
ABSTRACT

SUTHERLAND, AMANDA KAY. Generalization of the Cartan and Iwasawa Decompos-
itions to SL2(k). (Under the direction of Loek Helminck.)

The Cartan and Iwasawa decompositions of real reductive groups were developed

over 100 years ago and have been extensively studied. They play a fundamental role

in the representation theory of the groups and their corresponding symmetric spaces.

These decompositions are defined by an involution with a compact fixed-point group,

called a Cartan involution. Removing the requirement of having a Cartan involution

or being defined over the real numbers causes this decomposition to break down. For

an arbitrary involution, one can consider similar decompositions over other fields. We

offer a generalization of the Cartan and Iwasawa decompositions for the algebraic group

G = SL2(k) over an arbitrary field k and a general involution. Additionally, we give a

detailed analysis of the structure of the symmetric and extend symmetric spaces over any

field and defined by a general involution.
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Chapter 1

Introduction

Decompositions of Lie groups allows us to study how they are constructed from subgroups

and subsets within themselves. Popular Lie group decompositions include the Cartan,

Iwasawa, Bruhat [Bor91], Langlands [Kna96], and Jordan-Chevalley [Hel78, Hum72].

These decompositions of real reductive Lie groups are used as tools in representation

theory and in the structure of their corresponding real reductive symmetric spaces.

Originally developed in the late 1800’s by Cartan and Killing, the Cartan decomposi-

tion is integral in the structure and representation theory of Lie groups and algebras. The

Cartan decomposition of a real reductive Lie group G factors the group into G = HQ,

where H is a maximal compact subgroup and Q is the symmetric space with respect to

a Cartan involution. The Cartan decomposition is a generalization of the polar decom-

position or singular value decomposition of matrices [Kna96].

Constructed by Kenkichi Iwasawa in the mid 1900’s, the Iwasawa decomposition is a

generalization of the Gram-Schmidt orthogonalization process. The Iwasawa decomposi-

tion of a real reductive Lie group G factors the group into analytical subgroups, G =HP ,

where H is a maximal compact subgroup and P is a minimal parabolic R-subgroup.

This decomposition results from combining the Cartan decomposition of a semisimple

Lie algebra with the root space decomposition of its complexification [Hel78].

The classical Cartan and Iwasawa decompositions are constructed for real groups

using an involution with a compact fixed-point group, called a Cartan involution. In

this thesis, we work to generalize these notions to the algebraic group SL2(k) defined

over any field k with an arbitrary involution of the group. In particular, we consider

the algebraically closed fields, finite fields, and the real, rational, and p-adic numbers.
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Additionally, we define and discuss the factors of these groups with respect to an arbitrary

involution of the group.

In Chapter 2, we review the necessary background material to set up our results. In

[HW93], a generalization of the notion of a Cartan involution is given and the Cartan and

Iwasawa decompositions are generalized to groups with such an involution, the details of

which are included in this chapter. The assumptions made in [HW93] are more restrictive

than in this thesis. We will also discuss the isomorphy classes of involutions of an algebraic

group. These will be important for out results because the factors of these decompositions

are defined by an involution of the group.

In Chapter 3, we introduce our initial combined generalization of the Cartan and

Iwasawa decompositions. For G = SL2(k), we generalize the Cartan and Iwasawa decom-

positions of G as G = HQ̃U for any field k of characteristic not two with an arbitrary

involution θ. Here, H is the fixed-point group of θ, Q̃ = {g ∣ θ(g) = g−1} is the extended

symmetric space, and U is a unipotent subgroup of G. We also discuss the results for

fields of characteristic two.

After we have set up the notions of a generalized Cartan involution and decomposition,

we compare these new ideas with the traditional. In Chapter 4, we delve into a detailed

analysis of the symmetric and extended symmetric spaces of G = SL2(k). We look at

their relationship with respect to each other and determine cases in which they consist

of semisimple elements.

After discussing the details of the factors H, Q̃ and U , we can begin to simplify our

result from Chapter 2. In Chapter 5 we begin to refine the decomposition. We study

several specific cases for when we can simply the decomposition G =HQ̃U . In particular,

we find that for G paired with a Cartan involution, G =HU . We also deduce that for G

with a non-Cartan involution, G = HWU , where H and U are defined as above and W

is the Weyl group of a maximal torus.

In Chapter 6, the focus moves to analyzing the extended symmetric space on its

own. In many cases, the extended symmetric spaces has a finite number of connected

components, the symmetric space being the connected component containing the identity.

We characterize the quotient space Q̃/Q and determine the coset representatives by

determining the intersection of the symmetric space with a maximal torus of the group.

In Chapter 7, we begin to extend earlier results to the larger group, SLn(k), n ≥ 3. We

discuss tools and challenges to generalizing the result from Chapter 2 to larger dimensions.
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At the conclusion of this thesis, one should have an understanding of the construction

of the Cartan and Iwasawa decompositions and their limitations. One should be able to

apply this generalization to G = SL2(k) and compare the properties of the traditional

decompositions to this generalization. Lastly, one will recognize the structure of the

extended symmetric space and determine its connected components in specific cases.
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Chapter 2

Background

In this chapter, we review the relevant background material used in the research for this

thesis. This includes the derivation of the Cartan and Iwasawa decompositions [Hel78], a

characterization of the involutions of SL2(k) [HW02] and SLn(k) [HWD06], the structure

of the symmetric space of SL2(Fp) [BHK+], the notion of a generalized Cartan involution

and a Cartan decomposition for groups with such an involution [HW93], Hk-conjugacy

classes of tori in SL2(k) [BH09, Nor13], and the polar decomposition of matrices [Ser02].

2.1 Symmetric spaces

Our main resources for the preliminaries concerning symmetric spaces and their general-

izations comes from [Hel78]. The study of symmetric spaces began over 100 years ago and

initially only concerned groups defined over the real numbers. In application, symmetric

spaces over the real numbers are seen in representation theory [Car29], differential geome-

try, and mathematical physics. More recently, work including [HW93], have begun to gen-

eralize this notion, defining symmetric spaces of algebraic groups over arbitrary fields of

characteristic not two, called symmetric k-varieties. Among other applications, these are

used in representation theory [vdB88], algebraic geometry [DCP83, DCP85], automorphic

functions, integrable systems [Dix94], number theory, perverse sheaves [Lus90, Gro92],

harmonic analysis, and singularity theory [LV83, HS90].

To construct a symmetric space, consider the vector space V = Rn. By choosing a

basis for V , we get GL(V ) ≃ GLn(R).

Definition 2.1.1. Let Mn(k) represent the set of n×n matrices with entries in k, GLn(k)
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be the general linear group (2.1.1), and SLn(k) the special linear group (2.1.2).

GL( k) = {g ∈Mn(k) ∣ det(g) ≠ 0} = {invertible matrices} (2.1.1)

SL(k) = {g ∈ GLn(k) ∣ det(g) = 1} (2.1.2)

Because V is a Euclidean vector space it has an inner product with which we can

define the symmetric bilinear form B(x, y) = xTMy, for some symmetric n×n matrix M .

Definition 2.1.2. The adjoint of A ∈ GL(V ) with respect to the bilinear form B is A′

such that B(A(x), y) = B(x,A′(y)).

Note that B(A(x), y) = B(x,A′(y)) implies the following.

(Ax)TMy = xTATMy = xTMA′y (2.1.3)

Because (2.1.3) must hold for all x, y ∈ V , we may solve for the adjoint of A as A′ =
M−1ATM .

This leads to our initial definition of symmetric space.

Definition 2.1.3. The (Riemannian) symmetric space of GL(V ) is

Q = {AA′ ∣ A ∈ GL(V )}

where A′ is the adjoint of A ∈ GL(V ).

Consider the following subgroup H of GL(V ) (2.1.4).

H = {A ∈ GL(V ) ∣ B(A(x),A(y)) = B(x, y)} (2.1.4)

If we let θ be the automorphism of order two defined as θ(A) ∶= (A′)−1, then H is the

fixed-point group of θ by a chain of equivalent statements (2.1.5).

B(A(x),A(y)) = B(x,A′A(y) = B(x)⇔ A′A = Id⇔ θ(A) = A (2.1.5)

Furthermore, H = O(V,B), the group of orthogonal reflections. We will show that

g ∈ GL(V ) can be written uniquely as an orthogonal matrix and a positive definite

symmetric matrix because we have a diffeomorphism from H ×Q to G.
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Initially, the notion of a symmetric space was constructed over the real numbers.

There are several ways to define the symmetric space over an arbitrary field. We will

extend this idea to any field by defining a symmetric space of a group G with respect to

an involution of G.

Definition 2.1.4. An automorphism θ of a group G is an involution if we have the

following:

1. θ ≠ id

2. θ2 = id

Here, id is the identity automorphism.

We define the generalized symmetric space of G as the image of the map τ ∶ G → G

defined by g ↦ gθ(g)−1, for some involution θ. We have Im(G) = Q = {gθ(g)−1 ∣ g ∈ G}.

Definition 2.1.5. For an involution θ of G, the fixed-point group H (2.1.6) is the sub-

group of elements fixed under the action of θ.

H = {g ∈ G ∣ θ(g) = g} (2.1.6)

Because the kernel of τ is the fixed-point group H, we have Q ≃ G/H by the first

isomorphism theorem. By definition, G,H, and Q are defined over the algebraic closure

of k, so we take Gk and Hk to be the k-rational points of G and H and Qk = {gθ(g)−1 ∣ g ∈
Gk}.

Definition 2.1.6. The extended symmetric space Q̃ of G (2.1.7) is the set of elements

in G mapped to their inverse under the involution θ.

Q̃ = {g ∈ G ∣ θ(g) = g−1} (2.1.7)

Lemma 2.1.7. The symmetric space is contained in the extended symmetric space.

Proof. For gθ(g)−1 ∈ Q, θ(gθ(g)−1) = (gθ(g)−1)−1. (4.1.1)

θ(gθ(g)−1) = θ(g)θ(θ(g)−1) = θ(g)g−1 = (gθ(g)−1)−1 (2.1.8)

Hence gθ(g)−1 ∈ Q̃.
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Remark 2.1.8. If the group G is defined over a field k with a topology, then Q is connected

as it is the image of the continuous mapping τ on G. The symmetric space contains the

identity, thus Q̃○ = Q. In particular, Q̃○ = Q when k is algebraically closed, the real or

p-adic numbers.

Example 2.1.9. If M = Id, then A′ = AT and Q = {AAT}. Here, Q is the positive definite

symmetric matrices. The extended symmetric space is the set of symmetric matrices, Q̃θ =
{A ∈ GL(V ) ∣ A = AT}. Furthermore, Q = Q̃○, the connected component of the extended

symmetric space containing the identity. The other connected components depend on the

number of negative eigenvalues of A ∈ Q̃.

Riemannian symmetric spaces were first developed using involutions with a compact

fixed-point group H over the real numbers. Real reductive symmetric spaces are the

homogeneous spaces GR/HR, where GR is a reductive Harish Chandra Lie group and HR

is the fixed-point group of an involution of GR [HC84]. The idea of symmetric spaces has

been generalized in several ways. First, by dropping the condition that H is compact, we

have the study of affine symmetric spaces [Hel78, Ber57].

Example 2.1.10. Let G = SL2(R) and θ the automorphism of G defined by (2.1.9) for

all g ∈ G.

θ(g) =
⎛
⎝

0 1

1 0

⎞
⎠
g
⎛
⎝

0 1

1 0

⎞
⎠

(2.1.9)

Note that θ is an involution because θ2(g) = Id g Id = g, thus we can define the symmetric

space of g with respect to θ (2.1.10).

Q =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a2 − b2 −(ac − bd)
ac − bd −c2 + d2

⎞
⎠

∣ ad − bc = 1

⎫⎪⎪⎬⎪⎪⎭
(2.1.10)

Note that the fixed-point group H (2.1.11) in this case in not compact.

H =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

cosh(x) sinh(x)
sinh(x) cosh(x)

⎞
⎠

∣ x ∈ R
⎫⎪⎪⎬⎪⎪⎭

(2.1.11)

From here, mathematicians generalized the notion to algebraically closed fields [Spr85,

Ric82, Hel88, Vus74]. These are called symmetric varieties and are defined as the sub-

variety Q = {gθ(g)−1 ∣ g ∈ G} of an algebraic group G with involution θ. As in the real

case, Q ≃ G/H, and both are referred to as a symmetric variety.
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Symmetric spaces were then generalized to algebraic groups defined over an arbitrary

field, called symmetric k-varieties [HW93]. Introduced in the late 1900’s, symmetric k-

varieties generalize real reductive symmetric spaces to similar spaces over other fields.

A symmetric k-variety of the algebraic group G defined over k with involution θ is

Qk = {gθ(g)−1 ∣ g ∈ Gk}. Again, Qk ≃ Gk/Hk, and both are referred to as a symmetric

k-variety.

For a reductive algebraic group G, we use the following generalization.

Definition 2.1.11. For G with involution θ and fixed-point group H, the generalized

symmetric space is Q = {gθ(g)−1 ∣ g ∈ G} ≃ G/H.

Example 2.1.12. Let G be an arbitrary group G. Then G may be viewed as a symmetric

space itself of the group G×G. Consider the automorphism θ ∶ G×G→ G×G defined by

(x, y) ↦ (y, x). Then clearly θ has order two and thus is an involution. The fixed-point

group of θ is H = {(x, y) ∈ G×G ∣ (y, x) = (x, y)} = {(x,x) ∣ x ∈ G}. The symmetric space

is Q = {(x, y) ⋅θ(x, y)−1 ∣ (x, y) ∈ G×G} = {(xy−1, yx−1) ∣ x, y ∈ G} = {(x,x−1) ∣ x ∈ G} ≃ G.

More recently, mathematicians have begun to expand this idea to automorphisms

τ of G of order greater than two. While the symmetric space is defined similarly, Q =
{gτ(g)−1 ∣ g ∈ G}, most of the properties regarding the symmetric space, fixed-point

group, and decompositions no longer hold.

2.2 Polar decomposition of matrices

The Cartan decomposition is a generalization of the polar decomposition of matrices.

The background material in this section comes for [Ser02]. The polar decomposition of a

matrix is analogous to writing a complex number x ∈ C∗ as z = reiθ, where r is a positive

real number and eiθ lies on the unit circle.

Notation 2.2.1. In this section, we will consider the fields k = R or k = C. Let Mn(k)
be the set of n × n matrices with entries in k. When k = C, HPDn and Un will be the

Hermitian positive definite matrices and unitary matrices, respectively. When k = C,

SPDn and On will be the symmetric positive definite matrices and orthogonal matrices,

respectively. We will consider the polar decomposition of matrices in GLn(k), the general

linear group.

The polar decomposition of GLn(k) is given as follows.
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Theorem 2.2.2 (Polar Decomposition). For A ∈ GLn(C), there exists Q ∈ HPDn and

H ∈ Un such that A = QH. For A ∈ GLn(R), there exists Q ∈ SPDnand H ∈ On such that

A = QH.

Theorem 2.2.3. For Q ∈ HPDn, there exists a unique Q0 ∈ HPDn such that Q2
0 = Q. If

Q ∈ SPDn, then so is Q0. The element Q0 is called the square root of Q and is denoted

Q0 =
√
Q.

Idea of Proof of 2.2.2. For A ∈ GLn(C), AA∗ ∈ HPDn. By Theorem 2.2.3, define Q ∶=√
AA∗ ∈ HPDn and define H ∶= Q−1A ∈ Un to get A = QH.

Remark 2.2.4. The polar decomposition of GLn(C) may also be described as GLn(C) =
Un ×HPDn, and similarly GLn(R) = On ×SPDn. Although A =HQ ∈ GLn(k) can also be

written as A = Q1H1, H1 is not necessarily the same as H, and the same for Q1 and Q.

We may extend this polar decomposition to subgroups of GLn(k).

Proposition 2.2.5. Let G be a subgroup of GLn(C). If G is stable under the map A↦ A∗

and for all Q ∈ HPDn, we have
√
Q ∈ HPDn, then G = (G ∩Un) × (G ∩HPDn).

Let G be a subgroup of GLn(R). If G is stable under the map A ↦ AT and for all

Q ∈ SPDn, we have
√
Q ∈ SPDn, then G = (G ∩On) × (G ∩ SPDn).

2.3 Traditional Cartan decomposition

The background provided on the construction of the Cartan decomposition comes pri-

marily from [Hel78]. We begin with a description of the decomposition on the Lie algebra

and then lift to the group level. In this section, let G be a real, connected, semisimple

Lie group and g = Lie(G) the Lie algebra of G.

Definition 2.3.1. A group involution of G is a Cartan involution if it has a compact

fixed-point group.

Remark 2.3.2. The involution θ(A) = (A′)−1 for A ∈ GL( V ) from Section 2.1 is a Cartan

involution.

By abuse of notation, we let θ ∶= dθ be the involution on the algebra level as well. For

example, for θ(A) = (A′)−1 for all A ∈ GL(V ), we use dθ(x) = θ(x) = −x′ for all x ∈ g. It

will be clear from context which θ we are using.
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Given a Cartan involution θ of g, we will consider the +1 and −1 eigenspaces. The +1

eigenspace is h = Lie(H) = {x ∣ θ(x) = x}, where H is the fixed point group of G. The −1

eigenspace is q = Lie(Q) = {x ∣ θ(x) = −x}, where Q is the symmetric space of G. Then

the eigenspace decomposition of g is g = h⊕ q.

Remark 2.3.3. The Lie algebras of the symmetric and extended symmetric spaces are

equivalent, Lie(Q) = Lie(Q̃θ). The topology disappears because the Lie algebra is the

tangent space at a point and the eigenspaces are isomorphic. Hence, we do not define the

notion of extended symmetric space on the algebra level.

Lemma 2.3.4. For a compact Lie group we have the following.

1. exp(h) =H○

2. exp(q) = Q

This leads to the traditional Cartan decomposition of a Lie group.

Theorem 2.3.5 (Cartan Decomposition). Let G be a Lie group with Cartan involution

θ then the map (H ×Q)→ G is a diffeomorphism onto, defined by (h,x)↦ h ⋅ exp(x) for

h ∈H,x ∈ q.

Lemma 2.3.6. For a compact connected Lie group G, we have the following.

1. G = Gss, where Gss is the set of semisimple elements in G.

2. All the eigenvalues of Lie(G) are imaginary.

Remark 2.3.7. Note that for g ∈ G, g is uniquely written as g = h ⋅ exp(x). The map is

unique because H ∩Q = ∅ since the eigenvalues of Q must be real while eigenvalues of H

are imaginary.

Example 2.3.8. Let G = SLn(R) and θ the involution of G defined by θ(g) = (gT )−1 for

all g ∈ G. The fixed-point group H is SOn (2.3.1), which is compact.

H = {g ∈ G ∣ θ(g) = (gT )−1} = {g ∈ G ∣ gT = g−1} = SOn (2.3.1)

The symmetric space Q (2.3.2) is the set of positive-definite symmetric matrices.

Q = {ggT ∣ g ∈ G} (2.3.2)
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By the Cartan decomposition, for g ∈ G, there exists unique orthogonal h ∈SOn and

positive-definite symmetric q ∈ Q such that g = hq.

Example 2.3.9. To highlight to necessity that the fixed-point group H is compact,

consider the case from Example 2.1.10 where G = SL2(R) with the involution θ(g) =
⎛
⎝

0 1

1 0

⎞
⎠
g
⎛
⎝

0 1

1 0

⎞
⎠

−1

. As demonstrated, H (2.3.3) is non-compact and we can determine the

extended symmetric space Q̃ (2.3.4) which contains the symmetric space Q.

H =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x y

y x

⎞
⎠

∣ x2 − y2 = 1

⎫⎪⎪⎬⎪⎪⎭
(2.3.3)

Q̃ =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

−b c

⎞
⎠

∣ ac + b2 = 1

⎫⎪⎪⎬⎪⎪⎭
(2.3.4)

Let g =
⎛
⎝

1 2(
√

5 − 3)−1

1
2(

√
5 − 3) 2

⎞
⎠
∈ GR. We will show that g is not in the larger set

HQ̃, thus is not in HQ. If g ∈HQ̃, then there exists h−1 =
⎛
⎝
x y

y x

⎞
⎠
∈H such that h−1g ∈ Q̃.

Solving h−1 such that θ(h−1g) = (h−1g)−1 (2.3.5) implies x = y, hence h−1 /∈H, therefore g

cannot be in HQ̃ and thus g /∈HQ.

θ(h−1g) =
⎛
⎝

2x√
5−3

+ 2x y + x (
√

5−3
2 )

2x√
5−3

+ 2y x + y (
√

5−3
2 )

⎞
⎠
=
⎛
⎝

2y√
5−3

+ 2x −2y − 2x√
5−3

− (
√

5−3
2 )x − y x + y (

√
5−3
2 )

⎞
⎠
= (h−1g)−1 (2.3.5)

The Cartan decomposition is derived from the study of real groups. Real groups are

convenient because of the relationship between the group and its Lie algebra. We must

have that the exponential map is defined and its image closed. Thus far, we have only

considered the real group GL(V ). The following theorem allows us to apply the Cartan

decomposition to any real Lie group.

Theorem 2.3.10 (Ado’s Theorem). Any Lie group is isomorphic to a subgroup of

GL(V ).

Once we have a subgroup G ⊂ GL(V ) with Lie algebra g, we can align it appropriately
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with the Cartan decomposition (2.3.6) by either conjugating the group or the involution.

G = (G ∩H).(exp(g ∩ q)) (2.3.6)

Recall that an automorphism θ of order two of a real reductive Lie group with a

maximal compact fixed-point group is a Cartan involution. The involution θ of GL(V )
defined by θ(A) = A′ is a Cartan involution, which induces a Cartan Decomposition.

Conversely, given any maximal compact subgroup H, there exists a (Cartan) involution

θ such that H is the fixed-point group of θ.

Theorem 2.3.11 (Cartan). Any reductive real Lie group has a unique (up to conjugation)

Cartan involution.

Given a real Lie group G, we will construct its Cartan involution using its Lie algebra

g. If g is a real Lie algebra, then g ⊗R C = ḡ is a complex Lie algebra with real subspace

g. Moreover, ḡ is two copies of g, ḡ = g⊕ ig.

Definition 2.3.12. A map σ ∶ ḡ→ ḡ is a conjugation if we have the following.

1. σ2 = id

2. σ(x + iy) = x − iy, for all x + iy ∈ g

3. σ(λx) for all x ∈ g, λ ∈ C

i.e. σ is R-linear, but not C-linear.

For g ⊂ ḡ, there is a conjugation σ such that g = {x ∈ ḡ ∣ σ(x) = x}.

Definition 2.3.13. A Lie algebra g is compact if the Killing form is negative definite on

g.

For an alternative definition, we say g is compact if ad(x) has imaginary eigenvalues

for all x ∈ g. Hence, exp(g) lies on the unit circle and is compact.

Theorem 2.3.14. If ḡ is a complex reductive Lie algebra, then ḡ has a unique (up to

isomorphism) compact subalgebra g, called a compact real form.

Theorem 2.3.15. Let g ⊂ ḡ be a real Lie algebra with conjugation σ, then there exists

compact real form u of ḡ with conjugation τ such that στ = τσ. Moreover, θ = στ is a

Cartan involution.
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Lemma 2.3.16. Let θ = στ = τσ, then θ is an involution of ḡ which keeps g invariant.

We call θ the Cartan involution of g and will show it induces a Cartan decomposition

of g. Consider the +1 (2.3.7) and −1 (2.3.8) eigenspaces of θ.

{x ∈ g ∣ θ(x) = x} = {x ∈ g ∣ τ(x) = x} = g ∩ u (2.3.7)

{x ∈ g ∣ θ(x) = −x} = {x ∈ g ∣ τ(x) = −x} = g ∩ iu (2.3.8)

Because ḡ = u⊕ iu, we have g = (g∩u)⊕(g∩ iu). Hence, u a compact real form implies

the Killing form κ is negative definite on u×u and positive definite on iu× iu. The Killing

form is negative definite on g ∩ u and therefore g ∩ u is a maximal compact Lie algebra.

From here, we can exponentiate to get the Cartan decomposition on the group.

Theorem 2.3.17. All compact real forms of ḡ are conjugate.

Corollary 2.3.18. The Cartan involution of g is unique up to isomorphism.

Let G be a semisimple, connected Lie group with Cartan involution θ. Because of the

compactness of the fixed-point group H, G has a nice structure. We have the Cartan

decomposition, Lie(G) = g = h ⊕ q, where h and q are as defined above. Because the

Killing form is negative definite on h and positive definite on q, both h and q consist of

semisimple elements.

Theorem 2.3.19. The symmetric space of G with the Cartan involution, exp(q) = Q =
{gθ(g)−1 ∣ g ∈ G}, consists of semisimple elements.

Example 2.3.20. Let G = SL2(R) and θ be the involution θ(g) = (gT )−1 for all g ∈ G.

Then the symmetric space (2.3.9) is the set of positive definite symmetric matrices, hence

is semisimple.

Q = {g((gT )−1)−1 ∣ g ∈ G} = {ggT ∣ g ∈ G} =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a2 + b2 ac + bd
ac + bd c2 + d2

⎞
⎠
∣ad − bc = 1

⎫⎪⎪⎬⎪⎪⎭
(2.3.9)

2.4 Parabolics acting on symmetric spaces

The orbits of parabolic subgroups acting on symmetric spaces have been characterized in

a number of ways. One can consider the P -orbits acting on the symmetric variety G/H
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by twisted conjugation, as H-orbits acting of G/P by conjugation, or the (P ×H)-orbits

on G, where P is a parabolic subgroup and H is the fixed-point group of an involution.

These actions are studied in detail in [BH00]. For an arbitrary field, as in the case we are

interested in, [HW93] has characterized these orbits.

Notation 2.4.1. Let G be a connected, reductive algebraic group defined over a field k or

characteristic not two. For a subgroup A of G, let Ak be the k-rational points of A.

Definition 2.4.2. A subgroup B ⊂ G is a Borel subgroup if it is a connected maximal

solvable subgroup. A subgroup P ⊂ G is a parabolic subgroup if it contains a Borel

subgroup. A subgroup P ⊂ G is a parabolic k-subgroup if it is a parabolic subgroup

defined over k.

Definition 2.4.3. A torus is a semisimple abelian subgroup. A subgroup is k-split if it

can be diagonalized over the base field k. For an involution θ, a subgroup A is θ-split

if θ(a) = a−1 for all a ∈ A. A subgroup is (θ, k)-split if it is both k-split and θ-split. A

subgroup is θ-stable if it is invariant under θ. A subgroup is k-anisotropic if it does not

contain a k-split torus.

Remark 2.4.4. The extended symmetric space Q̃ is θ-split by definition.

Theorem 2.4.5 (Richardson [Ric82]). All maximal θ-split tori are conjugate under the

fixed-point group of θ.

Remark 2.4.6. Theorem 2.4.5 does not hold for non-algebraically closed fields. Over other

fields, there may be more than one conjugacy class. For example, consider G = SL2(Q)
with the Cartan involution θ defined by θ(g) = (gT )−1 for all g ∈ G. There are infinitely

many HQ-conjugacy classes of maximal θ-split tori.

Example 2.4.7. Let G = GLn(R) with the involution θ defined by θ(g) = (gT )−1 for all

g ∈ G. Then the fixed-point group of θ is H = {g ∈ G ∣ θ(g) = g} = On, the symmetric space

is Q = {g ∈ G ∣ gT = g, g is positive definite}, and the extended symmetric space is the set

of symmetric matrices. Let A be a maximal θ-split torus, then A ∈ Q̃. We can diagonalize

A via On. Therefore, all maximal θ-split tori are On-conjugate to the diagonal matrices.

2.4.1 Iwasawa decomposition

Our main resources for the Iwasawa decomposition are Knapp and Helgason [Kna96,

Hel78]. The Iwasawa decomposition is another global decomposition, the advantage of

14



this decomposition is that the factors are analytical subgroups.

Theorem 2.4.8. Let G be defined over k = R with a Cartan involution θ and P ⊂ G a

minimal parabolic R-subgroup. Then PR has a unique open orbit in GR/HR = QR.

Theorem 2.4.9 (Iwasawa Decomposition). Let G be a real semisimple Lie group and θ

a Cartan involution of G. Let H be the fixed-point group of θ and P a minimal parabolic

subgroup. Then θ induces the Iwasawa decomposition G =HP .

Because any group can be written as a semisimple (or reductive) part and a unipotent

part, we can write PR as PR = ZGR(AR)U , where U = (Ru(P ))R is the unipotent radical of

P and A is a maximal R-split torus. We can assume AR ⊂ QR, thus ZG(AR) = ZHR(AR)AR.

This implies PR = ZHR(AR)UR. Finally, we arrive at the Iwasawa decomposition of GR,

GR =HRARUR.

The Iwasawa decomposition of a Lie algebra arose as a combination its Cartan decom-

position and the complexification of its root space decomposition. This decomposition

is a generalization of the Gram-Schmidt orthogonalization process. The factors, while

similar to those of the Cartan decomposition, are closed subgroups.

To construct the Iwasawa decomposition of a Lie group G, we first look at the de-

composition on the Lie algebra g = Lie(G), and then lift it through the exponential

map to G. Let g = h ⊕ q be the Cartan decomposition of G and θ the Cartan invo-

lution of g (and respectively G) as above. Let a be a maximal torus contained in q,

which exists because q is finite. For a root λ of g, we have the restricted root space

gλ = {X ∈ g ∣ (adY )X = λ(Y )X for all Y ∈ a}.

Proposition 2.4.10. The restricted root space decomposition of g is g = h⊕⊕
λ∈Φ

gλ, where

Φ is the set of roots such that gλ ≠ 0.

Let n = ⊕
λ∈Φ+

gλ, where Φ+ is the set of positive roots of g. Then n is a nilpotent

subalgebra of g, which leads to the Iwasawa decomposition of g.

Theorem 2.4.11 (Iwasawa decomposition of a Lie algebra). For a Lie algebra g with a

Cartan decomposition, g = h ⊕ a ⊕ n, where h,a, and n are as above. Furthermore, a ⊕ n

is a solvable Lie subalgebra of g.

From Theorem 2.4.11, we can lift to the Iwasawa decomposition on the group level.
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Theorem 2.4.12 (Iwasawa decomposition). Let G be a semisimple Lie group with the

algebra-level Iwasawa decomposition Lie(G) = g = h ⊕ a ⊕ n. If H,A,U are the analytic

subgroups of G such that Lie(H) = h,Lie(A) = a and Lie(U) = n, then G =HAU .

Remark 2.4.13. Here, H is the fixed-point group of the Cartan involution θ, A is a

maximal (θ, k)-split torus, and U is a unipotent subgroup.

Example 2.4.14. Let G = SLn(R) with the Cartan involution θ defined by θ(g) = (gT )−1

for all g ∈ G. The fixed-point group H is the special orthogonal group SOn(R). Because

G is a R-split group, we may take the minimal parabolic subgroup to be the Borel

subgroup consisting of upper triangular matrices. The unipotent radical of P , U , is the

upper triangular matrices with ones on the diagonal. Finally, let the maximal torus A be

the subgroup of diagonal matrices in G. By the Iwasawa decomposition, for g ∈ G, there

exists orthogonal h ∈H, diagonal a ∈ A, and unipotent u ∈ U such that g = hau.

Using the action of the parabolic subgroups on the symmetric space, we can form the

connection between the Cartan and Iwasawa decompositions. First, we give an alternate

Cartan decomposition of G defined over R.

Let G be defined over k = R and θ a Cartan involution of G, i.e. the fixed-point group

H is compact. By the Cartan decomposition of G, we have G =HRQR = QRHR.

Lemma 2.4.15. All maximal (θ,R)-split tori are H○
R-conjugate.

Let A1 and A2 be (θ,R)-split tori in G. From [BT72, BT65], all maximal k-split tori

are Gk-conjugate. Hence there exists g ∈ GR, such that gA1g−1 = A2. Because g = qh, for

some q ∈ QR and h ∈HR, and hA1h−1 is maximal (θ,R)-split, we may assume g = q. Hence,

qA1q−1 = A2 where q = exp(x) for some x ∈ Lie(Q) = q. On the Lie algebra if x, y ∈ q,

then [x, y] ∈ h. Thus for A1 = exp(a1), we have qA1q−1 = exp(x) exp(a1) exp(x)−1 =
exp([x,a1]). However, [x,a1] ⊂ h which can not be the case, hence q ∈ Q must be the

identity. All elements of Q are R-split semisimple, so they are contained in a torus,

therefore Q = {hAh−1 ∣ h ∈H}. This implies G =HQ =H ⋅HAH =HAH.

2.5 Parabolics acting on generalized symmetric spaces

For a general field k, the orbits of parabolics on generalized symmetric spaces are not

as simple as the case in Section 2.4, where k = R and θ is a Cartan involution. In the
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section let G be an algebraic group defined over an arbitrary k and θ a generalized

Cartan involution, where the fixed-point group is k-anisotropic rather than compact.

Our primary resources in this section will be [HW93] and [BH09]. The fundamental tool

for studying the action of minimal parabolic k-subgroups on an algebraic group defined

over k is the Bruhat decomposition.

Definition 2.5.1. For a torus T ⊂ G, the Weyl group of T inG isWG(T ) = NG(T )/ZG(T ),
where NG(T ) = {g ∈ G ∣ gtg−1 = t ∀ t ∈ T} is the normalizer of T and ZG(T ) = {g ∈
G ∣ gtg−1 ∈ T} is the centralizer of T . For a subset A ⊂ G, WA(T ) = A ∩WG(T ).

Theorem 2.5.2 (Bruhat Decomposition). Let G be defined over a field k with minimal

parabolic subgroup P and A a maximal k-split torus contained in P . Then Gk decomposes

as the disjoint union of double cosets of Pk parameterized by WG(A) (2.5.1).

Gk = ⊍
ω∈WG(A)

PkωPk (2.5.1)

Remark 2.5.3. For a k-split group G, such as GLn(k), P = B is a Borel subgroup and

A = T is a maximal torus. For Gk, the Bruhat decomposition is Gk = ⊍
ω∈WG(T )

= BkωBk.

Example 2.5.4. Let G = SL2(k) with the Cartan involution θ defined by θ(g) = (gT )−1,

T the subgroup of diagonal matrices (2.5.2), and B ⊃ T the Borel subgroup of upper

triangular matrices (2.5.3). Then the Weyl group in G of T is W (T ) (2.5.4) and we can

determine the Bruhat decomposition of Gk (2.5.5).

Tk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a 0

0 a−1

⎞
⎠
∣ a ∈ k∗

⎫⎪⎪⎬⎪⎪⎭
(2.5.2)

Bk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x y

0 x−1

⎞
⎠

∣ x ∈ k, y ∈ k∗
⎫⎪⎪⎬⎪⎪⎭

(2.5.3)

W (T ) =
⎧⎪⎪⎨⎪⎪⎩

Id,
⎛
⎝

0 1

0 −1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
(2.5.4)

Gk = Bk ⊍Bk

⎛
⎝

0 1

−1 0

⎞
⎠
Bk (2.5.5)

To analyze the structure of the symmetric spaces, we must know the action of Hk on

Gk/Hk = Qk and the action of the parabolic k-subgroups Pk, on Gk/Hk.
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Proposition 2.5.5. Let {Ai ∣ i ∈ I} be representatives of the Hk-conjugacy classes of

θ-stable maximal k-split tori in G. Then Hk/Gk/Pk ≃⋃
i∈I
WHk

(Ai)/WGk
(Ai).

Example 2.5.6. By Theorem 2.4.8, ∣PR/GR/HR∣ = 1. The unique orbit contains the

identity, thus GR = PRHR =HRPR.

Proposition 2.5.7. Let P be a minimal parabolic θ-split parabolic k-subgroup of G, A a

θ-stable maximal k-split torus of P , then the following are equivalent.

1. g ∈ Gk ∩HkPk

2. g ∈ {x ∈ Gk ∣ x−1θ(x) ∈ NZG(A−)(A)}Pk, where A− are the θ-split elements in A

3. g ∈ Gk and gPkg−1 is a θ-split parabolic k-subgroup of Gk

Example 2.5.8. Usually ∣Hk/Gk/Pk∣ is infinite and minimal parabolic subgroups are not

Hk-conjugate. Let G = SL2(Q) with the Cartan involution θ defined by θ(g) = (gT )−1

for all g ∈ G, B the Borel subgroup of upper triangular matrices, and A the subgroup

of diagonal matrices. Here, we will consider “twisted orbits”. For g, x ∈ G, we define the

twisted action of g on x as g ∗ x ∶= gxθ(g)−1. There are only a finite number of twisted

orbits in Q̃ and each orbit is closed.

We define a1, a2 ∈ AQ (2.5.6).

a1 =
⎛
⎝
x2

1 + y2
1 0

0 (x2
1 + y2

1)−1

⎞
⎠

a2 =
⎛
⎝
x2

2 + y2
2 0

0 (x2
2 + y2

2)−1

⎞
⎠
∈ A (2.5.6)

Then a1 and a2 are in the same twisted BQ orbit if and only if (x2
1+y2

1)−1(x2
2+y2

2) ∈ (Q∗)2.

If follows that ∣HQ/GQ/BQ∣ = ∣Q∗/(Q∗)2∣ =∞.

Furthermore, for g =
⎛
⎝
a b

c d

⎞
⎠

, gθ(g)−1 ∈ A = NZG(A−)(A) if and only if ab + cd = 0.

Choose u, v, t ∈ Q such that uv(1 + t)2 = 1 and (1 + t)2 /∈ (Q∗)2. If we set g =
⎛
⎝
vt v

−u ut

⎞
⎠

,

then gθ(g)−1 =
⎛
⎝
v2(1 + t2) 0

0 u2(1 + t2)
⎞
⎠

. By the above proposition, gBg−1 is a θ-split

maximal parabolic Q-subgroup of G. Then g /∈HQ because (1+ t2) is not a square. Hence

the Borel (minimal parabolic) Q-subgroups are not HQ-conjugate to each other.
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2.6 Generalization of the Cartan decomposition

The traditional Cartan decomposition is defined for a Lie group G over k = C or R.

An involution θ with a compact fixed-point group H is a Cartan involution. For the

symmetric space Q = {gθ(g)−1 ∣ g ∈ G}, the Cartan decomposition of G is G = HQ. For

involutions of G with a non-compact fixed-point group H or for G an algebraic group

defined over k ≠ R or C, we no longer have this decomposition.

In [HW93], the notions of a generalized Cartan involution and a generalized Cartan

decomposition for an algebraic group are defined. Specifically, conditions are given in

which the Cartan decomposition implies the Iwasawa decomposition and vice versa.

Notation 2.6.1. In this section, let G be a connected reductive algebraic group defined

over a field k with involution θ and H the fixed-point group of θ. Let τ denote the map

on G defined by τ(g) = gθ(g)−1 for g ∈ G. For a group A, let Ak be the k-rational points

of A. Let P be a minimal parabolic k-subgroup, U = Ru(P ) the unipotent radical of P ,

and A a θ-stable maximal k-split torus contained in P .

Proposition 2.6.2. If Hk is k-anisotropic, then the following are equivalent.

1. (ZG(A)H)k = AkHk

2. Gk = UkAkHk = UkAkH○
k

Remark 2.6.3. Proposition 2.6.2 is a generalization of the Iwasawa decomposition to

algebraic groups.

Corollary 2.6.4. If Hk is k-anisotropic and Gk = UkAkHk, then we have the following.

1. A is a maximal θ-split torus and therefore A is a maximal (θ, k)-split torus.

2. All maximal (θ, k)-split tori are Hk-conjugate.

3. NGk
(A) = AkNHk

(A) and therefore WGk
(A) =WHk

(A).

Proposition 2.6.5. If Hk is k-anisotropic and Gk = HkAkHk, then the following are

equivalent.

1. Q = {gθ(g)−1 ∣ g ∈ Gk} consists of k-split semisimple elements.

2. Gk = UkAkHk
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3. If (k∗)2 = (k∗)4, then Gk = QHk.

Remark 2.6.6. For a general field k, Gk =HkAkHk does not imply Gk =HkQ.

The following result provides the conditions in which both versions or the Cartan de-

composition and the Iwasawa decomposition are equivalent, which leads to the definition

of a generalized Cartan involution.

Proposition 2.6.7. If Hk is k-anisotropic and (k∗)2 = (k∗)4, then the following are

equivalent.

1. Gk =HkAkHk

2. Gk = UkAkHk and Q consists of k-split semisimple elements.

3. Gk = QHk and Q consists of k-split semisimple elements.

Definition 2.6.8. For an involution θ of G, we call θ a generalized Cartan involution

of G if H is k-anisotropic, (k∗)2 = (k∗)4, and Gk satisfies the conditions in Proposition

2.6.7.

Remark 2.6.9. By abuse of terminology, we refer to a generalized Cartan involution as

simply a Cartan involution. When k ≠ R, it is assumed we mean generalized Cartan

involution.

2.7 Generalizing the concept of Cartan involution

Recall from Section 2.1, if θ is a Cartan involution of a real Lie group, then the symmetric

space consists of semisimple elements. When we generalize to an algebraic group with a

Cartan involution, we have similar properties. In [HW93], this idea is studied extensively,

we summarize the results.

Proposition 2.7.1. Let G be a connected reductive algebraic group defined over a field k

and θ an involution of G. For the fixed-point group H and minimal parabolic k-subgroup

P , Gk = (HP )k.

Proposition 2.7.2. Let G be a connected reductive algebraic group defined over a field

k with characteristic zero and θ an involution of G. Then we have the following.

1. The symmetric space Qk of Gk consists of semi-simple elements.

2. The symmetric space q of g consists of semi-simple elements.
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2.8 Isomorphy classes of involutions of SL2(k)

The symmetric spaces of a connected reductive algebraic group G are defined by the

automorphisms of order two, called involutions, of G. To work with the symmetric spaces

of G = SL2(k) we must know what the involutions are and, more importantly, the k-

isomorphy classes of these automorphisms. A full classification of these involutions is

offered in[HW02].

Notation 2.8.1. In this section, let k be a field of characteristic not two and k̄ the algebraic

closure of k. Let G be a generic group, G = SL2(k̄), and Gk the k-rational points of G.

Definition 2.8.2. A group automorphism φ of G is an inner automorphism of G if there

exists g ∈ G such that φ(X) = gXg−1 for all X ∈ G.

Notation 2.8.3. For B ∈ GL2(k), let Inn(B) denote the inner automorphism of GL2(k)
defined by Inn(B)(X) = BXB−1; Inn(B) is an automorphism of G. Let Aut(G) denote

the automorphisms of G and Aut(G,Gk) the group of automorphisms of G which keep

Gk invariant.

Definition 2.8.4. Two automorphisms φ, θ ∈ Aut(G) are isomorphic if there exists an

automorphism χ ∈ Aut(G) such that χφχ−1 = θ; denoted φ ≃ θ. Two automorphisms

φ, θ ∈ Aut(G,Gk) are k-isomorphic if there exists an automorphism χ ∈ Aut(G,Gk) such

that χφχ−1 = θ. This is denoted φ ≃
k
θ or simply φ ≃ θ when the field k is clear from

context.

From [Bor91], we have the following.

Lemma 2.8.5. For φ ∈ Aut(G), there exists B ∈ GL2(k̄) such that φ ≃ Inn(B).

Remark 2.8.6. For a non-algebraically closed field k, if φ ∈ Aut(G,Gk), there exists

B ∈ GL2(k̄) such that Inn(B)∣
Gk

= φ.

Definition 2.8.7. The order of an automorphism φ is the smallest positive integer n

such that φn = id. An automorphism φ of order two is an involution.

Lemma 2.8.8. For A ∈ Gk, Inn(A) ∈ Aut(G,Gk) if and only if A = pB for some p ∈ k̄
and B ∈ Gk.

This allows us to recognize which automorphisms of G will be automorphisms of Gk.

From here, we must determine which of these automorphisms are of order two.
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Lemma 2.8.9. Let φ ∈ Aut(G,Gk) be an involution, then there exists A =
⎛
⎝

0 p

q 0

⎞
⎠
∈

GL2(k) such that Inn(A)∣
Gk

= φ.

Because we can multiply A by any constant and not affect the action of the automor-

phism, we can determine the representatives of the k-isomorphy classes.

Corollary 2.8.10. The k-isomorphy classes of involutions of Gk can be represented by

Inn(B), where B =
⎛
⎝

0 1

a 0

⎞
⎠
∈ GL2(k).

Lemma 2.8.11. Let Inn(B1), Inn(B2) ∈ Aut(Gk) (2.8.1).

B1 =
⎛
⎝

0 1

b1 0

⎞
⎠
, B2 =

⎛
⎝

0 1

b2 0

⎞
⎠

(2.8.1)

Then Inn(B1) ≃
k

Inn(B2) if and only if
b1

b2

is a square in k.

Notation 2.8.12. For a field k, let k∗ denote the product group of non-zero elements in

k and (k∗)2 the normal subgroup of squares in k∗ defined by (k∗)2 = {a2 ∣ a ∈ k∗}. The

quotient group k∗/(k∗)2 represents the set of square classes in k.

Corollary 2.8.13. The number of isomorphy classes of involutions of Gk is ∣k∗/(k∗)2∣.

Notation 2.8.14. Let m be a representative of the square class of m in k. We will use θm

to denote the involution Inn(M) of Gk (2.8.2).

M =
⎛
⎝

0 1

m 0

⎞
⎠

(2.8.2)

Remark 2.8.15. For all involutions θ ∈ Aut(G,Gk), we can assume θ ≃
k
θm for some m ∈ k∗,

the representative of the square class m. For the class of squares, we use θ1.

Example 2.8.16 (Real numbers). Let k = R. The square classes of R are R∗/(R∗)2 =
{1,−1}. Up to isomorphy, there are two involutions of GR; specifically θ1 and θ−1.

The involution θ−1 is equivalent to θ in GR, where θ is defined by θ(g) = (gT )−1 for

all g ∈ GR.
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θ(g) =
⎛
⎜
⎝

⎛
⎝
x y

z w

⎞
⎠

T⎞
⎟
⎠

−1

=
⎛
⎝
w −z
−y x

⎞
⎠

θ−1(g) =
⎛
⎝

0 1

−1 0

⎞
⎠
⎛
⎝
x y

z w

⎞
⎠
⎛
⎝

0 1

−1 0

⎞
⎠

−1

=
⎛
⎝
w −z
−y x

⎞
⎠

Example 2.8.17 (Finite fields). For k = Fq for some q = pr, p an odd prime, F∗q/(F∗q)2 ≃
Z2. There are two square classes which can be represented by {1,Np}, where Np is the

“smallest non-square” in Fq. Therefore θ1 and θNp represent the two k-isomorphy classes

of involutions of GFq .

Example 2.8.18 (p-adic numbers). For k = Qp, for some odd prime p, there are four

square classes which can be represented by {1, p,Np, pNp}, where Np is the “smallest

non-square” not equal to p in Qp. Therefore θ1, θp, θNp , and θpNp represent the four k-

isomorphy classes of involutions of GQp .

Example 2.8.19 (Rational numbers). For k = Q, there are an infinitely many square

classes. Thus, there are an infinite number of Q-isomorphy classes of involutions of Gk,

all represented by θm, for some m ∈ Q∗/(Q∗)2.

2.9 Isomorphy classes of involutions of SLn(k)

Similar to the G = SL2(k) case, the k-isomorphy classes of involutions of SLn(k), n > 2,

have also been characterized. When n > 2, not all involutions are inner automorphisms

and therefore the characterization is not as simple as when n = 2. In [HWD06], the

isomorphy classes of SLn(k) are given for fields k with characteristic not two. Further-

more, they discuss in which cases we have a generalized Cartan involution and when the

symmetric space consists of semisimple elements.

Notation 2.9.1. Throughout this section, let G = SLn(k̄) and Gk the k-rational points of

G. We take k to be a field of characteristic not two, and k̄ to be the algebraic closure of

k. Let V = kn be a finite-dimensional vector space defined over k. We will use the same

definitions of isomorphy and k-isomorphy classes of involutions as in Section 2.8.
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Given a bilinear form, we can induce an involution. Let β ∶ V → V be a bilinear

form on V and B = {e1, . . . , en} an ordered basis for V . Then the matrix MB is the

matrix of β with respect to B, MB = (β(ei, ej)). We can define the bilinear form β as

β(x, y) = xTBMByB, for all x, y ∈ V where xB and yB are the coordinate vectors of x and y

with respect to the ordered basis B.

Theorem 2.9.2. Two matrices M1 and M2 represent the same bilinear form if and only

if there exists Q ∈ GLn(k) such that M2 = QTM1Q.

Notation 2.9.3. If there exists Q ∈ GLn(k) such that M2 = QTM1Q, we write M2 ≃ M1

and say M1 and M2 are congruent.

Recall that the adjoint of a matrix A ∈ GLn(k) is the matrix A′ such that β(Ax, y) =
β(x,A′y). Furthermore, the adjoint can be determined as A′ =M−1ATM , where M is the

matrix representative of the bilinear form β. We can then use this adjoint to construct

involutions of GLn(k).

Proposition 2.9.4. If the bilinear form β is symmetric or skew-symmetric, then the

automorphism θM , defined by θM(A) = M−1(AT )−1M for all A ∈ G is an involution of

GLn(k).

Theorem 2.9.5. Let M1 and M2 be the matrices of bilinear forms β1 and β2, respectively.

If M1 ≃M2, then θM1 ≃ θM2.

Theorem 2.9.6. Let M1 and M2 be matrix representatives of symmetric or skew-symmetric

bilinear forms. If θM1 ≃ θM2, then M2 = αQTM1Q for some Q ∈ GLn(k) and α ∈ k.

Notation 2.9.7. If there exists Q ∈ GLn(k) and α ∈ k such that M2 = αQTM1Q, we write

M2 ≃s M1 and say M1 and M2 are semi-congruent.

This allows us the classify the k-isomorphy classes of involutions of GLn(k) of the

form θM .

Theorem 2.9.8. Let M1 and M2 be matrix representatives of symmetric or skew-symmetric

bilinear forms as defined above. Then M1 ≃s M2 over k if and only if θM1 ≃
k
θM2.

From here, we can restrict to the smaller group G = SLn(k).

Lemma 2.9.9. An automorphism θM induced from a bilinear form with matrix repre-

sentative M is an involution of GLn(k) if and only if θM is an involution of G.
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Theorem 2.9.10. Two involution θ1 and θ2 are isomorphic over GLn(k) if and only if

θ1 and θ2 are isomorphic over G.

We now look at the two types of involutions, those which are outer automorphisms

and those which are inner automorphisms. Recall an automorphism θ ∈ Aut(G) is inner if

there exists A ∈ G such that θ(g) = Inn(A)(g) = AgA−1 for all g ∈ G, denoted θ ∈ Inn(G).
Otherwise, we say it is an outer automorphism.

Lemma 2.9.11. If k is algebraically closed, then ∣Aut(G)/ Inn(G)∣ = 2.

Lemma 2.9.12. All outer automorphisms of G are isomorphic to Inn(M)φ, where φ is

the fixed outer automorphism defined by φ(g) = (gT )−1.

To construct the involutions of G which come from outer automorphisms, we will use

θM(A) = Inn(M)(φ(A)) =M−1(AT )−1M , where M is the matrix representative of a bilin-

ear form β as defined above. All involutions of G which come from outer automorphisms

are of the form θM , for some M .

Theorem 2.9.13. If θ1 and θ2 are involutions and outer automorphisms of G, then

they come from symmetric or skew-symmetric bilinear forms represented by M1 and M2

respectively. Furthermore, θ1 ≃ θ2 if and only if Inn(M1)φ ≃ Inn(M2)φ if and only if

M1 ≃s M2.

Theorem 2.9.14. Symmetric matrices are congruent to diagonal matrices whose entries

are representatives of the k∗/(k∗)2. Skew-symmetric matrices are congruent to J2m, where

n = 2m (4.2.19).

J2m =
⎛
⎝

0 Im×m

−Im×m 0

⎞
⎠

(2.9.1)

We can now classify the isomorphy classes of involutions of G which are outer auto-

morphisms. We will do so for certain fields and for each case, we will consider n even and

n odd separately.

Example 2.9.15 (k = k). Assume k is algebraically closed. If n is odd, then there

is one isomorphy class of outer involutions which can be represented by the standard

involution φ. If n is even, then there are two isomorphy classes of involutions which are

outer automorphisms. These can be represented by φ and Inn(J2m)φ.

25



Example 2.9.16 (k = R). Assume k = R and define In−i,i (2.9.2).

In−i,i =
⎛
⎝
In−i×n−1 0

0 −Ii×i
⎞
⎠

(2.9.2)

If n is odd, then there are n+1
2 isomorphy classes of involutions which are outer automor-

phisms of G. These are represented by φ and Inn(In−i,i)φ for i = 1, . . . , n−1
2 . If n is even,

there are n
2 + 2 isomorphy classes of involutions which are outer automorphisms. These

are represented by φ, Inn(J2m)φ, and Inn(In−i,i)φ for i = 1, . . . , n2 .

Example 2.9.17 (k = Fp, p ≠ 2). Assume k = Fp and define Mn,x,y,z (2.9.3).

Mn,x,y,z =

⎛
⎜⎜⎜⎜⎜⎜
⎝

In−3×n−3 0 0 0

0 x 0 0

0 0 y 0

0 0 0 z

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.9.3)

If n is odd, there are two isomorphy classes of involutions which are outer automorphism

of G, represented by φ and Inn(Mn,1,1,Np)φ, where Np is the smallest non-square in Fp. If

n is even, we have the same two classes as the odd case and additionally Inn(J2m)φ for

a total of three isomorphy classes.

We now discuss the isomorphy classes of involutions which are inner automorphisms

of G. We borrow the same results from Section 2.8 concerning inner automorphisms of

G.

Lemma 2.9.18. Suppose θ is an inner automorphism and involution of G and define

Ln,x (2.9.4).

Ln,x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 . . . 0 0

x 0 . . . 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 0 1

0 0 . . . x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.9.4)

There exists Y ∈ GLn(k) such that θ = InnY , where Y ≃ cIn−1,i for some i = 0,1, . . . , n

and c ∈ k∗ or Y ≃ Ln
2
,p for some p ∈ k∗/(k∗)2.
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The following list of lemmas allows us to determine which involutions are isomorphic

to each other.

Lemma 2.9.19.

1. In−i,i ≃ cIn−j,j for some c ∈ k if and only if c = 1 and i = j or c = −1 and j = n − 1.

2. For p, q ∈ k∗/(k∗)2, Ln
2
,p ≃ cLn

2
,q if and only if p

q ∈ (k∗)2.

3. Inn(Y1) ≃ Inn(Y2) if and only if Y1 ≃ cY2 for some c ∈ k.

4. Ln,1 ≃ In×n

Theorem 2.9.20. Suppose θ is an involution of G which is an inner automorphism.

Then up to isomorphism, θ = Inn(Y ) where Y = In−i,i ∈ GLn(k) where i ∈ {1,2, . . . , ⌊n2 ⌋}
or Y = Ln

2
,p ∈ GLn(k) where p ∈ k∗/(k∗)2, p /∈ 1.

Corollary 2.9.21. The number of involutions of G which are inner automorphisms is

∣k∗/(k∗)2∣ + n
2 − 1 if n is even and n−1

2 if n is odd.

Example 2.9.22 (k = k). If k is algebraically closed, then there are ⌊n2 ⌋ isomorphy

classes of involutions of G which are inner automorphisms. These isomorphy classes are

represented by θ = Inn(Y ) where Y = In−i,i, for i = 1,2, . . . , n2 if n is even or i = 1,2, . . . , n−1
2

if n is odd.

Example 2.9.23 (k = R). Assume k = R. If n is odd, then there are n−1
2 isomorphy classes

of involutions of G which are inner automorphisms. These are represented by θ = Inn(Y ),
where Y = In−i,i, for i = 1,2, . . . , n−1

2 . If n is even, then there are n
2 + 1 isomorphy classes.

These are represented by θ = Inn(Y ), where Y = Ln,−1 or Y = In−i,i, for i = 1,2, . . . , n2 .

Example 2.9.24 ( Fp, p ≠ 2). Assume k = Fp, p ≠ 2. If n is odd, then there are n−1
2 iso-

morphy classes of involutions of G which are inner automorphisms. These are represented

by θ = Inn(Y ), where Y = In−i,i, for i = 1,2, . . . , n−1
2 . If n is even, then there are n

2 + 1

isomorphy classes. These are represented by θ = Inn(Y ), where Y = Ln,Np or Y = In−i,i,
for i = 1,2, . . . , n2 .

Example 2.9.25 (k = Qp, p ≠ 2). Assume k = Qp. If n is odd, then there are n−1
2 isomor-

phy classes of involutions of G which are inner automorphisms. These are represented

by θ = Inn(Y ), where Y = In−i,i, for i = 1,2, . . . , n−1
2 . If n is even, there are n

2 + 3 isomor-

phy classes. These are represented by θ = Inn(Y ), where y = In−i,i, for i = 1,2, . . . , n2 or

Y = Ln,α, for α ∈ {p,Np, pNp}.
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Example 2.9.26 (k = Q). If k = Q, then there are infinitely many isomorphy classes of

involutions of G. The isomorphy classes of involutions which are inner automorphisms

are represented by θ = Inn(Y ), where Y = In−i,i for i = 1,2, . . . , n2 , or Y = Ln,α for α /∈ 1.

Similarly, there are an infinite number of isomorphy classes of involutions of G which are

outer automorphisms.

As far as the fixed-point groups of these involutions of SLn(k), it turns out there very

few, if any in some cases, have k-anisotropic fixed-point groups. In [HWD06] the cases

when k = R and k = Qp are considered.

When k = R, the only involution with a compact fixed-point group is φ, defined by

φ(g) = (gT )−1 for all g ∈ G. When k = Qp, p ≠ 2, the following cases have k-anisotropic

fixed-point groups.

1. n = 3: Inn(M3,1,1,p)φ and Inn(M3,1,1,pNp)φ

2. n = 4: Inn(M4,1,pp)φ, if p ≡ 1 mod 4

3. n > 4: none

2.10 Hk-conjugacy classes of tori in SL2(k)

The tori in SL2(k) play a role in the structure of its symmetric spaces. In [BH09, Nor13],

these tori are analyzed in detail. This section offers a summary of the key results used in

the results of this thesis.

Notation 2.10.1. In this section, let k be a field of characteristic not two, G = SL2(k),
Gk the k-rational points of G, and θ an involution of Gk. We continue with the same

definitions from Section 2.4. Let H be the fixed-point group of θ and Qk = {gθ(g)−1 ∣ g ∈
Gk} the symmetric space of Gk.

Lemma 2.10.2. In a symmetric space Q, all maximal θ-split tori are maximal k-split.

Example 2.10.3. Let G be defined over k = R and θ the involution defined by θ(g) =
(gT )−1 for all g ∈ G. The symmetric space is the set of positive definite symmetric matrices,

QR = {ggT ∣ g ∈ GR}. The torus T of diagonal matrices is maximal in Q. Additionally, all

elements in TR (2.10.1) are (θ,R)-split.

TR =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x 0

0 x−1

⎞
⎠
∣x ∈ R+

⎫⎪⎪⎬⎪⎪⎭
(2.10.1)
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Theorem 2.10.4. If Qk is k-split and consists of semisimple elements, then we have the

following.

1. All θ-split tori of G are k-split.

2. All maximal θ-split tori in G are maximal (θ, k)-split.

3. For q ∈ Qk, there exists a maximal (θ, k)-split torus of G containing q.

We will focus on the Hk-conjugacy class of tori in Gk.

2.10.1 (θ, k)-split tori in Gk

The Hk-conjugacy classes of (θ, k)-split tori of Gk are characterized in [BH09].

Notation 2.10.5. Let T be a maximal torus. In Gk, we may assume T is the diagonal

matrices because all maximal tori are conjugate. Let θm be the involution Inn(M), where

M =
⎛
⎝

0 1

m 0

⎞
⎠

and m is the representative of the square class m ∈ k∗/(m∗)2.

Theorem 2.10.6. For Gk with the involution θm, let U = {q ∈ k∗/(k∗)2 ∣ x2
1−m−1x2

2 = q−1

has a solution in k}. The number of Hk-conjugacy class of (θ, k)-split tori is ∣U/{1,−m}∣.

In the case that there is one Hk-conjugacy class, we may assume the (θ, k)-split torus

is T . If there is more than one Hk-conjugacy class, they can be determined as follows.

Theorem 2.10.7. Let U be defined as in Theorem 2.10.6. For y ∈ U , there exists r, s ∈ k

such that r2 − m−1s2 = y−1. Let g =
⎛
⎝
r sym−1

s ry

⎞
⎠

, then the representatives of the Hk-

conjugacy classes of maximal (θ, k)-split tori in Gk are {Ty = g−1Tg ∣ y ∈ U}.

Example 2.10.8 (k = k̄). For Gk defined over an algebraically closed field k̄, up to

isomorphy there is one involution, θ1. By Theorem 2.10.6, there is one H-conjugacy class

of (θ, k̄)-split tori.

Example 2.10.9 (k = R). For Gk defined over k = R, up to isomorphy there are two

involutions, θ1 and θ−1. In either case, there is one HR conjugacy class of (θ,R)-split tori.

Example 2.10.10 (k = Q). For Gk defined over k = Q, there are an infinite number of

involutions. For each involution θm, there are an infinite number of HQ-conjugacy classes

of (θ,Q)-split tori.
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Example 2.10.11 (k = Fp, n ≠ 2). For Gk defined over k = Fp, up to isomorphy there are

two involutions, θ1 and θNp . The number of HFp-conjugacy classes of (θ,Fp)-split tori is

given in Table 2.1. We consider the cases where p ≡ 1 mod 4 and p ≡ 3 mod 4 separately.

The major difference is −1 ∈ (F∗p)2 if and only if p ≡ 1 mod 4.

Table 2.1: HFp-conjugacy classes of (θ,Fp)-split tori in GFp

Involution p HFp-conj. classes
θ1 p ≡ 1 mod 4 2
θ1 p ≡ 3 mod 4 1
θNp p ≡ 1 mod 4 1
θNp p ≡ 3 mod 4 2

Example 2.10.12 (k = Qp, p ≠ 2). For Gk defined over k = Qp, up to isomorphy there are

four involutions, θ1, θp, θNp , and θpNp . The number of HQp-conjugacy classes of (θ,Qp)-
split tori is given in Table 2.2. For the same reason as when k = Fp, we consider the cases

where p ≡ 1 mod 4 and p ≡ 3 mod 4 separately.

Table 2.2: HQp-conjugacy classes of (θ,Qp)-split tori in GQp

Involution p HQp-conj. classes
θ1 p ≡ 1 mod 4 4
θ1 p ≡ 3 mod 4 2
θp - 1
θNp p ≡ 1 mod 4 1
θNp p ≡ 3 mod 4 2
θpNp - 1

Example 2.10.13. From [Beu08] we have the following example of an instance when Gk

has more than once Hk-conjugacy class of (θ, k)-split tori. Let G be defined over k = Q5

and θ = Inn
⎛
⎝

0 1

1 0

⎞
⎠

the involution of G. We will let Np = 3, then U = {1, 1
3 ,

1
5 ,

1
15}. We
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know TQ5 is a maximal (θ,Q5)-split torus. For y ∈ U , we must find k, l ∈ Q5 such that

y−1 = k2 − l2. We then conjugate t ∈ T with Ai =
⎛
⎝
k kl

l ky

⎞
⎠

to get representatives of the

HQ5-conjugacy classes. Solving y−1 = k2 − l2 for each y ∈ U , we get the matrices Ai, for

i = 1, . . . ,4 (2.10.2).

A1 =
⎛
⎝

1 0

0 1

⎞
⎠
, A2 =

⎛
⎝

2 1
3

1 2
3

⎞
⎠
, A3 =

⎛
⎝

3 2
5

2 3
5

⎞
⎠
, A4 =

⎛
⎝

4 1
15

1 4
15

⎞
⎠

(2.10.2)

Conjugating t ∈ T by Ai for i = 1 . . .4, we get the HQ5-conjugacy classes of (θ,Q5)-split

tori, T1, T2, T3, T4 (2.10.3)-(??).

T1 = {A1tA
−1
1 ∣ t ∈ T} =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x 0

0 x−1

⎞
⎠

∣ x ∈ Q∗
5

⎫⎪⎪⎬⎪⎪⎭
(2.10.3)

T2 = {A2tA
−1
2 ∣ t ∈ T} =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1
3(4x−x−1)

2
3(x−1−x)

−2
3(x−1−x)

1
3(4x−1−x)

⎞
⎠

∣ x ∈ Q∗
5

⎫⎪⎪⎬⎪⎪⎭
(2.10.4)

T3 = {A3tA
−1
3 ∣ t ∈ T} =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1
5(9x−4x−1)

6
5(x−1−x)

−6
5(x−1−x)

1
5(9x−1−4x)

⎞
⎠

∣ x ∈ Q∗
5

⎫⎪⎪⎬⎪⎪⎭
(2.10.5)

T4 = {A4tA
−1
4 ∣ t ∈ T} =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1
15(16x−x−1)

4
15(x−1−x)

−4
15(x−1−x)

1
15(16x−1−x)

⎞
⎠

∣ x ∈ Q∗
5

⎫⎪⎪⎬⎪⎪⎭
(2.10.6)

2.10.2 θ-split, k-anisotropic tori in Gk

The Hk-conjugacy classes of θ-split, k-anisotropic toral subalgebras of sl2(k) are studied

in [Nor13]. We use these results and lift the toral subalgebras to the group level through

the exponential map to obtain the Hk-conjugacy classes of θ-split, k-anisotropic tori in

Gk.

Definition 2.10.14. On the algebra level, a toral subalgebra is an abelian, semisimple

subalgebra. A toral subalgebra a is θ-split if θ(a) = −a for all a ∈ a. A toral subalgebra is

k-anisotropic if it can not be diagonalized over the base field k.

The maximal θ-split, k-anisotropic toral subalgebras in sl2(k) take on two forms.

Using the terminology from [Nor13], we will refer to these forms as Type II and Type

III. Type I are the (θ, k)-split toral subalgebras.
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For the involution θm of sl2(k) we have the toral subalgebras of Type II (2.10.7).

a2 =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

0 x

−mx 0

⎞
⎠

∣ x ∈ k
⎫⎪⎪⎬⎪⎪⎭

(2.10.7)

For a ∈ a2, we can lift to the group level using Exp(ta), for some parameter t to get

the θ-split, k-anisotropic Type II tori in Gk (2.10.8).

A2 =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

x y

−my x

⎞
⎠

∣ x2 +my2 = 1, x, y ∈ k
⎫⎪⎪⎬⎪⎪⎭

(2.10.8)

Again, we are concerned with the Hk-conjugacy classes of the θ-split, k-anisotropic

tori in Gk.

Lemma 2.10.15. Let Gk be defined over k with the involution θm. There is exactly one

Hk-conjugacy class of maximal θ-split, k-anisotropic tori of Type II.

Example 2.10.16 (k = k̄). For G defined over an algebraically closed field k, there are

no H-conjugacy classes of θ-split, k̄-anisotropic Type II tori in G, because all tori can be

diagonalized over the base field.

Example 2.10.17 (k = R). For Gk defined over k = R, there are two isomorphy classes of

involutions, which can be represented by θ1 and θ−1. In the Lie algebra sl2(R), the toral

subalgebras of Type II are generated by
⎛
⎝

0 1

−1 0

⎞
⎠

for θ1 and
⎛
⎝

0 1

1 0

⎞
⎠

for θ−1. When m = 1,

the eigenvalues of the generator are ±i, hence the toral subalgebra is R-anisotropic There

is one HR-conjugacy class of θ1-split, R-anisotropic Type II tori in GR. When m = −1,

the eigenvalues of the generator are ±1, hence the toral subalgebra is R-split and there

are no HR-conjugacy class of θ−1-split, R-anisotropic Type II tori in GR.

Example 2.10.18 (k = Fp, p ≠ 2). For Gk defined over k = Fp with the involution θ,

the number of HFp-conjugacy classes of θ-split, Fp-anisotropic tori of Type II are given

in Table 2.3.
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Table 2.3: HFp-conjugacy classes of θ-split, Fp-anisotropic Type II tori in GFp

Involution p HFp-conj. classes
θ1 p ≡ 1 mod 4 0
θ1 p ≡ 3 mod 4 1
θNp p ≡ 1 mod 4 1
θNp p ≡ 3 mod 4 0

Example 2.10.19 (k = Qp, p ≠ 2). For Gk defined over k = Qp with the involution θ,

the number of HQp-conjugacy classes of θ-split, Qp-anisotropic tori of Type II are given

in Table 2.4.

Table 2.4: HQp-conjugacy classes of θ-split, Qp-anisotropic Type II tori in GQp

Involution p HQp-conj. classes
θ1 p ≡ 1 mod 4 0
θ1 p ≡ 3 mod 4 3
θp - 3
θNp p ≡ 1 mod 4 3
θNp p ≡ 3 mod 4 0
θpNp - 3

Example 2.10.20 (k = Q). For Gk defined over k = Q with the involution θ = θm, −m /∈
(Q∗)2, there is exactly one HQ-conjugacy class of θ-split, Q-anisotropic Type II tori.

For the involution θm of sl2(k), we have the toral subalgebras of Type III (2.10.9).

a3 =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

x γx

−mγx −x
⎞
⎠

∣ γ fixed s.t. 1 −mγ2 /∈ (k∗)2

⎫⎪⎪⎬⎪⎪⎭
(2.10.9)

For a ∈ a3, we can lift to the group level using Exp(ta), for some parameter t to get

the θ-split, k-anisotropic Type III tori in Gk (2.10.10).

A3 =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x + y γy

−mγy x − y
⎞
⎠

∣ γ fixed s.t. 1 −mγ2 /∈ (k∗)2;x2 − (1 −mγ2)y2 = 1

⎫⎪⎪⎬⎪⎪⎭
(2.10.10)
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For Type III tori, this classification has not yet been completed, although [Nor13]

offers an upper bound when the exact number of Hk-conjugacy classes is not known.

Example 2.10.21 (k = Q). Let Gk be defined over k = Q with the involution θm. There

are an infinite number of conjugacy classes of maximal θm-split, Q-anisotropic Type III

tori.

Example 2.10.22 (k = Fp or Qp, p ≠ 2). For Gk defined over k = Fp or k = Qp, [Nor13]

offers an upper bound for the Hk-conjugacy classes. For Gk defined over k = Fp, there is

either one or two HFp-conjugacy classes of maximal θ-split, Fp-anisotropic tori of Type

III. For Gk defined over k = Qp, there is at most 12 HQp-conjugacy classes of maximal

θ-split, Qp-anisotropic tori of Type III.
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Chapter 3

Generalizations to SL2(k)

We begin to generalize the Cartan and Iwasawa decompositions to the algebraic group

SL2(k), where k is an arbitrary field of characteristic not two and θ is any involution.

3.1 Factors of the decomposition

Notation 3.1.1. Throughout this chapter, let G = SL2(k), where k is a field of character-

istic not two and k̄ is the algebraic closure of k. We will denote the k-rational point of

G by Gk. In general, the k-rational points of a set A will be denoted Ak. Recall the iso-

morphy classes of G from Section 2.8. Using the same notation, we let θm = Inn
⎛
⎝

0 1

m 0

⎞
⎠

,

for m ∈ k∗/(k∗)2, be an involution of G.

We define the fixed-point group, symmetric and extended symmetric spaces with

respect to different involutions, thus we add the following notation. The Hθ is the fixed-

point group of θ, Qθ is the symmetric space with respect to θ, and Q̃θ is the extended

symmetric space with respect to θ.

For Gk with an arbitrary involution θm, we can determine the fixed-point group Hθm

(3.1.1), symmetric space Qθm (3.1.2), and extended symmetric space Q̃θm (3.1.3) of Gk.

Hθm
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

mb a

⎞
⎠

∣ a, b ∈ k, a2 −mb2 = 1

⎫⎪⎪⎬⎪⎪⎭
(3.1.1)

Qθm
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a2 −mb2 − 1

m(ac − bd)
m(ac − bd) − 1

mc
2 + d2

⎞
⎠

∣ a, b, c, d ∈ k, ad − bc = 1

⎫⎪⎪⎬⎪⎪⎭
(3.1.2)
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Q̃θm
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

−mb c

⎞
⎠

∣ a, b, c ∈ k, ac +mb2 = 1

⎫⎪⎪⎬⎪⎪⎭
(3.1.3)

Example 3.1.2. Consider G defined over k = R. The square classes of R are represented

by {1,−1}. The fixed-point group of θ−1 is the special orthogonal group SO(2) which is

compact, thus θ−1 is a Cartan involution of G. The symmetric space with respect to θ−1

is the set of positive-definite symmetric matrices, while the extended symmetric space is

the set of all symmetric matrices.

For the involution θ1 of G, the fixed-point group is the indefinite special orthogonal

group SO(1,1) (3.1.4). The symmetric space is Qθ1 (3.1.5) and the extended symmetric

space is Q̃θ1 (3.1.6).

Hθ1
R = SO(1,1) =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

coshx sinhx

sinhx coshx

⎞
⎠
∣ x ∈ R

⎫⎪⎪⎬⎪⎪⎭
(3.1.4)

Qθ1
R =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a2 − b2 −ac + bd
ac − bd −c2 + d2

⎞
⎠
∣ a, b, c, d ∈ k, ad − bc = 1

⎫⎪⎪⎬⎪⎪⎭
(3.1.5)

Q̃θ1
R =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x y

−y z

⎞
⎠
∣ x, y, z ∈ k, xz + y2 = 1

⎫⎪⎪⎬⎪⎪⎭
(3.1.6)

3.2 Generalizing the Cartan and Iwasawa decompo-

sitions

As previously discussed, the Cartan and Iwasawa decompositions are defined for real

semisimple Lie groups when paired with a Cartan involution. In general, for any field

k with an arbitrary involution θ, the set Hθ
kQ

θ
k is contained in, but not equal to, Gk.

In fact, even for G defined over k = R with the non-Cartan involution θ1, the Cartan

decomposition fails, as shown in Example 2.3.9. When we switch to another field, such as

a finite field, it is also clear that the Cartan decomposition fails, even with the generalized

Cartan involution. In [BH09], we get the fixed-point group of Hθm is k-anisotropic if and

only if m /∈ 1. In other words, θm is a generalized Cartan involution if and only if m is

not a square in the field.

Example 3.2.1. Let G be defined over k = F7 and θ = θ−1 the involution of G. Because
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−1 /∈ (F∗7)2, θ serves as a Cartan involution. Let g =
⎛
⎝

1 1

0 1

⎞
⎠

. If g ∈Hθ
F7
Qθ

F7
⊂Hθ

F7
Q̃θ

F7
, then

there exists h−1 =
⎛
⎝
a b

−b a

⎞
⎠
∈Hθ

F7
such that h−1g ∈ Q̃θ

F7
(3.2.1).

h−1g =
⎛
⎝
a a + b
−b a − b

⎞
⎠

(3.2.1)

For h−1g to be symmetric, h−1 =
⎛
⎝

5b b

6b 5b

⎞
⎠

. For det(h−1) = 5b2 = 1, it must be that 3 ∈

(F7
∗)2, which is not true. Hence, GF7 /⊂ Hθ

F7
Q̃θ

F7
and therefore the Cartan decomposition

GF7 =Hθ
F7
Qθ

F7
does not hold.

To account for the missing elements, we introduce the unipotent subgroup U of G

consisting of upper triangular matrices with ones in the diagonal (3.2.2).

Uk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 α

0 1

⎞
⎠

∣ α ∈ k
⎫⎪⎪⎬⎪⎪⎭

(3.2.2)

With the addition of the new subgroup, we have the following result.

Theorem 3.2.2. For G defined over with the involution θ, fixed-point group Hθ, extended

symmetric space Q̃θ and unipotent subgroup U , Gk =Hθ
kQ̃

θ
kUk.

This decomposition simultaneously serves as a generalization of both the Cartan and

Iwasawa decompositions. It contains the fixed-point group and symmetric space similar to

the Cartan decomposition. Additionally, because the maximal k-split torus is contained

in Q̃θ and we have a unipotent subgroup, it generalizes the Iwasawa decomposition. The

proof of Theorem 3.2.2 relies on the Bruhat decomposition of G. Recall from Exam-

ple 2.5.4, the Bruhat decomposition of Gk. We establish the necessary results to prove

Theorem 3.2.2 here.

Theorem 3.2.3 (Bruhat Decomposition of SL2(k)). Let G be defined over k, B ⊂ G a

Borel subgroup, T a maximal torus, and W (T ) the Weyl group of G. Then we have the

Bruhat decomposition of Gk (3.2.3)

Gk = ⊍
ω∈W (T )

BkωBk = Bk⊍Bk

⎛
⎝

0 1

−1 0

⎞
⎠
Bk (3.2.3)
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Let the maximal torus T be the subgroup of diagonal matrices in G (3.2.4) and the

Borel subgroup B ⊃ T be the upper triangular matrices (3.2.5).

Tk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
α 0

0 α−1

⎞
⎠

∣ α ∈ k∗
⎫⎪⎪⎬⎪⎪⎭

(3.2.4)

Bk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x y

0 x−1

⎞
⎠

∣ x ∈ k∗, y ∈ k
⎫⎪⎪⎬⎪⎪⎭

(3.2.5)

For the Borel subgroup B, we can write B = TU , where T is the k-split maximal torus

and U is the unipotent radical of B.

Lemma 3.2.4. Let G be defined over k with the involution θ and T a k-split maximal

torus. Then T is invariant under θ and is maximal (θ, k)-split.

Proof. Let θ = θm be the involution of G and t =
⎛
⎝
α 0

0 α−1

⎞
⎠
∈ T . Then T is θ-split and

θ(t) ∈ T (3.2.6).

θ(t) =
⎛
⎝

0 1

m 0

⎞
⎠
⎛
⎝
α 0

0 α−1

⎞
⎠
⎛
⎝

0 m−1

1 0

⎞
⎠
=
⎛
⎝
α−1 0

0 α

⎞
⎠
= t−1 ∈ T (3.2.6)

Lemma 3.2.5. Let G be defined over k and θ an involution of G. If Hθ
k = {± Id}, then

k ≃ F3.

Proof. From [HW93], the fixed-point group of an involution is always reductive. Thus for

G, the fixed-point group is a torus. Since H ≃ k∗, if ∣H ∣ = 2, then k ≃ F3.

Remark 3.2.6. For G defined over k = F3, Hθm
k = {± Id} only for m ∈ (F∗3)2 = {1}.

Proof of Theorem 3.2.2. Let θ = θm be the involution of G .Because Hθ
k , Q̃

θ
k, and Uk

are contained in Gk, Hθ
kQ̃

θ
kUk ⊂ Gk is clear. We will show the reverse containment,

G ⊂ Hθ
kQ̃

θ
kUk, using an equivalent statement (3.2.7), replacing Gk with its Bruhat de-

composition.

Bk⊍Bk

⎛
⎝

0 1

−1 0

⎞
⎠
Bk ⊂Hθ

kQ̃
θ
kUk (3.2.7)

38



First, consider g ∈ Bk. Then there exists u ∈ Uk such that u−1g = t ∈ Tk. By Lemma

3.2.4, u−1g = t is θ-split, hence u−1g ∈ Q̃θ
k. Therefore, g ∈ Q̃θ

kUk ⊂Hθ
kQ̃

θ
kUk.

Second, consider g ∈ Bk

⎛
⎝

0 1

−1 0

⎞
⎠
Bk. Then for some a, b ∈ k∗ and α,β ∈ k, we can

rewrite g (3.2.8).

g =
⎛
⎝
a α

0 a−1

⎞
⎠
⎛
⎝

0 1

−1 0

⎞
⎠
⎛
⎝
b β

0 b−1

⎞
⎠

(3.2.8)

If α ≠ 0, let u =
⎛
⎝

1 ma2−b2−mαβab
mαab2

0 1

⎞
⎠

. Then gu ∈ Q̃θ
k (3.2.9) and therefore g ∈Hθ

kQ̃
θ
kUk.

θ(gu) =
⎛
⎝
−a2m−b2a2bmα − b

ma
b
a −αb

⎞
⎠
= (gu)−1 (3.2.9)

If α = 0, let h =
⎛
⎝
x y

my x

⎞
⎠
∈ Hθ

k ∖ {± Id}, and u =
⎛
⎝

1 mxa2−xb2−myβb
mb2y

0 1

⎞
⎠

. Then hgu ∈ Q̃θ
k

(3.2.10) and therefore g ∈Hθ
kQ̃

θ
kUk.

θ(hgu) =
⎛
⎝
−yba

xb
am

−xba
a2m2y2−ma2x2+b2x2

abmy

⎞
⎠
= (hgu)−1 (3.2.10)

Now assume Hθ
k = {± Id}, then by Lemma 3.2.5 we may assume k = F3 and θ = θ1. By

direct calculation of GF3 , we get that most of GF3 is already in Hθ
F3
, Q̃θ

F3
, or UF3 . We can

calculate the factorization directly of the remaining elements (3.2.11).

SL2(F3) ∖ (Hθ
F3
∪ Q̃θ

F3
∪UF3) =

⎧⎪⎪⎨⎪⎪⎩
±
⎛
⎝

2 0

2 2

⎞
⎠
,±

⎛
⎝

2 1

1 1

⎞
⎠
,±

⎛
⎝

2 2

2 1

⎞
⎠
,±

⎛
⎝

1 0

2 1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
(3.2.11)

±
⎛
⎝

2 0

2 2

⎞
⎠
= ± Id

⎛
⎝

2 1

2 0

⎞
⎠
⎛
⎝

1 1

0 1

⎞
⎠

±
⎛
⎝

2 1

1 1

⎞
⎠
= ± Id

⎛
⎝

2 2

1 0

⎞
⎠
⎛
⎝

1 1

0 1

⎞
⎠

±
⎛
⎝

2 2

2 1

⎞
⎠
= ± Id

⎛
⎝

2 1

2 0

⎞
⎠
⎛
⎝

1 2

0 1

⎞
⎠
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±
⎛
⎝

1 0

2 1

⎞
⎠
= ± Id

⎛
⎝

1 1

2 0

⎞
⎠
⎛
⎝

1 2

0 1

⎞
⎠

Therefore, the decomposition Gk =Hθ
kQ̃

θ
kUk for an arbitrary involution θ and any field

k of characteristic not 2.

Remark 3.2.7. For a general field k and involution θ, Gk ≠ Hθ
kQ

θ
kUk and thus expanding

to the extended symmetric space is necessary. Further on, we give cases in which the

symmetric space will suffice.

For G defined over a field k with the involution θ, we can consider the (Hθ
k×Uk)-orbits

on Gk defined by (h,u) ● g ∶= hgu for h ∈ Hθ
k , u ∈ Uk and g ∈ Gk. From [HW93], we have

the following result which allows us to choose orbit representatives in Q̃θ
k.

Proposition 3.2.8. If g ∈ Q̃θ
k, then there exists u ∈ Uk such that ugθ(u)−1 ∈ NG(T ).

Similarly, we can define the twisted Uk-orbits on Q̃θ
k using the θ-twisted action u∗q ∶=

u−1qθ(u) for u ∈ Uk and q ∈ Qθ
k. We have Qθ

k ≃ Gk/Hθ
k , thus the Uk-orbits of Qθ

k are in

bijective correspondence with the (Hθ
k×Uk)-orbits of Gk if and only if Hθ

kQ
θ
kUk =Hθ

kQ̃
θ
kUk.

Example 3.2.9. Let G be defined over k = Q and θ = θ−1 the involution of G. For

convenience, we will use Qθ
Q = {g−1θ(g) ∣ g ∈ GQ}. Let the (Hθ

Q × UQ)-orbits on GQ and

twisted UQ-orbits on Qθ
Q be as above. Consider the map from UQ ∗Qθ

Q to (Hθ
Q×UQ)●GQ,

where q = g−1θ(g) (3.2.12).

UQ ∗ q ↦ (Hθ
Q ×UQ) ● g (3.2.12)

For q ∈ Qθ
Q, assume there exists g1, g2 ∈ GQ such that q = g−1

1 θ(g1) = g−1
2 θ(g2). Then

g1 = hg2 for some h ∈Hθ
Q by the following implications (3.2.13).

g−1
1 θ(g1) = g−1

2 θ(g2)⇒ θ(g1g
−1
2 = g1g

−1
2 ⇒ g1g

−1
2 ∈Hθ

Q (3.2.13)

The map is well-defined because it is independent of coset representative and surjec-

tive by definition of Qθ
Q. We may also reverse the map (3.2.14).

(Hθ
Q ×UQ) ● g ↦ g−1θ(g) (3.2.14)
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By Theorem 3.2.2, let g = hqu, where h ∈ Hθ
Q, q ∈ Q̃θ

Q and u ∈ UQ. Then (Hθ
Q ×UQ) ● g

maps to UQ ∗ q0, for some q0 = q−2 ∈ Qθ
Q (3.2.15).

(g−1θ(g) = (hqu)−1θ(hqu) = u−1q−1h−1θ(h)θ(q)θ(u) = u−1q−1θ(q)θ(u) = u ∗ q0 (3.2.15)

Over k = Q, this map is not surjective because not all elements of Qθ
Q can be written

as q−2 for some q ∈ Q̃θ
Q. From Proposition 3.2.8, the UQ-orbits on Qθ

Q can always be

represented by an element from the normalizer in G of a θ-stable, maximal Q-split torus

T , NG(T ). In this case, NG(T )∩Qθ
Q is the set of diagonal elements in GQ. Furthermore,

the action of (Hθ
Q ×UQ) on λ =

⎛
⎝
λ1 0

0 λ−1
1

⎞
⎠
∈ NG(T ) ∩Qθ

Q cannot map to another element

µ =
⎛
⎝
µ1 0

0 µ−1
1

⎞
⎠
∈ NG(T ) ∩Qθ

Q, if µ ≠ ±λ.

(Hθ
Q ×UQ) ● λ = hλu =

⎛
⎝
a b

−b a

⎞
⎠
⎛
⎝
λ1 0

0 λ−1
1

⎞
⎠
⎛
⎝

1 α

0 1

⎞
⎠
=
⎛
⎝
aλ1 αaλ1 + bλ−1

1

−bλ1 −bλ1α + aλ−1
1

⎞
⎠
=
⎛
⎝
µ1 0

0 µ−1
1

⎞
⎠

(3.2.16)

Solving (3.2.16), we get h = ± Id and u = Id. If we let q−1 =
⎛
⎝
x y

y z

⎞
⎠
∈ Q̃θ

Q, then

the only UQ-orbits on Qθ
Q which correspond to the (Hθ

Q × UQ)-orbits on GQ are the

ones whose representative in NG(T ) are of the form q0 =
⎛
⎝
x2 + y2 0

0 (x2 + y2)−1

⎞
⎠

. Let

g =
⎛
⎝
λ1 0

0 λ−1
1

⎞
⎠
∈ GQ such that λ1 > 0 and λ1 is not the sum of two squares. Then

(Hθ
Q ×UQ) ● g cannot be obtained as a UQ-orbit on Qθ

Q. Hence, GQ ≠Hθ
QQ̃

θ
QUQ.

3.3 Results for GL2(k)

The results for GL2(k) are much simpler. Ensuring that the factors in Theorem 3.2.2

have a determinant of one makes the decomposition over SL2(k) more involved. Note

that the characterization of isomorphy classes of involutions of SL2(k) in [HW93] also

serves as a characterization over GL2(k).

Theorem 3.3.1. Let G = GL2(k̄) be defined over a field k of characteristic not two and
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θ an involution of G. Then Gk =Hθ
kQ̃

θ
k.

Proof. Let g =
⎛
⎝
a b

c d

⎞
⎠
∈ Gk and θ = θm be an involution of G. Then hg ∈ Q̃θ

k for h =

⎛
⎝
−m(a+d)bm+c 1

m −m(a+d)bm+c

⎞
⎠
∈Hθ

k (3.3.1).

hg =
⎛
⎝
c − ma(a+d)

bm+c
cd−mab
bm+c

−m ( cd−mab
bm+c ) bm − md(a+d)

bm+c

⎞
⎠
∈ Q̃θ

k (3.3.1)

Hence, g ∈Hθ
kQ̃

θ
k. Note that if bm + c = 0, then g ∈ Q̃θ

k.

Example 3.3.2 (k = R). Let G be defined over k = R. In this case, there are two

involutions, θ = θ−1 and θ = θ1. In both cases, we can simplify the decomposition to

GR = Hθ
RQ

θ
R. For θ = θ−1, Hθ

R is compact, and therefore θ is a Cartan involution and

the traditional Cartan decomposition holds. For θ = θ1, we will show in section 4.1 that

Qθ
R = Q̃θ

R.

Example 3.3.3 (k = Fp, p ≠ 2). Let G be defined over k = Fp. In section 4.1, we will

show Qθ
Fp

= Q̃θ
Qp

for any involution θ of G. Thus, we can simply the decomposition to

GFp =Hθ
Fp
Qθ

Fp
.

3.4 Results for fields of characteristic two

Dealing with fields of characteristic two presents a new challenge. In [Sch13], the isomor-

phy classes of involutions of SLn(k) are classified for such fields. We use these results to

verify Theorem 3.2.2 for fields of characteristic two.

Note that in a field k with characteristic 2, we have x = −x for all x in k. The finite

field F2 = {0,1} has characteristic two and is the smallest of the finite fields. While most

fields of characteristic two are isomorphic to F2, these are not the fields of characteristic

two. We will also consider algebraically closed fields. The algebraic closure of a finite field

is defined as Fp = ⋃
n∈N

Fpn .

Notation 3.4.1. In this section, let G = SL2(k), k a field of characteristic two, and Gk the

k-rational points of G.
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Theorem 3.4.2. If k is a finite field or algebraically closed, then there is one isomorphism

class of involutions of Gk.

Notation 3.4.3. For k = F2r or k = k̄, we will represent this isomorphy class of involutions

by θ0 = Inn(N), where N =
⎛
⎝

1 1

0 1

⎞
⎠

.

Remark 3.4.4. The fixed-point group of θ0 is the unipotent subgroup Hθ0 (3.4.1) and the

extended symmetric space of θ0 is Q̃θ (3.4.2).

Hθ0
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

0 a

⎞
⎠

∣ a2 = 1

⎫⎪⎪⎬⎪⎪⎭
(3.4.1)

Q̃θ0
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
x y

z x + z
⎞
⎠

∣ x2 + xz + yz = 1

⎫⎪⎪⎬⎪⎪⎭
(3.4.2)

Because the fixed-point group of θ0 is unipotent, we will not need to include the

unipotent subgroup U from Theorem 3.2.2.

Theorem 3.4.5. Let G be defined over an algebraically closed field or finite field k and

θ = θ0 the involution of G. For the fixed-point group Hθ
k , extended symmetric space Q̃θ

k, and

Weyl group of the maximal k-split torus W (T ), we can factor the group as a generalized

Cartan decomposition (3.4.3).

Gk = ⋃
ω∈W (T )

Hθ
kωQ̃

θ
k (3.4.3)

Proof. Let W (T ) =
⎧⎪⎪⎨⎪⎪⎩

Id,
⎛
⎝

0 1

1 0

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
. For g =

⎛
⎝
a b

c d

⎞
⎠
∈ Gk with c ∈ k∗, let h =

⎛
⎝

1 a+c+d
c

0 1

⎞
⎠
∈Hθ

k

and q =
⎛
⎝
c + d 1+cd+d2

c

c d

⎞
⎠
∈ Q̃θ

k, then g = hq ∈ Hθ
kQ̃

θ
k. For g =

⎛
⎝
a b

0 1
a

⎞
⎠
∈ Gk, let h =

⎛
⎝

1 a2 + ab
0 1

⎞
⎠
∈Hθ

k and q =
⎛
⎝

0 1
a

a a

⎞
⎠
∈ Q̃θ

k, then g = hωq ∈Hθ
kωQ̃

θ, where ω =
⎛
⎝

0 1

1 0

⎞
⎠

.

Theorem 3.4.6. If k is an infinite field which is not algebraically closed, then there is

an infinite number of isomorphy classes of involutions of Gk.

Notation 3.4.7. For an infinite field k such that k ≠ k̄, we will represent the isomorphy

classes of involutions by θm = Inn(M), where M =
⎛
⎝

0 1

m 0

⎞
⎠

.
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Remark 3.4.8. We have the fixed-point group (3.4.4) and extended symmetric space

(3.4.5) of G defined over k with the involution θm.

Hθ
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

mb a

⎞
⎠
∣ a, b ∈ k, a2 +mb2 = 1

⎫⎪⎪⎬⎪⎪⎭
(3.4.4)

Q̃θ
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

mb c

⎞
⎠
∣ a, b, c ∈ k, ac +mb2 = 1

⎫⎪⎪⎬⎪⎪⎭
(3.4.5)

Theorem 3.4.9. Let G be defined over a field k with characteristic 2 and θ = θm the

involution of G. For the fixed-point group Hθ, extended symmetric space Q̃θ, and the

unipotent subgroup Uk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 u1

0 1

⎞
⎠
∣ u ∈ k

⎫⎪⎪⎬⎪⎪⎭
, then Gk =Hθ

kQ̃
θ
kUk.

Proof. Let g =
⎛
⎝
x y

z w

⎞
⎠
∈ Gk. If z ≠ 0, for u =

⎛
⎝

1 x+w
z

0 1

⎞
⎠
∈ Uk and h =

⎛
⎝

0 b

mb 0

⎞
⎠
∈ Hθ

k , we

have θ(hgu) = (hgu)−1 (3.4.6). Hence, hgu ∈ Q̃θ
k and g ∈Hθ

kQ̃
θ
kUk.

θ(hgu) =
⎛
⎝
bm(1 + x2) bx

mbx bz

⎞
⎠
= (hgu)−1 (3.4.6)

If z = 0, the g =
⎛
⎝
x y

0 x−1

⎞
⎠
∈ Gk. For u =

⎛
⎝

1 y
x

0 1

⎞
⎠
∈ Uk, we have θ(gu) = (gu)−1 (3.4.7).

θ(gu) =
⎛
⎝
x−1 0

0 x

⎞
⎠
= (gu)−1 (3.4.7)

Hence, gu ∈ Q̃θ
k and g ∈Hθ

kQ̃
θ
kUk. The reverse containment is clear.
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Chapter 4

Structure of the Symmetric Spaces

To understand the symmetric and extended symmetric spaces of G, we will analyze the

relationship between them and then the semisimplicity of their elements.

4.1 Relationship between the symmetric and extend-

ed symmetric spaces

Notation 4.1.1. In this section, let G = SL2(k) be defined over the field k, k̄ the algebraic

closure of k, and Gk the k-rational points of G. Let θm denote the involution Inn
⎛
⎝

0 1

m 0

⎞
⎠

,

for m ∈ k∗/(k∗)2. Let Qθ
k = {gθ(g)−1 ∣ g ∈ Gk} be the symmetric space of Gk and Q̃θ

k =
{g ∈ Gk ∣ θ(g) = g−1} the extended symmetric space of Gk.

As their names would suggest, there exists a strong relationship between the sym-

metric and extended symmetric spaces.

Lemma 4.1.2. For a group G with involution θ, the symmetric space is contained within

the extended symmetric space. i.e. Qθ ⊂ Q̃θ.

Proof. For gθ(g)−1 ∈ Qθ
k, θ(gθ(g)−1) = (gθ(g)−1)−1 (4.1.1).

θ(gθ(g)−1) = θ(g)θ2(g)−1 = θ(g)g−1 = (gθ(g)−1)−1 (4.1.1)

Hence, gθ(g)−1 ∈ Q̃θ
k.
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In general, this containment is proper and the symmetric and extended symmetric

spaces are not equivalent. We will determine the cases in which we get equality.

Example 4.1.3. Let G be defined over k = R with the Cartan involution θ−1. The

symmetric space consists of the positive-definite symmetric matrices which is contained

in, but not equal to, the extended symmetric space which consists of all symmetric

matrices.

Theorem 4.1.4. Let G be defined over k = k̄ and θ = θ1 the involution of G. Then the

extended symmetric space is equivalent to the symmetric space.

Proof. Let q =
⎛
⎝
a b

−b c

⎞
⎠
∈ Q̃θ. For q to be in the symmetric space, we need g ∈ G such

that gθ(g)−1 = q. Depending on the value of c, choose g ∈ G according to Table 4.1.

Choosing the appropriate g will yield gθ(g)−1 = q ∈ Qθ. The reverse containment follows

from Lemma 4.1.2.

Table 4.1: g ∈ G such that q = gθ(g)−1 ∈ Qθ for k = k̄

c b g ∈ G

c ≠ 0 - (
1√
c

b√
c

0
√
c
)

c = 0 b=1 (
0

√
−a√

−a
a − b

√
−a
a

)

c = 0 b = −1 ( 1 −1
1−c
2

c+1
2

)

Theorem 4.1.5. Let G be defined over k = R and θ = θ1 the involution of G. Then the

extended symmetric space is equivalent to the symmetric space.

Proof. Let q =
⎛
⎝
a b

−b c

⎞
⎠
∈ Q̃θ

R. As in the proof of Theorem 4.1.4, we need g ∈ GR such

that gθ(g)−1 = q. Depending on the value of a, choose g ∈ GR according to Table 4.2.

Choosing the appropriate g will yield gθ(g)−1 = q ∈ Qθ. The reverse containment follows

from Lemma 4.1.2.
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Table 4.2: g ∈ GR such that q = gθ(g)−1 ∈ Qθ
R for k = R

a b g ∈ GR

a > 0 - (
√
a 0

− b√
a

1√
a

)

a < 0 - (
0

√
−a√

−a
a − b

√
−a
a

)

a = 0 b = 1 ( 1 1
c−1
2

c+1
2

)

a = 0 b = −1 ( 1 −1
1−c
2

c+1
2

)

In [BHK+], the structure of the symmetric spaces of Gk and GL2(k) defined over

k = Fq are analyzed and they provide the following result.

Theorem 4.1.6. Let G be defined over k = Fq, with characteristic of k not 2, and θ an

involution of G. The symmetric space is equivalent to the extended symmetric space.

4.2 Results for the p-adic fields

We want to determine the relationship between the symmetric and extended symmetric

space when G is defined over k = Qp for some prime p ≠ 2. Working over the p-adic fields

creates a number of challenges. First, there are four isomorphy classes of involutions

because ∣Qp/(Q∗
p)2∣ = 4, namely Qp/(Q∗

p)2 = {1, p,Np, pNp}, where Np is the “smallest

non-square” in Qp. Second, the cases when p ≡ 1 mod and p ≡ 3 mod 4 are handled

separately. This is because −1 is not a square in k = Qp if p ≡ 3 mod 4 but −1 is a square

if p ≡ 1 mod 4. For example,
√
−1 = 2 in k = Q5. When p ≡ 3 mod 4, we let Np = −1.

4.2.1 Hilbert’s Symbol

A useful tool when studying G over the p-adic fields is Hilbert’s symbol [Cas78].

Definition 4.2.1. For a, b ∈ Qp, Hilbert’s symbol is defined as

(a, b)p =
⎧⎪⎪⎨⎪⎪⎩

1 ax2 + by2 − z2 is isotropic

−1 otherwise
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Remark 4.2.2. The polynomial ax2+bx2−z2 is isotropic over Qp if there exists non-trivial

(x, y, z) in Q3
p such that ax2 + bx2 − z2 = 0.

Proposition 4.2.3 (Properties of the Hilbert Symbol). For all a, b, x, y ∈ Qp, p ≠ 2, we

have the following.

1. (a, b)p = (b, a)p

2. (a, b)p = 1 if a ∈ (Q∗
p)2

3. (a,−a)p = 1

4. (ax2, by2)p = (a, b)p

5. For a = a1pn, b = b1pm, with a1 and b1 units, (a, b)p = (−1∣p)nm(a1∣p)m(b1∣p)n, where

(a∣p) is the Legendre symbol.

Definition 4.2.4. The Legendre symbol (a∣p) = 1 if a is a square in Fp and (a∣p) = −1 if

a is not a square in Fp.

We first consider G defined over k = Qp with the involution θ = θ1. For q =
⎛
⎝
a b

−b c

⎞
⎠
∈

Q̃θ
Qp

, we must show there exists g ∈ GQp such that q = gθ(g)−1. To find such g ∈ GQp , we

solve for x, y, z,w ∈ Qp such that the following equations hold simultaneously.

xw − yz = 1 (4.2.1)

x2 − z2 = a (4.2.2)

w2 − z2 = c (4.2.3)

yw − xz = b (4.2.4)

Using Hilbert’s symbol, we obtain solutions to (4.2.2) and (4.2.3) in Qp. The Hilbert

symbol shows that (4.2.2) has a solution because the equivalent equation (4.2.5) below

is isotropic over k = Qp.

x2 − z2 − y2a = 0⇒ 1

a
x2 + (−1

a
) z2 − y2 = 0 (4.2.5)
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By Proposition 4.2.3, ( 1
a ,−

1
a)p = 1. Therefore (4.2.5) has a non-trivial solution (x, z, y)

in Q3
p. We then scale our solution such that y = 1. Similar calculations show (4.2.4) has

a solution.

For a simultaneous solution to (4.2.1)-(4.2.4), let

x = −b + αw
β

, y = α, z = β

where

α = wb ±
√
w2 − c
c

, β = ±
√
w2 − c.

We must verify there exists β ∈ Qp for all c ∈ Qp such that β2 = w2−c. Using the Hilbert

symbol, this equation corresponds to (1,−1)p = 1 and therefore β ∈ Qp exists. Depending

on the value of c, choose g ∈ GQp according to Table 4.3. Choosing the appropriate g will

yield gθ(g)−1 = q ∈ Qθ
Qp

. Because the reverse containment is clear by Lemma 4.1.2, we

have the following result.

Table 4.3: g ∈ GQp such that q = gθ(g)−1 ∈ Qθ
Qp

for k = Qp

c b g ∈ GQp

c ≠ 0 -
⎛
⎝

−bc+w2b+w
√
w2−c

c
√
w2−c

wb+
√
w2−c
c√

w2 − c w

⎞
⎠

c = 0 b=1 (−
1
2 −1

2

1 −1
)

c = 0 b = −1 (−1 1
−1

2 −1
2

)

Theorem 4.2.5. Let G be defined over k = Qp with p ≠ 2, and θ = θ1 the involution of

G. The extended symmetric space is equivalent to the symmetric space.

We can show by example that for the involution θm, m /∈ (Q∗
p)2, the symmetric and

extended symmetric spaces are not equivalent.

Example 4.2.6. Let p = 3 and consider the involution θ = θ3. The extended symmetric
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space is Q̃θ
Q3

(4.2.6).

Q̃θ
Q3

=
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

−3b c

⎞
⎠
∣a, b, c ∈ Q3 and ac + 3b2 = 1

⎫⎪⎪⎬⎪⎪⎭
(4.2.6)

Let q =
⎛
⎝

1
3 0

0 3

⎞
⎠
∈ Q̃θ

Q3
. Then g = gθ(g)−1 and det(g) = 1 implies g is g1 or g2, where

α =
√

3d2 − 9 (4.2.7).

g1 =
⎛
⎝

√
3

3 0

0
√

3

⎞
⎠
, g2 =

⎛
⎝

1
3d ±1

9α

±α d

⎞
⎠

(4.2.7)

Because 3 /∈ (Q∗
3)2, g1 /∈ GQ3 . For g2, α =

√
3d2 − 9 =

√
3
√
d2 − 3 ∈ Q3 if only if d2 − 3 = 3,

which implies d =
√

6. Because 6 is in the square class pNp = −3 and is not a square,

d /∈ Q3. Thus there is no g ∈ GQ3 such that q = gθ(g)−1 and the symmetric space and

extended symmetric space are not equivalent for the involution θ = θp when p ≡ 3 mod 4.

We will do the same calculations for the other cases. For each, we will get two options

for g, and for similar reasons, neither g will be in GQp .

Example 4.2.7. Let p = 5 and consider the involution θ = θ5. The extended symmetric

space is Q̃θ
Qp

(4.2.8).

Q̃θ
Q5

=
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

−5b c

⎞
⎠

∣ a, b, c ∈ Qp andac + 5b2 = 1

⎫⎪⎪⎬⎪⎪⎭
(4.2.8)

Let q =
⎛
⎝

1
2 0

0 2

⎞
⎠
∈ Q̃θ

Q5
. For g such that q = gθ(g)−1 and det(g) = 1, g must be of the

form g1 or g2, where α =
√

5d2 − 10 (4.2.9).

g1 =
⎛
⎝

1
2

√
2 0

0
√

2

⎞
⎠
, g2 =

⎛
⎝

1
2d ± 1

10α

±α d

⎞
⎠

(4.2.9)

Using calculations similar to Example 4.2.6, we see that g1 and g2 are not in GQ5 . There-

fore, Q̃θ
Q5

is not contained in Qθ
Q5

when θ = θp and p ≡ 1 mod 4.

Example 4.2.8. Let p = 3 and consider the involution θ = θNp . Because p ≡ 3 mod 4, we

will use θ = θ−1. Let q =
⎛
⎝

1
3 0

0 3

⎞
⎠
∈ Q̃θ

Q3
. For g such that q = gθ(g)−1 and det(g) = 1, g must
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be of the form g1 or g2, where α =
√
−d2 + 3 (4.2.10).

g1 =
⎛
⎝

1
3

√
3 0

0
√

3

⎞
⎠
, g2 =

⎛
⎝

1
3d ±1

3α

±α d

⎞
⎠

(4.2.10)

We can show g1 and g2 are not defined over Q5 using the same method as in Example

4.2.6. Therefore, Q̃θ
Q3

is not contained in Qθ
Q3

when θ = θNp and p ≡ 3 mod 4.

Example 4.2.9. Let p = 5 and consider the involution θ = θNp . Choose Np = 2, then

θ = θ2. Let q =
⎛
⎝

1
5 0

0 5

⎞
⎠
∈ Q̃θ

Q5
. For g such that q = gθ(g)−1 and det(g) = 1, g must be of

the form g1 or g2, where α =
√

2d2 − 10 (4.2.11).

g1 =
⎛
⎝

1
5

√
5 0

0
√

5

⎞
⎠
, g2 =

⎛
⎝

1
5d ± 1

10α

±α d

⎞
⎠

(4.2.11)

Again, both g1 and g2 are not defined over Q5. Hence, Q̃θ
Q5

is not contained in Qθ
Q5

if

p ≡ 1 mod 4 and θ = θNp .

Example 4.2.10. Let p = 3 and consider the involution θ = θpNp . Then pNp = −3, so the

involution is θ = θ−3. Let q =
⎛
⎝
−1

3 0

0 3

⎞
⎠
∈ Q̃θ

Q3
. For g such that q = gθ(g)−1 and det(g) = 1,

g must be of the form g1 or g2, where α =
√
−3d2 + 9 (4.2.12).

g1 =
⎛
⎝
−1

3

√
−3 0

0
√
−3

⎞
⎠
, g2 =

⎛
⎝
−1

3d ±1
9α

±α d

⎞
⎠

(4.2.12)

Again, g is not defined over Q3. Therefore Q̃θ
Q3

is not contained in Qθ
Q3

for θ = θpNp and

p ≡ 3 mod 4.

Example 4.2.11. Let p = 5 and consider the involution θ = θpNp . Let Np = 2, then θ = θ10.

Let q =
⎛
⎝

1
2 0

0 2

⎞
⎠

. For g such that q = gθ(g)−1 and det(g) = 1, g must be of the form g1 or

g2 where α =
√

10d2 − 20 (4.2.13).

g1 =
⎛
⎝

1
2

√
2 0

0
√

2

⎞
⎠
, g2 =

⎛
⎝

1
2d ± 1

20α

±α d

⎞
⎠

(4.2.13)
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Clearly g1 is not defined over Q5 by definition of Np. For g2 we need to consider when

α is in Q5. Because α =
√

10d2 − 20 =
√

5
√

2d2 − 4, α will be in Q5 if 2d2 − 4 = 5. Solving

for d we get d = 3
2

√
2 which is not defined over Q5. Therefore, there is no g ∈ GQ5 such

that q = gθ(g)−1 and Q̃θ
Q5

is not contained in Qθ
Q5

when θ = θpNp and p ≡ 1 mod 4.

These examples serve to show that for G defined over k = Qp with the involution θm,

Q̃θ
Qp

= Qθ
Qp

only when m ∈ 1.

Theorem 4.2.12 (Strong Hasse Principle). Let f be a regular quadratic form over Q.

Then f is isotropic over Q if and only if f is isotropic over Qp for all p, including p =∞.

By Theorem 4.1.5, equations (4.2.1)-(4.2.4) have a simultaneous solution over k =
R = Q∞. Applying Theorem 4.2.12 to Theorems 4.1.5 and 4.2.5, equations (4.2.1)-(4.2.4)

must also have a solution over k = Q, yielding the following result.

Theorem 4.2.13. Let G be defined over k = Q and θ = θ1 the involution of G. Then the

extended symmetric space is equivalent to the symmetric space.

Corollary 4.2.14. For G defined over k and θ = θ1 the involution of G, the extended

symmetric space and symmetric space are equivalent over the following fields of charac-

teristic not two.

1. k algebraically closed

2. k = R

3. k = Fq

4. k = Qp

5. k = Q

Corollary 4.2.15. For G defined over a field listed in Corollary 4.2.14 with the involution

θ = θ1, or G defined over k = Fq with any involution θ, the decomposition in Theorem

3.2.2 can be simplified to Gk =Hθ
kQ

θ
kUk.
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4.2.2 Semisimplicity of the symmetric and extended symmetric

spaces

We will determine when the symmetric and similarly the extended symmetric spaces con-

sist of semisimple elements. From [HW93] and [BH09], respectively, we have the following

results.

Theorem 4.2.16. Let k be a field with characteristic zero. If Hθ
k is k-anisotropic, then

the symmetric space consists of semisimple elements.

Theorem 4.2.17. Let G be defined over a field k and θ = θm the involution of G. The

fixed-point group of θm is k-anisotropic if and only if m /∈ 1.

Combining the previous two results, we have the following corollary.

Corollary 4.2.18. Let G be defined over a field k with characteristic zero and θ = θm
the involution of G. If m /∈ 1 then the symmetric space consists of semisimple elements.

Example 4.2.19. For G defined over a field k with the involution θm, the corresponding

symmetric space consists of semisimple elements in the following cases.

1. k = R and m = −1

2. k = Qp and m = p, Np, or pNp

3. k = Q and m /∈ 1

Remark 4.2.20. To complete Theorem 4.2.16 and Corollary 4.2.18 for fields of charac-

teristic not 2, we need to determine if the symmetric space contains only semisimple

elements for the involution θm, when m ≠ 1, over fields with prime characteristic p.

Theorem 4.2.21. Let G be defined over a field k and θ = θm the involution of G. If

m /∈ 1, then the extended symmetric space consists of semisimple elements.

Proof. Let q =
⎛
⎝
a b

−mb c

⎞
⎠
∈ Q̃θ

k. To determine if q is semisimple, we analyze its eigenvalues

(4.2.14). If q has two distinct eigenvalues, then q is semisimple. The cases of concern are

when q has one eigenvalue with multiplicity 2.

eigenvalues of q = {1

2
(a + c ±

√
c2 − 2ac + a2 − 4mb2)} (4.2.14)
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Because det(q) = 1, (a + c)2 = 4 is a necessary and sufficient condition for q to have one

eigenvalue. This implies, q has one eigenvalue if and only if a + c = ±2.

Assume a+ c = 2, then q =
⎛
⎝
a b

−mb 2 − a
⎞
⎠

and det(q) = 1 implies y = ± x−1√
m

. By assump-

tion,
√
m /∈ k, which implies a = 1 and b = 0, i.e. q = Id. If you assume a + c = −2, similar

calculations yield q = − Id. Hence, q has two distinct eigenvalues and is diagonalizable or

q = ± Id which is already diagonal.

Corollary 4.2.22. Let G be defined over k and θ = θm the involution of G. If m /∈ 1,

then the symmetric space consists of semisimple elements.

Proof. By Lemma 4.1.2 and Theorem 4.2.21, the elements of the symmetric space must

be semisimple.

Remark 4.2.23. While combining Theorems 4.2.16 and 4.2.17 proves this result for fields

with characteristic zero, our result and proof holds for any field with characteristic not

2.

As shown in the following examples, if m ∈ 1 then the symmetric space, and hence

extended symmetric space, contain unipotent elements.

Example 4.2.24. Let G be defined over k = R and consider the involution θ = θ1. For

g =
⎛
⎝

3
2 −1

2

−1 1

⎞
⎠
∈ GR, q = gθ(g)−1 =

⎛
⎝

2 1

−1 0

⎞
⎠
∈ Qθ

R. The Jordan form of q is J =
⎛
⎝

1 1

0 1

⎞
⎠

,

which cannot be diagonalized and therefore q is not semisimple. Hence, not all elements

of the symmetric space or extended symmetric space are semisimple.

Example 4.2.25. Let G be defined over k = F7 and consider the involution θ = θ1. For

g =
⎛
⎝

1 2

5 4

⎞
⎠
∈ GF7 , q = gθ(g)−1 =

⎛
⎝

4 3

4 5

⎞
⎠
∈ Qθ

Q7
. The Jordan form of q is J =

⎛
⎝

1 1

0 1

⎞
⎠

which

cannot be diagonalized and therefore q is not semisimple. Hence not elements of the

symmetric space (which is equivalent to the extended symmetric space) are semisimple.

Lemma 4.2.26. Let G be defined over a field k and θ = θ1 the involution of G. There

exists elements in the symmetric space which are not semisimple.

Proof. We will construct an element in the symmetric space with a unipotent factor. Let

g =
⎛
⎝

x + 2 x + 1

−(x + 1) −x
⎞
⎠
∈ Gk for some x ∈ k ∖ {−1}. Then q = gθ(g)−1 ∈ Qθ has a Jordan
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decomposition with a unipotent factor (4.2.15), thus q is not semisimple.

q = gθ(g)−1 =
⎛
⎝

3 + 2x 2 + 2x

−(2 + 2x) −(2x + 1)
⎞
⎠
= S−1

⎛
⎝

1 1

0 1

⎞
⎠
S (4.2.15)

Corollary 4.2.27. Let G be defined over k and θ = θ1 the involution of G. There exists

elements in the extended symmetric space which are not semisimple.

Proof. This follows from Lemmas 4.1.2 and 4.2.26.

Corollary 4.2.28. Let G be defined over k and θ = θm the involution of G. The symmetric

space and extended symmetric space consist of semisimple elements if and only if m /∈ 1.

Lemma 4.2.29. Let G be defined over k, θ an involution of G, and A a (θ, k)-split

torus of G. Then the image of Ak under conjugation by Hθ
k is contained in the extended

symmetric space.

Proof. Let a ∈ Ak and h ∈Hθ
k . Then hah−1 ∈ Q̃θ (4.2.16).

θ(hah−1) = θ(h)θ(a)θ(h−1) = ha−1h−1 = (hah−1)−1 (4.2.16)

Theorem 4.2.30. Let G be defined over k and θ = θm the involution of G. If m /∈ 1 then

the extended symmetric space decomposes as the disjoint union of the Hθ
k-orbits of the

maximal k-split tori {Ai ∣ i ∈ I} (4.2.17).

Q̃θ
k =⊍

i∈I
Hθ
k ⋅ (Ai)k (4.2.17)

Proof. Let θ = θm with m /∈ 1. By Lemma 4.2.16, Hk ⋅ (Ai)k ⊂ Q̃θ
k for all {Ai ∣ i ∈ I}. For

q ∈ Q̃θ
k, q is θ-split and semisimple by Corollary 4.2.28. Thus q must be contained in the

Hθ
k -conjugacy class of some k-split torus (Ai)k.

Corollary 4.2.31. Let G be defined over k and θ = θm the involution of G. If m /∈ 1,

then Gk decomposes as Gk = ⊍
i∈I
Hθ
k(Ai)kHθ

kUk, where {Ai ∣ i ∈ I} are the Hθ
k-conjugacy

classes of maximal k-split tori.
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Notation 4.2.32. Let (Qθ)ss and (Q̃θ)ss denote the subset of semisimple elements in the

symmetric space and extended symmetric space, respectively.

Lemma 4.2.33. Let G be defined over k and θ = θ1 the involution of G. Then Gk

decomposes as Gk =Hθ
k(Q̃θ

k)ssUk.

Proof. By Theorem 3.2.2, it suffices to show Q̃θ
k ∖ Q̃θ

k

ss
∈ Hθ

k(Q̃θ
k)ssUk. Using the con-

struction of q as in Theorem 4.2.21, let q =
⎛
⎝

x x − 1

1 − x 2 − x
⎞
⎠
∈ Q̃θ

k ∖ Q̃θ
k

ss
, x ≠ 1. Take

h =
⎛
⎝
a b

b a

⎞
⎠
∈ Hθ

k ∖ {± Id} and u =
⎛
⎝

1 2b(−ax−bx+b)
2b2x−b2+x2

0 1

⎞
⎠
∈ Uk. For u to be defined, choose a, b

such that x ≠ −b2 ± ba. Then θ(hqu) = (hqu)−1 (4.2.18), hence hqu ∈ Q̃θ.

θ(hgu) =
⎛
⎝

2a2bx2−2ab2x2−2a2bx+ab2x−ax3−b3x+bx3+2ax2+b3−bx2
2b2x−b2+x2 −ax + bx + a

−2a2bx2−2ab2x2+3ab2x−ax3−b3x+bx3−ab2+ax2−2bx2

2b2x−b2+x2 ax − bx + b
⎞
⎠
= (hqu)−1 (4.2.18)

Furthermore, the Jordan decomposition of hqu is hqu = S−1JS (4.2.19). Therefore

hqu is semisimple.

J = ( f1(a,b,x) 0
0 f2(a,b,x) ) (4.2.19)

We can now simplify our main result, Theorem 3.2.2.

Corollary 4.2.34. Let G be defined over k and θ = θm an involution of G. Then Gk

decomposes as Gk =Hθ
k(Q̃θ

k)ssUk.

Proof. If m = 1, use Lemma 4.2.33. If m ≠ 1, then Q̃θ
k = (Q̃θ

k)ss.
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Chapter 5

Refining the Decomposition

5.1 Pairwise intersections of Hθ
k, Q̃

θ
k, and Uk

We will begin refining the decomposition by determining the pairwise intersections of the

fixed-point group, the extended symmetric space, and the unipotent subgroup. Doing so

will allow us to determine when we can simplify the decomposition Gk =Hθ
kQ̃

θ
kUk.

Notation 5.1.1. In this chapter, let G = SL2(k), Gk the k-rational points of G, and θ = θm
the involution of G. Let Hθ be the fixed-point group, Q̃θ the extended symmetric space,

and U the unipotent subgroup of upper triangular matrices with ones on the diagonal.

Let Id denote the 2 × 2 identity matrix.

Proposition 5.1.2.

Hθ
kQ̃

θ⋂Uk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 2b
a

0 1

⎞
⎠
∣ a ∈ k∗, b ∈ k, a2 −mb2 = 1

⎫⎪⎪⎬⎪⎪⎭

Proof. Let X =
⎛
⎝
ax −mby ay + bz
m(bx − ay) mby + az

⎞
⎠
∈Hθ

kQ̃
θ
k for some a2 −mb2 = 1 and xz +my2 = 1.

Then X ∈ Uk implies there exists u ∈ Uk such that X = u (5.1.1).

⎛
⎝
ax −mby ay + bz
m(bx − ay) mby + az

⎞
⎠
=
⎛
⎝

1 α

0 1

⎞
⎠

(5.1.1)

Solving (5.1.1), we obtain α = 2b
a .
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Example 5.1.3. For G defined over k = F3 with an arbitrary involution θ, we have

Hθ
F3
Q̃θ

F3
⋂UF3 = {± Id}. The only solutions when m = 1 which give us a2 − b2 = 1 are

{a = ±1, b = 0}. The only solutions when m = 2 which give us a2+b2 = 1 and {a = ±1, b = 0}
and {a = 0, b = ±1}.

Example 5.1.4. For G defined over k = F5 with the involution θ = θ1, we have the

intersection Hθ
F5
Q̃θ

F5
⋂UF5 = {± Id}. For the same group with the involution θ = θ2, we

have the intersection Hθ
F5
Q̃θ

F5
⋂UF5 =

⎧⎪⎪⎨⎪⎪⎩
± Id,±

⎛
⎝

1 2

0 1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

Example 5.1.5. For G defined over k = F7 with the involution θ = θ1, we have the

intersection Hθ
F7
Q̃θ

F7
⋂UF7 =

⎧⎪⎪⎨⎪⎪⎩
Id,

⎛
⎝

1 ±3

0 1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
. For the same group with the other involution,

θ = θ3, we have the intersection Hθ
F7
Q̃θ

F7
⋂UF7 =

⎧⎪⎪⎨⎪⎪⎩
Id,

⎛
⎝

1 ±1

0 1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

Example 5.1.6. For G defined over k = R with an arbitrary involution θ, the intersection

Hθ
RQ̃

θ
R⋂UR is infinite.

Remark 5.1.7. The order of Proposition 5.1.2 is equivalent to the order of Hθ
k minus the

elements of Hθ
k with zeroes on the diagonal (5.1.2).

∣Hθ
kQ̃

θ
k⋂Uk∣ = ∣Hθ

k ∣ − ∣{b ∈ k∗ ∣ b = ± 1√
−m

}∣ (5.1.2)

Proposition 5.1.8.

Hθ
k⋂ Q̃θ = Uk⋂Hθ

k = Uk⋂ Q̃θ = ± Id

Proof. This is clear by the definitions of Hθ
k , Q̃

θ
k, and Uk.

Proposition 5.1.9.

Hθ
k⋂ Q̃θ

kUk =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

mb a

⎞
⎠
∣ a ∈ k∗, b ∈ k, a2 −mb2 = 1

⎫⎪⎪⎬⎪⎪⎭

Proof. Let X =
⎛
⎝

x αx + y
−my −myα + z

⎞
⎠
∈ Q̃θ

kUk, for some xz +my2 = 1. Then X ∈ Hθ
k implies

there exists h ∈Hθ
k such that X = h (5.1.3).
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⎛
⎝

x αx + y
−my −myα + z

⎞
⎠
=
⎛
⎝
a b

mb a

⎞
⎠

(5.1.3)

Solving (5.1.3), we obtain x = a, y = −b and α = 2b
a .

Remark 5.1.10. The size of Proposition 5.1.9 is the order of Hθ
k minus the elements in

Hθ
k with zeroes on the diagonal (5.1.4). Furthermore, the size of Proposition 5.1.9 is

equivalent to the size of Proposition 5.1.2.

∣(Hθ
k⋂ Q̃θ

kUk)∣ = ∣Hθ
kQ̃

θ
k⋂Uk∣ = ∣Hθ

k ∣ − ∣{b ∈ k∗ ∣ b = ± 1√
−m

}∣ (5.1.4)

This intersection is almost equivalent to Hθ
k .

Hθ
k ∖ (Hθ

k⋂ Q̃θ
kUk) =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

0 b

mb 0

⎞
⎠
∣ b ∈ k, −mb2 = 1

⎫⎪⎪⎬⎪⎪⎭

Lemma 5.1.11. Let G be defined over k and θ = θm the involution of G. The fixed-point

group of θm is contained in Q̃θ
kUk if and only if −m /∈ 1.

Proof. This proof follows from a chain of equivalent statements.

Hθ
k ⊂ Q̃θUk ⇔

Hθ
k ∖ (Hθ

k⋂ Q̃θ
kUk) =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

0 b

mb 0

⎞
⎠
∣ b ∈ k, −mb2 = 1

⎫⎪⎪⎬⎪⎪⎭
= ∅ ⇔

b = ± 1√
−m

/∈ k

Example 5.1.12. When Hθ
k ⊂ Q̃θ

kUk, we do not necessarily have Gk = Q̃θ
kUk. Let G

be defined over k = R and θ = θ1 the involution of G. By Lemma 5.1.11, HR ⊂ Q̃θ
RUR.

Consider g =
⎛
⎝

0 1
2

−2 0

⎞
⎠
∈ GR, then gu /∈ Q̃θ

R for any u =
⎛
⎝

1 α

0 1

⎞
⎠
∈ UR (5.1.5). Therefore

GR ≠ Q̃θ
RUR.

θ(gu) =
⎛
⎝
−2α −2

1
2 0

⎞
⎠

/=
⎛
⎝
−2α −1

2

2 0

⎞
⎠
= (gu)−1 (5.1.5)
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5.1.1 Generalization of the Iwasawa decomposition

The following results lead to a simplified generalization of the Iwasawa decomposition

for certain involutions and fields.

Proposition 5.1.13.

Hθ
kUk⋂ Q̃θ

k =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

x y

−my z

⎞
⎠
∣ x ∈ k∗, y, z ∈ k, xz +my2 = 1

⎫⎪⎪⎬⎪⎪⎭

Proof. Let X =
⎛
⎝
a αa + b
mb mbα + a

⎞
⎠
∈Hθ

kUk, for some a2−mb2 = 1. Then X ∈ Q̃θ
k implies there

exists q ∈ Q̃θ
k such that X = q (5.1.6).

⎛
⎝
a αa + b
mb mbα + a

⎞
⎠
=
⎛
⎝

x y

−my z

⎞
⎠

(5.1.6)

Solving (5.1.6), we obtain a = x, b = −y, and α = 2y
x .

Remark 5.1.14. Similar to Remark 5.1.10, Proposition 5.1.13 is almost equivalent to the

extended symmetric space (5.1.7).

Q̃θ
k ∖ (Hθ

kUk⋂ Q̃θ
k) =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

0 y

−my z

⎞
⎠
∣ y ∈ k, my2 = 1

⎫⎪⎪⎬⎪⎪⎭
(5.1.7)

Lemma 5.1.15. Let G be defined over k and θ = θm the involution of G. Then the

extended symmetric space is contained in Hθ
kUk if and only if m /∈ 1.

Proof. This proof follows from a chain of equivalent statements.

Q̃θ
k ⊂H

θ
kUk ⇔

Q̃θ
k ∖ (Hθ

kUk⋂ Q̃θ
k) =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

0 y

−my z

⎞
⎠
∣ y ∈ k, my2 = 1

⎫⎪⎪⎬⎪⎪⎭
= ∅ ⇔

y = ± 1√
m

/∈ k
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Theorem 5.1.16. Let G be defined over k and θ = θm the involution of G. If m /∈ 1, then

Gk =Hθ
kUk.

Proof. Let g ∈ Gk and θ = θm the involution of G with m /∈ 1. By Theorem 3.2.2 write

g = hqu for some h ∈ Hθ
k , q ∈ Q̃θ

k and u ∈ Uk. By Lemma 5.1.15, write q = h1u1 for some

h1 ∈Hθ
k and u1 ∈ Uk. Thus, g = hh1u1u ∈Hθ

kUk. The reverse containment in clear.

Theorem 5.1.17. Let G be defined over k and θ = θ1 the involution of G. Then Gk =
⋃

ω∈W (T )
Hθ
kωUk, where W (T ) is the Weyl group of a maximal k-split torus T .

Proof. Let W (T ) =
⎧⎪⎪⎨⎪⎪⎩

Id,
⎛
⎝

0 1

−1 0

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
and g ∈ Gk. If g ∈ Hθ

kUk⋂ Q̃θ
k, then g ∈ Hθ

kUk. If

g /∈Hθ
kUk⋂ Q̃θ

k, write g = hqu as in Theorem 3.2.2, where q ∈ Q̃θ
k∖(Hθ

kUk⋂ Q̃θ
k). By Remark

5.1.14, let q =
⎛
⎝

0 1

−1 z

⎞
⎠

without loss of generality and u1 =
⎛
⎝

1 −z
0 1

⎞
⎠

, then g ∈ Hθ
kωUk for

ω =
⎛
⎝

0 1

−1 0

⎞
⎠
∈W (T ) (5.1.8).

g = hqu = h
⎛
⎝

0 1

−1 0

⎞
⎠
u1u ∈Hθ

k

⎛
⎝

0 1

−1 0

⎞
⎠
Uk (5.1.8)

Remark 5.1.18. Recall that θm is a generalized Cartan involution if and only if m /∈ 1

by Theorem 4.2.17. Therefore, this generalization of the Iwasawa decomposition aligns

nicely with the traditional version.

5.2 Commutativity of Hθ
k, Q̃

θ
k, and Uk

We will discuss whether or not the order of the factors in Gk = Hθ
kQ̃

θ
kUk effect the

decomposition.

Lemma 5.2.1. Let G be defined over k and θ an involution of G. Then Hθ
kQ̃

θ
k = Q̃θ

kH
θ
k .

Proof. Let g ∈ Q̃θ
kH

θ
k , then g = q1h1 for some q1 ∈ Q̃θ

k and h1 ∈ Hθ
k . Using Lemma 4.2.16,

g ∈Hθ
kQ̃

θ
k (5.2.1).

g = q1h1 = h1(h−1
1 q1h1) ∈Hθ

kQ̃
θ
k (5.2.1)
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Similarly, let g = h1q1 ∈Hθ
kQ̃

θ
k, then g ∈ Q̃θ

kH
θ
k (5.2.2).

g = h1q1 = (h1q1h
−1
1 )h1 ∈ Q̃θ

kH
θ
k (5.2.2)

Remark 5.2.2. In general, UkHθ
k /=Hθ

kUk and UkQ̃θ
k /= Q̃θ

kUk.

Example 5.2.3. Let G be defined over k = R with the involution θ = θ1. For h =
⎛
⎝

√
10 3

3
√

10

⎞
⎠
∈ Hθ

R and u =
⎛
⎝

1 1

0 1

⎞
⎠
∈ UR, hu =

⎛
⎝

√
10

√
10 + 3

3
√

10 + 3

⎞
⎠
∈ Hθ

RUR. If hu ∈ URHθ
R,

then there exists a, b, α ∈ R such that a2 − b2 = 1 and (5.2.3) has a solution.

hu =
⎛
⎝

√
10

√
10 + 3

3
√

10 + 3

⎞
⎠
=
⎛
⎝
αb + a αa + b
b a

⎞
⎠
= u1h1 (5.2.3)

This implies b = 3 and a =
√

10 + 3, but then a2 + b2 ≠ 1, hence there is no solution.

Example 5.2.4. LetG be defined over k = R with the involution θ = θ1. For
⎛
⎝

1
2 2

−2 6

⎞
⎠
∈ Q̃θ

R

and u =
⎛
⎝

1 −3

0 1

⎞
⎠
∈ UR, qu =

⎛
⎝

1
2

1
2

−2 0

⎞
⎠
∈ Q̃θ

RUR. If qu ∈ URQ̃θ
R, then there exists u1 =

⎛
⎝

1 α

0 1

⎞
⎠

such that u1qu ∈ Q̃θ
R.

u1qu =
⎛
⎝

1
2 − 2α 1

2

−2 0

⎞
⎠

Clearly, no matter the choice of α, u1qu /∈ Q̃θ
R.

Lemma 5.2.5. Let G be defined over k and θ an involution of G, then Gk = UkHθ
kQ̃

θ
k.

and Gk = Q̃θ
kUkH

θ
k .

The proof of Lemma 5.2.5 follows the same technique as the proof of Theorem 3.2.2,

using the Bruhat decomposition. One can construct u1, u2 ∈ Uk and h1, h2 ∈Hθ
k such that

h1u1g ∈ Q̃θ
k and gh2u2 ∈ Q̃θ

k.

Corollary 5.2.6. Let G be defined over k and θ an involution of G. The following

decompositions of Gk are equivalent.

1. Gk =Hθ
kQ̃

θ
kUk
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2. Gk =Hθ
kUkQ̃

θ
k

3. Gk = Q̃θ
kH

θ
kUk

4. Gk = Q̃θ
kUkH

θ
k

5. Gk = UkHθ
kQ̃

θ
k

6. Gk = UkQ̃θ
kH

θ
k

This corollary combines Lemmas 5.2.1, 5.2.5, and Theorem 3.2.2.
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Chapter 6

Components of the Extended

Symmetric Space

We want to characterize the connected components of the extended symmetric space for

G = SL2(k) defined over an arbitrary field with any involution. Let Q̃θ and Qθ be the

extended symmetric and symmetric spaces of G with respect to the involution θ. We

will do this in several steps. First, we will determine Ak ∩Qθ
k in order to find the coset

representatives of Ak/(Ak ∩Qθ
k). Here, A is a maximal (θ, k)-split torus. For a review of

the tori in SL2(k), see Section 2.10. Second, we will determine if ⊍
i∈I
aiQ

θ
k = Q̃θ

k, where

Ak/(Ak ∩Qθ
k) = {ai ∣ i ∈ I}, in which case we can determine Q̃θ

k/Qθ
k. By abuse of notation,

Q̃θ
k/Qθ

k will represent the set {ai ∣ i ∈ I}.

6.1 Extended symmetric space and (θ, k)-split tori

Notation 6.1.1. In this section, let Gk = SL2(k) be defined over a field k with char(k) ≠ 2.

Let θm denote the involution of G isomorphic to Inn
⎛
⎝

0 1

m 0

⎞
⎠

, Q̃θ the extended symmetric

space (6.1.1), and Qθ the symmetric space of G (6.1.2). Let A be the maximal (θ, k)-split

torus of diagonal matrices in G.

Q̃θ
k =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

x y

−my z

⎞
⎠

∣ x, y, z ∈ k, xz +my2 = 1

⎫⎪⎪⎬⎪⎪⎭
(6.1.1)
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Qθ
k = {gθ(g)−1 ∣ g ∈ Gk} (6.1.2)

Example 6.1.2. Let G = SL2(R) and θ the Cartan involution of θ defined by θ(g) =
(gT )−1 for all g ∈ G. The extended symmetric space has two connected components.

First is the connected component containing the identity, (Q̃θ
R)○ = Qθ

R, which is the set

of positive definite-symmetric matrices. The other connected component is the set of

matrices with two negative eigenvalues. Note that no matrices in G can have one positive

and one negative eigenvalue because det(g) = 1 for all g ∈ G.

Lemma 6.1.3. If Q̃θ = Qθ, then Ak/(Ak ∩Qθ
k) = {Id}.

Proof. Because A is a θ-split torus, Ak ⊂ Q̃θ
k = Qθ

k. Hence Ak ∩Qθ
k = Ak.

Lemma 6.1.4. (− Id)Qθ
k ⊂ Q̃θ

k

Proof. Let −gθ(g)−1 ∈ (− Id)Qθ
k. Then θ(−gθ(g)−1) = (−gθ(g)−1)−1 (6.1.3).

θ(−gθ(g)−1) = −θ(g)g−1 = −(gθ(g)−1 (6.1.3)

Hence, −gθ(g)−1 ∈ Q̃θ
k.

6.1.1 k = R

Let G be defined over k = R. With the involution θ = θ1, the extended symmetric and

symmetric spaces are equivalent, hence AR/(AR ∩Qθ
R) = {Id}.

For the involution θ = θ−1, we know the extended symmetric and symmetric spaces

are not equivalent. For a =
⎛
⎝
x 0

0 x−1

⎞
⎠
∈ AR, we have a ∈ Qθ

R if and only if x > 0. If x > 0,

then a = gθ(g)−1 ∈ Qθ
R for g =

⎛
⎝

√
x 0

0 1√
x

⎞
⎠

.

The diagonal elements of matrices in Qθ
R are sums of squares. Hence, if x < 0, then

a /∈ Qθ
R. For − Id ∈ AR and a ∈ AR such that a /∈ Qθ

R, we have (− Id)a ∈ Qθ
R. Therefore,

AR/(AR ∩Qθ
R) = {± Id} and we have the following result.

Theorem 6.1.5. Let G be defined over k = R with the involution θ = θ−1, then Q̃θ
R/Qθ

R =
{± Id}. Furthermore, Q̃θ

R = Qθ
R⊍(− Id)Qθ

R.
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Proof. Let q ∈
⎛
⎝
x y

y z

⎞
⎠
∈ Q̃θ

R. If z > 0, then q = gθ(g)−1 ∈ Qθ
R for g =

⎛
⎝

1√
z

y√
z

0
√
z

⎞
⎠
∈ GR. If z <

0, then (− Id)q = gθ(g)−1 ∈ Qθ
R for g =

⎛
⎝

1√
−z

y√
−z

0
√
−z

⎞
⎠
∈ GR. Note that z = 0 is not an option

because det(q) = −y2 = 1 does not have a solution in R. Thus, Q̃θ
R ⊂ (Qθ

R ∪ (− Id)Qθ
R)

and the reverse containment is clear from Lemmas 4.1.2 and 6.1.4. The union is disjoint

because for X ∈ Qθ
R ∩ (− Id)Qθ

R, X = 0 (6.1.4).

X =
⎛
⎝

a2
1 + b2

1 a1c1 + b1d1

a1c1 + b1d1 c2
1 + d2

1

⎞
⎠
=
⎛
⎝

−(a2
2 + b2

2) −(a2c2 + b2d2)
−(a2c2 + b2d2) −(c2

2 + d2
2)

⎞
⎠

(6.1.4)

6.1.2 k = Fq

Let G be defined over k = Fq. For all involutions θ, the extended symmetric and symmetric

spaces are equivalent, hence AFq/(AFq ∩Qθ
Fq
) = {Id} and Q̃θ

Fq
/Qθ

Fq
= {Id}.

6.1.3 k = Qp

Let G be defined over k = Qp. We break this example up into several cases. First, for

each of the four involutions of G and when necessary, for p ≡ 1 mod 4 and p ≡ 3 mod 4.

Case 1: For the involution θ = θ1, the extended symmetric and symmetric spaces are

equivalent, hence AQp/(AQp ∩Qθ
Qp

) = {Id} and Q̃θ
Qp

/Qθ
Qp

= {Id}.

Case 2: Let p ≡ 3 mod 4 and consider the involution θp. Because −1 /∈ (Q∗
p)2, we let

Np = −1. For a =
⎛
⎝
x 0

0 x−1

⎞
⎠
∈ AQp , we have a = gθ(g)−1 ∈ Qθ

Qp
for g =

⎛
⎜
⎝

dx
√

d2x2−x
p

p
x

√
d2x2−x

p d

⎞
⎟
⎠

.

We must determine when there exists w,d ∈ Qp such that xd2− p
xw

2 = 1. This is equivalent

to determining the Hilbert’s symbol (x,− px)p (Table 6.1).

Thus, a ∈ Qθ
Qp

for x ∈ 1 or x ∈ −p. If x ∈ p, then −x ∈ p and if x ∈ −1, then −x ∈ 1.

Therefore if a /∈ Qθ
Qp

, then (− Id)a ∈ Qθ
Qp

and AQp/(AQp ∩Qθ
Qp

) = {± Id}.

Theorem 6.1.6. Let G be defined over k = Qp, p ≡ 3 mod 4, with the involution θ = θp,
then Q̃θ

Qp
/Qθ

Qp
= {± Id}. Furthermore, Q̃θ

Qp
= Qθ

Qp
⊍(− Id)Qθ

Qp
.
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Table 6.1: Hilbert symbol for a ∈ Qθ
Qp

, θ = θp, p ≡ 3 mod 4

x ∈m (x,− px)p
x ∈ 1 (1,−p)p = (−1∣p)0(1∣p)1(−1∣p)0 = 1
x ∈ p (p,−1)p = (−1∣p)0(1∣p)0(−1∣p)1 = −1

x ∈ −1 (−1, p)p = (−1∣p)0(−1∣p)1(1∣p)0 = −1
x ∈ −p (−p,1)p = (−1∣p)0(−1∣p)0(1∣p)1 = 1

Proof. Let q =
⎛
⎝
x y

−py 1−py2
x

⎞
⎠
∈ Q̃θ

Qp
. Note that x ≠ 0 because det(q) = py2 = 1 has no

solution in Qp. Then q = gθ(g)−1 ∈ Qθ
Qp

for g =
⎛
⎝

√
x

1−py2 y
√

x
1−py2

0
√

1−py2
x

⎞
⎠

. We must determine

when there exists w, y ∈ Qp such that py2+xw2 = 1. This is equivalent to determining the

value of the Hilbert’s symbol (p, x)p (Table 6.2).

Table 6.2: Hilbert symbol for q ∈ Qθ
Qp

, θ = θp, p ≡ 3 mod 4

x ∈m (p, x)p
x ∈ 1 (p,1)p = (−1∣p)0(1∣p)0(1∣p)1 = 1
x ∈ p (p, p)p = (−1∣p)1(1∣p)1(1∣p)1 = −1

x ∈ −1 (p,−1)p = (−1∣p)0(1∣p)0(−1∣p)1 = −1
x ∈ −p (p,−p)p = (−1∣p)1(1∣p)1(−1∣p)1 = 1

Thus, q ∈ Qθ
Qp

for x ∈ 1 and x ∈ −p. In the other cases, (− Id)q = gθ(g)−1 ∈ Qθ
Qp

for

g =
⎛
⎝

√
x

py2−1 y
√

x
py2−1

0
√

py2−1
x

⎞
⎠

. We can verify that there exists y,w ∈ Qp such that py2−xw2 = 1,

or equivalently, (p,−x)p = 1 (Table 6.3).

Hence Q̃θ
Qp

⊂ (Qθ
Qp
∪ (− Id)Qθ

Qp
) and the reverse containment is clear from Lemmas

4.1.2 and 6.1.4.

Case 3: Let p ≡ 1 mod 4 and consider the involution θp. In this case −1 ∈ (Q∗
p)2, so

we let Np represent the “smallest non-square” in Qp. For a =
⎛
⎝
x 0

0 x−1

⎞
⎠
∈ AQp , we have
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Table 6.3: Hilbert symbol for (− Id)q ∈ Qθ
Qp

, θ = θp, p ≡ 3 mod 4

x ∈m (p,−x)p
x ∈ p (p,−p)p = (−1∣p)1(1∣p)1(−1∣p)1 = 1

x ∈ −1 (p,1)p = (−1∣p)0(1∣p)0(1∣p)1 = 1

a = gθ(g)−1 ∈ Qθ
Qp

for g =
⎛
⎜
⎝

dx
√

d2x2−x
p

p
x

√
d2x2−x

p d

⎞
⎟
⎠

. We must determine when there exists

d,w ∈ Qp such that xd2 − p
xw

2 = 1, or equivalently, when (x,− px)p = 1 (Table 6.4).

Table 6.4: Hilbert symbol for a ∈ Qθ
Qp

, θ = θp, p ≡ 1 mod 4

x ∈m (x,− px)p = (x, px)p
x ∈ 1 (1, p)p = (−1∣p)0(1∣p)1(1∣p)0 = 1
x ∈ p (p,1)p = (−1∣p)0(1∣p)0(1∣p)1 = 1

x ∈ Np (Np,
p
Np

)
p
= (−1∣p)0(Np∣p)1 ( 1

Np
∣p)

0
= −1

x ∈ pNp (pNp,
1
Np

)
p
= (−1∣p)0(Np∣p)0 ( 1

Np
∣p)

1
= −1

Thus, a ∈ Qθ
Qp

for x ∈ 1 and x ∈ p. If a /∈ Qθ
Qp

, then
⎛
⎝
Np 0

0 N−1
p

⎞
⎠
a ∈ Qθ

Qp
(6.1.5).

x ∈ Np ∶
⎛
⎝
Np 0

0 N−1
p

⎞
⎠
a =

⎛
⎝
α2N2

p 0

0 (α2N2
p )−1

⎞
⎠
∈ Qθ

Qp
(6.1.5)

x ∈ pNp ∶
⎛
⎝
Np 0

0 N−1
p

⎞
⎠
=
⎛
⎝
α2N2

pp 0

0 (α2N2
pp)−1

⎞
⎠
∈ Qθ

Qp

Therefore,AQp/(AQp∩Qθ
Qp

) =
⎧⎪⎪⎨⎪⎪⎩

Id,
⎛
⎝
Np 0

0 N−1
p

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
. Note that Q̃θ

Qp
≠ Qθ

Qp
∪
⎛
⎝
Np 0

0 N−1
p

⎞
⎠
Qθ

Qp

because
⎛
⎝
Np 0

0 N−1
p

⎞
⎠
Qθ

Qp
/⊂ Q̃θ

Qp
.

Case 4: Let p ≡ 3 mod 4 and consider the involution θ = θNp . Because −1 /∈ (Q∗)2, let
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Np = −1. Then for a =
⎛
⎝
x 0

0 x−1

⎞
⎠
∈ AQp , we have a = gθ(g)−1 ∈ Qθ

Qp
for g =

⎛
⎝

a
√
x − a2

√
x−a2
x −ax

⎞
⎠

.

We must determine for which values of x, there exists a,w ∈ Qp such that 1
xa

2 + 1
xw

2 = 1,

or equivalently, when ( 1
x ,

1
x)p = 1 (Table 6.5).

Table 6.5: Hilbert symbol for a ∈ Qθ
Qp

, θ = θ−1, p ≡ 3 mod 4

x ∈m ( 1
x ,

1
x
)
p

x ∈ 1 (1,1)p = (−1∣p)0(1∣p)0(1∣p)0 = 1

x ∈ p (1
p ,

1
p)p = (−1∣p)1(1∣p)−1(1∣p)−1 = −1

x ∈ −1 (−1,−1)p = (−1∣p)0 (−1∣p)0 (−1∣p)0 = 1

x ∈ −p (−1
p ,−

1
p)p = (−1∣p)1(−1∣p)−1 (−1∣p)1 = −1

If x ∈ 1 or x ∈ −1, then a ∈ Qθ
Qp

. If x ∈ p or x ∈ −p, then
⎛
⎝
p 0

0 p−1

⎞
⎠
a ∈ Qθ

Qp
because

p2 ∈ 1 and −p2 ∈ −1. Therefore, AQp/(AQp ∩ Qθ
Qp

) =
⎧⎪⎪⎨⎪⎪⎩

Id,
⎛
⎝
p 0

0 p−1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
. Note that Q̃θ

Qp
≠

Qθ
Qp
∪
⎛
⎝
p 0

0 p−1

⎞
⎠
Qθ

Qp
because

⎛
⎝
p 0

0 p−1

⎞
⎠
Qθ

Qp
/⊂ Q̃θ

Qp
.

Case 5: Let p ≡ 1 mod 4 and consider the involution θ = θNp . Let Np represent the

“smallest non-square” in Qp. For a =
⎛
⎝
x 0

0 x−1

⎞
⎠
∈ AQp , we have a = gθ(g)−1 ∈ Qθ

Qp
for g =

⎛
⎜
⎝

−dx
√

d2x2−x
Np

−Np

x

√
d2x2−x
Np

d

⎞
⎟
⎠

. To determine if there exists d,w ∈ Qp such that xd2− Np

x w
2 = 1,

we evaluate (x,−Np

x )p (Table 6.6).

Thus, a ∈ Qθ
Qp

if x ∈ 1 or x ∈ Np. If x ∈ p or x ∈ pNp, then
⎛
⎝
p 0

0 p−1

⎞
⎠
a ∈ Qθ

Qp
because

p2 ∈ 1 and p2Np ∈ Np. Therefore, AQp/(AQp ∩ Qθ
Qp

) =
⎧⎪⎪⎨⎪⎪⎩

Id,
⎛
⎝
p 0

0 p−1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
. Again, note that

Q̃θ
Qp

≠ Qθ
Qp
∪
⎛
⎝
p 0

0 p−1

⎞
⎠
Qθ

Qp
because

⎛
⎝
p 0

0 p−1

⎞
⎠
Qθ

Qp
/⊂ Q̃θ

Qp
.
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Table 6.6: Hilbert symbol for a ∈ Qθ
Qp

, θ = θNp , p ≡ 1 mod 4

x ∈m (x,−Np

x
)
p
= (x, Np

x
)
p

x ∈ 1 (1,Np)p = (−1∣p)0(1∣p)0(Np∣p)0 = 1

x ∈ p (p, Np

p )
p
= (−1∣p)−1(1∣p)−1(Np∣p)1 = −1

x ∈ Np (Np,1)p = (−1∣p)0 (Np∣p)0 (1∣p)0 = 1

x ∈ pNp (pNp,
1
p)p = (−1∣p)−1(Np∣p)−1 (1∣p)1 = −1

Case 6: Let p ≡ 1 mod 4 and consider the involution θ = θpNp . Let Np represent the

“smallest non-square” in Qp. For a =
⎛
⎝
x 0

0 x−1

⎞
⎠
∈ AQp , we have a = gθ(g)−1 ∈ Qθ

Qp
for g =

⎛
⎜
⎝

dx
√

d2x2−x
pNp

pNp

x

√
d2x2−x
pNp

d

⎞
⎟
⎠

. To determine if there exists d,w ∈ Qp such that xd2 − pNp

x w2 = 1

we evaluate (x,−pNp

x )p (Table 6.7).

Table 6.7: Hilbert symbol for a ∈ Qθ
Qp

, θ = θpNp , p ≡ 1 mod 4

x ∈m (x,−pNp

x
)
p
= (x, pNp

x
)
p

x ∈ 1 (1, pNp)p = (−1∣p)0(1∣p)1(Np∣p)0 = 1

x ∈ p (p,Np)p = (−1∣p)0(1∣p)0(Np∣p)1 = −1

x ∈ Np (Np, p)p = (−1∣p)0 (Np∣p)1 (1∣p)0 = −1

x ∈ pNp (pNp,1)p = (−1∣p)0(Np∣p)0 (1∣p)1 = 1

If x ∈ 1 or x ∈ pNp, then a ∈ Qθ
Qp

. If x ∈ p or x ∈ Np, then
⎛
⎝
p 0

0 p−1

⎞
⎠
a ∈ Qθ

Qp
because

p2 ∈ 1 and pNp ∈ pNp. Therefore, AQp/(AQp ∩ Qθ
Qp

) =
⎧⎪⎪⎨⎪⎪⎩

Id,
⎛
⎝
p 0

0 p−1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
. Again, note that

Q̃θ
Qp

≠ Qθ
Qp
∪
⎛
⎝
p 0

0 p−1

⎞
⎠
Qθ

Qp
because

⎛
⎝
p 0

0 p−1

⎞
⎠
Qθ

Qp
/⊂ Q̃θ

Qp
.

Case 7: Let p ≡ 3 mod 4 and consider the involution θ = θpNp . Because −1 /∈ (Q∗)2, we
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let Np = −1. For a =
⎛
⎝
x 0

0 x−1

⎞
⎠
∈ AQp , we have a = gθ(g)−1 ∈ Qθ

Qp
for

g =
⎛
⎜
⎝

dx
√

x−d2x2
p

− px
√

x−d2x2
p d

⎞
⎟
⎠

. To determine for which values of x there exists d,w ∈ Qp

such that xd2 + p
xw

2 = 1, we evaluate (x, px)p (Table 6.8).

Table 6.8: Hilbert symbol for a ∈ Qθ
Qp

, θ = θ−p, p ≡ 3 mod 4

x ∈m (x, px)p
x ∈ 1 (1, p)p = (−1∣p)0(1∣p)0(1∣p)1 = 1

x ∈ p (p,1)p = (−1∣p)0(1∣p)0(1∣p)1 = 1

x ∈ −1 (−1,−p)p = (−1∣p)0 (−1∣p)1 (−1∣p)0 = −1

x ∈ −p (−p,−1)p = (−1∣p)0(−1∣p)0 (−1∣p)1 = −1

Thus, if x ∈ 1 or x ∈ p, then a ∈ Qθ
Qp

. If x ∈ −1 or x ∈ −p, then (− Id)a ∈ Qθ
Qp

because

(−1)2 ∈ 1 and −(−p) ∈ p. Therefore, AQp/(AQp ∩Qθ
Qp

) = {± Id}.

Theorem 6.1.7. Let G be defined over k = Qp, p ≡ 3 mod 4, with the involution θ = θ−p,
then Q̃θ

Qp
/Qθ

Qp
= {± Id}. Furthermore, Q̃θ

Qp
= Qθ

Qp
⊍(− Id)Qθ

Qp
.

Proof. Let q =
⎛
⎝
x y

py 1+py2
x

⎞
⎠

. Note that x ≠ 0 because det(q) = −py2 = 1 has no solution in

Qp. Then q = gθ(g)−1 ∈ Qθ
Qp

for g =
⎛
⎝

√
x

1+py2 y
√

x
1+py2

0
√

1+py2
x

⎞
⎠

. We must determine when there

exists y,w ∈ Qp such that −py2 + xw2 = 1, or equivalently, we evaluate (−p, x)p (Table

6.9).
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Table 6.9: Hilbert symbol for q ∈ Qθ
Qp

, θ = θ−p, p ≡ 3 mod 4

x ∈m (−p, x)p
x ∈ 1 (−p,1)p = (−1∣p)0(−1∣p)0(1∣p)1 = 1

x ∈ p (−p, p)p = (−1∣p)1(1∣p)1(−1∣p)1 = 1

x ∈ −1 (−p,−1)p = (−1∣p)0 (−1∣p)0 (−1∣p)1 = −1

x ∈ −p (−p,−p)p = (−1∣p)1(−1∣p)1 (−1∣p)1 = −1

Thus, q ∈ Qθ
Qp

for x ∈ 1 or x ∈ p. If x ∈ −1 or x ∈ −p, then (− Id)q = gθ(g)−1 ∈ Qθ
Qp

for g =
⎛
⎜
⎝

√
−x

py2+1 −y
√

−x
py2+1

0
√

py2+1
−x

⎞
⎟
⎠

. We can verify that there exists y,w ∈ Qp such that −py2 − xw2 = 1

by evaluating (−p,−x)p (Table 6.10).

Table 6.10: Hilbert symbol for (− Id)q ∈ Qθ
Qp

, θ = θ−p, p ≡ 3 mod 4

x ∈m (−p,−x)p
x ∈ −1 (−p,1)p = (−1∣p)0(−1∣p)0(1∣p)1 = 1
x ∈ −p (−p, p)p = (−1∣p)1(1∣p)1(−1∣p)1 = 1

Hence, Q̃θ
Qp

⊂ (Qθ
Qp
∪ (− Id)Qθ

Qp
) and the reverse containment is clear from Lemmas

4.1.2 and 6.1.4.

We have shown that when −1 /∈ (k∗)2 and −(Id) /∈ Ak ∩ Qθ
k, we can determine the

quotient Q̃θ
k/Qθ

k as Q̃θ
k/Qθ

k = {± Id}. Note that for a =
⎛
⎝
x 0

0 x−1

⎞
⎠

, the only values of x such

that aQθ
k ⊂ Q̃θ

k are x = ±1.
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Chapter 7

Results for SL3(k)

Ideally, most of the results for SL2(k) in this thesis will extend nicely to SLn(k) as the

group is generated by multiple copies of SL2(k). We begin by extending some results to

SL3(k).

7.1 Fixed-point group

Notation 7.1.1. In this chapter let G = SL2(k) and Gk = SL3(k) defined over a field k of

characteristic not two. We will only consider the involution θ ofG defined by θ(g) = (gT )−1

for all g ∈ G. If k has a topology, then the fixed-point group H is k-anisotropic and θ is

a Cartan involution. For a review of the involutions of SLn(k) for n > 2, see Section 2.9.

For the Cartan involution θ, the fixed-point group H is the special orthogonal group

SO(3). Note that SO(3) is generated by three copies of SO(2) (7.1.1).

SO(3) = ⟨
⎛
⎜⎜⎜
⎝

1 0 0

0 a b

0 −b a

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

a 0 b

0 1 0

−b 0 a

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

a b 0

−b a 0

0 0 1

⎞
⎟⎟⎟
⎠
∣a2 + b2 = 1⟩ (7.1.1)

Notation 7.1.2. The 3 × 3 permutation matrices are contained in H and we will denote

them with hi, i = 1 . . .6 (7.1.2).

h1 = Id, h2 =
⎛
⎜⎜⎜
⎝

1 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎟
⎠
, h3 =

⎛
⎜⎜⎜
⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟
⎠

(7.1.2)
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h4 =
⎛
⎜⎜⎜
⎝

0 1 0

0 0 1

0 −1 0

⎞
⎟⎟⎟
⎠
, h5 =

⎛
⎜⎜⎜
⎝

0 0 1

0 1 0

0 0 1

⎞
⎟⎟⎟
⎠
, h6 =

⎛
⎜⎜⎜
⎝

0 0 1

0 1 0

−1 0 0

⎞
⎟⎟⎟
⎠

Lemma 7.1.3. Let g ∈ G, then there exists h ∈ H such that the (1,1)-entry of hg is

nonzero.

Proof. For g ∈ G, if the (1,1)-entry is nonzero, then for h = Id the (1,1)-entry of hg = g is

nonzero. Assume the (1,1)-entry of g is zero. Because det(g) = 1, there exists a nonzero

entry in the first column of g. Left multiplication by a permutation matrix exchanges the

rows. By choosing the appropriate permutation matrix hi, i = 2 . . .6, we get the (1,1)-
entry of hig is nonzero.

Definition 7.1.4. Let g be an n×n matrix. The (i, j)-minor of g is the (n− 1)× (n− 1)
matrix obtained from deleting the ith row and jth column from g, denoted Mij. The

(i, j)-cofactor of g is the value gij = (−1)i+j det(Mij).

Lemma 7.1.5. Let g ∈ G, then there exists h ∈ H such that the (3,3)-cofactor of hg is

nonzero.

Proof. By abuse of notation, let g =
⎛
⎜⎜⎜
⎝

a b c

d e f

g h i

⎞
⎟⎟⎟
⎠

. The (3,3)-cofactor of g is ae − bd. If

ae − bd ≠ 0, then we are done. If ae − bd = 0, then for h2 as in Notation 7.1.2, the (3,3)-
cofactor of h2g is ah − bg (7.1.3).

h2g =
⎛
⎜⎜⎜
⎝

a b c

g h i

−d −e −f

⎞
⎟⎟⎟
⎠

(7.1.3)

If ah− bg ≠ 0, then we are done. If ah− bg = 0, then the (3,3)-cofactor of h6h2g is eg − dh
(7.1.4).

h6h2g =
⎛
⎜⎜⎜
⎝

−d −e −f
g h i

−a −b −c

⎞
⎟⎟⎟
⎠

(7.1.4)

The determinant of h6h2g is −c(eg − dh), which must equal one and therefore eg − dh is

nonzero.
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7.2 Generalizing the decomposition

For G with a Cartan involution θ, the extended symmetric space is the set of symmetric

matrices (7.2.1). The unipotent subgroup will be the upper triangular matrices with ones

on the diagonal (7.2.2).

Q̃ = {g ∈ G ∣ (gT )−1 = g−1} = {g ∣ g = gT} (7.2.1)

U =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1 α β

0 1 γ

0 0 1

⎞
⎟⎟⎟
⎠

∣ α,β, γ ∈ k

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(7.2.2)

Theorem 7.2.1. For G with the involution Cartan involution θ, Gk =HkQ̃kUk.

Proof. Let g ∈ Gk. By Lemmas 7.1.3 and 7.1.5, there exists h ∈ Hk such that the (1,1)-
entry and (3,3)-cofactor of hg are nonzero (7.2.3).

hg =
⎛
⎜⎜⎜
⎝

a b c

d e f

g h i

⎞
⎟⎟⎟
⎠

(7.2.3)

Choosing u ∈ Uk appropriately (7.2.4), hgu ∈ Q̃k; thus g ∈HkQ̃kUk(7.2.5) .

u =
⎛
⎜⎜⎜
⎝

1 d−b
a

−ace+adf−adh+aeg+bcd−cd2
(ae−bd)a

0 1 −af+ah−bg+cd
ae−bd

0 0 1

⎞
⎟⎟⎟
⎠

(7.2.4)

hgu =
⎛
⎜⎜⎜
⎝

1 d g

d ae−bd+d2
a

ah−bg+dg
a

g ah−bg+dg
a

a2ei−a2fh+a2h2−abdi+abfg−2abgh+acdh−aceg+aeg2+b2g2−bdg2
(ae−bd)a

⎞
⎟⎟⎟
⎠

(7.2.5)
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Sup. (3) 74 (1957), 85–177.

[Beu08] Stacy Beun, On the classification of minimal parabloic k-subgroups acting on

symmetric k-varieties of 2(k), Ph.D. thesis, North Carolina State University,

2008.

[BH00] Michel Brion and Aloysius G. Helminck, On orbit closures of symmetric sub-

groups in flag varieties, Canad. J. Math. 52 (2000), no. 2, 265–292.

[BH09] Stacy L. Beun and Aloysius G. Helminck, On the classification of orbits of

symmetric subgroups acting on flag varieties of SL(2, k), Comm. Algebra 37

(2009), no. 4, 1334–1352.

[BHK+] C. Buell, A. G. Helminck, V. Klima, J. Schaefer, C. Wright, and E. Ziliak,

On the structure of generalized symmetric spaces of SL2(Fq) and GL2(Fq), To

appear.

[Bor91] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Math-

ematics, vol. 126, Springer-Verlag, New York, 1991.

[BT65] Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci.
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