
ABSTRACT

SCOTT, JASON RODERICK. Fault Detection in Differential Algebraic Equations. (Under the
direction of Stephen L. Campbell.)

Fault detection and identification (FDI) is important in almost all real systems. Fault detec-

tion is the supervision of technical processes aimed at detecting undesired or unpermitted states

(faults) and taking appropriate actions to avoid dangerous situations, or to ensure efficiency in

a system. This dissertation develops and extends fault detection techniques for systems modeled

by differential algebraic equations (DAEs).

First, a passive, observer-based approach is developed and linear filters are constructed to

identify faults by filtering residual information. The method presented here uses the least squares

completion to compute an ordinary differential equation (ODE) that contains the solution of

the DAE and applies the observer directly to this ODE. While observers have been applied to

ODE models for the purpose of fault detection in the past, the use of observers on completions

of DAEs is a new idea. Moreover, the resulting residuals are modified requiring additional

analysis. Robustness with respect to disturbances is also addressed by a novel frequency filtering

technique.

Active detection, as opposed to passive detection where outputs are passively monitored,

allows the injection of an auxiliary control signal to test the system. These algorithms compute

an auxiliary input signal guaranteeing fault detection, assuming bounded noise. In the second

part of this dissertation, a novel active detection approach for DAE models is developed by tak-

ing linear transformations of the DAEs and solving a bi-layer optimization problem. An efficient

real-time detection algorithm is also provided, as is the extension to model uncertainty. The

existence of a class of problems where the algorithm breaks down is revealed and an alternative

algorithm that finds a nearly minimal auxiliary signal is presented. Finally, asynchronous signal

design, that is, applying the test signal on a different interval than the observation window, is

explored and discussed.
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Chapter 1

Introduction

Fault detection and identification (FDI) are important in almost all real systems. Fault detection

is the supervision of technical processes aimed at detecting undesired or unpermitted states and

taking appropriate actions to avoid dangerous situations, or to ensure efficiency in a system.

Deviations from nominal behavior that are large enough to cause undesired states, even in

robustly controlled systems, are known as faults. The task of fault identification is to determine

various characteristics of the fault, such as its type, size, or location.

The simplest and most common form of fault detection is known as limit checking [43].

Measured variables are checked with regard to tolerances, and alarms are generated for the

operator. Tolerances are determined from compromises between detection size and unnecessary

alarms. The simplicity of limit checking makes it an attractive option in many systems. Limit

checking is effective in systems that operate approximately in a steady state, but may be

inaccurate if the system is rapidly changing. Limit checking may also be inadequate in the case

of a gradually increasing (incipient) fault or in systems under closed loop feedback because

reaction occurs only after a relatively large change. In either case, faults may be masked until

the situation is catastrophic.

Another option is the use of hardware redundancy, where measurements from multiple

sensors are compared with each other and a voting mechanism is employed to detect faults.

However, some applications may not permit the use of redundant sensors due to the extra cost,

weight, volume, etc., they require. In other situations, such as with actuators, direct measure-

ments are often not possible or are prohibitively expensive, either practically or financially.

Therefore, advanced methods of fault detection have been developed with the goal of early,

reliable detection.

This thesis focuses on model-based approaches, i.e., approaches where mathematical models

are assumed to capture the nominal behavior of the system. The use of parity equations [41,

59] and parameter estimation [4, 38] for this purpose are common approaches. However, this
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work investigates observer-based approaches [33, 42, 70] and multiple-model detection [20].

Model-free approaches also exist, but are not the subject of this work [48]. Model-free ap-

proaches are generally data driven and depend on statistical techniques to determine if a fault

has occurred. For example, anomaly detection uses data to find patterns that do not conform to

expected behavior [23]. Descriptive statistics are estimated from data generated by a system op-

erating nominally. Then, given new data from a similar system whose operation is being tested,

it is possible to calculate the probability of the new data coming from a nominal system. One

advantage to statistically driven approaches is the ease with which they can deal with stochastic

noise as opposed to the deterministic noise in this work. However, statistical approaches often

require further investigation once an anomaly is flagged. Model-based approaches, especially

those in this work, often yield much more information upon detection of a fault. Some sophisti-

cated fault detection approaches use a combination of model-based and model-free approaches.

For a comprehensive overview of these approaches, both model-based and model-free, see [44].

Every FDI method can be classified as either passive or active. In the passive approach,

measurements from the system are continuously monitored and compared to the normal be-

havior of the system in some way. Most work in FDI is based in this class of methods. The

observer-based approach in Chapter 3 is passive. Passive approaches are particularly useful for

systems where auxiliary signals may pose a safety risk. The main disadvantage is that robust

control schemes may hide failures during normal operation.

Active methods, on the other hand, interact with the system to improve detection. Usually,

a test signal, constructed to highlight faults, is fed into the system, either on a test interval,

or on a periodic basis. We call this test signal the auxiliary signal and its construction is the

subject of the early sections in Chapter 4. An elementary example of an auxiliary signal is

checking the brakes of a car while driving down a road, before they are needed. The auxiliary

signal is usually determined in advance, based on the given system, and is constructed with the

specific intent of exposing faults. In some scenarios, a sequence of test signals is applied, each

one aimed at exposing a certain fault, or group of faults.

1.1 Differential Algebraic Equations

This dissertation develops new, or in some cases extends, fault detection techniques for sys-

tems modeled by differential algebraic equations (DAEs). A system F (x′(t), x(t), u(t), t) = 0

is, in general, a system of DAEs. If Fx′(t) is nonsingular, then it is a system of ordinary dif-

ferential equations (ODEs), a class of equations subsumed by the class of DAEs. The methods

and approaches herein can be applied toward ODEs; however, they were developed with more

complicated DAEs, known as higher index, DAEs in mind. The notion of index as it pertains to

a DAE will be discussed later in this introduction. To avoid an incessant use of “higher index,”
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from this point forward we will use the term “DAE” in place of “higher index DAE” to indicate

a set of differential equations which are not an ODE.

DAEs arise naturally in many applications, especially in applications with a need for fault

detection and identification. Some examples include electrical circuits, trajectory prescribed

path control, systems of rigid bodies, problems in constrained mechanics, electrical networks

and chemical reactions [10]. A classical example of a DAE arising from a constrained mechanical

system with position x, velocity v , kinetic energy T (x, v), external force f(x, v, t) and constraint

φ(x) = 0 is

∂2T

∂v2
v′ = g(x, v, t) +GTλ (1.1a)

x′ = v (1.1b)

0 = φ(x), (1.1c)

where G = ∂φ
∂x , and λ is the Lagrange multiplier. The constraints (1.1c) make this system a

DAE, not an ODE, even if ∂2T
∂v2

is invertible. If it is invertible, multiplication of (1.1a) by ∂2T
∂v2
−1

converts (1.1) into a semi-explicit DAE.

DAEs differ from ODEs in several key aspects. The singularity conditions on Fx′ mean DAEs

always contain pure algebraic equations called constraints like equation (1.1c). In terms of fault

detection, this will be advantageous because it will allow additional residual information to be

considered when looking for faults. However, not all constraints are given explicitly and some

are even hidden constraints. Hidden constraints are only visible after differentiating the given

equations. For example, consider the following semi-explicit DAE,

x′1 + x3 = f1 (1.2a)

x′2 + x1 = f2 (1.2b)

x2 = f3 (1.2c)

where xi are the unknowns and fi are external forcing terms. The fi may even be faults or

disturbances in the problem. Equation (1.2c) is the only explicit algebraic constraint. However,

a few differentiations and substitutions result in finding the only solution to this DAE,

x1 = f2 − f ′3 (1.3a)

x2 = f3 (1.3b)

x3 = f1 − f ′2 + f ′′3 , (1.3c)

3



because there are two additional implicit algebraic constraints in the original DAE. Note the

derivatives of the faults or forcing terms appear in the solution of the DAE. This is unlike the

situation for ODEs and will have consequences for fault detection as we will see later (Section

3.6.2). Depending on the specific situation, the presence of fault derivatives can make the fault

harder or easier to detect than in the analogous ODE case. If the fi represent unavoidable

disturbances as a result of normal operation of the system, (1.3) exposes the full impact that

disturbances will have on the system. To be specific, even small disturbances will have large

impacts on the system if their derivatives are large.

There are also numerous numerical difficulties associated with working with DAEs that are

not present with ODEs [10]. The presence of algebraic constraints cause the solutions of a DAE

to form a manifold called the solution manifold. Only the initial conditions that lie on the

solution manifold accept a solution to the DAE. These are called consistent initial conditions.

This characteristic of DAEs suggests that a they can be thought of as an ODE defined on

a solution manifold. Therefore, numerically solving a DAE amounts to solving an ODE with

constraints whether they be implicitly or explicitly defined.

1.2 Observer-Based Approach

In Chapter 3, we develop a passive FDI approach for systems modeled by DAEs based on the

use of observers to estimate the true state of the system. The observer is used to generate an

output error, also known as the residual, and faults are detected if the output error is far enough

from zero. To illustrate, let us begin with the linear time invariant (LTI) ordinary differential

equation (ODE) model with output

x′(t) = Ax(t) +Bu(t) + fp(t)

y = Cx(t) + fs(t)

where u(t) is the control, fp(t) is a process fault, and fs(t) is a sensor fault. If fp = fs = 0, then

the system is operating normally. Suppose we design an observer, e.g., the standard Luenberger

observer

x̂′(t) = Ax̂(t) + L(y(t)− ŷ(t)) +Bu(t)

ŷ(t) = Cx̂(t),
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such that the dynamics of the state estimation error, e(t) = x(t) − x̂(t), are asymptotically

stable. The dynamics of the state estimation error are

e′(t) = (A− LC)e+ fp(t) + Lfs(t),

so in the LTI case, this simply means A−LC is asymptotically stable. Then, in the absence of

faults, the state error vanishes asymptotically

lim
t→∞

e(t) = 0.

Define the output error, or residual, to be r(t) = y(t) − ŷ(t). y(t) are the measured outputs

from the system and ŷ(t) are the outputs generated by the observer. Hence, both are available

for our purposes. If there are no faults, r(t) approaches zero as the state estimation error goes

to zero. One way to make a decision on faults, is to create a problem dependent threshold, τ ,

and compare τ to r(t). τ could be a vector of the same length as r(t) or a positive number. If

τ is a number one might say a fault is detected if ‖r(t)‖ > τ . An example of a decision-making

comparison when τ is a vector is the following: if ri(t) > τi, in any component i, then a fault

is detected. The approach in Chapter 3 is a modified version of this approach, so that it is

applicable to DAE systems.

Other previous work in observer-based fault detection in ODEs has also included the design

of unknown input observers [24], dynamically extended observers [70], descriptor observers [33],

and sliding mode observers [22, 47]. These works are applicable to linear ODE models. On the

other hand, the authors of [34] and [73] construct observers for nonlinear systems, but a formal

method of applying these observers to fault detection is absent.

1.3 Fault Detection in DAEs

Previous work on FDI in DAEs has included the idea of model-based fault diagnosis for discrete-

time descriptor linear parameter varying (LPV) systems. LPV systems are a special case of

LTV systems. The authors of [3] provide sufficient conditions to ensure the existence and the

stability of the proposed observer by using a combined Lyapunov analysis based on a linear

matrix inequalities formulation. While the LPV assumption may simplify the process of FDI

in the DAE systems that meet this assumption, it does not lend itself to developing general

methods. Our work on observer construction for FDI, while initially developed for LTI systems,

is potentially applicable to general DAE systems including the general LTV and nonlinear cases.

Previous work, first in [71] and later refined in [26] (also developed independently and in

a slightly different manner in [72]) constructs unknown input observers using a sliding mode

approach for fault detection in DAE. In contrast to the approach in this work, observers are
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directly applied to the DAE without any reduction or reformulation. This requires certain

assumptions on the matrices of the LTI DAE that are different than our assumptions for the

construction of an observer. In general, unknown input observers require the regularity of a

certain matrix pencil [10], computation of more matrices than the one gain matrix commonly

found in the design of observers for LTI ODE, and rely on eigenvalue placement techniques.

These dependencies make it difficult to generalize these observers for LTV and nonlinear DAE

systems. In addition, the authors of [30] introduce a descriptor unknown input observer with

sliding modes. This introduces the added complexity of simulating a descriptor system in order

to obtain state estimates.

However, an advantage of the sliding mode approach, in addition to the simplicity of not

requiring any reformulation, is the ability to follow the behavior of the faulty system. The

mechanism of detection is based on monitoring abnormal deviations of the controlled outputs

from their the set point trajectories and deviations of the estimated parameters from their

nominal values. Moreover, disturbances are easily decoupled with unknown input observers by

assuming the fault and disturbance enter the system with different distribution matrices. In

Section 3.4 we give an alternative approach based on the discrete Fourier transform that does

not require this assumption.

Articles [39], [40], and [45] develop techniques for parameter estimation in DAE. Paired

with a decision making threshold for the difference between parameter estimations and nomi-

nal values, parameter estimation can be made into a passive fault detection approach. While

the estimates provide a powerful FDI technique, the approach in [40] and [45] also requires

the solution of a nonlinear programming problem, certainly a nontrivial task, and potentially

computationally expensive. While appropriate for some applications, the time-sensitive nature

of fault detection may prohibit these methods. In general, parameter estimation for DAE has

yet to be formalized for the specific purpose of FDI.

A large percentage of this thesis concerns itself with active detection in DAEs. Since previous

work in active detection has only been developed for systems modeled by ODEs, the related

methods in this thesis are pioneering ideas in this field. Due to the absence of competing

methods, in the following we summarize previous active detection work for ODE systems.

In some ways, the auxiliary design methods developed in this thesis can be seen as the

DAE analogs to the methods developed by the authors of [20] and [54] for ODEs. These works

employ a multi-model approach, meaning there are at least two models, one for the nominally

operating system, and the others for the faulty systems. In these works, dynamic optimization

is used to find the smallest auxiliary signal that guarantees fault detection by constructing a

small signal that forces the output sets to be disjoint, even in the presence of bounded noise. It

is often desirable to find the smallest auxiliary signal, in the norm sense, so that the system is

minimally affected during the test interval. The smallest auxiliary signal, which is the solution to
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an optimal control problem, is computed offline, and then applied to the system. The measured

outputs which, by construction, can only come from one of the models, are monitored during

the test interval and a decision is made, possibly before the end of the test period. The approach

has since been extended for detection of incipient faults [53], to include a priori information

about the initial condition [52], the presence of model uncertainty [1], and for nonlinear systems

[2], [68].

The authors of [61] develop an alternative method of constructing an auxiliary signal that

is based on a moving horizon for discrete time systems. That is, instead of pre-computing the

test signal, online measurements during the test interval are used to refine an open-loop input,

initially computed offline. In general, moving horizon approaches have the potential to produce

much more conservative inputs (e.g. reduced duration, norm, etc.). In [61], the initial optimal

input is computed by solving an expensive mixed-integer quadratic program. Then, at each

time step, the optimal input is recalculated by solving this problem using updated information

from system measurements. The authors note the computation time required for this method

makes it impractical for many applications of interest. To address this, they develop a much

more efficient method by computing all possible reachable sets offline and storing them. An

optimal input strategy is computed for each possible trajectory, stored in a table, and at each

time step, the optimal signal for that time step is selected. The main drawback to this approach

is that it requires very strict assumptions. The authors assume the matrix coefficient on the

state in the output for each model is invertible and they restrict the set of possible noises. Even

the basic method, which is too computationally expensive for online usage, requires restrictive

assumptions including the following: the control lies in a convex polytope, the noises are zero-

centered zonotopes, the initial states lie in zonotopes, and the faults are time invariant.

In [50], the author extends fault detection results from closed loop systems to open loop

systems, as well as closed loop systems with feedback controllers. The open loop system is

derived from the closed loop system by removing the feedback controller. A transfer function

matrix is derived between the input and the residual vector that is equivalent to the fault

signature matrix in the closed loop case. This shows that it is possible to use the same active

fault detection method on the closed and open loop systems. The only restriction being the

maximal number of faults occurring simultaneously is bounded by the number of control signals

minus one.

1.4 Thesis Outline

Although work on FDI in systems modeled by DAE is not new–the approaches in previous

paragraphs are such examples–there are relatively few works in the area, compared to ODE

detection. In this work, we present FDI methods that have never before been applied to DAE.
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In Chapter 2 we reformulate the DAE problem using the completion technique–described later

in Section 2.2–and derive some properties related to it in Section 2.4. In Chapter 3 we use the

completion to construct an observer, compute outputs based on the observer, and construct

residuals to make decisions on fault detection. We also develop linear filters to identify faults

and address disturbance attenuation using the discrete Fourier transform. We apply this method

to a DAE circuit model and illustrate its benefit in Section 3.6.

In Chapter 4, we turn to the task of active detection. Analogous work on ODE models is done

in [20]. Since DAE are singular, the standard techniques for FDI in the ODE case are not directly

applicable to the DAE case. A reformulation of a bi-level optimization problem with DAE

constraints is necessary to construct a problem that can be implemented using modern software.

A novel theorem is presented to identify the active model in real-time. We also investigate some

shortcomings of the method in Chapter 4 and present a suboptimal modification. Finally, we

investigate a related topic in auxiliary signal design known as asynchronous active detection, a

strategy where the output is watched on a different time interval than the interval the auxiliary

signal is applied on. We show the result is a cheaper test signal and sometimes a shorter test

interval.

Chapter 5 concludes with a list of the author’s presentations, publications, and contributions.

Areas of future work are also introduced.
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Chapter 2

Background

In this chapter, we summarize the theory of completions, originally introduced in [14], and later

matured in [13], [56], [57], [17], [18], and [55]. A completion of a DAE is an ODE whose solutions

include those of the DAE. The specific type of completion studied here, and in the references

herein, is known as the least squares completion, so named because after constructing a large

set of equations, known as the derivative array, the state is solved in the least squares sense.

The least squares completion has been developed for general DAEs with no necessary structural

assumptions, originally as part of a general numerical solution technique. The generality of the

method makes our FDI approach potentially applicable to systems modeled by general DAEs.

The completion procedure generates an ODE containing the solutions of the DAE. The

extra solutions, known as the additional dynamics, have been shown to be stable, provided

some care is taken [55]. In that case, the completion is known as the stabilized completion. As

shown in Section 3.1, this enables us to construct a Luenberger observer for the completion and

rely on its state estimates to generate residuals for fault diagnosis.

2.1 DAE Preliminaries

Recall, we are assuming the systems under consideration may be approximated by models of

the form

F (x′(t), x(t), u(t), t) = 0, (2.1)

where x is the state, u is the control, both F and x are vector valued, and Fx′(x
′(t), x(t), u(t), t)

is singular. In what follows, we are concerned with the case where the solutions exist and are

uniquely defined on the interval of interest. Unlike ODEs, not all initial values for x admit a

smooth solution; those that do, are called consistent initial conditions. Intuitively, a system of

DAEs is solvable if the system’s solution is determined by a consistent initial condition. A more

formal definition of solvability is the following:
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Definition 2.1.1. Let I be an open subset of R, Ω a connected open subset of R2m+1, and F

a differentiable function for Ω to Rm. Then the DAE (2.1) is solvable on I in Ω if there is an

r-dimensional family of solutions φ(t, c) defined on a connected open set I × Ω̃, Ω̃ ⊂ Rr, such

that

1. φ(t, c) is defined on all of I for each c ∈ Ω̃

2. (φt(t, c), φ(t, c), t) ∈ Ω for (t, c) ∈ I × Ω̃

3. If ψ(t) is any solution with (ψ′(t), ψ(t), t) ∈ Ω, then ψ(t) = φ(t, c) for some c ∈ Ω̃

4. The graph of φ as a function of (t,c) is an (r + 1)-dimensional manifold.

The definition says that there is a local, r-dimensional family of continuous solutions with

no bifurcations, on the interval I. The definitions and theorems in this section, including the

previous definition, can be found in [10].

A useful property when discussing completions is the index of the DAE. The index plays

a key role in the classification and behavior of DAEs. In order to motivate the definition that

follows, consider the special case of a semi-explicit DAE

x′ = f(x, y, t) (2.2a)

0 = g(x, y, t). (2.2b)

If we differentiate the constraint equation (2.2b) with respect to t we get

x′ = f(x, y, t) (2.3a)

gx(x, y, t)x′ + gy(x, y, t)y
′ = −gt(x, y, t). (2.3b)

If gy is nonsingular, the system (2.3) is an implicit ODE and we say that (2.2) has index one.

If this is not the case, suppose with coordinate changes we can rewrite (2.3) as (2.2), but with

different x, y. Then, we repeat the differentiation and coordinate changes until we can get to

an ODE. The number of differentiations required in this procedure is known as the index. For

example, a DAE of index zero is an ODE.

Definition 2.1.2. The index, k, of a system of DAEs is the minimum number of times the

system is differentiated with respect to t in order to uniquely determine the first derivative of

the state vector as a continuous function of the state vector and t.

Suppose we differentiate (2.2) with respect to t, k times, where k is the index. Then we have

the k + 1 equations

F = 0 (2.4a)
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d

dt
F = 0 (2.4b)

...

dk

dtk
F = 0, (2.4c)

which together are known as the derivative array and are denoted by G(z, x, t), where

z(t) =


x′(t)

...

x(k+1)(t)


For a linear DAE, such as

E(t)x′(t) + F (t)x(t) = B(t)u, (2.5)

the derivative array is

E(t)z(t) + F(t)x(t) = B(t)ū(t), (2.6)

where

E =



E 0 0 . . . 0

E′ + F E 0 . . . 0

E′′ + 2F ′ 2E′ + F E . . . 0
...

. . .
...

. . . . . . .


, F =



F

F ′

F ′′

...

F (k)


.

B = diag(B,B, . . . , B) and ū defined in an analogous way to F , except for vectors. Upon

consideration of the derivative array, we have the following convenient definition:

Definition 2.1.3. The index, k, of a linear system of DAEs E(t)x′(t) +F (t)x(t) = B(t)u(t) is

the minimum number of times the system is differentiated with respect to t so that the coefficient

matrices E(t), F(t) from the derivative array equations E(t)w(t)+F(t)x(t) = B(t)ū(t) meet the

following conditions:

1.
[
E(t) F(t)

]
is full row rank for all t;

2. E(t) has constant rank; and

3. if x(t) is n dimensional, then E(t)b(t) = 0 for some vector b(t) implies the first n entries

for b(t) are zero for all t.

Definition 2.1.3, a specific version of Definition 2.1.2 for linear systems, includes checks

easily implemented in an index-determining algorithm for time-invariant systems.

11



2.2 Completion Theory

A completion of

E(t)x′(t) + F (t)x(t) = B(t)u(t) + fp(t), (2.7)

a linear system of DAEs, with possible faults fp, is a linear system of ODEs

x′(t) = Â(t)x(t) + B̂(t)ū(t) + Ĝ(t)f̄p (2.8)

designed so the solutions of (2.8) contain those of (2.7). For any vector function q, we use q̄ to

denote a vector containing q and the first k − 1 derivatives of q with respect to t. As discussed

in the introduction, for an n-dimensional system of linear DAEs, solutions are defined on the

less then n-dimensional solution manifold. Since (2.8) is an n-dimensional ODE, there exists an

n-dimensional family of solutions. Therefore, there are extra solutions whose behavior will be

discussed in what follows.

Recall we denote the derivative array, given by (2.4), as G(z, x, t). We will need the following

definition [12]:

Definition 2.2.1. A system of algebraic equations

A

[
x1

x2

]
= b (2.9)

is called 1-full with respect to x1, if x1 is uniquely determined for any consistent b.

Suppose the following assumptions are satisfied for both k and k+ 1 in some neighborhood:

I. Sufficient smoothness of G = 0.

II. G = 0 is consistent as an algebraic equation.

III. Gz is 1-full and has constant rank independent of (z, x, t).

IV.
[
Gz Gx

]
has full row rank independent of (z, x, t).

When these assumptions are met, then multiplication by the Moore-Penrose inverse [19], E†,
solves uniquely for x′

x′(t) = −E†Fx+ E†Bū+ E†f̄p

and determines the least squares completion (2.8) where Â, B̂, and Ĝ are the first block row of

−E†F , E†B, and E†, respectively.
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Assumptions I.-IV. also imply the geometric solvability of the linear DAE [16], a notion

related to the solvability definition found in this thesis. Having no need for geometric solvability

here, for our purposes these assumptions are only required for the calculation of the completion.

Thus far, to form the derivative array, we differentiate the system of DAEs k times, where

k is the index of the DAE. However, it has been shown in [56] the additional dynamics may

be unstable, leading to numerical inaccuracies. Therefore, we modify the approach by applying

the differential polynomial D = d
dt + Λ instead, where Re(s) > 0 for all eigenvalues s of the

matrix Λ. The authors of [17] have shown this modification stabilizes the additional dynamics

and guarantees no repeated eigenvalues in the additional dynamics. Repeated eigenvalues make

construction of observers problematic unless there are sufficient outputs.

As a first step in fault detection, this thesis considers LTI DAEs

Ex′ + Fx = Bu+ fp. (2.10)

Therefore, in the following, we demonstrate the construction of the derivative array and calcu-

lation of the completion using D on LTI systems. Applying D to (2.10) k times results in the

modified derivative array

DjE

[
x′

ω

]
= −DjFx+DjBū+Dj f̄p (2.11)

where

E =



E 0 0 . . . 0

F E 0 . . . 0

0 F E . . . 0
...

0 0 . . . F E


, Dj =



I 0 0 . . . 0

Λ I 0 . . . 0

Λ2 2Λ I . . . 0
...

. . .

Λk kΛk−1 . . . I


,

F =
[
F T 0 0 . . . 0

]T
, and B = diag{B,B, . . . , B}.

DjE is rank deficient. For many classes of DAEs, such as the Hessenberg DAEs of mechanics,

B̂ū involves none or one derivative of u.

Suppose assumptions I.-IV. are satisfied for both k and k + 1 in some neighborhood. Then

solving (2.11) in the least squares sense we get

ẑ = −E†DjFx+ E†DjBū+ E†Dj f̄p. (2.12)

If k is at least the index of the DAE, then (2.12) uniquely determines the x′ component. The
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other components of ẑ will usually not be the higher derivatives of x and will be ignored. Thus

taking the first block row of (2.12) we get the least squares completion

x′ = Âx+ B̂ū+ Ĝf̄p. (2.13)

The constraints

0 = Gx+ B̃ū+ G̃f̄p (2.14)

are found by multiplying (2.11) by a maximal rank left annihilator U of DjE . We partition Ĝ and

G̃ conformal with f̄p so that Ĝ =
[
Ĝ0, . . . , Ĝk−1

]
. If fp is constant, then f̄p =

[
fTp , 0, . . . , 0

]T
so that only Ĝ0 is needed. The G̃i notation is similar. The constant fault case happens often

enough to warrant this consideration.

2.3 LTI Systems

LTI systems have some properties that we will exploit in the following sections. First, we will

need the following definitions and theorems.

Definition 2.3.1. The matrix pencil for the linear time invariant system of DAEs in (2.10)

is sE + F for a complex scalar s.

Definition 2.3.2. The finite generalized eigvenvalues of the system in (2.10) are all s such

that det(sE + F ) = 0.

Finite generalized eigenvalues play the same role for (2.10) that regular eigenvalues do for

LTI ODEs. That is, if u(t) = 0 and λ is one finite generalized eigenvalue of (2.10), then one

mode of the solution is eλt.

Definition 2.3.3. If the determinant of sE + F , denoted det(sE + F ) is not identically zero

as a function of s, then the pencil is said to be regular.

In general, the solvability of a general DAE can be difficult to determine; however, for

(2.10) there is a nice characterization. The next theorem explores the relationship between the

solvability of the LTI DAE and its matrix pencil.

Theorem 2.3.1. The linear constant coefficient DAE is solvable if and only if sE + F is a

regular pencil.

Recall, a matrix N is said to have nilpotency k if Nk = 0 and Nk−1 6= 0. The following

technical theorem, from [32], provides a structure we will exploit for failure detection:
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Theorem 2.3.2. Suppose that sE+F is a regular pencil. Then there exist nonsingular matrices

P, Q such that

PEQ =

[
I 0

0 N

]
, PFQ =

[
C 0

0 I

]
(2.15)

where N is a matrix of nilpotency k and I is an identity matrix. If N = 0, then define k = 1.

In the special case that E is nonsingular, we take PEQ = I, PFQ = C, and define k = 0. If

det(sE + F ) is identically constant, then (2.15) simplifies to PEQ = N , PFQ = I.

The degree of nilpotency, k, is the same as the index of the DAE.

2.4 Useful Facts about Completions

Given a LTI DAE the least squares completion is a LTI ODE with LTI constraints. This

section gives some useful results about the matrices computed by the completion procedure. In

the following discussion we apply a similarity transformation to arrive at a simpler DAE. We

will prove certain properties that completions of this simpler DAE possess and extend them to

the completion of (2.10) via their relationship by a similarity transformation.

Suppose the matrix pencil sE + F is regular. Then, by Theorem 2.3.2, there exists an

orthogonal P and a nonsingular Q such that

PEQ =

[
C1 C2

0 N

]
, PFQ =

[
D1 D2

0 D3

]
(2.16)

where C1 and D3 are invertible and N is nilpotent of the same degree as the index of (2.10).

Therefore, left multiplication by the orthogonal matrix P and the coordinate change given by

x = Q

[
y1

z2

]
transforms the DAE into

C1y
′
1 = −C2z

′
2 +D1y1 +D2z2 + f1

Nz′2 = D3z2 + f2.

where D−1
3 N is nilpotent. Then, using the transformation y2 = D−1

3 z2 and relabeling coeffi-

cients, we obtain the system

C1y
′
1 = −C2y

′
2 +D1y1 +D2y2 + f1 (2.17a)

Ny′2 = y2 + f2. (2.17b)

Note that (2.16) is not the usual similarity form of a regular pencil. We must impose the
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additional restriction that P is orthogonal instead of just nonsingular to obtain a relationship

between the completions of (2.10) and (2.17).

Since C1 is nonsingular, (2.17a) is index zero. Then, the completion of (2.17) is (2.17a)

and the completion of (2.17b). The following proposition [57], will be helpful in finding the

completion of (2.17b).

Proposition 2.4.1. Suppose the LTI DAE in (2.10) is solvable with index k and its derivative

array is given in (2.11). Suppose that assumptions I.-IV. are satisfied for this system. Let G0

be an n × (k + 1)n matrix satisfying G0DjE =
[
I 0 . . . 0

]
and G0Z = 0, where Z is a

matrix of maximal rank satisfying ZTDjE = 0. Namely, the columns of Z form a basis for

the null space N(ETDT
j ). Then, the least squares completion of (2.10) defined by (2.11) is

x′ = G0Dj(−Fx+ Bū+ f̄p).

In particular, this means given DjE

[
y′2
ω

]
= Dj(−Fy2 + f̄2), the derivative array of (2.17b),

we get the completion

y′2 = −G0DjFy2 +G0Dj f̄2 = Â2y2 + Ĝ2f̄2. (2.18)

If the fault is constant, we look at Ĝ20 = G0D0 where D0 is the first block column of Dj . Note

that in this case F = −I, so −G0DjF = G0D0 and Â2 = Ĝ20 . Therefore Ĝ20 is invertible since

Â2 is invertible from [57]. We will need this fact later.

Proposition 2.4.1 leads us to the following

Lemma 2.4.1. The stabilized least squares completion for (2.17b) is given by (2.18) and the

matrices in (2.18) satisfy G2Â
−1
2 Ĝ20 − G̃20 = 0.

Proof. We know that (2.18) is the least squares completion of (2.17b) and Â2 is invertible. The

lemma now follows because

G2Â
−1
2 Ĝ20 − G̃20 = U


I

λI

λ2I
...

 I − U

I

λI

λ2I
...

 = 0.

Equation (2.17a) is index zero so it is invariant under the least squares completion process.

Thus, there are no constraints associated with (2.17a). Using the truncated versions of Ĝ and

G̃, the completion for (2.17) is

y′ = Â1y + Ĝ10f (2.19a)
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0 = G1y + G̃10f (2.19b)

where G1 =
[
0 G2

]
, G̃10 =

[
0 G̃20

]
and

Â1 =

[
C−1

1 D1 ∗
0 Â2

]
, Ĝ10 =

[
∗ ∗
0 Ĝ20

]
(2.20)

letting ∗ denote nonzero blocks. The next lemma extends Lemma 2.4.1 to the entire completion

of (2.17). In the proof of the next lemma, we assume 0 is not a finite eigenvalue of (2.10) since

we will subsequently need to assume this for the purposes of fault detection.

Lemma 2.4.2. The matrices in (2.19) satisfy G1Â
−1
1 Ĝ10 − G̃10 = 0.

Proof. C1 is invertible by assumption. Â2 is invertible from [57]. Then Â1 is invertible as defined

in (2.20) since 0 is not a finite eigenvalue of (2.10). Consider G1Â
−1
1 Ĝ10−G̃10 . This is equivalent

to [
0 G2

] [∗ ∗
0 Â−1

2

][
∗ ∗
0 Ĝ20

]
−
[
0 G̃20

]
=
[
0 G2Â2Ĝ20 − G̃20

]
.

An application of Lemma 2.4.1 completes the proof.

Finally, we connect the transformed system in (2.17) and the original system (2.10) with

the following

Lemma 2.4.3. Consider the original system (2.10) and its stabilized least squares completion

(2.13)–(2.14). Then GÂ−1Ĝ0 − G̃0 = 0.

Proof. In [57], it was shown that given the original system and its completion, the corresponding

completion of (2.17) is

y′ = Q−1ÂQy +Q−1Ĝ0f̄ (2.21a)

0 = GQy + G̃0f̄ (2.21b)

if we redefine Q = Q

[
I 0

0 D−1
3

]
. Lemma 2.4.2 implies that (GQ)(Q−1Â−1Q)(Q−1Ĝ0)− G̃0 = 0.

The current lemma follows because (GQ)(Q−1Â−1Q)(Q−1Ĝ0)− G̃0 = GÂ−1Ĝ0 − G̃0.

Recall Ĝ20 is invertible. We can now prove the following

Lemma 2.4.4. Ĝ0 is invertible.
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Proof. Since (2.17a) is invariant under the stabilized least squares process we have Ĝ10 =[
C−1

1 −C−1
1 C2Ĝ20

0 Ĝ20

]
which is invertible. Equation (2.21) implies Ĝ0 = QĜ10 , a product of

invertible matrices.

We will use these results later in Chapter 3.
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Chapter 3

Observer-Based Passive FDI

3.1 Observer Construction

As a first step in fault detection, this thesis considers LTI DAEs with outputs and possible

process and sensor faults, fp and fs,

Ex′ + Fx = Bu+ fp (3.1a)

y = Hx+Du+ fs. (3.1b)

We assume E,F are square matrices, E may be singular, u is a known control input, fp is

a process fault, fs is a sensor fault, there is a scalar s for which sE + F is invertible—that is,

{E,F} form a regular matrix pencil so that (3.1a) is solvable—x and u are functions of time t,

x is n× 1, y is m× 1, and 0 is not a finite eigenvalue of the pencil sE + F . If we also assume

assumptions I.-IV. are met, then we can compute the stabilized least squares completion with

output,

x′ = Âx+ B̂ū+ Ĝf̄p (3.2a)

0 = Gx+ B̃ū+ G̃f̄p (3.2b)

y = Hx+Du+ fs. (3.2c)

We construct a Luenberger observer that is unaware of the faults and ignores (3.2b) so that it

takes the form

x̂′ = Âx̂+ L(y − ŷ) + B̂ū (3.3a)

ŷ = Hx̂+Du, (3.3b)
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where the eigenvalues of Â − LH are designed to give us the desired convergence rate of the

observer. If {Â,H} is not completely observable, then we need the unobservable eigenvalues to

have negative real part. If they are not finite eigenvalues of the matrix pencil sE + F , then

they are from the stabilization parameter matrix Λ and are user specifiable. Observability of

(3.1) does not imply the observability of (3.3) unless (3.2b) is viewed as an extra output. Such

reduced order observers are considered in [7, 8] but are outside the scope of this work.

Let e = x− x̂ be the observer error. Then,

e′ = (Â− LH)e− Lfs + Ĝf̄p (3.4a)

y − ŷ = He+ fs. (3.4b)

Using our outputs, observer estimate x̂, and information on the solution manifold (3.2b), we

have two residual vectors available to us instead of the usual one,

r1 = y − ŷ (3.5a)

r2 = Gx̂+ B̃ū. (3.5b)

Both of these residuals should be zero if the observer has converged (that is, the estimation

error is less than some tolerance) and there are no faults. We shall assume the observer error

bound takes the form,

‖h(t)‖ ≤ βeα(t−t0) + ε = θ(t), (3.6)

for β > 0, ε > 0, and α < 0, where t0 is the start time of the fault. Here α comes from the

theoretical convergence rate of the observer and ε models numerical, measurement, and other

small but nonzero errors. The constant β is a bound on the size of disturbances due to either

the onset of the fault or by other disturbances to the system. θ is to simplify some expressions

later.

3.2 Detection

As is often done in the literature, we assume that once fully developed the fault is constant

and in a particular direction. As we will see later, with DAEs, the start up of the fault can

play a larger role in detection than in the case of ODE systems. Certain faults can be more

easily detected if they occur quickly as shown with the circuit example in Section 3.6. Thus, we

assume faults take the form

fi(t) = κg(t)di, i = p, s.
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g(t) is a monotonically non-decreasing, smooth function that is zero for t ≤ t0 and one for

t ≥ t1. On the interval [t0 t1], it takes the form g(t) = c(t− t0)2 + d(t − t0)3. Constants c and

d are determined with the conditions g(t1) = 1 and g′(t1) = 0. If t0 = t1 then the fault is a

piecewise constant, abrupt fault and there is no transient period. Otherwise, the fault appears

in a smooth manner and is called a ramp fault. di is a constant vector and κ is a scaling constant

allowing us to discuss thresholds and detection times in terms of the size of the fault.

Note the smoothness of the fault is only assumed for purposes of analysis and in order to

simulate the fault. In practice, the fault does not appear in the observer equation and we use

the real output y rather than a simulated output. Hence, we can detect most faults regardless

of their regularity.

We assume that Â − LH is invertible. The only time this might not be true in a case of

interest is if we were designing dead beat observers for a discrete time system. This case will

be left for future work.

Using (3.2b), if we consider r2 − 0, we get

r1 = He+ fs (3.7a)

r2 − 0 = r2 − (Gx+ B̃ū+ G̃f̄p) (3.7b)

r2 = −Ge− G̃f̄p. (3.7c)

After the initial ramp up interval of the fault and after the observer has converged, we have

e(t) = −(Â− LH)−1(−Lfs + Ĝf̄p). The residuals can be expressed

r1 = −H(Â− LH)−1(−Lfs + Ĝf̄p) + fs +Hh

r2 = G(Â− LH)−1(−Lfs + Ĝf̄p)− G̃f̄p −Gh

or the more condensed

W

[
f̄p

fs

]
+

[
H

−G

]
h(t) =

[
r1

r2

]
. (3.9)

Let f =
[
f̄Tp fTs

]T
and denote (3.9) by

Wf +Qh(t) = r, (3.10)

where W and W0 (to be used later) are

W =

[
−H(Â− LH)−1Ĝ H(Â− LH)−1L+ I

G(Â− LH)−1Ĝ− G̃ −G(Â− LH)−1L

]
(3.11)
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W0 =

[
−H(Â− LH)−1Ĝ0 H(Â− LH)−1L+ I

G(Â− LH)−1Ĝ0 − G̃0 −G(Â− LH)−1L

]
(3.12)

and f0 =
[
dTp dTs

]T
, where dp and ds are constant vectors determining the directions of the

process and sensor faults, respectively.

Note thatW andW0 are partly determined by the original system, partly by the stabilization

of the additional dynamics, and partly by the choice of L used in the design of the observer.

If W0 6= 0, then generically most faults can be detected assuming the fault is large enough.

However, we want more detailed information on the size of the fault κ and the time to detection.

There are different ways to evaluate residuals. One common way to do so is with element

residual thresholds. These can be taken asymmetric but here we will say a fault is to be detected

if |ri| > τi for any ith component of the residual vector r and the user chosen threshold vector

τ which has positive entries. If a sufficiently large fault occurs and t > t1, then there is at least

one i such that

|κ[W0f0]i + [Qh(t)]i| > τi. (3.13)

Proposition 3.2.1. Suppose h(t) is bounded according to (3.6), t > t1 and

κ >
τi + ‖Q‖βe−α(t−t0) + ‖Q‖ε

|[W0f0]i|
(3.14)

for time t and some index i. Then (3.13) holds and thus, the fault f can be detected by time t.

Proof. Assumption (3.14) is equivalent to |κ[W0f0]i| > τi + ‖Q‖βe−α(t−t0) + ‖Q‖ε. Therefore,

either

κ[W0f0]i > τi + ‖Q‖βe−α(t−t0) + ‖Q‖ε, or (3.15a)

κ[W0f0]i < −τi − ‖Q‖βe−α(t−t0) − ‖Q‖ε. (3.15b)

The bound in (3.6) and (3.15) implies either

κ[W0f0]i > τi − [Qh(t)]i or

κ[W0f0]i < −τi − [Qh(t)]i .

This is equivalent to

κ[W0f0]i + [Qh(t)]i > τi or

κ[W0f0]i + [Qh(t)]i < −τi.

Thus |ri| = |κ[Wf0]i + [Qh(t)]i| > τi and Proposition 3.2.1 follows.

22



The urgency of detecting the fault may vary from application to application; however, the

ability to detect the fault as quickly as possible is always a benefit. Suppose that (3.14) holds.

Then it is clear that if

e−α(t−t0) <
|W0f0|iκ− τi − ‖Q‖ε

‖Q‖β

the fault with scaling parameter κ can be detected by time t. Alternatively, we have

Proposition 3.2.2. If |[W0f0]i|κ − τi − ‖Q‖ε > 0, and t > t1, then detection can be done by

time t if

t− t0 > −
1

α
log

(
|W0f0|iκ− τi − ‖Q‖ε

‖Q‖β

)
. (3.16)

Now we turn our attention to the time varying aspect of the fault. Recall f in (3.10) is

[
f̄p

fs

]
which includes the derivatives of fp. Then,

f = κ


g(t)dp

g′(t)dp

g′′(t)dp

g(t)ds

 . (3.17)

We have already analyzed the case when t > t1. When t0 ≤ t ≤ t1 a fault is detected if∣∣∣∣∣∣∣∣∣∣
κ

W

g(t)dp

g′(t)dp

g′′(t)dp

g(t)ds



i

+ [Qh(t)]i

∣∣∣∣∣∣∣∣∣∣
> τi.

Then, analogously to (3.14), |ri(t)| > τi holds if

κ >
τi + ‖Q‖βe−α(t−t0) + ‖Q‖ε∣∣∣∣∣∣∣∣∣∣

W

g(t)dp

g′(t)dp

g′′(t)dp

g(t)ds



i

∣∣∣∣∣∣∣∣∣∣

.

3.2.1 False Alarms

There is a trade-off when choosing the tolerance, τ , between permitting false alarms and de-

tecting small faults. In some applications—especially in safety related processes like aircraft,

automobiles, and chemical plants—false alarms are a necessary evil for safe operation of the
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system. In other applications, it may be more cost effective to choose a higher tolerance so that

false alarms are a rare occurrence or never happen at all.

False alarms occur if the residuals cross the threshold set by the tolerance, τ , and f = 0 in

the equation

Wf +

[
H

−G

]
h(t) =

[
r1

r2

]
.

Then, if τ is to be chosen to prevent this, it is necessary that∣∣∣∣∣
[
H

−G

]
h(t)

∣∣∣∣∣ < τ

where < refers to component-wise comparison. Using (3.6), it is clear that if τ is chosen so that

τ >

∥∥∥∥∥
[
H

−G

]∥∥∥∥∥βe−α(t−t0),

then no false alarms will occur.

3.2.2 Fault Location

Not all faults are treated equally because of the presence of the DAE. Let P = [(sE +

F )−1F ]D[(sE + F )−1F ] where D denotes the Drazin pseudoinverse [19]. Then Pfp enters the

equations much like an ODE where (I − P )fp can contain derivatives. Thus if (I − P )fp = 0

we can treat it as an immediately occurring fault where as if (I − P )fp 6= 0 then there may be

transient reactions to the fault of increasing magnitude the quicker the fault occurs. Note that

N(G) = R(P ). This is illustrated with the circuit example in Section 3.6.

3.3 Fault Identification

The task of fault identification consists of determining the type, size, and location of the detected

fault. In this section, the idea of fault identification is narrowed to specifying which fault has

occurred given a library of possible faults. Consider process and sensor fault directions dpi
and dsi . Then, the fault can be written fi(t) = κ (g(t)v1i + g′(t)v2i + g′′(t)v3i), where v1i =

[dTpi 0 0 dTsi ]
T , v2i = [0 dTpi 0 0]T , and v3i = [0 0 dTpi 0]T . Here, the subscript i denotes the ith

fault in a library of faults and fi is used to denote all of the process and sensor fault components.

Using this expansion, it is clear that fi(t) varies over a subspace given by span{v1i , v2i , v3i}.
Given a library of faults, {f1(t), . . . , fr(t)}, the next proposition constructs filtering matrices

that identify faults by matrix multiplication.
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Proposition 3.3.1. Suppose {f1(t), . . . , fr(t)} are faults and there is at least one l such that

Wvlj /∈ span{Wv1i , Wv2i , Wv3i}, for each j 6= i. Define

Mi =

(Wv1i)
T

(Wv2i)
T

(Wv3i)
T

 and svd(Mi) = UΣV T .

Let RTi be the last columns of V T corresponding to N(Mi). Then, the following are true:

1. RiWfi(t) = 0, ∀t

2. RiWfj(t) 6= 0, ∀t, ∀j 6= i such that fj(t) 6= 0.

Proof. RiWfj(t) = κRi
(
g(t)Wv1j + g′(t)Wv2j + g′′(t)Wv3j

)
. By construction MiR

T
i = 0, im-

plying RiM
T
i = [RiWv1i RiWv2i RiWv3i ] = 0. Therefore, the first statement holds. The

hypothesis of the proposition implies that for every fj with j 6= i there exists an l such that

RiWvlj 6= 0. Hence, the second statement holds.

Note that the hypothesis of the theorem is exactly what is needed to create a filter to identify

fi. If all r filters are to be created to identify all r faults, the proposition can be extended easily

by requiring the hypothesis to hold for every i.

An analogous but alternative filter is given by

Proposition 3.3.2. Suppose {f1(t), . . . , fr(t)} are faults and Wvli /∈ span{Wv11 , Wv21 , Wv31 ,

. . . , Ŵ v1i , Ŵ v2i , Ŵ v3i , . . . , Wv3r}, for at least one l, where the use of ̂ denotes missing

elements. Define

MT
i =

[
Wv11 , Wv21 , Wv31 , . . . Ŵ v1i , Ŵ v2i , Ŵ v3i , . . . Wv1r , Wv2r , Wv3r

]
,

svd(Mi) = UΣV T , and let RTi be the last columns of V T corresponding to N(Mi). Then, the

following are true:

1. RiWfi(t) 6= 0, ∀t such that fi(t) 6= 0

2. RiWfj(t) = 0, ∀t, j 6= i.

Proof. Consider RiWfj(t) = κRi
(
g(t)Wv1j + g′(t)Wv2j + g′′(t)Wv3j

)
. By construction

MiR
T
i = 0, implying

[
RiWv1j RiWv2j RiWv3j

]
= 0, for j 6= i. Therefore, the second

statement holds. The hypothesis of the proposition implies that for every fj with j = i there

exists an l such that RiWvli 6= 0. Hence, the first statement holds.
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A more ambitious filter may sometimes be constructed. We rewrite (3.7a) and (3.7c)[
r1

r2

]
=

[
H

−G

]
e+

[
fs

−G̃f̄p

]
. (3.18)

If

[
H

−G

]
does not have full row rank, then there exists a nontrivial R such that R

[
H

−G

]
= 0.

This leads us to

Proposition 3.3.3. Let Q =

[
H

−G

]
. Suppose {f1(t), . . . , fr(t)} are faults and

Wvli /∈ span{Wv11 , Wv21 ,Wv31 , . . . , Ŵ v1i , Ŵ v2i , Ŵ v3i , . . . , Wv3r , Q
T },

for at least one l, where the use of ̂ denotes missing elements. Define

MT
i =

[
Wv11 , Wv21 , Wv31 , . . . Ŵ v1i , Ŵ v2i , Ŵ v3i , . . . Wv1r , Wv2r , Wv3r , Q

]
,

svd(Mi) = UΣV T , and let RTi be the last columns of V T corresponding to N(Mi). Then, the

following are true:

1. RiWfi(t) 6= 0, ∀t such that fi(t) 6= 0

2. RiWfj(t) = 0, ∀t, j 6= i

3. RiQ = 0.

Proof. Consider RiWfj(t) = κRi
(
g(t)Wv1j + g′(t)Wv2j .+ g′′(t)Wv3j

)
. By construction

MiR
T
i = 0. Hence, RiM

T
i = 0, implying

[
RiWv1j RiWv2j RiWv3j RiQ

]
= 0, for j 6= i.

The second and third statements now follow easily. The hypothesis of the proposition implies

there exists an l such that RiWvli 6= 0, so statement one holds.

Implementing Prop. 3.3.3 will result in

Rirj =


0 if i 6= j

Ri

 fs

−G̃f̄p

 if i = j,
(3.19)

suggesting that faults can be identified immediately upon detection. As stated after Proposition

3.3.1, the hypotheses of Props. 3.3.1-3.3.3 are what are needed to create filters for fault fi. The

hypotheses can be extended so that filters can be created for all r faults by requiring that
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the hypotheses hold for all i. The filters Ri can be used in real time for identification. One

possibility of their use is given in the numerical examples in Section 3.6.

W0 and its Affect on FDI

The hypotheses on the identification theorems imply that the null space N(W ) and range R(W )

of W or W0 are very important in determining which faults can be identified. N(W ) denotes

a matrix whose columns are a basis for the null space. In terms of detection, (3.10) indicates

that if a fault f ∈ N(W ), then the fault cannot be detected. Therefore, an investigation into

the null space of W or W0 is relevant and helpful. This section studies W0 exclusively so the

results in this section are applicable to fully developed (t > t1) faults only.

Proposition 3.3.4 fully characterizes the null space of W0. The proposition indicates that

the dimension of the null space is n. Recall, the fault in its constant regime is of dimension

n+m, where n is the dimension of the state and m is the number of rows of H. Hence, we may

identify up to m distinct faults that meet the hypotheses of Props. 3.3.1-3.3.3. That is to say,

the maximum number of faults that can be identified cannot exceed the number of independent

measurements.

Proposition 3.3.4. N(W0) = R

([
In

HÂ−1Ĝ0

])
.

Proof. We will need the following:

LH(Â− LH)−1 + I = Â(Â− LH)−1. (3.20)

The matrix L has full column rank so multiplying the top block row of W0 by L leaves the null

space unaffected. Then, we use (3.20) to get

W̃0 =

 −LH (Â− LH)−1
Ĝ0 Â

(
Â− LH

)−1
L

G
(
Â− LH

)−1
Ĝ0 − G̃0 −G

(
Â− LH

)−1
L

 .
Since Â−1 exists, we can carry out the block row operation, GÂ−1R1 +R2 → R2 yielding

W̄0 =

−LH (Â− LH)−1
Ĝ0 Â

(
Â− LH

)−1
L

GÂ−1Ĝ0 − G̃0 0

 .
Lemma 2.4.3 says that the (2,1) entry of W̄0 is 0. Consider W̄0φ = 0 and partition φ =

[
φ1

φ2

]
conformal with the block matrix W0. The top block row implies −LH(Â−LH)−1Ĝ0φ1 +Â(Â−
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LH)−1Lφ2 = 0. Solving for φ2 we see that

φ2 = L†(Â− LH)Â−1LH(Â− LH)−1Ĝ0φ1 (3.21a)

= L†(Â− LH)Â−1(−I + Â(Â− LH)−1)Ĝ0φ1 (3.21b)

= L†LHÂ−1Ĝ0φ1 (3.21c)

φ2 = HÂ−1Ĝ0φ1 (3.21d)

with the restriction (I − LL†)LH(Â − LH)Ĝ0φ1 = 0. However, this simplifies to 0φ1 = 0, so

the only restriction on the null space is (3.21d).

Therefore, some of the rows of W0 are redundant. However, there are still advantages to

using both residuals, even in this constant fault case. For detection, it is clear from (3.14) that

a fault may be easier to see in certain components if we consider all rows of W0. The same is

true for fault identification.

Suppose we are only concerned with process faults. This means that φ2 = 0 and we can

write a further truncated version of W ,

Ŵ0 =

[
−H(Â− LH)−1Ĝ0

G(Â− LH)−1Ĝ0 − G̃0

]
.

Then (3.21d) implies that N(Ŵ0) = N(HÂ−1Ĝ0). The dimension of this space is important

for the task of fault identification. A smaller null space will give us greater freedom to identify

faults. With this in mind, we have

Proposition 3.3.5. dim(N(HÂ−1Ĝ0)) = n− rank(H).

Proof. Â−1 and Ĝ0 (see Lemma 2.4.4) have full column rank so rank(HÂ−1Ĝ0) = rank(H).

Linear Combinations of Faults

As in previous sections, we are interested in a library of faults {f1(t), . . . , fr(t)}. However, in

this section, fi(t) = g(t)v1i +g
′(t)v2i +g

′′(t)v3i . fi is not scaled by κ because here we form a fault

that is a linear combination of the fi. The scalars involved in the linear combination are our

κi values. Then we denote the fault F = Y κ, where Y = [f1 . . . fj ] and κ = [κ1 . . . κj ]
T . Recall,

a fault is detected if |[WY κ]i + [Qh(t)]i| > τi. Using the bound on h(t), a fault is detected if

|[WY κ]i| > τi + ‖Q‖(βe−α(t−t0) + ε).

For identification purposes we are interested in determining which faults make up the linear

combination, Y , and their respective sizes κ. Creating the filters Ri according to propositions

3.3.2 or 3.3.3 are convenient ways to do this. Up to noise Qh(t), Rir will be nonzero if and only

if fi is involved in the linear combination.
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We can also estimate κi for each fi. Due to the construction of Ri, RiWF = κiRiWfi. This

implies |κi|‖RiWfi‖ = ‖Rir −RiQh(t)‖ and noting that

‖Rir −RiQh(t)‖ ≤ ‖Rir‖+ ‖RiQh(t)‖

≤ ‖Rir‖+ ‖RiQ‖θ(t)

‖Rir −RiQh(t)‖ ≥ ‖Rir‖ − ‖RiQh(t)‖r

≥ ‖Rir‖ − ‖RiQ‖θ(t)

we see that
‖Rir‖ − ‖RiQ‖θ(t)

‖RiWfi‖
≤ |κi| ≤

‖Rir‖+ ‖RiQ‖θ(t)
‖RiWfi‖

(3.23)

assuming that the noise h(t) is small enough so that ‖Rir‖ − ‖RiQ‖(βe−α(t−t0) + ε) > 0. The

bounds on |κi| are converging at the same rate of the observer to the true value of κi ± ‖RiQ‖
‖RiWfi‖ε.

Note, this method of estimating κ is also applicable in the case where there is only one fault

that is scaled by κ, not just linear combinations of two or more faults.

3.4 Disturbance Attenuation

Normal plant uncertainties are a major issue that must be addressed during FDI. Disturbances

can cause false alarms, failed fault detection, and hinder fault identification. One popular ap-

proach for ODE and DAE FDI is sliding mode control [47]. Other approaches include the

use of Laplace transformations to compute transfer function matrices [69] and unknown in-

put observers [26]. Generally, these approaches require the disturbance to affect the differential

equation in a manner that is linearly independent to the fault in some sense. To clarify, consider

the following LTI DAE with disturbance d(t) and faults fp and fs

Ex′ = −Fx+Bu+Dffp +Ddd (3.24a)

y = Hx+Du+ fs. (3.24b)

One necessary assumption to decouple the disturbance using the above approaches is the rank

criteria, rank [Df Dd] > max{rank(Df ), rank(Dd)}. This condition may be too restrictive in

some cases. Therefore, in this section we aim to develop methods even if this condition is not

met.

Instead, we assume that the disturbances occur in a frequency bandwidth that can be

isolated from the frequencies of the faults. The faults under consideration in this paper have low

frequency; therefore, we will assume that the disturbances occur at a higher frequency than the

faults. High frequency disturbances occur routinely in many industrial and mechanical systems.
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There exist numerous causes: imperfect functional performance of sensors used to measure

actual load parameters; influence of pulsed power equipment; vibrations caused by imbalance,

misalignment, resonance, defective bearings, reciprocating forces, etc; and aerodynamic noise

caused by turbulence, acoustic modes, pressure pulsations, etc.

High frequency disturbances affecting DAE problems are more destructive than in the ODE

case since derivatives of the disturbance will be involved in the solution of the DAE. Therefore,

even very low amplitude, high frequency noise can be detrimental to FDI.

We consider (3.1a) with an unknown high frequency disturbance d(t). That is fp+d in place

of fp. In terms of (3.24a) we have Df = Dd = I and the rank criteria does not hold. Recall the

discrete Fourier transform (DFT) converts a finite list of equally spaced samples of a function

into a list of coefficients ordered by their frequencies [9]. Let ŷk = (FN{y})k denote the DFT of

y. Then ŷk is a complex sequence with N terms where N is the number of samples of y. If y is

our residual signal, we filter it by setting ŷk = 0 for those k that lie in the frequency bandwidth

of our disturbance. ŷk corresponds to the frequency of k/N cycles per sample. If the sampling

frequency (number of samples taken per time unit) is Fs, then ŷk corresponds to the frequency

kFs/N cycles per time unit. Hence, if t is seconds and the disturbances are known to occur

between 30 − 40Hz, we set ŷk = 0 for 30N/Fs ≤ k ≤ 40N/Fs. Finally, to recover the filtered

signal we apply the inverse DFT, F−1
N , to the adjusted coefficients ŷk.

Let w = e2πi/N . The computation of the DFT is equivalent to the matrix computation

FN{y} = FNy where y = (y0, . . . , yN−1)T and the j, k entry of FN is w(j−1)(k−1) for j, k from 1

to N . Note that FN is a symmetric matrix. Since matrix multiplication is a linear process and

FN maps N -periodic sequences to N -periodic sequences, FN is a linear operator.

The procedure outlined in this section does not affect our previous results on detection and

identification. Detection is a residual threshold comparison. If the fault does not contain the

frequencies that are filtered, detection times will not significantly change.

For identification it suffices to show that the order in which we apply the DFT and the

identification filters Ri does not matter. Suppose we have N samples of our residual vector r(t)

at equally spaced temporal nodes tj . Let R be the matrix defined by (R)jk = rk(tj). Consider

applying FN to R for each column k. The filtering process, setting DFT coefficients equal to

zero that correspond to specified frequencies, is equivalent to setting rows of FN equal to zero.

Let FN0 be this modified matrix. Therefore, using the DFT to filter a specified bandwidth

and then applying a fault identification filter Ri is equivalent to the matrix multiplication

Ri(
1
NFNFN0R)T = 1

NRiR
TFN0FN . On the other hand, if we first apply Ri and then the DFT

we get 1
NFnFN0 (RiR)T = 1

NFNFN0R
TRTi , the transpose of the former.
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3.5 Algorithms

In this section we extract the actual algorithms needed to carry out the procedures described in

the previous section. The algorithms can be used concurrently, in real time, to perform robust

FDI.
1. Use Prop. 3.2.1 to choose a problem specific threshold vector, τ , based on the faults

under consideration.

2. Given (3.1), compute its completion, (3.2). Verify the chosen Λ creates a detectable pair

{Â,H}.

3. Find L such that Â− LH has desired stable eigenvalues.

4. Integrate (3.3a) using a differential equation solver, e.g. ode45 in Matlab.

5. Calculate r(t) = [rT1 (t) rT2 (t)]T according to (3.5) at each integration step.

6. At each step in the integration, if the residual r > τ in any component, then filter the

residual using the following steps:
(a) Set an interval on which the residual is to be filtered. That is, let δ1, δ2 > 0, t be

the current time, and t0 < t such that every point in the window [t0 − δ1 t0 + δ2] is

less than t.

(b) Interpolate the residual on this window at equally spaced nodes.

(c) Find the DFT of this residual.

(d) Set the coefficients that correspond to unwanted frequencies to zero.

(e) Apply the inverse DFT to the filtered residual.

7. If the filtered residual still violates the threshold, then declare a fault has occurred.

Algorithm 3.1: Automated robust fault detection.

In the above algorithm, we apply the DFT on an interval that lies before t. The reason for

allowing a buffer before t is because of numerical instability of the DFT at the boundary. Also,

we do not begin the intervals at t = 0 for computational efficiency.

In the following algorithm, Proposition 3.3.3 is used below as an illustration; however, any

of the identification propositions in the paper may be used.
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1. Choose faults {f1 . . . fr} to be identified and verify that the hypotheses of Prop. 3.3.3

are met.

2. Calculate a reasonable noise bound as in (3.6).

3. Calculate Ri offline, according to Prop. 3.3.3 for each fault, fi, the user wishes to

identify.

4. Perform steps 2-6 in Algorithm 3.1. The threshold comparison in step 6 is optional.

5. At each integration step after the fault has occurred, or, if not using a threshold, then at

every integration step, compute ‖Rir‖. Fault fi has occurred if the norm is greater than

0 (or greater than numerical and measurement error).

6. Calculate upper and lower bounds for κi using (3.23).

Algorithm 3.2: Fault identification and κi estimation.

3.6 Circuit Example

We shall consider the circuit shown in Figure 3.1 which is a variation of one from [63] and is

modeled by

C1e
′
1 − ir1 + ir2 − iv = fp1 (3.25a)

C2e
′
2 + il + ir1 = fp2 (3.25b)

Li′l − e2 = fp3 (3.25c)

−e1 + e2 −R1ir1 = fp4 (3.25d)

e1 −R2ir2 = fp5 (3.25e)

e1 = −V + fp6 , (3.25f)

a linear, index k = 2 DAE. The state is x = [e1 e2 il ir1 ir2 iv]
T and the control is u = V . fpj is

the jth component of the process fault. For purposes of illustration we take C1 = 3, C2 = 2, L =

2, R1 = 4, R2 = 5. We assume V = 4, that is, there is constant voltage source. System (3.25) is

LTI and of the form

Ex′ + Fx = Bu+ fp, (3.26)

where

E = diag(3, 2, 2, 0, 0, 0), B =
[
0 0 0 0 0 −1

]T
,
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F =



0 0 0 −1 1 −1

0 0 1 1 0 0

0 −1 0 0 0 0

−1 1 0 −4 0 0

1 0 0 0 −2 0

1 0 0 0 0 0


.

In addition, we have the output equation

y = Hx+ fs, H =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 .

Recall, fs is a sensor fault. We let fsi denote components of the sensor fault.

3.6.1 Forming the Completion

Applying the differential operator D = d/dt + Λ, where Λ is a diagonal matrix, Λ = diag{1.5,
1.2, 1.6, 1.8, 1.9, 2}, to (3.26) k times yields the derivative array equations

Ez + Fx = Bū+Df f̄p, (3.27)

where

ū =

V0
0

 , Df =

 I 0 0

Λ I 0

Λ2 2Λ I

 , f̄p =

fpf ′p
f ′′p

 .

R (t)
1

i  (t)r
1

e (t)
2

e (t)
1

C (t) C (t)
2 1

i  (t)r
2

R (t)
2

i  (t)c
1

i  (t)c
2

i (t)
i (t)

v

l

L(t) V(t)
+

_

Ref

Figure 3.1: Circuit Example from [63].
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As with (2.12) we have

z =

[
x′

∗

]
= −E†Fx+ E†Bū+ E†Df f̄p.

Let Â, B̂, and Ĝ be the first n rows of −E†F , E†B, and E†Df , respectively. Then x′ = Âx+B̂ū+

Ĝf̄p is the completion. Let Θ be a maximum rank, left annihilator of E . Then, left multiplication

of Θ on (3.27) yields the constraints 0 = −ΘFx+ ΘBū+ ΘDf f̄p. Define G, B̃, G̃ as −ΘF , ΘB,

and ΘDf , respectively. Therefore, the stabilized completion with constraints is

x′ = Âx+ B̂ū+ Ĝf̄p

0 = Gx+ B̃ū+ G̃f̄p.

The annihilator can be taken as Θ = [0 I]UT , where U is found via the singular value

decomposition, E = U

[
Σ 0

0 0

]
V T . The zero block in Θ is ((k + 1)n− p× p) and the identity

has (k + 1)n− p rows and columns where k is the index of the DAE, n is the dimension of the

state x, and p = rank(E).

3.6.2 Fault Detection

The standard observer (3.3) is used. A feedback L that stabilizes Â− LH is

L =



0.2854 0.0000 2.7963 0.0832

1.4102 −0.5000 −0.5164 −0.0037

0.5000 2.0000 −0.0000 0.0000

0.3191 −0.1250 −0.8612 −0.0272

−0.1320 0.0000 14.5869 −0.5919

−3.3224 0.1250 −0.7633 −1.3240


which places eigenvalues at {−1,−1.8,−1.6,−1.4,−1.2, −2}. Eigenvalues were chosen to be

distinct and asymptotically stable. The initial conditions used in the simulations are x(0), x̂(0)

given by [−V, 2,−2C2− V+2
R1

, V+2
R1

, −VR2
, −V+2

R1
− V
R2

], and [−V, 1, −C2− V+1
R1

, V+1
R1

, −VR2
, −V+1

R1
−

V
R2

], respectively.

When a sensor fault is present, it is often possible to detect it almost immediately since it

is directly connected to the output. Thus while they are important, they are easier to detect.

We will focus on process faults.

In practice, thresholds and other parameter values are taken with specific design issues

in mind. Here our purpose is just to discuss our results and illustrate them. Accordingly, no

physical significance should be attached to the specific values chosen.
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Figure 3.2: Comparison between actual and theoretical detection times, undetectable faults,
and the theoretical undetectable fault bound.

As a first example of a fault with zeros in the sensor fault positions we take

f0 = κg(t)
[

1 1 1 1 1 1 | 0 0 0 0
]T
,

where the entries of f0 include process and sensor fault components as in Section 3.3 for com-

putational convenience. Let t0 = t1 = 8 so that the fault is piecewise constant. Figures 3.2 and

3.3 display the results of the simulation using a large range of κ values. The absolute detection

time error in Figure 3.3 is th− ta, where th is the theoretical detection time bound and ta is the

actual detection time from the simulation. The theoretical undetectable bound in this example

accurately predicts detectable and undetectable values of κ and the theoretical bound on the

time of detection is valid.

Figure 3.4 shows the residual for a given κ resulting in detection at the time corresponding

to the dashed line.

In some scenarios, the fault may intensify in a smooth manner until it reaches its max-

imum/minimum, where it remains. The time varying nature of ramp faults require nonzero

derivatives of f when DAEs are used. To understand the implications of this in terms of our

example, we rewrite (3.25) into differential (3.28a)–(3.28b) and algebraic equations (3.28c)–

(3.28f):

C2e
′
2 + il + ir1 = fp2 (3.28a)

Li′l − e2 = fp1 (3.28b)

−C1V
′ − ir1 + ir2 − iv = fp1 − C1f

′
p6 (3.28c)

−e1 + e2 −R1ir1 = fp4 (3.28d)
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Figure 3.3: Absolute detection time error.
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Figure 3.4: First component of the residual r1 for κ = 117.

e1 −R2ir2 = fp5 (3.28e)

e1 = −V + fp6 . (3.28f)

Equation (3.28c) is a result of differentiating (3.28f) and substituting the result into (3.25a).

Although the completion includes f̄p, a vector that incorporates the derivatives of fp, (3.28)

shows that only f ′p6 affects the solution. Therefore ramp faults that contain a nonzero component

for f ′p6 cause the system to respond differently in terms of residual behavior than those with

f ′p6 components equal to zero. The difference in behavior is more pronounced as |f ′p6 | increases.

Hence, if the ramp up time is very short, some residuals observe a spike corresponding to the

time when the fault is intensifying.
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Three ramp faults are considered:

f1 = κg(t)
[
−0.56 1.52 −0.69 0.61 0.37 0.63 | 1.06 0.35 0.17 −0.75

]T
f2 = κg(t)

[
0 0 0 0 0 1 | 0 0 0 0

]T
f3 = κg(t)

[
0.5774 0 0 0.5774 0.5774 0 | 0 0 0 0

]T
.

The fault begins at t0 = 8 and reaches its maximum, in the norm sense, at t1 = t0 + tr, where

it remains. tr is the ramp up time. Figures involving f1 were generated with κ = 57, f2 with

κ = 72, 801, and f3 with κ = 5, 026. Figures 3.5 – 3.10 display results from the simulations.

Figure 3.5 is a good example of a spike that can occur due to derivative information from a

fault. Compare this to Figure 3.6 which exhibits no spike. The spike occurs because f2 contains

a nonzero value for fp6 , the only fault component whose derivative information affects the

solution.
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Figure 3.5: First component of r1 for fault f2.

The second component of r1, r12 , is unaffected by the fault in both cases. This agrees with

the theory because r12 = il − îl + fs2 with fs2 = 0. Therefore, only faults that affect il result in

a nonzero r12 . Equation (3.28) implies that only fs and fp3 directly affect il. Simulations for f3

and f4 show the indicated residual quickly going to zero (see Fig. 3.7).

If the ramp time is shortened the residuals do not necessarily converge to their piecewise

counterparts in a uniform sense. However residuals generated by process faults are very close to

piecewise residuals as long as f ′p6 does not have much influence in that component. As shown

in Figures 3.8 – 3.10, even if the fault has a nonzero entry in fp6 , the presence of a transient

effect is dependent on the sensitivity of that particular residual to fp6 . Over the long term, both

piecewise and ramp faults generate equal residuals.
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Figure 3.6: First component of r1 for fault f3.
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Figure 3.7: No response in second component of r1 for both f3 and f4.
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Figure 3.8: All components of r2 for piecewise constant fault f2.
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Figure 3.9: All components of r2 for ramp fault f2 with ramp time 1/8.

0 5 10 15 20
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

5

Time

R
es

id
ua

l V
al

ue

 

 

1st Component of r2

2nd Component of r2

3rd Component of r2

4th Component of r2

Figure 3.10: All components of r2 for ramp fault f2 with ramp time 4.

The addition of derivative information by implementing a ramp fault has little affect on

the detection times for f1 and f3. An example plot analogous to Figure 3.2 is given for f3 in

Figure 3.11. However, for f2 the fault is always immediately detected due to the large transient

response. Figure 3.12 illustrates this effect for f2.

Transients can also delay the detection time of a fault. This scenario is encountered when

the transient portion of the residual does not break the threshold, but subsequently the residual

crosses the threshold in a direction opposite to the transient. For example, consider Figure 3.13

which graphs the first component of r1 where f2 is the fault with κ = 100, 000, and tr = 84.

By increasing the ramp up time, a situation is created such that the transient effect is not

great enough to detect a fault. Moreover, since the long term behavior of r11 is negative and

the transient reaction is positive, it takes longer for the residual to cross the threshold than it

would have if there was no transient effect.
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Figure 3.11: Comparison between actual and theoretical detection time, undetectable faults,
and the theoretical undetectable fault bound for f3.
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Figure 3.12: Comparison between actual and theoretical detection time, undetectable faults,
and the theoretical undetectable fault bound for f2.

3.6.3 Fault Identification

We consider a fault library {f1, f2, f3} where the fTi = κig(t)f0i are given by

fT01 =
[

1 0 0 0 0 0 1 0 0 0
]
, κ1 = 5 (3.29a)

fT02 =
[

2 1 0 −3 0 0 1 2 3 4
]
, κ2 = 1 (3.29b)

fT03 =
[

0 0 3 0 0 0 0 0 0 0
]
, κ3 = 30. (3.29c)
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Figure 3.13: First component of r1 with κ = 105 and γ2.

Defining Mi =
[
(Wv1i) (Wv2i) (Wv3i)

]T
and letting Ri = null(Mi)

T , we see that the as-

sumptions of Prop. 3.3.2 are met.
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Figure 3.14: Behavior of filters constructed using Prop. 3.3.2 for f1.

The filters are applied to the residuals ri =

[
r1i

r2i

]
, for each fault fi. According to (3.10) and

Prop. 3.3.2,

Rirj =


Ri

 H
−G

h(t) if i 6= j

RiWfj +Ri

 H
−G

h(t) if i = j.

Figures 3.14–3.16 show the filters properly identifying each fault. For example, notice that
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Figure 3.15: Behavior of filters constructed using Prop. 3.3.2 for f2.
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Figure 3.16: Behavior of filters constructed using Prop. 3.3.2 for f3.

in Figure 3.14, filter 1, which depicts ‖R1r1‖, remains nonzero for all t while the other two

filters go to zero as t increases. Notice the filters that go to zero observe jumps before behaving

in their asymptotic manner. This is due to disturbances including the contamination from the

exponentially decaying part of the solution to (3.4a).

Proposition 3.3.3 gives modified filters that not only filter fault signals, but also the noise,

h(t), as well. The hypothesis of Prop. 3.3.3 is not met for i = 3, so only R1 and R2 can be

created. This illustrates a difficulty in using the procedure in Prop. 3.3.3. Including Q in Mi

further restricts the number of faults that can be identified. This is the price of forcing Ri to

filter the noise as well as the fault signal. Figure 3.17 shows the filter properly isolating fault

f1. The graph for f2 is omitted for space reasons but is similar with about three times the

magnitude. Notice that in contrast to the filters in the previous example, the filters here do not
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Figure 3.17: Behavior of filters constructed using Prop. 3.3.3 for f1.

observe jumps before behaving in their asymptotic manner because the noise is filtered.

3.6.4 Linear Combination of Faults

We consider the circuit example again to simulate the effectiveness of the procedures from the

section on linear combinations of faults. We use the faults in (3.29). We will consider one ramp

fault, F = κ1f1 + κ2f2, a linear combination of two faults from the fault library. Let κ1 = 5,

κ2 = 1, t0 = 8 and t1 = 8.125. Figure 3.18 shows that filters 1 and 2 are nonzero while filter 3

goes to zero as the noise h(t) goes to zero. This correctly implies that f1 and f2 are involved

in the linear combination while f3 is not. Figure 3.19 displays accurate bounds on the estimate

for κ1 and κ2.
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Figure 3.18: Behavior of filters applied to a linear combination f(t) = κ1f1(t) + κ2f2(t).
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Figure 3.19: Upper and lower bounds for κi.
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Figure 3.20: Residual before (blue) after (green) disturbance filtering.

3.6.5 Disturbance Filter

We simulate three disturbances, d1(t) = .01 sin(20(t − 1)2π), d2(t) = .01 cos(25(t − 1)2π), and

d3(t) = .01 sin(30(t− 1)2π) and filter all frequencies higher than 19 cycles per time unit (TU)

using a sampling frequency of 100 samples/TU. The small disturbances have derivatives that

are very large affecting the residuals, as shown in Fig. 3.20. We also include the fault f2(t) from
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Figure 3.21: Fault identification filters applied to filtered residual.

(3.29) with κ = 1. We see that the residual is properly filtered and the fault is still visible. Let

fi(t) be defined by (3.29). One Ri for each fault is created according to Prop. 3.3.2. The Ri are

applied to the residuals after the noise is eliminated. Figure 3.21 shows f2 properly identified.

In practice, the residual must be filtered in close to real time. At each time t, it is best

to apply the DFT in a given interval [t − δ t + δ] rather than the whole interval [0 t] for

computational efficiency. To allow for inaccuracies near the endpoints of the interval, we declare

detection if the filtered residual exceeds the threshold at some time in a subinterval of [t−δ t+δ].
The optimal choice of δ and the size of the subinterval are important questions for future work.

3.7 Conclusions for Chapter 3

In this chapter, we examined observer based fault detection for systems modeled by differential

algebraic equations. We used a combination of the stabilized least squares completion method

for DAEs and the Luenberger observer. By observing actual outputs from the real system and

comparing them to outputs computed from the observer, we created residuals whose difference

from zero indicated the presence of faults. Necessary and sufficient conditions were given for

the creation of linear filters that identify faults by giving the residuals unidirectional properties.

A frequency filtering technique was employed to make our techniques robust with respect to

disturbances by attenuating such factors.

In Section 3.5, we introduced a pair of algorithms for robust fault detection and identifica-

tion. They can be implemented concurrently or sequentially depending on user preference. Both

constructing the fault library and determining the frequency bandwidth where disturbances will

lie are problem dependent and may not be applicable in some instances.

45



Chapter 4

Auxiliary Signal Design

Chapter 3 presents the observer-based approach for FDI in DAEs. This approach fits into the

passive category of FDI approaches because it does not act on the system to expose faults. As

stated in the introduction, one downside to passive detection is that faults may be masked (by

controllers) until they become severe or are not detectable at all until the faulty component

becomes necessary for operation (e.g. brakes on a car). An alternative to passive approaches are

active approaches: the problem is to design an auxiliary signal exclusively for fault detection

and inject it into the system. While passive approaches are usually implemented in an ongoing

manner, active tests are either done over short time intervals or over a series of short time

intervals. The aim of the auxiliary signal is to facilitate detection, usually by forcing the input-

output sets for the nominal and faulty models to be disjoint. An additional goal in auxiliary

signal design is to find the smallest such signal that guarantees detection, thereby limiting the

effect of the signal on the system. For example, to check the brakes on a car, we would rather

tap gently on the brake pedal instead of slam it into the floor. Active detection has been studied

extensively for ODE systems in [20, 50, 51, 60].

In this chapter, we consider the analogous auxiliary signal design problem for fault detec-

tion in systems that can be modeled by linear DAEs. Since DAEs are singular, the standard

techniques for solving this problem in the ODE case are not directly applicable to the DAE

case. Hence, this paper explores a previously uninvestigated area of active fault detection. It is

important to note that we do not assume our models are index one DAEs as is often done in

the literature. We allow for higher index DAE.

The main contribution of this chapter, given in Section 4.1, is a method to determine the

optimal inputs for guaranteed active fault diagnosis by solving a bi-level optimization problem in

the case where the constraint dynamics form a linear time-invariant DAE. The outer minimum

determines the signal of minimum norm such that the inner problem is satisfied. The inner

problem guarantees that the inputs being considered are proper (i.e., inputs guarantee the

46



output measurements are consistent with at most one model). A sufficient condition for a

minimal, proper signal to exist is given in Section 4.1.4.

In Section 4.2, we develop an efficient test to correctly identify faulty models given an output.

The tests are efficient enough to be done in real time with sensor data. Section 4.3 summarizes

the previous sections and reduces them into succinct algorithms for convenient implementation.

Section 4.4 provides numerical examples and also addresses numerical concerns. The extension

to model uncertainty is discussed in Section 4.6. Section 4.7 explores a subtlety, namely a class

of problems where no minimal proper signal will exist. We modify the approach of Section 4.1

and develop a related but alternate algorithm that constructs a nearly minimal proper signal

for this class. In Section 4.8, we explore the idea of injecting the test signal and observing the

system on possibly overlapping but distinct intervals and find that at times, there is a definite

advantage of doing so. Finally, conclusions are given in Section 4.9.

4.1 Minimal Auxiliary Signal

To simplify the discussion, we assume there is only one possible faulty system. Extensions to

cases with multiple faulty models can be handled by performing a sequence of tests with each

test designed to isolate one faulty case of interest. Alternatively, in some cases one can design

a single test signal to handle all of the faulty cases simultaneously.

It is also assumed that both the nominal and the faulty system can be modeled by linear

time invariant differential-algebraic equations.

4.1.1 Problem Formulation

The task at hand is to construct a test signal that will let us identify which model is true, the

nominal one or the faulty one. Assume the test signal is to be applied over the interval [0, T ],

the observation window is the same as the test interval, and the two models are of the form

Eix
′
i + Fixi = Biu+Miµi (4.1a)

yi = Cixi +Diu+Niηi. (4.1b)

i = 0 is the normal model and i = 1 is the faulty model. u is the test signal and the number of

outputs is the same for both models. The matrices Ei, Fi, Bi,Mi, Ci, Di, and Ni are all constant.

Ei is singular in at least one of the two models so (4.1) is a singular system. ηi and µi are additive

noise or model uncertainty terms. The initial conditions, xi(0), are also uncertain. We assume

Mi and Ni are invertible, allowing noise into all equations, and we define the noise measure for
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model i as

Γ2
i (xi(0), ηi, µi) =

1

2
xi(0)TP0ixi(0) +

1

2

∫ T

0
ηTi Qiηi + µTi Riµi dt,

where P0i ≥ 0, Qi > 0, Ri > 0. µi and ηi are piecewise smooth; thus, they represent exogenous

disturbances, modeling error, and biases as opposed to stochastic effects. The weighting matrices

Qi and Ri can be made into identity matrices by letting µ̃i = R
− 1

2
i µi and η̃i = Q

− 1
2

i ηi. This

will simplify the remaining formulas in this section. The new coefficients of µi, ηi in (4.1) are

now MiR
− 1

2
i and NiQ

− 1
2

i , respectively, however, these new matrices are renamed Mi and Ni for

notational convenience in the rest of this paper. Thus, assume the noise measure is already in

the form

Γ2
i (xi(0), ηi, µi) =

1

2
xi(0)TP0ixi(0) +

1

2

∫ T

0
‖ηi‖2 + ‖µi‖2 dt. (4.2)

There are several ways to measure the total amount of uncertainty. Two previously used

total noise measures are

Γ∞(u) = max{Γ0, Γ1}

ΓL2(u) =
√

Γ2
0 + Γ2

1.

Γ∞ was used in [20] and a number of related papers. Γ∞ and ΓL2 each has its advantages.

Generally it is easier to find the test signal with ΓL2 and easier to perform the tests with Γ∞.

We will use a combination of the two, but initially use ΓL2 [2, 25]. Note that

Γ∞ ≤ ΓL2 ≤
√

2 Γ∞. (4.3)

A proper test signal is one for which the same output cannot come from both models if the

noise bound holds. Therefore, a proper test signal found using one uncertainty bound could be

used with the other uncertainty bound modulo a 41.4% increase (or decrease) in magnitude of

the test signal. For the remainder of this section let Γ = ΓL2 . Assume that the uncertainty is

bounded by Γ < γ, where γ > 0.

As noted, a test signal is known as proper if it is not possible to get the same output from

both models given the uncertainty bound. Alternatively, u is proper if the same output holding

for both models implies the noise required to created those outputs exceeds the bound.

Definition 4.1.1. A signal, u, is known as proper if y1 − y0 = 0 implies

min
xi(0), µi, ηi
i=0, 1

Γ > γ.
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For a given u, let

φ(u) = min
xi(0),µi,ηi
i=0,1

Γ, such that

E0x
′
0 + F0x0 = B0u+M0µ0

E1x
′
1 + F1x1 = B1u+M1µ1

0 = y0 − y1.

Then u is proper if φ(u) ≥ γ and minimal proper if u is the smallest u such that φ(u) ≥ γ. The

control, u, enters the DAE in an affine way so if u is proper, then any larger multiple of u will

also be proper. There are several ways to measure the size of u. The one used here is the L2

norm,

‖u‖2L2 =

∫ T

0
uTu dτ. (4.4)

Another common measure in the literature is the amount that u disturbs the performance of

the normal system during the test.

The problem is summarized below:

Problem 4.1.1.

Find J = inf
u
||u||2 (4.5a)

s.t

inf
xi(0),µi,ηi
i=0,1

Γ2(u) ≥ γ2 (4.5b)

E0x
′
0 + F0x0 = B0u+M0µ0 (4.5c)

E1x
′
1 + F1x1 = B1u+M1µ1 (4.5d)

0 = y0 − y1. (4.5e)

The solution of Problem 4.1.1 is known as the minimal proper u with respect to the L2

bound. Frequently, the minimal proper u is unique up to a factor of negative one. However,

examples can be constructed where it is not unique.
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4.1.2 Necessary Conditions and Problem Reformulation

Necessary conditions for the inner minimum can be obtained by performing linear time invariant

coordinate changes on the system. First, compute the SVD of Ei

Ei = Ui

[
Σi 0

0 0

]
V T
i

and let

Σ̃i =

[
Σ−1
i 0

0 I

]
Ui.

Next, let

Σ̃iU
T
i FiVi =

[
Ai11 Ai12

Ai21 Ai22

]
(4.6)

where Ai11 is a square matrix with size equal to the size of Σi. Σ̃iU
T
i Mi is invertible, so an

orthogonal Wi exists such that

Σ̃iU
T
i MiWi =

[
Mi11 Mi12

0 Mi22

]
, (4.7)

where Mi11 and Mi22 are invertible and Mi11 is the same size as Σi. Hence, by pre-multiplying

(4.5c) and (4.5d) by Σ̃iU
T
i and performing the change of coordinates

µi = Wi

[
µi1

µi2

]
, xi = Vi

[
xi1

xi2

]
, (4.8)

system (4.5c)–(4.5e) becomes

x′01 = A011x01 +A012x02 +B01u+M011µ01 +M012µ02 (4.9a)

0 = A021x01 +A022x02 +B02u+M022µ02 (4.9b)

x′11 = A111x11 +A112x12 +B11u+M111µ11 +M112µ12 (4.9c)

0 = A121x11 +A122x12 +B12u+M122µ12 (4.9d)

0 = C01x01 + C02x02 +D0u+N0η0

− (C11x11 + C12x12 +D1u+N1η1) (4.9e)
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with noise measure

Γ2
i (xi1(0), xi2(0), ηi, µi) =

1

2

[
xi1(0)

xi2(0)

]T
V T
i P0iVi

[
xi1(0)

xi2(0)

]
+

1

2

∫ T

0
‖ηi‖2 + ‖µi‖2 dt,

where [
Ci1 Ci2

]
= CiVi (4.10a)[

Bi1

Bi2

]
= Σ̃UTi Bi. (4.10b)

The partitions are conformal with the coordinate change on xi.

Unlike in most of the literature, here Ai22 are not assumed to be nonsingular. That is, it is

not assumed that the original DAE models are index one. Hence, Ai22 may have a nontrivial

null space. Ai12 may also have a nontrivial null space. If xi2 ∈ N(Ai22)∩N(Ai12), then xi2 does

not affect the dynamics or the constraints and is a free control variable. Since this may cause

problems for the optimizer, we will assume that N(Ai22) ∩N(Ai12) = {0}.
In the initial model (4.1), x and the µ, η variables played very different roles. However,

in (4.9), x02, x12, µij , and ηi all play a similar role in acting as what are called algebraic

variables as opposed to differential variables. Algebraic variables include both controls and

non-differentiated state variables.

Uncertainty on the initial condition of any of the algebraic variables is a situation that

can lead to numerical problems during optimization. Generally speaking, optimization software

does not allow implementation of such problems (e.g. GPOPS II). Our solution is to find

P̃i =

[
P̂i 0

0 0

]
(4.11a)

such that P̃i ≤ V T
i P0iVi (4.11b)

P̂i > 0 (4.11c)

for each model. Then we get a more conservative noise measure

Γ2
i (xi1(0), xi2(0), ηi, µi) =

1

2
xTi1(0)P̂ixi1(0) +

1

2

∫ T

0
‖ηi‖2 + ‖µi‖2 dt.

Hence, the u found using this measure will still be proper for the original measure.
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Let ζ1 =
[
µT02 µT12 ηT0

]T
and ζ2 =

[
µT01 µT11 ηT1

]T
. Then (4.9) has the form

z′1 = Âz1 +
[
D̂ N̂

] [z2

ζ1

]
+ B̂u+ M̂ζ2 (4.12a)

0 = Ãz1 +
[
D̃ Ñ

] [z2

ζ1

]
+ B̃u+ M̃ζ2, (4.12b)

where

Â =

[
A011 0

0 A111

]
, D̂ =

[
A012 0

0 A112

]
, N̂ =

[
M012 0 0

0 M112 0

]
(4.13a)

B̂ =

[
B01

B11

]
, M̂ =

[
M011 0 0

0 M111 0

]
, Ã =

A021 0

0 A121

C01 −C11

 (4.13b)

D̃ =

A022 0

0 A122

C02 −C12

 , B̃ =

 B02

B12

D0 −D1

 , M̃ =

0 0 0

0 0 0

0 0 −N1

 (4.13c)

z1 =

[
x01

x11

]
, z2 =

[
x02

x12

]
, Ñ =

M022 0 0

0 M122 0

0 0 N0

 . (4.13d)

[
D̃ Ñ

]
has full row rank and Ñ is invertible. Assume D̃ has full column rank. Then, we

can pick a subset of the columns of Ñ , call them Ñ1, so that
[
D̃ Ñ1

]
is invertible. Let Ñ2

denote the remaining columns. Let ζ1 =
[
ζT11 ζT12

]T
be a conformal partition. Then solving for[

zT2 ζT11

]T
yields

−

[
z2

ζ11

]
=
[
D̃ Ñ1

]−1 (
Ãz1 + Ñ2ζ12 + B̃u+ M̃ζ2

)
. (4.14)

Let R̂ =
[
D̂ N̂1

]
, where N̂1 are the columns of N̂ that are conformal to the selection made
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for Ñ1. Eliminating

[
z2

ζ11

]
from the system, (4.12) can be rewritten as

z′1 = Az1 +Bu+Nζ12 +Mζ2,

where A = Â− R̂
[
D̃ Ñ1

]−1
Ã and B,N,M are defined in the analogous way.

The total uncertainty using the L2 noise measure is

Γ2 =
1

2

(
zT1 (0)

[
P̂0 0

0 P̂1

]
z1(0) +

∫ T

0
|ζ11‖2 + ‖ζ12‖2 + ‖ζ2‖2 dt

)
.

ζ11 has been solved for in terms of the other variables. Let Ã0 denote the bottom half of the

matrix
[
D̃ Ñ1

]−1
Ã where the partition is conformal with

[
zT2 ζT11

]
and do the same for the

other matrices in (4.14). Then,

Γ2 =
1

2
zT1 (0)P0z1(0) +

1

2

∫ T

0
zT1 Ã

T
0 Ã0z1 + zT1 Ã

T
0 G̃0ζ12 + zT1 Ã

T
0 B̃0u

+ zT1 Ã
T
0 M̃0ζ2 + ζT12G̃

T
0 Ã0z1 + ζT12(I + G̃T0 G̃0)ζ12 + ζT12G̃

T
0 B̃0u

+ ζT12G̃
T
0 M̃0ζ2 + uT B̃T

0 Ã0z1 + uT B̃T
0 G̃0ζ12 + uT B̃T

0 B̃0u

+ uT B̃T
0 M̃0ζ2 + ζT2 M̃

T
0 Ã0z1 + ζT2 M̃

T
0 G̃0ζ12 + ζT2 M̃

T
0 B̃0u

+ ζT2 (I + M̃T
0 M̃0)ζ2 dt, (4.15)

where

P0 =

[
P̂0 0

0 P̂1

]
. (4.16)

Minimizing Γ2 yields the same solution as minimizing Γ so the right-hand side of (4.15) can

be minimized directly. Let I(z1, ζ12, ζ2) denote the quadratic integrand in (4.15). Then the

Hamiltonian for this inner problem can be defined by

H(z1, ζ12, ζ2) =
1

2
I(z1, ζ12, ζ2) + λT (Az1 +Bu+Gζ12 +Mζ2),

where λ is the Lagrange multiplier. The necessary conditions for a minimum of Γ are

z′1 = Az1 +Bu+Gζ12 +Mζ2 (4.17a)

−λ′ = ATλ+ ÃT0 Ã0z1 + ÃT0 G̃0ζ12 + ÃT0 B̃0u+ ÃT0 M̃0ζ2 (4.17b)

0 = GTλ+ G̃T0 Ã0z1 + (I + G̃T0 G̃0)ζ12 + G̃T0 B̃0u+ G̃T0 M̃0ζ2 (4.17c)
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0 = MTλ+ M̃T
0 Ã0z1 + M̃T

0 G̃0ζ12 + M̃T
0 B̃0u+ (I + M̃T

0 M̃0)ζ2. (4.17d)

The matrix

[
I + G̃T0 G̃0 G̃T0 M̃0

M̃T
0 G̃0 I + M̃T

0 M̃0

]
is of the form I + LTL which is positive definite inde-

pendent of the entries of L. Hence, it is invertible and using (4.17c)–(4.17d) the noise variables

can be solved for in terms of λ, z1, and u,

−

[
ζ12

ζ2

]
=

[
I + G̃T0 G̃0 G̃T0 M̃0

M̃T
0 G̃0 I + M̃T

0 M̃0

]−1([
GT

MT

]
λ+

[
G̃T0 Ã0

M̃T
0 Ã0

]
z1 +

[
G̃T0 B̃0

M̃T
0 B̃0

]
u

)
. (4.18)

Substituting this equation into (4.17a), (4.17b) and relabeling the coefficient matrices, the

necessary conditions become

z′1 = Az1z1 +Auu+Aλλ

−λ′ = Bz1z1 +Buu+Bλλ,

where

Az1 = A−

[
G

M

]
Q−1

[
G̃T0 Ã0

M̃T
0 Ã0

]

Au = B −

[
G

M

]
Q−1

[
G̃T0 B̃0

M̃T
0 B̃0

]

Aλ = −

[
G

M

]
Q−1

[
GT

MT

]

Bz1 = ÃT0 Ã0 −

[
ÃT0 G̃0

ÃT0 M̃0

]
Q−1

[
G̃T0 Ã0

M̃T
0 Ã0

]

Bu = ÃT0 B̃0 −

[
ÃT0 G̃0

ÃT0 M̃0

]
Q−1

[
G̃T0 B̃0

M̃T
0 B̃0

]

Bλ = AT −

[
ÃT0 G̃0

ÃT0 M̃0

]
Q−1

[
GT

MT

]

Q =

[
I + G̃T0 G̃0 G̃T0 M̃0

M̃T
0 G̃0 I + M̃T

0 M̃0

]
.

The boundary conditions are

(
zT1 (0)P0 + λT (0)

)
dz1(0) = 0

−λT (T )dz1(T ) = 0.
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Since the initial and final states are free, the boundary conditions reduce to

P0z1(0) + λ(0) = 0

λ(T ) = 0.

Using (4.18), the integrand can now be written in terms of z1 and u. Let I(z1, u) denote this

integrand.

The necessary conditions for the inner minimum are taken as constraints when solving the

original problem which is now formulated as an optimization problem. The reformulation is

Problem 4.1.2.

Find J = inf
u
‖u‖2 (4.19a)

such that

z′1 = Az1z1 +Auu+Aλλ (4.19b)

−λ′ = Bz1z1 +Bλλ+Buu (4.19c)

ψ′ =
1

2
I(z1, u) (4.19d)

with the boundary conditions

P0z1(0) + λ(0) = 0 (4.20a)

λ(T ) = 0 (4.20b)

ψ(0) =
1

2
zT1 (0)P0z1(0) (4.20c)

ψ(T ) ≥ γ2. (4.20d)

(4.19d) is a convenient way to compute the cost of the inner minimization and (4.20d) ensures

that u is proper. The coordinate changes necessary to change Problem 4.1.1 into this problem do

not affect the auxiliary signal. Any approximations made were conservative in nature. Therefore

the auxiliary signal found by solving Problem 4.1.2 will be proper for Problem 4.1.1. Since the

latter is easier to solve numerically, we solve it instead.

4.1.3 Assumptions

In the previous section we made two main assumptions. In this section we summarize these and

analyze their implications.

If xi2 ∈ N(Ai22) ∩N(Ai12), then xi2 does not affect the dynamics or the constraints and is
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a free control variable. Since this may cause problems for the optimizer, we assume that

Assumption 1: N(Ai22) ∩N(Ai12) = {0}.

During the reformulation we solve for the algebraic control variables. This requires that

Assumption 2: D̃ has full column rank.

If the models are index one, then Ai22 is invertible for each i. Hence, if the models are both

index one, our assumption on D̃ and our assumption that N(Ai12) ∩ N(Ai22) = {0} are met

automatically.

If at least one of the models is higher index, thenAi22 has a null space for at least one i. In this

case, for D̃ to have full column rank we need rank
[
C02 −C12

]
≥ nullity(A022) + nullity(A122).

Therefore, the number of outputs needed is at least the sum of the dimension of the null

spaces of Ai22. Furthermore, we need
[
C02 −C12

]
to be one-to-one on N(A022)

⊕
N(A122).

Equivalently, we need

N(C02) ∩ N(A022) = {0} (4.21a)

N(C12) ∩ N(A122) = {0} (4.21b)

C02N(A012) ∩ C12N(A122) = {0}. (4.21c)

Essentially (4.21) says that N(A022) and N(A122) are seen by the output y1 − y0.

4.1.4 Existence

We now turn to the existence of the minimal, proper test signal in Problem 4.1.1. Recall, after

a change of coordinates, the optimal control problem is reformulated as

min ‖u‖2L2 , subject to

Γ2(u) = inf
z1, ζ1, ζ2

1

2
zT1 (0)P0z1(0) +

1

2

∫ T

0
‖ζ1‖2 + ‖ζ2‖2 dt ≥ γ2

z′1 = Âz1 +
[
D̂ N̂

] [z2

ζ1

]
+ B̂u+ M̂ζ2

0 = Ãz1 +
[
D̃ Ñ

] [z2

ζ1

]
+ B̃u+ M̃ζ2,
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where the matrices are defined in (4.13). Let Ñ1 be a subset of columns of Ñ so that
[
D̃ Ñ1

]
is invertible. Let Ñ2 be the remaining columns. As before, we can solve for z2 and part of ζ1,

−

[
z2

ζ11

]
=
[
D̃ Ñ1

]−1 (
Ãz1 + Ñ2ζ12 + B̃u+ M̃ζ2

)
.

Let Ãu denote the top r rows of the matrix
[
D̃ Ñ1

]−1
Ã where r is the dimension of z2. Define

Ñu, B̃u, M̃u in the analogous way. Let N̂1, N̂2 be the columns of N̂ that are conformal to the

selection made for Ñ1, Ñ2. This time instead of removing the constraint equation, we eliminate

z2 and rewrite the resulting dynamics and constraints,

z′1 = Az1 +Bu+Mν

0 = Cz1 +Du+Nν,

where

A = Â− D̂Ãu
B = B̂ − D̂B̃u

M =
[
N̂1 N̂2 − D̂Ñu M̂ − D̂M̃u

]
C = Ã− D̃Ãu
D = B̃ − D̃B̃u

N =
[
Ñ1 Ñ2 − D̃Ñu M̃ − D̃M̃u

]
ν =

[
ζT11 ζT12 ζT2

]T
.

The inner optimization problem’s cost can be expressed

Γ2(u) = inf
z1, ν

1

2
zT1 (0)P0z1(0) +

1

2

∫ T

0
‖ν‖2 dt.

So, the problem can be reformulated as

Find J = inf
u
||u||2 (4.22a)

such that

inf
z1, ν

Γ2(u) ≥ γ2 (4.22b)

z′1 = Az1 +Bu+Mν (4.22c)
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0 = Cz1 +Du+Nν. (4.22d)

Without loss of generality, we can let γ = 1. Any other value of γ can be achieved by scaling

the constant matrices appropriately.

Consider a related optimization problem:

δ̄ = max
u6=0

Γ2(u)

‖u‖2
(4.23)

subject to (4.22c) and (4.22d).

Lemma 4.1.1. If (4.23) has a bounded solution that is attained by ũ, then (4.22) has a bounded

solution that is also attained by ũ.

Proof of Lemma 4.1.1. Assume (4.23) holds. First, note that

Γ2(u) ≤ δ̄‖u‖2, for all u (4.24)

and Γ(u) is quadratic in u. The minimum in (4.22) must occur when Γ2(u) = 1 because if

not, then by the quadratic nature of Γ we can find a smaller u that satisfies the constraints by

scaling u appropriately. Let U be the set of all feasible u. Then, by (4.24)

min
u∈U
‖u‖ ≥ 1

δ̄
. (4.25)

On the other hand, suppose the maximum in (4.23) is attained by ũ. Then there exists a

sequence ui → ũ such that Γ2(ui)
‖ui‖2 → δ̄. Since we can scale ui so that Γ2(ui) = 1 for all i we see

that

‖ui‖2 →
1

δ̄
.

But, these ui are also feasible due to the scaling so

min
u∈U
‖u‖2 ≤ ‖ui‖2

for all i. The result is that

min
u∈U
‖u‖2 ≤ 1

δ̄
.

Together with (4.25) this implies

min
u∈U
‖u‖2 =

1

δ̄
.

Therefore, a solution of (4.23) solves (4.22) (and vice versa).

58



Now consider yet another related optimization problem

max
u

(
Γ2(u)− δ‖u‖2

)
(4.26)

subject to (4.22c)-(4.22d) for a positive parameter δ. The solution to the optimization problem

in (4.26) is either ∞ or 0, depending on δ. If the optimal cost is zero, then

δ ≥ Γ2(u)

‖u‖2
, for all u.

Hence, δ̄ is the infimum of all δ’s for which the solution of this optimization problem is unique

and the corresponding cost finite (zero). Theorem 3.3.2 in [20] tells us that (4.26) subject to

(4.22c)-(4.22d) has a bounded, unique solution if

1. The matrices D, R−1
δ satisfy δI −DTR−1

δ D > 0;

2. The Riccati equation

P ′ = (A− SδR−1
δ C)P + P (A− SδR−1

δ C)TQδ − SδR−1
δ STδ , P (0) = P−1

0

has a solution, where[
Qδ Sδ

STδ Rδ

]
=

[
M B

N D

][
I 0

0 −δI

]−1 [
M B

N D

]T
.

Therefore, if the above conditions are met (4.26) has a unique solution for the given δ. Taking

the infimum over the set of δ such that these conditions are met gives δ̄. Therefore, as long as

this set is nonempty, (4.23) and thus, by Lemma 4.1.1, (4.22) has a bounded solution. Since

(4.22) and Problem 4.1.1 are equivalent problems, the latter also has a bounded solution. This

argument is summarized in the following

Theorem 4.1.1. If there exists a δ such that the above conditions 1 and 2 are met, then there

exists a solution to Problem 4.1.1.

The initial condition for the Riccati equation requires P0 to be invertible, but we assumed

P0i ≥ 0 for each i, permitting P0 = 0. While the sufficient condition breaks down in this case,

there are still many problems with P0i = 0 for which there exists a minimal proper signal.

4.1.5 Checking Minimality

Suppose u is the numerical solution to Problem 4.1.2. It is good to be able to verify that it is

proper and close to minimal proper. Suppose u is minimal proper and let u = αu for α > 0.
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Consider the problem of finding J = min ‖y0 − y1‖2 subject to (4.1a) for i = 0, 1 and Γ2 < γ2.

If α > 1, then J > 0 and if 0 < α < 1, then J = 0 should hold. Therefore, one way to check

that u is minimal proper is to solve this problem and verify these conditions.

We proceed as before when we reformulated (4.5) into useful necessary conditions. In par-

ticular, (4.12a) and (4.12b) hold except (4.12b) is missing the last block row because here it is

not assumed that y0 = y1. Thus, we have

z′1 = Âz1 +
[
D̂ N̂

] [z2

ζ1

]
+ B̂u+ M̂ζ2

0 = Āz1 +
[
D̄ N̄

] [z2

ζ1

]
+ B̄u,

where

Â =

[
A011 0

0 A111

]
, D̂ =

[
A012 0

0 A112

]
, N̂ =

[
M012 0 0

0 M112 0

]
, B̂ =

[
B01

B11

]

M̂ =

[
M011 0 0

0 M111 0

]
, Ā =

[
A021 0

0 A121

]
, D̄ =

[
A022 0

0 A122

]
, B̄ =

[
B02

B12

]

z1 =

[
x01

x11

]
, z2 =

[
x02

x12

]
, N̄ =

[
M022 0 0

0 M122 0

]
.

Recall, Mi22 are invertible and ζ1 =
[
µT02 µT12 ηT0

]T
. Therefore, N̄ has an invertible block and

µ02, µ12 can be written explicitly in terms of the other quantities

−

[
µ02

µ12

]
=

[
M022 0

0 M122

]−1 (
Āz1 + D̄z2 + B̄u

)
.

Letting N̂0 =

[
M012 0

0 M112

]
, the dynamics can be rewritten

z′1 =

Â− N̂0

[
M022 0

0 M122

]−1

Ā

 z1 +

D̂ − N̂0

[
M022 0

0 M122

]−1

D̄

 z2

+

B̂ − N̂0

[
M022 0

0 M122

]−1

B̄

u+ M̂ζ2

= Ăz1 + D̆z2 + B̆u+ M̆ζ2
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by defining the matrices Ă, D̆, B̆ and M̆ appropriately. The noise measure is

Γ2 =
1

2
zT1 (0)P0z1(0) +

1

2

∫ T

0
‖η0‖2 + ‖ζ2‖2 +

∥∥∥∥∥
[
µ02

µ12

]∥∥∥∥∥
2

dt.

Therefore, we must find

J = min ‖y1 − y0‖2 (4.27a)

such that

z′1 = Ăz1 + D̆z2 + B̆u+ M̆ζ2 (4.27b)

ψ′ =
1

2

‖η0‖2 + ‖ζ2‖2 +

∥∥∥∥∥
[
µ02

µ12

]∥∥∥∥∥
2
 (4.27c)

ψ(0) =
1

2
z1(0)TP0z1(0), ψ(T ) < γ2 (4.27d)

where yi is given in (4.1b) and u is fixed. If u is proper, then solving this problem should yield

J > 0. If u is minimal proper, then for any smaller u we should confirm J = 0.

4.2 Model Identification

We now turn to the problem of deciding which model is correct based on measurements y. In

[20], Γ∞ is used to measure the noise, meaning that the output from one model is independent

of the noises in the other model. The advantage to this approach is that geometrically one

can think of two independent, potentially overlapping output sets that are made disjoint by

a proper auxiliary signal. This work has avoided using Γ∞ because there are algebraic and

computational complications that arise. Fortunately, due to (4.3), the proper auxiliary signal

found by solving Problem 4.1.2 using the ΓL2 bound is proper for the Γ∞ bound modulo a

41.4% (u =
√

2u) increase in magnitude of the auxiliary signal. It is likely that the scaled signal

will not be minimal proper for the max bound; however, it is still proper so the output sets

are still disjoint. Observations tell us the signal will be close to optimal. If a smaller signal is

desired, note that Section 4 gives an algorithm to improve the optimality.

The realizability of an input-output pair {u, y} by a given model can be tested using a single

inequality test based on the noise bound. In particular, suppose we find

Wi = min
xi(0), ηi, µi

(
1

2
xi1(0)T P̂ixi1(0) +

1

2

∫ T

0
‖ηi‖2 + ‖µi1‖2 + ‖µi2‖2 dt

)
(4.28)

61



subject to the constraints

x′i1 = Ai11xi1 +Ai12xi2 +Bi1u+Mi11µi1 +Mi12µi2 (4.29a)

0 = Ai21xi1 +Ai22xi2 +Bi2u+Mi22µi2 (4.29b)

y = Ci1xi1 + Ci2xi2 +Diu+Niηi, (4.29c)

where the constraints were initially derived in and around (4.9). In the following definition, we

formalize the idea of a realizable model, that is, a model that yields permissable output given

an input.

Definition 4.2.1. Model i is realizable for a given control u if Wi < γ2, where Wi is defined

in (4.28) for models i = 0, 1.

In this section the measured output, y, is taken from on-line measurements of the system.

From an efficiency and/or safety standpoint it is desirable to detect and identify faults in real-

time, or as close to real-time as possible. This forces the realizability test to be computationally

efficient. Accordingly, solving complex optimal control problems (e.g. (4.28) and (4.29)) is com-

putationally prohibitive. In the following, we present an alternative that is suitable for real-time

FDI.

In what follows we omit the model number i and remember that the following procedure is

done for both models i = 0, 1, separately. Letting

D̃0 =

[
Ai22

Ci2

]
, Ñ0 =

[
0 Mi22 0

0 0 Ni

]
, P−1 = P̂i

B̃0 =

[
Bi2

Di

]
, Ã0 =

[
Ai21

Ci1

]
, b =

[
0

y

]

N̂0 =
[
Mi11 Mi12 0

]
, B̂0 = Bi1, ζ =

µi1µi2

νi


x = xi1, x̄ = xi2, A11 = Ai11, D̂0 = Ai12,

(4.29) becomes

x′ = A11x+ B̂0u+ D̂0x̄+ N̂0ζ

b = Ã0x+ B̃0u+ D̃0x̄+ Ñ0ζ.
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Recall in Section 4.1.3 we assume

D̃ =

A022 0

0 A122

C02 C12


has full column rank. Therefore, D̃0 also has full column rank. Ñ0 has full row rank and an

invertible 2× 2 block. Hence, we can select a subset of columns of Ñ0, call them Ñ01 such that[
D̃0 Ñ01

]
is invertible. Let Ñ02 denote the remaining columns and ζ =

[
ν̃

ν

]
be a conformal

partition and ordering. Then, we can solve for x̄ and some of the noise ν̃[
x̄

ν̃

]
= −

[
D̃0 Ñ01

]−1 [
Ã0x+ B̃0u− b+ Ñ02ν

]
.

This eliminates the constraint equation and modifies the cost, so now we have

W = min
x(0),ν

1

2

(
x(0)TP−1x(0) +

∫ T

0
νT ν + ‖Q1ν +Q2x+ c‖2 dt

)
x′ = Ax+Nν + a

where [
∗
Q1

]
= −

[
D̃0 Ñ01

]−1
Ñ02

(
partition conformal with

[
x̄

ν̃

])
[
∗
Q2

]
= −

[
D̃0 Ñ01

]−1
Ã0[

∗
c

]
= −

[
D̃0 Ñ01

]−1 (
B̃0u− b

)
A = A11 − R̂0

[
D̃0 Ñ01

]−1
Ã0

N = N̂02 − R̂0

[
D̃0 Ñ01

]−1
Ñ02

a = (B̂0 − R̂0

[
D̃0 Ñ01

]−1
B̃0)u+ R̂0

[
D̃0 Ñ01

]−1
b.

N̂0 =
[
N̂01 N̂02

]
is a conformal partition and ordering with ζ =

[
ν̃

ν

]
and R̂0 =

[
D̂0 N̂01

]
.

The next theorem takes advantage of this problem reformulation.
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Theorem 4.2.1. Consider the problem

W = min
x(0),ν

1

2

(
x(0)TP−1x(0) +

∫ T

0
νT ν

+ (Q1ν +Q2x+ c)T (Q1ν +Q2x+ c) dt
)

(4.30a)

x′ = Ax+Nν + a, (4.30b)

where P−1 > 0 and x(0), x(T ) are free. Let Q = (I +QT1 Q1). This optimization problem has a

unique solution with past cost given by

W (t) =
1

2
xTK(t)−1x− v(t)Tx+ φ(t), (4.31)

where

K ′ = AK +KAT −NQ−1QT1 Q2K +NQ−1NT+

K
(
QT2 Q1Q

−1QT1 Q2 −QT2 Q2

)
K −KQT2 Q1Q

−1NT ,K(0) = P (4.32a)

v′ = −K−1NQ−1QT1 c−K−1NQ−1NT v +K−1a−AT v

+QT2 Q1Q
−1QT1 c+QT2 Q1Q

−1NT v −QT2 c, v(0) = 0 (4.32b)

φ′ = −vTNQ−1QT1 c+ vTa− 1

2
vTNQ−1NT v +

1

2
cT c

− 1

2
cTQ1Q

−1QT1 c, φ(0) = 0. (4.32c)

The optimal past cost is realized by the optimal (smallest) noise

ν = −Q−1
(
QT1 Q2x+QT1 c−NT (K−1x− v)

)
. (4.33)

Proof. The Hamiltonian is

H =
1

2
νTQν +

1

2
xTQT2 Q2x+ νTQT1 Q2x

+ νTQT1 c+ xTQT2 c+
1

2
cT c+ λT (Ax+Nν + a).

The necessary conditions are

x′ = Ax+Nν + a

−λ′ = ATλ+QT2 Q2x+QT2 Q1ν +QT2 c

0 = Qν +QT1 Q2x+QT1 c+NTλ
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and the boundary conditions are

λ(0) = −P−1x(0)

λ(T ) = 0.

This makes the optimal noise

ν = −Q−1
(
QT1 Q2x+QT1 c+NTλ

)
. (4.34)

Assume λ(t) and x(t) satisfy this linear relation

λ(t) = −K−1(t)x(t) + v(t),

where K(0) = P and v(0) = 0 due to the boundary conditions. If we can find such K(t) and

v(t) then the assumption is valid. The sweep method [11] yields (4.32a) and (4.32b). Therefore,

the assumption is valid and note in light of this, (4.34) agrees with (4.33).

It remains to show (4.31), (4.32c), and that the solution is unique. We use the forward dy-

namic programming approach [5] by defining the past cost L(t, x) with the additional constraint

x(t) = x. The forward dynamic programming equation is

∂L

∂t
= min

ν
−∂L
∂x

T

(Ax+Nν + a) +
1

2
νTQν +

1

2
xTQT2 Q2x

+ νTQT1 Q2x+ νTQT1 c+ xTQT2 c+
1

2
cT c, (4.35)

where the minimization is subject to (4.30b). The minimizer is

ν = −Q−1
(
QT1 Q2x+QT1 c−NT ∂L

∂x

)
.

On the other hand, assume the past cost can be expressed

L(t, x) =
1

2
xTK−1x− vTx+ φ(t), φ(0) = 0, (4.36)

where φ(t) is to be determined. Then, we have

∂L

∂t
= −1

2
xT (K−1K ′K−1)x− v′Tx+ φ′

∂L

∂x
= K−1x− v.

This together with the right hand side of (4.35) determines φ(t) and this agrees with (4.32c).

Since we found a valid φ, the assumption in (4.36) is valid and L = W , so (4.31) holds. Since

W is the solution to the HJB equation and K, v, φ are unique because they are solutions to
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differential equations, the solution we found is unique.

Let us return to the problem in (4.28) and (4.29). Theorem 4.2.1 gives an explicit, easy to

compute formula for the past cost, however, the unknown state, x, is involved in the expression.

We have the dynamics of x, but not the initial condition.

Substituting the optimal noise into the dynamics of the state yields

x′ = (A−NQ−1QT1 Q2 +NQ−1NTK−1)x+ (a−NQ−1QT1 c−NQ−1NT v).

The latter term is independent of x. Thus,

x(t) = Φ(t, 0)x(0) +

∫ t

0
Φ(t, s)

(
a−NQ−1QT1 c−NQ−1NT v

)
ds, (4.37)

where Φ(t, 0) satisfies

dΦ(t, 0)

dt
=
(
A−NQ−1QT1 Q2 +NQ−1NTK−1

)
Φ(t, 0) (4.38a)

Φ(τ, τ) = I, ∀τ. (4.38b)

Using (4.37) in the past cost yields

W (t) =
1

2

[
xT (0)ΦT (t, 0) + fT (t)

]
K−1(t) [Φ(t, 0)x(0) + f(t)]

− vT [Φ(t, 0)x(0) + f(t)] + φ(t), (4.39)

where

f(t) =

∫ t

0
Φ(t, s)

(
a−NQ−1QT1 c−NQ−1NT v

)
ds.

x(0) must minimize the cost, so differentiating (4.39) with respect to x(0) and setting the result

equal to zero yields an explicit representation for the minimum initial condition with respect

to the past cost at time t,

x(0) = Φ−1(t, 0) [K(t)v − f(t)] . (4.40)

All quantities in this expression are known or can be found by numerical integration. f(t) is

found by numerically solving the differential equation

f ′(t) =
(
A−NQ−1QT1 Q2 +NQ−1NTK−1

)
f(t) +

(
a−NQ−1QT1 c−NQ−1NT v

)
(4.41)

with zero initial conditions.

Therefore, to utilize this approach we must integrate (4.32), (4.38), and (4.41) numerically.
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At each time step in the numerical integrator, (4.39) gives us the optimal past cost, where x(0) is

given in (4.40). If at any time, t, the noise violates the bound then the model under consideration

is not realizable. If u is a proper signal this condition holds for exactly one model. Theoretically,

it is only necessary to implement a single realizability test for one of the two models because

exactly one model will pass the test. However, model and numerical error require the use of

both tests.

The realizability test in this section has the ability to be implemented in real-time. In other

words, as measurements are made available W (t) can be calculated. This can result in faster

detection because a non-realizable model can be detected before the end of the test interval.

If W (t) exceeds the noise bound by some threshold, the test can be stopped and a fault is

declared. In safety related applications, the system may be shut down before further risk is

undertaken. When efficiency is the main goal, finding the fault earlier could result in mitigating

financial loss.

4.3 Algorithms

Given a proper signal for the L2 or the L∞ bound, the test in (4.27) can be applied as an ad

hoc method to find a smaller proper signal for that bound. Fix u and suppose we solve

Problem 4.3.1.

J = min ‖y1 − y0‖2

with the constraints

z′1 = Ăz1 + D̆z2 + B̆u+ M̆ζ2 (4.42a)

ψ′ =
1

2

‖η0‖2 + ‖ζ2‖2 +

∥∥∥∥∥
[
µ02

µ12

]∥∥∥∥∥
2


ψ(0) =
1

2
z1(0)TP0z1(0), ψ(T ) < γ2

 For L2 bound (4.42b)

ψ′0 =
1

2

(
‖η0‖2 + ζT2 diag(I, 0, 0)ζ2 + ‖µ02‖2

)
ψ0(0) =

1

2
z1(0)Tdiag(P̂0, 0)z1(0), ψ0(T ) < γ2

ψ′1 =
1

2

(
ζT2 diag(0, I, I)ζ2 + ‖µ12‖2

)
ψ1(0) =

1

2
z1(0)Tdiag(0, P̂1)z1(0), ψ1(T ) < γ2


For L∞ bound (4.42c)

Recall, from Section 4.1.5, if J = 0, then the signal is not proper with respect to the bound we

implement, either (4.42b) or (4.42c). If J > 0 we can conclude that the signal is proper.
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In Algorithm 4.1, we assume 0 is not a proper signal and u is the signal from solving Problem

4.1.2. Algorithm 4.1 shrinks u using a scaling parameter, α, until the relative error is within τ ,

for τ > 0. The relative error is defined as

||utest − u∗||
||u∗||

,

where u∗ is the true minimal proper signal with respect to the L∞ bound and utest is a scaled

test signal based on u (see Algorithm 4.1). u∗ is unknown. A good alternative is to use the last

known proper signal, uproper, in place of u∗. Then we calculate

τr =
||utest − uproper||
||uproper||

when the relative error is desired. Indeed, if u∗ is close to u in terms of shape, using uproper

in place of u∗ means that the relative error will be less than τ .

We now briefly digress to support the claim that the shape of u∗ is close to the shape of

u. Recall the L∞ bound is Γ2
∞(u) = max{Γ2

0, Γ2
1}. To write a more easily computable form we

will need the fact that the maximum of two numbers can be written as

max{c1, c2} = max
0≤β≤1

βc1 + (1− β)c2.

Using this fact, we can rewrite the L∞ bound as

Γ2
∞ = inf

x0(0), x1(0)
µ0, µ1, η0, η1

max
β∈[0, 1]

βΓ2
0 + (1− β)Γ2

1.

Since Mi, Ni are invertible for i = 0, 1 the “inf max” can be rewritten as a “max inf” (see [20]).

Therefore,

Γ2
∞ = max

β∈[0, 1]
inf

x0(0), x1(0)
µ0, µ1, η0, η1

βΓ2
0 + (1− β)Γ2

1. (4.43)

The next lemma shows that when β = 0.5 the optimal proper signal for the L2 bound is the

same as the optimal proper signal for the L∞ signal up to scaling. Hence, the shape of u∗ is the

same as the shape of u if β = 0.5. Simulations have shown β falls within the interval [0.3, 0.7].

Since β typically falls in an interval close to 0.5 we expect the shapes to be close.

Lemma 4.3.1. Let u∗ be the minimal proper signal with respect to the L2 bound. Fix β = 0.5

in (4.43). Then the minimal proper signal with respect to the L∞ bound and β = 0.5 is
√

2u∗.

Proof. From (4.3) it is already clear that
√

2u∗ is proper for the L∞ bound. It remains to show

that it is the smallest proper signal. Suppose there is a smaller proper signal, ũ and note that
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with β = 0.5,

Γ2
∞(u) =

1

2
inf

x0(0), x1(0)
µ0, µ1, η0, η1

(
Γ2

0 + Γ2
1

)
=

1

2
Γ2
L2(u).

Since ũ is proper for the L∞ bound, 1
2Γ2

L2(ũ) ≥ γ2. Due to the quadratic nature of Γ2
L2 ,

Γ2
L2

(
ũ√
2

)
=

1

2
Γ2
L2(ũ) ≥ γ2.

Therefore, ũ√
2

is proper for the L2 bound. However,

∥∥∥∥ ũ√
2

∥∥∥∥ < ‖u∗‖.
But this is a contradiction because u∗ is assumed to be minimal proper for the L2 bound.

Let N be the number of iterations the user is willing to invest and select a tolerance τ .

Algorithm 4.1 will terminate when either the relative error is less than τ or the maximum

number of iterations has been reached. The algorithm returns uproper, the last known proper

signal found. The auxiliary signal is almost always found in advance of the operation of the

system, so the extra computing time required to use this algorithm is not detrimental to FDI.
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n← 0; n0 ← 1; α← 1

uproper ← u

while n < N do

α← α− 10−n0 ;

utest ← αu;

Find J by solving Problem 4.3.1;

n← n+ 1;

if J = 0 then

if τr < τ then
return uproper;

else

α← α+ 10−n0 ;

n0 ← n0 + 1;

end

else
uproper ← utest;

end

end
Algorithm 4.1: Ad hoc minimization of proper signal.

We have developed all the pieces necessary to perform real-time FDI. In the following, we

summarize how these pieces fit together in an FDI algorithm. Our approach is as follows: 1)

solve Problem 4.1.2 to find a minimal proper u for the bound Γ2
L2 < γ. Let ũ =

√
2u. Note that

ũ is a proper signal for Γ2
∞ < γ. Observation tells us it will also be close to minimal proper; 2)

Use Algorithm 4.1 to shrink the signal so that it is approximately minimal proper with respect

to the Γ∞ bound; 3) Use the resulting signal to perform the model identification in Section

4.2. If the size of the auxiliary signal is of great consequence for a particular application, it is

advisable to do step 2) before using the signal online in the model identification techniques.

This complete FDI algorithm is summarized in Algorithm 4.2.
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1. Solve Problem 4.1.2 to find a minimal proper u for the bound Γ2
L2 < γ2. Let ũ =

√
2u

and note that ũ is a proper signal for Γ2
∞ < γ2.

2. Use Algorithm 4.1 to shrink the signal so that it is approximately minimal proper with

respect to the Γ∞ bound.

3. Use the resulting signal as input in the model identification in Section 4.2.

(a) Integrate (4.32), (4.38), and (4.41) numerically.

(b) Find x(0) from (4.40) and use the result to calculate the past cost (4.39).

(c) If W (t) > γ2 for any t then the model under consideration is not realizable.

(d) Repeat (a)-(c) for each model.

Algorithm 4.2: Complete algorithm for FDI.

4.4 Numerical Simulations

High-quality optimization software is required to solve Problem 4.1.2. There are a variety of

good optimization software packages available. In order to handle the specific formulations

presented in this section the software needs to accept optimal control problems with equality

and inequality constraints both inside the time interval and at the endpoints. The particular

package used in the examples in this paper is GPOPS-II developed at the University of Florida

[35–37, 58]. The method employed by GPOPS-II is an hp-adaptive version of the Radau pseu-

dospectral method. This is a direct transcription approach where the integration is done with

an orthogonal collocation Gaussian quadrature implicit integration method where collocation

is performed at the Legendre-Gauss-Radau points. SOS (Sparse Optimization Suite), as devel-

oped by Applied Mathematical Analysis LLC (http://www.appliedmathematicalanalysis.com)

is another example of a direct transcription code commonly used for optimal control problems.

In general, direct transcription refers to any approach where all differential equations, integrals,

and constraints are discretized. The resulting large nonlinear programming (NLP) problem is

then passed to an optimization package. The grid is automatically refined until the desired

tolerance is met. The user supplies all equations and constraints. A listing of the MATLAB

codes used in this section is available in Appendix A.1.

4.4.1 Proper u

Example 4.4.1. Consider the following ODE example from Section 4.2.7 of [20]. An ODE

model is chosen as our first example to show our software duplicates results in the literature
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[20]. The normal (0) and faulty (1) models are given by

x′0 =

[
0 1

−9 0

]
x0 +

[
0

1

]
u+ µ0

y0 =
[
1 0

]
x0 + η0

x′1 =

[
0 1

−4 0

]
x1 +

[
0

1

]
u+ µ1

y1 =
[
1 0

]
x1 + η1,

with the noise bound

Γ2(µ0, µ1, η0, η1) =
1

2

∫ T

0
‖µ0‖2 + ‖µ1‖2 + ‖η0‖2 + ‖η1‖2 dt < 1

and T = 1.

In terms of (4.1) and (4.2), E0 = E1 = I, M0 = M1 = N0 = N1 = I, P0 = P1 = 0,

C0 = C1 =
[
1 0

]
, and

F0 = −

[
0 1

−9 0

]
, F1 = −

[
0 1

−4 0

]

B0 = B1 =

[
0

1

]
.

The reduction technique in Section 4.1.2 is implemented with the same software algorithm as

in the DAE case. The minimal proper u is shown in Fig. 4.1.

One way to check if u in Fig. 4.1 is minimal proper is to solve (4.27). If u is minimal proper

and α > 1, then we should observe J > 0. If 0 < α < 1, then we should observe J = 0. Several

values of α were tested and the minimal values of J are tabulated in Table 4.1. As expected, J

is nonzero only when α > 1 and J is increasing with α.

Table 4.1: Minimal Proper u check for Example 1.

α 0.6 0.9 0.99 1 1.01 1.1 1.8

J 0 0 0 * 0.0003 0.039 2.5564
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Figure 4.1: Minimal proper u for the L2 bound–Example 1.

Example 4.4.2. This example tests the techniques of this paper on DAE models, one of which

is a high index DAE. This is an example not covered by previous results in the literature. Let

the normal and faulty models take the form of (4.1) where the fault under consideration occurs

in Ei and Fi

E0 =



1 2 3 0 0 0

0 2 3 0 5 0

0 0 3 4 0 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, E1 =



1 2 3 0 0 0

0 −2 3 0 5 0

0 0 3 4 0 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



F0 =



0 0 0 −1 1 −1

0 0 1 1 0 0

0 −1 0 0 0 0

−1 1 0 −4 0 0

1 0 0 0 −2 0

1 0 0 0 0 0


, F1 =



0.5 1 1.5 −1 1 −1

0 −1 2.5 1 2.5 0

0 −1 1.5 2 0 3

−1 1 0 −4 0 0

1 0 0 0 −2 0

1 0 0 0 0 0


.
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The rest of the parameters are

B0 = B1 =
[
1 1 −1 0 0 0

]T
, D0 = D1 =

0

1

0



C0 = C1 =

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0



P00 =



0.1116 0.1522 0.1946 −0.0449 −0.1777 −0.0674

0.1522 0.3166 0.4049 −0.0934 0.0304 −0.1401

0.1946 0.4049 0.6652 0.0773 0.0389 0.1159

−0.0449 −0.0934 0.0773 0.2899 −0.0090 0.4348

−0.1777 0.0304 0.0389 −0.0090 0.9645 −0.0135

−0.0674 −0.1401 0.1159 0.4348 −0.0135 0.6522



P01 =



0.0813 0.1788 0.1870 −0.0432 −0.0407 −0.0647

0.1788 0.5025 0.2720 −0.0628 −0.3622 −0.0942

0.1870 0.2720 0.7563 0.0562 0.2550 0.0844

−0.0432 −0.0628 0.0562 0.2947 −0.0589 0.4421

−0.0407 −0.3622 0.2550 −0.0589 0.7021 −0.0883

−0.0647 −0.0942 0.0844 0.4421 −0.0883 0.66311


and M0 = M1 = I6×6. N0 = N1 = I3×3. Hence, model 0 is index 3 and model 1 is index 1. The

noise for model i is given by (4.2) and we assume the total noise in the L2 measure is bounded

by γ = 1. With the choices for P00 and P01, P̂0 = P̂1 = I are selected to satisfy (4.11). Then,

P0 = I in (4.16).

The software package chosen for implementation is GPOPS-II. Figure 4.2 shows the minimal

proper u for this example.

From Section 4.1.5, we can check if this signal is minimal proper. The results are tabulated

in Table 4.2 for various values of α. Recall if α < 1(> 1) then we expect J = 0(> 0) if u is

minimal proper. The results in the table provide good evidence that u in Fig. 4.2 is indeed

minimal proper.

The identification test in Section 4.2 requires the use of the Γ∞ noise bound. Recall ũ =
√

2u,

where u is given in Figure 4.2, is proper for Γ∞ < γ. Table 4.3 verifies this and shows it is very

close to minimal proper. There is no utility in applying Algorithm 4.1 to this example.
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Figure 4.2: Minimal proper u for the L2 bound–Example 2.

Table 4.2: Minimal Proper u check for Example 2 using ΓL2 .

α 0.6 0.9 0.99 1 1.01 1.1 1.8

J 0 0 0 * .0006 0.0553 3.6287

Table 4.3: Minimal Proper u check for Example 2 using Γ∞.

α 0.6 0.9 0.99 1 1.01 1.1 1.8

J 0 0 0 * 0.0013 0.1132 7.2861

4.4.2 Model Identification

In practice, y comes from real-time sensor data. In lieu of an actual test system, we simulate

model 1 in Example 4.4.2 and generate the outputs y. This requires the numerical solution of

the index one DAE

E1x
′
1 + F1x1 = B1

√
2u+M1µ1.

We calculate the completion (see [14, 57])

x′1 = Âx1 + B̂
√

2ū+ M̂µ̄, (4.44)
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where Â, B̂, M̂ are numerically generated and for a vector q, q̄ is a vector containing q and the

k derivatives of q with respect to t. k is the index of the DAE.

The last three zero rows of E1 impose conditions on the solution of the DAE. Let qij denote

the jth component of a vector q for model i. A consistent solution satisfies

x12 − x14 = µ14 + µ16 (4.45a)

x12 =
µ16 − µ15

2
(4.45b)

x11 = µ16 . (4.45c)

µ1, η1, x1(0) are random noises, but they must satisfy (4.45) and Γ2
1(x1(0), η1, µ1) < γ2. We

employ a sine expansion for µ1 and η1. Let

µ1i =

N∑
n=1

ani sin

(
2πnt

T

)

η1i =

N∑
n=1

bni sin

(
2πnt

T

)
.

Then, µ1i(0), η1i(0) = 0 so a consistent initial condition must have x12 = x14 and x11 = x15 = 0.

The free initial conditions, x13 , x16 , x12 , and the coefficients, ani , bni , are randomly selected

over a uniform distribution on [−1, 1] and then scaled randomly so that Γ2
1(x1(0), η1, µ1) < γ2.

The sine expansions make it easy to calculate the noise measures. For example,

‖µ1i‖2 =
T

2

N∑
n=1

|ani |2.

Model 1 is index 1 so we also need the first derivative of µ1 to construct µ̄.

dµ1i

dt
= ani

2πn

T
cos

(
2πnt

T

)
dη1i

dt
= bni

2πn

T
cos

(
2πnt

T

)
.

We integrate (4.44) and use the result to generate the output

y = C1x1 +D1

√
2u+N1η1.

With this simulated output we can follow Section 4.2 for models 0 and 1 and find Wi(t). If

Wi(t) > γ2 at any time, then model i is not realizable.

Figures 4.3 and 4.4 show two independent runs of the simulation. Part (A) in the figures
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Figure 4.3: (Run 1) (a) Random noises, µ1, η1 (b) Wi(t) and γ2.
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Figure 4.4: (Run 2) (a) Random noises, µ1, η1 (b) Wi(t) and γ2.
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plots the various components of the random noises, µ1 and η1. Part (B) depicts Wi(t) for each

model and the bound on the noise γ. y is consistent with model one because it was simulated

using model one. Both runs support this because W1(t) does not exceed γ. Since u is proper,

this should mean that W0(t) exceeds the bound by some time 0 ≤ t ≤ T . Indeed, in both runs

we can correctly conclude that model 0 is not a realizable model because the estimated noise

exceeds the bound. In fact, although the test interval is [0 2], model 0 can be rejected before

t = 1.4 illustrating the capability of early detection. Recall, the initial conditions are not totally

random as x11 = x15 = 0 and x12 = x14 for consistency of the initial condition to hold. The

randomly selected initial conditions are given below.

Run 1 Run 2

x(0)



0

−0.01

0.02

−0.01

0

−0.045





0

−0.0005

0.00025

−0.005

0

0.00125



4.5 Computational Study

We consider here a nonlinear model for a robot arm with elastic joints. Robot systems use har-

monic drives, belts, or long shafts as transmission elements between the motors and the links

(arms) and typically display oscillations both in fast motion and after sudden stop. Experi-

mental tests and simulations have shown that the elasticity introduced at the joints by these

transmission elements is the major reason for their vibrational behavior, so we must include

elasticity in the dynamic model. As a result, the internal position of the motors does not deter-

mine the position of the driven arms. The dynamics of this consequential displacement can be

modeled by inserting a linear torsional spring at each elastic joint, between the actuator and

the link. The modeling process is described in full in [28].

The model for the robot arm shown in Figure 4.5 is given by (4.46). m0, m1, and mp are

masses, with mp denoting the load or object being held, l1 and l2 are the lengths of the arms,

K is the coefficient of elasticity of joint 2, NT is the transmission ratio at the second joint, JRi

are rotor inertias, qi are angular coordinates describing the robot’s configuration, and τi are the

rotational torques caused by the drive motors. x = [q1, q2, q3, q
′
1, q
′
2, q
′
3], u1 = τ1, and u2 = τ2.

x′1 = x4 (4.46a)

x′2 = x5 (4.46b)
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Figure 4.5: A two-link robot arm with the second joint elastic, from [27].

x′3 = x6 (4.46c)

x′4 = f4(x2, x3, x4, x6) + g41(x3)u1 − g41(x3)u2 (4.46d)

x′5 = f5(x2, x3, x4, x6)− g41(x3)u1 + g52(x3)u2 (4.46e)

x′6 = f6(x2, x3, x4, x6) + g61(x3)u1 − g61(x3)u2 (4.46f)

0 = cosx1 + cos(x1 + x3)− 1 (4.46g)

Equation (4.46g) is a path constraint describing vertical motion on the endpoint of the robotic

arm. The nonlinear functions are

g41(x3) =
A2

A3(A4 −A3 cos2 x3)

g52(x3) = g41(x3) +
1

JR1

g61(x3) = −g41(x3)− cosx3

A4 −A3 cos2 x3

f4(x2, x3, x4, x6) =
A2 sinx3(x4 + x6)2 +A3x

2
4 sinx3 cosx3

A4 −A3 cos2 x3
+
K
(
x3 − x2

NT

) (
A2
A3

(
NT−1
NT

)
+ cosx3

)
A4 −A3 cos2 x3

f5(x2, x3, x4, x6) = −f4(x2, x3, x4, x6) +
K

NT

(
x3 −

x2

NT

)( 1

JR1
− 2g41(x3)

)

f6(x2, x3, x4, x6) = −f4(x2, x3, x4, x6)−
K
(
x3 − x2

NT

) (
A5
A3
−
(

3NT+1
NT

)
cosx3

)
A4 −A3 cos2 x3
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− A5x
2
4 sinx3 +A3 sinx3 cosx3(x4 + x6)2

A4 −A3 cos2 x3

and the constants are

A2 = JRp +mpl
2
2

A3 = mpl1l2

A4 = (m1 +mp)l1l2

A5 = (m1 +mp)l
2
1.

This model is nonlinear and cannot be directly used in our algorithm. Fault detection in

nonlinear ODE models was studied in [68]. In the ODE case, the author shows auxiliary signals

can sometimes be found for the nonlinear problem by linearizing the nonlinear models and

finding a minimal proper signal for the linearized models. The work in [68] shows if u is strictly

proper for the linearized system and β is a small enough, positive scalar, then βu is proper

for the nonlinear system with the noise bounds scaled by β2. Furthermore, if the nonlinearities

satisfy certain technical assumptions, then u is proper for the nonlinear problem, except for

possibly tighter noise bounds.

Although specific to ODE models, [68] demonstrates potential for an extension to nonlinear

DAE models, although there are some subtleties. In general, one would expect a linearized DAE

to provide local information on the nonlinear DAE it originates from. However, linearized DAEs

can feature quite different phenomena. A linearized DAE may show lower or higher index than

the original DAE, suggest incorrect stability, observability, etc., and fail to remain regular [49].

On the other hand, if one linearizes around a constant solution and if some technical assumptions

hold, then the vector field determined by the linear time invariant linearization approximately

agrees with the vector field of actual solutions in a neighborhood around the equilibrium point

[15]. The technical assumptions consist of some constant rank assumptions during a “reduction

process” involving repeated differentiations and the assumed invertibility of Fx(0, x̄) where

F (x′, x) = 0 is the nonlinear DAE and x̄ is the equilibrium point. These assumptions frequently

hold in mechanics applications such as the robot arm under consideration. In the following, we

linearize the nonlinear DAE models and find a minimal proper signal for the linearized models.

The signal is then injected into the nonlinear models and the minimal noise required to satisfy

equivalent outputs and the nonlinear DAEs is calculated.

4.5.1 Linearization

Recall, one assumption in our reduction procedure is that D̃ has full column rank. After a

linearization, it can be shown that the model in (4.46) cannot meet this condition for reasonable
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faults. We differentiate (4.46g) twice to find another constraint that involves the algebraic

variable u1. We also can eliminate (4.46f) with the added constraint in hand, so that the

algebraic variables are now x6, u1. The reformulated, but equivalent, model given in (4.47) will

now yield a linearization where D̃ is full column rank. This nonlinear DAE model has index 2.

We drop the (xi) dependencies of the functions f4(x2, x3, x4, x6), f5(x2, x3, x4, x6), and g41(x3)

to improve readability.

x′1 = x4 (4.47a)

x′2 = x5 (4.47b)

x′3 = x6 (4.47c)

x′4 = f4 + g41u1 − g41u2 (4.47d)

x′5 = f5 − g41u1 + g52u2 (4.47e)

0 = cosx1 + cos(x1 + x3)− 1 (4.47f)

0 = − sinx1(f4 + g41u1 − g41u2)− x2
4 cosx1 + sin(x1 + x3)(

K(x3 − x2
NT )(A5

A3
− 3NT+1

NT cosx3)

A4 −A3 cos2 x3
+
A5x

2
4 sinx3 +A3 sinx3 cosx3(x4 + x6)2

A4 −A3 cos2 x3
+

cosx3

A4 −A3 cos2 x3
u1 −

cosx3

A4 −A3 cos2 x3
u2

)
− (x4 + x6)2 cos(x1 + x3). (4.47g)

We observe that (4.47) can be rewritten

x̄′ = F (x̄, w, u)

0 = G(x̄, w, u)

where x̄ =
[
x1 x2 x3 x4 x5

]T
are the dynamic variables, w =

[
x6 u1

]T
are the algebraic

variables, and u = u2 is the auxiliary signal. The formulae for F and G are clear from (4.47).

The set points used in the linearized models correspond to the arm holding a mass mo-

tionless. Calculation of a set point will determine part, but not all, of u. Let u1 be the free

component. Thus, it is an algebraic variable in terms of the DAE, while u2 is the test signal.

The set points for the nominal and faulty models are found via a nonlinear solve in Matlab.

The nominal model set point is found using a relatively large value for mp to simulate an object

being held. We will analyze two faults and refer to these faulty models as model 1 and model 2.

Since our approach requires only two models at a time—one nominal and the other faulty—we

construct two auxiliary signals, one for each faulty model paired with the nominal model. The

first fault, model 1, simulates unintentionally dropping the object or realizing that the robotic

arm is holding the wrong object by decreasing mp in the faulty model. The second fault, model
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2, simulates a breakdown of the second joint by lowering the elasticity parameter, K. Model 0

is the nominal model. The set points are given in Table 4.4 and values of all parameters are

given in Table 4.5.

Table 4.4: Numerically computed set points for all models.

Model 0 (mp = 10, K = 4) Model 1 (mp = 1) Model 2 (K = 1)

x1 .57 .47 .64
x2 1.70 1.97 1.46
x3 .85 0.99 0.73
x4 0 0 0
x5 0 0 0
x6 0 0 0
u1 0 0 0
u2 0 0 0

Table 4.5: Nominal parameter values for the robot arm.

Parameter Description Nominal Value

K Coefficient of elasticity at joint 2 4
NT Transmission ratio of joint 2 2
JR0 Rotor inertia of joint 1 1
JR1 Rotor inertia of joint 2 1
JRp Inertia at endpoint 1
l1 Length of link 1 1
l2 Length of link 2 1
m1 Mass of joint 2 1
mp Mass at endpoint 10

The linearization for model i is

Eiz
′
i + Fizi = Biu+Miµi

yi = Cizi +Niηi

where zi =
[
x1 x2 x3 x4 x5 x6 u1

]T
− x̃i is the state vector consisting of dynamic and

algebraic variables. x̃i is a numerically computed set point from Table 4.4 and u = u2 is the
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control. µi and ηi are additive noises. The linearized models for i = 0, 1, given below, may be

calculated in Maple or Matlab.

E0 = E1 =

[
I5×5 0

0 0

]

−F0 =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 −0.3654 0.7309 0 0 0 0.1660

0 −0.3026 0.6053 0 0 0 −0.1660

−1.5239 0 −0.9878 0 0 0 0

0 0.5578 −1.1156 0 0 0 0.0096



−F1 =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 −1.8304 3.6609 0 0 0 1.1796

0 3.1896 −6.3791 0 0 0 −1.1796

−1.4504 0 −0.9939 0 0 0 0

0 0.7549 −1.5098 0 0 0 −0.2150



M0 = N0 = I, B0 =



0

0

0

−0.1660

1.1660

0

−0.0096


, B1 =



0

0

0

−1.1796

2.1796

0

0.2150


C0 =

[
1 0 0 0 0 1 0

0 0 1 0 0 0 0

]
, C1 =

[
1 0 0 0 0 0 0

0 0 1 0 0 1 0

]
.

The optimal auxiliary signals found using the algorithm from Section 4.1 with a noise bound

of γ = 0.25 are given in Figure 4.6. Their similarity is a symptom of the effects the faults have on

the system. Changes in mass or elasticity will both result in an unexpected vertical displacement

of the endpoint. Applying a burst of torque, which is essentially what the system is forced to do

given a short interval like [0 1], will expose the problem in either case. However, it is interesting

to observe the minimal proper signals over a longer interval, [0 10], shown in Figure 4.7. Here,

we see a definitive discrepancy in the signals because on a longer interval the software can
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consider smaller signals that exploit more subtle differences such as resonant frequencies.
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Figure 4.6: Comparison of numerically computed minimal proper signals ump , the signal for
models 0 and 1, and uK , the signal for models 0 and 2, on [0 1].
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Figure 4.7: Comparison of numerically computed, minimal proper signals ump and uK on
[0 10].
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4.5.2 Evaluation of the Test Signal

Given a proper test signal u for the linearized problem, we want to examine its efficacy on the

nonlinear problem. In [68], experimentation showed that a signal found for the linear problem

with a noise bound of one is usually proper for the nonlinear problem, except the noise bound

may have to be scaled from one. To test the signal, the author fixed u to be the minimal, proper

signal for the linear problem and found the smallest noise necessary to satisfy the nonlinear

constraints and equal outputs. The scaled noise bounds for the nonlinear test problems ranged

from 0.708 to 1.117. Note, if the noise bound is found to be greater than one, then u found

for the linear problem is still proper for the nonlinear problem with noise bound one, just not

minimal proper.

The analogous problem here is

min
η0,η1,µ0,µ1,w0,w1

δ (4.48a)

x̄′0 = F0(x̄0, w0, u) + µ̄0 (4.48b)

x̄′1 = F1(x̄1, w1, u) + µ̄1 (4.48c)

ω′ = ηT0 η0 + µ̄T0 µ̄0 + µ̃T0 µ̃0 + ηT1 η1 + µ̄T1 µ̄1 + µ̃T1 µ̃1, ω(0) = 0 (4.48d)

0 = G0(x̄0, w0, u) + µ̃0 (4.48e)

0 = G1(x̄1, w1, u) + µ̃1 (4.48f)

0 = C0[x̄0 w0] + η0 − (C1[x̄1 w1] + η1) (4.48g)

δ ≥ 1

2
(x̄T0 (0)− x̃0)P̂0(x̄0(0)− x̃0) +

1

2
(x̄T1 (0)− x̃1)P̂1(x̄1(0)− x̃1) + ω(T ), (4.48h)

where x̃i is the set point for model i and µi = [µ̄i µ̃i]. The subscript i denotes which model,

i = 0 (nominal) or i = 1 (faulty), is being considered. We have also simplified the equations by

ignoring the coefficient matrices on the noises since they are identity matrices in our example. u

is the signal from Figure 4.6. We can solve for some of the noise using equations (4.48e)–(4.48g)

and rewrite the problem

min
η1,µ̄0,µ̄1,w0,w1

δ (4.49a)

x̄′0 = F0(x̄0, w0, u) + µ̄0 (4.49b)

x̄′1 = F1(x̄1, w1, u) + µ̄1 (4.49c)

ω′ = (C1[x̄1 w1] + η1 − C0[x̄0 w0])T (C1[x̄1 w1] + η1 − C0[x̄0 w0]) + µ̄T0 µ̄0

+GT0 G0 + ηT1 η1 + µ̄T1 µ̄1 +GT1 G1, ω(0) = 0 (4.49d)

δ ≥ 1

2
(x̄T0 (0)− x̃T0 )P̂0(x̄0(0)− x̃0) +

1

2
(x̄T1 (0)− x̃T1 )P̂1(x̄1(0)− x̃1) + ω(T ). (4.49e)
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Let K1 denote the calculated value of K for the pair of models 0 and 1 and K2 denote the value of

K for models 0 and 2. Our simulations estimated K1 = .0672 and K2 = .0360. Recall, γ = 0.25

and note
√
K1 = 0.259, indicating ump is proper on the nonlinear problem for essentially the

same noise bound as for the linearized problem.
√
K2 = 0.19, thus the linear test signal uK

found with a noise bound of γ = 0.25, would work well on the nonlinear problem, but the signal

would provide perfect detection only with the smaller additive noise bound of 0.19.

This example shows the utility of our algorithm on practical problems with models and

faults that come from real-world applications, even ones with nonlinear phenomena. Finding a

proper u was successful by utilizing linearized models.

4.5.3 Model Identification with Nonlinear Models

To identify which model is active, the natural problem to solve is analogous to (4.28) and (4.29),

except with nonlinear constraints:

Wi = min
ηi,µ̄i,µ̃i

(
1

2

(
x̄Ti (0)− x̃Ti

)
P̂i (x̄i(0)− x̃i) +

1

2

∫ T

0
‖ηi‖2 + ‖µi‖2 dt

)
(4.50a)

x̄′i = Fi(x̄i, wi, u) + µ̄i (4.50b)

0 = Gi(x̄i, wi, u) + µ̃i (4.50c)

y = Ci [x̄i wi] + ηi, (4.50d)

where y typically comes from sensor readings. Recall, if Wi > γ2, then model i is not realiz-

able. Solving this problem for i = 0, 1 will successfully identify the active model, but will be

computationally expensive and cannot be done in real time.

An interesting question is whether we can use the linearized models and the linear model

identification approach from Section 4.2 on problems with nonlinear phenomena. The original

models were assumed to be linear in that development. This example raises the natural question

of whether we can use that theory if the original models are nonlinear.

There are many places where the answer will likely be no, at least for general nonlinear DAE

models and without modifying the approach. As with any linearized model, its accuracy and

utility will suffer as the states and controls move away from the operating point. Since auxiliary

signals, by their very definition, force systems off of their operating points to expose faults, the

linearized models will be less accurate as the test goes on. This means the noise estimation

technique in Theorem 4.2.1 will estimate the model error of the linearized model as well as the

noise required to generate the observed output. The result could be imperfect detection.

Moreover, as mentioned earlier, linearized DAEs do not always accurately depict the local

behavior of their parent nonlinear DAEs. They may feature different index, stability, or observ-

ability characterizations or fail to remain regular. These factors could lead to estimations that
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are too corrupted by model error to be useful.

However, there are more optimistic scenarios. For example, if the technical assumptions of

[15] hold, then the vector field determined by the linear time invariant linearization approxi-

mately agrees with the vector field of actual solutions in a neighborhood around the equilibrium

points. Applications with small noise bounds and proper signals may also benefit from this ap-

proach. Small noises and signals will keep the states from straying too far from the operating

point, cutting the noise generated from modeling error. Clearly, an avenue for future work is to

formalize instances where this approach is useful when the original models are nonlinear.

In practice, y comes from sensor data. In the absence of a physical experiment with measure-

ments, we simulate a nonlinear model to obtain y. Due to the absence of damping and friction

in the models, the proper signals computed in the previous section are not good candidates

for simulation. In fact, most significant controls will drive the arm to move through kinematic

singularities, for example, when x1 = x3 = 0. This is merely a simulation problem and not a

problem of the approach because in practice there is no need to simulate the nonlinear model.

Smaller noises and smaller signals will mitigate this problem. Practically, they may also be

more reasonable. The noise bound in the previous section, γ = 1/4, is a significant amount

of noise in terms of the angles, which are in radians. The following figures result from the

computation of a new proper signal for models 0 and 1 (see Table 4.4) with γ = 1
70 . Then,

following Section 4.4.2, we generate noise that meets the bound and simulate the nominal

model to find y. As y is computed we calculate the past noise cost required to generate y for

each model.

The results are presented in Figure 4.8. The noise estimation correctly identifies model 0 as

being the active model. Here, the system stays close to its operating point and the linearizations

are good approximations of their nonlinear parents. The result is good detection. Even by

experimenting with higher noise bounds and larger signals, we were unable to find an instance

of failed detection, so long as the system was able to be simulated.

4.6 Model Uncertainty

Thus far, only additive uncertainty has been considered. In contrast to additive uncertainty,

model uncertainty could include nonlinearities and other effects polluting the models. A number

of extra technical difficulties are associated with this case. First, the output set can grow

with increasing u since more input can create more uncertainty. Thus a larger multiple of a

proper signal may not still be proper. Second, there are conditions that must be tested within

the optimization interval. This section will discuss the extension of our approach to model

uncertainty.
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Figure 4.8: (a) Proper auxiliary signal separating models 0 and 1 with γ = 1
70 . (b) Wi(t) and

γ2.

We assume the two models (i = 0, 1) are of the form:

Eix
′
i = (−Fi +Ki∆iGi)xi + (Bi +Ki∆iHi)u+Miµi (4.51a)

yi = (Ci + Li∆iGi)xi + (Di + Li∆iHi)u+Niηi. (4.51b)

Here µi, ηi are the additive noises discussed in the previous sections and the matrices Li,Ki, Gi, Hi,∆i

represent multiplicative model uncertainties. Matrices Li,Ki, Gi, Hi give the structure and lo-

cation of the uncertainty. The uncertain matrix ∆i is bounded by σ(∆i(t)) ≤ 1 where σ(X)

denotes the largest singular value of a matrix X. Scaling of the uncertain matrices permits

bounds other than one. The initial and additive uncertainties are bounded by

Γ2
i (xi(0), νi) =

1

2
xi(0)TP0ixi(0) +

1

2

∫ s

0
‖µi‖2 + ‖ηi‖2 dt < 1, ∀s ∈ [0, T ]. (4.52)

Again, scaling allows the consideration of bounds other than one. The extra condition ∀s ∈ [0, T ]

introduced here is redundant, but will be used later. We follow the formulation in [1] which is

given for the ODE case. We can consider the modified system:

Eix
′
i = −Fixi +Biu+Kiφi +Miµi (4.53a)

yi = Cixi +Diu+ Liφi +Niηi (4.53b)

ξi = Gixi +Hiu, (4.53c)

where φi = ∆iξi. From the model uncertainty bound σ(∆i) ≤ 1, we have that ‖φi‖ − ‖ξi‖ ≤ 0

88



over the interval [0, T ]. This implies the more conservative condition∫ s

0
‖φi‖2 − ‖ξi‖2 dt < 0, ∀s ∈ [0, T ]. (4.54)

Adding (4.52) and (4.54) the overall noise bound for each model is:

Γ2
i (xi(0), νi, φi, ξi) =

1

2
xi(0)TP0ixi(0) +

1

2

∫ s

0

(
‖µi‖2 + ‖ηi‖2

+‖φi‖2 − ‖ξi‖2
)
dt < 1, ∀s ∈ [0, T ]. (4.55)

This bound allows for more noise and introduces more conservatism in our solution. This is not

conservative in the sense of missed faults. Instead, the auxiliary signal obtained this way, while

proper, may not be optimal in terms of the original uncertainty. Unlike the additive uncertainty

case, the noise measure is not positive definite in the model uncertainty case. Consequently, we

must enforce (4.55) ∀s ∈ [0, T ] instead of just s = T .

The reduction techniques in Section 4.1.2 can now be employed. Recall, we perform the

coordinate changes (4.8). Then (4.53a) can be written

x′i1 = Ai11xi1 +Ai12xi2 +Bi1u+Ki1φi +Mi11µi1 +M012µi2 (4.56a)

0 = Ai21xi1 +Ai22xi2 +Bi2u+Ki2φi +Mi22µi2 (4.56b)

where Aijk and Mijk are given in (4.6) and (4.7). Bij and Cij are given in (4.10). The definitions

of Kij are analogous to Bij . y0 − y1 = 0 can be expressed:

0 = C01x01 + C02x02 +D0u+ L0φ0 +N0η0

− (C11x11 + C12x12 +D1u+ L1φ1 +N1η1).

Now, letting z1 =

[
x01

x11

]
, z2 =

[
x02

x12

]
, φ =

[
φ0

φ1

]
, ζ1 =

µ02

µ12

η0

 , ζ2 =

µ01

µ11

η1

, we have

z′1 = Âz1 +
[
D̂ N̂

] [z2

ζ1

]
+ B̂u+ K̂φ+ M̂ζ2 (4.57a)

0 = Ãz1 +
[
D̃ Ñ

] [z2

ζ1

]
+ B̃u+ K̃φ+ M̃ζ2 (4.57b)
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where most of the matrices are defined in (4.13). The additional matrices are

K̂ =

[
K01 0

0 K11

]
, K̃ =

K02 0

0 K12

L0 −L1

 .
As before, we can eliminate (4.57b) by solving for z2 and part of ζ1:

−

[
z2

ζ11

]
=
[
D̃ Ñ1

]−1 (
Ãz1 + Ñ2ζ12 + B̃u+ K̃φ+ M̃ζ2

)
. (4.58)

Letting ν =
[
φT ζT12 ζT2

]T
, ξ =

[
ξT0 ξT1

]T
, and Θ =

[
D̃ Ñ1

]−1
and substituting back into

the dynamics and (4.53c) we get

z′1 = Az1 +Bu+Mν (4.59a)

ξ = Gz1 +Hu+Nν, (4.59b)

where

A = Â− R̂ΘÃ, B = B̂ − R̂ΘB̃,K = K̂ − R̂ΘK̃

N = N̂ − R̂ΘÑ ,M = M̂ − R̂ΘM̃,G =

[
G̃01 0

0 G̃11

]
− R̄Ãu

H =

[
H0

H1

]
− R̄B̃u, K̄ = −R̄K̃u, N̄ = −R̄Ñ2u

M̄ = −R̄M̃u, [G̃i1 G̃i2] = ViGi, R̄ =

[
G̃02 0

0 G̃12

]
M =

[
K M̄1 M̄1

]
, N =

[
K̄ N̄1 N̄2

]
.

For convenience, in this section, we are redefining matrices such as A,B,M,N etc. that appeared

in earlier sections. For a given matrix Q̃, Q̃u denotes the upper half of the matrix ΘQ̃ that

corresponds to the z2 components.

When model uncertainty is involved, it is more straightforward to use the L∞ noise measure.

Hence, in this section, we define the total noise measure to be

Γ = max
i=0,1

Γi. (4.60)
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For computational purposes we rewrite this measure:

Γ = max
β∈[0, 1]

βΓ0 + (1− β)Γ1

= max
β∈[0, 1]

1

2

(
xT0 (0)βP00x0(0) + xT1 (0)βP01x1(0)

)
+

1

2

∫ s

0
β
(
‖µ0‖2+

‖η0‖2 + ‖φ0‖2 − ‖ξ0‖2
)

+ (1− β)
(
‖µ1‖2 + ‖η1‖2 + ‖φ1‖2 − ‖ξ1‖2

)
dt.

P0i is bounded in (4.11). The initial uncertainty can be now be written concisely in terms of z1

as
1

2
zT1 (0)Pβz1(0), Pβ =

[
βP̂0 0

0 (1− β)P̂1

]
.

In terms of our new coordinates, the integrated portion of the overall noise is:

1

2

∫ s

0
ζT11Jβ1ζ11 − ξTJβ2ξ + νTJβ3ν dt,

where Jβ2 = diag(βI, (1−β)I), Jβ3 = diag(Jβ2 , J̄β1 , Jβ4), and Jβ4 = diag(βI, (1−βI), (1−β)I).

Here, diag(Jβ1 , J̄β1) is a partition of Jβ = diag(βI, (1− β)I, βI) conformal with [ζT11 ζ
T
12]T . The

size of the identities in Jβ, Jβ2 , and Jβ4 are conformal with the definitions of ζ1, ξ, and ζ2.

Recall, for a given matrix Q̃, that Q̃0 denotes the lower half of the matrix ΘQ̃ that corre-

sponds to the ζ11 components. Then, in light of (4.58) and (4.59b) the noise measure can be

expressed

Γ = max
β∈[0, 1]

1

2
zT1 (0)Pβz1(0) +

1

2

∫ s

0
zT1 Q1z1 + 2zT1 Q2u+ 2zT1 Q3ν

+ uTQ4u+ 2uTQ5ν + νTQ6ν dt (4.61)

where

Q1 = ATJβ1A−GTJβ2G, Q2 = ATJβ1B −GTJβ2H

Q3 = ATJβ1M −GTJβ2N, Q4 = BTJβ1B −HTJβ2H

Q5 = BTJβ1M −HTJβ2N, Q6 = MTJβ1M −NTJβ2N + Jβ3 .

For a given u to be proper, we require the smallest noise possible to exceed the bound. The

inner problem is to minimize (4.61) over all possible noise values, subject to (4.59a). Then the

Hamiltonian for this inner problem can be defined by

H(z1, ν) =
1

2

(
zT1 Q1z1 + 2zT1 Q2u+ 2zT1 Q3ν + uTQ4u+ 2uTQ5ν + νTQ6ν

)
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+ λT (Az1 +Bu+Mν)

where λ is the Lagrange multiplier. The necessary conditions are

z′1 = Az1 +Bu+Mν (4.62a)

−λ′ = ATλ+Q1z1 +Q2u+Q3ν (4.62b)

0 = MTλ+QT3 z1 +QT5 u+Q6ν (4.62c)

with boundary conditions

Pβz1(0) + λ(0) = 0 (4.63a)

λ(s) = 0. (4.63b)

Hence, the problem reformulation to find the minimal proper signal is

Problem 4.6.1.

Find J = inf
u
‖u‖2 (4.64a)

such that

z′1 = Az1 +Bu+Mν (4.64b)

−λ′ = ATλ+Q1z1 +Q2u+Q3ν (4.64c)

ψ′ =
1

2

(
zT1 Q1z1 + 2zT1 Q2u+ 2zT1 Q3ν + uTQ4u

+2uTQ5ν + νTQ6ν
)

(4.64d)

0 = MTλ+QT3 z1 +QT5 u+Q6ν (4.64e)

with the boundary conditions

Pβz1(0) + λ(0) = 0 (4.65a)

ψ(0) =
1

2
zT1 (0)Pβz1(0) (4.65b)

ψ(s) ≥ 1, λ(s) = 0 (4.65c)

0 < β < 1, 0 ≤ s ≤ T. (4.65d)

For additive noise we were able to set s = T ; however, this is not the case when model uncer-

tainty is included because the noise measure is not positive definite anymore. In this formulation,

the end of the interval is essentially s because by time s, we know the cost has exceeded the

bound.
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4.7 Problems in High Index DAE

In the previous sections we developed an approach for active failure detection for linear DAE

models using direct optimization. Supporting analysis and algorithms were provided. However,

that development was based on the assumption that a certain optimization problem had a

solution and gave a sufficient, but difficult to verify, mathematical criteria (see Theorem 4.1.1)

for a solution to exist. In this section, we give a simple example to show that an optimal solution

need not always exist if Theorem 4.1.1 is not satisfied. We then show how this can occur in a

physical problem. That is, we replace the mathematical assumption with a more useful model

characterization. Finally, if the original algorithm has difficulty, we show how to get a useful

test signal by modifying the norm used in the outer minimization of Problem 4.1.2. Section

4.7.1 gives an example demonstrating how the previous algorithm can fail. In Section 4.7.2, we

explain the source of the algorithmic failure. Section 4.7.3 explains how to modify the original

algorithm to get a useful and nearly minimal test signal.

4.7.1 Example Where Previous Algorithm Fails to Converge

Recall, in the previous sections, we were able to reformulate Problem 4.1.1, and using industrial-

grade optimal control software (e.g. GPOPS-II), compute proper test signals for a number of

problems with high index DAE models. Now consider the following

Example 4.7.1. Let Mi = I, Ni = I, and

E0 =

[
0 1

0 0

]
, E1 =

[
1 1

0 1

]
, F0 = F1 = I,D0 = D1 = 0,

C0 = C1 =
[
1 0

]
, B0 =

[
2

2

]
, B1 =

[
1

1

]
.

Model 0 is an index two DAE and model 1 is an ODE. Assumptions 1 and 2 in Section 4.1.3

hold and we can reformulate the optimization problem using the procedure in Section 4.1.2.

However, the algorithm is unable to converge to a solution for the minimal proper test signal.

A typical test signal as the algorithm iterates is given in Figure 4.9. Further iterations provide

similar graphs.

Closer examination of the analytic solution shows that the derivative of the test signal

appears in the output. We can express y0 and y1,

y0(t) = −2u′ − µ′2 + 2u+ µ1 + µ3 (4.66a)

y1(t) = e−tz1(0) + L1(etz2(0) + L2(2u) + ν2))

93



0 0.5 1 1.5 2 2.5 3−6

−5

−4

−3

−2

−1

0

1

2

3

Time
u

Figure 4.9: Computed test signal for Example 4.7.1 on iteration 20 using ‖u‖22.

+ L1(ν1 − ν2) + ν3, (4.66b)

where

L1(f) =

∫ t

0
e−t+sf(s) ds

L2(f) =

∫ t

0
et−sf(s) ds.

Test signals with very small L2 norm can have very large derivatives. We illustrate how the

presence of derivatives of the test signal in the output can lead to the lack of a minimum proper

test signal in the idealized Example 4.7.2.

Example 4.7.2. Suppose that the outputs for models 0 and 1 are

y0 = u′ + µ0

y1 = u+ µ1,

where µi are L2 functions and the noise bound is ‖µ0‖22 + ‖µ1‖22 < 1.

Let bn = ‖ sin(n2t)‖22, an = 1
n , and un = an

bn
sin(n2t). Then looking at y0 = y1 we see that

as n increases we have un is proper for each n since it is not possible to have y0 = y1 while the

noise bound holds, but limn→∞ ‖un‖2 = 0. Thus no minimum proper u exists.

This immediately presents several questions. One is how to determine if a derivative of u

can appear in the output. In particular, we want a computational algorithm that can quickly

test this. We focus on developing a computation that is easy to implement for small to medium

sized problems. The second task is to determine whether the presence of derivatives of u in the
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output causes the minimal proper test signal to not exist as a function or whether it is just one

factor. The third question is how to compute a still useful proper test signal when it happens

that the previous algorithm does not converge. We shall answer all three questions.

4.7.2 When is u′ in the Output?

We start with the first problem by developing a computationally efficient test characterizing

how derivatives of u enter the solution. We shall use derivative array theory [14, 46, 56]. Below,

the index three case is developed. The more general case is then obvious. Putting aside concerns

of smoothness and excluding noises from the calculation, suppose system (4.1) is differentiated

three times. The result is

Ex′ + Fx = Bu, (4.67)

where

E =


E 0 0 0

F E 0 0

0 F E 0

0 0 F E

 , F =


F

0

0

0



B =


B 0 0 0

0 B 0 0

0 0 B 0

0 0 0 B

 , x =


x

x′

x′′

x′′′

 , u =


u

u′

u′′

u′′′

 .
Note that the if the index is three, then E is a 4× 4 block matrix. In general E is taken m×m
where m is at least one more than the index. The other matrices are sized accordingly. Let U

be a maximal row rank left annihilator of E. Then multiplying (4.67) by U gives

UFx = UBu (4.68)

and equation (4.68) describes all the constraints that hold on the solutions of the DAE. Thus

x = (UF )†UBu+ θ

where θ are solutions of the homogenous DAE. Thus we have proved the following

Proposition 4.7.1. Derivatives of the input u do not appear in the output equation precisely

when C(UF )†UB is zero except for the first r columns where r is the dimension of u.

A left annihilator is easily computed using the singular value decomposition. Suppose that the
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singular value decomposition of E is

E = W

[
Σ 0

0 0

]
V T .

Then a maximal rank left annihilator is
[
0 I

]
W T .

4.7.2.1 Previous High Index Example

Example 4.7.3. Consider the high index problem in Example 4.4.2 in Section 4.4. The coeffi-

cient matrices are

E0 =



1 2 3 0 0 0

0 2 3 0 5 0

0 0 3 4 0 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

E1 =



1 2 3 0 0 0

0 −2 3 0 5 0

0 0 3 4 0 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

F0 =



0 0 0 −1 1 −1

0 0 1 1 0 0

0 −1 0 0 0 0

−1 1 0 −4 0 0

1 0 0 0 −2 0

1 0 0 0 0 0


,

F1 =



0.5 1 1.5 −1 1 −1

0 −1 2.5 1 2.5 0

0 −1 1.5 2 0 3

−1 1 0 −4 0 0

1 0 0 0 −2 0

1 0 0 0 0 0


.
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The rest of the parameters are

B0 = B1 =
[
1 1 −1 0 0 0

]T
,

D0 = D1 =

0

1

0

 ,

C0 = C1 =

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

 .
Using the MATLAB “eig” command we see that model 1 has 3 nonzero eigenvalues and E1

has rank 3 so that model 1 is index 1. On the other hand model 0 has only 1 nonzero eigenvalue

and E0 has rank 3 so that the problem is index 2 or index 3. Carrying out the calculation of

Proposition 4.7.1 on model 0 we see that C0(U0F0)†U0B0 = 0. Note that we only needed that

all but the first column of C0(U0F0)†U0B0 was zero. Thus u′ does not appear in the output of

model 0. In the same way, we could also show u′ does not appear in the output of model 1.

If there are several inputs, then it is up to the user which ones will be used as test signals.

So, it is of interest to be able to characterize for which B there will not be any derivatives of the

control appearing in the output. This can be done by looking at C0(U0F0)†U0. For this example

where u′ and u′′ could possibly occur we look at the 7th through 18th columns of C0(U0F0)†U0

which are C0(U0F0)†U0 =
[
Q1 Q2

]
with Q1 given by

 0.000 −0.000 0 −0.000 0.000 −0.000

−1.294 1.294 0 0.431 0.088 0.853

−0.941 0.941 0 0.314 −0.618 1.029


and

Q2 =

 0 0 0 0 −0.000 0.000

0 0 0 0 3.235 −1.941

0 0 0 0 2.353 −1.412

 .
Then u′ and u′′ will not appear in the output of model 0 precisely when

[
Q1 Q2

] [B0 0

0 B0

]
= 0.
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4.7.2.2 New Example

Returning to Example 4.7.1 and letting k = 2 since it is an index two problem, we get that

(U0F0)†U0B0 =

[
2 −2 0

2 0 0

]
.

The first column does not matter. Thus we get that (U0F0)†U0B0 will indicate that u′ appears

in the output if the first entry of C0 = [c1, c2] is nonzero since

C0(U0F0)†U0B0 =
[
2c1 + 2c2 −2c1 0

]
.

Hence, u′ appears in the output signaling a potential failure of the auxiliary signal finding

algorithm. And, as shown previously, the algorithm does fail for this example.

It might seem that not having derivatives of the input appearing in the outputs is very

restrictive for higher index DAEs. We shall show later that this condition is not always nec-

essary. However, this property is common among a number of physical systems. For example,

constrained mechanics problems with position constraints take the form [10]

x′1 = f1(x1, x2, x3, u, t) (4.69)

x′2 = f2(x1, x2, t) (4.70)

0 = f3(x2, t) (4.71)

y = g(x1, x2, x3, u, t) (4.72)

which is index three if ∂f1
∂x3

∂f2
∂x1

∂f3
x2

is nonsingular. u′ is absent since u does not appear in any

of the algebraic constraints f3(x2, t) = 0 nor in f2. Thus the approach of the previous sections

can be immediately used on a wide variety of problems.

4.7.3 Modification of Original Algorithm

It would still be very useful to get a good test signal for problems where u′, or a higher

derivative of u, appears in the output and the original algorithm does not find a solution. We

shall illustrate with an example where u′ appears in the output and the original algorithm does

not find a proper test signal, but a modification finds a nearly minimal test signal. A similar

approach can be used if say u′ and u′′ appear in the output and the original algorithm does not

converge.

The difficulty is that while u stays L2 bounded, its derivative can be arbitrarily large and

a minimum proper test signal does not necessarily exist in the usual sense. Accordingly, we

modify the measure of the test signal by also including the size of its derivative. That is we
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take the size of the test signal u as

‖u‖2α =

∫ T

0
‖u‖2 + α‖u′‖2dt

so that u and u′ have to be L2 bounded.

We add u′ = w to the optimization constraints, let α > 0, and take the cost to be∫ T

0
‖u‖2 + α‖w‖2dt (4.73)

Not only does this modification help us to find a good test signal but it also also sheds light

on what is going wrong when α = 0 for those problems where the previous algorithm did not

converge. Figures 4.10–4.13 give the optimal test signal for several values of α for Example

4.7.1. If it exists, we denote the proper test signal which is minimal in the sense of (4.73) by

uα.

0 0.5 1 1.5 2 2.5 3−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

u

Figure 4.10: Minimal test signal for Example 4.7.1 using (4.73) with α = 0.1.

Two things are immediately apparent. First, a useful minimal test signal is easily found

using the new norm on u. The second is that as α is reduced the test signal is increasingly

oscillating. The test signals are not growing larger in size but they also do not have a strong

limit in L2 as α → 0+. They do appear to have a weak limit of zero in L2. For the reader not

familiar with weak limits the following example illustrates. Let un(t) = sinnt on [−π, π] where

n is a positive integer. For n > 1 all of the un have the same norm in L2[−π, π]. However, for
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Figure 4.11: Minimal test signal for Example 4.7.1 using (4.73) with α = 0.01.
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Figure 4.12: Minimal test signal for Example 4.7.1 using (4.73) with α = 0.001.
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Figure 4.13: Minimal test signal for Example 4.7.1 using (4.73) with α = 0.0001.
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any function f(t) ∈ L2[−π, π] we have that

lim
n→∞

∫ π

−π
sin(nt)f(t)dt = 0.
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Figure 4.14: α vs. ‖uα‖2α and ‖uα‖22 for Example 4.7.1.

It is interesting to examine what happens as α goes to 0. Figure 4.14 shows the plots of

‖uα‖2α and the L2 norm squared of the minimal test signal found for a given α. Note that as α

goes to zero ‖uα‖22 converges to a number around 0.5. However, ‖uα‖2α is also converging to the

same number. Thus for small α the new way of measuring the test signal is producing a test

signal that is almost the same norm as when using the old method.

That ‖uα‖2α is close to ‖uα‖22 for a signal uα does not mean that ‖u′α‖2 is small. As shown

in Figure 4.15 we see that the ‖u′α‖2 blows up as α → 0+. It is just that α‖u′α‖22 → 0+. This,

in fact, tells us a lot about the minimality of test signals as the next proposition shows.

Proposition 4.7.2. Suppose that we are given the problem of finding an auxiliary test signal

for a problem with at least one higher index DAE model as described earlier. Suppose that a

minimal proper test signal exists with the test signal measured by (4.73). Denote this test signal

by uα. Suppose that limα→0 ‖u′α‖2 = ∞. Then either there is no minimal proper test signal

using the (4.4) measure or if there is a minimal test signal u in the sense of (4.4), then u′ does

not exist as a L2 function. In particular u cannot be smooth.

Proof. Let uα be the minimum proper test signal in the sense of (4.73). Suppose that there is a

minimum proper test signal u in the sense of (4.4) which has an L2 bounded derivative. Then

for any α > 0 we have

‖u‖22 ≤ ‖uα‖22 (4.74)
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Figure 4.15: α vs. ‖u′α‖22 for Example 4.7.1.

due to the minimality of u in the sense of (4.4). However, the minimality of uα in the sense of

(4.73) implies that

‖uα‖22 + ‖u′α‖22 ≤ ‖u‖22 + ‖u′‖22 (4.75)

Combining (4.74) and (4.75) we have that

‖u′‖22 ≥ ‖u′α‖22 (4.76)

for all α > 0. The proposition now follows since limα→0 ‖u′α‖22 =∞.

4.7.3.1 Return to Example 4.7.3

We return to Example 4.7.3 but now we select B so that u′ and/or u′′ appear in the output. In

particular, with B0 = B1 =
[
1 1 −1 1 0 0

]T
for both models u′ appears in the output of

model 0. For B0 = B1 =
[
1 1 −1 1 1 1

]T
we have u′ and u′′ both appear in the output.

However, for this problem the original algorithm quickly found a minimum proper u. The test

signal for one case is shown in Figure 4.16. Therefore, the mere presence of a derivative of u in

the output does not gaurantee the failure of the original algorithm.

It is interesting in this case to see what happens if we try the modified cost (4.73) on this

new example. The result is graphed in Figure 4.17. The result in Figure 4.17 is consistent with

Proposition 4.7.2. Here we have ‖u′α‖2 stays bounded as α→ 0 and a minimal proper test signal

exists.
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Figure 4.16: Minimum proper test signal for modified Example 4.7.3 with u′ appearing in the
output.
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Figure 4.17: ‖u‖2α, ‖uα‖22, ‖u′α‖22 for modified Example 4.7.3 plotted against α.
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4.8 Asynchronous Signal Design

While passive approaches are usually implemented in an ongoing manner, active tests are either

done over shorter time intervals or over a series of short time intervals. However, in previous

studies the interval on which the test signal is applied is the same as the window over which the

system is observed. This need not always be the case. In fact, there may be practical limitations

on when or how long the test signal can be applied, but a longer observation window may be

appropriate. Also, if there is a delay in the test signal acting on the system there can be a

difference between the interval in which the test signal is applied and when the system is

observed.

In this section, we begin the consideration of asynchronous signal design, or the calculation

of auxiliary signals that may have different test application and observation intervals. We begin

with a modification of the framework of [20]. We will see that some parts of the theory are the

same but other parts are different. In particular, the optimal test signals can be quite different.

Unlike other works which, for example, use Riccati equations, we want our approach to be

easily adapted to other problems, such as those with bounds on test signals, so we use direct

optimization formulations and numerical solvers. This enables us to reduce the impact of the

test signal on system performance during, or at the end, of the test when needed. Section 4.8.1

describes the mathematical formulation and how to characterize a minimal proper test signal

for two measures of total model uncertainty. Section 4.8.2 gives computational examples and

discusses some numerical issues.

4.8.1 Asynchronous Multi-model Formulation

In this section, we consider a multi-model formulation where both models are ODEs. As before

we have one nominal (i = 0) and one faulty (i = 1) system. Each model has the form

x′i = Aixi +Biu+Miνi (4.77a)

yi = Cixi +Niµi. (4.77b)

All matrices are constant in the original models. This is changed in our particular implementa-

tion to accommodate the control u being zero on a subinterval.

We assume the test is performed over an interval 0 ≤ t ≤ T and the output y(t) is available

for all of [0 T ]. However, the test signal u is only applied from r to s where 0 ≤ r < s ≤ T .

Since the r = 0, s = T case is already done, we will focus on the case where 0 < r or s < T ,

or both. We assume that u is zero outside of [r s]. The case where the input is u + v where v

is another fixed known input is handled the same way as the v = 0 case so we omit v in what

follows.
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The model uncertainty is still given by (4.2), but to simplify notation in this section we let

Pi = P0i . Recall, there are two ways of measuring the total uncertainty,

Γ∞ = max{Γ0,Γ1} (4.78a)

Γ2
2 = Γ2

0 + Γ2
1. (4.78b)

Each has advantages. (4.78a) was considered in [20] and several related papers. The case (4.78b)

is discussed in [25]. With whichever measure we use, we assume that the total amount of

uncertainty is bounded by γ. By rescaling the Pi,Mi, Ni we may assume γ = 1 in what follows.

We continue to seek the smallest proper test signal and measure it with (4.4). Use of a

different measure of u is trivial to implement since it amounts to altering one line of code where

the outer cost is given. Several examples are given in Section 4.7 and in [20].

To make the discussion clearer we let Probr,sα,β be the problem where the observation is over

the interval [α β], the test signal is applied over [r s] and α ≤ r < s ≤ β. The classical problem

Probα,βα,β is just written Probα,β. Once we have found a proper u for Probr,s0,T , it will also be

proper as a test signal on [0 T ]. So the same tests to determine which model is correct given

output y can be used as discussed in [20]. However, we do not expect the minimal test signal

of this paper for Probr,s0,T to be minimal proper for Prob0,T .

4.8.1.1 Existence of a Proper Test Signal

The first question is whether a proper test signal exists. Using the notation of (4.2) and (4.77),

let

A =

[
A0 0

0 A1

]
, D =

[
M0 0 0 0

0 0 M1 0

]
,

Pβ =

[
βP0 0

0 (1− β)P1

]
, Jβ =

[
βI 0

0 (1− β)I

]
,

C =
[
C0 −C1

]
, N =

[
N0 −N1

]
, B =

[
B0

B1

]
.

Then, from [20] using Γ∞, a minimal proper signal for Prob0,T exists provided that there is a

κ such that the Riccati equation

P ′ = (A− Sκ,βR−1
κ,βC)P + P (A− Sκ,βR−1

κ,βC)T

− PCTR−1
κ,βCP +Qκ,β − Sκ,βR−1

κ,βS
T
κ,β, (4.79)

P (0) = Pβ (4.80)
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has a solution, where [
Qκ,β Sκ,β

STκ,β Rκ,β

]
=

[
D B

N 0

][
Jβ 0

0 −κI

][
D B

N 0

]T
. (4.81)

This formulation guarantees proper test signals for either the Γ∞ or the Γ2 noise measures. We

will discuss the two cases separately.

4.8.1.2 Γ2 Total Noise Measure

We use (4.78b) and proceed by getting a computable characterization of a proper signal and

then using numerical software to carry out the final optimization using this characterization as

a nontrivial optimization constraint. The first step is to have a characterization of the smallest

noise that will give y0 = y1 for a given u. Recall, this is the inner minimization problem. Given

a test signal u we must characterize

min
µi,νi,xi(0)

Γ2
0 + Γ2

1 (4.82a)

x′0 = A0x0 +B0u+M0ν0 (4.82b)

x′1 = A1x1 +B1u+M1ν1 (4.82c)

0 = C0x0 +N0µ0 − (C1x1 +N1µ1) (4.82d)

We assume that the Ni are invertible. Note that this is not restrictive since it just means

that we allow more noise and make the solution a bit more robust. Then we can use (4.82d) to

eliminate one of the µi. Suppose that we eliminate µ1 so that

µ1 = N−1
1 (C0x0 +N0µ0 − C1x1)

= C̄0x0 + N̄0µ0 − C̄1x1. (4.83a)

We drop the bars in the rest of the section. Then the inner minimization problem is

min
η,νi,x(0)

1

2
x(0)TPx(0) +

1

2

∫ T

0
xTS1x+ 2xTS2η + ηTS3η dt (4.84a)

where

x′ = Ax+Bu+Mη (4.84b)
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and

η =

ν0

ν1

η0

 , M =

[
M0 0 0

0 M1 0

]
, P =

[
P0 0

0 P1

]

S1 =

[
CT0 C0 −CT0 C1

−CT1 C0 CT1 C1

]
, S2 =

[
0 0 CT0 N0

0 0 −CT1 N0

]
,

and S3 = diag(I, I, I +NT
0 N0).

The Hamiltonian is

H =
1

2
(xTS1x+ 2xTS2η + ηTS3η) + λT (Ax+Bu+Mη).

Then the value of the minimum noise consistent with the same output for both models is

η = −S−1
3 (MTλ + ST2 x) and this makes the necessary conditions for the inner minimization

problem equivalent to

x′ = (A−MS−1
3 ST2 )x+Bu−MS−1

3 MTλ (4.85a)

−λ′ = (AT − S2S
−1
3 MT )λ+ (S1 − S2S

−1
3 ST2 )x. (4.85b)

The boundary conditions for the inner minimization problem are Px(0)+λ(0) = 0 and λ(T ) = 0.

Then the optimization problem Probr,s0,T to be solved is

Find J = inf
u
||u||2 (4.86a)

where u is zero outside of [r s] and the following constraints hold

x′ = (A−MS−1
3 ST2 )x+Bu−MS−1

3 MTλ (4.86b)

−λ′ = (AT − S2S
−1
3 MT )λ+ (S1 − S2S

−1
3 ST2 )x (4.86c)

ψ′ =
1

2
(xTS1x+ 2xTS2η + ηTS3η) (4.86d)

with the boundary conditions

Px(0) + λ(0) = 0, λ(T ) = 0 (4.87a)

ψ(0) =
1

2
xT (0)Px(0), ψ(T ) ≥ 1. (4.87b)

(4.86d) is a convenient way to compute the noise measure and (4.87b) ensures the signal we

find will be proper.

There are several different ways to implement a zero u outside of the interval [r s]. While
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they are all mathematically equivalent, they are not computationally equivalent. One method,

if the software being used has this feature, is to use phases corresponding to the intervals [0 r],

[r s], and [s T ]. Another method is to have B be zero outside of the interval [r s] and use the

cost ‖u‖0,T . Then u will be zero outside of [r s] because those values have no affect on the state

but do appear in the cost. This second formulation can lead to finer grids and take more CPU

time to accommodate discontinuities of u at r, s. Phases allow u to be discontinuous at r, s. We

shall comment on this more later.

4.8.1.3 Γ∞ Total Noise Measure

Now we consider the analogous problem of finding the smallest auxiliary signal, this time subject

to the Γ∞ bound in (4.78a). Let

σ(u) = inf
x0(0), x1(0)
ν0, ν1, µ0, µ1

max{Γ0, Γ1}.

Following [20] we can express σ(u) as σ(u) = maxβ∈[0, 1] φβ(u) where

φβ(u) = inf
x0(0), x1(0)
ν0, ν1, µ0, µ1

βΓ0 + (1− β)Γ1. (4.88)

Then the problem under consideration is

J = min
u
||u|| (4.89a)

x′0 = A0x0 +B0u+M0ν0 (4.89b)

x′1 = A1x1 +B1u+M1ν1 (4.89c)

0 = C0x0 +N0µ0 − (C1x1 +N1µ1) (4.89d)

1 ≤ σ(u). (4.89e)

Solving for µ1, µ1 = C0x0 +N0µ0 − C1x1 and we can express the cost as

φβ(u) = inf
x(0), η

1

2
xT (0)Pβx(0)

+
1

2

∫ T

0
xTS1,βx+ 2xTS2,βη + ηTS3,βη dt

where

Pβ =

[
βP0 0

0 (1− β)P1

]
, x =

[
x0

x1

]
, η =

ν0

ν1

µ0

 ,
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S1,β = (1− β)

[
CT0 C0 −CT0 C1

−CT1 C0 CT1 C1

]
,

S2,β = (1− β)

[
0 0 CT0 N0

0 0 −CT1 N0

]
,

S3,β =

βI 0 0

0 (1− β)I 0

0 0 βI + (1− β)NT
0 N0

 .
We can now reformulate the problem as

J = min
u
||u|| (4.90a)

x′ = Ax+Bu+Mη (4.90b)

1 ≤ φβ(u) (4.90c)

0 ≤ β ≤ 1 (4.90d)

where

A =

[
A0 0

0 A1

]
, M =

[
M0 0 0

0 M1 0

]
, B =

[
B0

B1

]
.

Again the restriction to r, s can be done with phases or altering B. We preferred phases.

We proceed by finding necessary conditions for the inner min that can be easily implemented

in optimal control software. The necessary conditions are analogous to the ones in (4.86b)-

(4.86c) except with the β parameter included. Therefore, the formulation of the problem that

permits an efficient numerical solution is

J = min
u
||u|| (4.91a)

x′ = (A−MS−1
3,βS

T
2,β)x+Bu

−MS−1
3,βM

Tλ (4.91b)

−λ′ = (AT − S2,βS
−1
3,βM

T )λ

+ (S1,β − S2,βS
−1
3,βS

T
2,β)x. (4.91c)

ψ′ =
1

2
(xTS1,βx+ 2xTS2,βη + ηTS3,βη) (4.91d)

with the boundary conditions Pβx(0) + λ(0) = 0, λ(T ) = 0, ψ(0) = 1
2x

T (0)Pβx(0), ψ(T ) ≥ 1,

and 0 ≤ β ≤ 1.
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4.8.2 Computational Tests

In this section we examine a computational example that will illustrate several points. We

suppose that the observation window is [0 3] and the normal and failed models are

x′0 =

[
−1 2

1 −2.5

]
x0 +

[
0

1

]
u+

[
1 0

0 1

]
ν0 (4.92a)

y =
[
1 1

]
x0 + µ0 (4.92b)

and

x′1 =

[
−1.5 3

−1 −0.5

]
x1 +

[
0

1

]
u+

[
1 0

0 1

]
ν1 (4.93a)

y =
[
1 1

]
x1 + µ1 (4.93b)

respectively so the fault is a change in A0. We will consider the case when P0 = P1 = 0 and

the case when P0 = P1 = I. Note that for every proper test signal that follows, both u and −u
are proper test signals of the same norm. All figures and results provided in this section are

with respect to the Γ2 total noise measure. Selected simulations for the Γ∞ total noise measure

were also performed for validation, but are not included here. Generally, the β parameter was

very close to 1
2 and the shape of the proper signals are independent of the choice of total noise

measure for this example. The proper signal in the Γ∞ total noise measure is bigger than the Γ2

total noise measure by a factor of about
√

2. Due to the extra parameter β, the Γ∞ formulation

took considerably longer to numerically solve. A summary of the results from all tests in this

section is given in Table 4.6.

4.8.3 Test 1: (r = 0, s = T = 3)

We first solve the problem Prob0,3 to see what the test signal is if the whole observation interval

can be used for applying the test signal. We compare the cases where Pi = 0 and Pi = I for

both models to simulate having some information or having no information on the state at

the start of the test. The minimal proper signals are shown in Figure 4.18. As expected when

Pi > 0, the minimal test signal is not zero at the start of the test interval.

4.8.4 Test 2: (r = 0, s = T = 1)

Suppose now that we can only apply the test signal for one unit of time. As is traditionally

done if we want to run the test on [0 1], we solve Prob0,1
0,1 and get the minimal proper test

signals shown in Figure 4.19. As to be expected the shorter interval leads to larger test signals

110



0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

8

10

12

Time

u

0 0.5 1 1.5 2 2.5 3
−5

−4

−3

−2

−1

0

1

2

Time

u

(a) Pi = 0, ||u|| = 9.28 (b) Pi = I, ||u|| = 4.82

Figure 4.18: Minimal proper test signals for Test 1.

in Figure 4.19 than in Figure 4.18. The shapes can also be different as Figures 4.18b and 4.19b

show.
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(a) Pi = 0, ||u|| = 162.84 (b) Pi = I, ||u|| = 15.53

Figure 4.19: Minimal proper test signals for Test 2.

4.8.5 Test 3: (r = 0, s = 1, T = 3)

Now suppose that we can only apply the test signal for one time unit as in Test 1, but that

we can observe the output for three time units. That is, we will solve Prob0,1
0,3. The result is in

Figure 4.20.

Comparing Figure 4.20 to Figures 4.18 and 4.19, two things are immediately apparent. For

111



0 0.5 1 1.5 2 2.5 3
−5

0

5

10

15

20

25

30

35

Time

u

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5

6

Time

u

(a) Pi = 0, ||u|| = 16.89 (b) Pi = I, ‖u‖ = 5.23

Figure 4.20: Minimal proper test signals for Test 3.

one, the minimal test signals have dramatically different shapes. For example, the minimum

proper test signals are no longer zero at the end of their application at time s. Secondly, there

is a definite benefit to the extra observation time. In the Pi = 0 case, the size of the test signal

has dropped from 162.84 to 16.89 which is much closer to the 9.28 when a test signal is applied

over the full [0 3]. In the Pi = I case the size of the test signal has dropped from 15.53 to 5.23

which is close to the 4.82 of applying the test signal over the full [0 3]. The same pattern holds

if we are interested in the maximum value of our test signals.

These three examples clearly show that there is an advantage of conducting extra observa-

tions. But if it is possible to start the observations earlier than the start of the test signal is

there an advantage of doing so? In Figure 4.21 we plot the L2 norm of the minimal proper test

signal for Probr,s0,3 with 0 ≤ r ≤ 2 and s = r + 1.

We see dramatically different behavior in the two cases. With Pi = I, where there is restric-

tion on the initial condition, we see that the smallest test signal is gotten by taking r = 0 as

in Test 3. However, with Pi = 0, where there is no information on the initial condition we see

that there is a definite advantage in applying the test signal a little later. In fact the minimum

is with r around 0.6.

4.8.6 Test 4: (s− r = 1, T = 3)

In this example, we treat r as an optimization parameter and fix the length of the testing interval

at 1 so that we have s = 1 + r when we find the minimal u. Including this free parameter r

adds one more degree of freedom and the problem becomes

Find J = inf
u,r
||u||2 (4.94a)
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Figure 4.21: Norm of minimal proper test signals for different r in Test 4.

x′ = (A−MS−1
3 ST2 )x+B(r; t)u

−MS−1
3 MTλ (4.94b)

−λ′ = (AT − S2S
−1
3 MT )λ

+ (S1 − S2S
−1
3 ST2 )x (4.94c)

ψ′ =
1

2
(xTS1x+ 2xTS2η + ηTS3η) (4.94d)

with the boundary conditions

Px(0) + λ(0) = 0, λ(T ) = 0 (4.95a)

ψ(0) =
1

2
xT (0)Px(0), ψ(T ) ≥ 1 (4.95b)

0 ≤ r ≤ 2 (4.95c)

and

B =


B0

B1

 , t ∈ [r, r + 1]

0, t /∈ [r, r + 1].

From Figure 4.21 we know that for Pi = I, the minimum test signal of length one should be

applied at the start of the interval with r = 0. However, the situation is different with Pi = 0.

When we optimize over r we get the result in Figure 4.22 with an r value of 0.65. By shifting

the start of the test to r = 0.65 instead of r = 0 we have reduced the size of the test signal

needed with a [0 3] observation window from 16.89 on [0 1] to 10.31 on [0.65 1.65], which is a

113



major improvement.

As expected Figure 4.22b is essentially the same as Figure 4.20b. In these problems u is

the minimum proper test signal if and only if −u is also a minimum proper test signal. The

optimization software may find either of the two solutions. Note that Figure 4.22b is the negative

of Figure 4.20b. For a given computed u it might be more practical to apply u or −u depending

on the way the test signal is generated.
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Figure 4.22: Minimum proper signals over all possible r for Test 4. r = 0.65, Pi = 0, ||u|| =
10.31 in (a) and r = 0, Pi = I, ||u|| = 5.23 in (b).

Table 4.6: Norm of the optimal test signal for Tests 1-4 and each case of Pi.

Test 1 Test 2 Test 3 Test 4

Problem P0,3 P0,1 P 0,1
0,3 P r,r+1

0,3

Pi = 0 9.28 162.84 16.89 10.31

Pi = I 4.82 15.53 5.23 5.23

4.8.7 Comments on Computations

Unlike the DAE models in Section 4.1, these models are simpler ODE models; however, the

optimization problems are still fairly complex. For example, they include inequality constraints

on integrals. Also, as pointed out in [1], it may be desirable to put bounds or other restrictions
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on the test signals. When choosing software it is desirable to avoid codes that rely on the

necessary conditions. Accordingly, as in Section 4.1, we use the direct transcription software

package GPOPS-II [35, 62]. Direct transcription software avoids the necessary conditions and

good transcription software can handle very complex problems. The problem is fully discretized

on a grid and then solved using a nonlinear programming algorithm. The solution is evaluated

and, if necessary, the grid is refined and the problem solved again in an iterative manner until

tolerances are met.

In a direct transcription approach the problem can be described differently on different time

intervals. In particular, controls can abruptly change when going from one interval to another

without forcing fine grids near the change. These intervals are called phases. Both GPOPS-II

and SOCX [6] have the ability to work with problems defined in phases. Thus (4.94)–(4.95) can

be implemented as either a single problem with a discontinuous B matrix or as a problem in

three phases with the control only active in the middle phase. We found the three phase version

to be much faster computationally.

Neither SOCX nor GPOPS-II permit the calling of themselves. When optimizing over r,

as in Test 4, it is required to nest the optimization problems with another optimizer. For the

problems discussed here, the optimizer fmincon from MATLAB suffices. We define a function

h(r) that solves Probr,s0,T for a fixed r using GPOPS. Then, fmincon optimizes h(r) over r. When

solving the problem this way it is important that the minimization of h(r) for a given r be

accurate enough to permit fmincon to find a good enough r value. On the other hand, too tight

of tolerances can greatly increase problem solution time by making each function evaluation

of h(r) very expensive in terms of CPU time. For this problem we found a GPOPS-II relative

mesh tolerance of 10−3 and a fmincon Tolfun of 0.1 worked well.

4.9 Conclusions for Chapter 4

This chapter has presented work on the study of auxiliary signal design in systems modeled by

DAEs for fault detection purposes, originally given in [21, 66, 67]. While we have pointed out

some references on auxiliary signal design for ODE systems, the analogous DAE problem has

been rarely studied, making it a novel consideration.

In Section 4.1, we give a procedure for the reformulation of Problem 4.1.1, a bi-level op-

timization problem with inequality and high index LTI DAE constraints, into Problem 4.1.2,

a straightforward optimization problem with LTI ODE constraints. The goal is to compute a

minimal proper auxiliary signal that facilitates fault detection. The minimal proper signal is

shown to always exist under the assumption that a Riccati equation has a solution and a ma-

trix inequality holds in Section 4.1.4. This treatment is under the presence of bounded additive

uncertainty. An extension of this procedure to models with model uncertainty is presented in
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Section 4.6.

A technique for efficient on-line detection and identification has been introduced in Sec-

tion 4.2. Theorem 4.2.1 is a new contribution and is an integral part of the realizability test

because it yields a simple and efficient method for computing the past cost on the noise. If

measurements are being conducted in real-time, the past cost for each model can be computed

in real-time, meaning we can determine a non-realizable model as soon as the past cost rises

above a threshold. Without the theorem, we would have to solve constrained optimization prob-

lems (see (4.29)) at every time we would like the past cost. Obviously, this is too expensive

computationally for real-time detection.

We have summarized and given steps for implementation of our approaches in the algo-

rithms in Section 4.3. The numerical examples of Section 4.4 and 4.5 are also helpful guides for

implementation purposes. Even nonlinear problems can benefit from this approach, as discussed

in the experiments of Section 4.5. We were able to find a proper signal u, and implement the

model identification results on a nonlinear model of a robot arm with elastic joints.

The conditions given in Section 4.1.4 are sufficient for the existence of a minimal proper

signal. When they do not hold, there may or may not be a minimal proper signal and the

optimization routine may fail. In Section 4.7.1, we give examples of this failure and observe

that a common characteristic in the models that exhibit optimization failure is the presence of

derivatives of the test signal appearing in the output. The failure of the algorithm appears to

be due to an issue of weak convergence and nonexistence of a minimum in L2. This is verified

with three examples. Section 4.7.2 gives an easy to compute test that enables one to determine

a priori when a failure might occur.

Finally, a new algorithm is introduced in Section 4.7.3 to find a nearly minimal proper signal

in the cases where the previous algorithm fails. The modification is an alteration of the cost on

the test signal, given in (4.73). By introducing u′ into the cost, we can prevent lim
α→0
‖u′α‖2 =∞

from causing a problem in the optimization. Implementation of the new algorithm on the failed

examples shows convergence of the new algorithm, and testing on an example that did not fail

shows the algorithm produces test signals that are close to the true optimal signal and get closer

as we let α→ 0.

In Sections 4.1-4.7, the interval on which the test signal is applied is the same as the win-

dow over which the system is observed. However, this doesn’t have to be the case. Section 4.8

explores asynchronous signal design, or designing test signals on intervals that are subsets of

the observation intervals. Experimentation shows that allowing for a longer output collection

interval proves advantageous in that it permits the use of smaller test signals. If there is in-

formation on the state at the start of the test interval, it is often best to apply the test signal

as soon as possible. However, if there is no information available on the initial state, it can

be advantageous to take measurements prior to the onset of the test signal. These results are

116



important because the restrictions on the application of the test signal are often much more

stringent than restrictions on the observation window.
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Chapter 5

Contributions and Future Work

5.1 Publications

Much of Chapters 2-3 can be found in the first two publications. The main ideas of Chapter 4

were originally given in the last three publications.

[65]: Scott, J.R. & Campbell, S.L. “Observer based fault detection in differential-algebraic

equations.” Proc. 2013 SIAM Conference on Control and its Applications. San Diego, CA,

2013, pp. 176-183.

[64]: Scott, J.R. & Campbell, S.L. “Observer based fault detection and identification in differential-

algebraic equations.” Proc. 2013 ASME Dynamic Systems and Control Conference. Palo Alto,

CA, 2013.

[66]: Scott, J.R. & Campbell, S.L. “Auxiliary Signal Design for Failure Detection in Differential-

Algebraic Equations.” Numerical Algebra, Control, and Optimization 4 (2014), pp. 151-179.

[67]: Scott, J.R. & Campbell, S.L. “Auxiliary signal design for failure detection in high index

differential-algebraic equations.” Proc. 2014 IEEE Conference on Decision and Control. San

Diego, CA, 2014.

[21]: Campbell, S.L. & Scott, J.R. “Asynchronous auxiliary signal design for failure detection.”

Proc. 2014 IEEE Conference on Systems, Man, and Cybernetics. San Diego, CA, 2014.

5.2 Presentations Outside of NCSU

� Observer Based Fault Detection in Differential Algebraic Equations

2013 SIAM Conference on Control and its Applications

San Diego, CA, July 2013
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� Observer Based Fault Detection and Identification in Differential Algebraic Equations

2013 ASME Dynamic Systems and Control Conference

Palo Alto, CA, October 2013

� Fault Detection in High Index DAE

2014 IEEE Conference on Decision and Control

Los Angeles, CA, December 2014

5.3 Contributions

In this thesis, we have given the following:

Chapter 2

• (Proposition 2.4.1, Lemma 2.4.1-2.4.4) previously unknown properties of LTI com-

pletions;

Chapter 3

• a novel method of generating residuals and preforming observer-based fault detection,

using Luenberger observers and results on completion techniques, applied to linear

DAEs, where no assumptions are made on the index of the DAE;

• (Proposition 3.2.1) a lower bound on the size of the fault, in terms of κ, for detection

by time t, given bounds on the noise;

• (Proposition 3.2.2) a lower bound on the time to detection;

• a lower bound on the size of the user-specified threshold vector τ so that no false

alarms will occur;

• (Propositions 3.3.1-3.3.3) procedures to create filtering matrices so that filtered resid-

uals have unidirectional properties facilitating identification, given a library of faults;

• an extension of the identification results, to include faults that are a linear combi-

nation of faults;

• an estimator of the the scaling factor, κ, for each fault in the combination;

• a method of disturbance attenuation using a frequency filtering technique;

Chapter 4

• a method to determine the optimal inputs for guaranteed active fault diagnosis by

solving a bilevel optimization problem in the case where the constraint dynamics are

linear DAE;
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• an extension to the model uncertainty case;

• sufficient conditions on the existence of a minimal proper signal;

• a method to test whether a given signal is close to minimal proper;

• an efficient test to correctly identify faulty models given an output (Theorem 4.2.1);

• the algorithms needed to efficiently implement the results of this thesis;

• evidence of the utility of our approach on problems with nonlinearities (robot arm

example in Section 4.5);

• evidence of a class of problems for which the reduction procedure and resulting

optimal control problem of Section 4.1 fails and criteria to determine when said

method has a greater chance of failure;

• a variation of the approach in Section 4.1 enabling one to still compute useful, nearly

optimal, proper test signals in the cases where the previous method does not;

• examples showing the test interval and observation window need not be equivalent

and that a longer output collection interval can prove advantageous by permitting

the use of smaller test signals; and

• examples showing that starting the test signal as soon as possible is best when there is

information on the initial state, but taking output information prior to implementing

the test signal may be advantageous when there is no information on the initial state.

5.4 Future Research

1. OBSERVER-BASED DETECTION FOR NONLINEAR AND LTV DAES: We made the

assumption in Chapter 3 that the DAE in question is solvable and assumptions I.-IV. are

satisfied. No assumptions were made on the structural form, such as Hessenburg form or

index restrictions were made. Therefore, the approach chosen is one that also holds great

promise for LTV and nonlinear systems. Recently, advances have been made in observer

design for LTV [8] and nonlinear [73] DAEs. Moreover, there have been recent discoveries

in completion theory for LTV [57] and nonlinear [18] DAE systems. The techniques of this

chapter are general enough to be extended to these two more complex classes of DAEs

and it is hoped that future work in this area includes these extensions.

2. DELAY DIFFERENTIAL ALGEBRAIC EQUATIONS: Many physical systems also pos-

sess delays either in the dynamics or in the application of the control. In [29], fault detec-

tion is discussed in the context of linear systems with delays. This leads us to believe the

methods presented in this work could be extended to DDAE (delayed differential algebraic
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equation) models. A typical FDI problem for DDAE models could be to minimize (5.1a)

with constraints (5.1b)-(5.1f).

J = ‖u‖2 (5.1a)

γ2 ≤ inf Γ2(u) (5.1b)

0 = fi(x
′
i, xi, t, xi(ωi(t)), u, u(ψ(t)), µi), i = 1, 2, t0 ≤ t ≤ tf (5.1c)

0 = y0 − y1, t0 ≤ t ≤ tf (5.1d)

xi = αi(t), −r ≤ t < t0 (5.1e)

u = β(t), −s ≤ t < t0 (5.1f)

ωi(t) and ψi(t) are time delay functions. In the case of single constant state and control

delays, ω(t) = t − r and ψ(t) = t − s. αi(t) and β(t) are prehistory functions active on

the specified interval where r, s > 0. The dynamics, fi, are, in general, DDAEs. The rest

of the notation here is consistent with Chapter 4.

Recall, in our simulations, we used a direct transcription approach–specifically GPOPS-II–

to compute the minimal auxiliary signal. However, GPOPS-II does not allow for delays. It

does allow for phases. For some special cases, we may be able to put the problem in an un-

dulated form using the method of steps (MOS) and still use GPOPS. Another direct tran-

scription approach, SOCX, part of the SOS suite (http://www.appliedmathematicalanaly-

sis.com), does allow for delays, but doesn’t allow for phases in delayed models. One goal is

to suggest a reformulation that SOCX can solve. Ideally, the DAE would be index one, but

SOCX can sometimes work with higher index DAEs depending on the cost function [31].

Another area of future work is to develop a reformulation of these higher index problems

that can be implemented in direct transcription software, such as GPOPS-II or SOCX.

3. MULTIPLE FAULTY MODELS: In Chapter 4, we assumed the existence of only two

models–one nominal, the other faulty. The approach in this paper can be applied to

problems with more than one type of fault by designing a test signal for each pair of

models and applying the test signals sequentially. This process could be formalized for

DAE models. Another interesting, related area of future work is to design a proper signal

for more than two concurrent models and identify the correct failure using only one test

signal.

4. AUXILIARY SIGNAL DESIGN FOR NONLINEAR MODELS: The theory behind using

linearized models to get test signals for nonlinear ODE models has been discussed formally

in [68]. The example in 4.5, shows that this approach, at least sometimes, is applicable to

nonlinear DAE models as well. While the robotic arm example behaved well, the different,
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at times unpleasant, behavior of linearized DAE models compared with those of ODE

models may result in more complicated theory. In general, one expects a linearized DAE

to provide local information on the nonlinear DAE it originates from. However, linearized

DAEs can feature quite different phenomena. A linearized DAE may show lower or higher

index than the original DAE, suggest incorrect stability, observability, etc., and fail to

remain regular [49]. Formalizing the theory and developing a characterization of when

using linearized models to get test signals is possible is an important area of future work.

5. SUFFICIENT CONDITION FOR ALGORITHMIC FAILURE: In Section 4.7, we pre-

sented several examples where the original method for auxiliary signal design failed and

a test to determine a priori when this failure might occur. However, it was also shown

that even a positive outcome of the test does not guarantee failure. Future work should

be to determine a verifiable condition for this failure, i.e. the nonexistence of a minimum

proper test signal.

6. EXTENSIONS OF ASYNCHRONOUS SIGNAL DESIGN: In the area of asynchronous

signal design, there might be circumstances where it is desirable for at least part of the

test interval to lie outside of the observation interval. Fault detection applied to DDAE

or DDE (delayed differential equations) models, discussed above, is a natural place where

this could occur. Control delays, for example, would most naturally imply an observation

interval that starts after the application of the test signal. The approach given in Section

4.8 cannot be directly used on such problems because (4.83a) cannot be used on all of the

test interval.

All of the discussion in Section 4.8 considers ODE models. It may also be possible to

extend these ideas to differential algebraic equations.
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[34] Garćıa, E. A. & Frank, P. M. “Deterministic Nonlinear Observer-based Approaches to
Fault Diagnosis: a Survey”. Control Engineering Practice 5 (1997), pp. 663–670.

[35] Garg, D. et al. “A Unified Framework for the Numerical Solution of Optimal Control
Problems Using Pseudospectral Methods”. Automatica 46.11 (2010), pp. 1843–1851.

[36] Garg, D. et al. “Direct Trajectory Optimization and Costate Estimation of Finite-Horizon
and Infinite-Horizon Optimal Control Problems via a Radau Pseudospectral Method”.
Computational Optimization and Applications 49.2 (2011), pp. 335–358.

[37] Garg, D. et al. “Pseudospectral Methods for Solving Infinite-Horizon Optimal Control
Problems”. Automatica 47.4 (2011), pp. 829–837.

[38] Geiger, G. “Monitoring of an electrical driven pump using continuous-time parameter esti-
mation models”. Proc. 6th IFAC Symposium on Identification and Parameter Estimation.
1982.

[39] Gerdin, M. et al. “Parameter estimation in linear differential-algebraic equations”. Proc.
13th IFAC Symposium on System Identification. 2003.

[40] Gerdts, M. Parameter Identification in Higher DAE Systems. Tech. rep. Department of
Mathematics, Universität Hamburg, 2005.

[41] Gertler, J. “Analytical redundancy methods in fault detection and isolation”. Proc. IFAC
SAFEPROCESS Symposium. Baden-Baden, 1991.

[42] Isermann, R. “Process Fault Detection Based on Modeling and Estimation Methods: A
Survey”. Automatica 20 (1984).

[43] Isermann, R. “Supervision, Fault-Detection and Fault Diagnosis Methods – an Introduc-
tion”. Control Engineering Practice 5.5 (1997), pp. 639–652.

[44] Isermann, R. Fault Diagnosis Systems: An Introduction from Fault Detection to Fault
Tolerance. Berlin, Germany: Springer, 2006.

125



[45] Kircheis, R. & Körkel, S. “Parameter estimation for DAE models in a multiple experi-
ment context”. Proc. 82nd Annual Meeting of the International Association of Applied
Mathematics and Mechanics. 2011.

[46] Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. Analysis and Numerical
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[62] Rao, A. V. et al. “Algorithm 902: GPOPS, a Matlab Software for Solving Multiple-phase
Optimal Control Problems using the Gauss Pseudospectral Method”. ACM Transactions
on Mathematical Software 37.37 (2010), 22:1–22:39.

[63] Riaza, R. Differential-Algebraic Systems. Analytical Aspects and Circuit Applications.
Hackensack, NJ: Word Scientific, 2008.

[64] Scott, J. R. & Campbell, S. L. “Observer based fault detection and identification in
differential algebraic equations”. Proc. 2013 ASME Dynamical Systems and Control. Palo
Alto, CA, 2013.

[65] Scott, J. R. & Campbell, S. L. “Observer based fault detection in differential algebraic
equations”. Proc. SIAM Conference on Control and its Applications. San Diego, CA,
2013, pp. 176–183.

[66] Scott, J. R. & Campbell, S. L. “Auxiliary Signal Design for Failure Detection in Differential-
Algebraic Equations”. Numerical Algebra, Control and Optimization 4 (2014), pp. 151–
179.

[67] Scott, J. R. & Campbell, S. L. “Auxiliary signal design for failure detection in high index
differential-algebraic equations”. Proc. 2014 IEEE Conference on Decision and Control.
Los Angeles, CA, 2014.

[68] Sweetingham, K. “Auxiliary Signal Design for Fault Detection in Nonlinear Systems”.
PhD Thesis. Raleigh, NC: North Carolina State University, 2008.

[69] Varga, A. “Descriptor System Techniques in Solving H2/∞-optimal Fault Detection and
Isolation Problems”. Ed. by Biegler, L. T. et al. Vol. 23. Advances in Design and Control.
SIAM, 2012. Chap. 6, pp. 107–128.

[70] Wahrburg, A. & Adamy, J. “Fault isolation for linear non-minimum phase systems using
dynamically extended observers”. Prc. 51st IEEE Conference on Decision and Control.
Maui, HI, 2012.

127



[71] Yeu, T. K. & Kawaji, S. “Sliding mode observer based fault detection and isolation in
descriptor systems”. Proc. American Control Conference. Anchorage, AK, 2002.

[72] Yeu, T. K. et al. “Fault Detection, Isolation and Reconstruction for Descriptor Systems”.
Asian Journal of Control 7.4 (2005), pp. 356–367.

[73] Zemouche, A. & Boutayeb, M. “Observers for continuous-time lipschitz nonlinear systems.
Analysis and comparisions”. Proc. 51st IEEE Conference on Decision and Control. Maui,
HI, 2012, pp. 4774–4779.

128



APPENDIX

129



Appendix A

MATLAB Code

A.1 Section 4.4 Code

Explanation of code listings:

� paper3exec.m - The main file that should be executed to produce the results of Section

4.4.

� Build Matrices Reduction.m - Performs the reduction procedure in Section 4.1.2.

� fullrow to invertible.m - Given M = [A B] where M has full row rank and A has full

column rank, this function returns columns of B that make A concatenated with the

extra columns invertible. This is used during the reduction procedure.

� Find properu.m- Finds a minimal proper u using the L2 noise bound. Solves Problem

4.1.2.

� OPTu checker.m - Returns min ‖y0 − y1‖2 given a signal u. Solves Problem 4.3.1.

� Model ID.m - Tests the model identification algorithm. This function takes a proper u

and its time grid t and calculates the minimum noise necessary to produce an output

y. The output y would usually be measured. In the absence of actual measurements, we

randomly generate noises and generate an output for model i. This function returns the

results shown in Section 4.4.2.

� scaleu alg1.m- Scales u down to make it closer to minimal proper. It is the implementation

of Algorithm 4.1.
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1 %This is the main file that should be executed to produce the results

2 %of Section 4.4.

3

4 % Explanation of variables created:

5 % u opt - Optimal signal

6 % t opt - time grid optimal signal is defined on

7 % obj - | | u | |ˆ2 (in L2)

8

9 clear all

10 close all

11 clc

12

13

14 % load CampbellNik2004 t1.mat %Example 1 (ODE Example: Proper u only no ID)

15 load Paper3 DAE ex.mat %Example 2

16

17 %build matrices and do reduction procedure

18 auxdata = Build Matrices Reduction(matrices,params);

19

20 %Section 4.4.1

21 % 1) Find the proper u, the time grid its defined on

22 [u opt,t opt,obj]=Find properu(auxdata);

23

24 figure

25 plot(t opt,u opt,'-rd','LineWidth',2)

26 xlabel('Time','FontSize',14)

27 ylabel('u','FontSize',14)

28 ax = gca;

29 set(ax,'FontSize',14)

30

31

32 %Proper u check - Finds J = | | y 0 - y 1 | |ˆ2
33 %select bound type (L2 or infty)

34 bound type = 'L2';

35

36 J = [];

37 for alpha = [.6 .9 .99 1.01 1.1 1.8]

38 temp = OPTu checker( t opt,u opt,matrices,params,bound type, alpha);

39 J = [J temp];

40 end

41 % end section 4.4.1

42
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43 %Real-Time Identification Section 4.4.2

44 u opt = sqrt(2)*u opt; %make u proper for L infty

45

46 %model on which the output is based (the active model in the simulation)

47 true model = 1;

48

49 %run a function to calculate W i, the past cost

50 %on the noise for both models

51 [W hist,t] = Model ID(u opt,t opt,auxdata,true model);

52

53 %plot ID results

54 tspan = linspace(params.t0,params.tf);

55 gamma plot = params.gamma*ones(100,1);

56 figure()

57 plot(t,W hist(:,1),'k--',t,W hist(:,2),'k:',tspan,gamma plot,'LineWidth',2)

58 xlabel('Time','FontSize',14)

59 ax = gca;

60 set(ax,'FontSize',14)

61 legend('W 0','W 1','\gamma')

1 function [auxdata] = Build Matrices Reduction(matrices,params)

2 %

3 % function [auxdata] = Build Matrices Reduction(matrices,params)

4 % performs the reduction procedure in Section 4.1.2 and builds matrices

5 % necessary to solve Problem 4.1.2

6 %

7 % Input:

8 % matrices - matrices that define the problem for both models, i = 0 and i

9 % =1.

10 % params - parameters for the problem:

11 % t 0, t f = initial and final time of the test interval

12 % gamma = noise bound

13 %

14

15

16 [n0,unused] = size(matrices.E0);

17 [n1,unused] = size(matrices.E1);

18 r0 = rank(matrices.E0);

19 r1 = rank(matrices.E1);

20 [m0,unused] = size(matrices.C0);

21 [m1,unused] = size(matrices.C1);
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22

23

24 params.n0=n0;

25 params.n1=n1;

26 params.r0=r0;

27 params.r1=r1;

28 params.m0=m0;

29 params.m1=m1;

30

31 %-------------------------------------------------------------------------%

32 % Perform Reduction

33 %-------------------------------------------------------------------------%

34

35 % compute SVD of E i

36 [U0, Sigma0, V0] = svd(matrices.E0);

37 [U1, Sigma1, V1] = svd(matrices.E1);

38 Sigmatilde0 = [inv(Sigma0(1:r0,1:r0)) zeros(r0,n0-r0); zeros(n0-r0,r0) ...

39 eye(n0-r0,n0-r0) ];

40 Sigmatilde1 = [inv(Sigma1(1:r1,1:r1)) zeros(r1,n1-r1); zeros(n1-r1,r1) ...

41 eye(n1-r1,n1-r1) ];

42

43 % ---------- Perform change of variables on C matrices and break up-----%

44 C0 = matrices.C0*V0;

45 C1 = matrices.C1*V1;

46 C01 = C0(:,1:r0);

47 C02 = C0(:,r0+1:n0);

48 C11 = C1(:,1:r1);

49 C12 = C1(:,r1+1:n1);

50 %------------------------------------------------------------------------%

51

52 %Create A ijk matrices

53 tempA0 = -Sigmatilde0*U0'*matrices.F0*V0;

54 A011 = tempA0(1:r0,1:r0);

55 A012 = tempA0(1:r0,r0+1:n0);

56 A021 = tempA0(r0+1:n0,1:r0); A022 = tempA0(r0+1:n0,r0+1:n0);

57

58 tempA1 = -Sigmatilde1*U1'*matrices.F1*V1;

59 A111 = tempA1(1:r1,1:r1);

60 A112 = tempA1(1:r1,r1+1:n1);

61 A121 = tempA1(r1+1:n1,1:r1); A122 = tempA1(r1+1:n1,r1+1:n1);

62

63

64 %Create M ijk matrices

133



65 tempM0 = Sigmatilde0*U0'*matrices.M0;

66 tempM1 = Sigmatilde1*U1'*matrices.M1;

67 [unused1,unused2,Vm0]=svd(tempM0(r0+1:r0+n0-r0,:));

68 [unused,unused,Vm1]=svd(tempM1(r1+1:r1+n1-r1,:));

69 perm0 = [zeros(n0-r0,r0) eye(n0-r0); eye(r0) zeros(r0,n0-r0)];

70 perm1 = [zeros(n1-r1,r1) eye(n1-r1); eye(r1) zeros(r1,n1-r1)];

71 tempM0 = tempM0*Vm0;

72 tempM0 = tempM0*perm0;

73 tempM1 = tempM1*Vm1*perm1;

74 M011 = tempM0(1:r0,1:r0);

75 M012= tempM0(1:r0,r0+1:n0);

76 M022 = tempM0(r0+1:n0,r0+1:n0);

77 M111 = tempM1(1:r1,1:r1); M112= tempM1(1:r1,r1+1:n1);

78 M122 = tempM1(r1+1:n1,r1+1:n1);

79

80 %Create B ij matrices

81 B0 = Sigmatilde0*U0'*matrices.B0;

82 B1 = Sigmatilde1*U1'*matrices.B1;

83 B01 = B0(1:r0,:);

84 B02 = B0(r0+1:n0,:);

85 B11 = B1(1:r1,:);

86 B12 = B1(r1+1:n1,:);

87

88 %make hat matrices and tilde matrices in 4.13

89 Ahat = [A011 zeros(r0,r1); zeros(r1,r0) A111];

90 Dhat = [A012 zeros(r0,n1-r1); zeros(r1,n0-r0) A112];

91 Nhat = [M012 zeros(r0,n1-r1+m0); zeros(r1,n0-r0) M112 zeros(r1,m0)];

92 Bhat = [B01;B11];

93 Mhat = [M011 zeros(r0,r1+m1) ; zeros(r1,r0) M111 zeros(r1,m1)];

94 Atilde = [ A021 zeros(n0-r0,r1); zeros(n1-r1,r0) A121; C01 -C11];

95 Dtilde = [A022 zeros(n0-r0,n1-r1); zeros(n1-r1,n0-r0) A122; C02 -C12];

96 Btilde = [B02;B12;matrices.D0-matrices.D1];

97 Mtilde = [zeros(n0-r0+n1-r1,r0+r1+m1); zeros(m1,r0+r1) -matrices.N1];

98 Ntilde = blkdiag(M022,M122,matrices.N0);

99

100

101 %------- Pick subset of columns of Ntilde so that [Dtilde Ntilde] --------%

102 %--- is invertible. This subset exists because [Dtilde Ntilde] ----------%

103 % -------- has full row rank. -------------------------------------------%

104 [H,PermH] = fullrow to invertible(Dtilde, Ntilde);

105 %-------------------------------------------------------------------------%

106 Ntilde = Ntilde*PermH;

107 Nhat = Nhat*PermH;
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108 Atilde = [Dtilde H]\Atilde;
109 Btilde = [Dtilde H]\Btilde;
110 Mtilde = [Dtilde H]\Mtilde;
111 Gtilde = [Dtilde H]\Ntilde(:,m0+1:end);
112

113

114 H2 = Nhat(:,1:m0);

115 Rhat = [Dhat H2];

116 Ghat = Nhat(:,m0+1:end);

117

118 A = Ahat - Rhat*Atilde;

119 B = Bhat-Rhat*Btilde;

120 M = Mhat - Rhat*Mtilde;

121 G = Ghat - Rhat*Gtilde;

122

123

124 A0 = Atilde(n0-r0+n1-r1+1:end,:);

125 G0 = Gtilde(n0-r0+n1-r1+1:end,:);

126 B0 = Btilde(n0-r0+n1-r1+1:end,:);

127 M0 = Mtilde(n0-r0+n1-r1+1:end,:);

128

129 Q = [eye(length(G0(1,:)),length(G0(1,:)))+G0'*G0 G0'*M0; ...

130 M0'*G0 eye(length(M0(1,:)),length(M0(1,:)))+M0'*M0];

131

132

133 %system matrices from 4.17

134 Az1 = A-[G M]*(Q\[G0'*A0; M0'*A0]);

135 Au = B - [G M]*(Q\[G0'*B0; M0'*B0]);

136 Alam = -[G M]*(Q\[G';M']);
137 Bz1 = A0'*A0 - [A0'*G0 A0'*M0]*(Q\[G0'*A0; M0'*A0]);

138 Blam = A'- [A0'*G0 A0'*M0]*(Q\[G';M']);
139 Bu = A0'*B0 - [A0'*G0 A0'*M0]*(Q\[G0'*B0;M0'*B0]);
140 %----------------- End reduction -----------------------------------------%

141 %store system matrices for dynamic equations when finding proper u

142 auxdata.Az1 = Az1;

143 auxdata.Au = Au;

144 auxdata.Alam = Alam;

145 auxdata.Bz1 = Bz1;

146 auxdata.Blam = Blam;

147 auxdata.Bu = Bu;

148 %--------------------------------------------------------------------%

149

150 %-------------------------------------------------------------------------%
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151 % some matrices are needed to compute I in the DE for \psi
152 auxdata.inv noise = Q;

153 auxdata.G = G;

154 auxdata.M = M;

155 auxdata.G0 = G0;

156 auxdata.M0 = M0;

157 auxdata.A0 = A0;

158 auxdata.B0 = B0;

159 %-------------------------------------------------------------------------&

160 auxdata.P = matrices.P;

161 %-------------------------------------------------------------------------%

162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

163 %END 4.1 MATRICES

164

165

166 %-------------------------------------------------------------------------%

167 %-------------------------------------------------------------------------%

168 % matrices for ID test Sec. 4.2

169 %-------------------------------------------------------------------------%

170 %-------------------------------------------------------------------------%

171

172 % model 0

173 Dtilde0= [A022 ; C02];

174 Ntilde0 = [zeros(m0+n0-r0,r0) blkdiag(M022,matrices.N0)];

175 Btilde0 = [B02;matrices.D0];

176 Atilde0 = [A021;C01];

177 Nhat0 = [M011 M012 zeros(r0,m0)];

178 Bhat0 = B01;

179 A11 = A011;

180 Dhat0 = A012;

181

182

183 [H,PermH] = fullrow to invertible(Dtilde, Ntilde);

184 %-------------------------------------------------------------------------%

185 Ntilde = Ntilde*PermH;

186 Nhat = Nhat*PermH;

187 Atilde = [Dtilde H]\Atilde;
188 Btilde = [Dtilde H]\Btilde;
189 Mtilde = [Dtilde H]\Mtilde;
190 Gtilde = [Dtilde H]\Ntilde(:,m0+1:end);
191

192

193 H2 = Nhat(:,1:m0);
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194 Rhat = [Dhat H2];

195 Ghat = Nhat(:,m0+1:end);

196

197

198 [Ntilde01, PermN]= fullrow to invertible(Dtilde0,Ntilde0);

199 Ntilde0 = Ntilde0*PermN;

200 Ntilde02 = Ntilde0(:,m0+1:end);

201 Nhat0 = Nhat0*PermN;

202 Nhat01 = Nhat0(:,1:m0);

203 Nhat02 = Nhat0(:,m0+1:end);

204 Rhat0 = [Dhat0 Nhat01];

205

206 Q1 = -[Dtilde0 Ntilde01]\Ntilde02;
207 Q2 = -[Dtilde0 Ntilde01]\Atilde0;
208

209 %------------------------------------------------------------------------%

210 % define matrices needed to solve DE for K,v,phi

211 auxdata.model0.A = A11- Rhat0*([Dtilde0 Ntilde01]\Atilde0);
212 auxdata.model0.N = Nhat02 - Rhat0*([Dtilde0 Ntilde01]\Ntilde02);
213 auxdata.model0.Bhat0 = Bhat0;

214 auxdata.model0.Btilde0 = Btilde0;

215 auxdata.model0.Rhat0 = Rhat0;

216 auxdata.model0.Dtilde0 = Dtilde0;

217 auxdata.model0.Ntilde01 = Ntilde01;

218 auxdata.model0.Q1 = Q1(n0-r0+1:end,:);

219 auxdata.model0.Q2 = Q2(n0-r0+1:end,:);

220 auxdata.model0.Q = auxdata.model0.Q1'*auxdata.model0.Q1+ ...

221 eye(size(auxdata.model0.Q1'*auxdata.model0.Q1));

222 auxdata.model0.hatP = matrices.P0(1:r0,1:r0);

223 %end model 0

224

225

226 %-----------------------------------------------------------------------%

227 % model 1

228 Dtilde0= [A122 ; C12];

229 Ntilde0 = [zeros(m1+n1-r1,r1) blkdiag(M122,matrices.N1)];

230 Btilde0 = [B12;matrices.D1];

231 Atilde0 = [A121;C11];

232 Nhat0 = [M111 M112 zeros(r1,m1)];

233 Bhat0 = B11;

234 A11 = A111;

235 Dhat0 = A112;

236
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237 [Ntilde01, PermN]= fullrow to invertible(Dtilde0,Ntilde0);

238 Ntilde0 = Ntilde0*PermN;

239 Ntilde02 = Ntilde0(:,m1+1:end);

240 Nhat0 = Nhat0*PermN;

241 Nhat01 = Nhat0(:,1:m1);

242 Nhat02 = Nhat0(:,m1+1:end);

243 Rhat0 = [Dhat0 Nhat01];

244

245 Q1 = -[Dtilde0 Ntilde01]\Ntilde02;
246 Q2 = -[Dtilde0 Ntilde01]\Atilde0;
247

248 %------------------------------------------------------------------------%

249 % define matrices needed to solve DE for K,v,phi

250 auxdata.model1.A = A11- Rhat0*([Dtilde0 Ntilde01]\Atilde0);
251 auxdata.model1.N = Nhat02 - Rhat0*([Dtilde0 Ntilde01]\Ntilde02);
252 auxdata.model1.Bhat0 = Bhat0;

253 auxdata.model1.Btilde0 = Btilde0;

254 auxdata.model1.Rhat0 = Rhat0;

255 auxdata.model1.Dtilde0 = Dtilde0;

256 auxdata.model1.Ntilde01 = Ntilde01;

257 auxdata.model1.Q1 = Q1(n1-r1+1:end,:);

258 auxdata.model1.Q2 = Q2(n1-r1+1:end,:);

259 auxdata.model1.Q = auxdata.model1.Q1'*auxdata.model1.Q1+...

260 eye(size(auxdata.model1.Q1'*auxdata.model1.Q1));

261 auxdata.model1.hatP = matrices.P1(1:r1,1:r1);

262 %end model 1

263

264 %-----------------------------------------------------------------------%

265 % grab matrices/parameters too

266 auxdata.params = params;

267 auxdata.matrices = matrices;

268 %-----------------------------------------------------------------------%

269 %END ID matrices

270 end

1 function [ cols, P] = fullrow to invertible( A,B )

2 %

3 % function [ cols, P] = fullrow to invertible(A,B)

4 % This function takes Dtilde (A) and Ntilde (B) and returns cols

5 % N 1tilde and a perumutation matrix P that reorders Ntilde so that its

6 % first columns are N 1tilde

138



7 %INPUT:

8 % A - a matrix with full column rank (Dtilde from section 4.1)

9 % B - a matrix so that [A B] has full row rank (Ntilde from section 4.1)

10 %

11 %OUTPUT:

12 % cols - The first n-m columns of B that make [A cols] an invertible matrix.

13 % P - the permutation matrix so that B*P orders the columns so that the

14 % first n-m columns of B*P are cols.

15

16 cols =[];

17 [n,m]=size(A); % we assume n>m

18 [m2,n2] =size(B);

19 I= [];

20 P = zeros(n2);

21

22 %the rank of A is j. Need to add columns to A until

23 %rank(A) = n

24 for j = m+1:n

25 i=1;

26

27 %if the next column of B does not add a rank,

28 %then skip it

29 while rank([A B(:,i)]) < j

30 i = i + 1;

31 end

32 %if it does add a rank, then tack it onto cols

33 A = [A B(:,i)];

34 cols = [cols B(:,i)];

35 P(i,j-m)=1; %record which column it was in the permutation matrix

36 I = [I i];

37 end

38

39 %finish making P

40 for j = n-m+1:n2

41 for i = 1:n2

42 if max(i==I) == 1

43 else

44 P(i,j) = 1;

45 I = [I i];

46 break;

47 end

48 end

49 end
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50 end

1 function [u opt,t opt, obj] = Find properu(auxdata)

2 %

3 % function [ u opt, t opt, obj ] = Find properu(auxdata)

4 %

5 % Find properu finds a minimal proper u using the Lˆ2 noise for a problem

6 % defined by auxdata (see Build Matrices Reduction.m for an explanation).

7 % INPUT:

8 % auxdata - problem structure

9

10 % Ouput =

11 % u opt - minimal proper u that is defined on

12 % t opt - the time grid for u

13 % obj - | | u | |ˆ 2 (in L2)

14 %

15 % This function uses the helper functions properu cont.m,

16 % properu end.m, properu settings.m as needed by GPOPSII

17

18

19 global r0 % dimension of dynamic states in model 0

20 global r1 % dimension of dynamic states in model 1

21 global n0 % dimension of states in model 0

22 global n1 % dimension of states in model 1

23 global m0 % dimension of outputs in model 0

24 global m1 % dimension of outputs in model 0

25

26 % Prepare auxdata, settings and parameters to pass to GpopsII

27 %---------------Get all matrices and parameters -------------------------%

28 params = auxdata.params;

29 matrices = auxdata.matrices;

30 r0 = auxdata.params.r0;

31 r1 = params.r1;

32 n0 = params.n0;

33 n1 = params.n1;

34 m0 = params.m0;

35 m1 = params.m1;

36

37 %Compute all other quantities from user given params

38 auxdata.params = params;

39 auxdata.matrices = matrices;
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40

41

42 % Get settings for GPOPSII%

43 setup = properu settings(params,auxdata.P);

44 setup.auxdata=auxdata;

45 % --------------------------------------------------------- %

46

47 % Solve with GPOPSII

48 output = gpops2(setup);

49

50 % gather output

51 t opt = output.result.solution.phase.time;

52 u opt = output.result.solution.phase.control;

53

54 %the states for model 0 and model 1

55 z1 = output.result.solution.phase.state(:,1:r0+r1);

56 lambda = output.result.solution.phase.state(:,r0+r1+1:end-1);

57 obj = output.result.objective;

58 end

59 %-----------------------------------------------------------------------%

60

61

62

63 % Helper functions

64

65

66

67 function phaseout = properu cont(input)

68 global r0

69 global r1

70 global n0

71 global n1

72 t = input.phase.time;

73 x = input.phase.state;

74 u = input.phase.control;

75

76 %-------------------------------------------------------------------------%

77 %------------------------ Define needed Params ---------------------------%

78 %-------------------------------------------------------------------------%

79 G0= input.auxdata.G0;

80 M0=input.auxdata.M0;

81 G = input.auxdata.G;

82 M= input.auxdata.M;
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83 A0 = input.auxdata.A0;

84 B0 = input.auxdata.B0;

85 inv noise = input.auxdata.inv noise;

86 Az1 = input.auxdata.Az1;

87 Alam = input.auxdata.Alam;

88 Au = input.auxdata.Au;

89 Bz1 = input.auxdata.Bz1;

90 Blam = input.auxdata.Blam;

91 Bu = input.auxdata.Bu;

92 %----------------------------------------------------------------------%

93 %--------------- Dynamics ---------------------------------------------%

94 %----------------------------------------------------------------------%

95 %need to include dynamics \psi dot = I() as well

96 z1 = x(:,1:r0+r1);

97 lambda = x(:,r0+r1+1:end-1);

98

99 dz1 = Az1*z1' + Au*u' + Alam*lambda';

100 dlam = -Bz1 *z1' - Blam*lambda' - Bu*u';

101 c12c2 = -inv noise\([G';M']*lambda'+[G0'*A0; M0'*A0]*z1' + [G0'*B0; M0'*B0]*u');

102 c11 = -(A0*z1'+[G0 M0]*c12c2 + B0*u');

103 c = [c11;c12c2];

104 dpsi = 1/2*(sum(c.ˆ2,1));

105 integrand = sum(u'.ˆ2,1)';

106

107 xdot=[dz1' dlam' dpsi'];

108

109

110 phaseout.dynamics = xdot;

111 phaseout.integrand = integrand;

112 end

113 %-------------------------------------------------------------- %

114

115 function output = properu end(input)

116 global r0

117 global r1

118 P = input.auxdata.P;

119 q = input.phase.integral;

120 %-------------- Input Linear BC -----------------------------------------%

121

122 output.objective = q;

123

124 x0 = input.phase.initialstate;

125 xf = input.phase.finalstate;
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126 output.eventgroup.event = [(P*x0(1:r0+r1)'+x0(r0+r1+1:end-1)')', ...

127 x0(end)-1/2*x0(1:r0+r1)*P*x0(1:r0+r1)'];

128 end

129 %--------------------------------------------------------------- %

130

131 function [ setup ] =properu settings(params,P)

132 %function [setup] = Define GPOPS settings(params,P)

133 %

134 % This function defines the settings to pass into GPOPSII.

135 %

136 %Input:

137 % params.t0 = initial time

138 % params.tf = final time

139 % params.gamma = noise bound

140 % P - initial uncertainty matrix

141 %

142 %

143 % Output;

144 % setup - settings to pass to gpopsII

145

146 global r1

147 global r0

148 global n0

149 global n1

150 %-------------------------------------------------------------------------%

151 %----------------------- Setup for Problem Bounds ------------------------%

152 %-------------------------------------------------------------------------%

153 bounds.phase.initialtime.lower = params.t0;

154 bounds.phase.initialtime.upper = params.t0;

155 bounds.phase.finaltime.lower = params.tf;

156 bounds.phase.finaltime.upper = params.tf;

157

158 n=2*(r1+r0);

159 bounds.phase.initialstate.lower = [-1e8*ones(1,n) 0];

160 bounds.phase.initialstate.upper = [1e8*ones(1,n) 1e8];

161 bounds.phase.state.lower = [-1e8*ones(1,n) 0];

162 bounds.phase.state.upper = [1e8*ones(1,n) 10000];

163 bounds.phase.finalstate.lower = [-1e8*ones(1,r0+r1) zeros(1,r0+r1) ...

164 params.gammaˆ2];

165 bounds.phase.finalstate.upper = [1e8*ones(1,r0+r1) zeros(1,r0+r1) 1e9];

166 bounds.eventgroup.lower = zeros(1,r0+r1+1);

167 bounds.eventgroup.upper = zeros(1,r0+r1+1);

168
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169 bounds.phase.control.lower = -1e9;

170 bounds.phase.control.upper = 1e9;

171 bounds.phase.integral.lower = 0;

172 bounds.phase.integral.upper = 1e10;

173

174

175

176 %-------------------------------------------------------------------------%

177 %---------------------- Provide Guess of Solution ------------------------%

178 %-------------------------------------------------------------------------%

179 guessx = [1*ones(r0+r1+r0+r1,1)' 1/2*ones(r0+r1,1)'*P*ones(r0+r1,1);...

180 ones(r0+r1+r0+r1,1)' 100];

181 guess.phase.time = [params.t0;params.tf];

182 guess.phase.state = guessx;

183 guess.phase.control = [1;1];

184 guess.phase.integral = 1;

185

186

187

188

189 %-----------------------------------------------------------------------%

190 %----------Provide Mesh Refinement Method and Initial Mesh ---------------%

191 %

192 %optional fields

193 mesh.method = 'hp1';

194 mesh.tolerance = 1e-3;

195 mesh.maxiteration = 10;

196 mesh.colpointsmin = 4;

197 mesh.colpointsmax = 12;

198 mesh.phase.colpoints = 4*ones(1,10);

199 mesh.phase.fraction = 0.1*ones(1,10);

200 %}
201 %-------------------------------------------------------------------------%

202 %------------- Assemble Information into Problem Structure ---------------%

203 %-------------------------------------------------------------------------%

204 setup.name = 'Find minimal proper u';

205 setup.functions.continuous = @properu cont;

206 setup.functions.endpoint = @properu end;

207 setup.bounds = bounds;

208 setup.guess = guess;

209 setup.mesh = mesh;

210 setup.nlp.solver = 'ipopt';

211 setup.nlp.options.ipopt.linear solver = 'ma57';
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212 %setup.derivatives.supplier = 'sparseBD';

213 setup.derivatives.derivativelevel = 'second';

214 %setup.scales.method = 'automatic-bounds';

215 setup.method = 'RPMintegration';

216

217

218 end

1 function [ J ] = OPTu checker( t opt,u opt,matrices,params,bound type, alpha)

2 %function [J] = OPTu checker(t opt,u opt,matrices,params,bound type,alpha)

3 %

4 % This function

5 % INPUT:

6 % u opt - optimal control (minimal proper)u

7 % t opt - time grid for u opt

8 % matrices - matrices that define the problem

9 % params -

10 % t0 - start time

11 % tf - end time

12 % gamma - bound for noise \Gamma {infty}<\gamma \Gamma{Lˆ2} <

13 % \gamma
14 % bound type - 'infty', 'L2' infinity or Lˆ2 bound for noise

15 % alpha - scaling factor on u

16 %

17 % OUTPUT:

18 % J = min | | y 0 - y 1 | |ˆ2
19

20

21 %error handling

22 if strcmp(bound type,'infty')==0 && strcmp(bound type,'L2')==0

23 error('Error. bound type must either be "infty" or "L2"')

24 end

25 J = [];

26

27

28 auxdata = OPTu checker auxdata(matrices,params);

29 auxdata.u=u opt;

30 auxdata.t = t opt;

31 auxdata.bound type = bound type;

32 setup = OPTu checker settings(auxdata,params,bound type);

33
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34 auxdata.params = params;

35 auxdata.alpha = alpha;

36 setup.auxdata = auxdata;

37 output = gpops2(setup);

38 J = [J output.result.objective];

39 end

40

41

42 function [ setup ] = OPTu checker settings(auxdata,params,bound type)

43 % This function defines the settings to pass into GPOPSII.

44

45 n0 =auxdata.n0;

46 n1 =auxdata.n1;

47 r0 =auxdata.r0;

48 r1 =auxdata.r1;

49 m0 =auxdata.m0;

50 m1 = auxdata.m1;

51 bounds.phase.initialtime.lower = params.t0;

52 bounds.phase.initialtime.upper = params.t0;

53 bounds.phase.finaltime.lower = params.tf;

54 bounds.phase.finaltime.upper = params.tf;

55 if strcmp(bound type,'L2')==1

56 bounds.phase.initialstate.upper = [1e12*ones(1,r0+r1) params.gammaˆ2];

57 bounds.phase.initialstate.lower = [-1e12*ones(1,r0+r1) 0];

58 bounds.phase.state.lower = [-1e12*ones(1,r0+r1) 0];

59 bounds.phase.state.upper = [1e12*ones(1,r0+r1) params.gammaˆ2];

60 bounds.phase.finalstate.lower = [-1e12*ones(1,r0+r1) 0];

61 bounds.phase.finalstate.upper = [1e12*ones(1,r0+r1) params.gammaˆ2];

62 bounds.eventgroup.lower = 0;

63 bounds.eventgroup.upper = 0;

64 elseif strcmp(bound type,'infty') ==1

65 bounds.phase.initialstate.upper = [1e12*ones(1,r0+r1) ...

66 params.gammaˆ2 params.gammaˆ2];

67 bounds.phase.initialstate.lower = [-1e12*ones(1,r0+r1) 0 0];

68 bounds.phase.state.lower = [-1e12*ones(1,r0+r1) 0 0];

69 bounds.phase.state.upper = [1e12*ones(1,r0+r1) params.gammaˆ2 ...

70 params.gammaˆ2];

71 bounds.phase.finalstate.lower = [-1e12*ones(1,r0+r1) 0 0];

72 bounds.phase.finalstate.upper = [1e12*ones(1,r0+r1) params.gammaˆ2 ...

73 params.gammaˆ2];

74 bounds.eventgroup.lower = [0 0];

75 bounds.eventgroup.upper = [0 0];

76 end
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77 bounds.phase.control.lower = [-1e10*ones(1,n0-r0+n1-r1) ...

78 -200*params.gammaˆ2*ones(1,r0+r1+m1+m0)];

79 bounds.phase.control.upper = [1e10*ones(1,n0-r0+n1-r1) ...

80 200*params.gammaˆ2*ones(1,r0+r1+m1+m0)];

81 bounds.phase.integral.lower = 0;

82 bounds.phase.integral.upper = 1e12;

83

84

85

86 %-------------------------------------------------------------------------%

87 %---------------------- Provide Guess of Solution ------------------------%

88 %-------------------------------------------------------------------------%

89

90 if strcmp(bound type,'L2')==1

91 guessx = [2*ones(r0+r1,1)' params.gammaˆ2/2; ...

92 ones(r0+r1,1)' params.gammaˆ2/2 ];

93 elseif strcmp(bound type,'infty')==1

94 guessx = [2*ones(r0+r1,1)' params.gammaˆ2/2 params.gammaˆ2/2; ...

95 ones(r0+r1,1)' params.gammaˆ2/2 params.gammaˆ2/2 ];

96 end

97 guess.phase.control = [1*ones(1,n0-r0+n1-r1) ...

98 .01*ones(1,r0+r1+m1+m0); ...

99 1*ones(1,n0-r0+n1-r1) .01*ones(r0+r1+m1+m0,1)'];

100 guess.phase.time = [params.t0; params.tf];

101 guess.phase.state = guessx;

102 guess.phase.integral = 1;

103 %-------------------------------------------------------------------------%

104 %----------Provide Mesh Refinement Method and Initial Mesh ---------------%

105 %

106 %optional fields

107 mesh.method = 'hp1';

108 mesh.tolerance = 1e-3;

109 mesh.maxiteration = 5;

110 mesh.colpointsmin = 4;

111 mesh.colpointsmax = 16;

112 mesh.phase.colpoints = 4*ones(1,10);

113 mesh.phase.fraction = 0.1*ones(1,10);

114 %}
115 %-------------------------------------------------------------------------%

116 %------------- Assemble Information into Problem Structure ---------------%

117 %-------------------------------------------------------------------------%

118 setup.name = 'fix u min J';

119 setup.functions.continuous = @OPTu checker cont;
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120 setup.functions.endpoint = @OPTu checker end;

121 setup.bounds = bounds;

122 setup.guess = guess;

123 setup.mesh = mesh;

124 setup.nlp.solver = 'ipopt';

125 %setup.nlp.options.ipopt.linear solver = 'ma57';

126 setup.derivatives.supplier = 'sparseCD';

127 setup.derivatives.derivativelevel = 'second';

128 setup.method = 'RPMintegration';

129

130

131 end

132

133 %-----------------------------------%

134 % BEGIN:fixu minnoiseContinuous.m %

135 %-----------------------------------%

136 function phaseout = OPTu checker cont(input)

137

138 alpha = input.auxdata.alpha;

139 u opt = input.auxdata.u;

140 t opt = input.auxdata.t;

141

142 r1=input.auxdata.r1; %rank of E1

143 r0 = input.auxdata.r0; %rank of E0

144 n0 = input.auxdata.n0; % size of x0

145 n1 = input.auxdata.n1; % size of x1

146 m0 = input.auxdata.m0; %number of outputs model 0

147 m1 = input.auxdata.m1; % number of outputs model 1

148

149 t = input.phase.time;

150 %------------ get state separated ---------%

151 x = input.phase.state;

152 z1 = x(:,1:r0+r1);

153 % ----------------- get control separated------------%

154 noise = input.phase.control;

155 z2 = noise(:,1:n0-r0+n1-r1);

156 zeta2 = noise(:,n0-r0+n1-r1+1:n0+n1+m1);

157 eta1 = zeta2(:,r0+r1+1:end);

158 eta0 = noise(:,n0+n1+m1+1:n0+n1+m1+m0);

159 %-------------------------------------------------------------------------%

160

161 %---------------------------recover needed matrices -------------------%

162 M = input.auxdata.M;
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163 G = input.auxdata.G;

164 B = input.auxdata.B;

165 A = input.auxdata.A;

166 N0 = input.auxdata.N0;

167 N1 = input.auxdata.N1;

168 D0 = input.auxdata.D0;

169 D1 = input.auxdata.D1;

170 C = input.auxdata.C;

171 Atilde = input.auxdata.Atilde;

172 Btilde = input.auxdata.Btilde;

173 Dtilde = input.auxdata.Dtilde;

174 %------------------------------------------------------------------------%

175 %----------------------------------------------------------------------%

176 %--------------- Dynamics ---------------------------------------------%

177 %----------------------------------------------------------------------%

178 %GPOPS sometimes passes time values < t0 and > tf but only by tf+\epsilon
179 % and t0-\epsilon where \epsilon is very small. Since we don't have values

180 % of u there, we set these small time perturbations to t0 and tf

181 tu = (t>=input.auxdata.params.t0).*t.*(t<=input.auxdata.params.tf);

182

183 %interpolate u to get values at the time points needed by GPOPS

184 u = alpha*interp1(t opt,u opt,tu);

185

186 [pts, n] = size(x);

187 xdot = zeros(pts,n);

188 integrand = zeros(pts,1);

189

190 %dynamics

191 dz1 = (A*z1' + B*u' + G*z2' + M*zeta2')';

192 mu02m12 = (-Atilde*z1' - Dtilde*z2' - Btilde*u')';

193 if strcmp(input.auxdata.bound type,'L2')==1

194 dpsi = (1/2*(sum(eta0'.ˆ2,1) + sum(zeta2'.ˆ2,1)+sum(mu02m12'.ˆ2,1)))';

195 elseif strcmp(input.auxdata.bound type,'infty')==1

196 dpsi = [(1/2*(sum(eta0'.ˆ2,1)+sum(zeta2(:,1:r0)'.ˆ2,1)+ ...

197 sum(mu02m12(:,1:(n0-r0))'.ˆ2,1)))', ...

198 (1/2*(sum(zeta2(:,r0+1:end)'.ˆ2,1)+ ...

199 sum(mu02m12(:,n0-r0+1:end,:)'.ˆ2,1)))'];

200 end

201 xdot = [dz1 dpsi];

202 phaseout.dynamics = xdot;

203

204 %cost integrand

205 integrand = C*[z1';z2'] + [D0 -D1]*[u';u'] + [N0 -N1]*[eta0';eta1'];
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206 integrand = sum(integrand.ˆ2,1);

207 phaseout.integrand = integrand';

208 end

209

210

211 function [auxdata] = OPTu checker auxdata( input,params )

212 % This function accepts the user inputs outputs all needed

213 % matrices and parameters in auxdata. This function is very much like

214 % Build Matrices Reduction.m.

215

216 [n0,unused] = size(input.E0); %E i is square by assumption

217 [n1,unused] = size(input.E1);

218 r0 = rank(input.E0);

219 r1 = rank(input.E1);

220 n = r0+r1+1;

221 [U0, Sigma0, V0] = svd(input.E0);

222 [U1, Sigma1, V1] = svd(input.E1);

223

224 [m0,unused] = size(input.C0);

225 [m1,unused] = size(input.C1);

226 Sigmatilde0 = [inv(Sigma0(1:r0,1:r0)) zeros(r0,n0-r0); ...

227 zeros(n0-r0,r0) eye(n0-r0,n0-r0) ];

228 Sigmatilde1 = [inv(Sigma1(1:r1,1:r1)) zeros(r1,n1-r1); ...

229 zeros(n1-r1,r1) eye(n1-r1,n1-r1) ];

230

231 % ---------- Perform change of variables on C matrices and break up-----%

232 C0 = input.C0*V0;

233 C1 = input.C1*V1;

234 I1 = [eye(r0) zeros(r0,r1+n0-r0+n1-r1); zeros(r1,r0+n0-r0) eye(r1) ...

235 zeros(r1,n1-r1); zeros(n0-r0,r0) eye(n0-r0) zeros(n0-r0,r1+n1-r1); ...

236 zeros(n1-r1,r0+n0-r0+r1) eye(n1-r1)];

237 C = [C0 -C1]*I1;

238 %------------------------------------------------------------------------%

239

240

241 tempA0 = -Sigmatilde0*U0'*input.F0*V0;

242 A011 = tempA0(1:r0,1:r0); A012 = tempA0(1:r0,r0+1:n0);

243 A021 = tempA0(r0+1:n0,1:r0); A022 = tempA0(r0+1:n0,r0+1:n0);

244

245

246 tempA1 = -Sigmatilde1*U1'*input.F1*V1;

247 A111 = tempA1(1:r1,1:r1); A112 = tempA1(1:r1,r1+1:n1);

248 A121 = tempA1(r1+1:n1,1:r1); A122 = tempA1(r1+1:n1,r1+1:n1);
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249

250 tempM0 = Sigmatilde0*U0'*input.M0;

251 tempM1 = Sigmatilde1*U1'*input.M1;

252 [unused,unused,Vm0]=svd(tempM0(r0+1:r0+n0-r0,:));

253 [unused,unused,Vm1]=svd(tempM1(r1+1:r1+n1-r1,:));

254 perm0 = [zeros(n0-r0,r0) eye(n0-r0); eye(r0) zeros(r0,n0-r0)];

255 perm1 = [zeros(n1-r1,r1) eye(n1-r1); eye(r1) zeros(r1,n1-r1)];

256 tempM0 = tempM0*Vm0*perm0;

257 tempM1 = tempM1*Vm1*perm1;

258 M011 = tempM0(1:r0,1:r0); M012= tempM0(1:r0,r0+1:n0);

259 M022 = tempM0(r0+1:n0,r0+1:n0);

260 M111 = tempM1(1:r1,1:r1); M112= tempM1(1:r1,r1+1:n1);

261 M122 = tempM1(r1+1:n1,r1+1:n1);

262

263 B0 = Sigmatilde0*U0'*input.B0;

264 B1 = Sigmatilde1*U1'*input.B1;

265 B01 = B0(1:r0,:);

266 B02 = B0(r0+1:n0,:);

267 B11 = B1(1:r1,:);

268 B12 = B1(r1+1:n1,:);

269

270 Ahat = [A011 zeros(r0,r1); zeros(r1,r0) A111];

271 Dhat = [A012 zeros(r0,n1-r1); zeros(r1,n0-r0) A112];

272 Nhat = [M012 zeros(r0,n1-r1); zeros(r1,n0-r0) M112];

273 Bhat = [B01;B11];

274 Mhat = [M011 zeros(r0,r1+m1) ; zeros(r1,r0) M111 zeros(r1,m1)];

275 Atilde = [ A021 zeros(n0-r0,r1); zeros(n1-r1,r0) A121];

276 Dtilde = [A022 zeros(n0-r0,n1-r1); zeros(n1-r1,n0-r0) A122];

277 Btilde = [B02;B12];

278

279 Ntilde = blkdiag(M022,M122);

280 %-----------------------------------------------------%

281

282 Atilde = Ntilde\Atilde;
283 Btilde = Ntilde\Btilde;
284 Mtilde = 0;

285 Dtilde = Ntilde\Dtilde;
286

287 A = Ahat - Nhat*Atilde;

288 B = Bhat-Nhat*Btilde;

289 M = Mhat;

290 G = Dhat - Nhat*Dtilde;

291
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292

293 % --------- end system matrices -----------------------------------------%

294 %-------------------------------------------------------------------------%

295

296 %----------------------- Compile the information into Auxdata ------------%

297 % MATRICES % PARAMS

298 auxdata.P = input.P; auxdata.m0 = m0;

299 auxdata.C = C; auxdata.m1 = m1;

300 auxdata.D0 = input.D0; auxdata.r0 = r0;

301 auxdata.D1 = input.D1; auxdata.r1 = r1;

302 auxdata.N0 = input.N0; auxdata.n0 = n0;

303 auxdata.N1 = input.N1; auxdata.n1 = n1;

304 auxdata.A = A; auxdata.n = n;

305 auxdata.G = G;

306 auxdata.B = B;

307 auxdata.M = M;

308 auxdata.Atilde = Atilde;

309 auxdata.Dtilde = Dtilde;

310 auxdata.Btilde = Btilde;

311 auxdata.hatP0 = input.P0;

312 auxdata.hatP1 = input.P1;

313 end

314

315 %-------------------------------------------------------------------------%

316 function [ output ] = OPTu checker end(input)

317 bound type = input.auxdata.bound type;

318 P = input.auxdata.P;

319 q = input.phase.integral;

320 r0 = input.auxdata.r0;

321 r1 = input.auxdata.r1;

322 output.objective = q;

323 hatP0 = input.auxdata.hatP0(1:r0,1:r0);

324 hatP1 = input.auxdata.hatP1(1:r1,1:r1);

325

326 %-------------- Linear BC -----------------------------------------%

327 x0 = input.phase.initialstate;

328 xf = input.phase.finalstate;

329 if strcmp(bound type,'L2')==1

330 output.eventgroup.event = [x0(end)-1/2*...

331 x0(1:r0+r1)*P*x0(1:r0+r1)'];

332 elseif strcmp(bound type,'infty')==1

333 output.eventgroup.event = [x0(end-1)-1/2*...

334 x0(1:r0+r1)*blkdiag(hatP0,zeros(r1))*x0(1:r0+r1)', ...
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335 x0(end) - 1/2*x0(1:r0+r1)*blkdiag(zeros(r0),hatP1)*x0(1:r0+r1)'];

336 end

337 end

338 %}

1 function [last known proper,last known alpha, history] = ...

2 scaleu alg1(t,u,bound type,tol,max iterations,matrices,params)

3 % function newu =

4 % scaleu alg1(t,u,bound type,tol,max iterations,matrices,params)

5 %

6 % This function takes a proper u for a particular bound and scales it to

7 % make it smaller and closer to minimal proper. It is the code for

8 % Algorithm 4.1.

9 %

10 % INPUTS:

11 % u - proper u

12 % t - time grid where u is defined

13 % bound type = 'infty' or 'L2' what bound type we are scaling with

14 % respect to

15 % tol = algorithm will terminate when

16 % ( | | last known proper - utest | | ) | | last known proper | | \infty < tol

17 % equivalently, when alpha < tol.

18 % max iterations = maximum number of iterations

19 % matrices - matrices that define the problem:

20 % E x ' + F x = Bu + M \mu
21 % y = C x + D u + N \nu
22 % params - parameters for the problem

23 % % t0 - start time

24 % tf - end time

25 % gamma - bound for noise \Gamma {infty}<\gamma \Gamma{Lˆ2} <

26 % \gamma
27 %

28 % OUTPUTS:

29 % last known proper - the scaled signal

30 % history - iteration history

31

32 history = [];

33

34 %Optu checker requires a scaling factor on the control. We don't want to

35 %scale so alpha = 1.

36 alpha = 1;
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37

38 n = 0;%initialie iteration counter

39 n0 = 1; %everytime we get J =0, we need to decrease alpha by a smaller

40 % amount. n0 keeps track of how much to decrease alpha.

41 last known proper = u;

42 last known alpha = 1;

43 while n < max iterations

44 alpha = alpha - 10ˆ(-n0); %decrease alpha to scale u down

45 utest = alpha*u;

46

47 %find J = \min | | y 0 - y 1 | |ˆ2
48 [ J ] = OPTu checker(t,u,matrices,params,bound type,alpha);

49

50 %increment iteration counter and store history

51 n = n+1;

52 history = [history [n;alpha;J]];

53

54 if J < 10ˆ(-7) % if J is zero

55 if ((last known alpha - alpha)/last known alpha) < tol

56 disp('Tolerance met. Scaled u has been found.')

57 return

58 else %if tolerance has not been met but J = 0 then need to take

59 %back up to what it was and increment n0

60 alpha = alpha + 10ˆ(-n0);

61 n0 = n0 + 1;

62 end

63 else

64 last known proper = utest;

65 last known alpha = alpha;

66 end

67 end

68 disp('Maximum Iterations have been reached. | | y0 - y1 | | = ')

69 disp(J)

70 end

A.2 Section 4.8 Code

Explanation of code listings:

� exec1.m - The main file that should be executed to produce the results of Section 4.8.
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� define problem.m - Stores matrices that define the problem and calculates matrices nec-

essary for a solution.

� Find u asynch phases.m - Finds the minimal proper u using GPOPS II.

� cost for r.m - Calculates the norm of the optimal control for a given r.

1 % main exec file for asynchronous signal design

2 % exec1.m

3 clc

4 clear all

5 close all

6 tol = 1e-3; %relative mesh tolerance for gpops

7 P 0 = zeros(2,2); %initial weight

8 P 1=zeros(2,2);

9

10 %pick noise measure

11 %noise measure = 'infty';

12 noise measure='L2';

13

14

15 %

16 %Example 1-3 (change r and s as needed):

17

18 r=1;%begin test signal

19 s=2;%end test window

20

21 auxdata = auxiliary function(P 0,P 1,r,s); %builds some matrices

22 [u1,t1,x1,obj,betaa] = Find u asynch phases(auxdata,tol,noise measure);

23 obj

24 betaa

25 %}
26 figure

27 plot(t1,u1,'-rd','LineWidth',2)

28 xlabel('Time','FontSize',14)

29 ylabel('u','FontSize',14)

30 ax = gca;

31 set(ax,'FontSize',14)

32 %

33 % Example 4: s-r=1, T=3

34 r0=.2;

35 options = optimset('TolFun',2);
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36 f = @(x)cost for r(x,P 0,P 1,noise measure);

37 [r,fval,exitflag]=fmincon(f,r0,[],[],[],[],0,2,[],options);

38

39 auxdata = auxiliary function(P 0,P 1,r,r+1); %builds some matrices

40 [u2,t2,x2,obj,betaa] = Find u asynch phases(auxdata,1e-6,noise measure);

41

42 obj

43 betaa

44 %}
45

46 figure

47 plot(t2,u2,'-rd','LineWidth',2)

48 xlabel('Time','FontSize',14)

49 ylabel('u','FontSize',14)

50 ax = gca;

51 set(ax,'FontSize',14)

52 %}

1 function [auxdata] = define problem(P0,P1,r,s)

2 %This file defines matrices for the problem and constructs matrices

3 %necessary for solution.

4

5 params.t0 = 0;

6 params.r = r;

7 params.s = s;

8 params.tf = 3;

9 params.gamma = 1;

10 %s-r = a

11 params.a = 1;

12

13 A0 = [-1 2; 1 -2.5];

14 A1 = [-1.5 3; -1 -0.5];

15 %A0 = [0 1; -9 0];

16 %A1 = [0 1; -4 0];

17 [n,unused] = size(A0);

18 [m,unused] = size(A1);

19 n = n+m;

20 params.n = n;

21 B0 = [0;1];

22 B1 = [0;1];

23
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24 N0 = eye(1);

25 N1 = eye(1);

26 M0 = eye(2);

27 M1 = eye(2);

28

29 C0 = [1 1];

30 C1 = [1 1];

31

32 Cbar0= N1\C0;
33 Nbar0 = N1\N0;
34 Cbar1 = N1\C1;
35

36 A = blkdiag(A0,A1);

37 B = [B0;B1];

38 [unused,n ] = size(N0);

39 M = blkdiag(M0,M1);

40 [m,unused] = size(M);

41 M = [M zeros(m,n)];

42 [unused,n] = size(Cbar0'*Cbar0);

43 [m,unused] = size(Cbar1'*Cbar1);

44 S1 = [Cbar0'*Cbar0 -Cbar0'*Cbar1; -Cbar1'*Cbar0 Cbar1'*Cbar1];

45 %S1 = [Cbar0'*Cbar0 -2*Cbar0'*Cbar1; zeros(m,n) Cbar1'*Cbar1];

46 [unused,n] = size([M0 M1]);

47 [m,unused] = size([Cbar0'*Nbar0; -Cbar1'*Nbar0]);

48 S2 = [zeros(m,n) [Cbar0'*Nbar0; -Cbar1'*Nbar0]];

49 [m,unused] = size(Nbar0'*Nbar0);

50 S3 = blkdiag(eye(n), eye(m)+Nbar0'*Nbar0);

51

52

53

54 P = blkdiag(P0,P1);

55 %P=.1;

56 auxdata.params = params;

57 auxdata.A = A;

58 auxdata.B = B;

59 auxdata.P = P;

60 auxdata.S1 = S1;

61 auxdata.S2 = S2;

62 auxdata.S3 = S3;

63 auxdata.M = M;

64 [unused,auxdata.nx0]=size(A0);

65 [unused,auxdata.nx1]=size(A1);

66 [auxdata.ny,unused] = size(C0);
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67 auxdata.Nbar0 = Nbar0;

68 auxdata.P = P;

69 auxdata.P0= P0;

70 auxdata.P1 = P1;

1 function [u opt,t opt,x, obj,betaa] = Find u asynch phases(auxdata,...

2 tol,noise measure)

3 %

4 % function [ u opt,t opt ] = Find u asynch phases()

5 %

6 % This function finds a minimal proper u.

7 % INPUT:

8 % auxdata - parameters and matrices created to solve the problem

9 % tol - mesh tolerance for gpops II

10 % noise measure - 'L2'or 'infty'

11 % Ouput =

12 % u opt - minimal proper u that is defined on t opt

13 % t opt - the time grid for u

14 % x - optimal state

15 % obj - optimal objective value | | u | |ˆ2
16 % betaa - if using max norm for noise, it's the optimal beta

17 %

18

19 % Step 0: Prepare auxdata, settings and parameters to pass to GpopsII

20

21 %---------------Get all matrices and parameters -------------------------%

22 params = auxdata.params;

23 %-------------------------------------------------------------------------%

24 %get which case we are in

25 if -1e-8 < params.r && 1e-8> params.r

26 params.r=0;

27 end

28 if params.r == params.t0 && params.s == params.tf

29 phase case=1;

30 elseif params.r == params.t0 && params.s < params.tf

31 phase case=2;

32 elseif params.t0<params.r && params.s < params.tf

33 phase case=3;

34 elseif params.t0< params.r && params.s == params.tf

35 phase case = 4;

36 else
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37 disp('Error')

38 params.r

39 params.t0

40 params.s

41 params.tf

42 end

43 params.phase case=phase case;

44

45 params.noise measure = noise measure;

46

47 auxdata.params=params;

48

49 % Get settings for GPOPSII%

50 setup = properu settings phases(params,tol,phase case);

51 %-----------------------------------------------------------------------%

52 if strcmp(noise measure,'infty')==1

53 setup.bounds.parameter.lower = .3;

54 setup.bounds.parameter.upper = .7;

55 setup.guess.parameter = .6;

56 end

57 setup.auxdata=auxdata;

58 % --------------------------------------------------------- %

59

60 % Solve with GPOPSII

61 output = gpops2(setup);

62

63 %gather output

64 t opt = [output.result.solution.phase(1).time];

65 u opt = [output.result.solution.phase(1).control];

66 x = [output.result.solution.phase(1).state];

67 obj = output.result.objective;

68 if phase case > 1

69 t opt = [t opt;output.result.solution.phase(2).time];

70 u opt = [u opt;output.result.solution.phase(2).control];

71 x = [x;output.result.solution.phase(2).state];

72 end

73

74 if phase case == 3

75 t opt = [t opt;output.result.solution.phase(3).time];

76 u opt = [u opt;output.result.solution.phase(3).control];

77 x = [x;output.result.solution.phase(3).state];

78 end

79
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80

81 if strcmp(noise measure,'infty') == 1

82 betaa = output.result.solution.parameter;

83 else

84 betaa='There is no beta when using Lˆ2 norm for noise measure.';

85 end

86

87 end

88 %-----------------------------------------------------------------------%

89

90

91

92 % Helper functions

93

94

95

96 function phaseout = properu cont phases(input)

97 %-------------------------------------------------------------------------%

98 %------------------------ Define needed Params ---------------------------%

99 %-------------------------------------------------------------------------%

100 n = input.auxdata.params.n;

101 P = input.auxdata.P;

102 S1= input.auxdata.S1;

103 S2 = input.auxdata.S2;

104 S3 = input.auxdata.S3;

105 A = input.auxdata.A;

106 B = input.auxdata.B;

107 M = input.auxdata.M;

108 phase case = input.auxdata.params.phase case;

109 nx0 = input.auxdata.nx0;

110 nx1 = input.auxdata.nx1;

111 ny = input.auxdata.ny;

112 Nbar0 = input.auxdata.Nbar0;

113

114 %if using Linfty noise measure need to modify some matrices

115 if strcmp(input.auxdata.params.noise measure,'infty')==1

116 betaa = input.phase.parameter;

117 betaa = betaa(1);

118 S1 = (1-betaa)*S1;

119 S2 = (1-betaa)*S2;

120 S3 = blkdiag(betaa*eye(nx0), (1-betaa)*eye(nx1), ...

121 betaa*eye(ny)+(1-betaa)*Nbar0'*Nbar0);

122 end
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123

124 switch phase case

125 case 1

126 %phase 1

127 t1 = input.phase.time;

128 z1= input.phase.state;

129 u1 = input.phase.control;

130

131 %-----------------------------------------------------------------%

132 x = z1(:,1:n); %state (x 0,x 1)

133 lambda = z1(:,n+1:end-1); %costate

134

135 [tel,unused]=size(x);

136

137

138 dx = (A-M*(S3\S2'))*x' + B*u1' - (M*(S3\M'))*lambda';
139 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';
140

141 dpsi = zeros(tel,1);

142 for i = 1:tel

143 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
144 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta + ...

145 eta'*S3*eta);

146 end

147

148

149 integrand = sum(u1'.ˆ2,1)';

150

151 xdot = [dx' dlam' dpsi];

152 phaseout.dynamics = xdot;

153 phaseout.integrand = integrand;

154 %-----------------------------------------------------------------%

155

156 case 2

157

158 %-----------------------------------------------------------------%

159 %phase 1

160 t1 = input.phase(1).time;

161 z1= input.phase(1).state;

162 u1 = input.phase(1).control;

163

164 %-----------------------------------------------------------------%

165 x = z1(:,1:n); %state (x 0,x 1)
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166 lambda = z1(:,n+1:end-1); %costate

167

168 [tel,unused]=size(x);

169

170

171 dx = (A-M*(S3\S2'))*x'+ B*u1' - (M*(S3\M'))*lambda';
172 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';
173

174 dpsi = zeros(tel,1);

175 for i = 1:tel

176 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
177 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta +...

178 eta'*S3*eta);

179 end

180

181

182 integrand = sum(u1'.ˆ2,1)';

183

184 xdot = [dx' dlam' dpsi];

185 phaseout(1).dynamics = xdot;

186 phaseout(1).integrand = integrand;

187 %-----------------------------------------------------------------%

188

189 %-----------------------------------------------------------------%

190 %phase 3

191 t2 = input.phase(2).time;

192 z2= input.phase(2).state;

193 u2 = input.phase(2).control;

194

195 %-----------------------------------------------------------------%

196 x = z2(:,1:n); %state (x 0,x 1)

197 lambda = z2(:,n+1:end-1); %costate

198

199 [tel,unused]=size(x);

200

201

202 dx = (A-M*(S3\S2'))*x'- (M*(S3\M'))*lambda';
203 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';
204

205 dpsi = zeros(tel,1);

206 for i = 1:tel

207 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
208 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta + ...
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209 eta'*S3*eta);

210 end

211

212

213 integrand = sum(u2'.ˆ2,1)';

214

215 xdot = [dx' dlam' dpsi];

216 phaseout(2).dynamics = xdot;

217 phaseout(2).integrand = integrand;

218 case 3

219 %phase 1

220 t1 = input.phase(1).time;

221 z1= input.phase(1).state;

222 u1 = input.phase(1).control;

223

224 %-----------------------------------------------------------------%

225 x = z1(:,1:n); %state (x 0,x 1)

226 lambda = z1(:,n+1:end-1); %costate

227

228 [tel,unused]=size(x);

229

230

231 dx = (A-M*(S3\S2'))*x' - (M*(S3\M'))*lambda';
232 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';
233

234 dpsi = zeros(tel,1);

235 for i = 1:tel

236 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
237 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta + ...

238 eta'*S3*eta);

239 end

240

241

242 integrand = sum(u1'.ˆ2,1)';

243

244 xdot = [dx' dlam' dpsi];

245 phaseout(1).dynamics = xdot;

246 phaseout(1).integrand = integrand;

247 %----------------------------------------------------------------%

248

249 %-----------------------------------------------------------------%

250 %phase 2

251 t1 = input.phase(2).time;
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252 z1= input.phase(2).state;

253 u1 = input.phase(2).control;

254

255 %----------------------------------------------------------------%

256 x = z1(:,1:n); %state (x 0,x 1)

257 lambda = z1(:,n+1:end-1); %costate

258

259 [tel,unused]=size(x);

260

261

262 dx = (A-M*(S3\S2'))*x'+ B*u1' - (M*(S3\M'))*lambda';
263 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';
264

265 dpsi = zeros(tel,1);

266 for i = 1:tel

267 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
268 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta +...

269 eta'*S3*eta);

270 end

271

272

273 integrand = sum(u1'.ˆ2,1)';

274

275 xdot = [dx' dlam' dpsi];

276 phaseout(2).dynamics = xdot;

277 phaseout(2).integrand = integrand;

278 %-----------------------------------------------------------------%

279

280 %-----------------------------------------------------------------%

281 %phase 3

282 t2 = input.phase(3).time;

283 z2= input.phase(3).state;

284 u2 = input.phase(3).control;

285

286 %-----------------------------------------------------------------%

287 x = z2(:,1:n); %state (x 0,x 1)

288 lambda = z2(:,n+1:end-1); %costate

289

290 [tel,unused]=size(x);

291

292

293 dx = (A-M*(S3\S2'))*x'- (M*(S3\M'))*lambda';
294 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';

164



295

296 dpsi = zeros(tel,1);

297 for i = 1:tel

298 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
299 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta +...

300 eta'*S3*eta);

301 end

302

303

304 integrand = sum(u2'.ˆ2,1)';

305

306 xdot = [dx' dlam' dpsi];

307 phaseout(3).dynamics = xdot;

308 phaseout(3).integrand = integrand;

309 case 4

310 %----------------------------------------------------------------%

311 %phase 1

312 t1 = input.phase(1).time;

313 z1= input.phase(1).state;

314 u1 = input.phase(1).control;

315

316 %-----------------------------------------------------------------%

317 x = z1(:,1:n); %state (x 0,x 1)

318 lambda = z1(:,n+1:end-1); %costate

319

320 [tel,unused]=size(x);

321

322

323 dx = (A-M*(S3\S2'))*x' - (M*(S3\M'))*lambda';
324 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';
325

326 dpsi = zeros(tel,1);

327 for i = 1:tel

328 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
329 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta +...

330 eta'*S3*eta);

331 end

332

333

334 integrand = sum(u1'.ˆ2,1)';

335

336 xdot = [dx' dlam' dpsi];

337 phaseout(1).dynamics = xdot;
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338 phaseout(1).integrand = integrand;

339 %-----------------------------------------------------------------%

340

341 %-----------------------------------------------------------------%

342 %phase 2

343 t2 = input.phase(2).time;

344 z2= input.phase(2).state;

345 u2 = input.phase(2).control;

346

347 %-----------------------------------------------------------------%

348 x = z2(:,1:n); %state (x 0,x 1)

349 lambda = z2(:,n+1:end-1); %costate

350

351 [tel,unused]=size(x);

352

353

354 dx = (A-M*(S3\S2'))*x'+ B*u2'- (M*(S3\M'))*lambda';
355 dlam = -(A'-S2*(S3\M'))*lambda'-(S1-S2*(S3\S2'))*x';
356

357 dpsi = zeros(tel,1);

358 for i = 1:tel

359 eta = -S3\(M'*lambda(i,:)'+S2'*x(i,:)');
360 dpsi(i) = 1/2*(x(i,:)*S1*x(i,:)' + 2*x(i,:)*S2*eta +...

361 eta'*S3*eta);

362 end

363

364

365 integrand = sum(u2'.ˆ2,1)';

366

367 xdot = [dx' dlam' dpsi];

368 phaseout(2).dynamics = xdot;

369 phaseout(2).integrand = integrand;

370 end

371

372 end

373 %------------------------------------------------------------------------ %

374

375 function output = properu end phases(input)

376 P = input.auxdata.P;

377 if strcmp(input.auxdata.params.noise measure,'infty')==1

378 betaa = input.parameter;

379 P0 = input.auxdata.P0;

380 P1 = input.auxdata.P1;
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381 P = blkdiag(betaa*P0,(1-betaa)*P1);

382 end

383 phase case = input.auxdata.params.phase case;

384 n = input.auxdata.params.n;

385 switch phase case

386 case 1

387 q = input.phase.integral;

388 x0 = input.phase.initialstate;

389 xf = input.phase.finalstate;

390 output.eventgroup.event = [(P*x0(1:n)'+x0(n+1:end-1)')', ...

391 x0(end)-1/2*x0(1:n)*P*x0(1:n)'];

392 case 2

393 q1 = input.phase(1).integral;

394 q2 = input.phase(2).integral;

395 q = q1+q2;

396 % Variables at Start and Terminus of Phase 1

397 x0{1} = input.phase(1).initialstate;

398 xf{1} = input.phase(1).finalstate;

399 % Variables at Start and Terminus of Phase 2

400 x0{2} = input.phase(2).initialstate;

401 xf{2} = input.phase(2).finalstate;

402 % Event Group 1: Linkage Constraints Between Phases 1 and 2

403 output.eventgroup(1).event = [(P*x0{1}(1:n)'+x0{1}(n+1:end-1)')'...
404 ,x0{1}(end)-1/2*x0{1}(1:n)*P*x0{1}(1:n)', x0{2}-xf{1}];
405 case 3

406 q1 = input.phase(1).integral;

407 q2 = input.phase(2).integral;

408 q3 = input.phase(3).integral;

409 q = q1+q2 + q3;

410 % Variables at Start and Terminus of Phase 1

411 x0{1} = input.phase(1).initialstate;

412 xf{1} = input.phase(1).finalstate;

413 % Variables at Start and Terminus of Phase 2

414 x0{2} = input.phase(2).initialstate;

415 xf{2} = input.phase(2).finalstate;

416 % Variables at Start and Terminus of Phase 2

417 x0{3} = input.phase(3).initialstate;

418 xf{3} = input.phase(3).finalstate;

419

420 % Event Group 1: Linkage Constraints Between Phases 1 and 2

421 output.eventgroup(1).event = [(P*x0{1}(1:n)'+x0{1}(n+1:end-1)')'...
422 ,x0{1}(end)-1/2*x0{1}(1:n)*P*x0{1}(1:n)', x0{2}-xf{1}];
423 output.eventgroup(2).event = [ x0{3}-xf{2}];
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424 case 4

425 q1 = input.phase(1).integral;

426 q2 = input.phase(2).integral;

427 q = q1+q2;

428 % Variables at Start and Terminus of Phase 1

429 x0{1} = input.phase(1).initialstate;

430 xf{1} = input.phase(1).finalstate;

431 % Variables at Start and Terminus of Phase 2

432 x0{2} = input.phase(2).initialstate;

433 xf{2} = input.phase(2).finalstate;

434

435 % Event Group 1: Linkage Constraints Between Phases 1 and 2

436 output.eventgroup(1).event = [(P*x0{1}(1:n)'+x0{1}(n+1:end-1)')'...
437 ,x0{1}(end)-1/2*x0{1}(1:n)*P*x0{1}(1:n)', x0{2}-xf{1}];
438 end

439

440 %-------------------------------------------------------

441 output.objective = q;

442 end

443 %--------------------------------------------------------------- %

444

445 function [ setup ] =properu settings phases(params,tol,phase case)

446 % This function defines the settings to pass into GPOPSII.

447 %

448 %Input:

449 % params.t0 = initial time

450 % params.tf = final time

451 % params.n = dimension of state (x 0 and x 1)

452 % P = initial weight matrix

453 % tol = mesh tolerance

454 % phase case = switch variable 1-4 that signals ordering and how many phases

455 %

456 %

457 %

458 % Output;

459 % setup - settings to pass to gpopsII

460

461 %-------------------------------------------------------------------------%

462 %----------------------- Setup for Problem Bounds ------------------------%

463 %-------------------------------------------------------------------------%

464 switch phase case

465 case 1

466 [bounds,mesh,guess] = settings 1(params);
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467 case 2

468 [bounds,mesh,guess] = settings 2(params);

469 case 3

470 [bounds,mesh,guess] = settings 3(params);

471 case 4

472 [bounds,mesh,guess] = settings 4(params);

473 end

474

475

476

477

478

479

480 %-----------------------------------------------------------------------%

481 %----------Provide Mesh Refinement Method and Initial Mesh ---------------%

482 %

483 %optional fields

484 mesh.method = 'hp1';

485 mesh.tolerance = tol;

486 mesh.maxiteration = 10;

487 mesh.colpointsmin = 4;

488 mesh.colpointsmax = 12;

489 %-------------------------------------------------------------------------%

490 %------------- Assemble Information into Problem Structure ---------------%

491 %-------------------------------------------------------------------------%

492 setup.name = 'Find minimal proper u';

493 setup.functions.continuous = @properu cont phases;

494 setup.functions.endpoint = @properu end phases;

495 setup.bounds = bounds;

496 setup.guess = guess;

497 setup.mesh = mesh;

498 setup.nlp.solver = 'ipopt';

499 setup.nlp.options.ipopt.linear solver = 'ma57';

500 %setup.derivatives.supplier = 'sparseBD';

501 setup.derivatives.derivativelevel = 'second';

502 %setup.scales.method = 'automatic-bounds';

503 setup.method = 'RPMintegration';

504 end

505 % --------------------------------------------------------------- %

506

507

508 function [bounds, mesh, guess] = settings 1(params)

509
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510 %case 1 only 1 phase - t 0 = r and t f = s

511 bounds.phase.initialtime.lower = params.t0;

512 bounds.phase.initialtime.upper = params.t0;

513 bounds.phase.finaltime.lower = params.tf;

514 bounds.phase.finaltime.upper = params.tf;

515 n = params.n; %size of state and costate

516

517 bounds.phase.initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

518 bounds.phase.initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

519 bounds.phase.state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

520 bounds.phase.state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

521 bounds.phase.finalstate.lower = [-1e8*ones(1,n) zeros(1,n) params.gammaˆ2];

522 bounds.phase.finalstate.upper = [1e8*ones(1,n) zeros(1,n) 1e10];

523

524 bounds.phase.control.lower = -1e9;

525 bounds.phase.control.upper = 1e9;

526 bounds.phase.integral.lower = 0;

527 bounds.phase.integral.upper = 1e10;

528

529 guessx = [ones(1,n) ones(1,n) 0; ones(1,n) ones(1,n) 1.2*params.gammaˆ2];

530 guess.phase.time = [params.t0; params.tf];

531 guess.phase.state = guessx;

532 guess.phase.control = [1;1];

533 guess.phase.integral = 1;

534 %-------------------------- Events - ---------------------------------%

535 %link phases and initial

536 bounds.eventgroup.lower = [zeros(1,n+1)];

537 bounds.eventgroup.upper = [zeros(1,n+1)];

538 %------------------------------------------------------------------------%

539 mesh.phase.colpoints = 4*ones(1,10);

540 mesh.phase.fraction = 0.1*ones(1,10);

541 end

542

543 function [bounds, mesh, guess] = settings 2(params)

544 %case 2 - 2 phases t0=r< s < tf

545 iphase=1;

546 bounds.phase(iphase).initialtime.lower = params.t0;

547 bounds.phase(iphase).initialtime.upper = params.t0;

548 bounds.phase(iphase).finaltime.lower = params.s;

549 bounds.phase(iphase).finaltime.upper = params.s;

550 n = params.n; %size of state and costate

551

552 bounds.phase(iphase).initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...
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553 0];

554 bounds.phase(iphase).initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

555 1e10];

556 bounds.phase(iphase).state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

557 bounds.phase(iphase).state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

558 bounds.phase(iphase).finalstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...

559 0];

560 bounds.phase(iphase).finalstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

561 1e10];

562

563 bounds.phase(iphase).control.lower = -1e9;

564 bounds.phase(iphase).control.upper = 1e9;

565 bounds.phase(iphase).integral.lower = 0;

566 bounds.phase(iphase).integral.upper = 1e10;

567

568 guessx = [ones(1,n) ones(1,n) 0; ones(1,n) ones(1,n) .2*params.gammaˆ2];

569 guess.phase(iphase).time = [params.t0; params.s];

570 guess.phase(iphase).state = guessx;

571 guess.phase(iphase).control = [1;1];

572 guess.phase(iphase).integral = 1;

573

574 %-----------------------------------------------------------------------%

575 iphase = 2;

576 bounds.phase(iphase).initialtime.lower = params.s;

577 bounds.phase(iphase).initialtime.upper = params.s;

578 bounds.phase(iphase).finaltime.lower = params.tf;

579 bounds.phase(iphase).finaltime.upper = params.tf;

580 n = params.n; %size of state and costate

581

582 bounds.phase(iphase).initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...

583 0];

584 bounds.phase(iphase).initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

585 1e10];

586 bounds.phase(iphase).state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

587 bounds.phase(iphase).state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

588 bounds.phase(iphase).finalstate.lower = [-1e8*ones(1,n) zeros(1,n)...

589 params.gammaˆ2];

590 bounds.phase(iphase).finalstate.upper = [1e8*ones(1,n) zeros(1,n) 1e10];

591

592 bounds.phase(iphase).control.lower = -1e9;

593 bounds.phase(iphase).control.upper = 1e9;

594 bounds.phase(iphase).integral.lower = 0;

595 bounds.phase(iphase).integral.upper = 1e10;
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596

597 guessx = [ones(1,n) ones(1,n) .2*params.gammaˆ2; ones(1,n) ones(1,n)...

598 1.2*params.gammaˆ2];

599 guess.phase(iphase).time = [params.s; params.tf];

600 guess.phase(iphase).state = guessx;

601 guess.phase(iphase).control = [1;1];

602 guess.phase(iphase).integral = 1;

603 %------------------------------------------------------------------------%

604

605

606 %-------------------------- Events - ---------------------------------%

607 %link phases and initial

608 bounds.eventgroup(1).lower = [zeros(1,n+1),zeros(1,2*n+1)];

609 bounds.eventgroup(1).upper = [zeros(1,n+1) ,zeros(1,2*n+1)];

610 %------------------------------------------------------------------------%

611 for i = 1:2

612 mesh.phase(i).colpoints = 4*ones(1,10);

613 mesh.phase(i).fraction = 0.1*ones(1,10);

614 end

615 end

616

617

618

619 function [bounds, mesh, guess] = settings 3(params)

620 % case 3 - 3 phases, t0 < r < s < tf

621 iphase=1;

622 bounds.phase(iphase).initialtime.lower = params.t0;

623 bounds.phase(iphase).initialtime.upper = params.t0;

624 bounds.phase(iphase).finaltime.lower = params.r;

625 bounds.phase(iphase).finaltime.upper = params.r;

626 n = params.n; %size of state and costate

627

628 bounds.phase(iphase).initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...

629 0];

630 bounds.phase(iphase).initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

631 1e10];

632 bounds.phase(iphase).state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

633 bounds.phase(iphase).state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

634 bounds.phase(iphase).finalstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

635 bounds.phase(iphase).finalstate.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

636

637 bounds.phase(iphase).control.lower = -1e9;

638 bounds.phase(iphase).control.upper = 1e9;
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639 bounds.phase(iphase).integral.lower = 0;

640 bounds.phase(iphase).integral.upper = 1e10;

641

642 guessx = [ones(1,n) ones(1,n) 0; ones(1,n) ones(1,n) .2*params.gammaˆ2];

643 guess.phase(iphase).time = [params.t0; params.r];

644 guess.phase(iphase).state = guessx;

645 guess.phase(iphase).control = [1;1];

646 guess.phase(iphase).integral = 1;

647

648

649 %-----------------------------------------------------------------------%

650 iphase = 2;

651 bounds.phase(iphase).initialtime.lower = params.r;

652 bounds.phase(iphase).initialtime.upper = params.r;

653 bounds.phase(iphase).finaltime.lower = params.s;

654 bounds.phase(iphase).finaltime.upper = params.s;

655 n = params.n; %size of state and costate

656

657 bounds.phase(iphase).initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...

658 0];

659 bounds.phase(iphase).initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

660 1e10];

661 bounds.phase(iphase).state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

662 bounds.phase(iphase).state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

663 bounds.phase(iphase).finalstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

664 bounds.phase(iphase).finalstate.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

665

666 bounds.phase(iphase).control.lower = -1e9;

667 bounds.phase(iphase).control.upper = 1e9;

668 bounds.phase(iphase).integral.lower = 0;

669 bounds.phase(iphase).integral.upper = 1e10;

670

671 guessx = [ones(1,n) ones(1,n) .2*params.gammaˆ2; ones(1,n) ones(1,n)...

672 1.2*params.gammaˆ2];

673 guess.phase(iphase).time = [params.r; params.s];

674 guess.phase(iphase).state = guessx;

675 guess.phase(iphase).control = [1;1];

676 guess.phase(iphase).integral = 1;

677 %------------------------------------------------------------------------%

678

679 %-----------------------------------------------------------------------%

680 iphase = 3;

681 bounds.phase(iphase).initialtime.lower = params.s;
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682 bounds.phase(iphase).initialtime.upper = params.s;

683 bounds.phase(iphase).finaltime.lower = params.tf;

684 bounds.phase(iphase).finaltime.upper = params.tf;

685 n = params.n; %size of state and costate

686

687 bounds.phase(iphase).initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...

688 0];

689 bounds.phase(iphase).initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

690 1e10];

691 bounds.phase(iphase).state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

692 bounds.phase(iphase).state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

693 bounds.phase(iphase).finalstate.lower = [-1e8*ones(1,n) zeros(1,n)...

694 params.gammaˆ2];

695 bounds.phase(iphase).finalstate.upper = [1e8*ones(1,n) zeros(1,n) 1e10];

696

697 bounds.phase(iphase).control.lower = -1e9;

698 bounds.phase(iphase).control.upper = 1e9;

699 bounds.phase(iphase).integral.lower = 0;

700 bounds.phase(iphase).integral.upper = 1e10;

701

702 guessx = [ones(1,n) ones(1,n) .2*params.gammaˆ2; ones(1,n) ones(1,n)...

703 1.2*params.gammaˆ2];

704 guess.phase(iphase).time = [params.s; params.tf];

705 guess.phase(iphase).state = guessx;

706 guess.phase(iphase).control = [1;1];

707 guess.phase(iphase).integral = 1;

708 %------------------------------------------------------------------------%

709

710

711 %-------------------------- Events - ---------------------------------%

712 %link phases and initial

713 bounds.eventgroup(1).lower = [zeros(1,n+1),zeros(1,2*n+1)];

714 bounds.eventgroup(1).upper = [zeros(1,n+1) ,zeros(1,2*n+1)];

715 bounds.eventgroup(2).lower = [zeros(1,2*n+1)];

716 bounds.eventgroup(2).upper = [zeros(1,2*n+1)];

717 %------------------------------------------------------------------------%

718 for i = 1:3

719 mesh.phase(i).colpoints = 4*ones(1,10);

720 mesh.phase(i).fraction = 0.1*ones(1,10);

721 end

722 end

723

724 function [bounds, mesh, guess] = settings 4(params)
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725 % case 4 - 2 phases, t0 < r < s=tf

726 iphase=1;

727 bounds.phase(iphase).initialtime.lower = params.t0;

728 bounds.phase(iphase).initialtime.upper = params.t0;

729 bounds.phase(iphase).finaltime.lower = params.r;

730 bounds.phase(iphase).finaltime.upper = params.r;

731 n = params.n; %size of state and costate

732

733 bounds.phase(iphase).initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...

734 0];

735 bounds.phase(iphase).initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

736 1e10];

737 bounds.phase(iphase).state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

738 bounds.phase(iphase).state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

739 bounds.phase(iphase).finalstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

740 bounds.phase(iphase).finalstate.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

741

742 bounds.phase(iphase).control.lower = -1e9;

743 bounds.phase(iphase).control.upper = 1e9;

744 bounds.phase(iphase).integral.lower = 0;

745 bounds.phase(iphase).integral.upper = 1e10;

746

747 guessx = [ones(1,n) ones(1,n) 0; ones(1,n) ones(1,n) .2*params.gammaˆ2];

748 guess.phase(iphase).time = [params.t0; params.r];

749 guess.phase(iphase).state = guessx;

750 guess.phase(iphase).control = [1;1];

751 guess.phase(iphase).integral = 1;

752

753 %-----------------------------------------------------------------------%

754 iphase = 2;

755 bounds.phase(iphase).initialtime.lower = params.r;

756 bounds.phase(iphase).initialtime.upper = params.r;

757 bounds.phase(iphase).finaltime.lower = params.tf;

758 bounds.phase(iphase).finaltime.upper = params.tf;

759 n = params.n; %size of state and costate

760

761 bounds.phase(iphase).initialstate.lower = [-1e8*ones(1,n) -1e8*ones(1,n)...

762 0];

763 bounds.phase(iphase).initialstate.upper = [1e8*ones(1,n) 1e8*ones(1,n)...

764 1e10];

765 bounds.phase(iphase).state.lower = [-1e8*ones(1,n) -1e8*ones(1,n) 0];

766 bounds.phase(iphase).state.upper = [1e8*ones(1,n) 1e8*ones(1,n) 1e10];

767 bounds.phase(iphase).finalstate.lower = [-1e8*ones(1,n) zeros(1,n)...
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768 params.gammaˆ2];

769 bounds.phase(iphase).finalstate.upper = [1e8*ones(1,n) zeros(1,n) 1e10];

770

771 bounds.phase(iphase).control.lower = -1e9;

772 bounds.phase(iphase).control.upper = 1e9;

773 bounds.phase(iphase).integral.lower = 0;

774 bounds.phase(iphase).integral.upper = 1e10;

775

776 guessx = [ones(1,n) ones(1,n) .2*params.gammaˆ2; ones(1,n) ones(1,n)...

777 1.2*params.gammaˆ2];

778 guess.phase(iphase).time = [params.r; params.tf];

779 guess.phase(iphase).state = guessx;

780 guess.phase(iphase).control = [1;1];

781 guess.phase(iphase).integral = 1;

782 %------------------------------------------------------------------------%

783

784

785 %-------------------------- Events - ---------------------------------%

786 %link phases and initial

787 bounds.eventgroup(1).lower = [zeros(1,n+1),zeros(1,2*n+1)];

788 bounds.eventgroup(1).upper = [zeros(1,n+1) ,zeros(1,2*n+1)];

789 %------------------------------------------------------------------------%

790 for i = 1:2

791 mesh.phase(i).colpoints = 4*ones(1,10);

792 mesh.phase(i).fraction = 0.1*ones(1,10);

793 end

794 end

1 function Obj = cost for r(x,P 0,P 1,noise measure)

2 %This function returns | | u | | given an r

3

4 auxdata = auxiliary function(P 0,P 1,x,x+1); %builds some matrices

5 [u1,t1,x1,Obj] = Find u asynch phases(auxdata,1e-2,noise measure);

6

7 end
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