
ABSTRACT

HUNNELL, MARK CONSTANTINE. Orbits of Minimal Parabolic k-subgroups on Sym-
metric k-varieties. (Under the direction of Aloysius Helminck.)

Symmetric k-varieties generalize classical symmetric spaces to extend their applica-

tions to arbitrary fields. Parabolic subgroups play an important role in the study of

symmetric k-varieties, in this dissertation the action of minimal parabolic k-subgroups

on symmetric k-varieties is studied in the context of a generalized complexification map.

This map embeds the orbits over the base field into the corresponding orbits over the

algebraic closure. There are many natural questions related to this map, including surjec-

tivity and the cokernel. We develop a condition of the generalized complexification map

applied to the orbits of minimal parabolic k-subgroups acting on symmetric k-varieties.
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Chapter 1

Introduction

Given a group G one can construct the generalized symmetric space corresponding to G.

Applications of symmetric spaces permeate numerous branches of mathematics as well

as the applied sciences, particularly in physics. Originally studied by Cartan, symmet-

ric spaces arose in the context of Riemannian manifolds and Lie groups. The globally

Riemannian symmetric spaces of differential geometry are in fact a special case of the alge-

braic definition common in Lie theory. Let θ be an involutorial automorphism θ : G→ G,

θ2 = id, and let H = {g ∈ G | θ(g) = g} be the set of fixed points of the involution θ. The

generalized symmetric space is then the homogeneous space G/H, which is isomorphic to

the set Q = {gθ(g)−1 | g ∈ G}. For an algebraic group G/H is also called the symmetric

variety. For a group N defined over a field k, denote by Nk the set of k-rational points

of N . If θ preserves the k-rational points of G, i.e. θ(Gk) = Gk, then one can define an

analogous object defined over k. The quotient Gk/Hk is known as a symmetric k-variety,

and it is one object belonging to a larger class of generalizations known collectively as

generalized symmetric spaces. In the specific case k = R, one obtains the usual symmetric

space.

Let Mn(k) denote the set of n× n matrices with entries in k. Then

GLn(k) = {A ∈Mn(k) | det(A) 6= 0}

is the general linear group. Let G = GLn(k) and define an involution θ : G → G by

θ(g) = (gT )−1. Then H = {g ∈ G | gT = g−1}, the set of n× n orthogonal matrices. The

quotient G/H is then the set of symmetric matrices, hence the motivation for the name
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symmetric space.

For many years work concentrated on a particular class of symmetric k-varieties known

as real reductive symmetric spaces. The real reductive symmetric spaces are the homo-

geneous spaces GR/HR where GR is a reductive real Lie group and HR = Gθ
R is the

set fixed points of an involution θ. Decomposing representations of these spaces in to

their irreducible components has brought the attention of many prominent mathemati-

cians including Cartan [9], who studied the compact groups and their representations,

and Harish-Chandra [14], who gave a Plancherel formula for the Riemannian symmet-

ric spaces in which the fixed point group is compact and a Placherel formula in the

groups case. A proof of the general Plancherel formula was not completed until 1996

by Delorme [12]. Beginning in the 1980’s, Helminck and Wang [19] commenced a study

of the rationality properties of the symmetric k-varieties for arbitrary fields. The sym-

metric k-varieties have many applications, such as the study of arithmetic subgroups

[34], character sheaves [13], and geometry [1],[10, 11]. The most well known application,

however, is in representation theory where the parabolic subgroups play a fundamental

role. Most of the representations occuring in the Plancherel formula are induced from a

parabolic k-subgroup and thus it is important to have an understanding of the action of

parabolic k-subgroups acting on symmetric k-varieties. This dissertation aims to describe

this action in the context of a map relating the symmetric k-variety to its corresponding

symmetric k̄-variety.

Springer gave several equivalent characterizations of the B-orbits on G/H, where B is

a Borel subgroup of G. The number of orbits is finite, thus the symmetric varieties form

a class of spherical varieties. One of these characterizations is to identify the orbits with

double cosets B\G/H. When k is algebraically closed these are the orbits of a minimal

parabolic subgroup acting on G/H. Helminck and others extended this characterization

to cover general parabolics and arbitrary fields. A natural question is then to determine

how the P\G/H orbits break up in to Pk\Gk/Hk orbits over the base field. Not all

of the algebraically closed orbits contribute to the k-orbits. Even in the real numbers

this phenomenon occurs, as demonstrated in Example 5.3. Instead of determining how

algebraically closed orbits break up over the k-rational points one can reverse the process

via an embedding map Pk\Gk/Hk ↪→ P\G/H which we call generalized complexification.

The surjectivity of the generalized complexification map is then equivalent to all orbits

over the algebraic closure contributing to the k-orbits. Given a group N , k -rank(N)
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denotes the dimension of a maximal k-split torus of N . When the group G is k-split we

have a characterization of the surjectivity:

Theorem 5.8.6. Let G be a k-split group, H the set of fixed points of an involution θ,

and P a minimal parabolic k-subgroup. Then the generalized complexification map

ϕ : Pk\Gk/Hk → P\G/H, ϕ(PkxHk) = PxH

is surjective if and only if k -rank(H) = k -rank(G).

There are several direct consequences of the surjectivity of the generalized complex-

ification map. For instance, the Iwasawa decomposition of a real Lie group decomposes

the group in to a product of the fixed points of the Cartan involution and a Borel sub-

group, i.e. if we use the notation above and let B be a Borel subgroup of G, we have

GR = HRBR. This is equivalent to having only one orbit in BR\GR/HR, however surjec-

tivity of the generalized complexification map will imply a maximal number of orbits for

a fixed field k. Thus surjectivty implies a decomposition that is in some sense as far as

possible from the Iwasawa decomposition.

Additionally, a corollary to Theorem 5.8.6 suggests a tool for inductive proofs in the

case of a symmetric k-variety whose generalized complexification map is surjective. Many

results for symmetric k-varieties defined over algebraically closed can be proven with such

an inductive step, thus surjectivty implies a context for the generalization of these results.
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Chapter 2

Background

Much of the theory needed to study the generalized complexification of orbits over al-

gebraically closed fields is due to Springer and Richardson. Later Helminck and Wang

extended this work to general fields in [19]. This work has been continued by several of

Helminck’s students, particularly Beun and Mason.

It is frequently convenient to work with elements of the general linear group. This

involves no loss of generality, since from [31] we have:

Theorem 2.0.1. Let G be an algebraic group.

(a) G is isomorphic to a closed subgroup of GL(n, k̄).

(b) If G is defined over k, then the isomorphism is defined over k.

2.1 The Morphism τ

We follow the notation established in [5], [31], and [23]. Throughout the paper G will

denote a connected reductive algebraic group, θ a group involution of G that leaves the

k-rational points invariant and H a k-open subgroup of Gθ = {g ∈ G | θ(g) = g}. The

variety G/H is called the symmetric variety and Gk/Hk is the symmetric k-variety. Define

a map

τ : G→ G, τ(x) = xθ(x)−1

Denote the image τ by Q, then τ induces an isomorphism between G/H and Q as well as

an isomorphism between Gk/Hk and Qk. It is sometimes more convenient in calculation
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to let H act from the left, in this case τ(x) = x−1θ(x). This change does not affect the

results since H\G is isomorphic to G/H.

Let Aut(G) denote the set of group automorphisms G → G, and for a subgroup

K ⊂ G we will use Aut(G,K) to denote the set of automorphisms of G which leave

K invariant. In particular we are concerned with the order 2 elements of Aut(G,Gk).

For g ∈ G, we will use Int(g) to denote the inner automorphism corresponding to g, i.e.

Int(g)(a) = gag−1 for all a ∈ G. An involution is outer if it is not inner.

2.2 Tori

Recall that a torus T of G is a connected semisimple abelian subgroup. Much of the

structure of symmetric k-varieties can be described by way of tori and their associated

root systems. Here we recall some basic facts about tori that will be useful in what

follows. Let T be a torus, then NG(T ) = {g ∈ G | gTg−1 = T} will denote the normalizer

of T in G, and ZG(T ) = {g ∈ G | gtg−1 = t for all t ∈ T} will denote the centralizer of

T in G. The elements of the normalizer that nontrivially permute the elements of T are

given by the Weyl group, denoted WG(T ) = NG(T )/ZG(T ). The classification of orbits

of minimal parabolic subgroups acting on symmetric k-varieties relies on a quotient of

the Weyl group by elements having representatives in the fixed point group H, and we

denote this set by WH(T ) = {w ∈ WG(T ) |w has a representative in H}. These groups

all have analogues for a group defined over k, replacing the group in the definition of

in NG(T ), ZG(T ), WG(T ), and WH(T ) with its associated k-rational points, we obtain

definitions for NGk(T ), ZGk(T ), WGk(T ), and WHk(T ). These groups will contribute to

the combinatorial description of the orbits of interest described in what follows.

Let ϕ ∈ Aut(G, T ), then T can be decomposed via its ϕ (Lie algebra) eigenspaces,

i.e. T = T+
ϕ T

−
ϕ where T+

ϕ = {t ∈ T | θ(t) = t}° and T−ϕ = {t ∈ T | θ(t) = t−1}°, where K °

denotes the identity component of subgroup K ⊂ G. The product map

µ : T+
ϕ × T−ϕ → T, µ(t1, t2) = t1t2

is a separable isogeny. In fact, T+
ϕ ∩ T−ϕ is an elementary abelian 2-group. Of particular

interest will be the case when ϕ = θ, in this case we will use T+ for T+
θ and T− for T−θ .

Maximal tori play the fundamental role in the description of the structure of sym-

metric k-varieties. A torus is maximal if it is properly contained in no other torus. It is a
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fact that all such tori are conjugate under G, i.e. for two maximal tori T1, T2 ⊂ G there

exists g ∈ G such that gT1g
−1 = T2.

A torus is called θ-split if θ(t) = t−1 for all t ∈ T . From [26] we know that if A is a

maximal θ-split torus then Φ(G,A) is a root system with Weyl goup W (A) = NG(A)/

ZG(A). Recall that a k-torus is k-split if it can be diagonalized over the base field k.

We will call a k-torus (θ, k)-split if it is θ-split and k-split. These tori yield a natural

root system for the symmetric k-variety Gk/Hk since a maximal (θ, k)-split torus A of G

has a root system Φ(G,A) [19] with Weyl group NGk(A)/ZGk(A). Additionally this root

system can be obtained by restricting the roots of a maximal torus of G containing A.

We denote the root system of T by Φ(T ), its positive roots by Φ+(T ), and a basis by ∆.

The rank of a group G is the dimension of a maximal torus T ⊂ G and the k -rank of

a group is the dimension of maximal k-split torus. A group is called k-split if the k -rank

is equal to the rank. For examples, in SL2(R) the diagonal matrices have dimension equal

to 1, which is equal to the dimension of the diagonal matrices in SL2(C). Since the R-rank

is equal to the rank of SL2(C), we have that SL2(R) is an R-split group.

2.2.1 The Root Space Decomposition

For a group G, we will denote its Lie algebra by g, and similarly for T , Q, and H, their

Lie algebras will be denoted by t, q, and h respectively. If a torus T is maximal then t is

a maximal cartan subalgebra and thus we have the associated root space decomposition

of the Lie algebra,

g = t⊕
∑

α∈Φ(T )

gα

where gα = {g ∈ g | [t, g] = α(t)g for all t ∈ t}, and each gα is one dimensional.

2.3 Isomorphy Classes of Involutions

It will be shown later that the double cosets P\G/H are characterized up to the iso-

morphy class of the involution of G. In this section we define the isomorphy classes and

provide examples for the special linear group which is used as the principle example

throughout.

Two involutions σ, ϕ ∈ Aut(G,Gk) are isomophic if there exists γ ∈ Aut(G,Gk)

such that γϕγ−1 = σ. Additionally ϕ, σ are Int(G,Gk)-isomorphic if γ ∈ Int(G,Gk). A
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Table 2.3.1: Summary of square classes

Field |k∗/(k∗)2| Representatives
R 2 1, -1

Qp, p ≡ 1 mod 4 2 1, p
Qp, p ≡ 3 mod 4 4 1, p, Np, pNp

Q2 8 1, ±1, ±2, ±3,±6
Q ∞ 1, 2, ...

Fq, q 6= 2r 2 1, Np

F2r 1 1

characterization of the orbits P\G/H rests on the characterization of the involutions

given in [17]. For some fields, notably algebraically closed fields and the real numbers,

a full classification exists and was given in [20]. Additionally the results are known for

some special cases, notably SL(n, k) [21, 22], SO(n, k) [2], and SP(n, k) [3].

Involutions of SL(2, k)

Our main example for this paper will be SL(2, k), so we give the explicit result here. Borel

proved that every automorphism of SL(2, k) is inner, and the explicit form was found in

[21]. Let k∗ be the set of nonzero elements of the field k, and let (k∗) = {a2 | a ∈ k∗} be

the set of nonzero squares in k. By abuse of notation we use m ∈ k∗/(k∗)2 to denote a

representative of the square class of m.

Theorem 2.3.1. The k-isomorphy classes of SL(2, k) are represented by Int(A), where

A = ( 0 1
m 0 ) for some m ∈ k∗/(k∗)2.

Thus it will be useful to have a summary of the representatives of square classes for

some common fields, which we now present. Np is used to denote the smallest nonsquare

in the finite field Fp.

2.3.2 Involutions of SL(n, k)

For arbitary n the classification of involutions of Aut(G,Gk) is more complicated and is

available in [4]. For convience we summarize the results here.
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The classification of involutions of SL(n, k) can be split in to two subproblems, namely

one can approach inner and outer involutions separately. The results in this section are

heavily field dependent, but for algebraically closed fields the two subproblems are closely

related thanks to the following lemma.

Theorem 2.3.3. Let G = SL(n, k) and k = k̄.

(a) |Aut(G)/ Int(G)| = 2

(b) For a fixed outer automorphism η, every element of Aut(G) can be written in the

form Int(M)η.

Thus classifying outer automorphisms requires only the classification of the inner

involutions and an explicit outer involution. For the latter we give the usual transpose

inverse involution, η(A) = (AT )−1.

The classification of inner automorphisms is relatively simple but will require some

additonal notation. To this end, let:

In−i,i =

(
In−i,n−i 0

0 −Ii,i

)

J2m =

(
0 Im,m 0

−Im,m 0

)
, n = 2m

Mn,x,y,z =


In−3,n−3

x

y

z



Ln,x =



0 1 0 . . . 0

x
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . . 0 1

0 . . . 0 x 0


With this notation in place, we are ready to summarize the isomorphy classes of inner

involutions for SL(n, k) for the specific fields k given in Table 2.3.1. This summary is the

subject of Table 2.3.2.
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Table 2.3.2: Isomorphy classes of inner involutions of SL(n, k)

Field Number of Isomorphy Classes Representative Matrix A, θ = Int(A)

n odd
k = any field n−1

2
A = In−i,i i = 1, 2, . . . , n−1

2

n even

k = k n
2

A = In−i,i i = 1, 2, . . . , n
2

k = R n
2

+ 1
A = In−i,i i = 1, 2, . . . , n

2

A = Ln,−1

k = Q ∞ A = In−i,i i = 1, 2, . . . , n
2

A = Ln,α α 6≡ 1 mod (Q∗)2

k = Fp, p 6= 2 n
2

+ 1
A = In−i,i i = 1, 2, . . . , n

2

A = Ln,Np

k = Qp, p 6= 2 n
2

+ 3
A = In−i,i i = 1, 2, . . . , n−1

2

A = Ln,α α ∈ {p,Np, pNp}

k = Q2
n
2

+ 7
A = In−i,i i = 1, 2, . . . , n−1

2

A = Ln,α α ∈ {±1,±2,±3,±6}

Similarly, the outer involutions of SL(n, k) are summarized in Table 2.3.3.

2.4 Fixed Point Groups

The fixed point group of an involution θ plays an important role in certain isomorphy

classes of k-split tori, as will be seen in a later section. Additionally, the nature of the

fixed point group is crucial to the surjectivity of the generalized complexification map,

therefore a summary of results is necessary for the development of a rich set of examples.

Given an involution θ, the fixed point group is Gθ = {g ∈ G | θ(g) = g}. Let H be

a k-open subgroup of Gθ. In the original applications for which symmetric space theory

was developed, the cases in which H is compact played a vital role. For instance, the

Cartan decomposition and Iwasawa decomposition rely on a compact fixed point group.

If the fixed point group is compact then θ is called the Cartan involution, which is unique

up to Aut(G)-isomorphism.

9



Table 2.3.3: Isomorphy classes of outer involutions of SL(n, k)

Field Number of Isomorphy Classes Representative Involution

k = k̄
n odd 1 η

n = 2m even 2
η

Int(J2m)η

k = R
n odd n−1

2
Int(In−i,iη i = 1, 2, . . . , n−1

2

n = 2m even n
2

+ 1
Int(In−i,iη i = 1, 2, . . . , n

2

Int(J2m)η

Fp p 6= 2

n odd 2
η

Int(Mn,1,1,Np)η

n = 2m even 3
η

Int(Mn,1,1,Np)η
Int(J2m)η

2.4.1 Fixed Point Groups of SL(2, k)

Example 2.4.2. Let G = SL(2,R), then in light of Theorem 2.3.1 and Table 2.3.1, there

are two k-ismorphy classes of involutions represented by Int( 0 1
−1 0 ) and Int( 0 1

1 0 ).

(a) Let σ = Int( 0 1
1 0 ). Then H = {( a bb a ) | a2 − b2 = 1}. H is clearly noncompact since

it is isomorphic to a hyperbola in R2. Therefore σ does not represent the Cartan

involution.

(b) Let θ = Int( 0 1
−1 0 ). Then H = {

(
a b
−b a

)
| a2 + b2 = 1}. Thus H ∼= S1, therefore the

fixed point group is compact and θ is the Cartan involution.

With the development of the theory of symmetric k-varieties came a need to generalize

the notion of compactness; this was accomplished with the notion of k-anisotropy. A group

is said to be k-anisotropic if contains no nontrivial k-split torus, otherwise it is isotropic.

For example, the fixed point group of 2.4.2(a) is a one dimensional semisimple abelian
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group and therefore a torus. It is k-split since symmetric matrices are diagonalizable via

orthogonal matrices, explicitly one can conjugate by
√

2
2

( 1 1
−1 1 ) to diagonalize the fixed

point group. Thus the fixed point group of Example 2.4.2(a) is isotropic. The fixed point

group of Example 2.4.2(b) is also semisimple and abelian and therefore a torus, however

the eigenvalues are complex and therefore it cannot be diagonlized over R. Thus, in this

case, H is k-anisotropic.

This example illustrates a more general result of Beun and Helminck:

Theorem 2.4.3. Let G = SL(2, k) with involution θ = ( 0 1
m 0 ) for some m ∈ k∗/(k∗)2.

Then the fixed point group H is k-anisotropic if and only if m 6= 1.

Therefore one observes that for each field k there is precisely one isomorphy class of

k-involutions of SL(2, k) yielding an isotropic fixed point group, and therefore for most

base fields the number of involutions corresponding to k-anisotropic fixed point groups

will outnumber the number of involutions corresponding to isotropic fixed point groups.

For instance, if k = Q there are infinitely many k-anisotropic fixed point groups, for

k = Qp, p 6= 2 there are 1 or 3 k-anisotropic fixed point groups.

2.4.4 Fixed Point Groups of SL(n, k)

SL(n, k) provides an intuitive model for the generalized complexification of the orbits

of minimal parabolic k-subgroups acting on symmetric k-varieties, so we shall continue

with the development of their theory initiated in the last section. The fixed point groups

for most involutions have been computed so we summarize those results here.

For ease of computation one first replaces Int(In−i,i) by another representative of its

isomorphy class, namely Int(In−i,i), where

In−i,i =

(
A 0

0 In−2i×n−2i

)
, where A is the 2i× 2i matrix with ones on the antidiagonal

We can then present the form of the fixed point group for θ = Int(In−i,i).

Lemma 2.4.5. Let G = SL(n, k) and θ = Int(In−i,i). Then Hk =

{(
A B

C D

)}
, where
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A =



a1,1 a1,2 . . . a1,2i

...
...

ai,1 . . . . . . ai,2i

ai,2i . . . . . . ai,1
...

...

a1,2i . . . a2,1 a1,1


, B is 2i × n − 2i and symmetric about the ith row, C is

n− 2i× 2i and symmetric about the ith column, and D ∈ GL(n− 2i, k), with all entries

of A,B,C, and D in k.

Lemma 2.4.6. Let G = SL(2m, k) and θ = Int(L2m,x). Then Hk =


A1,1 . . . A1,m

...
...

Am,1 . . . Am,m


where Ai,j =

(
aij bij

xbij aij

)
satisfying the determinant condition.

2.5 Parabolic and Borel Subgroups

A Borel subgroup B ⊂ G is a maximal closed and connected solvable subgroup. Borel

subgroups are self-normalizing, i.e. NG(B) = B, and every Borel subgroup contains a

θ-stable maximal torus T . Every Borel subgroup is conjugate over G. Suppose T1 ⊂ B1,

T2 ⊂ B2 are maximal tori, then they are conjugate under G, say gT1g
−1 = T2. The same

element g ∈ G also conjugates B1 to B2, gB1g
−1 = B2. By a theorem of Lie-Kolchin,

if G is a closed subgroup of GLn, then all Borel subgroups of G are conjugate to the

group of upper triangular matrices. Fix a maximal torus T and consider its associated

root system Φ(T ). One has multiple choices for a Borel subgroup B ⊃ T , fixing a Borel

subgroup containing T is equivalent to choosing Φ+(T ), a system of positive roots for

Φ(T ).

The following result is due to Borel and is fundamental to a characterization of the

orbits B\G/H:

Theorem 2.5.1. Let θ ∈ Aut(G) be an involution and B ⊂ G a Borel subgroup. Then

B contains a θ-stable maximal torus and all such tori are conjugate under U ∩H.

Parabolic subgroups P ⊂ G contain a Borel subgroup. Fix a torus T and a containing

Borel subgroup B ⊃ T . Given a basis ∆ ⊂ Φ(T ), one can choose a subset Γ ⊂ ∆; to each
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root α ∈ Γ one identfies the Lie subalgebra corresponding to α, gα. Let p = b⊕α∈Γ g−α.

Lifting p to the group one obtains a parabolic subgroup. This parabolic subgroup is unique

up to isomorphism, therefore there is a one-to-one correspondence between parabolic

subgroups and subsets of the basis of a system of roots. Parabolics subgroups can also

be defined as subgroups of G such that G/P is a complete variety.

Parabolic subgroups yield a result close to Theorem 2.5.1.

Theorem 2.5.2. Let P ⊂ G be a minimal parabolic k-subgroup and θ ∈ Aut(G) an

involution. Then P contains a maximal k-split torus that is θ-stable. Furthermore, all of

these tori are conjugate under (U ∩H)k.

A parabolic k-subgroup is a parabolic defined over k, and the orbits of minimal

parabolic k-subgroups on symmetric k-varieties have extra structure. Over an alge-

braically closed field Borel subgroups are minimal parabolic subgroups in the sense that

G/B is larger than G/P for any P that is not a Borel subgroup, but over other fields

proper minimal parabolic k-subgroups may not exist.

Example 2.5.3. Let G = SL(2,C) with R-form GR = SL(2,R).

(a) Let T1 be the set of 2 × 2 determinant one diagonal matrices. Then T1 ⊂ P , where

P is the set of 2× 2 determinant one upper (or lower) triangular matrices.

(b) Let T2 = SO(2,R), then T2 is not contained in a proper parabolic defined over R, so

the minimal parabolic R-subgroup containing T2 is G.

Parabolic subgroups are also self-normalizing, and can be decomposed via P = LU ,

where U is the unipotent radical Ru(P ) and L is the Levi factor of P . In the case that

P = B is a Borel subgroup, this decomposition simplifies to B = TU , where T ⊂ B is a

maximal torus and U ⊂ B is unipotent.

2.5.4 The Bruhat Decomposition

The Bruhat decomposition is a fundamental tool in the theory of algebraic groups since it

allows one to reduce questions about the structure of a group to questions about the fine

structure of the group, namely tori and Weyl groups. This decomposition generalizes the

well known PA = LU factorization of a nonsingular matrix A, where P is a permuation

matrix, L is lower triangular, and U is upper triangular. The Bruhat decomposition
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motivates the study of the double cosets P\G/H since the latter in fact generalize the

Bruhat decomposition.

Let B ⊂ G be a Borel subgroup containing a maximal torus T , then it is well known

[23] that the double cosets B\G/B are in one-to-one correspondence with W (T ), the

Weyl group. Briefly:

B\G/B ∼= W (T )

Equivalently, we have

G ∼=
⋃

ω∈W (T )

B
·
ωB

where
·
ω is a representative of ω in NG(T ). Given ω ∈ W (T ), C(ω) = B

·
ωB is called

a Bruhat cell. To complete the analogy with the PA = LU , each cell corresponds to

the matrices requiring a pivot before the typical Gauss-Jordan elimination algorithm is

implemented. Thus we can regard the Bruhat decomposition as the precise statement of

Gauss-Jordan elimination.

One can consider the double cosets B\G/B from different perspectives, including B-

orbits on G/B and B × B orbits on G. One observes immediately that the B-orbits on

G/B are finite since Weyl groups are finite, thus G/B is a spherical variety.

Example 2.5.5. Let G = SL(2,C), T = {
(
x 0
0 x−1

)
|x ∈ C} a maximal torus, and B =

{
( x y

0 x−1

)
|x, y ∈ C} a Borel subgroup containing T . Then G = B ∪B ( 0 1

−1 0 )B.

There is also an order associated with the Bruhat decomposition, called the (strong)

Bruhat order, that encode data about the geometry of the orbits. This order will be

generalized to the P\G/H double cosets, thus we omit the definition here.

The Bruhat decomposition extends to general fields. Let P be a minimal parabolic

k-subgroup containing a maximal k-split torus A. Then

Gk
∼=

⋃
ω∈W (A)

Pk
·
ωPk

where
·
ω is a representative of ω in NGk(A).

The substitutions of maximal tori for maximal k-split tori, minimal parabolic k-

subgroups for Borels, etc. used in generalizing the Bruhat decomposition will occur again

in later sections, when we generalize the P\G/H double cosets to Pk\Gk/Hk double

cosets.
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2.5.6 Generalized Bruhat Decomposition

If we replace the Borel subgroup in the Bruhat decomposition with an arbitrary parabolic

subgroup, we obtain the generalized Bruhat decomposition. Fix a parabolic P , a Borel

subgroup B ⊂ P , and a maximal torus T ⊂ B. This is equivalent to choosing a set of

positive roots Φ+(T ) and a basis ∆ for Φ(T ). Recall that P corresponds to a subset Γ of

a basis for the root system Φ. Each α ∈ Γ corresponds to a reflection sα, denote by WP

the group generated by these reflections.

The generalized Bruhat decomposition is usually given as the disjoint union of double

cosets PωP , ω ∈ WP\W/WP . Briefly:

G =
⋃

w∈WP \W/WP

P
·
ωP

where
·
ω is representative of ω in NG(T ).

Example 2.5.7. Let G = SL(3,C), Γ = {α1}, B the set of upper triangular matrices, and

T the set of diagonal matrices. Then

P =


∗ ∗ ∗∗ ∗ ∗

0 0 ∗




and WP has representative

·
ω =

 0 1 0

−1 0 0

0 0 1


Furthermore

WP\W/WP
∼= {sα2} ∼=

1 0 0

0 0 1

0 −1 0


Therefore G = P ∪ P

(
1 0 0
0 0 1
0 −1 0

)
P .
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Chapter 3

Double Cosets P\G/H

The double cosets P\G/H generalize the Bruhat decomposition, as shown in Example

3.1.4. They were studied first by Springer and later by Brion, Helminck, and Wang. One

can move to general fields to consider double cosets Pk\Gk/Hk where many of the results

are similar. We seek to understand the relationship between P\G/H and Pk\Gk/Hk for a

fixed involution and parabolic P . Our approach exploits the generalized complexification

map which will embed the Pk\Gk/Hk double cosets inside the P\G/H double cosets,

allowing us to observe the relation ship directly. We now provide the relevant background

for these objects that will be the objects of study for the remainder.

3.1 k = k̄, Borel Subgroups Acting on G/H

Springer studied this case extensively in [30] where he proved several equivalent charac-

terizations. His approach took advantage of the following result due to Steinberg [32].

Theorem 3.1.1. Let θ be an involution of G. Then there exists a θ-stable Borel subgroup

B.

To obtain a characterization of the orbits B\G/H, one can separately consider B-

orbits on G/H, H-orbits on G/B, or (B,H)-orbits on G. We outline these results in

this section. Let T ⊂ G be a maximal torus. To denote the set of Weyl group elements

with representatives in H we use WH(T ) = NH(T )/ZH(T ). Consider first the H-orbits.

Let B denote the variety of all Borel subgroups of G, then we can identify G/B with

B since all Borel subgroups are conjugate over G, and let C denote the set of pairs
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(B′, T ′) where T ′ is a maximal torus contained in the Borel subgroup B′. G acts on

both B and C by conjugation, denote these orbits by B/H and C /H respectively.

The H-orbits on C consist of two parts, namely the H-conjugacy classes of maximal

tori and the H-conjugacy classes of Borel subgroups containing them. The H-conjugacy

classes of maximal tori will have representatives {Ti}i∈I , thus the H-orbits on C are in

correspondence with ∪i∈IWG(T )/WH(T ).

G acts on G/H ∼= Q (from the left) via the θ-twisted action, i.e. g ∗ q = gqθ(g)−1.

Thus the B-orbits on G/H can be viewed as B-cosets in Q, which we denote B\Q.

The (H,B)-orbits on G are the same as the B×H-orbits on G and the action is given

by (b, h) ∗ g := bgh−1. From [19] we know that every U orbit on G/H, where U is the

unipotent component of B, meets NG(T ). Let V = {g ∈ G | τ(g) ∈ NG(T )}, then V is

stable under left multiplication by NG(T ) and right multiplication by H. We denote by

V the T ×H-orbits on V , which in fact parameterize the (B ×H) orbits on G.

Borel showed that all of these characterizations are isomorphic:

Theorem 3.1.2 ([30]). Let B be a Borel subgroup of G and {Ti}i∈I a set of representatives

of the H-conjugacy classes of θ-stable maximal tori in G. Then

B\G/H ∼= B/H ∼=
⋃
i∈I

WG(Ti)/WH(Ti) ∼= C /H ∼= B\Q ∼= V

Example 3.1.3. Let G = SL(2,C), B ⊂ G the set of upper triangular matrices of de-

terminant 1, and define an involution θ by θ(g) = (gT )−1. Since every element of C∗ is

a square, all involutions on G are isomorphic by Theorem 2.3.1. The dimension of any

torus inside G is 1. The fixed point group of θ is H = SO(2,C), which is connected and

abelian and therefore a torus. Let T denote the set of diagonal matrices with determinant

1, then T is also a torus. There are two H-conjugacy classes of tori in G, and {T,H} is

a set of representatives. The Weyl groups are given by

WG(T ) =

{(
1 0

0 1

)
,

(
0 1

−1 0

)}

WG(H) =

{(
1 0

0 1

)
,

(
0 i

i 0

)}
We observe that the non-indentity element in WG(T ) is an element of H, while the
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non-identity element of WG(H) is not. Therefore |WG(T )/WH(T )| = 1 and |WG(H)/

WH(H)| = 2. Thus one orbit B\G/H corresponds to the diagonal matrices and two

correspond to the fixed point group.

The next example shows that this characterization is in fact a generalization of the

Bruhat decomposition.

Example 3.1.4. Let G be a connected reductive algebraic group, B⊂G a Borel subgroup

of G, and T⊂G a maximal torus of B. Define G = G×G with the involution θ(g1, g2) =

(g2, g1). Then H = {(g, g) | g ∈ G}, the diagonal subgroup of G, and B = B×B, T =

T×T are both θ-stable. Consider the map ξ : G → G given by ξ(g1, g2) = g−1
1 g2. Then

ξ(H) = {id}, ξ(G) ∼= G, and ξ(B) ∼= B. Thus ξ induces a map H\G/B → B\G/B
∼= W (T). Thus H\G/B is equivalent to the Bruhat decomposition of the group G, and

therefore in the groups case the results about the double cosets can be derived from the

Bruhat decomposition.

3.2 Orders Associated with the Orbit Decomposi-

tion

The versatility of Theorem 3.1.2 is that the different characterizations of the orbits allow

one to study their structure from multiple perspectives. In this section we develop the

tools to study the orbits combinatorially. We define two orders, one a refinement of the

other, that have a connection to the geometry of the orbits.

3.2.1 Bruhat order on the orbits B\G/H

One can endow the set of double cosets B\G/H with a partial order that generalizes

the usual Bruhat order on a connected reductive algebraic group. This was studied in

[27] and [28]. The partial order is given by inclusion of closures in the Zariski topology.

Explicitly, let O1 = Bg1H and O2 = Bg2H, then O1 ≤ O2 if O1 ⊂ cl(O2). One can also

give this ordering combinatorially and this was the approach taken by Richardson and

Springer.
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3.2.2 I-poset

The Bruhat order is a refinement of the order on the I-poset. Recall that the set I

parameterizes the H-conjugacy classes of the θ-stable maximal tori in G, let {Ti}i∈I be a

set of representatives for these conjugacy classes. Suppose Ti and Tj are maximal tori such

that T−i ⊂ T−j . Then we can introduce an order defined by Ti ≤ Tj if dim(T−i ) ≤ dim(T−j ).

It will be shown later that all such tori are conjugate to tori satisfying this property,

so this order can be extended to an order on all maximal tori of G. Furthermore, we

can associate poset diagrams to the orbit decompositions. Since the Bruhat poset is a

refinement of the I-poset, we will call the Bruhat diagram obtained from an I diagram

the expansion of the I diagram.

Example 3.2.3. Let G = SL(3,C), θ(A) = (AT )−1 for all A ∈ G. Then H = SO(3,C).

Let T be the set of diagonal matrices, then T is θ-split. Furthermore, a maximal torus of

H is given by 
cos(ν) − sin(ν) 0

sin(ν) cos(ν) 0

0 0 1




[33]. Thus there are precisely two nodes in the I-poset diagram, illustrated in Figure

3.2.1.

Figure 3.2.1: I-poset diagram for SL(3,C)

3.3 k = k̄, P a parabolic subgroup acting G/H

Theorem 3.1.1 is not true for general parabolic subgroups, but Helminck and Brion [8]

showed that this condition is not necessary; this section summarizes their results. The

important difference in this case is that for a fixed parabolic P we are not assured that

the set of G-conjugates of P includes all parabolic subgroups of G. In fact, if we identify
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parabolic subgroups P1 and P2 with their associated subsets of a basis for the root space

Γ1,Γ2 ⊂ ∆, we see that P1 and P2 are G-conjugate if and only if Γ1 = Γ2. Let P

denote the variety of all parabolic subgroups of G and let D denote the set of triples

(P,B, T ), where B is a Borel subgroup of P such that (P ∩ H)B is open in P and T

is a θ-stable maximal torus of B. Fix a parabolic subgroup P and let PP denote the

set of G conjugates of P and let DP denote the set of triples (P ′, B′, T ′) ∈ D such that

P ′ ∈PP . G acts on P, PP , D , and DP via conjugation; denote the H-orbits on these

sets by P/H, PP/H, D/H, and DP/H respectively.

Theorem 3.3.1. There is a bijective map P/H → D/H.

Every maximal k-split torus of G is conjugate under Gk, the k-rational points of

G. Furthermore, every minimal parabolic k-subgroup of G contains a maximal k-split

torus. Let A be a maximal k-split torus. We wish to characterize all minimal parabolic

k-subgroups which contain A. As a generalization of the algebraically closed case, we

have the following lemma:

Proposition 3.3.2. Suppose A1 and A2 are two maximal k-split tori, and P1 and P2 are

two minimal parabolic k-subgroups containing A1 and A2 respectively. Then the element

of Gk that conjugates A1 to A2 also conjugates P1 to P2.

We now fix a parabolic subgroup P , and let T be the θ-stable maximal torus occurring

in the image of P under the above bijection. Let x1, x2, ..., xr ∈ G such that T1 =

x1Tx
−1
1 , ..., Tr = xrTx

−1
r are representatives for the H-conjugacy classes of the elements

of D . Let P1 = x1Px
−1
1 , ..., Pr = xrPx

−1
r and denote by WPi(Ti) the Weyl group of

Pi. One then sees that for each Ti the H-conjugacy classes of (P ′, B′, Ti) ∈ DP are in

bijection with WPi(Ti)\WG(Ti)/WH(Ti). As before let V = {g ∈ G | g−1θ(g) ∈ NG(T )}
and let V P = {g ∈ V |BgH is open in PgH}. Then the actions of B,H on V extend to

actions of P,H on V P , and every P ×H-orbit on G meets V P in a unique (T,H) double

coset. We can now generalize Springer’s theorem charactering B\G/H double cosets to

the case of a general parabolic subgroup.

Theorem 3.3.3. There is a bijective map from the set of H-orbits in P onto the set of

H-conjugacy classes of triples (P,B, T ) ∈ D . Moreover for a fixed parabolic subgroup P ,

we have

P\G/H ∼= P(G)P/H ∼= DP/H ∼=
r⋃
i=1

WPi(Ti)\WG(Ti)/WH(Ti) ∼= V P
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3.4 Orbits Over Non-algebraically Closed Fields

We now turn to the double cosets which we study for the remainder. If we restrict

our attention to parabolic subgroups defined over k that are minimal we can obtain a

characterization very similar to the case of a Borel subgroup acting on G/H. In this case

we obtain are assured of the existence of θ-stable Levi factor.

Theorem 3.4.1 ([19]). Let P be a minimal parabolic k-subgroup with unipotent radical

U , then P contains a θ-stable maximal k-split torus, unique up to an element of (H∩U)k.

Let P be a minimal parabolic k-subgroup and let G and H be defined as before.

With a few adjustments, one can construct a characterization of the Pk\Gk/Hk orbits in

several equivalent ways by considering Pk orbits on Qk, Hk orbits on Pk\Gk, or Pk ×Hk

orbits on Gk.

We start with the Hk-orbits on Pk\Gk. Let Pk denote the variety of all minimal

parabolic k-subgroups of G, then we have that Pk\Gk is isomorphic to Pk. Gk acts on

Pk by conjugation, so we can identify the double cosets with the Hk-orbits on Pk, denote

these orbits by Pk/Hk.

Let Ck denote the set of all pairs (P ′k, A
′
k), where P ′k is a minimal parabolic k-subgroup

and A′k is a θ-stable maximal k-split torus contained in Pk. Gk acts on Ck by conjugation

in both coordinates, i.e. g∗(P ′k, A′k) = (gP ′kg
−1, gA′kg

−1). We can analyze the Hk orbits on

Ck (denoted Ck/Hk) in two steps; first we consider the Hk-conjugacy classes of θ-stable

maximal k-split tori and choose a set of representatives for these conjugacy classes, and

second for each representative of an Hk-conjugacy class we consider the set of minimal

parabolic k-subgroups that contain the representative but are not conjugate via Hk.

This allows one to identify Ck/Hk with ∪i∈IWGk(Ai)/WHk(Ai), where {Ai}i∈I is a set of

representatives for the Hk conjugacy classes of θ-stable maximal k-split tori.

Pk acts on Gk/Hk via the θ-twisted action. Let A ⊂ P be a maximal k-split torus.

Then as in the case of a Borel subgroup acting on the symmetric space over an alge-

braically closed field, we have that the orbit of the unipotent radical of Pk meets NGk(A).

Let Vk = {x ∈ Gk | τ(x) ∈ NGk(A)}, then we can identify the Pk-orbits on Gk/Hk with

the ZGk(A)×Hk-orbits on Vk. We denote these orbits by Vk.

Theorem 3.4.2. For a minimal parabolic k-subgroup Pand {Ai}i∈I a set of representa-
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tives for the Hk-conjugacy classes of θ-stable maximal k-split tori, we have

Pk\Gk/Hk
∼= Pk/Hk

∼=
⋃
i∈I

WGk(Ai)/WHk(Ai)
∼= Pk\Qk

∼= Vk

We observe that this characterization is in direct analogy with the case of a Borel

subgroup acting on the symmetric space and simpler than the case of a general parabolic

subgroup acting on the symmetric space. This is because a minimal parabolic k-subgroup

contains a θ-stable maximal k-split torus in light of Lemma 3.4.1.

Example 3.4.3. Let G = SL(2,C) with real form GR = SL(2,R). Let T denote the group

of diagonal matrices and P the set of upper triangular matrices. Recall from Example

2.4.2 that there are two isomorphy classes of involutions.

(a) Let σ = Int( 0 1
1 0 ). Then HR = {( a bb a ) | a2 − b2 = 1 a, b ∈ R} is connected and abelian

and is diagonalizable by an orthogonal matrix. We compute the Weyl group elements

WGR(T ) = WGR(H) =

{(
1 0

0 1

)
,

(
0 1

−1 0

)}

The nonindentity element has a representative in H, given by ( 0 i
i 0 ), but this represen-

tative is not in HR. Thus we conclude |WGR(T )/WHR(T )| = |WGR(H)/WHR(H)| = 2,

and there are 4 orbits in PR\GR/HR.

(b) Let θ = Int( 0 1
−1 0 ). Then H = {

(
a b
−b a

)
| a2 +b2 = 1, a, b ∈ R}. While HR is connected

and abelian, its eigenvalues are complex and thus it not an R-split torus. Therefore

there is only HR-conjugacy class of θ-stable maximal k-split tori and only one orbit

in PR\GR/HR.

As with the Bruhat decomposition, we can reformulate Theorem 3.4.2 to obtain

Gk =
⋃
i∈I

⋃
w∈WGk

(Ai)

PkẇHk, where ẇ is a representative of w ∈ WGk(Ai)

Applying this observation to Example 3.4.3(b) and the fact that id ∈ NGR(T ), we have

that GR = HRPR, which is the well known Iwasawa decomposition of a real reductive

group with Cartan Involution θ.

While the characterization is similar, many of the properties from the algebraically

closed do not hold. For instance, the orbits over the algebraic closure are always finite, but
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over general fields this condition is frequently not satisfied. The next example illustrates

one such case.

Example 3.4.4. Let G = SL(2,C) with Q-form GQ = SL(2,Q). In this case it is computa-

tionally easier to let H act from the left, so we will be analyzing the double cosets HQ\GQ/

PQ. The morphism τ : G→ G of Section 2.1 becomes τ(g) = g−1θ(g). We fix the involu-

tion θ defined by θ(g) = (gT )−1 and P ⊂ G as the set of upper triangular matrices. Note

that P contains the maximal Q-split torus A ⊂ G consisting of the diagonal matrices. We

will computeQk/Pk, each element of which must meet Vk = {g ∈ Gk | g−1θ(g) ∈ NGk(A)}.

For an arbitrary element g =

(
a b

c d

)
∈ GQ, we compute τ(g) =

(
b2 + d2 −ab− cd
−ab− cd a2 + c2

)
.

For this matrix to be in the normalizer NGQ(A) then it must be the case that ab+cd = 0.

Therefore g ∈ VQ ⇐⇒ ab + cd = 0. In this case we can identify this image with an

equivalent formulation, τ(VQ) =

{(
r 0

0 r−1

)
| r = b2 + d2, (b, d) ∈ Q2 − (0, 0)

}
. Since

we have candidates for representatives of the orbits, we want to know which of these

candidates lie in the same orbit. To this end, we will to observe when the action of

PQ is capable of moving one element of τ(VQ) to another. Consider an arbitrary p =(
v u

0 v−1

)
∈ PQ. Then PQ acts on QQ via the θ-twisted action. Let x =

(
r 0

0 r−1

)
∈

τ(VQ), then p ∗ x =

(
rv−2 + u2r−1 −uvr−1

−uvr−1 v2r−1

)
, which lies in N)Gk(A) if and only if

u = 0.

(
r 0

0 r−1

)
and

(
s 0

0 s−1

)
are in the same twisted PQ-orbit if there exists v ∈ Q

such that

(
rv−2 0

0 v2r−1

)
=

(
s 0

0 s−1

)
⇐⇒ r−1s ∈ (Q∗)2 (seen by equating entries). It

is a fact that such pairs (r, s) satisfying this condition can be identified with ⊕p≡1(4)Z/2Z.

Therefore, the set HQ\GQ/PQ is infinite.

In several cases, the number of orbits is finite. For algebraically closed fields this was

proved by Springer [30], for k = R it was shown by Matsuki [25], Rossman [29], and Wolf

[35], and for general local fields the result is due to Helminck and Wang [19].

We can associate diagrams to the partial orders placed on the orbit decompositions

of our group in Section 3.2. This is done by exploiting the poset structure corresponding

the index set of the θ-stable maximal k-split tori I and the Bruhat order on the orbits

themselves.
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Similar to the algebraically closed case, we can place an order on the I-poset. Suppose

Ai and Aj are maximal k-split tori such that A−i ⊂ A−j . Then Ai ≤ Aj if dim(A−i ) ≤
dim(A−j ). As with maximal tori, all maximal k-split are Gk-conjugate to tori with this

property, so the order extends to all maximal k-split tori. Thus each representative of an

Hk-conjugacy class of θ-stable maximal k-split tori with the same dimension of its split

component correspond to nodes in the same level in the diagram associated to the order

on the I-poset.

Example 3.4.5. Consider SL(2,Qp), p ≡ 1 mod 4. Let θ = Int( 0 1
1 0 ). Then by [4] we know

that there are four Hk-conjugacy classes of θ-stable maximal (θ,Qp)-split tori and one

Hk-conjugacy classes of θ-stable, θ-fixed maximal Qp-split tori. Thus the diagram for the

I-poset is:

Figure 3.4.1: I-poset diagram for SL(2,Qp), p ≡ 1 mod 4

This diagram can be expanded to the order on the orbits given by closure in the

Zariski topology. Each node in the I-poset diagram is expanded to the number of orbits

corresponding to the torus Ai, obtained by looking at |WGk(Ai)/WHk(Ai)|.

Example 3.4.6. Consider the setting of the previous example. Each (θ,Qp)-split torus

corresponds to one orbit, while the θ-fixed torus corresponds to two. Thus the orbit

diagram is given in Figure 3.4.2.
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Figure 3.4.2: Orbit diagram for SL(2,Qp), p ≡ 1 mod 4
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Chapter 4

Properties of Tori

In this chapter we collect some properties of tori that will be relevant to the proof of the

main result. Of particular interest is the concept of standard tori, which align the θ-fixed

and θ-split portions of a torus.

4.1 Algebraically Closed Fields

This case was studied in [15] and will be related to the description of the I-poset for

image of the generalized complexification map.

4.1.1 Standard Pairs

Let T denote the set of θ-stable maximal tori in G.

Definition 4.1.2. Let T1, T2 ∈ T . Then (T1, T2) is called a standard pair if T−1 ⊂ T−2

and T+
2 ⊂ T+

1 . T1 is said to be standard with respect to T2.

The θ-stable maximal tori of G can be arranged in to a chain of standard pairs.

Proposition 4.1.3 ([15]). (a) Let T1, T2 ∈ T such that T+
2 ⊂ T+

1 . Then there exists

x ∈ ZH(T+
2 ) such that (T1, xT2x

−1) is a standard pair.

(b) Let T1, T2 ∈ T such that T−1 ⊂ T−2 . Then there exists x ∈ ZH(T−1 ) such that

(T1, xT2x
−1) is a standard pair.

(c) If T+
1 and T+

2 (resp. T−1 and T−2 ) are H-conjugate, then so are T1 and T2.
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The proof of the lemma makes use of the following theorem, which will be of use in

its own right.

Theorem 4.1.4. All maximal θ-split tori of G are conjugate under H and so are all

maximal tori containing a maximal θ-split torus.

Example 4.1.5. Let G = SL(3,C) with involution θ(g) = (gT )−1, then H = SO(3,C). Let

T denote the torus consisting of diagonal matrices. Consider the torus

T1 =


a b 0

b a 0

0 0 c


∣∣∣∣∣∣∣ (a2 − b2)c = 1



Then T, T1 are maximal θ-split tori. Let g =


√

2
2
−
√

2
2

0
√

2
2

√
2

2
0

0 0 1

 ∈ H. Then gT1g
−1 = T .

4.1.6 θ-singularity

An involution θ of a connected reductive group M is called split if there exists a θ-split

maximal torus of M .

Definition 4.1.7. Let T ∈ T and w ∈ W (T ) such that w2 = id and θw = wθ. Let

Gw = ZG(T+
w ). Then w is called θ-singular if

(a) θ|[Gw,Gw] is split

(b) rank([Gw, Gw]) = rank([Gw, Gw] ∩H)

A root α ∈ Φ(T ) is called θ-singular if its corresponding reflection sα is θ-singular.

θ-singular roots are precisely the roots of Φ(T ) for which the corresponsing root groups

Gα := Gsα contain both a θ-split and a θ-fixed torus. This means that inside the root

group one can ‘flip’ a torus from θ-split to θ-fixed and vice versa.

For a maximal torus T , the roots Φ(T ) can be classified in analogy with the case

k = R. θ acts on the Weyl group, and therefore on the reflections corresponding to the

roots. Thus θ acts on Φ. If θ(α) = −α then α is called a real root, if θ(α) = α then
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α is called imaginary, and α is called complex if θ(α) 6= ±α. If α is imaginary and θ-

singular then it is called imaginary noncompact, if imaginary α is not θ-singular it is

called imaginary compact.

Definition 4.1.8. Two roots α, beta ∈ Φ(T ) are called strongly orthogonal if (α, β) = 0

and α± β /∈ Φ(T ).

Theorem 4.1.9. Let T be a θ-stable maximal torus of G and Ψ = {α1, . . . , αr} ⊂ Φ(T )

a set of strongly orthogonal roots. Let GΨ = Gα1 · · ·Gαr . Then

[GΨ, GΨ] =
r∏
i=1

[Gαi , Gαi ]

Moreover, if α1, . . . , αr are θ-singular, then θ|[GΨ,GΨ] is split and

rank([GΨ, GΨ]) = rank([GΨ, GΨ] ∩H).

4.2 Non-algebraically Closed Fields

This more general setting was the subject of [16], for our purposes it will be used to

determine the domain of the generalized complexification map restricted to the I-poset.

4.2.1 Standard Pairs

Let A denote the set of θ-stable maximal k-split tori.

Definition 4.2.2. Let A1, A2 ∈ A . Then (A1, A2) is called a standard pair if A−1 ⊂ A−2

and A+
2 ⊂ A+

1 . A1 is said to be standard with respect to A2.

The θ-stable maximal k-split tori can be arranged in to chains of standard pairs as

in the algebraically closed case.

Theorem 4.2.3. Let A be a maximal θ-stable k-split torus with A− maximal (θ, k)-split.

Then there exists a θ-stable maximal k-split torus S standard with respect to A such that

S+ is a maximal k-split torus of H.
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4.2.4 (θ, k)-singularity

The one dimensional subgroups containing both a θ-fixed k-split torus and a (θ, k)-split

torus depend heavily on the k-structure of the group but can still be parameterized by

tori. Therefore we refine the definition of the previous section to describe these groups.

An involution defined over k of a connected reductive group M is called split if there

exists a maximal (θ, k)-split torus.

Definition 4.2.5. Let A ∈ A and for each α ∈ Φ(A) let ker(α) = {a ∈ A | sα(a) = a}.
Set Gα = ZG(ker(α). Then α is called (θ, k)-singular if

(a) θ|[Gα,Gα] is split

(b) rank([Gα, Gα]) = rank([Gα, Gα] ∩H)

Theorem 4.2.6. Let A be a θ-stable maximal k-split torus of G and Ψ = {α1, . . . , αr} ⊂
Φ(A) a set of strongly orthogonal roots. Let GΨ = Gα1 · · ·Gαr . Then

[GΨ, GΨ] =
r∏
i=1

[Gαi , Gαi ]

Moreover, if α1, . . . , αr are (θ, k)-singular, then θ|[GΨ,GΨ] is k-split and k -rank([GΨ, GΨ]) =

k -rank([GΨ, GΨ] ∩H).
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Chapter 5

Generalized Complexification

Consider the orbits B\G/H over an algebraically closed field. These are the orbits of a

minimal parabolic subgroup acting on a symmetric variety, which can be related to the

orbits Pk\Gk/Hk of a minimal parabolic k-subgroup acting on a symmetric k-variety. A

description of how the algebraically closed orbits break up over a subfield is a fundamental

question related to the representation theory of the symmetric k-varieties. In this chapter

we approach this problem from the reverse angle, namely by embedding the orbits over

a subfield k into the orbits over its algebraic closure k̄. When k = R this process is

the complexification of the real orbits, thus we call the map yielded by the embedding

generalized complexification.

The primary goal is to obtain a condition for which the generalized complexifica-

tion map is surjective. The approach taken here will not yield a full description of how

algebraically closed orbits break up over a subfield, this problem requires a full charac-

terization of the Hk-conjugacy classes of θ-stable maximal k-split tori that has not yet

been completed. However, a study of the generalized complexification map requires only

knowledge of the H-conjugacy classes of θ-stable maximal tori, as shall be described in

this chapter.
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5.1 The Generalized Complexification Map

Let P ⊂ G be a minimal parabolic k-subgroup and A ⊂ P a maximal k-split torus. We

define the generalized complexification map:

ϕ : Pk\Gk/Hk → P\G/H

PkgHk 7→ PgH

Recall from Theorem 3.4.2 that there are several equivalent characterization of the double

cosets Pk\Gk/Hk. The generalized complexification map ϕ induces maps across all of

these equivalent formulations. Let A be a maximal k-split torus contained in P , then

given v ∈ Vk, let x(v) be representative in NGk(A) such that v = ZGk(A)x(v)Hk. Then

we have an induced map:

ϕV : Vk → V

ZGk(A)x(v)Hk 7→ ZG(A)x(v)H

5.2 k-split Groups

For the remainder we will concern ourselves only with the case of k-split groups. This

restriction will allow us to simplify the description of the orbits of minimal parabolic

k-subgroups acting on symmetric k-varieties. This allows for the

Let G be a k-split group. Then minimal parabolic k-subgroups are Borel k-subgroups.

In this case we have a simpler generalized complexification map:

ϕ : Bk\Gk/Hk → B\G/H

BkgHk 7→ BgH

The corresponding induced maps are also simpler in this case since the maximal k-split

tori are in fact maximal tori. Let A be a maximal k-split torus and x(v) ∈ NG(A) Thus

the generalized complexification of orbits corresponding to the Bk × Hk action on Gk
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becomes:

ϕ : Vk → V

Akx(v)Hk 7→ Ax(v)H

The greatestest simplification, however, occurs in the induced map among the union

of quotients of Weyl groups. Let {Ai}i∈I be a set of representatives of the Hk-conjugacy

classes of θ-stable maximal k-split tori. Then {Ai}i∈I corresponds to {Bi}i∈I′ , a set of

representatives for the H-conjugacy classes of θ-stable maximal tori. This is done in the

following manner. Among the {Ai} that correspong to the same H-conjugacy class of

θ-stable maximal tori, a representative is chosen. This set is then extended with arbitary

representatives of the H-conjugacy classes of θ-stable maximal tori not obtained from

the {Ai}. Therefore the generalized complexification map acts as the identity:

ϕ :
⋃
i∈I

WGk(Ai)/WHk(Ai)→
⋃
i∈I′

WG(Ai)/WH(Ai)

gWHk(Ai) 7→ gWH(Ai)

Remark 5.2.1. For groups that are not k-split, ϕ still induces a map on the union of Weyl

group quotients. This map is more complicated and involves the introduction of another

quotient.

5.3 Some Examples

In general, the surjectivity of the generalized complexification map depends on both

the choice of involution θ and th field of definition k. The first example of this section

illustrates the dependence of the surjectivity of the generalized complexification map on

the choice of involution.

Example 5.3.1. We return to the setting of Example 3.4.3, namely let G = SL(2,C) with

real form GR = SL(2,R). Note that in this case G is R-split. Let T denote the set of

diagonal matrices and P = B the set of upper triangular matrices.

(a) Let σ = Int( 0 1
1 0 ). Then from Example 3.4.3 we have that |BR\GR/HR| = 4. Two or-

bits correspond to each representative of the HR-conjugacy class of σ-stable maximal
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R-split tori, denote the orbits corresponding to T by O1 and O2. There is only one

orbit corresponding to T over C, therefore the complexification maps O1 and O2 to

the same orbit over C. Consider ϕ : BR\GR/HR → B\G/H. We can represent the

action of ϕ diagrammatically, as in Figure 5.3.1.

ϕ

−−−−−−−−−−−→
SL(2,R) SL(2,C)

θ = Int( 0 1
1 0 )

Figure 5.3.1: Generalized complexification of SL(2,R), θ = Int ( 0 1
1 0 )

(b) Let θ = Int( 0 1
−1 0 ). Then from Example 3.4.3 we have that |BR\GR/HR| = 1. The

complexification map has a cokernel, indicated by the empty nodes in Figure 5.3.2

ϕ

−−−−−−−−−−−→
SL(2,R) SL(2,C)

θ = Int ( 0 1
−1 0 )

Figure 5.3.2: Generalized complexification of SL(2,R), θ = Int ( 0 1
−1 0 )

Recall that there infinite number of orbits BQ\GQ/HQ for GQ = SL(2,Q). The com-

plexification of these orbits is quite similar to the complexification of the real orbits, as

shown in Figure 5.3.3 and Figure 5.3.4.

Furthermore, the surjectivity is also determined by the nature of the base field k.

Example 5.3.2. Let k = Q(i), Gk = SL(2, k), and θ = Int( 0 1
−1 0 ). Then there are still

an infinite number of Hk-conjugacy classes of (θ, k)-split tori. However, the fixed point

group H = SO(2, k) is diagonalizable via the matrix(
1
2
− 1

2
i −1

2
+ 1

2
i

1
2

+ 1
2
i 1

2
+ 1

2
i

)
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· · ·· · · ϕ

−−−−−−−−−−−→
SL(2,Q) SL(2,C)

θ = Int( 0 1
1 0 )

Figure 5.3.3: Generalized complexification of SL(2,Q), θ = Int ( 0 1
1 0 )

· · ·· · · ϕ

−−−−−−−−−−−→
SL(2,Q) SL(2,C)

θ = Int ( 0 1
−1 0 )

Figure 5.3.4: Generalized complexification of SL(2,Q), θ = Int ( 0 1
−1 0 )

This torus has only one Weyl group element with representatives in H, so there are two

orbits corresponding to a θ-fixed torus. The complexification diagram is given in Figure

5.3.5.

· · ·· · · ϕ

−−−−−−−−−−−→
SL(2,Q(i)) SL(2,C)
θ = Int( 0 1

−1 0 )

Figure 5.3.5: Generalized complexification of SL(2,Q(i)), θ = Int ( 0 1
−1 0 )

5.4 Double Cosets of Isomorphic Involutions

We begin the study of the surjectivity of the generalized complexification map by re-

ducing the complexity of the problem. The examples of Section 5.3 demonstrate the

dependence of surjectivity on the involution, therefore we demonstrate that the double

coset decompostion is dependent only the isomorphy class of involution.

Proposition 5.4.1. Let θ = γσγ−1 ∈ Aut(G,Gk) be isomorphic involutions with fixed

point groups H1 = Gθ and H2 = Gσ. Then H2 = γ−1(H1).
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Proof. Let h ∈ H1. Then σ(γ−1(h)) = γ−1θγ(γ−1(h)) = γ−1θ(h) = γ−1(h). Therefore

γ−1(H1) ⊂ H2. Since γ is one-to-one, we have that H2 = γ−1(H1).

Corollary 5.4.2. Assume the hypotheses of Proposition 5.4.1. If θ, γ are Int(G)-isomorphic,

then H1, H2 are conjugate.

Proof. Apply Proposition 5.4.1 to the case γ = Int(g) for some g ∈ G.

Theorem 5.4.3. Let θ, σ ∈ Aut(G) be involutions isomorphic by an element of Int(G).

If H1 = Gθ and H2 = Gσ, then θ and σ admit isomorphic double coset decompositions

B1\G/H1
∼= B2\G/H2. Furthermore, B1 and B2 are G-conjugate.

Proof. Suppose θ = Int(g)σ Int(g)−1. From Corollary 5.4.2 we have that H2 = g−1H1g.

LetB2 = g−1B1g. Given a double cosetB1xH1 ∈ B1\G/H1, we compute Int(g−1)(B1xH1) =

Int(g−1)(B1) Int(g−1)(x) Int(g−1)(H1) = B2g
−1xgH2 ∈ B2\G/H2. The inverse map is

given by Int(g), so we have B1\G/H1
∼= B2\G/H2.

The isomorphy of the double coset decompositions extends to k-isomorphy, using the

same proofs.

Theorem 5.4.4. Let θ, σ ∈ Aut(G,Gk) be Int(G,Gk)-isomorphic involutions with fixed

point groups H1 and H2 respectively. Then θ and σ admit k-isomorphic double coset

decompositions (B1)k\Gk/(H1)k ∼= (B2)k\Gk/(H2)k

5.5 Reduction to the I-poset

Recall that in light of Theorem 3.4.2, the double cosets Bk\Gk/Hk are parameterized

by the Hk-conjugacy of θ-stable maximal k-split tori. The Hk-conjugacy classes have not

been fully classified except in a number of specific cases, notably SL(2, k). However, for

algebraically closed fields a complete classfication was achieved in [15]. Fortunately, the

characterization of surjectivity of the generalized complexification map depends only on

the H-isomorphy classes of θ-stable maximal tori, which we show in this section.

The following is a result of Borel [6, 7].

Lemma 5.5.1. Let A be a k-torus of G. Then WGk(A) = WG(A).
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If we fix θ-stable maximal k-split tori A, we can restrict the generalized complexifi-

cation map

ϕ :
⋃
i∈I

WGk(Ai)/WHk(Ai)→
⋃
i∈I′

WG(Ai)/WH(Ai)

to the Weyl group quotient corresponding to A:

ϕA : WGk(A)/WHk(A)→ WG(A)/WH(A) (5.1)

Then we can consider the surjectivity of ϕA. The following lemma shows that this map

is in fact surjective in all cases.

Lemma 5.5.2. The map ϕA of Equation 5.1 is surjective.

Proof. It is clear that WHk(A) ⊂ WH(A). Given gWH(A) ∈ WG(A)/WH(A), the fiber is

nonempty since g has a representative in WGk(A).

Therefore surjectivity of the map between indexing sets of θ-stable maximal tori is

sufficient to ensure surjectivity of the generalized complexification map.

5.6 Cayley Transforms

Having restricted our attention to the I-poset, we now develop tools for working within

the I-poset. Over the real numbers Cayley transforms have been used to construct a new

torus from given torus that differs by one dimension in the θ-split and θ-fixed compenents

of the torus.

5.6.1 Cayley Transforms for k = R

In this section we summarize the construction in [24]. We begin by fixing G = SL(2,C).

Note that the Lie algebra of G is g = sl(2,C), the set of trace zero 2×2 matrices. Choose

the standard basis vectors for g, {h, e, f}. If we restrict the span to real multiples we

have a basis for gR = sl(2,R). Consider the alternate basis {h̃, ẽ, f̃} where

h̃ =

(
0 1

1 0

)
, ẽ =

1

2

(
1 −1

1 −1

)
, f̃ =

1

2

(
1 1

−1 −1

)
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Observe that h̃ is a maximal Cartan subalgebra and is fixed by the involution θ =

Int( 0 1
1 0 )., while h is the maximal Cartan subalgebra that is mapped to its negative under

θ. The Cayley transform is the map cβ = Ad(exp(π
4
)(f̃− ẽ)). Computing, we find cβ(h̃) =

h, cβ(ẽ) = e, cβ(f̃) = f . Therefore the Cayley transform maps a θ-stable maximal R-split

Cartan subalgebra to a (θ,R)-split maximal Cartan subalgebra.

5.6.2 The General Cayley Transform

Here we generalize this notion to arbitrary fields, but the construction is quite similar to

the real case. First we want to lift to the group level, where the adjoint action in the Lie

algebra is replaced by conjugation.

Fix a maximal (θ, k)-split torus A of G. Then A has a root system Φ(A) and for each

α ∈ Φ(A) we can define the root group Gα = ZG(ker(α)). Then the commutator [Gα, Gα]

is a semisimple group of rank 1, isomorphic to SL(2, k). Therefpre θ|[Gα,Gα] is inner. If

[Gα, Gα] contains a nontrivial θ-fixed torus S, we define a map η = Int
√

2
2

( 1 −1
1 1 ) that

acts on S. In analogy with the real case, η maps S to a θ-split torus of [Gα, Gα].

Remark 5.6.3. It may be the case that
√

2 6∈ k, in which case the action of η does not

necessarily preserve the k-rational points. However, since all maximal k-split tori are

Gk-conjugate, there exists an element of Gk whose action is equivalent to that of η, in

which case we call conjugation by the latter element the Cayley transform.

Lemma 5.6.4. S is k-split if and only if θ|[Gα,Gα]
∼= Int( 0 1

1 0 )

Proof. Since [Gα, Gα] ∼= SL(2, k), this follows directly from Theorem 2.4.3.

Furthermore, S is k-split implies η(S) is also k-split. We extend the action of η to the

rest of the torus trivially.

Example 5.6.5. Let G = SL(4,C) with R-form SL(4,R) and

θ(A) = Int


0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

 ((AT )−1) for all A ∈ G
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. Consider the torus

S =




a b 0 0

b a 0 0

0 0 c 0

0 0 0 d




Then dim(S+) = 1 and dim(S−) = 2. Consider the α ∈ Φ(S) such that θ(α) = α.

Then [Gα, Gα] ∼= SL(2,R) which contains the θ|[Gα,Gα]-fixed torus S̃ =

{(
a b

b a

)}
.

η(S̃) =

{(
a+ b 0

0 a− b

)}
which is θ|[Gα,Gα]-split. Extending to the whole torus we find

η(S) =


a+ b 0 0 0

0 a− b 0 0

0 0 c 0

0 0 0 d


which is θ-split.

5.7 I-posets for k = k̄

In order to discuss the surjectivity of the generalized complexification map we should

have a description of the I-posets in the image of the generalized complexfication map,

namely the I-posets for algebraically closed fields. This was carried out in [15].

Theorem 5.7.1. θ ∈ Int(G) if and only if rank(G) = rank(H).

5.8 Surjectivity of ϕ

We are now ready to prove the characterization of the surjectivity of ϕ, which will require

several lemmas. We have already reduced the problem to surjectivity in the I-poset, we

now show when this occurs. The main tool will be the Cayley transforms of Section 5.6.2,

which allow us to move through the I-poset.

Lemma 5.8.1. Suppose H contains a nontrivial k-split torus S. Then Φ(S) consists

θ-singular imaginary noncompact roots.
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Proof. Consider α ∈ Φ(S), then θ(α) = α. Construct the corresponding root group

Gα = ZG(ker(α)). Then by Lemma 5.6.4 we have that θ|[Gα,Gα]
∼= Int( 0 1

1 0 ). Therefore

[Gα, Gα] contains a θ-fixed k-split torus then can be flipped to a (θ, k)-split torus in

[Gα, Gα] via the Cayley transform η. Therefore α is θ-singular and imaginary noncompact.

Since the choice of α was arbitrary we have the result.

Remark 5.8.2. Given a k-split torus S ⊂ G contained in H, the proof constructs a new

torus that is standard to S whose split part is one dimension higher.

Corollary 5.8.3. Let S ⊂ H be a k-split torus. There exists a maximal orthogonal subset

of roots of torus lying in H such that each root is (θ, k)-singular.

We can iterate this process, performing successive Cayley transforms in the root

groups of a set of strongly orthogonal roots.

Lemma 5.8.4. Assume rank(G) = n and let S ⊂ H be a k-split torus of H and suppose

Ψ(S) = {α1, . . . , αr} ⊂ Φ(S) is a maximal set of strongly orthogonal roots. Then G

contains a (θ, k)-split torus of dimension n− r.

Proof. We use induction on r. We may assume the Ψ(S) consists of (θ, k)-singular roots.

The case r = 1 is carried out explicitly in the proof of Lemma 5.8.1. Now assume r > 1

and let α1S ⊂ H be the subtorus lying in [Gα1 , Gα1 ]. Then S = (α1S)S̃, where S̃ ⊂ S

denotes the factor of S such that [Gα1 , Gα1 ] ∩ S̃ = ± id. Then S̃ is a k-split torus in H

so Lemma 5.8.1 applies and |Ψ(S)| = r − 1.

Lemma 5.8.5. Let S be a maximal k-split torus of H. Then ZGk(S) contains a maximal

k-split torus of Gk.

Proof. Let S ⊂ H be a maximal k-split torus of H. Consider

A1 =

 ⋂
α∈Φ(T )
α⊥Φ(S)

ker(α)


◦

Since the −1-eigenspace of θ is orthogonal to H, π(A1) (where π is the usual projection)

contains a maximal torus of G/H, let A−1 be the inverse image of this torus. Then there

exists a subtorus of A−1 that is maximal k-split in G/H. Therefore S · A−1 is a maximal

k-split torus of G.
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Theorem 5.8.6. Let G be a k-split group. Then the generalized complexification map ϕ

is surjective if and only if k -rank(G) = k -rank(H).

Proof. First assume that ϕ is surjective and suppose k -rank(G) 6= k -rank(H). Let S

be a maximal k-split torus of H, then by assumption S is not maximal k-split. Let

S̃ ⊂ ZGk(S) be the maximal k-split torus containing S. Since G is k-split we have that

rank(G) = k -rank(G). Furthermore since k -rank(H) ≤ rank(H), our assumption yields

rank(H) = rank(G), and thus by Theorem 5.7.1 we have that θ is inner. θ ∈ Int(G)

implies H contains a maximal torus of G, denote this torus by A. S̃ cannot be H-

conjugate to any torus lying in H, therefore it is not Hk-conjugate. A does not have

have a premiage under generalized complexification in the I-poset, and therefore ϕ is not

surjective.

Next assume that k -rank(G) = k -rank(H). Then let S be a maximal k-split torus of

H, and thus a maximal torus of G. Then the Φ(S) and and the restricted root system

Φ0(S) consist of the same roots, thus they have the same maximal orthogonal set of roots

and all such roots are (θ, k)-singular. Thus we have surjectivty in the I-poset and thus

ϕ is surjective.

Definition 5.8.7. A quasi k-split torus of G is a torus conjugate under G to a k-split

torus of G.

All maximal k-split tori of G are conjugate, therefore all quasi k-split tori of G are

conjugate.

Let A be a θ-stable maximal k-split torus. We define:

VA = {x ∈ G/|xθ(x)−1 ∈ NG(A)}

Vk = {x ∈ Gk|xθ(x)−1 ∈ NGk(A)}

VA = {ZG(A)×H orbits on VA}

Vk = {ZGk(A)×H orbits on Vk}

A = { maximal quasi k-split tori of G}

Aθ = {θ-stable maximal quasi k-split tori of G}

Aθ0 = {A ∈ Aθ that are H-conjugate to a maximal k-split torus of G}

Aθk = {θ-stable maximal k-split tori of G}
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The surjectivity of ϕ implies surjectivty of the induced maps. Consider

ϕV : Vk → V, given by ZGk(A)gHk 7→ ZG(A)gH

Since each element of Vk corresponds to a double coset BkgHk, this map is closely re-

lated to the complexification map ϕ. ϕV is W -equivariant, which induces a map δ :

Vk/W → VA/W . By Proposition 12 in [18] we have bijections γ : VA/W → Aθ/H and

γk : Vk/W → Aθk/Hk. Let γ0 = γ
∣∣
V0/W

, then γ0 maps V0/W onto Aθ)/H. Finally denote

by ζ the map that takes Hk-conjugacy classes of maximal k-split tori to the H conjugacy

classes of these tori. Hence we get the following diagram:

Vk/W
γk−−−→ Aθk/Hkyδ yζ

V0/W
γ0−−−→ Aθ0/H

Corollary 5.8.8. If ϕ is surjective, then ϕV is surjective.

Proof. Let G1 = ZG(S), H1 = Gθ
1. Denote by G1,k (resp. H1,k) the k-rational points of

G1 (resp. H1). We will use the isomorphisms Bk\Gk/Hk
∼= Vk and B\G/H ∼= VA. Note

that ϕ induces a complexification map from Vk to VA that is surjective if and only if ϕ is.

Consider an orbit v of G1. Then there exists a maximal quasi k-split torus A of G1 and

an element g ∈ G1 such that v = ZG1(A)gH1. To this orbit we can associate an orbit of

G, namely v1 = ZG(A)gH. Since the complexification map Gk → G is complete we have

that im(η) = VA, therefore we can find an orbit (possibly renaming g) v2 = ZGk(A)gHk

(need to check independence of representative). Observe that G1, k ⊂ Gk, A ⊂ A1,

and H1,k ⊂ Hk. Then appropriate restrictions are defined, so we can associate an orbit

inside of G1 to v2, call it v3 = ZG1,k
(A)gH1,k. Then the complexification of v3 is v, hence

surjectivity.

Example 5.8.9. Let G = SL(n,C), GR = SL(n,R), θ(g) = (gT )−1 for all g ∈ G. Then

HR = SO(2,R), which is compact. Therefore R -rank(H) = 0, so ϕ is not surjective. In

fact, from the Iwasawa decomposition we can deduce the following generalized complex-

ification diagram on the I-poset:
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ϕ

−−−−−−−−−−−→
...

SL(n,R) SL(n,C)

Figure 5.8.1: Generalized complexification of SL(n,R), θ(g) = (gT )−1

5.9 Explicit Surjectivity

It remains to determine which combinations of group, field, and involution yield surjec-

tive generalized complexification. This requires an explicit description of the fixed point

groups of involutions and the k-split tori therein for k-split groups. Such descriptions

exist for the split forms of all semisimple algebraic groups except E7 and E8.

5.9.1 Type An−1

Let G = SL(n, k̄), Gk = SL(n, k). For θ inner, Table 2.3.2 gives the isomorphy classes

of involutions. By fixing a field, we can then treat each isomorphy class of involutions

separately to determine surjectivity.

θ = Int(In−i,i)

Recall that Int(In−i,i) ∼= Int(In−i,i), and that the fixed point group was given in Lemma

2.4.5. In light of Theorem 5.8.6 surjectivity is determined completely by the dimension

of a maximal k-split torus contained in H. It was shown in [4] that a maximal k-split

torus of H in this case is given by:

A =


B 0 . . . 0

0 x1

...
...

. . . 0

0 . . . 0 xn−2i
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where B is the 2i× 2i matrix:

a1 0 . . . . . . 0 b1

0
. . . . .

.
0

... ai bi
...

... bi ai
...

0 . .
. . . . 0

b1 0 . . . . . . 0 a1


Then dim(A) = n − 1 = k -rank(G), hence we have that the generalized complexi-

fication map is surjective in this case. Note that this result is independent of the field

k.

n = 2m, θ = Int(L2m,x)

The fixed point group is given in Lemma 2.4.6. Recall that x 6≡ 1 mod (k∗)2. The

maximal k-split torus of H is then:

A =
{

diag{a1, a1, . . . , an
2
an

2
},
∣∣ a2

1 · · · a2
n
2

= 1
}

Therefore we do not have surjectivity in these cases. Consider the centralizer in Hk of A:

ZHk(A) =


K1 0 . . . 0

0 K2

...
...

. . . 0

0 . . . 0 Kn
2


where each Ki is a 2× 2 matrix: (

ai bi

xbi ai

)
Then ZHk(A) is diagonalizable over k̃ = k(

√
x) since its eigenvalues are ai ± bi

√
x,

i = 1, 2, . . . , n
2
. Thus we have surjectivity of the generalized complexification over the

quadratic extension field k̃.
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5.10 Centralizer Lemma

Surjectivty of generalized complexification permeates much of the structure of the group,

and in particular it implies that surjectivity can be restricted to centralizers of tori, which

we show in this section. This allows for the use of inductive arguments on the double

cosets Bk\Gk/Hk of a k-split group, which are a key facet of many results in the case of

algebraically closed fields.

Lemma 5.10.1. Let G be a k-split group, suppose the generalized complexification map

ϕ : Bk\Gk/Hk → B\G/H is surjective, and let A ⊂ G be a k-split torus. Define G1 =

ZG(A), B1 ⊂ G1 a Borel sugroup, and H1 = H ∩ G1. Then the restriction ϕ|G1 is

surjective.

Proof. G1 is connected and reductive since A is a k-split torus. Moreover, B1 is contained

in a Borel subgroup of G, i.e. B1 = B ∩G1 for B a Borel subroup, and therefore (B1)k =

(B ∩G1)k. Thus the orbits (B1)g(H1) ∈ (B1)\(G1)/(H1) can be embedded in the orbits

Bk\Gk/Hk. Therefore there is a preimage of B1gH1 in Bk\Gk/Hk. Then ϕ−1(B1gH1) ∩
(G1)k is nonempty, so surjetivity is achieved.
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