
ABSTRACT

HERMAN, AARON PAUL. Positive Root Bounds and Root Separation Bounds. (Under the
direction of Hoon Hong.)

In this thesis, we study two classes of bounds on the roots of a polynomial (or polynomial

system). A positive root bound of a polynomial is an upper bound on the largest positive

root. A root separation bound of a polynomial is a lower bound on the distance between the

roots. Both classes of bounds are fundamental tools in computer algebra and computational

real algebraic geometry, with numerous applications. In the first part of the thesis, we study

the quality of positive root bounds. Higher quality means that the relative over-estimation (the

ratio of the bound and the largest positive root) is smaller. We find that all known positive

root bounds can be arbitrarily bad. We then show that a particular positive root bound is

tight for certain important classes of polynomials. In the remainder of the thesis, we turn

to root separation bounds. We observe that known root separation bounds are usually very

pessimistic. To our surprise, we also find that known root separation bounds are not compatible

with the geometry of the roots (unlike positive root bounds). This motivates us to derive new

root separation bounds. In the second part of this thesis, we derive a new root separation for

univariate polynomials by transforming a known bound into a new improved bound. In the

third part of this thesis, we use a similar strategy to derive a new improved root separation

bound for polynomial systems.

© Copyright 2015 by Aaron Paul Herman

All Rights Reserved

Positive Root Bounds and Root Separation Bounds

by
Aaron Paul Herman

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2015

APPROVED BY:

Erich Kaltofen Seth Sullivant

Agnes Szanto Elias Tsigaridas

Hoon Hong
Chair of Advisory Committee

DEDICATION

To my family.

ii

BIOGRAPHY

Aaron P. Herman and his identical twin Jonathan were born in Winston Salem, North Carolina.

Shortly thereafter, their family moved across the country to Bozeman, Montana where they

remained until their father finished his PhD in Physics. The family then swapped coasts again,

settling in Radford, Virginia. Aaron went to the College of William and Mary and started out

as a Physics major. Two years of studying Physics taught Aaron that laboratories were not

for him, so he switched to Mathematics. After graduating he enrolled in the PhD program at

North Carolina State University. His post graduation goal is to once again switch coasts, and

find a job in the Seattle, Washington area.

iii

ACKNOWLEDGEMENTS

Special thanks to

• My advisor, Hoon Hong, for teaching me how to think. And, even more impressively, how

to slow down.

• Elias Tsigaridas, for helping me have an adventure.

• The members of my PhD committee, for their excellent input.

• Jeff and the rest of the crew, for keeping things fun (and sane).

• Last but certainly not least, my family, for never ending support.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

Chapter 1 Introduction . 1

Chapter 2 Background . 4
2.1 Positive Root Bounds of Univariate Polynomials 4

2.1.1 Derivation of the Hong Bound . 6
2.1.2 Computing the Hong Bound in Linear Time 9

2.2 Root Separation Bounds of Univariate Polynomials 18
2.2.1 Derivation of the Mahler-Mignotte Bound 19

2.3 Root Separation Bounds of Polynomial Systems 25
2.3.1 Derivation of the Emiris-Mourrain-Tsigaridas Bound 26

Chapter 3 Positive Root Bounds of Univariate Polynomials 33
3.1 Main Results . 34
3.2 Proof of Theorem “Over-Estimation is unbounded” 37
3.3 Proof of Theorem “Over-Estimation when Descartes Rule of Signs is exact” . . . 40
3.4 Proof of Theorem “Over-Estimation when there is a single sign variation” 42
3.A Root of witness polynomials approaches 1/2 . 45
3.B Average relative over-estimation for polynomials with single sign variation 47
3.C Relative over-estimation when the number of sign variations is not equal to the

number of positive roots . 48

Chapter 4 Root Separation Bounds of Univariate Polynomials 54
4.1 Challenge . 55
4.2 Main Result . 57
4.3 Derivation . 60

4.3.1 Overall framework . 60
4.3.2 Derivation of New Univariate Bound . 63

4.4 Performance . 72

Chapter 5 Root Separation Bounds of Polynomial Systems 74
5.1 Main Result . 75
5.2 Derivation . 78

5.2.1 Overall framework . 78
5.2.2 Derivation of New Multivariate Bound . 82

5.3 Performance . 92

References . 94

v

LIST OF FIGURES

Figure 1.1 Roots of f(x). The largest positive root is highlighted. 1
Figure 1.2 Roots of f(x) (left), distances between roots (center), minimum separation

highlighted (right) . 3

Figure 2.1 Roots of f(x). The largest positive root is highlighted. 5
Figure 2.2 All positive and negative points (left), computation of s4 (middle), compu-

tation of s0 (right) . 10
Figure 2.3 Computation of H(f) . 12
Figure 2.4 Roots of f(x) (left), distances between roots (center), minimum separation

highlighted (right) . 18
Figure 2.5 The curves f1 = 0 and f2 = 0 (Left), the roots of F (center), with root

separation highlighted (right). 25
Figure 2.6 Not a separating element (left), separating element (right) 28

Figure 3.1 Plot of fc for b = 5 and c = 1 (left), c = .5 (middle), c = .2 (right) 37
Figure 3.2 Average value of RBH

(f) for fixed sign change location 47
Figure 3.3 RBH

(g26,k) for k = 0, . . . , 25 . 48
Figure 3.4 Plot of fc (red) and gc (blue) for d = k = 3 and c = .3 (left), c = .2 (middle),

c = .05 (right). 49
Figure 3.5 Plot of fc (red) and gc (blue) with appropriately chosen ε(c) for d = k = 4

and c = .3 (left), c = .2 (middle), c = .1 (right). 51

Figure 4.1 BMM (f(x/s)) . 56
Figure 4.2 Scaling covariance of BNew,∞ . 59
Figure 4.3 Scaled bound for BMM,2 and f . 61
Figure 4.4 Average Improvement for given B−Height and Degree 4 73
Figure 4.5 Improvement for Mignotte Polynomials . 73

Figure 5.1 Scaling covariance of BNew . 78
Figure 5.2 Root Separation of F and Root Separation of F (2) 79
Figure 5.3 Scaled bound for BEMT and F . 80
Figure 5.4 B−Height and Multivariate Improvement . 93

vi

Chapter 1

Introduction

In this thesis, we study two classes of bounds on the roots of a polynomial (or polynomial

system). A positive root bound of a polynomial is an upper bound on the largest positive

root. A root separation bound of a polynomial is a lower bound on the distance between the

roots. Both classes of bounds are fundamental tools in computer algebra and computational

real algebraic geometry, with numerous applications.

We first study positive root bounds. Consider the following example.

Example 1.1. Let f = 2x4 + 8x3 + 8x2− 7x− 6. The roots of f are plotted in Figure 1.1. The

largest positive root of f is .86. Hence, any number greater than or equal to .86 is a positive

root bound.

Figure 1.1: Roots of f(x). The largest positive root is highlighted.

Note that the numbers greater than or equal to .86 are not all of equal quality. In this

example, 8.6× 1026 is a positive root bound, but it over-estimates the largest positive root by

a factor of 1027. A much better positive root bound can be found: .86, which is exactly the

largest positive root. Unfortunately this is not a practical bound. If we were willing to do the

work to compute all of the roots of f , we would have no need for a positive root bound in the

1

first place.

We now consider a well known due to Hong (BH). The value of this positive root bound is

BH(f) = 1.63. This bound over-estimates the largest positive root by a factor of 1.9. Clearly,

1.63 is a positive root bound of higher quality than 1× 1026. This bound also has an advantage

over the exact bound. Unlike the exact bound, the Hong bound can be computed efficiently. So

we have a positive root bound that can be computed efficiently and is of very high quality for

this polynomial. Could we have known before computing the bound that it would be high quality

(or at the very least least, not arbitrarily bad)? We will answer this question in Chapter 3.

Our main concern in Chapter 3 will be the quality of efficiently computable positive root

bounds. Higher quality means that the relative over-estimation (the ratio of the bound and the

largest positive root) is smaller. We report four findings.

1. Most known positive root bounds can be arbitrarily bad ; that is, the relative over-estimation

can approach infinity, even when the degree and the coefficient size are fixed.

2. When the number of sign variations is the same as the number of positive roots, the

relative over-estimation of a positive root bound due to Hong (BH) is at most linear in

the degree, no matter what the coefficient size is.

3. When the number of sign variations is one, the relative over-estimation of BH is at most

constant, in particular 4, no matter what the degree and the coefficient size are.

In the remainder of the thesis, we study root separation bounds. Consider the following

example.

Example 1.2. Let f(x) = x4 − 60x3 + 1000x2 − 8000x. The roots of f(x) are plotted in

Figure 1.2. The lengths of the red line segments are the distances between the roots of f(x).

The root separation is the smallest of these distances. The root separation of f(x) is
√

200

(≈ 14.14), so any number ≤
√

200 is a root separation bound.

As with positive root bounds, not all root separation bounds are of equal quality. For

example, 1.00×10−100 is not a very good root separation bound. And also as with positive root

bounds, there exist a root separation bound of perfect quality:
√

200. But computing the exact

root separation is not practical, since the computation of the exact root separation requires the

computation of all of the roots of f .

We now consider the well known Mahler-Mignotte bound (BMM). The Mahler-Mignotte

bound can be computed efficiently, and has a similar form to all other known efficiently com-

putable root separation bounds. We have

BMM (f(x)) = 8.26× 10−6

2

Figure 1.2: Roots of f(x) (left), distances between roots (center), minimum separation high-
lighted (right)

Note that this value is much smaller than the exact root separation bound.

Now consider the polynomial f(x/2). Clearly, the roots of f(x/2) are the doubled roots

of f . Hence the root separation of f(x/2) is doubled. Naturally, we expect a root separation

bound of f(x/2) to be doubled as well. Let us see what happens:

BMM (f(x/2)) = 1.05× 10−6

It is not doubled; in fact, it is smaller! If we triple the roots, it turns out the Mahler-Mignotte

bound is even smaller. It appears that the Mahler-Mignotte bound is not compatible with the

geometry of the roots of f .

It is well known that current root separation bounds are very pessimistic. It is less well

known that root separation bounds do not scale correctly (as we see in the above example). So

we have a challenge. Namely, we want to find new root separation bounds such that

1. the new bounds are less pessimistic (or almost always less pessimistic) than known bounds

2. the new bounds scale correctly

3. and of course, the new bounds can be computed efficiently.

The main contributions of Chapters 4 and Chapter 5 are two new root separation bounds which

meet the challenge. The new bounds are derived by transforming a known root separation

bound into a new improved root separation bound which meets the challenge. In Chapter 4, we

transform the well known Mahler-Mignotte bound into a new improved bound. In Chapter 5,

we transform a multivariate bound due to Emiris, Mourrain, and Tsigaridas [18]. Experimental

evidence indicates that the improvement is usually very large, especially when the magnitude

of the roots are different from 1.

3

Chapter 2

Background

This thesis considers three topics: Positive Root Bounds (Chapter 3), Root Separation Bounds

of Univariate Polynomials (Chapter 4), and Root Separation Bounds of Polynomial Systems

(Chapter 5). In this chapter, we present background material for each topic. For all three topics,

we define the category of bounds being considered. We then re-derive previously discovered

results that are necessary in later chapters.

2.1 Positive Root Bounds of Univariate Polynomials

In this section, we discuss positive root bounds. A positive root bound of a polynomial is an up-

per bound on the largest positive root. Positive root bounds play an important role in computer

algebra and computational real algebraic geometry (see [53, 50, 47] for some applications). As a

consequence, there has been intensive effort on finding such bounds [30, 10, 2, 27, 49, 2, 3, 22, 6].

First, we formally define a positive root bound. Let f =
∑d

i=0 aix
i ∈ R[x] with positive

leading coefficient and at least one positive root.

Notation 2.1. x∗(f) = the largest positive root of f .

Definition 2.1. B ∈ R+ is a positive root bound if B ≥ x∗(f).

Example 2.1. Consider again the example from the introduction. Let f = 2x4 + 8x3 + 8x2 −

7x − 6. The roots of f are plotted in Figure 2.1. The largest positive root of f is x∗(f) = .86.

Hence, any number greater than or equal to .86 is a positive root bound.

Some well known positive root bounds are listed below.

• Lagrange, 1798 [30]

BL(f) = 1 +



max
q

aq<0

∣
∣
∣
∣
aq

ad

∣
∣
∣
∣





1
d−m

4

Figure 2.1: Roots of f(x). The largest positive root is highlighted.

where m = max{q : aq < 0}.

• Cauchy, 1829 [10]

BC(f) = max
q

aq<0

∣
∣
∣
∣
λaq

ad

∣
∣
∣
∣

1
d−q

where λ = #{q : aq < 0}.

• Kioustelidis, 1986 [27]

BK(f) = 2 max
q

aq<0

∣
∣
∣
∣
aq

ad

∣
∣
∣
∣

1
d−q

• Hong, 1998 [22]

BH(f) = 2 max
q

aq<0

min
p

ap>0
p>q

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

Stefanescu, Akritas, Strzebonksi, Vigklas, Batra and Sharma [49, 2, 6] extended the above

bounds by splitting single monomials as sums of several monomials and considering different

groupings of positive and negative monomials. Batra and Sharma [6] showed that the tightest

bound in their framework improves on BH by at most a constant. It is not clear whether a

similar statement holds for the framework in [2], but we have not been able to find a counter

example. Complex root bounds (upper bounds on the magnitude of the roots) are by definition

positive root bound as well (see [28, 20, 29, 35, 25, 23, 24, 41, 4, 26, 16]).

Of the positive root bounds listed above, the Hong bound will feature most prominently

in this thesis. To the best of the author’s knowledge, the Hong bound is the tightest linear

complexity positive root bound. It is not obvious that the Hong bound can be computed in

linear time, since it involves a max over a min. However, Melhorn and Ray [36] found an

ingenious way to compute it in linear time. Their algorithm will be crucial to the complexity

results in Chapter 4.

In the remainder of this section, we will consider the Hong bound. First, we re-derive the

5

Hong bound using a similar argument to that of Hong in [22]. Then we discuss the algorithm

of Melhorn and Ray.

2.1.1 Derivation of the Hong Bound

In this subsection, we re-derive the Hong bound. To the best of the author’s knowledge, every

positive root bound is derived using the following strategy:

1. Partition the monomials of f into a sum of the form

f = f1 + ∙ ∙ ∙+ fr

where every part has the form

fi(x) = apx
p +

∑

q∈Q

aqx
q

with aq < 0 and q < p for all q ∈ Q.

2. Find a positive root bound for each partition.

3. Define B(f) as the maximum of the positive root bounds derived in Step 2.

We will use this strategy to re-derive the bound of Hong. We will utilize the following Lemma,

which was first presented by Kioustelidis in [27].

Lemma 2.1 (Kioustelidis, 1986 [27]). Suppose f has the form

f = apx
p +

∑

q∈Q

aqx
q

with ap > 0, aq < 0 and q < p for all q ∈ Q. Then

f(x) ≥ 0 for all x ≥ B

where

B = 2 max
q∈Q

∣
∣
∣
∣
aq

ad

∣
∣
∣
∣

1
d−q

Proof. Let x ≥ B. We have

f(x) = apx
p +

∑

q∈Q

aqx
q

6

= apx
p



1 +
∑

q∈Q

aq

ap
xq−p





= apx
p



1−
∑

q∈Q

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣x

q−p





= apx
p



1−
∑

q∈Q

∣
∣
∣aq

ap

∣
∣
∣

xd−p





≥ apx
p



1−
∑

q∈Q

∣
∣
∣aq

ap

∣
∣
∣

Bp−q



 since x ≥ B (2.1)

To complete the proof, we will show that right term in the right hand side of (2.1) is positive.

We have

1−
∑

q∈Q

∣
∣
∣aq

ap

∣
∣
∣

Bp−q
= 1−

∑

q∈Q

∣
∣
∣aq

ap

∣
∣
∣

(

2 max
q∈Q

∣
∣
∣aq

ap

∣
∣
∣

1
p−q

)p−q

= 1−
∑

q∈Q

∣
∣
∣aq

ap

∣
∣
∣

2p−q max
q∈Q

∣
∣
∣aq

ap

∣
∣
∣

≥ 1−
∑

q∈Q

max
q∈Q

∣
∣
∣aq

ap

∣
∣
∣

2p−q max
q∈Q

∣
∣
∣aq

ap

∣
∣
∣

= 1−
∑

q∈Q

(
1
2

)p−q

≥ 1−
∑

q<p

(
1
2

)p−q

≥ 2−
∑

q≤p

(
1
2

)p−q

since the summand is 1 when q = p

> 2−
∞∑

i=0

(
1
2

)i

= 0 (2.2)

Combining (2.1) and (2.2) we have

f(x) ≥ 0

7

We have completed the proof of the Lemma.

To derive the Hong bound, we will partition f into a sum of polynomials of the form of

the polynomial in Lemma 2.1. There will be one part for every positive term of f . Negative

monomials will matched with the positive monomial that minimizes

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

, p > q

This choice of partition is motivated by the simple observation that a smaller positive root

bound is a tighter positive root bound.

Theorem 2.1 (Hong, 1998 [22] 1).

x∗(f) ≤ BH(f)

Proof. Let

μ(q) = arg min
p>q

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

Consider the following partition of f :

f =
∑

p
ap>0

fp where fp = apx
p +

∑

q
aq<0

μ(q)=p

aqx
q (2.3)

Note that every fp has the form of the polynomial in Lemma 2.1. Hence

fp(x) ≥ 0 for all x ≥ Bp (2.4)

where

Bp = 2 max
q

aq<0
μ(q)=p

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

= 2 max
q

aq<0
μ(q)=p

∣
∣
∣
∣

aq

aμ(q)

∣
∣
∣
∣

1
μ(q)−q

Combining (2.3) and (2.4) we have

f(x) ≥ 0 for all x ≥ max
p

ap>0

Bp (2.5)

1In [22], BH(f) is derived in a more general setting: absolute positivity of multivariate polynomials. Here we
simplify the proof by showing only that BH(f) is a positive root bound.

8

To complete the proof, we will simplify the right inequality of (2.5). We have

max
p

ap>0

Bp = 2 max
p

ap>0

max
q

aq<0
μ(q)=p

∣
∣
∣
∣

aq

aμ(q)

∣
∣
∣
∣

1
μ(q)−q

= 2 max
q

aq<0

∣
∣
∣
∣

aq

aμ(q)

∣
∣
∣
∣

1
μ(q)−q

= 2 max
q

aq<0

min
p

ap>0
p>q

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

since μ(q) = arg min
p>q

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

= BH(f) (2.6)

Combining (2.5), (2.6), and the fact that f has positive leading coefficient, we have

x∗(f) ≤ BH(f)

2.1.2 Computing the Hong Bound in Linear Time

In this subsection, we discuss Melhorn and Ray’s algorithm [36] for computing BH . To derive

the algorithm, they interpret BH geometrically. Then, using a strategy inspired by the Fast

Convex Hull algorithm, they compute BH in O(d) algebraic operations and comparisons.

Consider the following rewrite:

BH(f) = 2H(f), where H(f) = max
q

aq<0

min
p

ap>0
p>q

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

We will compute

log (H(f)) = max
q

aq<0

min
p

ap>0
p>q

log(|aq|)− log(|ap|)
p− q

= max
q

aq<0

min
p

ap>0
p>q

bp − bq

p− q

where bi = − log(|ai|). The current problem is interpreted as a geometric problem by viewing

(bp − bq)/(p − q) as the slope of the line between the points vp = (p, bp) and vq = (q, bq). We

distinguish between two classes of points. A point is a positive point point if ai > 0. A point is

9

Figure 2.2: All positive and negative points (left), computation of s4 (middle), computation of
s0 (right)

a negative point if ai < 0. Under this interpretation, we observe that the quantity

sq = min
p

ap>0
p>q

bp − bq

p− q

is the slope of the tangent line of vq and the set of positive points Pq = {vp : ap > 0, p > q}.

Equivalently, sq is the slope of the tangent line of vq and the Lower Hull of Pq. We want to find

the maximum value of sq over all of the negative points.

Example 2.2. We illustrate the concepts above with a simple example. Let f = 4x7 + 4x6 +

2x5 − 2x4 − x3 − 4x2 + 64x− 4. The positive points are

(7,− log(4)), (6,− log(4)), (5,− log(2)), (1,− log(64)) = (7,−2), (6,−2), (5,−1), (1,−6)

and the negative points are

(4,− log(2)), (3,− log(1)), (2,− log(4)), (0,− log(4)) = (4,−1), (3, 0), (2,−2), (0,−2).

In the left hand plot of Figure 2.2, the positive points are plotted in green and the negative

points are plotted in red.

Consider the negative point v4 = (4,−1). The value of s4 is the minimum of the slopes

of the lines in the middle plot of Figure 2.2. The line which achieves the minimum slope is

highlighted.

Consider the negative point v1 = (0,−2). The value of s0 is the minimum of the slopes of

every line between v1 and a positive point. Clearly this minimum is attained by a line between

v1 and a point in the lower hull of the positive points. Hence we need only to calculate the

minimum of the slopes of lines connecting v0 and points on the lower hull. In the right hand

plot of Figure 2.2, the positive points in the lower hull are circled. The value of s0 is the

10

minimum of the slopes of the two lines.

To compute the quantity log(H(f)) in O(d) algebraic operations and comparisons, we use

an algorithm inspired by the Fast Convex Hull algorithm of computational geometry. At each

step of the algorithm, we store and potentially update the following:

sq∗ = the maximum value of sq over the set of negative points

L = the lower hull of the set of positive points

We process the points vi from right to left (equivalently: from the points of the highest degree

coefficients to lower degree coefficients).

• If vi is a positive point, we update L using the standard update from the Fast Convex

Hull algorithm.

• If vi is a negative point, we update sq∗ (if necessary).

The total work done processing the positive points is O(d), since the Fast Convex Hull algorithm

is O(d)2. It is not obvious that we can process the negative points in a total of O(d) algebraic

operations and comparisons. In a naive algorithm, we would calculate si for every negative

point. Furthermore, in a naive calculation of si we would iterate through L starting from the

leftmost (or rightmost) point until we find the point of tangency, then use the point of tangency

to calculate si. This naive strategy would require O(d) operations for every negative point.

To speed up the processing of the negative coefficients, we make the following observations.

Observation 2.1. Let vq1 and vq2 be two negative points with q1 < q2. Note that by definition

vq1 lies to the left of vq2 and Pq1 ⊇ Pq2 . Let

Lq2 = the Lower Hull of Pq2

Lq1 = the Lower Hull of Pq1

T = the tangent point of vq2 and Lq2

l = the line from vq2 to T

Then

1. If T ∈ Lq1 and vq1 lies above l, then sq1 ≤ sq2 .

2. If T ∈ Lq1 and vq1 lies below l, then the tangent point of vq1 and Lq1 lies to the right of

T , and sq1 ≥ sq2 .

2Under the assumption that the points are already sorted from left to right.

11

Figure 2.3: Computation of H(f)

3. If T /∈ Lq1 , then every point to the left of T in Lq2 is not in Lq1 .

Example 2.3. We illustrate the above observations and the main ideas behind the algorithm

ComputeH with the same example as before. We will process the points from right to left and

at the end of the computation we will have found H(f). We will use Observation 2.1 to avoid

unnecessary computations.

v7: Since v7 is a positive point, we add the point to the (currently empty) lower hull L.

v6: Since v6 is a positive point, we compute the lower hull of L ∪ v6. Since the lower hull of

two (non vertical) points is simply the same two points, we have L = (v6, v7) .

v5: Since v5 is a positive point, we compute the lower hull of L∪ v5. We use the standard fast

convex hull update. We first set

L = (v5, v6, v7)

then check if we need to delete points from L. We consider the first three points of L.

Since a right turn is made on the path v7 → v6 → v5, we do not have to delete any points

from L. See the top left of Figure 2.3.

v4: Since v4 is a negative point and we have yet to compute a value of sq∗ , we compute s4.

To do so we search through L from the left until we find the tangent line with smallest

slope. We store the current maximum sq∗ = s4, the line l whose slope is s4 (the line from

v4 to v6), and the tangent point T = v6. See the top middle of Figure 2.3.

12

v3: Since v3 is a negative point, we potentially have to update sq∗ . However, v3 lies above

the line l. Hence s3 will clearly be smaller than s4, and there is no need to compute s3

(Observation 2.1.1). See the top right of Figure 2.3.

v2: Since v2 is a negative point, we potentially have to update sq∗ . We notice that v2 lies below

l. Hence we cannot use Observation 2.1.1 to avoid the computation of s2. However, we

can use Observation 2.1.2 to speed up the computation. We search through L to the right

starting at T = v6 to find the value of s3. In this manner, we avoid having to calculate

the slope of the line connecting v3 and v5. We note that s2 is larger than s4, hence we set

sq∗ = s2 . See the bottom left of Figure 2.3.

v1: Since v1 is a positive point, we update L. We calculate the lower hull of

L ∪ v1 = (v5, v6, v7) ∪ (v1)

We first set

L = (v1, v5, v6, v7)

Then consider the first three points in L. Since a left turn is made on the path v6 → v5 →

v1, we delete v5 from L. We now have

L = (v1, v6, v7)

Again, we consider the first three points in L. Since a left turn is made on the path

v7 → v6 → v1, we delete v6 from L. Note that T = v6 was deleted from L, as was every

point to the left of T in L (in this case, the only point to the left was v5), confirming

Observation 2.1.3.

Since the current tangent point (v6) was deleted from L, we will reset l and T :

T = v1

l = the line from v1 to (0,∞)

See the bottom middle of Figure 2.3.

v0: Since v0 is a negative point, we potentially update sq∗ . We notice that v0 lies below l.

Hence we cannot use Observation 2.1.1 to avoid the computation of s0. We search for

the point of tangency of v0 and L starting from T = v1, and find that v1 is the point of

tangency. The slope of the line from v0 to v1 is s0. We see that this number is smaller

than sq∗ = s2 (which is the slope of the line from v3 to v6). Hence we do not update sq∗ .

13

Finally, all of the points have been processed, and we return sq∗ = H(f).

Let us summarize the strategy in the above example. We use Observation 2.1 to efficiently

process the points from right to left. For a negative point vi, we first check if vi above l. If vi lies

above l, then there is no need to calculate si (Observation 2.1.1). If vi lies below l, we will search

through L to the right starting at T (Observation 2.1.2). We use the new point of tangency to

calculate si. Once the point of tangency is found, we set T to be the new point of tangency and

l to the line from vi to T . When processing a positive point, we potentially remove T from L.

If T is removed from L we set T to be the left-most point in L. When later negative points are

processed, no iteration to the right in L will traverse an edge that has already been traversed

(Observation 2.1.3). When T is reset, we set l to be the line from T to (0,∞), so that the next

negative point is guaranteed to be below l.

We are now ready to present the algorithm ComputeH (Algorithm 3) and discuss its com-

plexity (Theorem 2.2). We make the crucial observation that no logarithms are necessary for

the computation of H(f). By taking advantage of the simple fact that

log(A) ≤ log(B) ≤ A ≤ B

we can modify the algorithm discussed above to avoid logarithm computations.

For the following algorithms:

• We represent points (i,− log(|ai|) with the pair (i, |ai|).

• For P1 and P2 represented by (p1, |ap1 |) and (p2, |ap2 |) respectively, let

SP1,P2 =

(
|ap2 |
|ap1 |

) 1
p1−p2

• For P1 and P2 represented by (p1, |ap1 |) and (p2, |ap2 |) respectively, the line from P1 to

P2 is represented by

((p1, |ap1 |), (p2, |ap2 |))

14

Algorithm 1: LowerHullUpdate
Input : L = a list of points which form a lower hull, sorted from left to right.

P = a point to the left of L. T = a point in L. l = a line.
Output: (L′, T ′, l′) where L′ = the lower hull of P ∪ L. T ′ = T if T ∈ L′. Otherwise

T = P . l′ = l if T ∈ L′. Otherwise l =the line from P to (0,∞).
begin1

L′ ← (P ,L);2

T ′ ← T ;3

l′ ← l;4

P1,P2,P3 ← the first 3 elements of L′;5

while size(L′) > 2 and SP1,P2 > SP2,P3// A right hand turn is made on the6

path P1 → P2 → P3

do7

Remove P2 from L′;8

if P2 = T then9

T ′ ← P ;10

l′ ←the line from P to (0,∞);11

P1,P2,P3 ← the first 3 elements of L;12

end13

Algorithm 2: TangentPoint
Input : L = a list of points which form a lower hull, sorted from left to right.

P = a point to the left of L.
T = a point in L.

Output: T ′: The tangent point of P and the points to the right of T in L.
begin1

T ′ ← T ;2

if T ′ is not the right most point in L then3

Y ← the point to the right of T ′ in L;4

while T ′ is not the rightmost point in L and SP,T ′ > SP,Y// The slope of the5

line from P to T ′ is greater than the slope of the line from P
to Y

do6

T ′ ← Y ;7

end8

15

Algorithm 3: ComputeH

Input : f =
∑d

i=0 aix
i ∈ R[x]

Output: H(f)

begin1

T ← (d, |ad|);2

L ← [T];3

l ← LineThrough(T , (0,∞));4

H ← −∞;5

for i from d− 1 to 0 by −1 do do6

P ← (i, |ai|);7

if ai is positive then8

(L, T , l)← LowerHullUpdate(L,P , T , l);9

else10

if SP,l[2] < Sl[1],l[2] // P lies below l11

then12

T ← TangentPoint(L,P , T);13

l ← LineThrough(P , T);14

H ← max{H,Sl[1],l[2]};15

end16

16

Remark 2.1. In [36], the point T and line l are not reset when T is removed from L (as we

did when processing v1 in the previous example, and as we do in Algorithm 1). This appears

to a minor oversight which we correct here.

Theorem 2.2 (Melhorn, Ray, 2010 [36]). BH(f) can be computed in O(d) algebraic operations

and comparisons using

BH(f) = 2 ∙ ComputeH(f) (Algorithm 3)

Proof. We have already argued that that the total number of algebraic operations and com-

parisons required to process the positive points is O(d), since the Fast Convex Hull algorithm

requires O(d) algebraic operations and comparisons. We also already argued that no edge can

be traversed twice when processing negative points, due to Observation 2.1.3. In the Fast Con-

vex Hull algorithm, O(d) total edges appear in the lower hull. Hence the negative points are

processed in O(d) algebraic operations and comparisons as well.

17

2.2 Root Separation Bounds of Univariate Polynomials

In this section, we discuss root separation bounds of univariate polynomials. The root separa-

tion of a polynomial is the minimum distance between every pair of roots. A root separation

bound is a lower bound on the root separation. Root separation bounds are a fundamental

tool in algorithmic mathematics, with numerous applications in science and engineering. For

instance, they are employed in the study of topological properties of curves [31], exact geomet-

ric computation [32], algebraic number theory [19], sign evaluation of algebraic expressions [8],

quantifier elimination [46], and real root isolation [52, 51].

First, we provide a formal definition of a root separation bound. Let f =
∑d

i=0 aix
i =

ad

∏d
i=1

∏
(x− αi) ∈ C[x].

Notation 2.2. Δ(f) = mini 6=j |αi − αj | is the root separation of f .

Definition 2.2. B ∈ R+ is a root separation bound if B ≤ Δ(f).

Example 2.4. Consider again the example from the introduction. Let f(x) = x4 − 60x3 +

1000x2 − 8000x. The roots of f(x) are plotted in Figure 2.4. The lengths of the red line seg-

ments are the distances between the roots of f(x). The root separation is the smallest of these

distances. The root separation of f(x) is
√

200, so any number ≤
√

200 is a root separation

bound.

Figure 2.4: Roots of f(x) (left), distances between roots (center), minimum separation high-
lighted (right)

Most root separation bounds are functions of the discriminant and polynomial norms.

Definition 2.3. The discriminant of f is

dis(f) = a2d−2
d

∏

i 6=j

(αi − αj)

18

Some well known root separation bounds are listed below.

• Mahler-Mignotte, 1964 [33, 37]

BMM (f) =

√
3|dis(f)|

dd/2+1||f ||d−1
2

• Rump, 1979 [43]

BRum(f) =
min(1, |ad|)d(ln(d)+1)|dis(f)|

2d−1dd−1||f ||d(ln(d)+3)
1

• Mignotte, 1995 [40]

BMig(f) =

√
6|dis(f)|

dd/2((d− 2)(2d− 1))1/2||f ||d−1
2

• The DMM1 bound [52] 3

BDMM1(f) =
|a0|2

√
|dis(f)|

2d(d−1)/2−2||f ||d−1
2

There are many more root separation bounds in the literature (see [14, 5, 8, 37, 7, 44, 42,

39, 17] for more examples). Most have a structure similar to the bounds above.

In Chapter 4 of this thesis, we will present a framework for transforming a known root

separation bound into a new improved root separation bound. We will choose to transform the

Mahler bound. In the remainder of this section, we will re-derive the Mahler-Mignotte bound.

2.2.1 Derivation of the Mahler-Mignotte Bound

In this subsection, we re-derive the Mahler-Mignotte bound. We follow the commonly used

convention of combining Mahler’s original result from [33] and a result due to Mignotte [37].

Mignotte derived a bound on the Mahler Measure of a polynomial. This result is combined

with Mahler’s root separation bound (which depends on the Mahler measure of a polynomial)

to derive a new root separation bound which depends on the discriminant, degree, and norm

of a polynomial.

3In [52], an aggregate separation bound is presented. Aggregate separation bounds are generalizations of root
separation bounds. An aggregate separation bound is a lower bound on products of factors of the form |αi −αj |.
Here, we specialize the bound to the case when the product has a single factor. We also generalize the bound to
the case when f has complex coefficients. This is done by using the lower bound |αi| ≥ |a0|/M(f), instead of
|αi| ≥ M(f) (which only applies to integer polynomials).

19

Definition 2.4. The Mahler Measure of f is

M(f) = |ad|
d∏

i=1

max{1, |αi|}

We first re-derive Mignotte’s bound on the Mahler measure. We require the following

Lemma.

Lemma 2.2. Let γ ∈ C. Then

||(x + γ)f ||2 = |γ| ∙ ||

(

x +
1
γ̄

)

f ||2

Proof. Let a−1 = ad+1 = 0. To prove the claim, we will expand the squares of both sides of the

above equation and observe that they are equal. Consider the following chain of equalities:

||(x + γ)f ||22 =
d+1∑

i=0

|ai−1 + γai|
2

=
d+1∑

i=0

(ai−1 + γai)(ai−1 + γai)

=
d+1∑

i=0

(|ai−1|
2 + γaiai−1 + γai−1ai + |γ|2|ai|

2) (2.7)

Similarly, we have

|γ|2 ∙ ||

(

x +
1
γ

)

f ||22 =γγ ∙
d+1∑

i=0

∣
∣
∣
∣ai−1 +

ai

γ

∣
∣
∣
∣

2

=γγ ∙
d+1∑

i=0

(

ai−1 +
ai

γ

)(

ai−1 +
ai

γ

)

=
d+1∑

i=0

(γai−1 + ai) (γai−1 + ai)

=
d+1∑

i=0

(|γ|2|ai−1|
2 + γaiai−1 + γai−1ai + |ai|

2)

=
d+1∑

i=0

(|ai−1|
2 + γaiai−1 + γai−1ai + |γ|2|ai|

2) since a0 = ad+1 = 0 (2.8)

20

Combining (2.7) and (2.8) yields

||(x + γ)f ||22 = |γ|2 ∙ ||

(

x +
1
γ

)

f ||22

Taking the square root of both sides completes the proof.

Theorem 2.3 (Mignotte, 1974 [37]). We have

M(f) ≤ ||f ||2

Proof. Without loss of generality, suppose that 0 ≤ |α1| ≤ . . . |αk| ≤ 1 < |αk+1 ≤ . . . |αd|.

Define h(x) =
∏k

i=1(x− αi). We have

||f ||2 =|ad| ∙ ||
d∏

j=k+1

(x− αj)h||2

=|ad||αk+1| ∙ ||

(

x−
1

αk+1

) d∏

j=k+2

(x− αj)h||2 from Lemma 2.2

=|ad||αk+1| ∙ ∙ ∙ |αd| ∙ ||
d∏

j=k+1

(

x−
1
αj

)

h||2 from Lemma 2

=|ad|
d∏

i=1

max{1, |αi|} ∙ ||
d∏

j=k+1

(

x−
1
αj

)

h||2

=M(f) ∙ ||
d∏

j=k+1

(

x−
1
αj

)

h||2 (2.9)

Since h is monic, the polynomial
∏d

j=k+1

(
x− 1

αj

)
h is monic as well. Hence

||
d∏

j=k+1

(

x−
1
αj

)

h||2 ≥ 1 (2.10)

Combining (2.9) and (2.10) yields

M(f) ≤ ||f ||2

We have completed the proof of the Lemma.

We will now re-derive Mahler’s original bound: a root separation bound which depends on

the Mahler measure of f .

21

Theorem 2.4 (Mahler, 1964 [33]). We have

Δ(f) ≥

√
3|dis(f)|

d(d+2)/2M(f)d−1

Proof. Without loss of generality, suppose that |α1 − α2| = Δ(f), with |α1| ≥ |α2|. We

will expand the expression for |dis(f)| using the determinant of the Vandermonde matrix of

{α1, . . . , αd}.

|dis(f)|
|ad|2d−2

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 ∙ ∙ ∙ 1

α1 α2 ∙ ∙ ∙ αd

...
... ∙ ∙ ∙

...

αd−1
1 αd−1

2 ∙ ∙ ∙ αd−1
d

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

We can subtract the second column from the first without changing the value of the determinant:

|dis(f)|
|ad|2d−2

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 ∙ ∙ ∙ 1

α1 − α2 α2 ∙ ∙ ∙ αd

...
... ∙ ∙ ∙

...

αd−1
1 − αd−1

2 αd−1
2 ∙ ∙ ∙ αd−1

d

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

Hence

|dis(f)|
|ad|2d−2

= |α1 − α2|
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q0 1 ∙ ∙ ∙ 1

q1 α2 ∙ ∙ ∙ αd

...
... ∙ ∙ ∙

...

qd−1 αd−1
2 ∙ ∙ ∙ αd−1

d

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(2.11)

where q0 = 0 and

qh =
αh

1 − αh
2

α1 − α2
=

h−1∑

j=0

αj
1α

h−j
2 . (2.12)

Applying Hadamard’s inequality to the right hand side of (2.11), we have

|dis(f)|
|ad|2d−2

≤ |α1 − α2|
2(|q0|

2 + |q1|
2 + ∙ ∙ ∙+ |qd−1|

2)
d∏

i=2

pi (2.13)

where

pi =
d−1∑

j=0

|αi|
2j .

22

Dividing both sides of (2.13) by M(f)2d−2/|ad|2d−2 yields

|dis(f)|
M(f)2d−2

≤ |α1 − α2|
2 (|q0|2 + |q1|2 + ∙ ∙ ∙+ |qd−1|2)

max{1, |α1|}2d−2

d∏

i=2

pi

max{1, |αi|}2d−2
(2.14)

For i = 2, . . . , d we have

pi

max{1, |αi|}2d−2
=

d−1∑

j=0

∣
∣
∣
∣
∣

α2j
i

max{1, |αi|}d−1

∣
∣
∣
∣
∣

2

≤
d−1∑

j=0

1 = d (2.15)

We also have

(|q0|2 + |q1|2 + ∙ ∙ ∙+ |qd−1|2)
max{1, |α1|}2d−2

=
d−1∑

h=0

∣
∣
∣
∣

qh

max{1, |α1|}d−1

∣
∣
∣
∣

2

=
d−1∑

h=0

∣
∣
∣
∣
∣

∑h−1
j=0 αj

1α
h−j
2

max{1, |α1|}d−1

∣
∣
∣
∣
∣

2

from (2.12)

≤
d−1∑

h=0

∣
∣
∣
∣
∣
∣

h−1∑

j=0

1

∣
∣
∣
∣
∣
∣

2

since |α1| ≥ |α2| and h ≤ d

=
d−1∑

h=0

h2 (2.16)

Combining (2.14),(2.15), and (2.16), we have

|dis(f)|
M(f)2d−2

≤ |αr − αs|
2dd−1

d−1∑

h=0

h2 (2.17)

Note that
d−1∑

h=0

h2 =
d(d− 1)(2d− 1)

6
<

d3

3
(2.18)

Combining (2.17) and (2.18), we have

|dis(f)|
M(f)2d−2

≤ |α1 − α2|
2dd−1 d3

3
= |α1 − α2|

2dd+2 1
3

Solving for |α1 − α2| and recalling that |α1 − α2| = Δ(f), we have

Δ(f) ≥

√
3|dis(f)|

d(d+2)/2M(f)d−1

23

We now complete the derivation of the Mahler-Mignotte bound. Note that we present a

separation bound which has a slightly different form than those at the beginning of this section.

The bound in Proposition 2.1 depends on a parameter k ≥ 2, and is a function of the k−norm

of f .

Proposition 2.1. Let k ∈ R+, k ≥ 2 and

BMM (f) =

√
|dis(f)|

||f ||d−1
k

Pk(d)

where

Pk(d) =

√
3

dd/2+1(d + 1)(
1
2
− 1

k
)(d−1)

Then Δ(f) ≥ BMM,k.

Proof. When k = 2, we apply Theorem 2.3 to the expression in Theorem 2.4. For k ≥ 2, we

then apply the well known norm inequality

||f ||2 ≤ (d + 1)(
1
2
− 1

k
)||f ||k

24

2.3 Root Separation Bounds of Polynomial Systems

In this section, we discuss root separation bounds of polynomial systems. The root separation

of a polynomial system is the minimum distance between every pair of roots. A root sepa-

ration bound is a lower bound on the root separation. The study of root separation bounds

on polynomial systems is more recent than root separation bounds on univariate polynomials.

Many applications arise when generalizing algorithms for univariate polynomials; for example,

subdivision algorithms of polynomials systems can be analyzed with root separation bounds

[18, 34].

First, we will extend the definition of a root separation bound from the previous section to

polynomial systems. Let F = (f1, . . . , fn) ∈ Cn[x1, . . . , xn] be a zero dimensional polynomial

system with no multiple roots. Let {αi} denote the roots of F .

Notation 2.3. Δ(F) = mini 6=j ||αi − αj ||2 is the root separation of F .

Definition 2.5. B ∈ R+ is a root separation bound if B ≤ Δ(F).

Example 2.5. Let F = (f1, f2), where

f1 = x2
1 + x2

2 − 100

f2 = x2
1 − x2

2 − 25

The roots of F are plotted in Figure 2.5. Note that the root separation Δ(F) is
√

150. Hence,

any number less than or equal to
√

150 is a root separation bound.

Figure 2.5: The curves f1 = 0 and f2 = 0 (Left), the roots of F (center), with root separation
highlighted (right).

The study of root separation bounds on polynomial systems is relatively new. As a conse-

quence, we cannot present a list of efficiently computable separation bound formulas from the

literature (although there are bounds which are defined implicitly, eg [15]). We will concern

ourselves mainly with the Emiris- Mourrain-Tsigaridas bound.

25

• Emiris, Mourrain, and Tsigaridas, 2010 [18] 4

BEMT (F) =

√
|dis(Tf0)|

(
∏n

i=1 ||fi||Mi)D−1
P (d1, . . . , dn, n)

where

P (d1, . . . , dn, n) =

√
3

DD/2+1 ∙ n1/2C ∙
(√

D + 1(n + 1)DCD
∏n

i=1

(
di+n

di

)Mi
)D−1

Tf0 = the resultant of (f0, f1, . . . , fn) which eliminates {x1, . . . , xn}

f0 = a separating element in the set
{

u− x1 − ix2 − ∙ ∙ ∙ − in−1xn : 0 ≤ i ≤ (n− 1)

(
D

2

)}

Mi =
∏

j 6=i

dj

C =

(

(n− 1)

(
D

2

))n−1

In Chapter 5 of this thesis, we extend the framework of the previous chapter to transform a

known root separation bound on polynomial systems. We will choose to transform the Emiris-

Mourrain-Tsigaridas bound. In the remainder of this section, we re-derive the Emiris-Mourrain-

Tsigaridas bound.

2.3.1 Derivation of the Emiris-Mourrain-Tsigaridas Bound

In this section, we re-derive the Emiris-Mourrain-Tsigaridas bound. We will use the following

overall strategy:

1. Construct a u−resultant T (u). This is the resultant of F and a specially chosen f0 ∈

C[u, x1, . . . , xn] which eliminates {x1, . . . , xn} We choose f0 so that T (u) is square-free.

2. Relate the root separation of F and the root separation of T .

3. Apply the Mahler bound to T .

4. Combine steps 2 and 3 to construct the new root separation bound.

In [18], the authors apply the univariate root separation bound DMM1 (Theorem 1 in that

paper) in Step 3. Unfortunately Theorem 1 as stated has a slight error; it cannot be applied to

4The bound presented here is a slight modification of the bound in [18]. We perform the modification to
correct a slight error in the original bound. See the next section for more details.

26

non-integer polynomials. To derive the multivariate root separation bound, we need to apply a

univariate root separation bound which can be applied to complex polynomials. One strategy

is to modify DMM1 so that it applies to complex polynomials. Another strategy is to apply a

different bound; here, we simply apply BMah,∞ to T .

Before constructing the u−resultant T (u), we require the following definition.

Definition 2.6. Let f0 = u − r1x1 − ∙ ∙ ∙ − rnxn ∈ C[u, x1, . . . , xn]. We say f0 is a separating

element of F if the mapping

V (F)→ C

β 7→ r1β1 + ∙ ∙ ∙+ rnβn

is injective.

If f0 is a separating element of F , then the polynomial T (u) is square-free. We illustrate

the definition and square-free property by a simple example.

Example 2.6. Let F be the same as in Example 2.5. Consider

f0 = u− x1

In the left plot Figure 2.6, we project every point in R2 onto its x1 coordinate (the red line).

The projections of the four roots are the red dots. We can clearly see from this projection that

the mapping β 7→ β1 is not injective on the roots of F . Hence f0 is not a separating element of

F . Now consider the u-resultant

T (u) = res(f0, f1, f2) which eliminates x1 and x2

It is simple to verify that T (u) = (2u2 − 5)2. Clearly this polynomial is not square-free. Hence

any root separation on T (u) will trivially be zero.

Now consider the polynomial

f0 = u− x1 − x2

In the right plot of Figure 2.6, we project every point in R2 onto its x1 +x2 value (the red line).

The projections of the four roots are the red dots. We can clearly see from this projection that

the mapping β 7→ β1 + β2 is injective on the roots of F . Hence f0 is a separating element of F .

Now consider the same u−resultant construction as before, with the new choice of f0. We have

T (u) = 4u2 − 800u2 + 2500

27

We compute

dis(T) = 5.76× 1016 6= 0

Hence T (u) is square-free, and a root separation bound on T (u) will not be trivially 0.

Figure 2.6: Not a separating element (left), separating element (right)

Following [18], we will now present a well known set which has at least one separating

element.

Lemma 2.3 (Proposition 6 in [18]). The set

{

u− x1 − ix2 − ∙ ∙ ∙ − in−1xn : 0 ≤ i ≤ (n− 1)

(
D

2

)}

has at least one separating element.

The construction of the set above is motivated by the simple observation that there can be

at most (n− 1)
(
D
2

)
directions (r1, . . . , rn) which yield a non-injective projection. The set is also

chosen so that all polynomials in the set have integer coefficients.

Example 2.7. In the above example, f0 is the element of F defined by i = 1.

To relate the root separation of F and the univariate polynomial T , we require the Cauchy-

Schwartz inequality.

Lemma 2.4 (Cachy-Schwartz Inequality). Let a ∈ Cn and b ∈ Cn. Then

|a1b1 + ∙ ∙ ∙+ anbn|
2 ≤ (|a1|

2 + ∙+ |an|
2)(|b1|

2 + ∙ ∙ ∙+ |bn|
2)

28

Lemma 2.5. Let f0 = u− r1x1− ∙ ∙ ∙− rnxn ∈ R[u, x1, . . . , xn]. Let Tf0(u) denote the resultant

of F and f0 which eliminates x1, . . . , xn. Then

Δ(F) ≥
Δ(T)

(
r2
1 + ∙ ∙ ∙+ r2

n

)1/2

Proof. Let {γ}Di=1 denote the roots of T . Without loss of generality, assume that

γi = r1αi,1 + ∙ ∙ ∙+ rnαi,n (2.19)

Δ(F) = ||α1 − α2||2 (2.20)

We have

|γ1 − γ2|
2 = |(r1α1,1 + ∙ ∙ ∙+ rnα1,n)− (r1α2,1 + ∙ ∙ ∙+ rnα2,n)| from (2.19)

= |r1(α1,1 − α2,1) + ∙ ∙ ∙+ rn(α1,n − α2,n)|

≤
(
r2
1 + ∙ ∙ ∙+ r2

n

) (
(α1,1 − α2,1)

2 + ∙ ∙ ∙+ (α1,n − α2,n)2
)

from Lemma 2.4

=
(
r2
1 + ∙ ∙ ∙+ r2

n

)
||α1 − α2||

2
2

=
(
r2
1 + ∙ ∙ ∙+ r2

n

)2
Δ(F)2 from (2.20)

Rearranging and solving for Δ(F) yields

Δ(F) ≥
|γ1 − γ2|

(
r2
1 + ∙ ∙ ∙+ r2

n

)1/2

≥
Δ(T)

(
r2
1 + ∙ ∙ ∙+ r2

n

)1/2

We have completed the proof of the Lemma.

Lemma 2.6. Let f0 ∈ F and Tf0 the resultant of (f0, F) which eliminates x1, . . . , xn. Then

||Tf0 ||∞ ≤
n∏

i=1

||fi||
Mi
∞ CD(n + 1)D

n∏

i=1

(
n + di

di

)Mi

Proof. For i = 0, . . . , n, Tf0(u) is homogeneous of degree

d0d1d2 . . . di−1di+1 ∙ ∙ ∙ dn = d1d2 . . . di−1di+1 ∙ ∙ ∙ dn since d0 = 1

= Mi

in the coefficients of fi. It is well known that Tf0(u) is a homogenous integer polynomial in the

29

coefficients of (F, f0) with degree D in u. We can write

Tf0(u) = ∙ ∙ ∙+

(

ρkr
D−k
k

n∏

i=1

cMi
i,k

)

∙ uk + ∙ ∙ ∙ (2.21)

where ρk ∈ Z, cMi
i,k is a monomial in the coefficients of fi of total degree Mi, and rD−k

k is a

monomial in the coefficients of f0 with total degree D − k. Since

cMi
i,k = ae1

1 ∙ ∙ ∙ a
er
r

with all aj coefficients of fi and e1 + ∙ ∙ ∙+ er = Mi, we have

cMi
i,k = ae1

1 ∙ ∙ ∙ a
er
r

≤ ||fi||
e1
∞ ∙ ∙ ∙ ||fi||

er
∞

= ||fi||
e1+∙∙∙+rr
∞

= ||fi||
Mi
∞

Hence
n∏

i=1

cMi
i,k ≤

n∏

i=1

||fi||
Mi
∞ (2.22)

Under identical reasoning, we have

|rk|
D−k ≤ ||f0||

D−k
∞ ≤ CD−k (2.23)

From Theorem 1.1 of [48], we have

max |ρk| ≤
n∏

i=0

(# of monomials of degree di)
Mi (2.24)

Since f0 ∈ F , the number of monomials of degree d0 is (n+1). Note also that M0 = d1 ∙ ∙ ∙ dn = D.

Hence

(# of monomials of degree d0)
M0 = (n + 1)D (2.25)

For i ≥ 0, we have

(# of monomials of degree di)
Mi ≤

(
n + di

di

)Mi

(2.26)

30

Combining (2.24), (2.25), and (2.26), we have

max |ρk| ≤ (n + 1)D
n∏

i=1

(
n + di

di

)Mi

(2.27)

Now we bound the norm of Tf0 . We have

||Tf0 ||∞ = max
0≤k≤D

∣
∣
∣
∣
∣
ρkr

D−k
k

n∏

i=1

cMi
i,k

∣
∣
∣
∣
∣

≤ max
0≤k≤D

∣
∣
∣
∣
∣
ρkr

D−k
k

n∏

i=1

||fi||
Mi
∞

∣
∣
∣
∣
∣

from (2.22)

=
n∏

i=1

||fi||
Mi
∞ max

0≤k≤D

∣
∣
∣ρkr

D−k
k

∣
∣
∣

≤
n∏

i=1

||fi||
Mi
∞ max

0≤k≤D

∣
∣
∣ρkC

D−k
∣
∣
∣ from (2.23)

=
n∏

i=1

||fi||
Mi
∞ CD max

0≤k≤D
|ρk|

≤
n∏

i=1

||fi||
Mi
∞ CD max

0≤k≤D

∣
∣
∣
∣
∣
(n + 1)D

n∏

i=1

(
n + di

di

)Mi

∣
∣
∣
∣
∣

from (2.27)

=
n∏

i=1

||fi||
Mi
∞ CD(n + 1)D

n∏

i=1

(
n + di

di

)Mi

We have proved the Lemma.

Theorem 2.5 (Emiris, Mourrain, and Tsigaridas, 2010 [18]). Let

B(F) =

√
|dis(Tf0)|

(
∏n

i=1 ||fi||Mi)D−1
P (d1, . . . , dn, n)

where

P (d1, . . . , dn, n) =

√
3

DD/2+1 ∙ n1/2C ∙
(√

D + 1(n + 1)DCD
∏n

i=1

(
di+n

di

)Mi
)D−1

Tf0 = the resultant of (f0, f1, . . . , fn) which eliminates {x1, . . . , xn}

f0 = a separating element in the set
{

u− x1 − ix2 − ∙ ∙ ∙ − in−1xn : 0 ≤ i ≤ (n− 1)

(
D

2

)}

31

Mi =
∏

j 6=i

dj

C =

(

(n− 1)

(
D

2

))n−1

Then Δ(F) ≥ B(F).

Proof. Clearly, we can write

f0 = u− r1x1 − ∙ ∙ ∙ − rnxn (2.28)

Since f0 ∈ F , we have

|rk| ≤ C, k = 1 ∙ ∙ ∙ , n (2.29)

Combining (2.28), (2.29), and Lemma 2.5, we have

Δ(F) ≥
Δ(Tf0)

(
r2
1 + ∙ ∙ ∙+ r2

n

)1/2
≥

Δ(Tf0)

(n ∙ C2)1/2
=

Δ(Tf0)

n1/2 ∙ C
(2.30)

We now apply the bound BMah,∞ to Tf0 . Recall that the degree of Tf0 is D. We have

Δ(Tf0) ≥ BMah,∞(Tf0)

=

√
3|dis(Tf0)|

DD/2+1
√

D + 1
D−1
||Tf0 ||

D−1
∞

≥

√
3|dis(Tf0)|

DD/2+1
√

D + 1
D−1

(∏n
i=1 ||fi||

Mi
∞ CD(n + 1)D

∏n
i=1

(
n+di

di

)Mi
)D−1

(2.31)

where the last inequality is from Lemma 2.6. Combining (2.30) and (2.31) yields

Δ(F) ≥

√
3|dis(Tf0)|

DD/2+1
√

D + 1
D−1
∙ n1/2C ∙

(∏n
i=1 ||fi||

Mi
∞ CD(n + 1)D

∏n
i=1

(
n+di

di

)Mi
)D−1

=

√
|dis(Tf0)|

(
∏n

i=1 ||fi||Mi)D−1
P (d1, . . . , dn, n)

= B(F)

We have completed the proof of the theorem.

32

Chapter 3

Positive Root Bounds of Univariate

Polynomials

Introduction

In this chapter, we investigate the quality of known positive root bounds. Of course, every

positive root bound over-estimates the largest real root. Higher quality means that the relative

over-estimation (the ratio of the positive root bound and the largest positive root) is smaller.

We report three findings.

1. We show that most known positive root bounds can be arbitrarily bad ; that is, the relative

over-estimation can approach infinity, even when the degree and the coefficient size are

fixed. A precise statement is given in Theorem 3.1. Contrast this result with similar results

on root bounds (upper bounds on the magnitude of the roots): it has been shown that

a root bound due to Fujiwara over-estimates the largest magnitude by at most twice the

degree [54].

In fact, we prove a more general result: we show that every positive root bound which is

also an absolute positiveness bound (a bound on the largest positive root and the positive

roots of the derivatives, see Definition 3.1) can be arbitrarily bad. All positive root bounds

listed in Chapter 2 are absolute positiveness bounds, as well as every positive root bound

derived in the framework in [6]. It also appears that every positive root bound derived in

the framework in [2] is an absolute positiveness bound, although we do not have a proof.

2. We show that when the number of sign variations is the same as the number of positive

roots, the relative over-estimation of the Hong Bound (BH) is at most linear in the degree,

no matter what the coefficient size is. A precise statement is given in Theorem 3.2.

33

The motivation for considering number of sign variations is as follows. Theorem 3.1 is

a consequence of the fact that for fixed degree and coefficient size, the largest positive

root of a polynomial can be arbitrarily smaller than the largest root of its derivatives.

Therefore one might wonder if the quality is better when the largest positive root bounds

the roots of the derivatives also. One natural case when this happens is when Descartes

Rule of Signs is exact (Lemma 3.5).

It is immediate from an example in Theorem 5.3 of [22] that the relative over-estimations

of BL, BC , and BK (presented in Chapter 2) can approach infinity, even when the degree

is fixed and when the number of sign variations is the same as the number of positive

roots. The proof strategy for Theorem 3.2 can be easily adapted to show that the relative

over-estimation of every positive root bound in the framework in [6] is at most linear in

the degree. It also immediate that there exists at least one positive root bound (namely

BK) in the framework from [2] whose relative over-estimation can approach infinity.

3. We show that when the number of sign variations is one, the relative over-estimation of

BH is at most constant, in particular 4, no matter what the degree and the coefficient

size are. A precise statement is given in Theorem 3.3.

It is again immediate from an example in Theorem 5.3 of [22] that the relative over-

estimations of BL, BC , and BK can approach infinity, even when the degree is fixed and

when the number of sign variations is one. It is not clear if there exists a constant bound

on the relative over-estimation for every positive root bound in the framework from [6].

It also immediate that there exists at least one positive root bound (namely BK) in the

framework from [2] whose relative over-estimation can approach infinity.

3.1 Main Results

In this section, we will precisely state the main results of this chapter. Let f =
∑d

i=0 aix
i ∈ R[x].

We will assume the following throughout the chapter.

Assumption 3.1.

1. f has a positive leading coefficient.

2. f has at least one positive root.

We will use the following notations.

34

Notation 3.1.

||f || = max
0≤i<d−1

|ai|
|ad|

V(f) = the number of sign variations of f

C(f) = the number of positive roots of f , counting multiplicities

x∗(f) = the largest positive root of f

B(f) = an upper bound on x∗(f)

RB(f) =
B(f)
x∗(f)

Remark 3.1. From Descartes Rule of Signs, we have V(f) ≥ C(f) and V(f) ≡ C(f) mod 2.

The symbol B stands for a positive root bound. The symbol R stands for “relative over-

estimation”. For every positive root bound B, we obviously have RB(f) ≥ 1.

Definition 3.1 (Absolute positiveness bound [22]). B : R[x]→ R+ is an absolute positiveness

bound if

B(f) ≥ a∗(f)

where a∗(f) is the threshold of absolute positiveness

a∗(f) = max
{

α ∈ R : ∃i ∈ [0, . . . , d − 1] f (i)(α) = 0
}

First we show that every absolute positiveness bound can be arbitrarily bad.

Theorem 3.1 (Over-Estimation is unbounded). Let B : R[x]→ R+ be an absolute positiveness

bound. Let d ≥ 4 and b > 0. Then

sup
deg(f)=d
||f ||=b

RB(f) =∞

Next we show that when the number of sign variations is equal to the number of positive

roots, the relative over-estimation of BH is at most linear in the degree.

Theorem 3.2 (Over-Estimation when Descartes Rule of Signs is exact). We have

sup
deg(f)=d
V(f)=C(f)

RBH
(f) ≤

2d

ln(2)

Finally we show that when the number of sign variations is one, the relative over-estimation

of BH is at most constant, in particular 4.

35

Theorem 3.3 (Over-Estimation when there is a single sign variation). We have

sup
V(f)=1

RBH
(f) = 4

Example 3.1. We will illustrate the result by a simple example.

f = x3 + 9x2 − 3x− 6

V(f) = 1

x∗(f) ≈ 0.94

BH(f) = 2 max
q∈{0,1}

min
p∈{2,3}

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

= 2 max

{

min

{(
6
9

) 1
2−0

,

(
6
1

) 1
3−0

}

, min

{(
3
9

) 1
2−1

,

(
3
1

) 1
3−1

}}

≈ 1.63

RBH
(f) =

B(f)
x∗(f)

≈ 1.73

Thus we have

RBH
(f) ≈ 1.73 ≤ 4,

confirming Theorem 3.3.

Remark 3.2. It turns out that when the sign variation is fixed at 1, the index at which the

sign variation occurs affects the average value of the relative over-estimation. We discuss this

phenomena in Appendix 3.B.

Remark 3.3. What if the number of sign variations is greater than one and not the same as

the number of positive roots? It turns out that the relative over-estimation of every absolute

positiveness bound can approach infinity even when the degree is fixed. Precisely, for every

absolute positiveness bound B and k > 1, one can show that

sup
deg(f)=d
V(f)=k

C(f) 6=V(f)

RB(f) =∞

We include a proof of this statement in Appendix 3.C.

36

3.2 Proof of Theorem “Over-Estimation is unbounded”

In this section, we will prove Theorem 3.1. Let B be an absolute positiveness bound. Let

d ≥ 4, b > 0 be fixed. We will exploit the following polynomial parameterized by c:

fc =






xd−4(x− c)(x + c)
(
(x− b

2)2 + c2
)

b < 4

xd−4(x− c)(x + c)
(
(x−

√
b)2 + c2

)
b ≥ 4

=






xd − bxd−1 + b2

4 xd−2 + c2bxd−3 − c2
(

b2

4 + c2
)

xd−4 b < 4

xd − 2
√

bxd−1 + bxd−2 + c22
√

bxd−3 − c2
(
b + c2

)
xd−4 b ≥ 4

Figure 3.1: Plot of fc for b = 5 and c = 1 (left), c = .5 (middle), c = .2 (right)

We will use two key Lemmas.

Lemma 3.1. We have

1. fc satisfies Assumption 3.1.

2. deg(fc) = d.

3. ∃c > 0 ∀c ∈ (0, c) ||fc|| = b.

Proof. We prove them one by one.

1. Obvious.

37

2. Obvious.

3. Suppose b < 4. Let c be any positive number such that

c < 1 (3.1)

and

c2

(
b2

4
+ c2

)

< b (3.2)

Such a c exists because the left hand side of (3.2) can be made arbitrarily small for fixed

b. Then for all c ∈ (0, c), we have

||fc|| = max

{

b,
b2

4
, c2b, c2

(
b2

4
+ c2

)}

= max

{

b, c2b, c2

(
b2

4
+ c2

)}

since
b

4
< 1

= max

{

b, c2

(
b2

4
+ c2

)}

from (3.1)

= b from (3.2)

Suppose b ≥ 4. Let c be any positive number such that

c < 1 (3.3)

and

c2 ∙ (b + c2) < b (3.4)

Such a c exists because the right hand side of (3.4) can be made arbitrarily small for fixed

b. Then for all 0 < c < c, we have

||fc|| = max
{

2
√

b, b, c2 ∙ 2
√

b, c2 ∙ (b + c2)
}

= max
{

2
√

b, b, c2 ∙ (b + c2)
}

from (3.3)

= max
{
b, c2 ∙ (b + c2)

}
since 2 <

√
b

= b from (3.4)

We have proved the Lemma.

Lemma 3.2. There exists ω > 0 such that for all c > 0

1. x∗(fc) = c

38

2. B(fc) ≥ ω

Proof. We prove them one by one.

1. Obvious.

2. Suppose b < 4. Let ω = b
d and c > 0. We have

f (d−1)
c = (d)(d− 1) ∙ ∙ ∙ (2) ∙ x− (d− 1)(d− 2) ∙ ∙ ∙ (1) ∙ b

Hence x∗(fc)(d−1) = b
d = ω. Since B is an absolute positiveness bound, we have

B(fc) ≥ x∗(fc)
(d−1) = ω

Suppose b ≥ 4. Let ω = 2
√

b
d and c > 0. We have

f (d−1)
c = (d)(d− 1) ∙ ∙ ∙ (2) ∙ x− (d− 1)(d− 2) ∙ ∙ ∙ (1) ∙ 2

√
b

Hence x∗(fc)(d−1) = 2
√

b
d = ω. Since B is an absolute positiveness bound, we have

B(fc) ≥ x∗(fc)
(d−1) = ω

We have proved the Lemma.

Proof of Theorem 3.1. Let c, ω be defined as in Lemmas 3.1 and 3.2. We have

sup
deg(f)=d
||f ||=b

RB(f) = sup
deg(f)=d
||f ||=b

B(f)
x∗(f)

≥ sup
fc

0<c<c

B(fc)
x∗(fc)

from Lemma 3.1

≥ lim
c→0

B(fc)
x∗(fc)

= lim
c→0

B(fc)
c

from Lemma 3.2

≥ lim
c→0

ω

c
from Lemma 3.2

=∞

We have proved Theorem 3.1.

39

3.3 Proof of Theorem “Over-Estimation when Descartes Rule

of Signs is exact”

In this section, we prove Theorem 3.2. Essentially, we prove Theorem 3.2 by showing that if

V(f) = C(f), then a∗(f) = x∗(f). We then use Theorem 2.3 of [22] to complete the proof. We

break the proof into several Lemmas for clarity.

Lemma 3.3. If

V(f) = C(f)

then

V(f ′) = C(f ′)

Proof. From Descartes Rule of Signs

C(f ′) ≤ V(f ′) (3.5)

and

C(f ′) = V(f ′) mod 2 (3.6)

From repeated application of Rolle’s Theorem, f ′ has at least C(f)− 1 positive roots. Hence

C(f ′) ≥ C(f)− 1

= V(f)− 1 since C(f) = V(f) (3.7)

Combining (3.5) and (3.7), we have

V(f)− 1 ≤ C(f ′) ≤ V(f ′) (3.8)

Clearly,

V(f ′) ≤ V(f) (3.9)

Combining (3.8) and (3.9), we have

V(f)− 1 ≤ C(f ′) ≤ V(f ′) ≤ V(f) (3.10)

Combining (3.6) and (3.10), we have

C(f ′) = V(f ′)

We have proved the Lemma.

40

Lemma 3.4. If

V(f) = C(f)

and f ′ has a positive root, then

x∗(f ′) ≤ x∗(f)

Proof. Let k = V(f). Without loss of generality, suppose that the positive roots of f are ordered

so that

α1 ≤ ∙ ∙ ∙ ≤ αk

Suppose that x∗(f ′) > x∗(f) = αk. We will derive a contradiction. From repeated application

of Rolle’s Theorem, f ′ has k − 1 roots in the interval [α1, . . . , αk]. Since f ′ has at most k roots

by Descartes Rule of Signs and x∗(f ′) > αk, f ′ has k roots

β1 ≤ . . . βk−1 ≤ βk

where βk−1 ≤ αk < βk. Since f has positive leading coefficient and αk is the largest root of f ,

f is strictly positive on (αk,∞) (3.11)

By identical reasoning

f ′ is strictly positive on (βk,∞) (3.12)

Since βk is not a double root of f ′, it follows that f ′ is strictly negative on the interval (βk−1, βk).

In particular,

f ′ is strictly negative on the interval (αk, βk) (3.13)

Since f(αk) = 0, from (3.13) we have

f is strictly negative on the interval (αk, βk) (3.14)

Combining (3.11) and (3.14) yields the desired contradiction.

We have proved the Lemma.

Lemma 3.5. If C(f) = V(f), then a∗(f) = x∗(f).

Proof. Suppose that

V(f) = C(f)

From Lemma 3.3, we have

V(f (i)) = C(f (i)), i = 1, . . . , d

41

Hence we can repeatedly apply Lemma 3.4 to show that

x∗(f (r)) ≤ ∙ ∙ ∙ ≤ x∗(f (1)) ≤ x∗(f)

where r is the largest index such that f (r) has a positive root. Hence

x∗(f) = a∗(f)

We have proved the Lemma.

Proof of Theorem 3.2. From Theorem 2.3 of [22], we have

BH(f)
a∗(f)

≤
2d

ln(2)
if deg(f) = d (3.15)

Hence

sup
deg(f)=d
V(f)=C(f)

RBH
(f) = sup

deg(f)=d
V(f)=C(f)

BH(f)
x∗(f)

= sup
deg(f)=d
V(f)=C(f)

BH(f)
a∗(f)

from Lemma 3.5

≤ sup
deg(f)=d
V(f)=C(f)

2d

ln(2)
from (3.15)

=
2d

ln(2)

We have proved Theorem 3.2.

3.4 Proof of Theorem “Over-Estimation when there is a single

sign variation”

In this section, we will prove Theorem 3.3. Let f be a polynomial with positive leading coefficient

and V(f) = 1. Note that ad > 0 and at < 0, where at is the trailing coefficient of f . We will

crucially exploit the following polynomial

g = −xdf

(
1
x

)

.

We begin by claiming and proving a key lemma.

42

Lemma 3.6. 1
BH(g) ≥

1
4BH(f).

Proof. Repeatedly rewriting g, we have

g = −xdf

(
1
x

)

= −xd
d∑

i=0

aix
−i =

d∑

i=0

−aix
d−i =

d∑

j=0

−ad−jx
j =

d∑

j=0

bjxj

where bj = −ad−j . Note that g has a positive leading coefficient (namely, −at) and at least one

negative coefficient. Recalling the definition of BH , we have

BH(g) = 2max
q

bq<0

min
p

bp>0
p>q

∣
∣
∣
∣
bq

bp

∣
∣
∣
∣

1
p−q

= 2 max
q

−ad−q<0

min
p

−ad−p>0
p>q

∣
∣
∣
∣
−ad−q

−ad−p

∣
∣
∣
∣

1
p−q

= 2 max
q

ad−q>0

min
p

ad−p<0
p>q

∣
∣
∣
∣
ad−q

ad−p

∣
∣
∣
∣

1
p−q

For later convenience, we carry out the somewhat unusual re-indexing d− q → p and d−p→ q,

obtaining

BH(g) = 2max
p

ap>0

min
q

aq<0
d−q>d−p

∣
∣
∣
∣
ap

aq

∣
∣
∣
∣

1
(d−q)−(d−p)

= 2max
p

ap>0

min
q

aq<0
p>q

∣
∣
∣
∣
ap

aq

∣
∣
∣
∣

1
p−q

Since V(f) = 1 and f has positive leading coefficient, the condition p > q is redundant. Dropping

the condition, we have

BH(g) = 2max
p

ap>0

min
q

aq<0

∣
∣
∣
∣
ap

aq

∣
∣
∣
∣

1
p−q

(3.16)

Note that the reciprocal of the maximum of a set of positive numbers is the minimum of the set

of the reciprocals. Likewise, the reciprocal of the minimum is the maximum of the reciprocals.

Thus we have
1

BH(g)
=

1
2

min
p

ap>0

max
q

aq<0

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

Using the well known min-max inequality, we have

1
BH(g)

≥
1
2

max
q

aq<0

min
p

ap>0

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

By adding back the redundant the condition p > q, we have

1
BH(g)

≥
1
2

max
q

aq<0

min
p

ap>0
p>q

∣
∣
∣
∣
aq

ap

∣
∣
∣
∣

1
p−q

(3.17)

43

By combining the (3.17) and the definition of BH(f), we finally have

1
BH(g)

≥
1
4
BH(f).

We have proved the lemma.

Proof of Theorem 3.3. We will first show that RBH
(f) ≤ 4, using the previous Lemma. Note

that the polynomial g has a positive leading coefficient, namely −at. It also has single sign

variation. Thus from [22], we have

RBH
(g) ≥ 1 (3.18)

From Descartes’ rule of sign, x∗(f) is the unique positive root of f . Likewise x∗(g) is the unique

positive root of g. Thus, we have
1

x∗(g)
= x∗(f) (3.19)

By combining Lemma 3.6 and Equations (3.19) and (3.18), we have

RBH
(f) =

BH(f)
x∗(f)

≤
4/BH(g)
1/x∗(g)

= 4
x∗(g)
BH(g)

= 4/R(g) ≤ 4.

We will now show that the over-estimation bound is optimal. More precisely, we will show

that there exist polynomials with positive leading coefficient, V(f) = 1, and relative over-

estimation arbitrarily close to 4. We will use the following family of polynomials paramterized

by d as a “witness” for optimality.

hd(x) = xd + xd−1 + ∙ ∙ ∙+ x− 1.

Note that hd has a positive leading coefficient and V(hd) = 1. Since every coefficient of hd is

±1, we have

BH(hd) = 2 (3.20)

It is easy to verify that

lim
d→∞

x∗(hd) = 1/2 (3.21)

(In Appendix 3.A we include a detailed proof). Combining (3.20) and (3.21), we have

lim
d→∞

R(hd) =
2

1/2
= 4

We have proved Theorem 3.3.

44

3.A Root of witness polynomials approaches 1/2

In this appendix, we prove equation 3.21. We require the following Lemma.

Lemma 3.7. For all d > 0, we have x∗(hd) > x∗(hd+1).

Proof. We will prove it by contradiction. Suppose that for some d > 0, we have

x∗(hd) ≤ x∗(hd+1).

Then

x∗(hd)
d+1 + x∗(hd)

d + ∙ ∙ ∙+ x∗(hd)− 1 ≤ x∗(hd+1)
d+1 + x∗(hd+1)

d + ∙ ∙ ∙+ x∗(hd+1)− 1 (3.22)

From the definition of x∗, we have

x∗(hd)
d + ∙ ∙ ∙+ x∗(hd)− 1 = 0 (3.23)

x∗(hd+1)
d+1 + x∗(hd+1)

d + ∙ ∙ ∙+ x∗(hd+1)− 1 = 0 (3.24)

Combining (3.22), (3.23), and (3.24) we have

x∗(hd)
d+1 ≤ 0

which contradict the fact that x∗(hd) > 0.

Proof of Equation 3.21. We will prove the limit using the squeeze theorem. First, we prove that

the limit is bounded below by 1
2 . Let d ≥ 1. Note that hd has positive leading coefficient a single

sign change. Hence from Theorem 3.3, we have

RBH
(hd) ≤ 4 (3.25)

Since every coefficient of hd is ±1, we have

RBH
(hd) =

BH(hd)
x∗(hd)

=
2 ∙ 1

x∗(hd)
(3.26)

Plugging (3.26) into (3.25) and solving for x∗(hd) yields

x∗(hd) ≥
1
2

Hence

lim
d→∞

x∗(hd) ≥
1
2

(3.27)

45

We will now show that the limit is bounded above by 1
2 . Let d ≥ 2. By definition, we have

hd(x∗(hd)) = x∗(hd)
d + ∙ ∙ ∙+ x∗(hd)− 1 = 0 (3.28)

We will perform the following rewrite:

x∗(hd)
d + ∙ ∙ ∙+ x∗(hd)− 1 = x∗(hd)

d + ∙ ∙ ∙+ x∗(hd) + 1− 2 (3.29)

By combining (3.28) and (3.29), we have

x∗(hd)
d + ∙ ∙ ∙+ x∗(hd) + 1 = 2

Since

x∗(hd)
d + ∙ ∙ ∙+ x∗(hd) + 1 =

1− x∗(hd)d+1

1− x∗(hd)

we have
1− x∗(hd)d+1

1− x∗(hd)
= 2

We will now solve for x∗(hd).

1− x∗(hd)d+1

1− x∗(hd)
= 2

1− x∗(hd)
d+1 = 2− 2x∗(hd)

2x∗(hd) = 1 + x∗(hd)
d+1

x∗(hd) =
1
2

+
x∗(hd)d+1

2

Note that by Lemma 3.7, we have

x∗(hd) ≤ x∗(h2) < x∗(h1) = 1

Hence

x∗(hd) ≤
1
2

+
x∗(h2)d+1

2

where x∗(h2) < 1. It follows that

lim
d→∞

x∗(hd) ≤ lim
d→∞

1
2

+
x∗(h2)d+1

2
=

1
2

(3.30)

By combining (3.27) and (3.30) and applying the squeeze theorem, we have

46

lim
d→∞

x∗(hd) =
1
2

3.B Average relative over-estimation for polynomials with sin-

gle sign variation

In this appendix, we observe that the average value of RBH
(f) is affected by the index of the

first negative coefficient of f . To generate data points, we found the average value of RBH
(f)

Figure 3.2: Average value of RBH
(f) for fixed sign change location

for 1000 randomly generated polynomials of the form

adx
d + ∙ ∙ ∙+ ak+1x

k+1 − akx
k − ∙ ∙ ∙ − a0

47

where k is the index of the first negative coefficient, ad, ak 6= 0, ai ∈ Z≥0, and 0 ≤ ai ≤ 1000. All

experiments were performed in Maple. It is clear from the plots that the average overestimation

decreases as the sign change location increases.

Note that the above plots demonstrate the average behavior of RBH
(f). A natural question

is whether we can improve the overestimation bound using the index of the first negative

coefficient. The set of polynomials

gd,k = xd + ∙ ∙ ∙+ xk+1 − xk

can be used to show that we cannot significantly improve the constant in Theorem 3.3. For

fixed d, RBH
(f) rapidly approaches 4 as k decreases. We illustrate this behavior by plotting

RBH
(g26,k) for k = 0, . . . , 25 in Figure 3.3.

Figure 3.3: RBH
(g26,k) for k = 0, . . . , 25

3.C Relative over-estimation when the number of sign varia-

tions is not equal to the number of positive roots

We have already shown that relative over-estimation bounds can be derived when the number

of sign variations is equal to the number of positive roots. We have also shown that when the

sign variation is fixed at 1, a tight over-estimation bound exists for BH . A natural question

to ask is if we can derive a relative over-estimation bound which depends on the number of

sign variations, even when the number of sign variations is not equal to the number of positive

roots. It turns out that the answer to this question is no. In this appendix, we precisely prove

this statement.

Proposition 3.1. Let B : R[x] → R+ be an absolute positivity bound. Let k ≥ 3 and d ≥ k.

48

Then

sup
deg(f)=d
V(f)=k

0<C(f)<V(f)

RB(f) =∞

Remark 3.4. By Descartes Rule of Signs, if V(f) = 2, then f has 0 or 2 positive roots. Hence

if V(f) = 2,

0 < C(f) < V(f)

is impossible.

Proof of Proposition 3.1. We will distinguish between two cases: k odd and k even.

Suppose that k is odd. Define the following set of polynomials:

U = {fc : 0 < c ≤
1
3
}

where

fc(x) = gc(x) +
c

2
gc(x) = (x + 1)d−k(x− c)(x− 1)k−1

Figure 3.4: Plot of fc (red) and gc (blue) for d = k = 3 and c = .3 (left), c = .2 (middle),
c = .05 (right).

We will first show that

U ⊂ {f : f satisfies Assumption 3.1, deg(f) = d, V(f) = k, 0 < C(f) < V(f)}

49

Clearly, deg(fc) = d for all c. By construction, fc has positive leading coefficient and a single

positive root, which is in the interval (0, c). We will now show that V(fc) = k. Note that gc is

a polynomial with all real roots and exactly k positive roots. Hence by Descartes rule of signs,

v(gc) = k. Since the trailing coefficient of fc is

−c +
c

2
= −

c

2
< 0

and every higher degree coefficient of fc is unchanged from gc, it follows that V(fc) = k. Since

fc has a single positive root and k ≥ 3, we have

0 < C(f) < k = V(f)

Hence

U ⊂ {f : f satisfies Assumption 3.1, deg(f) = d, V(f) = k, 0 < C(f) < V(f)} (3.31)

We will now show that for all 0 < c ≤ 1
3

x∗(fc) ≤ c and B(fc) ≥ 1

Since k ≥ 3, k−1 ≥ 2. Hence x = 1 is a multiple root of gc, and so g′(1) = 0. Since f ′
c(x) = g′c(x),

we have f ′
c(1) = 0. Since B is an absolute positivity bound, we have

B(fc) ≥ 1 (3.32)

Since the leading coefficient of g is positive and 1 is the largest positive root of gc, gc is strictly

positive on the interval (1,∞). Since k is odd, k − 1 is even. Hence gc is also strictly positive

on the interval (c, 1). Hence

fc = gc +
c

2

is strictly positive on the interval (c,∞). Hence, fc has no roots which are larger than c. Thus

x∗(fc) ≤ c (3.33)

To complete the proof of the claim for the case when k is odd, note that

lim
c→0
RB(fc) = lim

c→0

B(fc)
x∗(fc)

≥ lim
c→0

1
x∗(fc)

from (3.32)

50

≥ lim
c→0

1
c

from (3.33)

=∞ (3.34)

Combining (3.31) and (3.34), we have

sup
deg(f)=d
V(f)=k

0<C(f)<V(f)

RB(f) =∞ ∀ odd k ≥ 3 (3.35)

We now consider the case when k is even. We will use a similar strategy to the above. Define

the following set of polynomials:

U = {fc : 0 < c ≤
1
3
}

where

fc(x) = gc + ε(c)

gc(x) = (x + 1)d−k(x− c)(x− 2c)(x− 1)k−2

ε(c) = any positive number < max
c<x<2c

|gc(x)|

Figure 3.5: Plot of fc (red) and gc (blue) with appropriately chosen ε(c) for d = k = 4 and
c = .3 (left), c = .2 (middle), c = .1 (right).

We will first show that

U ⊂ {f : f satisfies Assumption 3.1, deg(f) = d, V(f) = k, 0 < C(f) < V(f)}

51

Clearly, deg(fc) = d for all c. By construction, fc has positive leading coefficient and 2 positive

roots, which are in the interval (c, 2c). It remains to be shown that V(f) = k. Since the trailing

coefficient of g is positive, ε(c) > 0, and every higher degree coefficient of fc is unchanged from

gc, it follows that V(fc) = k. Since fc has 2 positive roots and k ≥ 4, we have

0 < C(f) < k = V(f)

Hence

U ⊂ {f : f satisfies Assumption 3.1, deg(f) = d, V(f) = k, 0 < C(f) < V(f)} (3.36)

We will now show that for all 0 < c ≤ 1
3

x∗(fc) ≤ 2c and B(f) ≥ 1

Since k ≥ 4, k−2 ≥ 2. Hence x = 1 is a multiple root of gc, and so g′(1) = 0. Since f ′
c(x) = g′c(x),

we have f ′
c(1) = 0. Since B is an absolute positivity bound, we have

B(fc) ≥ 1 (3.37)

Since the leading coefficient of g is positive and 1 is the largest positive root of gc, gc is strictly

positive on the interval (1,∞). Since k is odd, k − 1 is even. Hence gc is also strictly positive

on the interval (2c, 1). Hence

fc = gc + ε(c)

is strictly positive on the interval (2c,∞). Hence, fc has no roots which are larger than c. Thus

x∗(fc) ≤ 2c (3.38)

To complete the proof of the claim for the case when k is even, note that

lim
c→0
RB(fc) = lim

c→0

B(fc)
x∗(fc)

≥ lim
c→0

1
x∗(fc)

from (3.37)

≥ lim
c→0

1
c

from (3.38)

=∞ (3.39)

Combining (3.36) and (3.39), we have

52

sup
deg(f)=d
V(f)=k

0<C(f)<V(f)

RB(f) =∞ ∀ even k ≥ 4 (3.40)

Finally, combining (3.35) and (3.40), we have

sup
deg(f)=d
V(f)=k

0<C(f)<V(f)

RB(f) =∞

We have proved Proposition 3.1.

53

Chapter 4

Root Separation Bounds of

Univariate Polynomials

Introduction

In this chapter we present a new improved root separation bound for univariate polynomials.

Root separation bounds are fundamental tools in algorithmic mathematics, with numerous

applications [21, 31, 19, 8, 46, 52, 55, 9, 51]. As a consequence, there has been intensive effort

in finding and studying such bounds [33, 37, 43, 40, 52, 18, 11, 12, 7, 45], resulting in many

important bounds. Unfortunately, it is well known that current bounds are very pessimistic.

Furthermore, we have found another issue with current bounds. If the roots of a polynomial

are doubled, the root separation is obviously doubled. Hence we naturally expect that a root

separation bound would double if the roots are doubled. This does not happen: frequently, the

well known Mahler-Mignotte becomes even smaller when the roots are doubled. In other words,

root separations bounds do not scale correctly; they are not compatible with the geometry of

the roots. (We elaborate further on this phenomena in the next section).

So we have a challenge. Namely, we want to find new root separation bounds such that

1. the new bounds are less pessimistic (or almost always less pessimistic) than known bounds

2. the new bounds scale correctly

3. and of course, the new bounds can be computed efficiently.

The main contribution of this chapter is to provide a new univariate root separation bound

which meets the challenge. We derive the new bound by transforming the celebrated Mahler-

Mignotte Bound [33, 37] into a new bound which meets the challenge. Experimental evidence

54

indicates that the improvement is usually very large, especially when the magnitude of roots

are different from 1.

The structure of this chapter is as follows. In Section 4.1 we elaborate on the challenge

discussed above. In Section 4.2 we present the new univariate bound which meets the challenge.

In Section 4.3 we derive the new bound. In Section 4.4 we discuss the experimental performance

of the new bound.

4.1 Challenge

In order to motivate our search for new root separation bounds, we recall the celebrated Mahler-

Mignotte root separation bound [33, 37].

BMM (f) =

√
3|dis(f)|

dd/2+1 ||f ||d−1
2

where dis(f) is the discriminant of f and d is the degree of f . Let us apply the Mahler-Mignotte

bound to an example.

Example 4.1. Let f(x) = x4 − 60x3 + 1000x2 − 8000x. As we saw in Example 2.4, the root

separation of f is
√

200 (≈ 14.14). How does the Mahler-Mignotte bound perform on this

polynomial? Let’s see. We have

|dis(f)| = 2.56× 1016, ||f ||2 = 8.06× 103

and obviously the degree of f is 4. Combining these pieces, we have

BMM (f(x)) = 8.26× 10−6.

This bound is significantly smaller than the root separation of f (by several orders of magni-

tude)!

Now we consider the polynomial f(x/2). Obviously, the root separation of f(x/2) is twice

the root separation of f . Hence we naturally expect that the Mahler-Mignotte bound of f(x/2)

is twice the Mahler-Mignotte bound of f . Let’s see what happens.

BMM (f(x/2)) = 1.05× 10−6

It is not twice the Mahler-Mignotte bound of f . In fact, it is even smaller than the Mahler-

Mignotte bound of f ! This is very surprising. Maybe this is a peculiarity of our choice of 2. We

55

will try scaling by a different number.

BMM (f(x/3)) = 3.12× 10−7

What happened? The Mahler-Mignotte bound of f(x/3) is even smaller than the Mahler-

Mignotte bound of f(x/2). It appears that the Mahler-Mignotte bound is decreasing as we

increase the distance between the roots. Can this be true? Lets calculate BMM (f(x/s)) for

many different values of s and see. In Figure 4.1 we plot BMM (f(x/s)).

Figure 4.1: BMM (f(x/s))

Unfortunately, our suspicions are correct. Look at s = 1, where BMM (f(x/1)) is simply the

Mahler-Mignotte bound of f . To the right of s = 1, the function BMM (f(x/s)) is decreasing.

In fact, the Mahler-Mignotte bound is approaching zero as the root separation increases. The

situation is equally strange to the left of the Mahler-Mignotte bound of f . When we decrease

s, we see that until s reaches a value around .18, the Mahler-Mignotte bound is increasing. In

other words, the Mahler-Mignotte bound is increasing when the root separation is decreasing.

This is very odd.

Let us summarize the observations from the above example.

1. The Mahler-Mignotte bound is very pessimistic (several magnitudes smaller than the root

separation).

2. The Mahler-Mignotte bound does not scale correctly (“covariantly”) with the roots of f .

We have also observed similar phenomena for other efficiently computable root separation

bounds. So, we have a challenge.

Challenge 4.1. Find a function B : C[x]→ R+ such that

1. B(f) is a root separation bound.

56

2. B(f) is almost always larger (hence less pessimistic) than known root separation bounds.

3. B(f) scales covariantly.

4. B(f) can be computed efficiently.

The main contribution of this chapter is a new root separation bound which meets the

challenge.

4.2 Main Result

In this section we will precisely state the main result of the chapter. We require the following

notation.

Notation 4.1.

f =
∑d

i=0 aix
i = ad

∏d
i=1(x− αi) ∈ C[x]

Δ(f) = min |αi − αj |

dis(f) = a2d−2
d

∏
i 6=j(αi − αj)

Definition 4.1. A function B : C[x] → R+ is a root separation bound if B(f) ≤ Δ(f) for all

f ∈ C[x].

We begin by recalling the Mahler-Mignotte bound [33, 37]

BMM,k(f) =

√
|dis(f)|

||f ||d−1
k

Pk(d)

where

Pk(d) =

√
3

dd/2+1(d + 1)(
1
2
− 1

k
)(d−1)

.

We are now ready to present the main contribution of this chapter: a new univariate root

separation bound which meets the challenge in the previous section.

Definition 4.2 (New Univariate Bound). Let k ≥ 2. Define

BNew,k(f) =

√
|dis(f)|

Hd−1
k

Pk(d)

where

Hk =

∥
∥
∥
∑d

i=0 s̃d−i
k ai ∙ xi

∥
∥
∥

k

s̃
d
2
− 1

d−1

57

s̃k = max
q

h(q)<0

min
p

h(p)>0

((
|h(q)|
|h(p)|

) 1
k |aq|
|ap|

) 1
(q−p)

h(i) =
d

2
− i +

1
d− 1

Theorem 4.1 (New Univariate Bound). Let k ≥ 2. Then

1. BNew,k is a root separation bound.

2. If k = ∞, then BNew,k ≥ BMM,k (when k < ∞, see the discussion in the following

remark).

3. BNew,k scales covariantly.

4. s̃k can be computed in O(d) algebraic operations and comparisons using Algorithm 4.

Example 4.2. Let f = x4 − 60x3 + 1000x2 − 8000x. Recall that the root separation of f is

approximately 14.14. We have

BMM,∞ = 7.56× 10−7

s̃∞ = max
q∈{3,4}

min
p∈{1,2}

((
|h(q)|
|h(p)|

) 1
k |aq|
|ap|

) 1
(q−p)

= max

{

min

{(
|60|
|8000|

) 1
3−1

,

(
|60|
|1000|

) 1
3−2

}

, min

{(
|1|
|8000|

) 1
4−1

,

(
|1|
|1000|

) 1
4−2

}}

= max
{
6.00× 10−2, 3.16× 10−2

}

= 6.00× 10−2

H∞ =
||x4 − 3.60x3 + 3.60x2 − 1.73x||∞

(6.00× 10−2)
4
2
− 1

4−1

=
3.60

(6.00× 10−2)
5
3

= 3.91× 102

BNew,∞ = 6.45× 10−3

Note that BNew,∞ is a root separation bound for f , and is significantly larger than BMM,∞. To

demonstrate the covariance, we plot the function BNew,∞(f(x/s)) in Figure 4.2.

Remark 4.1. Experimental evidence indicates that BNew,k is almost always larger than BMM,k

for finite k. For example, with the same polynomial as in the preceding examples, we have

BNew,2(f) = 2.02× 10−2 � BMM,2(f) = 8.26× 10−6

58

Figure 4.2: Scaling covariance of BNew,∞

Furthermore, BNew,k is almost always larger for smaller k, as the same example illustrates:

BNew,2(f) = 2.02× 10−2 > BNew,∞(f) = 6.45× 10−3

In Section 4.4 we will provide theoretical justification for this observation.

Remark 4.2. For square-free integer polynomials, the discriminant has a lower bound of 1.

Hence in practice the discriminant is almost always replaced by 1. In this case, part (4) of The-

orem 4.1 implies that BNew,k can be computed in O(d) algebraic operations and comparisons.

Note that removing the discriminant sacrifices the scaling covariance.

59

4.3 Derivation

4.3.1 Overall framework

In this subsection, we present the framework we will use to derive the new bound. We require

the following notation.

Notation 4.2.

• f (s) = sdf(x/s)

Note that in the above notation we scale the roots of f using a slight modification of the

scaling operation in the introduction. Since the only difference between the two scaling operation

are the leading coefficients, the two operations are equivalent. We use this scaling operation for

later convenience. In Propositions 4.1-4.3 we will incrementally develop the framework used to

meet the challenge stated at the beginning of this chapter.

Proposition 4.1 (Scaled Bound). Let B : C[x]→ R+ be a root separation bound and s ∈ R+.

Let

B∗ : f 7→
B(f (s))

s

Then

1. B∗ is a root separation bound.

We will illustrate the result by a simple example, since the proof is simple.

Example 4.3. Let f(x) = x4 − 60x3 + 1000x2 − 8000x. We have

BMM,2(f (2)) = BMM,2(24f(x/2)) = 1.05× 10−6. (4.1)

Since BMM,2 is a root separation bound, it follows that

BMM,2(f (2)) ≤ Δ(f (2)) = 2Δ(f)

Rearranging yields
BMM,2(f (2))

2
≤ Δ(f) (4.2)

Combining (4.1) and (4.2) we have

1.05× 10−6

2
= 5.25× 10−7 ≤ Δ(f).

Note that 5.25× 10−7 ≤ BMM,2(f). So 2 was not a good choice for s.

60

How should we choose s? In Figure 4.3 we plot the function BMM,2(f (s))/s. Clearly, we

should choose s so that the function is maximized. We see that for s ≈ .16, the the new bound is

approximately 2.00×10−2. This new bound is significantly larger than BMM,2(f) = 8.26×10−6.

Figure 4.3: Scaled bound for BMM,2 and f .

Proposition 4.2 (Covariant Bound). Let B : C[x] → R+ be a root separation bound and

σ : C[x]→ R+ . Let

B∗ : f 7→
B(f (σ(f)))

σ(f)

If ∀f ∈ C[x] and ∀γ > 0 we have

σ(f (γ)) =
1
γ

σ(f)

then

1. B∗ is a root separation bound.

2. B∗ scales covariantly

Proof. The first property follows from Proposition 4.1.

We will now prove the second property. Let f ∈ C[x] and γ > 0. By definition

B∗(f (γ)) =
B

(
(
f (γ)

)(σ(f (γ)))
)

σ(f (γ))

Since σ(f (γ)) = 1
γ σ(f), we have

(
f (γ)

)(σ(f (γ)))
= f (γσ(f (γ)) = f

(γ∙ 1
γ
∙σ(f)) = f (σ(f)) (4.3)

61

Hence

B∗(f (γ)) =
B

(
(
f (γ)

)σ(f (γ))
)

σ(F (γ))
=

B(F (σ(f)))
σ(F (γ))

from (4.3)

=
B(f (σ(f)))

1
γ σ(f)

= γ
B(f (σ(f)))

σ(f)
= γB∗(f)

We have proved that B∗ scales covariantly.

Proposition 4.3 (Optimal Bound). Let B : C[x]→ R+ be a root separation bound. Let

B∗ : f 7→ max
s

B(f (s))
s

Then

1. B∗ is a root separation bound.

2. B∗ scales covariantly

3. B∗(f) ≥ B(f)

Proof. The first property follows from Proposition 4.1.

To prove the second property, we will show that σ has the scaling property described in

Proposition 4.2. Let f ∈ C[x] and γ > 0. We have

σ(f (γ)) = arg max
s>0

B
((

f (γ)
)(s))

s

= arg max
s>0

B
(

f (γs)
)

s

= arg max
s>0

1
γ

B
(

f (γs)
)

s
since γ > 0

= arg max
s>0

B
(

f (γs)
)

sγ

=
1
γ

arg max
s>0

B
(

f (s)
)

s

=
1
γ

σ(f)

62

Hence by Proposition 4.2, B∗ scales covariantly.

We will now prove the third property. We have

B∗(f) = max
s>0

B(f (s))
s

≥
B(f (1))

1
=

B(f)
1

= B(f)

We have proved the Proposition.

Let us summarize the framework built up in this section. We have seen that

max
s>0

B(f (s))
s

meets the challenge if the maximum can be computed efficiently. If the maximum cannot be

computed efficiently, we can approximate the maximum. We can then use Proposition 4.2 to

guarantee that the new bound is scaling covariant.

4.3.2 Derivation of New Univariate Bound

In this section we derive the new univariate bound. We will find a tight approximation s̃k of

s∗k = arg max
s>0

BMM,k(f (s))
s

We will then use Proposition 4.2 and a result due to Melhorn and Ray to show that the bound

BNew,k =
BMM,k(f (s̃k))

s̃k

meets the challenge.

First, we find a find a simplified expression for s∗k. We will take advantage of the following

easily verifiable identities:

Lemma 4.1. Let g : R+ → R+, and c > 0. Then

1. arg maxs>0 g(s) = arg maxs>0 c ∙ g(s)

2. arg maxs>0 g(s) = arg maxs>0 (g(s))c

3. (arg maxs>0 g(s))−1 = arg mins>0 g(s)

Lemma 4.2. Let f ∈ C[x]. Then

s∗k = arg min
s>0

Rk(s)

63

where

Rk(s) =
||f (s)||k

s
d
2
− 1

d−1

Proof. To prove the claim, we will expand the expression for

BMM,k(f (s))
s

then simplify this expression with the identities of Lemma 4.1. We have

BMM,k(f (s)) =

√
|dis(f (s))|

||f (s)||d−1
k

Pk(d) (4.4)

Since

f (s) = sd f(x/s) = sd ad

d∏

i=1

(x/s− sαi) = ad

d∏

i=1

(x− sαi)

we have

dis(f (s)) = a2d−2
d

∏

i 6=j

(sαi − sαj)

= a2d−2
d sd(d−1)

∏

i 6=j

(αi − αj)

= sd(d−1)dis(f) (4.5)

Hence

BMM,k(f (s))
s

=
1
s

√
|dis(f (s))|

||f (s)||d−1
k

Pk(d)

=
1
s

√
|sd(d−1)dis(f)|

||f (s)||d−1
k

Pk(d) from (4.5)

=
s

d(d−1)
2

√
|dis(f)|

s||f (s)||d−1
k

Pk(d)

=
s

d(d−1)
2

−1

||f (s)||d−1
k

√
|dis(f)|Pk(d)

=

(
s

d
2
− 1

d−1

||f (s)||k

)d−1
√
|dis(f)|Pk(d)

=

(
1

Rk(s)

)d−1√
|dis(f)|Pk(d) (4.6)

64

Now we apply the identities from Lemma 4.1 to the expression in (4.6):

arg max
s>0

BMM,k(f (s))
s

= arg max
s>0

(
1

Rk(s)

)d−1√
|dis(f)|Pk(d)

= arg max
s>0

(
1

Rk(s)

)d−1

(Identity 1)

= arg max
s>0

(
1

Rk(s)

)

(Identity 2)

= arg min
s>0

Rk(s) (Identity 3)

We have proved the Lemma.

Lemma 4.3. Let k ≥ 2. Then

s∗k = (t∗)
1
k

where t∗ is the unique positive root of

Qk(t) =
d∑

i=0

h(i) |ai|
k ∙ td−i

and h(i) = d
2 − i + 1

d−1 .

Proof. For later convenience, we first rewrite Rk(s).

Rk(s) =
|| f (s) ||k

s
d
2
− 1

d−1

=

(∑d
i=0

∣
∣sd−iai

∣
∣k
) 1

k

s
d
2
− 1

d−1

=

(∑d
i=0 skd−ki |ai|

k
) 1

k

s
d
2
− 1

d−1

=

(∑d
i=0 skd−ki |ai|

k

s
kd
2
− k

d−1

) 1
k

=

(
d∑

i=0

skd−ki−(kd
2
− k

d−1) |ai|
k

) 1
k

=

(
d∑

i=0

s
kd
2
−ki+ k

d−1 |ai|
k

) 1
k

65

=

(
d∑

i=0

(sk)
d
2
−i+ 1

d−1 |ai|
k

) 1
k

=

(
d∑

i=0

(sk)h(i) |ai|
k

) 1
k

since h(i) =
d

2
− i +

1
d− 1

= R̃k(s)
1
k (4.7)

Combining Lemma 4.1 and (4.7), we have

s∗k = arg min
s>0

Rk(s) = arg min
s>0

R̃k(s) (4.8)

Hence from Calculus, we have

R̃′
k(s

∗
k) = 0 (4.9)

Note that

R̃′
k(s) =

d∑

i=0

skh(i)−1 ∙ kh(i) |ai|
k

Define the polynomial

Qk(t) =
d∑

i=0

h(i) |ai|
k ∙ td−i

We have

ks
−kd

2
− k

d−1
−1Qk(s

k) = s−
kd
2
− k

d−1
−1

d∑

i=0

kh(i) |ai|
k ∙ (sk)d−i

= s−
kd
2
− k

d−1
−1

d∑

i=0

kh(i) |ai|
k ∙ (sk)d−i

=
d∑

i=0

skd−ki− kd
2
− k

d−1
−1 ∙ kh(i) |ai|

k

=
d∑

i=0

s
kd
2
−ki− k

d−1
−1 ∙ kh(i) |ai|

k

=
d∑

i=0

s
kd
2
−ki− k

d−1
−1 ∙ kh(i) |ai|

k

=
d∑

i=0

sk(d
2
−i− 1

d−1
)−1 ∙ kh(i) |ai|

k

66

=
d∑

i=0

skh(i)−1 ∙ kh(i) |ai|
k

= R̃′
k(s)

Hence

R̃′
k(s) = 0 ⇐⇒ Qk(s

k) = 0 ∀s > 0 (4.10)

Note that Qk(t) has a single sign change, since h(i) is strictly decreasing with i. By Descartes

Rule of Signs, Qk(t) has a single positive root t∗. Combining (4.8), (4.9), and (4.10), we have

s∗k = (t∗)
1
k

We have proved the Lemma.

Since Qk is a polynomial with a single sign change, we can derive a tight approximation of

its single positive root using Theorem 3.3.

Lemma 4.4. Let f =
∑m

i=0 cix
ei have a single sign change, and x∗ be the unique positive root

of f . Then
L ≤ x∗ ≤ U

where

L =
1
2
H(f)

U = 2 H(f)

H(f) = max
q

cq<0

min
p

cp>0
ep>eq

(
|cq|
|cp|

) 1
ep−eq

Proof. The upper bound is simply the Hong bound applied to f . To derive the lower bound,

solve for x∗(f) in Theorem 3.3.

Lemma 4.5. Let k ≥ 2. Then

(
1
2

) 1
k

(H(Qk))
1
k ≤ s∗k ≤ 2

1
k (H(Qk))

1
k

Proof. From Lemma 4.3, we have

s∗k = (t∗)
1
k (4.11)

67

where t∗ is the unique positive root of Qk(t). Since Qk(t) has single sign change, we can apply

Lemma 4.4. We have

L ≤ t∗ ≤ U (4.12)

where

L =
1
2
H(Qk)

U = 2H(Qk)

Combining (4.11) and (4.12), we have

(L)
1
k ≤ s∗k ≤ (U)

1
k

Equivalently
(

1
2

) 1
k

(H(Qk))
1
k ≤ s∗k ≤ 2

1
k (H(Qk))

1
k

We have proved the Lemma.

Lemma 4.6. Let k ≥ 2. We have

s̃k = (H(Qk))
1
k

and

lim
k→∞

s̃k = H(G)

where

G =
∑

p
h(p)>0

1
|ap|

sd−p −
∑

q
h(q)<0

1
|aq|

sd−q

Proof. We have

(H(Qk))
1
k =



 max
q

h(q)<0

min
p

h(p)>0

(
|h(q)| |aq|

k

|h(p)| |ap|
k

) 1
(d−p)−(d−q)





1
k

=



 max
q

h(q)<0

min
p

h(p)>0

(
|h(q)| |aq|

k

|h(p)| |ap|
k

) 1
q−p





1
k

= max
q

h(q)<0

min
p

h(p)>0

(
|h(q)| |aq|

k

|h(p)| |ap|
k

) 1
k(q−p)

68

= max
q

h(q)<0

min
p

h(p)>0

((
|h(q)|
|h(p)|

) 1
k |aq|
|ap|

) 1
(q−p)

= s̃k

We now consider the limit. We have

lim
k→∞

s̃k = lim
k→∞

max
q

h(q)<0

min
p

h(p)>0

((
|h(q)|
|h(p)|

) 1
k |aq|
|ap|

) 1
(q−p)

= max
q

h(q)<0

min
p

h(p)>0

(
|aq|
|ap|

) 1
(q−p)

We also have

H(G) = max
q

h(q)<0

min
p

h(p)>0
(d−p)>(d−q)

(
1

|aq |
1

|ap|

) 1
(d−p)−(d−q)

= max
q

h(q)<0

min
p

h(p)>0
(d−p)>(d−q)

(
1

|aq |
1

|ap|

) 1
q−p

= max
q

h(q)<0

min
p

h(p)>0
(d−p)>(d−q)

(
|ap|
|aq|

) 1
q−p

= max
q

h(q)<0

min
p

h(p)>0
q<p

(
|ap|
|aq|

) 1
q−p

= max
q

h(q)<0

min
p

h(p)>0

(
|ap|
|aq|

) 1
q−p

since h(i) is strictly decreasing with i

= lim
k→∞

s̃k

Lemma 4.7. Let k ≥ 2 and

s∗k = arg max
s>0

BMM,k(f (s))
s

69

Then (
1
2

) 1
k

s̃k ≤ s∗k ≤ 2
1
k s̃k

where

s̃k = max
q

h(q)<0

min
p

h(p)>0

((
|h(q)|
|h(p)|

) 1
k |aq|
|ap|

) 1
(q−p)

h(i) =
d

2
− i +

1
d− 1

Proof. Let k ≥ 2 and

s∗k = arg max
s>0

BMM,k(f (s))
s

Combining Lemmas 4.2, 4.5 and 4.6, we have

(
1
2

) 1
k

s̃k ≤ s∗k ≤ 2
1
k s̃k

We have proved the Lemma.

We are now ready to define the new bound. From Lemma 4.7, we observe that s̃k is a tight

approximation of s∗k. As k increases, the approximation becomes tighter. Thus we choose to

approximate the bound

max
s>0

BMM,k(f (s)
s

with the bound

BNew,k(f) =
BMM,k(f (s̃k))

s̃k
=

√
|dis(f)|

Hd−1
k

Pk(d) (4.13)

Before proving Theorem 4.1, we present an algorithm for computing s̃k. We combine Lemma 4.6

and the algorithm due to Melhorn and Ray (see [36] and Chapter 2) to compute H(Q) in O(d)

algebraic operations and comparisons. We recall their complexity results in the Lemma below.

Lemma 4.8 (Melhorn, Ray, 2010 [36]). Let g ∈ R[x] with m non-zero coefficients. Then H(g)

can be computed in O(m) algebraic operations and comparisons with the algorithm ComputeH

(Algorithm 3 in Chapter 2).

Proof of Theorem 4.1. We prove them one by one.

1. Combine (4.13) and Proposition 4.1.

70

Algorithm 4: Computes̃

Input : f =
∑d

i=0 aix
i ∈ C[x]

k ≥ 2
Output: s̃k

begin1

if k is finite then2

Q←
∑d

i=0 h(i) |ai|
k ∙ td−i;3

s̃ ← ComputeH(Q)
1
k4

else5

Q←
∑

p
h(p)>0

1
|ap|

sd−p −
∑

q
h(q)<0

1
|aq |

sd−q;

6

s̃ ← ComputeH(Q)7

end8

2. From Lemma 4.7, we have

s̃∞ = s∗∞

Hence

BNew,∞(f) =
BMM,∞(f (s̃∞))

s̃∞

=
BMM,∞(f (s∗∞))

s∗∞

= arg max
s>0

BMM,∞(f (s))
s

Hence by Proposition 4.3, BNew,∞(f) ≥ BMM,∞(f) for all f .

3. Let γ > 0. We have

s̃k(f
(γ)) = max

q
h(q)<0

min
p

h(p)>0

((
|h(q)|
|h(p)|

) 1
k γd−q |aq|

γd−p |ap|

) 1
(q−p)

= max
q

h(q)<0

min
p

h(p)>0

((
|h(q)|
|h(p)|

) 1
k |aq|
|ap|

1
γq−p

) 1
(q−p)

=
1
γ

max
q

h(q)<0

min
p

h(p)>0

((
|h(q)|
|h(p)|

) 1
k |aq|
|ap|

) 1
(q−p)

=
1
γ

s̃k

71

Hence by Proposition 4.2, BNew,k scales covariantly.

4. Combine Lemma 4.6, Lemma 4.8, and Algorithm 4.

We have completed the proof of Theorem 4.1.

4.4 Performance

In this Section, we discuss the experimental performance of the new bound. We first repeat the

observation of Remark 4.1: experimental evidence indicates that BNew,k is almost always larger

for smaller k. This is unsurprising once we consider the derivation strategy in the previous

section. Let k1 ≤ k2. We have

BNew,k1 ≈ max
s>0

BMM,k1

(
f (s)

)

s
, BNew,k2 ≈ max

s>0

BMM,k1

(
f (s)

)

s

and

max
s>0

BMM,k1

(
f (s)

)

s
≥

BMM,k1

(
f

(s∗k2
)
)

s∗k2

≥
BMM,k2

(
f

(s∗k2
)
)

s∗k2

= max
s>0

BMM,k2

(
f (s)

)

s

We have also observed that the improvement is usually very large for the new bounds, espe-

cially when the magnitude of roots are different from 1. To generate data points, we generated

100 random monic polynomials with fixed degree and height (defined below) and calculated the

average value of the improvement:

BNew,k(f)
BMM,k(f)

=

(
||fk||
Hk

)d−1

Note that the improvement is independent of the discriminant for both new bounds. This

observation allowed us to avoid many expensive computations when performing experiments.

We defined the height of a monic polynomial with the binomial height:

||f ||B = max
0≤i≤d−1

|ai|(
d
i

)

1
d−i

It is well known that the binomial height is related to the size of the roots. To generate a

polynomial with the height rn/rd, we uniformly generated an integer c in the range (−rn, rd)

for every trailing coefficient. The corresponding integer for one coefficient was randomly chosen

to be fixed at rn. We then set

|ae| =

(
rn

rd

)d−|e|(d

e

)

72

and defined f = xd + trailing polynomial.

In Figure 4.4, we plot the log of the average improvement of BNew,2 for 100 monic polyno-

mials of degree 4 and given B −Height. We see similar plots both for other degrees and other

choices of the norm (BNew,k with k 6= 2). As we can see from Figure 4.4, the improvement

increases as the magnitude of the roots becomes much different from 1.

Figure 4.4: Average Improvement for given B−Height and Degree 4

We will also study the experimental performance of the new bound on a special class of

polynomials known as Mignotte polynomials [38]. A Mignotte polynomial is defined as

Mig(d, h) = xd − 2(hx− 1)2

It is well known that Mignotte polynomials have very small root separation. In Figure 4.5, we

plot the log of the improvement of BNew,2 when h is fixed at 10 and degree varies, and the log

of the improvement of BNew,2 when the degree is fixed at 3 and h varies.

Figure 4.5: Improvement for Mignotte Polynomials

73

Chapter 5

Root Separation Bounds of

Polynomial Systems

In this chapter we present a new improved root separation bound for polynomial systems.

Unsurprisingly, known root separation bounds on polynomial systems suffer from the same

issues as their univariate counterparts. Namely, they are very pessimistic and they do not scale

correctly. So we face the same challenge as in the proceeding chapter: we want to find new root

separation bounds such that

1. the new bounds are less pessimistic (or almost always less pessimistic) than known bounds

2. the new bounds scale correctly

3. and of course, the new bounds can be computed efficiently.

The main contribution of this chapter is to provide a new root separation bound for poly-

nomial systems which meets the challenge. We derive the new bound using a similar strategy

as in the univariate case. We will transform a known bound into a new bound which meets the

challenge. The bound we will transform is the bound due to Emiris, Mourrain, and Tsigaridas

[18] (discussed in Chapter 2). While the overall strategy is the same as in the univariate case,

we will see that the derivation of the new multivariate bound requires completely new tools

which were not required to derive the univariate bound. Experimental evidence again indicates

that the improvement is usually very large, especially when the magnitude of roots are different

from 1.

The structure of this chapter is as follows. In Section 5.1 we present the new univariate

bound which meets the challenge. In Section 5.2 we derive the new bound. In Section 5.3 we

discuss the experimental performance of the new bound.

74

5.1 Main Result

In this section we will precisely state the main result of the chapter. We require the following

notation.

Notation 5.1.

Fn = {F ∈ (C [x1, . . . , xn])n : F has finitely many (at least two) solutions,

and all solutions are simple.}

F = (f1, . . . , fn) ∈ Fn

Δ(F) = min β1 6=β2∈Cn

F (β1)=F (β2)=0

||β1 − β2||2

dis(f) = a2d−2
d

∏
i 6=j(αi − αj)

E(f) = Support(f)

di = deg(fi)

D = d1 ∙ ∙ ∙ dn

Mi =
∏

j 6=i dj

Definition 5.1. A function B : Fn → R+ is a root separation bound if B(F) ≤ Δ(F) for all

F ∈ Fn.

We begin by recalling the multivariate bound due to Emiris, Mourrain, and Tsigaridas [18]

BEMT (F) =

√
|dis(Tf0)|

(
∏n

i=1 ||fi||Mi)D−1
P (d1, . . . , dn, n)

where

P (d1, . . . , dn, n) =

√
3

DD/2+1 ∙ n1/2C ∙
(√

D + 1(n + 1)DCD
∏n

i=1

(
di+n

di

)Mi
)D−1

Tf0 = the resultant of (f0, f1, . . . , fn) which eliminates {x1, . . . , xn}

f0 = a separating element in the set
{

u− x1 − ix2 − ∙ ∙ ∙ − in−1xn : 0 ≤ i ≤ (n− 1)

(
D

2

)}

C =

(

(n− 1)

(
D

2

))n−1

We are now ready to present the main contribution of this chapter: a new multivariate root

separation bound.

75

Definition 5.2 (New Multivariate Bound). Define

BNew(F) =

√
|dis(Tf0)|

HD−1
P (d1, . . . , dn, n)

where

H = min
s>0

R(s)

R(s) =

∏n
i=1 ||

∑
e∈E(fi)

sdi−|e||ae| ||Mi
∞

s
D
2
− 1

D−1

Theorem 5.1 (New Multivariate Bound). We have

1. BNew is a root separation bound.

2. BNew ≥ BEMT .

3. BNew scales covariantly.

4. The minimizer of R(s) can be computed in O (n ∙m + n ∙ d) algebraic operations and

comparisons using

FindMinimizer

(

F, (M1, . . . ,Mn),
D

2
−

1
D − 1

)

(Algorithm 6)

where

m = # monomials of F

d =
n∑

i=1

di

Example 5.1. Let F = (f1, f2), where

f1 = x2
1 + x2

2 − 100

f2 = x2
2 − x2

1 − 25

It is simple to verify that the root separation of F is
√

150 (≈ 12.2). It is also simple to verify

that

f0 = u− x1 − x2

76

is a separating element in F (see Chapter 2 for a more detailed discussion on separating ele-

ments). We compute

Tf0 = 4u2 − 800u2 + 2500
√
|dis(Tf0)| = 2.40× 108

P =
√

30/48348866242924385372681011200

||f1||∞ = 100

||f2||∞ = 25

||f1||
2
∞||f2||

2
∞ = 6.25× 106

Hence

BEMT (F) =
2.40× 108

(6.25× 106)4
∙

√
3

48348866242924385372681011200
≈ 1.11× 10−40

Now we compute H. We compute

s∗ = FindMinimizer(F, (2, 2),
4
2
−

1
4− 1

)

= 1.00× 10−1

Hence

H = R(s∗)

= 4.64× 101

Hence

BNew(F) =
2.40× 108

(4.64× 101)4
∙

√
3

48348866242924385372681011200
≈ 2.71× 10−25

Note that this number is still quite pessimistic; however, the new bound is significantly larger

than BEMT (F). To demonstrate the covariance, we plot the function BNew(F (x1/s, x2/s)) in

Figure 5.1.

Remark 5.1. Note that BNew is only defined for the ∞−norm. It turns out that generalizing

the result to arbitrary norms is more difficult than in the univariate case.

Remark 5.2. For F ∈ Fn, Tf0 is a square-free integer polynomial; hence dis(Tf0) has a lower

bound of 1. Hence in practice the discriminant is almost always replaced by 1. In this case,

77

Figure 5.1: Scaling covariance of BNew

part (4) of Theorem 5.1 implies that BNew can be computed in O (n ∙m + d log(d)) algebraic

operations and comparisons. As with the new univariate bound, removing the discriminant

sacrifices the scaling covariance.

5.2 Derivation

5.2.1 Overall framework

In this subsection, we present the framework we will use to derive the new bound. It turns out

that we can use the same framework as in the previous chapter. Every proposition in this section

generalizes the propositions of the previous chapter to root separation bounds on polynomial

systems. The proofs are also almost identical.

As in the previous chapter, we begin by precisely defining a scaled polynomial system.

Notation 5.2.

• F (s) = (f (s)
1 , . . . , f

(s)
n) where f

(s)
i = sdifi(x1/s, . . . , xn/s).

In Propositions 5.1-5.3 we will incrementally develop the framework used to meet the chal-

lenge.

Proposition 5.1 (Scaled Bound). Let B : Fn → R+ be a root separation bound and s ∈ R+.

Let

B∗ : F 7→
B(F (s))

s

Then

1. B∗ is a root separation bound.

We will illustrate the result by a simple example, since the proof is simple.

78

Example 5.2. Let F = (f1, f2), where

f1 = x2
1 + x2

2 − 100

f2 = x2
1 − x2

2 − 25

Then F (2) = (f (2)
1 , f

(2)
2), where

f
(2)
1 = 22

(
(x1/2)2 + (x2/2)2 − 100

)

= x2
1 + x2

2 − 400

f
(2)
2 = 22

(
(x1/2)2 − (x2/2)2 − 25

)

= x2
1 − x2

2 − 100

The roots of F are plotted in the left plot Figure 5.2, with the minimum root separation

highlighted. In the middle of Figure 5.2 we plot the roots of F (2) (in orange) with the roots of

F , and in the right plot we highlight the root separation of F (2). Note that the root separation

of F (2) is twice the root separation of F .

Figure 5.2: Root Separation of F and Root Separation of F (2)

We have

BEMT (F (2)) = 4.25× 10−46. (5.1)

Since BEMT is a root separation bound, it follows that

BEMT (F (2)) ≤ Δ(F (2)) = 2Δ(F)

Rearranging yields
BEMT (F (2))

2
≤ Δ(F) (5.2)

79

Combining (5.1) and (5.2) we have

4.25× 10−46

2
= 2.13× 10−46 ≤ Δ(F).

Note that 2.13×10−46 ≤ BEMT (F). So 2 was not a good choice for s. As in the previous chapter,

we observe that the best choice of s is the value which maximizes B(F (s))/s. In Figure 5.3 we

plot the function BEMT (F (s))/s. The maximum value of this curve is approximately 2.7×10−25,

which is significantly larger than BEMT (F).

Figure 5.3: Scaled bound for BEMT and F .

Proposition 5.2 (Covariant Bound). Let B : Fn → R+ be a root separation bound and

σ : Fn → R+ . Let

B∗ : F 7→
B(F (σ(F)))

σ(F)

If ∀F ∈ Fn and ∀γ > 0 we have

σ(F (γ)) =
1
γ

σ(F)

then

1. B∗ is a root separation bound.

2. B∗ scales covariantly

Proof. The first property follows from Proposition 5.1.

We will now prove the second property. Let F ∈ Fn and γ > 0. By definition

B∗(f (γ)) =
B

(
(
F (γ)

)(σ(F (γ)))
)

σ(F (γ))

80

Since σ(F (γ)) = 1
γ σ(F), we have

(
F (γ)

)(σ(F (γ)))
= F (γσ(F (γ)) = F (γ∙ 1

γ
∙σ(F)) = F (σ(F)) (5.3)

Hence

B∗(F (γ)) =
B

(
(
F (γ)

)σ(F (γ))
)

σ(F (γ))
=

B(F (σ(F)))
σ(F (γ))

from (5.3)

=
B(F (σ(F)))

1
γ σ(F)

= γ
B(F (σ(F)))

σ(F)
= γB∗(F)

We have proved that B∗ scales covariantly.

Proposition 5.3 (Optimal Bound). Let B : Fn → R+ be a root separation bound. Let

B∗ : F 7→ max
s

B(F (s))
s

Then

1. B∗ is a root separation bound.

2. B∗ scales covariantly

3. B∗(F) ≥ B(F)

Proof. The first property follows from Proposition 5.1.

To prove the second property, we will show that σ has the scaling property described in

Proposition 5.2. Let F ∈ Fn and γ > 0. We have

σ(F (γ)) = arg max
s>0

B
((

F (γ)
)(s))

s

= arg max
s>0

B
(

F (γs)
)

s

= arg max
s>0

1
γ

B
(

F (γs)
)

s
since γ > 0

= arg max
s>0

B
(

F (γs)
)

sγ

81

=
1
γ

arg max
s>0

B
(

F (s)
)

s

=
1
γ

σ(f)

Hence by Proposition 5.2, B∗ scales covariantly.

We will now prove the third property. We have

B∗(F) = max
s>0

B(F (s))
s

≥
B(F (1))

1
=

B(F)
1

= B(F)

We have proved the Proposition.

Let us summarize the framework built up in this section. We have seen that

max
s>0

B(F (s))
s

meets the challenge if the maximum can be computed efficiently. In the previous chapter, we

were not able to compute the maximum value for BMM,k efficiently; instead, we had to ap-

proximate the maximum. In this chapter we will see that we can compute the maximum for

BEMT efficiently. As a consequence, Properties 2 and 3 (scaling covariance and guaranteed

improvement) will follow immediately, with no extra derivation required.

5.2.2 Derivation of New Multivariate Bound

In this subsection, we derive the new multivariate bound. For the remainder of this subsection,

let F ∈ Fn be fixed, and f0 a fixed separating element of F . Similar to the previous chapter,

we will begin by deriving a simplified expression for

s∗ = arg max
s>0

BEMT (F (s))
s

.

We first need to understand the affect that root scaling has on the discriminant of Tf0 . We

make of use the following result from the proof of Proposition 5.8 of [13].

Lemma 5.1. Let F be zero-dimensional, have no solutions at infinity, and have no singular

solutions. Let

f0 = u + r1x1 + ∙ ∙ ∙+ rnxn

82

and Tf0 be the resultant of (F, f0) which eliminates (x1, . . . , xn). Then

Tf0 = C
∏

γ∈V (F)

f0(γ)

where

C = Res(F̂)

F̂ = (f̂1, . . . , f̂n)

f̂i =
∑

e∈E(fi)
|e|=di

aex
e

Lemma 5.2. Let s > 0. Let T
(s)
f0

be the resultant of F (s) and f0. Then

dis(T (s)
f0

) = sD(D−1)dis(Tf0)

Proof. To prove the claim, we will first show that the leading coefficients of Tf0 and T
(s)
f0

are

the same. Then we will use the definition of the discriminant to complete the proof.

Let C be the leading coefficient of Tf0 and C
(s)
f0

the leading coefficient of T (s). From

Lemma 5.1, we have

C = Res(F̂) and C(s) = Res(F̂ (s)) (5.4)

Note that

̂
f

(s)
i = ̂sdifi(x1/s, . . . , xn/s)

= sdi
∑

|e|=di

ae

(
x(s)

)e

= sdi
∑

|e|=di

ae

(x1

s

)e1

. . .
(xn

s

)en

= sdi
∑

|e|=di

(
1
s

)e1+∙∙∙+en

aex
e1
1 ∙ ∙ ∙ x

en
n

= sdi
∑

|e|=di

(
1
s

)e1+∙∙∙+en

aex
e

= sdi
∑

|e|=di

(
1
s

)di

aex
e

= sdi

(
1
s

)di ∑

|e|=di

aex
e

83

=
∑

|e|=di

aex
e

= f̂i

Hence

F̂ = F̂ (s) (5.5)

Combining (5.4) and (5.5), we have

C = C(s) (5.6)

Note that the roots Tf0 are

{r1γi,1 + ∙ ∙ ∙+ rnγi,n}
D
i=1

and the roots of T
(s)
f0

are

{s ∙ (r1γi,1 + ∙ ∙ ∙+ rnγi,n)}Di=1

We will now expand the discriminant of T
(s)
f0

. We have

dis(T (s)
f0

) =
(
C(s)

)D(D−1)∏

i 6=j

(s ∙ (r1γi,1 + ∙ ∙ ∙+ rnγi,n)− s ∙ (r1γj,1 + ∙ ∙ ∙+ rnγj,n))

= CD(D−1)
∏

i 6=j

(s ∙ (r1γi,1 + ∙ ∙ ∙+ rnγi,n)− s ∙ (r1γj,1 + ∙ ∙ ∙+ rnγj,n)) from (5.6)

= sD(D−1)CD(D−1)
∏

i 6=j

((r1γi,1 + ∙ ∙ ∙+ rnγi,n)− (r1γj,1 + ∙ ∙ ∙+ rnγj,n))

= sD(D−1)dis(Tf0)

Lemma 5.3. Let s > 0. Then

BEMT (F (s))
s

=

√
|dis(Tf0)|

R(s)D−1
P (d1, . . . , dn, n)

where

R(s) =

∏n
i=1 ||f

(s)
i ||

Mi
∞

s
D
2
− 1

D−1

Proof. We have

BEMT (F (s))
s

=
1
s

√
|dis(T (s)

f0
)|

∏n
i=1 ||f

(s)
i ||

Mi(D−1)
∞

P (d1, . . . , dn, n)

84

=
1
s

s
D(D−1)

2

√
|dis(Tf0)|

(∏n
i=1 ||f

(s)
i ||

Mi
∞

)D−1
P (d1, . . . , dn, n) from Lemma 5.2

=

√
|dis(Tf0)|

(∏n
i=1 ||f

(s)
i ||

Mi
∞

s
D
2 − 1

D−1

)D−1
P (d1, . . . , dn, n)

=

√
|dis(Tf0)|

R(s)D−1
P (d1, . . . , dn, n)

Lemma 5.4. We have

s∗ = arg min
s>0

R(s)

Proof. To prove the claim, we will again make use of the identities in Lemma 4.1 . We have

arg max
s>0

BEMT (F (s))
s

= arg max
s>0

√
|dis(T)|

R(s)D−1
P (d1, . . . , dn, n) from Lemma 5.3

= arg max
s>0

1
R(s)D−1

(Identity 1)

= arg max
s>0

1
R(s)

(Identity 2)

= arg min
s>0

R(s) (Identity 3)

We will now consider the computation of arg mins>0 R(s). For the sake of generality, we will

study all functions of the form

R(s) =

∏n
i=1 ||f

(s)
i ||

Ui
∞

sV

where U1, . . . , Un, V ∈ R>0. Let s∗ = arg mins>0 R(s). We will show that s∗ can be computed in

O (n ∙m + n ∙ d) algebraic operations and comparisons. Our overall strategy will be to trans-

form the problem into a new problem which is stated in terms of linear functions. More precisely,

we will show that log(R(s)) can be viewed as the upper envelope of a set of linear functions.

We will make use of a technique for efficiently computed upper envelopes known as the Convex

Hull Trick to compute s∗ efficiently.

85

Lemma 5.5. Let t = log(s). We have

log(R(s)) =
n∑

i=1

Ui ∙ max
e∈E(fi)

((di − |e|) ∙ t + log(|ae|))− V ∙ t

Proof. We have

log(R(s)) = log

(∏n
i=1 ||f

(s)
i ||

Ui

sV

)

=
n∑

i=1

Ui ∙ log(||f (s)
i ||)− V ∙ log(s) (5.7)

Note that

log(||f (s)
i ||) = log

(

max
e∈E(fi)

sdi−|e||ae|

)

= max
e∈E(fi)

(
log
(
sdi−|e||ae|

))

= max
e∈E(fi)

((di − |e|) ∙ log(s) + log(|ae|))

= max
e∈E(fi)

((di − |e|) ∙ t + log(|ae|)) (5.8)

Combining (5.7) and (5.8), we have

log(R(s)) =
n∑

i=1

Ui ∙ max
e∈E(fi)

((di − |e|) ∙ t + log(|ae|))− V ∙ t

Since the sum of upper envelopes is an upper envelope, log(R(s)) is an upper envelope. The

upper envelope of a set of linear functions li(t) = βi ∙ t+ξi on t > 0 is represented by an ordered

sequence (li1 , 0), (li2 , ti1,i2), . . . , (lir , tir−1,ir) such that

max
i

li(t) =






li1(t) −∞ ≤ t ≤ ti1,i2

li2(t) ti1,i2 ≤ t ≤ ti2,i3

...

lir(t) tir−1,ir ≤ t ≤ ∞

Given such a representation, finding the t which minimizes the upper envelope is trivial: we

simply find the corner point t where the slopes of the lines in the upper envelope switch from

86

negative to positive. In fact, this representation contains more information than is necessary to

find the minimizer. We need only store the slopes of functions which lie on the upper envelope,

as well as the corner points.

Hence we have the following initial strategy. For i = 1, . . . , n, we compute the upper envelope

representation of

max
e∈E(fi)

((di − |e|) ∙ t + log(|ae|)) (5.9)

The most efficient algorithm for computing upper envelope representations of linear functions

is known as the Convex Hull Trick. It is not clear who deserves credit for this trick; it appears

to be folklore, not published in the literature. See [1] for a concise summary. We can combine

the upper envelope representations to find the representation of

log(R(s)) =
n∑

i=1

Ui ∙ max
e∈E(fi)

((di − |e|) ∙ t + log(|ae|))− V ∙ t

We then read off the minimizer t∗ of log(R(s)) and return

s∗ = et∗

We will now discuss improvements to the above strategy. Note that in the above strategy we

must take logarithms. Recall that the current goal is to present an algorithm which produces

the minimizer in

O(n ∙m + n ∙ d)

algebraic operations and comparisons. It turns out that is a relatively trivial matter to modify

the Convex Hull Trick algorithm to avoid logarithm computations for the current application.

In the Convex Hull Trick algorithm, we compare corner points ti1,i2 and ti3,i4 . In our case, the

corner points for the upper envelope of (5.9) are the points where

(di − |e1|) ∙ t + log(|ae1 |) = (di − |e2|) ∙ t + log(|ae2 |).

The above equality holds if and only if

t =
log(|ae1 |)− log(|ae2 |)

|e1| − |e2|
= log

((
|ae1 |
|ae2 |

) 1
|e1|−|e2|

)

.

Clearly,

log

((
|ae1 |
|ae2 |

) 1
|e1|−|e2|

)

≤ log

((
|ae3 |
|ae4 |

) 1
|e3|−|e4|

)

⇐⇒

(
|ae1 |
|ae2 |

) 1
|e1|−|e2|

≤

(
|ae3 |
|ae4 |

) 1
|e3|−|e4|

.

87

We can use this equivalence to perform all of the necessary comparisons in the Convex Hull

Trick algorithm without computing any logarithms.

It is also possible to speed up the computation of the upper envelope representations by

making use of the following Lemma.

Lemma 5.6. Let s > 0. Then

||f (s)||∞ = max
0≤k≤deg(f)

sd−k ∙ bk

where

d = deg(f)

bk = max
e∈E(f)
|e|=k

|ae|

Proof. Note that

f (s) = sdf(x1/s, . . . , xn/s) = sd ∙
∑

e∈E(f)

ae

(x1

s

)e1
(x2

s

)e2

∙ ∙ ∙
(x1

s

)en

=
∑

e∈E(f)

sd−|e|ae ∙ x
e

Hence

||f (s)||∞ = max
e∈E(f)

sd−|e||ae|

= max
0≤k≤d





max

e∈E(f)
|e|=k

sd−|e||ae|






= max
0≤k≤d





max

e∈E(f)
|e|=k

sd−k|ae|






= max
0≤k≤d

sd−k





max

e∈E(f)
|e|=k

|ae|






= max
0≤k≤d

sd−k ∙ bk

We are now ready to present FindMinimizer (Algorithm 6). For each fi, we first find

the coefficient of largest magnitude for each total degree (Lemma 5.6). We then use the sub-

algorithm UpperEnvelopeSlopes (Algorithm 5) to compute the slopes of the lines which lie on

88

the upper envelope of log(||f (s)
i ||∞), as well as the points sei,ej such that tei,ej = log(sei,ej) is

a corner point of the upper envelope. UpperEnvelopeSlopes is a straightforward modification

of the Convex Hull Trick algorithm. Once the upper envelope slopes are computed for each

log(||f (s)
i ||∞), we search for the smallest s such that the slope of log(R) is positive for t > log(s).

We are now ready to discuss the complexity of FindMinimizer.

Lemma 5.7. Let U1, . . . , Un, V ∈ R>0 and

R(s) =

∏n
i=1 ||f

(s)
i ||

Ui
∞

sV

Then

arg min
s>0

R(s)

can be computed in O (n ∙m + n ∙ d) algebraic operations and comparisons, where

m = # monomials of F

d =
n∑

i=1

di

Proof. We consider the total time spent on each line of FindMinimizer.

In Line 3, we compute

Li ← [((di − k), 0), k = 0, . . . , di]

which requires a total of O(
∑n

i=0 di) algebraic operations.

In Lines 5 and and 6 we check and potentially update the entry Li[|e|][2]. This is done for

every e ∈ E(fi). Since the computation of |e| requires O(n) algebraic operations, the number

of algebraic operations in lines 5 − 6 is O(n ∙
∑n

i=1 #E(fi)) = O(n ∙m).

In Line 7 we compute

Zi ← UpperEnvelopeSlopes(Li)

It is straightforward to see that UpperEnvelopeSlopes requires O(r) algebraic operations and

comparisons when r linear functions are input. Since Li has O(di) elements, line 7 requires

O(di) algebraic operations and comparisons. Hence the total amount of work performed in Line

9 is O(
∑n

i=1 di).

In Line 8 we compute

M ← the list of triples (β, i, s), sorted in ascending order with respect to s

89

Algorithm 5: UpperEnvelopeSlopes

Input : L = [l1, . . . , lr] where
li(t) = βi ∙ t + log(ξi)
ξi > 0 for all i
0 ≤ β1 < β2 < . . . βr

li(t) is represented by (βi, ξi)
Output: M : an ordered list [(βi1 , 0), (βi2 , si1,i2), . . . , (βir , sir−1,ir

)] such that

max
i

li(t) =






βi1 ∙ t + log(ξi1) −∞ ≤ t ≤ ti1,i2

βi2 ∙ t + log(ξi2) ti1,i2 ≤ t ≤ ti2,i3

;
...

βir ∙ t + log(ξir) tir−1,ir ≤ t ≤ ∞

where tij ,ik = log(sij ,ik).
begin1

// L will store the indices of the linear functions which lie on the
upper envelope in the order which they appear. We construct L using
a slight modification of the Convex Hull Trick algorithm.

L← [1];2

for i from 2 to r do3

Append i to L;4

while size(L) > 2 and5
(

ξL[size(L)−1]

ξL[size(L)]

) 1
βL[size(L)]−βL[size(L)−1] <

(
ξL[size(L)−2]

ξL[size(L)−1]

) 1
βL[size(L)−1]−βL[size(L)−2] do

Remove L[size(L)− 1] from L;6

M ← [(βL[1], 0)];7

for i from 2 to size(L) do8

Append

(

βL[i],
(

ξL[i−1]

ξL[i]

) 1
βL[i]−βL[i−1]

)

to M ;
9

end10

90

Algorithm 6: FindMinimizer
Input : F,U, V

Output: s∗ = arg mins>0

∏n
i=1 ||f

(s)
i ||

Ui
∞

sV

begin1

for i from 1 to n do do2

Li ← [((di − k), 0), k = 0, . . . , di] // Lines are represented by3

(slope,eintercept);
for e ∈ E(fi) do4

if Li[|e|][2] < |ae| then5

Li[|e|][2] = |ae| // Find the largest magnitude coefficient for6

each degree (Lemma 5.6);
Zi ← UpperEnvelopeSlopes(Li);7

M ← the list of triples (β, i, s), sorted in ascending order with respect to s, where8

(β, s) is an element of Zi;
// Search for the first s where log(R) has positive slope after log(s) :

C ← [0, . . . , 0]// C[i] stores the slope of log(||f (s)
i ||∞);9

for m in M do10

C[m[2]] = m[1]// Update the slope for log(||f (s)
i ||∞);11

α← U1 ∙ C[1] + ∙ ∙ ∙+ Un ∙ C[n]− V // Calculate the slope of log(R) for t12

immediately after log(s) = log(m[3]);
if α > 0 then13

return m[3];14

end15

91

where (β, s) is an element of Zi

Note that every list Zi is already sorted in ascending order with respect to s, and Zi has O(di)

elements. Hence constructing M requires O(n ∙
∑n

i=1 di) algebraic operations and comparisons.

Line 9 can clearly be computed in a constant number of algebraic operations.

In the remainder of the algorithm, we potentially loop over all O(
∑n

i=1 di) elements of M .

Lines 11 and 13 both require a constant number of algebraic operations and comparisons. Line

12 requires O(n) algebraic operations. Hence the total number of algebraic operations and

comparisons performed in lines 10 − 14 is O(n ∙
∑n

i=1 di)

Combining all of the above, the total number of algebraic operations and comparisons

required to compute FindMinimizer(F,U, V) is

O

(

n ∙
n∑

i=1

#E(fi) + n ∙
n∑

i=1

di

)

= O (n ∙m + n ∙ d)

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Note that

BNew(F) =

√
|dis(Tf0)|

R(s∗)D−1
P (d1, . . . , dn, n)

=

√
|dis(Tf0)|

(arg mins>0 R(s))D−1
P (d1, . . . , dn, n)

= max
s>0

BEMT (F (s))
s

from Lemma 5.3

Hence parts 1, 2 and 3 of the Theorem follow immediately from Proposition 5.3. The fourth

part follows from Lemmas 5.3 and 5.7.

5.3 Performance

In this Section, we discuss the experimental performance of the new bound. We have observed

that the improvement is usually very large for the new bound, especially when the magnitude

of roots are different from 1. To generate data points, we generated 100 random square Pham

polynomial systems with fixed degree and height (defined below) and calculated the average

92

value of the improvement:

BNew(F)
BEMT (F)

=

(∏n
i=1 ||fi||Mi

H

)D−1

Note that the improvement is independent of the discriminant for the new bound. This ob-

servation allowed us to avoid many expensive computations when performing experiments (in

particular, no resultants need be computed). We extended the binomial height used in the

previous chapter Pham polynomials of degree d with the definition

||f ||B = max
e∈Support(trailing polynomial of f)

|ae|(
d
e

)

1
d−|e|

It is well known this height is linearly related to the size of the roots. To generate a polynomial

system with the height rn/rd, we uniformly generated an integer c in the range (−rn, rd) for

every trailing coefficient. The corresponding integer for one coefficient was randomly chosen to

be fixed at rn. We then set

|ae| =

(
rn

rd

)d−|e|(d

e

)

and defined fi = xd
i + trailing polynomial.

In Figure 5.4, we plot the log of the average improvement of BNew for 100 Pham systems

with n = 3 and the degree of every polynomial 3. We see similar plots both for other degrees and

other choices of n. As we can see from Figure 5.4, the improvement increases as the magnitude

of the roots becomes much different from 1.

Figure 5.4: B−Height and Multivariate Improvement

93

REFERENCES

[1] Convex hull trick. http://wcipeg.com/wiki/Convex_hull_trick.

[2] A. Akritas, A. Strzebonksi, and P. Vigklas. Implementations of a New Theorem for Com-

puting Bounds for Positive Roots of Polynomials. Computing 78, 2006.

[3] A. Akritas and P. Vigklas. A Comparison of Various Methods for Computing Bounds for

Positive Roots of Polynomials. Journal of Universal Computer Science, 13, 2007.

[4] P. Batra. A property of the nearly optimal root-bound. Journal of Computational and

Applied Mathematics, 167, 2004.

[5] P. Batra. A Lower Bound for the Separation of Polynomials. 2008.

[6] P. Batra and V. Sharma. Bounds on Absolute Positiveness of Multivariate Polynomials.

Journal of Symbolic Computation, 2010.

[7] Y. Bugeaud and M. Mignotte. On the Distance Between Roots of Integer Polynomials.

Proc. Edinburgh Math. Soc. 47 (3), pages 553–556, 2004.

[8] C. Burnikel, S. Funke, K. Melhorn, S. Schirra, and S. Schmitt. A Separation Bound for

Real Algebraic Expressions. Lecture Notes in Computer Science, pages 254–265, 2001.

[9] M. Burr, S.W. CHoi, B. Galehouse, and C.K. Yap. Complete subdivision algorithms. In

Proc. of Annual ACM Symp. on Symbolic and Algebraic Computation (ISAAC) , 2008.

[10] A. Cauchy. Sur la Résolution des Équation Numériques et Sur la Théorie de l’Élimination.

Œvres Complètes, 9, 1829.

[11] G. Collins. Polynomial Minimum Root Separation. Journal of Symbolic Computation,

2011.

[12] G. Collins and E. Horowitz. The Minimum Root Separation of a Polynomial. Mathematics

of Computation, Volume 28, Number 126, 1974.

94

http://wcipeg.com/wiki/Convex_hull_trick

[13] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer, 2nd edition, 2005.

[14] J. H. Davenport. Cylindrical algebraic decomposition. Technical report, School of Mathe-

matical Sciences, Univ. Bath, 1988.

[15] J.-P. Dedieu. Estimations for the Separation Number of a Polynomial System. Journal of

Symbolic Computation, 1997.

[16] M. Dehmer and A. Mowshowitz. Bounds on the moduli of polynomial zeros. Applied

Mathematics and Computation, 2011.

[17] A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion tree bounds for the

descartes method. In Proc. Annual ACM Symp. on Symbolic and Algebraic Computation

(ISAAC), 2006.

[18] I. Emiris, B. Mourrain, and E. Tsigaridas. The DMM Bound: Multivariate (Aggregate)

Separation Bounds. Proceedings of the 2010 International Symposium on Symbolic and

Algebraic Computation, pages 243–250, 2010.

[19] I. Emiris and E. Tsigaridas. Comparing Real Algebraic Numbers of Small Degree. Lecture

Notes in Computer Science Volume 3221, 2004.

[20] M. Fujiwara. Uber die Wurzeln der algebraischen Gleichungen. Tohoku Math. Journal,

1915.

[21] L. Gonzalez-Vega and G. Trujillo. Multivariate Sturm-Habicht sequences: Real root count-

ing on n-rectangles and triangles. Real Algebraic and Analytic Geometry, 1997.

[22] H. Hong. Bounds for Absolute Positiveness of Multivariate Polynomials. Journal of Sym-

bolic Computation, 1998.

[23] V.K. Jain. On the zeros of polynomials ii. Journal of Mathematical and Physical Sciences,

1986.

95

[24] J.R. Johnson. Algorithms for Polynomial Real Root Isolation. PhD Thesis, Ohio State

University, 1991.

[25] A. Joyal, G. Labelle, and Q.I. Rahman. On the location of polynomials. Canadian Math-

ematical Bulletin, (10), 1967.

[26] B. Kalantari. An infinite family of bounds on zeros of analytic functions and relationship

to Smale’s bound. Mathematics of Computation, 2005.

[27] J. B. Kioustelidis. Bounds for Positive Roots of Polynomials. Journal of Computational

and Applied Mathematics 16, 1986.

[28] J. Kojima. On a theorem of Hadamard and its applications. Tohoku Mathematical Journal,

1914.

[29] M. Kuniyeda. Notes on the Roots of Algebraic Equations. Tohoku Math. Jounral, 1916.

[30] J. L. Lagrange. Traité de la Résolution des Équations Numériques de Tous les Degrés.

Œvres de Lagrange, 8, 1879. Reprinted from the second edition of 1808.

[31] C. Li, S. Pion, and C.Yap. Recent Progress in Exact Geometric Computation. Journal of

Logic and Algebraic Programming, 2004.

[32] C. Li, S. Pion, and C.K. Yap. Recent progress in exact geometric computation. The

Journal of Logic and Algebraic Programming, 2005.

[33] K. Mahler. An Inequality for the Discriminant of a Polynomial. The Michigan Mathematical

Journal, 1964.

[34] A. Mantzaflaris, B. Mourrain, and E. Tsigaridas. Continued fraction expansion of real

roots of polynomial sytems. In Proc. Symbolic-Numeric Computation, 2009.

[35] M. Marden. The Geometry of Zeros of a Polynomial in a Complex Variable. Mathematics

Surveys, 3, 1949.

96

[36] K. Melhorn and S. Ray. Faster Algorithms for Computing Hong’s Bound on Absolute

Positivity. Journal of Symbolic Computation, 2010.

[37] M. Mignotte. An Inequality About Factors of Polynomials. Mathematics of Computation,

28(128), 1974.

[38] M. Mignotte. Some inequalities about univariate polynomials. Proceedings 1981 ACM

Symposium on Symbolic and Algebraic Computation, SYMSAC 1981, 1981.

[39] M. Mignotte. Mathematics for computer algebra. Spring-Verlag, 1991.

[40] M. Mignotte. On the Distance Between the Roots of a Polynomial. Applicable Algebra in

Engineering, Communication, and Computing, 1995.

[41] M. Mignotte and D. Stefanescu. Polynomials: an Algorithmic Approach. Springer, 1999.

[42] C. Muresan. The Polynomial Roots Repartition and Minimum Roots Separation. WSEAS

Transactions on Mathematics, 2008.

[43] S. Rump. Polynomial Minimum Root Separation. Mathematics of Computation, Volume

33, Number 145, 1979.

[44] T. Sasaki and F. Kako. An algebraic method for separating close-root clusters and the

minimum root separation. Proceedings of SNC2005, 2005.

[45] A. Schonhage. Polynomial root separation examples. Journal of Symbolic Computation,

2006.

[46] C. Schultz and R. Moller. Quantifier Elimination over Real Closed Fields in the Context

of Applied Description Logics. Univ., Bibl. des Fachbereichs Informatik., 2005.

[47] V. Sharma. Complexity of Real Root Isolation Using Continued Fractions. Theoretical

Computer Science, 409(2), 2008.

[48] M. Sombra. The Height of the Mixed Sparse Resultant. American Journal of Mathematics,

2004.

97

[49] D. Stefanescu. New Bounds for Positive Roots of Polynomials. Journal of Universal

Computer Science, 11(12), 2005.

[50] D. Stefanescu. Bounds for Real Roots and Applications to Orthogonal Polynomials. Pro-

ceedings of the 10th International Workshop on Computer Algebra in Scientific Computing ,

2007.

[51] A. Strzebonksi and E. Tsigaridas. Univariate Real Root Isolation in an Extension Field

and Applications. Arxiv, 2011.

[52] E. Tsigaridas and I. Emiris. On the Complexity of Real Root Isolation Using Continued

Fractions. Theor. Comput. Sci., 392, pages 158–173, 2008.

[53] E. Tsigaridas and I. Z. Emiris. Univariate polynomial real root isolation: Continued frac-

tions revisited . Proceedings of the 14th European Symp. of Algorithms (ESA), 2006.

[54] A. van der Sluis. Upper Bounds for Roots of Polynomials. Numerische Mathematik 15,

1970.

[55] J. C. Yakoubsohn. Numerical analysis of a bisection-exclusion method to find zeros of

univariate analytic functions. Journal of Complexity, 2005.

98

	LIST OF FIGURES
	Introduction
	Background
	Positive Root Bounds of Univariate Polynomials
	Derivation of the Hong Bound
	Computing the Hong Bound in Linear Time

	Root Separation Bounds of Univariate Polynomials
	Derivation of the Mahler-Mignotte Bound

	Root Separation Bounds of Polynomial Systems
	Derivation of the Emiris-Mourrain-Tsigaridas Bound

	Positive Root Bounds of Univariate Polynomials
	Main Results
	Proof of Theorem ‘‘Over-Estimation is unbounded''
	Proof of Theorem ‘‘Over-Estimation when Descartes Rule of Signs is exact''
	Proof of Theorem ‘‘Over-Estimation when there is a single sign variation''
	Root of witness polynomials approaches 1/2
	Average relative over-estimation for polynomials with single sign variation
	Relative over-estimation when the number of sign variations is not equal to the number of positive roots

	Root Separation Bounds of Univariate Polynomials
	Challenge
	Main Result
	Derivation
	Overall framework
	Derivation of New Univariate Bound

	Performance

	Root Separation Bounds of Polynomial Systems
	Main Result
	Derivation
	Overall framework
	Derivation of New Multivariate Bound

	Performance

	References

