.

Then

‖σ(a)‖2
2 = |σ1(a)|2 + · · ·+ |σr2(a)|2 + |σr2(a)|2 + · · ·+ |σ1(a)|2

= 2[|R(σ1(a))|2 + |I(σ1(a))|2 + · · ·+ |R(σr2(a))|2 + |I(σr2(a))|2]

= 2r

Lemma 3.2.10. Let A ∈ Cn×n. All singular values of A are the same if and only if A is

a multiple of a unitary matrix.

Proof.

Let A have SVD given by A = U ·Σ · V ∗ where U, V ∗ ∈ Cn×n are unitary and Σ is n× n

diagonal matrix with the same singular values of A on its diagonal.

Σ =



s 0 . . . 0

0 s . . . 0

...
...
. . .

...

0 0 . . . s


Let In be the n× n identity matrix. Then A = UΣV ∗ ⇔ AA∗ = UΣ2U∗ = s2 · UInU∗ =

s2 · In and A∗A = V Σ2V ∗ = s2 · V InV ∗ = s2 · In ⇔ AA∗ = A∗A = s2 · In and the claim

is proved.
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Proposition 3.2.11. W is a multiple of a unitary matrix.

Proof.

By Lemma 3.2.10, all singular values of W are the same if and only if W is a multiple of

a unitary matrix. Singular values of a matrix satisfy s1 ≥ · · · ≥ sn ≥ 0, so one must only

check the extreme singular values s1 and sn. Apply Lemma 3.2.9 to show

sn(W ) = min
‖x‖2=1

‖Wx‖2 = min
‖x‖2=1

√
2 · ‖x‖2 =

√
2; and

s1(W ) = max
‖x‖2=1

‖Wx‖2 = max
‖x‖2=1

√
2 · ‖x‖2 =

√
2.

Proposition 3.2.12. Let I / OKm be an ideal in the ring of cyclotomic integers. The

geometric embeddings τ(I) and σ(I) are isomorphic.

Proof.

Let a ∈ I. The isomorphism between these embeddings is seen by the mapping

τ(a) =



R(σ1(a))

I(σ1(a))

...

R(σr2(a))

I(σr2(a)))


↔



R(σ1(a)) + I(σ1(a))

R(σ2(a)) + I(σ2(a))

...

R(σr2(a)) + I(σr2(a))

R(σr2(a))− I(σr2(a))

...

R(σ2(a))− I(σ2(a))

R(σ1(a))− I(σ1(a))



= σ(a).
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Corollary 3.2.13. Let I / OKm be an ideal in the ring of cyclotomic integers. Then the

SVP in τ(I) is equivalent to the SVP in σ(I).

Proof.

By Proposition 3.2.12, the two embeddings are isomorphic. To see the equivalence of

SVP, note that W is a multiple of a unitary matrix ⇒ κ2(W ) = 1. Now apply Corollary

3.2.7.

Now that the equivalence of the embedding τ and the canonical embedding σ has

been shown, a result pertaining to the number of independent shortest vectors in an ideal

lattice τ(I) from [37] will be amended to reflect this relationship. A relation between the

number of independent shortest vectors in the canonical embedding of an ideal σ(I) and

the coefficient embedding of an ideal c(I) will follow.

Theorem 3.2.14. Let I /OK be a non-zero ideal in the ring of algebraic integers of some

number field K of degree ≥ 2. Then σ(I) is WR if and only if τ(I) is WR if and only if

K is a cyclotomic number field.

Proof.

By Theorem 1.2 of [37], τ(I) is WR if and only if K is a cyclotomic number field. The

rest follows from Proposition 3.2.12.

Thus, for any ideal I / OKm where ϕ(m) ≥ 2, the ideal lattices τ(I) and σ(I) are

well-rounded and have a basis consisting of shortest vectors. So, there will be exactly

ϕ(m) independent shortest vectors in both of these ideal lattices when the cyclotomic

index m is strictly greater than 2.
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Theorem 3.2.15. Let I / OKm be an ideal in the ring of cyclotomic integers. Then the

ideal lattice c(I) will have no more independent shortest vectors than the ideal lattice

σ(I).

Proof.

Let I / OKm be an integral ideal. If m ≤ 2, then clearly a one-dimensional ideal lattice

will only have one independent shortest vector, and the statement is true. Let m > 2. By

Theorem 3.2.14, the ideal lattice σ(I) will always have ϕ(m) = n independent shortest

vectors, and the ideal lattice c(I) can never have more than n independent shortest

vectors.

3.3 More on the Power and Powerful Bases

Sections 3.1 and 3.2 contain several results whose proofs make strong use of the powerful

basis B′. To work with the notion of ideal lattices as ideals of a polynomial quotient ring,

one might be more interested in considering the power basis B, which translates very

naturally to the quotient ring perspective. Recall that the powerful basis is the power

basis for prime-power cyclotomic indices m = pk by definition. Proposition 3.3.1 yields a

corollary that provides more than just the prime-power cyclotomic indices for which the

powerful basis may be viewed a power basis.

Proposition 3.3.1. Let m be an odd integer. Then the powerful basis of Km is the same

as the powerful basis of K2m.

Proof.

First, note that since m is odd it has prime-power factorization given by m =
∏`

i=1mi
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where each mi = pkii for some (odd) prime pi and positive integer ki ≥ 1. By definition

the powerful basis of Km is is defined as B′m = ⊗iB′mi
, the tensor product of the

power(ful) bases of each Kmi
. Multiplying m by 2 yields the prime-power factorization

2m = 2 ·
∏`

i=1 mi. Since the power(ful) basis of K2 is B′2 = {1}, the powerful basis of

K2m will be given by the following.

B′2m = B′2 ⊗B′m = B′2 ⊗B′m1 ⊗B′m2 ⊗ · · · ⊗B′m`

= {1} ⊗B′m1 ⊗B′m2 ⊗ · · · ⊗B′m`

= B′m1 ⊗B′m2 ⊗ · · · ⊗B′m`

= B′m

This is a particularly nice property of the powerful basis. One implication of this

result is that if Km = Q(ζm) and m is an odd integer, then Km = K2m = Q(ζ2m). Rather

than considering two different power bases for the same field generated by a different

power of ζm, the powerful basis is constructed so that it is the powerful basis of this

cyclotomic field extension. It is desirable to construct only one basis for each cyclotomic

field, and the powerful basis, unlike the power basis, satisfies this condition.

Corollary 3.3.2. Let m = pk for any prime p and some integer k ≥ 1. Then the powerful

basis of K2m is a power basis.

Proof.

If m = 2k is a power of two, then by definition the powerful basis of K2m is the power

basis B′ = B = {1, ζ2k+1 , ζ2
2k+1 , . . . }. If m = pk is odd, then by Proposition 3.3.1 the

power(ful) basis B′ = B of Km is the powerful basis of K2m.
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Instead of viewing the powerful basis as a power basis for only prime-power cyclotomic

indices m = pk, we are also now able to view the powerful basis for cyclotomic indices

2m = 2 · pk as a power basis. Since the power basis is what will be used to work with

ideal lattices in a polynomial quotient ring setting, it is logical to address the density of

cyclotomic indices for which the powerful basis may be viewed as a power basis.

For the range [1, k] of cyclotomic indices, let count(1, k) return the number of prime-

power indices within the range. Let count2(1, k) return the number of indices i ∈ [1, k]

for which either i = pk for a prime p or i = 2 · pk for an odd prime p. Then count(1, k)

would reflect the number of cyclotomic indices in the range whose power basis is the

powerful basis, and count2(1, k) would reflect the total number of powerful bases in the

range that may be viewed as a power basis. Table 3.1 shows these computed quantities

for the specified ranges, as well as the computed proportion of indices within each range

captured by count(1, k) and count2(1, k), respectively. The MapleTM code used in these

calculations may be found in Appendix B.

For cyclotomic indices m = 140 and m = 142, exactly half of the cyclotomic fields

with indices in the range [1,m] have a powerful basis that may be viewed as a power

basis. For m > 142, fewer than half of the indices in the range [1,m] will have a powerful

basis that one may view as a power basis. Lattices large enough for use in practice may

be found in rings of cyclotomic integers with index m ≤ 142; the largest dimension of a

lattice arising from a cyclotomic field with index m ≤ 142 is maxi∈[1,142] ϕ(i) = 138.
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Table 3.1: Density of Power Bases

Cyclotomic Index Range count(1,k) Percentage count2(1,k) Percentage
[1, 50] 24 48.0% 34 68.0%
[1, 100] 36 36.0% 54 54.0%
[1, 150] 49 32.7% 73 48.7%
[1, 200] 61 30.5% 90 45.0%
[1, 250] 69 27.6% 105 42.0%
[1, 300] 80 26.7% 121 40.3%
[1, 350] 89 25.4% 136 38.9%
[1, 400] 98 24.5% 151 37.8%
[1, 450] 107 23.8% 162 36.0%
[1, 500] 115 23.0% 176 35.2%
[1, 550] 123 22.4% 189 34.4%
[1, 600] 131 21.8% 202 33.7%
[1, 650] 141 21.7% 216 33.2%
[1, 700] 148 21.1% 228 32.6%
[1, 750] 156 20.8% 241 32.1%
[1, 800] 163 20.4% 252 31.5%
[1, 850] 171 20.1% 264 31.1%
[1, 900] 179 19.9% 277 30.8%
[1, 950] 186 19.6% 288 30.3%
[1, 1000] 194 19.4% 300 30.0%
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Chapter 4

On The Algebraic Structure of

Principal Ideal Lattices

The purpose of this chapter is to study the relationship between the algebraic structure

of ideals in cyclotomic quotient rings Z[x]/(Φm(x)), and the geometric structure of their

corresponding ideal lattices. We begin this chapter by examining the algebraic structure

of (principal) ideals in cyclotomic quotient rings. A logical first step towards solving the

SVP in ideal lattices algebraically is to compile a list of the algebraic properties that

might be exploited. We will provide results showing that a solution to the SVP in all

one- and two-dimensional principal ideal lattices will always correspond to an associate

of the ideal’s generator. We will then describe two experiments and present empirical

evidence to exhibit a similar correspondence in higher dimensions. Our results suggest

that a solution to the “shortest generator problem” in principal ideals of Z[x]/(Φm(x))

corresponds to a probabilistic solution of the SVP in their companion principal ideal

lattices.
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4.1 The Algebraic Structure of Z[x]/(Φm(x))

Rings of cyclotomic integers have been long-studied in algebraic number theory. Trans-

lating established results on the structure of cyclotomic integers OKm
∼= Z[ζm] from

the algebraic number theory literature into results on the structure of the quotient ring

Z[x]/(Φm(x)) will be straightforward because of the isomorphism Z[x]/(Φm(x)) ∼= Z[ζm].

The following results are taken from a survey on Euclidean number fields [113]. After

these results are stated, we will study their implications with regards to the structure of

Z[x]/(Φm(x)).

Theorem 4.1.1 ([113], Theorem 2.22). Let Km = Q(ζm). If the field discriminant DKm ≤

500, then OKm
∼= Z[ζm] is a PID if and only if OKm is Euclidean.

Theorem 4.1.2 ([113], Theorem 5.1). Z[ζm] is a PID if and only if m = 1, 3, 4, 5, 7, 8, 9,

11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

The author of [113] remarks that the algebraic integers corresponding to cyclotomic in-

dices m = 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 20, 24 are known to be norm-Euclidean, mean-

ing that OKm is a Euclidean domain with respect to the absolute value of a norm N .

Recall that for any odd positive integer m the fields Km = Q(ζm) and K2m = Q(ζ2m) are

equivalent. Hence there are more cyclotomic indices than the ones listed in Theorem 4.1.2

such that Z[ζm] is a principal ideal domain, although they represent the same cyclotomic

field extensions.

Theorem 4.1.3 ([113], Theorem 5.14). If m 6= 16, 24 is a positive integer with ϕ(m) ≤

10, then Z[ζm] is norm-Euclidean.

Any algebraic number theory text will affirm that the rings Z[ζm] are Dedekind do-

mains. The equivalence between Z[x]/(Φm(x)) and Z[ζm] then implies that Z[x]/(Φm(x))
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is a Noetherian ring, and the non-zero prime ideals in Z[x]/(Φm(x)) are maximal. In par-

ticular, every non-trivial ideal may be represented as a product of prime, i.e. maximal,

ideals. If Z[x]/(Φm(x)) is a principal ideal domain, then this product is unique up to

reordering. The following Proposition is a corollary to Theorems 4.1.1, 4.1.2 and 4.1.3.

Proposition 4.1.4. Z[x]/(Φm(x)) is a Euclidean domain if m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 26, 27, 30, 38, 54.

Proof.

By Theorem 4.1.1 and Theorem 4.1.2, the following cyclotomic indices satisfy DK ≤ 500

and Z[ζm] is a principal ideal domain:

m =1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 18, 19, 22, 27, 38, 54.

Thus the rings Z[ζm] having an index listed above are Euclidean. The cyclotomic indices

m 6= 16, 24 with ϕ(m) ≤ 10 are

m =1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20, 22, 30.

By Theorem 4.1.3, the rings Z[ζm] corresponding to these cyclotomic indices are norm-

Euclidean and hence Euclidean. Also, the remark in [113] that cyclotomic integers cor-

responding to indices

m = 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 20, 24

are known to be norm-Euclidean implies that these rings are also Euclidean.
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By taking the union of these sets of indices, and knowing that Q(ζm) = Q(ζ2m) if m

is an odd positive integer, the ring Z[ζm] is Euclidean if

m =1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 26, 27, 30, 38, 54.

This statement holds for Z[x]/(Φm(x)) because of the isomorphism Z[ζm] ∼= Z[x]/(Φm(x)).

Theorem 2.1.1 implies that the rings Z[x]/(Φm(x)) with index listed in Proposition

4.1.4 are also principal ideal domains, and hence unique factorization domains. The max-

imum value of ϕ(m) for any index m listed in Proposition 4.1.4 is 18, meaning that ideal

lattices arising from these rings will not be near large enough for use in any cryptographic

applications. Consequently, exploiting their algebraic structure by using a Euclidean-type

algorithm to solve the SVP in ideal lattices is not of practical interest, but remains of

theoretical interest. The following Proposition is another corollary to the theorems taken

from [113].

Proposition 4.1.5. Z[x]/(Φm(x)) is a PID if m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50,

54, 60, 66, 70, 84, 90.

Proof.

Follows directly from Theorems 2.1.1, 4.1.1, 4.1.2 and 4.1.3.

Corollary 4.1.6. Let m be a cyclotomic index listed in Proposition 4.1.5. Then any ideal

lattice corresponding to an ideal in Z[x]/(Φm(x)) is a principal ideal lattice.
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Proof.

This result is a consequence of Proposition 4.1.5 and the coefficient embedding.

The rings Z[x]/(Φm(x)) which are Euclidean domains and/or principal ideal domains

have now been identified through a translation of algebraic number theory results. These

are basic properties to verify when studying the algebraic structure of any ring. While

ideal lattices arising from certain cyclotomic quotient rings must necessarily be principal

ideal lattices (see Proposition 4.1.5 and Corollary 4.1.6), it is the ability to choose an

ideal for use in many cryptographic applications that provides sufficient justification for

studying principal ideals in Z[x]/(Φm(x)). If the SVP in principal ideal lattices is studied

in depth, then one may be interested in choosing to work with principal ideal lattices in

an applied setting.

4.1.1 The Algebraic Structure of Ideals in Z[x]/(Φm(x))

Much is known about the representation of ideals in rings of algebraic integers. This may

be seen in many algebraic number theory texts, e.g. [26]. The definition of an ideal in

a ring R given in the second chapter is equivalent to the number theory definition of

an integral ideal in a ring of algebraic integers. From a number theoretic perspective,

we choose to work exclusively with integral ideals of Z[ζm] because of their equivalence

to ideals in Z[x]/(Φm(x)). We will assume that any ideal of Z[ζm] is an integral ideal.

The following Proposition provides some insight into how the ideals of Z[ζm] may be

represented.

Proposition 4.1.7 ([26], Proposition 4.7.7). Let I be an ideal of Z[ζm]. For any non-zero

element α ∈ I there exists an element β ∈ I such that I = αZ[ζm] + βZ[ζm].
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That is, any (integral) ideal of Z[ζm] may be represented by at most two elements.

Hence any ideal of Z[x]/(Φm(x)) is generated by no more than two elements. The author

of [26] remarks that the ideals of Z[ζm] behave exactly as the numbers in Z, which is a

particularly nice structure. The remainder of this section will be focused on the structure

of principal ideals in Z[x]/(Φm(x)). The following results will be useful in proving Theo-

rem 4.1.10, which will be used to show that two principal ideals of the ring Z[x]/(Φm(x))

are equivalent if and only if the generators are associates.

Lemma 4.1.8. Let R be an integral domain. For any unit u ∈ R, (u) = uR = R.

Proof.

Clearly (u) = uR ⊆ R, so we will show that R ⊆ uR for any unit u ∈ R. Suppose that

r0 ∈ R. Then r0 ∈ R ⇒ 1 · r0 = u · u−1 · r0 ∈ R since u is a unit. Hence r0 = u · r1 for

r1 = u−1 · r0. Since r1 ∈ R it follows that r0 ∈ uR⇒ R ⊆ uR.

Lemma 4.1.9. A subring of a field which contains 1 is an integral domain.

Proof.

Let R be a subring of the field F , and let 1 ∈ R. It must be shows that R has no zero

divisors. Let a, b ∈ R with a · b = 0 ∈ R. Then, because 0, a, b are also elements of F , this

implies that either a = 0 or b = 0.

Theorem 4.1.10. If f(x) ∈ Z[x] is a monic, irreducible polynomial of degree n, then the

ring R = Z[x]/(f(x)) is an integral domain. Furthermore, for any a, b ∈ R, the principal

ideals (a) / R and (b) / R are equal if and only if a and b are associates, written a ∼ b.
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Proof.

Let f(x) ∈ Z[x] be a monic, irreducible polynomial of degree n, and let R = Z[x]/(f(x)).

Note that R is a subring of the field F = Q(x)/(f(x)), and 1 ∈ R. Then, by Lemma

4.1.9, R is an integral domain. We will now show that (a) = (b)⇔ a ∼ b.

(⇒) (a) = (b)⇒ a ∈ (b)⇒ a = ub for some u ∈ R. Similarly, b ∈ (a)⇒ b = va for some

v ∈ R. With substitution, a = ub = uva ⇒ uv = vu = 1 since R is an integral domain.

Hence u, v ∈ R are units, and a ∼ b.

(⇐) a ∼ b⇒ a = ub for some unit u ∈ R by definition. Hence (a) = aR = ubR = buR =

bR = (b) since uR = R by Lemma 4.1.8.

Corollary 4.1.11. Let 0 6= f(x), g(x) ∈ Z[x]/(Φm(x)). Then the principal ideals gener-

ated by f(x) and g(x) in Z[x]/(Φm(x)) are equal if and only if f(x) ∼ g(x).

Proof.

A consequence of Theorem 4.1.10.

This result will be helpful in analyzing the relationship between the algebraic structure

of a principal ideal and the geometric structure of the associated principal ideal lattice. It

is particularly useful in the two experiments that are presented in the following section.

4.2 The SVP in Principal Ideal Lattices

This section begins with proof of a relationship between the generator of a principal ideal

and a solution to the shortest vector problem in the associated principal ideal lattice. In
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particular, it will be shown that some generator will solve the SVP in all one- and two-

dimensional principal ideal lattices under both the coefficient and canonical embeddings.

Theorem 4.2.1. Let g(x) ∈ Z[x]/(Φm(x)) and L ∼= (g(x)) /Z[x]/(Φm(x)) be a principal

ideal lattice for any m = 1, 2, 3, 4, 6. Then an associate of g(x) will correspond to a

solution of the SVP in L.

Proof.

If m = 1, 2, then the ring Z[x]/(Φm(x)) is isomorphic to the integers Z. Let 0 6= g ∈ Z.

For a principal ideal (g) / Z, ‖g‖2 ≤ |a| · ‖g‖2 = ‖a · g‖2 for any non-zero a ∈ Z, and

so the claim holds. The claim will now be shown for m = 3 which implies the claim

for m = 6 since Z[x]/(Φ3(x)) ∼= Z[x]/(Φ6(x)). A similar analysis will yield the result

for m = 4. Let g(x) = (g0 + g1x) for some g0, g1 ∈ Z and consider the principal ideal

(g(x)) / Z[x]/(x2 + x+ 1). Any non-zero element h(x) ∈ (g(x)) may be expressed as

h(x) mod x2 + x+ 1 = (f0 + f1x) · (g0 + g1x) mod x2 + x+ 1

for some f0, f1 ∈ Z, at least one of which is non-zero. Hence

h(x) mod x2 + x+ 1 = f0g0 + f0g1x+ f1g0x+ f1g1x
2 mod x2 + x+ 1

= f0g0 + (f0g1 + f1g0)x+ f1g1(−x− 1)

= (f0g0 − f1g1) + (f0g1 + f1g0 − f1g1)x.
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Observe that

‖g(x)‖2
2 =

∥∥∥∥
g0

g1

∥∥∥∥2

2

= g2
0 + g2

1

and also

‖h(x)‖2
2 =

∥∥∥∥
 f0g0 − f1g1

f0g1 + f1g0 − f1g1

∥∥∥∥2

2

= (f0g0 − f1g1)2 + (f0g1 + f1g0 − f1g1)2

= f 2
0 g

2
0 − 2f0f1g0g1 + f 2

1 g
2
1 + f 2

1 g
2
0 + (−2f 2

1 + 2f0f1)g0g1 + (f0 − f1)2g2
1

= (f 2
0 + f 2

1 )g2
0 − (2f 2

1 )g0g1 + [(f0 − f1)2 + f 2
1 ]g2

1.

Since (f 2
0 +f 2

1 ) ≥ 1 and [(f0−f1)2 +f 2
1 ] ≥ 1 because both f0 and f1 cannot be 0, it follows

that ‖g(x)‖2
2 ≤ ‖h(x)‖2

2 unless the product of the coefficients of the generator is positive

g0 · g1 > 0. Hence, unless the product g0 · g1 > 0, the generator itself will correspond to

a solution of the SVP in the principal ideal lattice. Suppose that g0 · g1 > 0, and note

that this requires both g0 and g1 to be non-zero. Without loss of generality, assume that

g1 ≥ g0, which implies that |g0 · g1| ≥ |g2
0|. Note that x2 ∈ Z[x]/(Φ3(x)) is a unit because

x2 ·x = 1 ∈ Z[x]/(Φ3(x)), and so (g(x) ·x2) will generate the same principal ideal as g(x)
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by Corollary 4.1.11. Observe

(g0 + g1x) · x2 mod x2 + x+ 1 = (g0 + g1x) · (−x− 1) mod x2 + x+ 1

= −g0x− g0 − g1x
2 − g1x

= −g0x− g0 − g1(−x− 1)− g1x

= −g0x− g0 + g1x+ g1 − g1x

= (−g0 + g1)− g0x,

and the product of the coefficients is (−g0) · (−g0 + g1) = g2
0 − g0 · g1. Since g0 · g1 >

0 ⇒ −g0 · g1 < 0, and since |g0 · g1| ≥ |g2
0|, it follows that g2

0 − g0 · g1 ≤ 0. Hence this

generator will correspond to a shortest vector by the analysis performed above. Thus, an

associate of the given generator of a principal ideal in Z[x]/(Φ3(x)) will correspond to

a solution of the SVP in the affiliated principal ideal lattice. Similarly, for any principal

ideal (g(x))/Z[x]/(Φm(x)) where m = 4, 6, if g(x) itself does not correspond to a solution

of the SVP, then one may multiply g(x) by units to find an associate polynomial that

generates the same ideal which satisfies certain properties for corresponding to a solution

of the SVP in the principal ideal lattice.

Example 4.2.2. The SVP in the Coefficient Embedding of (3 + 2x) / Z[x]/(Φ6(x)).

Recall the running example of (3+2x)/Z[x]/(Φ6(x)). The plot of the coefficient embedding

of this ideal may be seen in Figure 2.3.
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Upon inspection of the plot in Figure 2.3, it is obvious that the SVP is solved only by

two vectors. These vectors are 3

2

 and

−3

−2

 .

These two vectors correspond to the polynomials (3 + 2x), (−3 − 2x) ∈ Z[x]/(Φm(x)),

which are clearly both associates of (3 + 2x) and hence generate the same ideal.

In light of Theorem 4.2.1, one may question whether or not some generator of a

principal ideal would correspond to a solution of the SVP in ideal lattices under the

canonical embedding as well. The following result partially answers this question, showing

that a generator for all one- and two-dimensional principal ideal lattices will correspond

to a solution of the SVP under the canonical embedding. Results for higher dimensions

are outside the scope of this work.

Theorem 4.2.3. Let I = (g(ζm)) / OKm be a principal ideal in the ring of cyclotomic

integers for any m = 1, 2, 3, 4, 6. Then an associate of g(ζm) will correspond to a solution

of the SVP in σ(I) ⊂ Rϕ(m) relative to either the power or powerful basis.

Proof.

This proof is very similar to that of Theorem 4.2.1 because of its computational nature.

The result will only be shown for the case m = 6, which is isomorphic to the case m = 3.

The other cases (m = 1, 2, 4) are similar. This result will be proved using the power basis,

but note that using the power(ful) basis for m = 3 implies that the result holds for the

powerful basis when m = 6 because K3 = K6.

Let (g(ζ6)) / Z[ζ6] be a principal ideal. Then g(ζ6) = g0 + g1ζ6 for some g0, g1 ∈ Z, at

least one of which is non-zero. The two embeddings σ1,2 : Q(ζ6)→ C are defined by their
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action on ζ6. We have σ1(ζ6) = ζ6 and σ2(ζ6) = ζ6. The canonical embedding of g(ζ6) is

given by

σ(g(ζ6)) = (g0 + g1ζ6, g0 + g1ζ6)

=

(
2g0 + g1 + g1i

√
3

2
,
2g0 + g1 − g1i

√
3

2

)
.

The squared Euclidean norm of this element σ(g(ζ6)) ∈ C2 is

‖σ(g(ζ6))‖2
2 =

∣∣∣∣2g0 + g1 + g1i
√

3

2

∣∣∣∣2 +

∣∣∣∣2g0 + g1 − g1i
√

3

2

∣∣∣∣2
= 2g2

0 + 2g0g1 + 2g2
1.

Any arbitrary non-zero element of the ideal h(ζ6) ∈ (g(ζ6)) / Z[ζ6] may be expressed as

h(ζ6) = (f0 + f1ζ6) · (g0 + g1ζ6)

= (f0g0 − f1g1) + (f0g1 + f1g0 + f1g1)ζ6.

The canonical embedding of this element and the square of its Euclidean norm, respec-

tively, are given by

σ(h(ζ6)) =

(
[(f0g0 − f1g1) + (f0g1 + f1g0 + f1g1)ζ6],

[(f0g0 − f1g1) + (f0g1 + f1g0 + f1g1)ζ6]

)
; and
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‖σ(h(ζ6))‖2
2 =

∣∣∣∣(f0g0 − f1g1) + (f0g1 + f1g0 + f1g1)ζ6

∣∣∣∣2
+

∣∣∣∣(f0g0 − f1g1) + (f0g1 + f1g0 + f1g1)ζ6

∣∣∣∣2
=

∣∣∣∣2(f0g0 − f1g1) + (f0g1 + f1g0 + f1g1) + (f0g1 + f1g0 + f1g1)i
√

3

2

∣∣∣∣2
+

∣∣∣∣2(f0g0 − f1g1) + (f0g1 + f1g0 + f1g1)− (f0g1 + f1g0 + f1g1)i
√

3

2

∣∣∣∣2
= 2

(
2(f0g0 − f1g1) + (f0g1 + f1g0 + f1g1)

2

)2

+ 2

(
(f0g1 + f1g0 + f1g1)

√
3

2

)2

= (f 2
0 + f0f1 + f 2

1 ) · (2g2
0 + 2g0g1 + 2g2

1).

Note that (f 2
0 + f0f1 + f 2

1 ) ∈ Z and observe

(f0 + f1)2 ≥ 0⇒ f 2
0 + 2f0f1 + f 2

1 ≥ 0

⇒ f 2
0 + f 2

1 ≥ −2f0f1

⇒ f 2
0 + f 2

1 >
1

2
(f 2

0 + f 2
1 ) ≥ −f0f1 since both f0, f1 cannot be 0

⇒ f 2
0 + f 2

1 > −f0f1

⇒ f 2
0 + f0f1 + f 2

1 > 0

⇒ f 2
0 + f0f1 + f 2

1 ≥ 1 since (f 2
0 + f0f1 + f 2

1 ) ∈ Z.

Hence ‖σ(h(ζ6))‖2
2 ≥ ‖g(ζ6)‖2

2, and so the generator of the principal ideal will correspond

to a solution of the SVP in the principal ideal lattice under the canonical embedding.
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Example 4.2.4. The SVP in the Canonical Embedding of (3 + 2ζ6) / Z[ζ6].

The example of (3+2ζ6)/Z[ζ6] will be used once again. The plot of the canonical embedding

of this ideal may be seen in Figure 2.1. From looking at this plot there seems to be several

possible solutions to the SVP. By Theorem 3.2.14 the principal ideal lattice σ(I) is WR,

so there are at least four solutions to the SVP in σ(I). In fact, there are six possible

solutions to the SVP in σ(I). Four of these solutions are given by

±

 8√
2

−2
√

3√
2

 and ±

 1√
2

−5
√

3√
2

 .

As shown in Example 2.4.1, these vectors correspond to the canonical embedding of ele-

ments ±(3+2ζ6) ∈ Z[ζ6] and ±(−2+5ζ6) ∈ Z[ζ6], respectively. All four of these elements

are associates of (3 + 2ζ6) ∈ Z[ζ6], and hence generate the same ideal.

We return our focus to the quotient ring perspective of ideal lattices. The low-

dimensional results presented in this section prompt an examination of principal ideal

lattices in higher dimensions for a similar relationship. Principal ideals with a specific

structure are considered prior to the general case. The following proposition addresses

the case of a principal ideal generated by a polynomial of degree zero.

Proposition 4.2.5. Let L ∼= (α)/Z[x]/(f(x)) be a principal ideal lattice for some monic

irreducible f(x) ∈ Z[x] of degree n and α ∈ Z. Then α ∈ Z[x]/(f(x)) will correspond to

a solution of the SVP in L.

Proof.

Represent the lattice L with the rotation basis matrix of α ∈ Z[x]/(f(x)). Thus L =
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α · In · Zn where In is the n× n identity matrix. Then

min
06=x∈L

‖x‖2 = min
06=y∈Zn

‖α · In · y‖2

= |α| · min
06=y∈Zn

‖In · y‖2

= |α| · min
06=y∈Zn

‖y‖2

= |α|

because min06=y∈Zn ‖y‖ = 1. Now observe that the norm of the vector corresponding to

α ∈ Z[x]/(f(x)) is also equal to |α|.

Observe that this result together with Theorem 4.1.10 imply that if a principal ideal is

generated by an associate of some degree zero polynomial, then the vector corresponding

to that degree zero polynomial will solve the SVP in the principal ideal lattice. Since the

rings of cyclotomic integers are so well studied, many of the units in Z[ζm] are known.

Certain units of these rings, along with this observation, yield the corollary below.

Corollary 4.2.6. Let L ∼= (α · xi) / Z[x]/(Φm(x)) be a principal ideal lattice for some

α ∈ Z and i ∈ {0, . . . , ϕ(m)− 1}. Then α · xi ∈ Z[x]/(f(x)) will correspond to a solution

of the SVP in L for i ∈ {0, . . . , ϕ(m)− 1}.

Proof.

Note that if ϕ(m) = n, then ζ im is a unit of Z[ζm] for all i = 0, . . . , n − 1. Under the

isomorphism Z[x]/(Φm(x)) ∼= Z[ζm], it follows that xi is a unit of Z[x]/(Φm(x)) for all

i = 0, . . . , n−1. Thus, α ·xi and α are associates for all i = 0, . . . , n−1, and they generate

the same ideal by Corollary 4.1.11. Since L now corresponds to (α)/Z[x]/(f(x)), we may
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apply Proposition 4.2.5 and observe that ‖α‖2 = ‖α · xi‖2 for i ∈ {0, . . . , ϕ(m) − 1} to

obtain the desired result.

This corollary will be important in determining the parameters of the experiments

presented in this section. It has been shown that the SVP in all one- and two-dimensional

principal ideal lattices L ∼= I / Z[x]/(Φm(x)) will be solved by some generator of I. In

higher dimensions, we have shown the same relationship when the ideal is generated

by any monomial. To investigate the general case of whether or not some generator of a

principal ideal will correspond to a solution of the SVP, MapleTM is used to conduct tests

on a random sampling of principal ideal lattices. These experiments will be described,

and the results discussed, in the remainder of this chapter.

4.2.1 Principal Ideal Lattice Experiments

The two principal ideal lattice experiments presented will be used to determine whether

or not a relationship exists between a generator of the principal ideal and a solution

to the SVP in its associated principal ideal lattice. We would like to experiment with

higher dimensional principal ideal lattices to estimate the proportion for which the LLL

algorithm will output a short vector corresponding to an associate of a known generator

when the rotation basis matrix of this generator is given as the input for the algorithm.

Similar testing for this relationship in ideal lattices under the canonical embedding is

also of interest, but outside the scope of this work. All of the MapleTM procedures used

in these experiments may be found in Appendix B. Each “sample” for these experiments

will be conducted as follows:
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1. Input a given cyclotomic index m with ϕ(m) = n.

2. Generate a random polynomial g(x) ∈ Z[x]/(Φm(x)), which yields the principal

ideal (g(x)) / Z[x]/(Φm(x)).

3. Construct the rotation basis matrix G for the corresponding ideal lattice.

G =

(
g(x) x · g(x) . . . xn−1 · g(x)

)

4. Input the matrix G into the LLL algorithm.

5. Determine if the short vector output corresponds to an associate of g(x).

For the purpose of these experiments, we define a “success” to be an instance when the

LLL outputs a short vector that does correspond to an associate of g(x), which will also

be a generator of the ideal. The first experiment samples a certain number of random

principal ideal lattices from each cyclotomic index m = 1, . . . , 100 with ϕ(m) > 2 to

estimate the density of principal ideal lattices for which the LLL will output an associate

of the generator. The second experiment is designed to estimate the density of this same

occurrence for random principal ideal lattices within some range of cyclotomic indices.

We will now say a few words about our methodology. We have run these experiments

on a large number of samples to reasonably conjecture whether or not a relationship

between the generator of a principal ideal and a solution to the SVP exists. Our results

will be used to provide empirical evidence that suggests a probabilistic method for solving

the SVP in principal ideal lattices algebraically by finding the “shortest generator” of

the corresponding principal ideal. There are some potential problems that may affect the

validity and outcome of these experiments. First, the random polynomial generated by
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MapleTM may not be truly random. For the purposes of this experiment we will assume

that the random output provided by MapleTM is independent and identically distributed

(i.i.d). This allows for the use of statistical inference techniques to estimate the proportion

of principal ideal lattices from a given cyclotomic index in which the LLL’s short vector

output corresponds to an associate of the ideal’s generator.

Another potential problem is that, by using only the rotation basis matrix of the gen-

erator to represent the lattice, it is possible that some underlying structure of this lattice

basis will affect the behavior of the LLL algorithm. Gama and Nguyen [40] conducted

extensive experiments to test the performance of several lattice reduction algorithms,

and used at least 20 random lattice bases for each lattice to prevent any reduction al-

gorithm from exploiting special properties of an input basis. If a relationship between

the generator and LLL short vector output exists, then the rotation basis of a generator

would potentially contain a short vector and maintain a special structure. It would be

interesting to reduce at least 20 random lattice bases for each ideal lattice to see if the

LLL still outputs an associate of the known generator. However, since our conjectured

method of exploitation centers around finding a generator, reducing this one lattice basis

should be sufficient to demonstrate the existence of a relationship between the algebraic

and geometric structure of principal ideal lattices.

We set certain parameters on the random polynomial generated by MapleTM for the

principal ideal. As a result of Corollary 4.2.6, it would be trivial to randomly generate a

monomial for the purpose of these experiments. Also, since xi is a unit of Z[x]/(Φm(x)),

factoring out the appropriate power of x from a polynomial with no constant term would

yield an associate polynomial having a non-zero constant term that generates the same

ideal. To avoid having these cases affect our sampling we require that each randomly

generated polynomial have at least two non-zero terms, including a non-zero constant

81



term. The random polynomial is generated with the following MapleTM code:

g :=Generate(nonzeroint(range = −99..99)) + x ∗ randpoly(x,

coeffs = rand(−99..99), degree = Generate(integer(range = 0..n− 2)),

terms = Generate(integer(range = 1..n− 1))).

This function generates a non-zero integer for the constant term, and then adds this term

to a polynomial of degree no greater than ϕ(m)−1 = n−1 with no constant term, where

m is the cyclotomic index from which samples are taken. The constant term is generated

separately from the rest of the polynomial to ensure that this generator will meet our

requirements. It is by default that this MapleTM function generates random coefficients

for this polynomial in the range [−99, 99].

The next step in setting up these experiments is determining the number of samples

that will be required to use statistical inference techniques in estimating this proportion.

Let β denote the bound on the error of our estimate and let (1 − α) be the confidence

coefficient. Denote by zα/2 the z value having an area of α/2 to its right under the normal

curve. The number of samples n can be determined with the inequality below.

zα/2 ·
√
p · q
n
≤ β

Here p is the true population proportion of “successes” and q = 1 − p. We choose p =

q = .5 to maximize the value of the numerator, and also because the true population

proportion is unknown. One may determine the number of samples required to construct
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the (1− α) confidence interval with bound β by solving for n in the above inequality.

0.03 ≥ 1.645

√
0.5 · 0.5

n
⇒ n ≥ 1068

0.04 ≥ 2.576

√
0.5 · 0.5

n
⇒ n ≥ 1068

0.05 ≥ 1.645

√
0.5 · 0.5

n
⇒ n ≥ 385

The sample size of 1068 is chosen for the first experiment to reflect a 95% confidence

interval of ±3% and a 99% confidence interval of ±4%. In the second experiment, the

sample size 385 is chosen to reflect a 95% confidence interval of ±5%. These confidence

intervals are interpreted in the following manner: by using 1068 samples in repeated

sampling of this proportion, in the long run we expect that the true proportion will be

contained in 95% of the intervals (p̂− 3%, p̂+ 3%) and contained in 99% of the intervals

(p̂−4%, p̂+4%), where p̂ is the computed sample proportion. Similarly, using 385 samples

in repeated sampling of this proportion would mean that we expect 95% of the intervals

(p̂− 5%, p̂+ 5%) to contain the true proportion in the long run. In these experiments, it

will be necessary to verify whether or not an ideal lattice vector corresponds to a unit of

the ring Z[x]/(Φm(x)). This will be accomplished in our MapleTM program with linear

algebra.

Theorem 4.2.7. Let f(x) ∈ Z[x] be a monic, irreducible polynomial of degree n. Suppose

that h(x) ∈ Z[x]/(f(x)), and denote by H it rotation basis matrix. Then h(x) is a unit

in Z[x]/(f(x)) if and only if H−1e1 ∈ Zn where e1 denotes the standard unit vector.

Proof.

Let f(x) ∈ Z[x] be a monic, irreducible polynomial of degree n and let R = Z[x]/(f(x)).
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Define H as the rotation matrix

H =

(
h(x) x · h(x) . . . xn−1 · h(x)

)
.

having the ith column correspond to xi · h(x) mod f(x). Now observe that h(x) ∈ R is

a unit ⇔ ∃ u(x) ∈ R such that h(x) · u(x) mod f(x) = 1 ∈ R ⇔ ∃ u ∈ Zn such that

Hu = e1 ⇔ H−1e1 ∈ Zn.

In particular, the above result holds if f(x) is taken to be a cyclotomic polynomial.

Theorem 4.2.7 will be applied in the experiments to test whether or not the short vector

output by LLL is an associate of the known generator. The following example shows in

detail how we determine the existence of such a relationship for a given generator.

Example 4.2.8. Let g(x) = −7 − 94x − 55x2 + 22x3 ∈ Z[x]/(Φ5(x)) and consider the

principal ideal lattice corresponding to (g(x)) / Z[x]/(Φ5(x)). This generator yields the

following rotation basis matrix G for the lattice.

G =



−7 −22 77 39

−94 −29 55 116

−55 −116 48 94

22 −77 −39 87


When the matrix G is given as input to the LLL algorithm, the matrix LLL(G) is output
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by the algorithm.

LLL(G) =



70 10 −17 −32

−39 −7 −87 −22

−7 −77 22 −39

−17 32 −10 −109


The first column of this matrix is the short vector output of the LLL, which corresponds

to the polynomial f(x) = 70−39x−7x2−17x3 ∈ Z[x]/(Φ5(x)). We now find the element

h(x) ∈ Z[x]/(Φ5(x)) such that h(x) · g(x) mod Φ5(x) = f(x). This is done by solving for

the vector h in the following linear system.



−7 −22 77 39

−94 −29 55 116

−55 −116 48 94

22 −77 −39 87


· h =



70

−39

−7

−17



⇒ h =



1

0

1

0


This vector h corresponds to the polynomial h(x) = 1 + x2 ∈ Z[x]/(Φ5(x)). One may

verify that (1 + x2) · (−7 − 94x − 55x2 + 22x3) mod Φ5(x) = 70 − 39x − 7x2 − 17x3.

Theorem 4.2.7 may now be used to check if h(x) is a unit of Z[x]/(Φ5(x)). If so, then

the LLL output is an associate of the generator g(x) ∈ Z[x]/(Φ5(x)). We construct the
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rotation matrix, H, of h(x) and solve the system Hu = e1 to apply Theorem 4.2.7.

H · u = e1

⇒



1 0 −1 1

0 1 −1 0

1 0 0 0

0 1 −1 1


· u =



1

0

0

0



⇒ u =



0

−1

−1

0


Since H−1e1 ∈ Zn, h(x) is a unit of Z[x]/(Φ5(x)). This may also be verified by computing

(1 + x2) · (−x − x2) mod Φ5(x) = 1. Thus the LLL output is an associate of g(x), and

generates the same ideal.

Experiment 1

In the first experiment, 1068 random principal ideal lattices corresponding to principal

ideals in Z[x]/(Φm(x)) will be sampled from each cyclotomic index m = 1, . . . , 100 with

ϕ(m) > 2. Recall that Theorem 4.2.1 addresses the cases when ϕ(m) ≤ 2, which are noted

separately from the results of this first experiment. Each sampled principal ideal lattice

corresponds to a principal ideal generated by a random polynomial. The rotation basis

matrix of this random generator will be given as input to the LLL algorithm. The program

will then verify whether or not the short vector output corresponds to an associate of

the ideal’s generator. If so, then this instance is counted as a “success”. Figure 4.1 is a
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plot that depicts the results of this experiment. The horizontal axis coincides with the

cyclotomic indices while the vertical axis corresponds to the computed sample proportion

for which the LLL output an associate of the generator. The complete results may be

found in Appendix A.

Figure 4.1: Experiment 1 Data Plot

The average of all computed sample proportions is 99.3%. Observe that the computed

sample proportion for each index is greater than 95%. The lowest computed sample

proportion is 95.13% for cyclotomic index m = 32. There seems to be a general upward
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trend in the computed proportion as the cyclotomic indices get larger, beginning with

index m = 16. For cyclotomic indices m ∈ [65, 100], the computed sample proportion

is at least 99.16%. This may or may not be attributed to the fact that the number of

possible generators subject to our constraints grows with the dimension.

It would be interesting if there was a particular dimension, or set of cyclotomic in-

dices, for which the sampled proportions were either considerably above or below the

average. While the computed sample proportion is generally lower in smaller dimensions,

dimensions for which the computed proportion is drastically higher or lower than the

average are not apparent. Likewise, aside from the indices m = 16, 32 both being powers

of two, there does not appear to be a pattern in the cyclotomic indices for which the

computed proportion is relatively higher or lower than the average.

It is clear that there is not a definite correspondence between a solution to the SVP in

a principal ideal lattice and the associated ideal’s generator. We would like to know why

some principal ideal lattices did not exhibit this relationship. There is no obvious com-

monality in the principal ideals for which the LLL did not output a vector corresponding

to an associate of the generator. It remains of interest to characterize the principal ideals

for which this relationship does not hold. Example 4.2.9 provides an example of when

the LLL did not output a vector corresponding to an associate of its generator.

Example 4.2.9. Let g(x) = (−2− 72x− 53x2 − 39x3) / Z[x]/(Φ16(x)) and consider the

coefficient embedding of (g(x))/Z[x]/(Φ16(x)). The rotation basis matrix of this generator
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is given by the matrix R.

R =



−2 0 0 0 0 39 53 72

−72 −2 0 0 0 0 39 53

−53 −72 −2 0 0 0 0 39

−39 −53 −72 −2 0 0 0 0

0 −39 −53 −72 −2 0 0 0

0 0 −39 −53 −72 −2 0 0

0 0 0 −39 −53 −72 −2 0

0 0 0 0 −39 −53 −72 −2


When the matrix R is given as input to the LLL algorithm, the short vector output is

(
2 70 −19 −14 −39 0 0 0

)T
.

One may verify that

(−1 + x) · (−2− 72x− 53x2 − 39x3) mod Φ16(x) = 2 + 70x− 19x2 − 14x3 − 39x4.

Applying Theorem 4.2.7 reveals that (−1+x) is not a unit of Z[x]/(Φ16(x)), meaning the

short vector output by the LLL is not an associate of g(x). Consequently the polynomial

f(x) = 2+70x−19x2−14x3−39x4 is not a generator of the ideal (g(x))/Z[x]/(Φ16(x)).

Additional examples of when the LLL did not output a vector corresponding to an

associate of the generator include the three following ideals:
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1. (26 + 44x− 13x3 − 34x5 − 60x7) / Z[x]/(Φ16(x));

2. (−89− 4x− 20x2 + 52x3 + 16x4 − 60x5 − 68x6) / Z[x]/(Φ16(x)); and

3. (77 + 63x− 46x3 + 77x5 + 84x6) / Z[x]/(Φ16(x)).

Overall, the results of this experiment do indicate a high likelihood that the LLL will

output a short vector corresponding to an associate of the generator when run on the

generator’s rotation basis matrix. This suggests that finding the “shortest generator” of

a principal ideal, i.e. the generator corresponding to a vector of minimal norm, will most

likely correspond to the same or better output as the LLL when the algorithm is given a

generator’s rotation basis matrix as input.

Experiment 2

A similar experiment is run to sample the density of principal ideal lattices for which the

conjectured relationship between a shortest vector and the ideal’s generator will hold.

In the second experiment, 385 random principal ideal lattices corresponding to principal

ideals (g(x)) /Z[x]/(Φm(x)) are generated where m is a random cyclotomic index within

some specified range. For each of these randomly selected cyclotomic indices m, a random

polynomial is produced to generate a principal ideal (g(x)) /Z[x]/(Φm(x)). The rotation

basis matrix for g(x) is then constructed and given as input to the LLL algorithm. The

short vector output by the LLL is checked to see whether or not it corresponds to a

generator of the ideal, and is again considered a “success” if it does.

The cyclotomic indices m for the second experiment were sampled from various ranges

within the range of 1, . . . , 150. We required ϕ(m) ≥ 2 to exclude the one-dimensional

cases from this experiment. Table 4.1 displays our results. Like the outcome of our first
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experiment, these results indicate that the vector corresponding to the shortest generator

of a randomly generated principal ideal in Z[x]/(Φm(x)) will most likely be at least as

short as the shortest vector output by the LLL algorithm when run on a generator’s

rotation basis matrix.

Table 4.1: Experiment 2 Results

Cyclotomic Index Range Successes Samples Percentage
[1, 25] 378 385 98.18%
[1, 50] 383 385 99.48%
[1, 75] 384 385 99.74%
[1, 100] 385 385 100.00%
[1, 125] 383 385 99.48%
[1, 150] 382 385 99.22%

[100, 150] 383 385 99.48%

[1, 25] 382 385 99.22%
[25, 50] 379 385 98.44%
[50, 75] 383 385 99.48%
[75, 100] 384 385 99.74%
[100, 125] 385 385 100.00%
[125, 150] 385 385 100.00%

It should be remarked here, as in [40], that the SVP in any lattice of dimension less

than 70 is considered easy. Even if the dimension of principal ideal lattices corresponding

to principal ideals in Z[x]/(Φm(x)) for m ∈ [1, 150] is greater than 70, it may not be large

enough to remain completely secure in practice. It is also noted in [40] that exhaustive

search techniques are not feasible in dimension 100 and beyond because of their running
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time. If the dimension is at least 100, only approximation algorithms, such as the LLL

and its variants, can be run for the SVP. The sampled principal ideal lattices in our

experiments were not all large enough to be used in practice. However, demonstrating

the existence of a probabilistic relationship between the generator of a principal ideal

in Z[x]/(Φm(x)) and a solution to the SVP in the associated principal ideal lattice for

m ∈ [1, 150] supports the conjecture that this probabilistic relationship exists for all

cyclotomic indices.
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Chapter 5

Conclusions and Future Work

Many of the concepts presented in this dissertation have their roots firmly established in

algebraic number theory and abstract algebra, which are both well-studied branches of

mathematics. The abundance of resources and information available in these areas sug-

gests that any future progress may heavily depend on new applications of existing ideas.

The novel contributions presented in this work include meaningful results on the relation-

ship between two embeddings of an ideal in the ring of cyclotomic integers, and demon-

strated progress towards finding short vectors of principal ideal lattices algebraically.

Ideal lattices are at the center of many recent developments in lattice-based cryp-

tography. While most algorithms that output a short vector in an ideal lattice operate

geometrically, a few have successfully exploited their additional structure. The aim of

this dissertation and future work is to further exploit the algebraic structure of ideal lat-

tices in finding short vectors. It remains unknown whether or not the SVP can be solved

algebraically in ideal lattices, however, our results have introduced a largely algebraic

approach to this geometric problem in (principal) ideal lattices.
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Significance of Results

We have justified studying ideal lattices as ideals of quotient rings through the work

presented in Chapter 3. The relationship between the canonical and coefficient embed-

dings was examined thoroughly. We explicitly defined the matrix that relates these two

particular embeddings, and presented results on the equivalence of SVP in any two geo-

metric embeddings of an ideal. We also showed that the canonical embedding of an ideal

I / OK in some ring of algebraic integers is well-rounded if and only if the number field

K is a cyclotomic number field. This led to the conclusion that the coefficient embedding

of an ideal in OKm will have no more independent shortest vectors than the canonical

embedding of the same ideal. Furthermore, our results give rise to the notion of solving

the SVP in an ideal lattice under a particular embedding by first solving the SVP in

a different embedding with more shortest vectors. That is, perhaps the SVP would be

easier to solve in one embedding of an ideal, and then a solution could be mapped to

the embedding of interest by the matrix that relates the two embeddings.

In Chapter 4 we presented a relationship between the algebraic structure of a principal

ideal and the geometric structure of its corresponding lattice. It was shown for all one- and

two-dimensional principal ideal lattices that some generator of the ideal will correspond

to a solution of the SVP. For the higher dimensional cases, we provided empirical evidence

of a probabilistic correspondence between the short vector output of the LLL algorithm

on a particular lattice basis and a generator of the ideal. Indeed our results suggest

that, by finding the “shortest generator” of a principal ideal in Z[x]/(Φm(x)), there is

a high likelihood that the corresponding lattice vector will be at least as short as the

LLL output on a generator’s rotation basis matrix. Hence, for a probabilistic solution to

the SVP in principal ideal lattices, the pure geometric problem of finding a short vector
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may be expressed as the more algebraic problem of finding a “short” generator. There

are existing algorithms that determine whether or not an ideal in Z[ζm] is principal and,

if so, computes a generator (e.g. Algorithm 6.5.10 in [26]). Designing an algorithm that,

given a generator, will then find its “shortest” associate is left for subsequent work.

Future Work

Many interesting research directions were outside the scope of this dissertation. In this

work we ran experiments using the LLL lattice reduction algorithm to reduce a specific

basis of a principal ideal lattice. Empirical evidence suggests that the “shortest generator”

of a principal ideal may be used to somewhat predict the short vector output of the LLL

on this particular basis. Perhaps finding a generator’s rotation basis matrix would be

beneficial if given as input to a specific lattice reduction algorithm in pre-processing.

It remains to be seen if similar results are obtained using other bases for the sampled

principal ideal lattices. Comparing the observations made with the generator’s rotation

basis matrix against other random lattice bases would provide more conclusive evidence

of a relationship between the LLL’s short vector output and a principal ideal’s generator.

This testing would also address whether or not there is some underlying structure in

the generator’s rotation basis being exploited by the LLL algorithm. Many other lattice

reduction algorithms could be used in place of the LLL algorithm for these experiments

as well. Determining if other algorithms exhibit a similar correspondence between their

short vector output and a generator of the principal ideal is left for future assessment.

Additional areas of planned research include applying the results presented in this

dissertation to further exploit the algebraic structure of ideal lattices in finding short

vectors, which was the original motivation of our study. The observations made during
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this research lead to several conjectures on how this may be achieved in the case of

principal ideal lattices. These conjectures include potential improvements to existing

algorithms, and ideas for new ways of solving the SVP in principal ideal lattices. We

hypothesize that sieving among vectors that correspond to generators of a principal ideal

would be an effective method of finding a short vector. The results in this dissertation

support that reducing vectors which correspond to generators of a principal ideal against

each other will most likely produce a short vector. Enumeration algorithms search for

short lattice vectors within some bounded region. Incorporating the length of a (shortest)

generator in the construction of this region might produce a smaller bounded region,

which may consequently improve the algorithm.

Finding the “shortest generator” of a principal ideal algebraically is another specu-

lated approach to finding a short vector in principal ideal lattices. Experimental results

indicate that this is a probabilistic solution to the SVP in principal ideal lattices. Quan-

tifying the likelihood and conditions of such an event would allow for comparing this

approach to solving the SVP with others. Determining the probability that this “short-

est generator” will correspond to a solution of the SVP in principal ideal lattices is an area

of anticipated research. It would also be interesting to construct theoretical bounds on

the length of a “shortest generator”. Perhaps there is an approximate version of the SVP

in principal ideal lattices that is always solved by a vector corresponding to a “shortest

generator”.

While the focus of this work has been on principal ideals in cyclotomic quotient

rings Z[x]/(Φm(x)), a generalization of our results is desired. We would like to show the

existence of a similar correspondence between short vectors and generators of principal

ideals in Z[x]/(f(x)) where f(x) ∈ Z[x]/(f(x)) is both monic and irreducible, but not

cyclotomic. There is also potential to extend some results to arbitrary, i.e. non-principal,
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ideals in the ring Z[x]/(Φm(x)). Determining how the algebraic structure of ideals with

more than one generator would relate to the geometric structure of its corresponding

ideal lattice remains an open problem.

Once the algebraic structure of principal ideal lattices has been further exploited

by algorithms that output a short vector, it will be interesting to see how these new

algorithms compare to more popular lattice reduction algorithms. This would assess

whether or not our conjectured manners of exploitation make certain algorithms faster

and/or optimize their output in practice. Further experimentation, similar to that of [40],

is required to analyze the performance of various reduction algorithms on ideal lattices.

We remark that our current interest in this experimentation is with regards to principal

ideal lattices, but this type of testing on ideal lattices in general is absent from the

literature.

The authors of [40] ran extensive experiments to compare the performance of vari-

ous lattice reduction algorithms on random bases of general lattices, and no analog for

ideal lattices has been published. A standard way of generating ideal lattices to allow

for testing algorithms was not available at the time Gama and Nguyen published their

experimental results, but was made accessible in [95]. Results from such experiments on

ideal lattices would allow one to somewhat anticipate the performance of a particular

lattice reduction algorithm on an ideal lattice. Furthermore, algorithms that exploit the

algebraic structure of ideal lattices were outside the scope of [40], but may be included in

testing the performance of lattice reduction algorithms on ideal lattices. One may then

confirm whether or not the algorithms that attempt to exploit this additional structure

offer better, worse, or about the same performance in practice as other lattice reduction

algorithms.
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Appendix A

Experiment 1 Results

Table A.1 contains the empirical data gathered from the first Principal Ideal Lattice

experiment. In this experiment, a total of 1068 random principal ideals were sampled

from each ring Z[x]/(Φm(x)) for m = 1, . . . , 100 with ϕ(m) > 2. The number of suc-

cesses in each cyclotomic index is reflected in this table, along with the computed sample

proportion. Of the 101,460 total trials performed across the cyclotomic indices m with

ϕ(m) > 2, the total number of successes was 100,753. This is an overall 99.3% success

rate.
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Table A.1: Complete Experiment 1 Results

Index m ϕ(m) Successes Samples Percentage
1 1 – – 100.00%
2 1 – – 100.00%
3 2 – – 100.00%
4 2 – – 100.00%
5 4 1068 1068 100.00%
6 2 – – 100.00%
7 6 1066 1068 99.81%
8 4 1068 1068 100.00%
9 6 1046 1068 97.94%
10 4 1068 1068 100.00%
11 10 1063 1068 99.53%
12 4 1067 1068 99.91%
13 12 1059 1068 99.16%
14 6 1068 1068 100.00%
15 8 1067 1068 99.91%
16 8 1020 1068 95.51%
17 16 1056 1068 98.88%
18 6 1038 1068 97.19%
19 18 1059 1068 99.16%
20 8 1055 1068 98.78%
21 12 1052 1068 98.50%
22 10 1062 1068 99.44%
23 22 1056 1068 98.88%
24 8 1043 1068 97.66%
25 20 1045 1068 97.85%
26 12 1061 1068 99.34%
27 18 1038 1068 97.19%
28 12 1056 1068 98.88%
29 28 1058 1068 99.06%
30 8 1068 1068 100.00%
31 30 1055 1068 98.78%
32 16 1016 1068 95.13%
33 20 1062 1068 99.44%
34 16 1056 1068 98.88%
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Table A.1 Continued

Index m ϕ(m) Successes Samples Percentage
35 24 1064 1068 99.63%
36 12 1063 1068 99.53%
37 36 1060 1068 99.25%
38 18 1058 1068 99.06%
39 24 1065 1068 99.72%
40 16 1058 1068 99.06%
41 40 1061 1068 99.34%
42 12 1048 1068 98.13%
43 42 1061 1068 99.34%
44 20 1065 1068 99.72%
45 24 1068 1068 100.00%
46 22 1057 1068 98.97%
47 46 1062 1068 99.44%
48 16 1051 1068 98.41%
49 42 1064 1068 99.63%
50 20 1049 1068 98.22%
51 32 1063 1068 99.53%
52 24 1063 1068 99.53%
53 52 1063 1068 99.53%
54 18 1035 1068 96.91%
55 40 1068 1068 100.00%
56 24 1067 1068 99.91%
57 36 1065 1068 99.72%
58 28 1057 1068 98.97%
59 58 1057 1068 98.97%
60 16 1064 1068 99.63%
61 60 1066 1068 99.81%
62 30 1065 1068 99.72%
63 36 1068 1068 100.00%
64 32 1046 1068 97.94%
65 48 1068 1068 100.00%
66 20 1064 1068 99.63%
67 66 1065 1068 99.72%
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Table A.1 Continued

Index m ϕ(m) Successes Samples Percentage
68 32 1067 1068 99.91%
69 44 1066 1068 99.81%
70 24 1067 1068 99.91%
71 70 1067 1068 99.91%
72 24 1068 1068 100.00%
73 72 1066 1068 99.81%
74 36 1059 1068 99.16%
75 40 1067 1068 99.91%
76 36 1067 1068 99.91%
77 60 1068 1068 100.00%
78 24 1066 1068 99.81%
79 78 1060 1068 99.25%
80 32 1068 1068 100.00%
81 54 1064 1068 99.63%
82 40 1060 1068 99.25%
83 82 1062 1068 99.44%
84 24 1068 1068 100.00%
85 64 1068 1068 100.00%
86 42 1061 1068 99.34%
87 56 1067 1068 99.91%
88 40 1068 1068 100.00%
89 88 1063 1068 99.53%
90 24 1067 1068 99.91%
91 72 1068 1068 100.00%
92 44 1066 1068 99.81%
93 60 1068 1068 100.00%
94 46 1064 1068 99.63%
95 72 1068 1068 100.00%
96 32 1063 1068 99.53%
97 96 1061 1068 99.34%
98 42 1062 1068 99.44%
99 60 1068 1068 100.00%
100 40 1067 1068 99.91%
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Appendix B

MapleTM Code

The Powerful Basis

Given a cyclotomic index m as input, the MapleTM procedures below were used to com-

pute and output the powerful basis of OKm . The procedure powerfulbasis makes great use

of the mcarp procedure found in [94]. These procedures require the MapleTM packages

listed below.

with(ArrayTools): with(combinat, cartprod): with(LinearAlgebra):

with(ListTools): with(numtheory):
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mcarp:=proc()

local Z,k,x,y; option remember;

if nargs=0 then

Z:={};

elif nargs=1 then

Z:=args[1];

else Z:={};

for x in mcarp(seq(args[k], k=1 .. nargs-1)) do

for y in args[nargs] do

Z:=Z union{[op(x),y]};

od;

od;

fi;

return Z;

end proc:
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primepowerdecomp:=proc(a::integer)

local x,L,M,K,count,i;

x:=a;

L:=convert(factorset(x),list,nested=false);

M:=[$1 .. nops(L)];

K:=[$1 .. nops(L)];

for i from 1 to nops(L) do

count:=0;

x:=x/L[i];

while type(x,integer)=true do

count:=count+1;

x:=x/L[i];

od;

M:=subsop(i=count,M);

x:=a;

od:

for i from 1 to nops(L) do

K:=subsop(i=[L[i],M[i]],K);

od;

return K;

end proc:
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powerfulbasis:=proc(m::integer)

local x,L,B,K,M,i,j,Z,z,expo,R;

x:=m;

L:=convert(factorset(x),list,nested=false);

K:=L;

if nops(L)=1 then B:=[$0 .. phi(x)-1];

else R:=primepowerdecomp(x);

R:=convert(R,list,nested=false);

for i from 1 to nops(L) do

K[i]:=[$0 .. (phi(R[i][1]^(R[i][2]))-1)];

od;

for i from 1 to nops(K) do

for j from 1 to nops(K[i]) do

K[i][j]:=(K[i][j]*x)/(R[i][1]^(R[i][2]));

od;

od;

M:=mcarp(seq(K[i],i=1 .. nops(K)));

M:=convert(M,list,nested=false);

for i from 1 to nops(M) do

M[i]:=add(M[i][j],j=1 .. nops(M[i]));

M[i]:=M[i] mod m;

od;

B:=sort(MakeUnique(Flatten(M)));

fi;

for i from 1 to nops(B) do

Z[i]:=z;

od;

expo:=(x,y)--> x^y:

B:=zip(expo,Z,B);

return B;

end proc:
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### Return TRUE if powerful basis is the power basis and FALSE if not.

check1:=proc(a::integer)

local x,d,s;

x:=a;

d:=convert(factorset(x),list,nested=false);

s:=nops(d);

if s>1 then return "FALSE" else return "TRUE";

fi;

end proc:

### Return TRUE if powerful basis is some power basis and FALSE if not.

check2:=proc(a::integer)

local x,d,s;

x:=a;

if x mod 2=0 then x:=x/2 else x:=s;

fi;

d:=convert(factorset(x),list,nested=false);

s:=nops(d);

if s>1 then return "FALSE" else return "TRUE";

fi;

end proc:

Principal Ideal Lattice Experiments

The MapleTM procedures PIGenerator, integervector, AssociateTest, and Experiment1

were used in the first principal ideal lattice experiment to generate a specified number

of random principal ideal lattices arising from a given cyclotomic index, construct a

rotation basis matrix for each of these principal ideal lattices, run the LLL algorithm on

this particular lattice basis, and test whether or not the shortest vector output by LLL

was an associate of the principal ideal’s generator.
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The procedure Experiment2 performs a similar experiment on a specified number

of random principal ideal lattices arising from cyclotomic rings with random index in

some given range [a, b] of cyclotomic indices. We require 3 ≤ a < b to exclude the one-

dimensional cases. Note that if a = b then the second principal ideal lattice experiment

is equivalent to the first. The MapleTM packages listed below are required.

with(ArrayTools): with(combinat): with(IntegerRelations):

with(LinearAlgebra): with(numtheory): with(PolynomialTools):

with(RandomTools):

PIGenerator:=proc(m::integer)

local MthCyclo,n,g;

MthCyclo:=cyclotomic(m,x);

n:=degree(MthCyclo,x);

g:=Generate(nonzeroint(range=-99 .. 99))+

x*randpoly(x,coeffs=rand(-99 .. 99),

degree=Generate(integer(range=0 .. n-2)),

terms=Generate](integer(range=1 .. n-1)));

return g;

end proc:
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integervector:=proc(u::Vector)

local count, i;

count:=0;

for i from 1 to Dimension(u) do

if type(u[i],integer)=true then count:=count+0;

else count:=count+1;

fi;

od;

if count=0 then return Yes;

else return No;

fi;

end proc:
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AssociateTest:=proc(m::integer)

local p,pvec,gen,genvec,M,i,RotBasis,RotBasisLLL,e1,LLL1,h,RotH,u;

p:=cyclotomic(m,x): pvec:=CoefficientVector(p,x):

gen:=PIGenerator(m): genvec:=CoefficientVector(gen,x):

genvec:=Vector[column]([genvec[],ZeroVector(degree(p)

-Dimension(genvec))]): M:=Matrix(phi(m),phi(m)):

for i from 1 to phi(m)-1 do

M[i+1,i]:=1;

od;

for i from 1 to phi(m) do

M[i,phi(m)]:=-CoefficientVector(p,x)[i];

od; RotBasis:=Matrix(<genvec>):

for i from 1 to phi(m)-1 do

RotBasis:=<RotBasis|<MatrixVectorMultiply(M^i,genvec)>>;

od; RotBasisLLL:=Transpose(LLL(Transpose(RotBasis))):

e1:=Vector[column](phi(m)): e1[1]:=1: LLL1:=RotBasisLLL[ .. ,1];

h:=LinearSolve(RotBasis,LLL1): RotH:=Matrix(<h>):

for i from 1 to phi(m)-1 do

RotH:=<RotH|<MatrixVectorMultiply(M^i,h)>>;

od; u:=LinearSolve(RotH,e1):

return integervector(u);

end proc:
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samples:=1068; ## Enter the number of samples desired.

Experiment1:=proc(m::integer)

local i,v,count;

v:=[];

for i from 1 to samples do

v:=[v[],AssociateTest(m)];

od;

count:=0;

for i from 1 to samples do

if v[i]=Yes then count:=count+1;

else count:=count+0;

fi;

od;

print(Number of Successes=count, Number of Samples=samples);

end proc:
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samples:=385; ## Enter the number of samples desired.

## Input integers 3 <= a < b for desired range of cyclotomic indices.

w:=convert(Generate(list(integer(range=a .. b),samples)),Vector):

Experiment2:=proc(v::Vector)

## Input the generated vector, w, of random cyclotomic indices.

local i,count;

count:=0;

for i from 1 to Dimension(v) do

v[i]:=AssociateTest(v[i]):

if v[i]=Yes then count:=count+1;

fi;

od;

count:=0;

print(Number of Successes=count, Number of Trials=Dimension(v));

end proc:
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