
ABSTRACT

WENTWORTH, MAMI TONOE. Verification Techniques for Parameter Selection and Bayesian
Model Calibration Presented for an HIV Model. (Under the direction of Ralph Smith.)

Uncertainty quantification plays an important role when making predictive estimates of

model responses. In this context, uncertainty quantification is defined as quantifying and

reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and

measurements, and propagate the uncertainties through the model, so that one can make a

predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification

that must be performed prior to propagating uncertainties are model calibration and parameter

selection. There are several efficient techniques for these processes; however, the accuracy of

these methods are often not verified. This is the motivation for our work, and in this dissertation,

we present and illustrate verification frameworks for model calibration and parameter selection

in the context of biological and physical models.

First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics

of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell

counts and to construct an optimal control for drug therapy. Estimating input parameters is an

essential step prior to uncertainty quantification. However, not all the parameters are identifiable,

implying that they cannot be uniquely determined by the observations. These unidentifiable

parameters can be partially removed by performing parameter selection, a process in which

parameters that have minimal impacts on the model response are determined. We provide

verification techniques for Bayesian model calibration and parameter selection for an HIV model.

As an example of a physical model, we employ a heat model with experimental measure-

ments presented in [10]. A steady-state heat model represents a prototypical behavior for heat

conduction and diffusion process involved in a thermal-hydraulic model, which is a part of

nuclear reactor models. We employ this simple heat model to illustrate verification techniques

for model calibration.

For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct

densities for input parameters in the heat model and the HIV model. To quantify the uncertainty

in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis

(DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities

obtained using these methods are compared to those obtained through the direct numerical

evaluation of the Bayes’ formula. We also combine uncertainties in input parameters and

measurement errors to construct predictive estimates for a model response. A significant emphasis

is on the development and illustration of techniques to verify the accuracy of sampling-based

Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains,



densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes

formula. We also perform similar analysis for credible and prediction intervals for responses.

Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the

densities obtained by different methods for the HIV model. The energy statistics are used to

test the equality of distributions.

We also consider parameter selection and verification techniques for models having one or

more parameters that are noninfluential in the sense that they minimally impact model outputs.

We illustrate these techniques for a dynamic HIV model but note that the parameter selection

and verification framework is applicable to a wide range of biological and physical models. To

accommodate the nonlinear input to output relations, which are typical for such models, we

focus on global sensitivity analysis techniques, including those based on partial correlations,

Sobol indices based on second-order model representations, and Morris indices, as well as a

parameter selection technique based on standard errors. A significant objective is to provide

verification strategies to assess the accuracy of those techniques, which we illustrate in the

context of the HIV model.

Finally, we examine active subspace methods as an alternative to parameter subset selection

techniques. The objective of active subspace methods is to determine the subspace of inputs

that most strongly affect the model response, and to reduce the dimension of the input space.

The major difference between active subspace methods and parameter selection techniques is

that parameter selection identifies influential parameters whereas subspace selection identifies a

linear combination of parameters that impacts the model responses significantly. We employ

active subspace methods discussed in [22] for the HIV model and present a verification that the

active subspace successfully reduces the input dimensions.
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Chapter 1

Introduction

Uncertainty Quantification can be defined as the process of (i) quantifying uncertainties in

inputs – parameters, initial and boundary conditions; (ii) propagating the input uncertainties

through the model; and (iii) making predictive estimates with associated uncertainties. As shown

in Figure 1.1, model calibration and parameter selection are two of the key components of

uncertainty propagation. Parameter selection allows us to identify the parameters that minimally

impact the model responses, whereas model calibration allows us to quantify parameter values

and their uncertainties.

In many biological and physical models, the dimensionality of input space can be as large

as O(105). Some parameters are non-physical, and others can not be measured directly in

experiments. Hence, these parameters must be inferred or estimated using data and their

uncertainties must be quantified before one can propagate the uncertainties through the model.

In these situations, estimating parameters using Bayesian inference allows us to subsequently

sample from parameter densities and directly propagate the parameter uncertainties through

the model. An example of techniques for efficiently estimating parameters is sampling-based

methods. In particular, Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential

Evolution Adaptive Metropolis (DREAM) [66, 68] are two of the methods we employ to avoid

high-dimensional integration in the Bayesian model calibration formula.

At the same time, some or many of these input parameters can not be uniquely identified

using the data. This necessitates the use of parameter selection techniques, in which parameters

that have greater impacts on the model response are identified. The parameters whose impact on

the response is minimal can be fixed at nominal values, hence reducing the number of parameters

to be estimated for model calibration. For parameter selection, we study Partial Correlation,

Sobol indices and Morris indices, which are based on global-sensitivity analysis, as well as a

parameter subset selection algorithm based on standard errors.

The use of these techniques facilitates the model calibration and parameter selection processes;
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Figure 1.1 Components of uncertainty propagation process.

however, the accuracy of these methods is often not verified. This motivates us to present and

demonstrate verification frameworks for model calibration and parameter selection.

For model calibration, one must carefully determine whether the chain values have converged.

Even though the sampling-based methods are based on the construction of a Markov chain whose

stationary distribution is the posterior, the adaptation used to improve the efficiency causes

DRAM and DREAM to be no longer a Markovian process. Convergence is still guaranteed but it

is difficult to establish when chains have converged. Even if a chain appears stationary for a long

time based on a visual inspection, the parameter values may still jump to a region of another

local minimum. For this reason, it is essential to perform a verification procedure to ensure that

chains have converged and that the correct distributions are obtained for the posterior.

In parameter selection, parameters are ranked in the order of importance based on their

sensitivity indices. A major issue here is that there is often no clear cut-off between important

and unimportant parameters. Additionally, some parameter selection techniques are based on the

linear approximation of functions and function gradients. If the function can not be accurately

represented with a linear approximation, then the parameter selection techniques will fail to

identify the important parameters correctly. One must perform a verification to determine that

the parameters that are identified as unimportant do in fact impact the response minimally.

In this dissertation, we discuss model calibration and parameter selection techniques presented
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for a biological model and a physical model. The significant emphasis is on the verification

frameworks for these techniques. We present the application and verification of model calibration

and parameter selection techniques in the context of an HIV model and a heat model; however,

these techniques are applicable to a wide range of physical and biological models.

1.1 Models

1.1.1 HIV Model

The modeling of the HIV disease is essential for understanding the disease and developing

optimal treatment regimes. A mathematical model has been developed in [8] to quantify the

interactions among infected and uninfected T-cells, infectious and noninfectious viral loads and

effector cells. The model’s predictive capability has been verified using data from patients who

underwent a clinical study involving structured treatment interruptions.

The system of ODEs modeling the HIV disease developed in [8] is given by

Ṫ1 = −d1T1 − (1− ξ1(t))k1VIT1 − γTT1 + pT

(
aTVI

VI +KV
+ aA

)
T2

Ṫ ∗1 = (1− ξ1(t))k1VIT1 − δT ∗1 −mE1T
∗
1 − γTT ∗1 + pT

(
aTVI

VI +KV
+ aA

)
T ∗2

Ṫ2 = λT
Ks

VI +Ks
− γTT1 − d2T2 − (1− fξ1(t))k2VIT2 −

(
aTVI

VI +KV
+ aA

)
T2

Ṫ ∗2 = γTT
∗
1 + (1− fξ1(t))k2VIT2 − d2T

∗
2 −

(
aTVI

VI +KV
+ aA

)
T ∗2

V̇I = (1− ξ2(t))103NT δT
∗
1 − cVI − 103[(1− ξ1(t))ρ1k1T1 + (1− fξ1(t))ρ2k2T2]VI

V̇NI = ξ2(t)103NT δT
∗
1 − cVNI

Ė1 = λE +
bE1T

∗
1

T ∗1 +Kb1
E1 −

dET
∗
1

T ∗1 +Kd
E1 − δE1E1 − γE

T1 + T ∗1
T1 + T ∗1 +Kγ

E1 +
pEaEVI
VI +KV

E2

Ė2 = γE
T1 + T ∗1

T1 + T ∗1 +Kγ
E1 +

bE2Kb2

E2 +Kb2
E2 − δE2E2 −

aEVI
VI +KV

E2

(1.1)

with initial conditions [T1(0), T ∗1 (0), T2(0), T ∗2 (0), VI(0), VNI(0), E1(0), E2(0)]. Here, T1 and T ∗1
respectively denote uninfected and infected activated (antigen-specific) CD4+ T-cells. Uninfected

resting, non-activated, CD4+ T-cells are denoted by T2 and infected resting CD4+ T-cells are

denoted by T ∗2 . Infectious free virus is denoted by VI ; this is the virus that is capable of infecting

other cells in the plasma. On the other hand, VNI denotes non-infectious free virus, which is

yielded inactive by protease inhibitors. HIV-specific effector CD8+ T-cells are denoted by E1

and HIV-specific memory CD8+ T-cells are denoted by E2. The compartments of the model are
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depicted in Figure 1.2.

Several terms in the model (1.1) are based on the law of mass action, so that the rate of

change in population size is proportional to the population size. The terms −d1T1 and γTT1 in

Ṫ1 are examples of mass action terms. Other terms are based on Michaelis-Menten kinetics, in

which the rate saturates a maximum. An example of this type is aTVI
VI+KV

, which is the activation

of infected HIV specific resting CD4+ T-cells with aT being the maximum activation rate.

The term λTKS
VI+KS

in the differential equation for Ṫ ∗2 accounts for the source rate of naive CD4+

T-cells. In the equation for Ė1,
bE1T

∗
1

T ∗
1 +Kb1

E1 and − dET
∗
1

T ∗
1 +Kd

E1 respectively represent dynamic effect

that activated, infected CD4+ T-cells have on the effector CD8+ T-cells when Kb1 < Kd and

bE1 < bE . Also in this differential equation, pEaEVIVI+KV
E2 represents the activation of memory CD8+

T-cells into effector CD8+ T-cells. In the differential equation for Ė2,
E1(T1+T ∗

1 )
T1+T ∗

1 +Kγ
has an essential

role that activated CD4+ T-cells play in the generation of memory CD8+ T-cells, whereas
bE2Kb2E2
E2+Kb2

and δE2E2 are homeostatic regulation terms in E2.

The parameters in the HIV model (1.1) are described in Table 1.1 and nominal values

for parameters and initial conditions reported in [6] are compiled in Table 1.2. The functions

ξ1 = ε1u(t) and ξ2 = ε2u(t) represent the impact of the treatment. Here, ε1 is the effectiveness of

the reverse transcriptase inhibitor (RTI), whereas ε2 is the effectiveness of the protease inhibitor

Figure 1.2 The compartments of HIV model (1.1).
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(PI). Also, u(t) is the HAART drug level, where u(t) = 1 when the patient is on treatment,

and u(t) = 0 when the patient is off treatment. Parameters such as ε1 and ε2, along with many

others, can not be directly measured and hence must be estimated through a fit to data.

Among these inputs, however, some parameters do not influence model output. These

parameters are identified via parameter selection prior to parameter estimation. Isolating these

noninfluential parameters allows us to reduce the parameter dimensions for model calibration. In

some cases, parameter selection also helps eliminate the parameter identifiability issues during

model calibration since noninfluential parameters may not be uniquely estimated.

Quantifying and reducing uncertainties in the modeling of HIV disease are essential in

understanding the disease better, reducing the spread and developing treatment regimes. The

sources of uncertainty involved in the HIV model include parameter values that are not directly

measurable as well as observed data which are either noisy or censored. We perform model

calibration and parameter selection for the HIV model (1.1). Additionally, we present the

illustration and verification of model calibration and parameter selection techniques in the

context of the HIV model.

1.1.2 Heat Equation

Next, we discuss models for nuclear reactor design. Understanding and improvement of nuclear

reactor design is dependent on developing models and simulation codes. A primary goal of

Consortium for Advanced Simulation of Light water Reactors (CASL) funded by the Department

of Energy is to develop simulation-based design tools and predict the interactions between the

nuclear fuel, neutron transport, heat transfer and thermal-hydraulic components of a light water

reactor.

A neutron transport equation, for example, models a component of a reactor core. It is

essential to quantify the neutron distributions in the reactor core since neutron densities and

energy levels govern various nuclear reactions. Readers are referred to [14, 26] for details on

neutron transport equations. The transport equation provides a highly accurate description

of neutron distributions in a reactor if a correct macroscopic cross-section information is

employed. There have been developed libraries of cross-section distributions for various stable

and radioactive nuclei. Since the quantification of neutron distribution is critical to nuclear

reactors, numerous commercial, government laboratory and proprietary neutron transport codes

have been developed.

Another component of nuclear reactor models is thermal-hydraulic models. The goal of

thermal-hydraulic models is to characterize the primary coolant behavior in a nuclear reactor.

However, this is a highly complex process since it includes integration of high pressure, two-phase

flow dynamics, heat conduction, heat transfer and neutron interactions in complex geometries.
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Table 1.1 Description of parameters in the model (1.1).

Parameter Explanation

δ Viral produced lysis rate of T ∗1
d2 T2 and T ∗2 natural death rate

δE2 Death rate of E2

m Rate of removal by cell lysis of T ∗1 from the system by E1

γT Rate at which T1 and T ∗1 differentiate into T2 and T ∗2 , respectively

c Natural clearance rate of VI and VNI

δE1 Constant death rate of E1

γE Source term for E1

k2 Production rate of T ∗2 due to encounters between T2 and VI

that is less than k1

ρ1 Rate of removal of VII through successful infection of T1

ρ2 Rate of removal of VI through successful infection of T2

d1 Natural death rate of T1

ε2 Relative effectiveness of protease inhibitor (PI)

aA Activation rate of T2 and T ∗2 by non-HIV antigen

ε1 Relative effectiveness of reverse transcriptase inhibitor (RTI)

pT Net proliferation of T1 and T ∗1 due to clonal expansion and

programmed contraction

pE Net proliferation of E1 due to clonal expansion and programmed

contraction

k1 Production rate of T ∗1 from encounters between T1 and VI

NT Number of RNA copies produced during the process of T ∗1 lysis

aT Maximum activation rate of T2 and T ∗2
f Efficacy of treatment 0 ≤ f ≤ 1

λE Constant differentiation of E2 into E1

KV Half-saturation constant of virus
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Table 1.2 Nominal values of parameters and initial conditions from [6].

λT = 3.2543 d1 = 0.1317 ε1 = 0.5241 k1 = 4.8200e-5

aT = 2.3198e-4 ε2 = 0.7149 NT = 79.26 bE2 = 0.34554

aE = 1.5332e-2 pE = 1.0294 aA = 8.07e-5 pT = 5.531

γT = 3.792e-4 d2 = 3.096e-3 f = 0.5068 k2 = 2.005e-9

δ = 0.2095 m = 1.127e-3 c = 5.818 λE = 9.9930e-4

bE1 = 3.885e-2 Kb1 = 2.488e-2 dE = 6.278e-2 Kd = 0.12

δE1 = 5.967e-2 Kb2 = 86.97 γE = 5.154e-4 Kγ = 1.357

KV = 14.79 δE2 = 1.450e-3 Ks = 2.789e+4 T1(0) = 12.135

T ∗1 (0) = 5.8604e-4 T2(0) = 823.59 T ∗2 (0) = 7.521e-3 VI(0)= 3.571e+3

VNI(0) = 3.571e+3 E1(0) = 6.821e-2 E2(0) = 0.6909

The quantification of void fraction distributions and boiling transitions is essential for optimized

performance and maintenance of safety margins. See [14] for detailed derivation and numerical

analysis of thermal-hydraulic models.

The sources of uncertainties involved in nuclear reactor designs include input uncertainties,

model errors, numerical errors and uncertainties in measurements. The highly complex, coupled

systems mentioned above are difficult to resolve in small grid sizes, resulting in large numerical

errors. Furthermore, the number of parameters in these models can be as high as O(105), several

of which are nonphysical or cannot be directly measured, and must be inferred through model

calibration. Finally, the numbers and types of measurements obtained for model calibration and

experimental design are limited due to the harsh environment inside the reactors.

Here, we summarize a steady-state heat model for an uninsulated aluminum rod in open

air with a heat source at one end and dissipation due to conduction and air-cooling along the

length of the rod. The steady-state heat equation represents as a prototypical behavior of heat

conduction and diffusion process involved in thermal-hydraulic models. Because of its simplicity

and the availability of analytic solutions, we employ the heat equation for illustration and

verification of model calibration techniques in Chapter 2.

Let Ts(x) be the steady-state temperature at location x. As detailed in [10], the steady-state
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heat equation is given by
d2Ts
dx2

=
2(a+ b)

ab

h

k
[Ts(x)− Tamb] (1.2)

dTs
dx

(0) =
Φ

k
,

dTs
dx

(L) =
h

k
[Tamb − Ts(L)]. (1.3)

Here, Tamb denotes the ambient temperature whereas Φ denotes the source flux at x = 0. Also,

h denotes the convective heat transfer coefficient. The parameters q = [Φ, h] are inferred using

the data from [10], which is summarized in Table 1.3 and plotted in Figure 1.3. The descriptions

and values of a, b, L and k are summarized in Table 1.4.

The analytic solution to (1.2) and (1.3) is

Ts(x, q) = c1(q)e−γx + c2(q)eγx + Tamb (1.4)

where γ =

√
2(a+ b)h

abk
and

c1(q) = − Φ

kγ

[
eγL(h+kγ)

e−γL(h−kγ) + eγL(h+kγ)

]
, c2(q) =

Φ

kγ
+ c1(q). (1.5)

Table 1.3 Temperature data from [10].

Location 10 14 18 22 26

Temperature 96.1392 80.1221 67.6552 57.9609 50.9009

Location 30 34 38 42 46

Temperature 44.8437 39.7502 36.1598 33.3076 31.1506

Location 50 54 58 62 66

Temperature 29.2792 27.8847 27.1810 26.3956 25.8603

8



10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

Location
T

e
m

p
e
ra

tu
re

Figure 1.3 Plot of temperature data from [10].

1.2 Organization

In Chapter 2, we focus on the development and illustration of techniques to verify the accuracy of

sampling-based Metropolis algorithms that are used to construct densities for input parameters.

We first detail a Bayesian approach for model calibration. A Bayesian approach is more suited

than a Frequentist approach since it allows us to treat inputs as random variables with associated

densities. Because input parameters are assumed to be random variables, we are able to sample

parameter values from densities and propagate associated uncertainties through the model. In

this chapter, we discuss two Markov Chain Monte Carlo algorithms: DRAM and DREAM. We

verify their accuracy by comparing chains, densities and correlations obtained using DRAM,

DREAM and direct numerical evaluation of Bayes’ formula. A similar analysis is performed for

credible and prediction intervals for responses.

Once the parameter distributions are estimated, in Chapter 3, we apply energy statistic tests

[63, 64] to verify the equality of distributions from DRAM and DREAM. In this chapter, we

discuss energy distance, which is used to measure the distance between two sets of samples. We

also discuss a method for constructing of random samples from a discrete probability density

functions. We apply the test to the results from Chapter 2.

In Chapter 4, we illustrate the techniques for verifying the accuracy of parameter selection

techniques based on global sensitivity analysis. Parameter selection is a process in which we

isolate parameters that cannot be estimated using data because they have minimal impacts on
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Table 1.4 Parameter values specified for the heat problem.

Parameter values Description

a = 0.95 Cross-sectional dimension [cm]

b = 0.95 Cross-sectional dimension [cm]

L = 70.0 Length of the rod [cm]

k = 2.37 Thermal conductivity for aluminum [W/cm C]

the model responses. The results from Chapter 2 indicate that some parameters may not be

uniquely estimated, and this is the motivation for performing parameter selection. A successful

application of parameter selection will enable us to reduce the number of parameter dimensions

during model calibration. In this chapter, we first examine four types of parameter selection

techniques: Partial correlation [4], Sobol indices [55, 56, 59, 60, 61], Morris screening [18, 46, 55]

and a parameter subset selection algorithm [6, 7, 9, 20]. We then apply the techniques on the

HIV model using a set of 15 input parameters and initial conditions. We also present verification

techniques to verify that the methods correctly identify parameters that minimally impact the

model response.

Finally in Chapter 5, we discuss active subspace methods [5, 22, 52] as a part of dimension

reduction technique. Active subspace methods allow us to reduce the dimensionality of the input

space. We apply the technique on the HIV model (1.1), and present a verification framework to

ensure that the model responses represented by reduced dimensional input subspace are accurate.

Active subspace methods are similar to parameter selection in some ways. They both identify

the direction in which the function varies the most and enable us to reduce the number of input

parameters by isolating parameters that impact the response minimally. One key difference,

however, is that active subspace methods determine a linear combination of inputs, which is the

directions of input space in which the model responses exhibit the greatest change. A linear

combination of parameters determined by active subspace methods makes the interpretation of

results more complicated; however, active subspace methods can often reduce the dimensionality

of input space further than parameter selection can do. When presenting the results of active

subspace methods, we compare them to the parameter selection results from Chapter 4 to show

similarities and differences.

10



Chapter 2

Bayesian Model Calibration

2.1 Introduction

Development of models for viral infection processes is critical to understand the disease spread of

HIV, and quantified uncertainties are required when constructing optimized treatment regimes.

To illustrate these issues, we employ a previous version of the HIV model (1.1)

Ṫ1 = λ1 − d1T1 − (1− ε)k1V T1

Ṫ2 = λ2 − d2T2 − (1− fε)k2V T2

Ṫ ∗1 = (1− ε)k1V T1 − δT ∗1 −m1ET
∗
1

Ṫ ∗2 = (1− fε)k2V T2 − δT ∗2 −m2ET
∗
2

V̇ = NT δ(T
∗
1 + T ∗2 )− cV − [(1− ε)ρ1k1T1 + (1− fε)ρ2k2T2]V

Ė = λE +
bE(T ∗1 + T ∗2 )

T ∗1 + T ∗2 +Kb
E − dE(T ∗1 + T ∗2 )

T ∗1 + T ∗2 +Kd
E − δEE

(2.1)

as discussed in [2, 3]. Here, T1 and T ∗1 represent the uninfected and infected type 1 target

cells, respectively. Similarly, T2 and T ∗2 represent uninfected and infected type 2 target cells.

Note that T1 and T2 cells could represent, for instance, CD4 T-lymphocytes and macrophages,

respectively. Here V is the total number of infectious and non-infectious free viruses, and

E represents the immune effector cells. Whereas this model is very simplified, it provides a

framework to investigate control strategies for HIV [2]. Studying the HIV infection dynamics

using mathematical models can contribute to understanding of fundamental features of infection

and to improved disease monitoring and treatment. Though we perform our verification using

model (2.1), there are more comprehensive models such as the one found in [8].

The description of the parameters in model (2.1) are summarized in Table 2.1. Examples of

parameters that can be measured are δ, the death rate of infected cells, and c, the death rate
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Table 2.1 Parameters in the HIV model (2.1).

λ1 Target cell 1 production rate ρ1 Ave. virions infecting type 1 cells

λ2 Target cell 2 production rate ρ2 Ave. virions infecting type 2 cells

d1 Target cell 1 death rate bE Max. birth rate immune effectors

d2 Target cell 2 death rate dE Max. death rate immune effectors

k1 Population 1 infection rate Kb Birth constant, immune effectors

k2 Population 2 infection rate Kd Death constant, immune effectors

c Virus natural death rate λE Immune effector production rate

δ Infected cell death rate δE Natural death rate, immune effectors

ε Population 1 treatment efficacy NT Virions produced per infected cell

m1 Population 1 clearance rate f Treatment efficacy reduction

m2 Population 2 clearance rate

of free virus. The values of measurable parameters are found in [27, 45, 47, 49]. On the other

hand, immune response parameters such as m1 and m2 are not well known, and unmeasurable

parameters such as these must be estimated. The authors of [16] determine the parameter values

involved in their model by applying physical constraints and using the expressions for the steady

states.

In this chapter, we focus on a Bayesian approach for model calibration and the construction of

predictive estimates. Bayesian techniques for parameter estimation are based on the assumption

the parameters are random variables with associated densities. The goal of parameter estimation

is to find the density that best reflects the distribution of parameters values so that the model

response best describes the sampled observations. Bayesian inference allows the parameter

densities to be updated as additional information is obtained. Additionally, parameter values

can be sampled from constructed densities to propagate uncertainties through the model for

uncertainty quantification.

In Section 2.2, we describe the process of model calibration using the Bayesian inference.

Synthetic measurement data are used to construct densities for the parameters in the model. We

then discuss different implementations that one can employ to compute the posterior distributions

in Section 2.3.
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Once parameter densities are constructed, the uncertainties in the input parameters and

measurement errors are propagated through the model to construct uncertainty bounds. More

specifically, credible and prediction intervals allow us to bound the model response distributions

in terms of parameter uncertainties and the measurement noise. The process of constructing

these estimates is described in Section 2.4.

Finally, in Section 2.5, we demonstrate the model calibration process using DRAM and

DREAM. We first apply the model calibration techniques to the heat equation (1.2), which is

a simplified application of nuclear reactor models. We then perform the model calibration on

the HIV model (2.1). In both cases, we verify the accuracy of the two methods by constructing

densities for three parameters and comparing the results to densities that are computed by

solving the Bayes’ formula directly. The accuracy of DRAM and DREAM is also verified by

estimating the densities for a larger set of parameters, which vary greatly in their orders of

magnitude.

We note that the verification of sampling-based Metropolis algorithms is critical and we

provide a framework, which we illustrate in the context of the considered HIV model. We first

verify our results by comparing DRAM, DREAM and direct numerical evaluation of Bayes’

relation. Secondly, we verify by statistically validating our chain convergence. In combination,

this provides a general verification framework that is applicable to a wide range of problems.

Compared to an initial analysis of the model (2.1) using DRAM with six parameters presented in

[59], our work extends that significantly through the development of this verification framework

and estimation of a much larger set of unidentifiable parameters.

2.2 Bayesian Inference

The parameter values are estimated using Frequentist inference in [2], where the model (2.1) is

developed. In this framework, the parameters are assumed to be unknown but fixed. The authors

use an iterative generalized least squares method and obtain uncertainty in the estimation

process. On the contrary, we perform Bayesian inference to estimate parameters in our study. In

the Bayesian framework, the parameters are considered to be random variables with associated

densities. This allows the densities to be updated as new information is available. Bayesian

inference is also natural for uncertainty quantification since one can propagate the parameter

densities through the model.

Bayesian techniques have been applied to several models arising in bioscience, including an

HIV model [36]. In the field outside of HIV modeling, the importance of parameter estimation

and uncertainty quantification of pharmacokinetics models is illustrated in [28]. Smoothing

using Gaussian Processes on chemical reaction dynamics of producing nylon involving 6 to 24

parameters is discussed in [17], and the authors of [15] discuss accelerated sampling procedures
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of Bayesian inference with applications in systems biology and nonlinear dynamic systems.

Estimation of rate constants in a continuous-time Markov model of an ion channel model from

a single data is discussed in [58]. Other applications of Bayesian inference include deformable

neuronanotomical atlases [31] and several other models in Systems Biology Markup Language

[12].

For applications such as the HIV model (2.1), where modeling and measurement errors are

assumed to be unbiased and iid, we employ the statistical model

Yi = f(ti, Q) + εi, i = 1, . . . , n (2.2)

where Yi, εi and Q are random variables representing measurements at time ti, measurement

errors and parameters, respectively. The parameters are defined as a random variable Q whose

realizations are q with dim (Q) = p. The response of model (2.1) at time ti is defined to be

f(ti, Q).

Let y be the realization of the random variable Y such that

yi = f(ti, q) + εi (2.3)

where f is the model response with realized parameters q evaluated at time t = ti for i = 1, . . . , n

and εi is a realization of the measurement error. We assume that models may have multiple

responses. In a model with multiple responses, we let Nr be the number of responses. For

example, Nr = 6 in model (2.1).

Given this statistical model in (2.2), it is our goal to find the posterior density that best

reflects the distribution of parameter values based on the sampled observations.

2.2.1 Bayesian Estimation Formula

The Bayesian estimation formula is given by

π(q|yobs) =
π(yobs|q)π0(q)∫

Rp
π(yobs|q)π0(q)dq

(2.4)

and it states that a posterior distribution, π(q|yobs), is specified in terms of likelihood functions

and prior distributions. With the assumption that the model errors are iid and εi ∼ N(0, σ2
0),

where σ2
0 is fixed but unknown, the likelihood function, π(yobs|q), for a model with a single

response is given by

π(yobs|q) = (2πσ2
0)−n/2e

(
−SSq

2σ20

)
(2.5)
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where

SSq =
n∑
i=1

[yi − f(ti, q)]
2 . (2.6)

The likelihood function quantifies the probability of observing yobs for given values of parameters

q, whose density is specified by the prior, π0(q). If prior knowledge is unknown, one may employ

a non-informative prior, which is often taken as an improper uniform density posed on the

parameter support. We note that it is better to use non-informative prior than to use a prior of

questionable accuracy. For simplicity, we let y = yobs in the subsequent discussion.

The likelihood function for a model with multiple responses and iid measurement errors is

given by

π(y|q) =

Nr∏
j=1

1

(2πσ2
j )
n/2

 e
(
−
∑Nr
j=1

SS
j
q

2σ2
j

)
(2.7)

where

SSjq =

n∑
i=1

[
yji − f

j(ti, q)
]2

for j = 1, . . . , Nr. (2.8)

2.3 Posterior Distributions

The goal for model calibration is to construct the posterior distributions π(q|y) for parameters

using (2.4). However, the right hand side of (2.4) requires multi-dimensional integration, where

the dimension of integration depends on the number of input parameters to be estimated. When

this dimension is high, it becomes impossible to compute the integral analytically, and even the

integration via Monte Carlo sampling becomes prohibitively expensive. For this reason, high-

dimensional integration prohibits the direct computation of marginal densities for parameters.

As a solution to avoid integration, we employ sampling-based Markov Chain Monte Carlo

(MCMC) methods, which avoid explicit integration. The two MCMC algorithms we consider are

Delayed Response Adaptive Metropolis (DRAM) and Differential Evolution Adaptive Metropolis

(DREAM). We also show a direct method, where the integral is approximated using a numerical

quadrature, to compute the posterior. For low-dimensional parameter spaces, comparison with

these direct solutions provides a way to verify the accuracy of densities constructed using

sampling-based Metropolis methods.

2.3.1 Direct Method

We start by computing the density using the formula in (2.4) with numerical approximation.

Since we evaluate the formula directly, we call this method the direct method. It is noted that

the likelihood functions that appear in numerator and the denominator of (2.4) can be very
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small. We avoid numerical evaluation of 0
0 by reformulating the posterior so that

π(q|y) =
e−

1
2σ2

SSq∫
Rp e

− 1
2σ2

SSζdζ
(2.9a)

=
1∫

Rp e
− 1

2σ2
(SSζ−SSq)dζ

. (2.9b)

Since the integral in (2.9b) can not be computed analytically, we use the trapezoid rule with a

uniform grid to approximate the integral.

For one-dimensional integration with a uniform grid on x ∈ [a, b] with N grid points, we let

xi = a+ (i− 1)h with h =
b− a
N − 1

for i = 1, . . . , N. (2.10)

The 1D trapezoid rule is then

∫ b

a
f(x) dx ≈ h

2

N−1∑
i=1

[f(xi) + f(xi+1)] . (2.11)

The trapezoid rule is used repeatedly for higher dimensional integration. The solution obtained in

the direct method is regarded as the true solution when verifying the accuracy of sampling-based

methods.

2.3.2 Metropolis Algorithm

Since the evaluation of (2.4) is expensive, we seek an alternative method of model calibration

that avoids high-dimensional integration. Monte Carlo sampling methods for Bayesian inference

is detailed in [42]. A Markov chain Monte Carlo (MCMC) method is an algorithm in which one

constructs Markov chains whose stationary distribution is the posterior density. In this section,

we first describe the Metropolis algorithm. Later, we discuss variations of Metropolis algorithm

that improves its efficiency by adaptation and other features.

In the Metropolis algorithm, to consider a kth chain value, one first proposes a new value

q∗ ∼ J(q∗|qk−1), where J is called the proposal distribution. Here, the interpretation of the

notation for J is that the new parameter q∗ is sampled based on the previous values qk−1.

For noninformative prior distribution, the candidate is then accepted or rejected based on the

Metropolis ratio

r(q∗|qk−1) =
π(q∗|y)

π(qk−1|y)

which is a ratio of likelihood in (2.5) of the candidate parameter q∗ and the previously accepted

parameter qk−1. The algorithm from [59] is summarized below.

16



1. Initialization: Choose an initial parameter value q0 that satisfies π(q0|y) > 0.

2. For k = 1, . . . ,M

(a) Let z ∼ N(0, 1), and construct the candidate

q∗ = qk−1 +Rz

where R is the Cholesky decomposition of the covariance matrix, V .

This implies that q∗ ∼ J(q∗|qk−1) = N(qk−1, V ), where the notation J(q∗|qk−1)

specifies the sampling of q∗ based on the previous value qk−1.

(b) Compute the ratio of likelihood functions

r(q∗|qk−1) =
π(q∗|y)

π(qk−1|y)
=

π(y|q∗)π0(q∗)

π(ν|qk−1)π0(qk−1)
.

(c) Set

qk =

 q∗ with probability α = min(1, r)

qk−1 else.

That is, accept q∗ with probability 1 if r ≥ 1 and accept it with probability r if r < 1.

If the proposal distribution is too wide, the candidate parameter values may be rejected too

often. Alternatively, if the proposal distribution is too narrow, the parameter values may be

accepted frequently but the chain does not explore the space efficiently. It is then clear that the

choice of proposal distribution affects mixing of chain values. Next we discuss two variations of

the Metropolis algorithm that improve its efficiency.

2.3.3 Delayed Rejection Adaptive Metropolis (DRAM)

The first MCMC variation that we use to compute posterior distributions is DRAM as discussed

in [33]. DRAM is a variation of the Metropolis algorithm that is improved in two major ways.

First, Adaptive Metropolis (AM) allows the algorithm to update the chain covariance matrix

in a given interval. This way, information learned about the posterior distribution through

the accepted chain candidate is used to update the proposal. The covariance matrix, which

determines the spread of proposal distribution, is given by

Vk = spcov(q0, q1, . . . , qk−1) + εIp. (2.12)

Here, sp is a design parameter that depends on the parameter dimension p. A common choice is

sp = 2.382/p as detailed in [33]. The term εIp ensures that Vk is positive definite with ε ≥ 0.
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The covariance matrix is updated every k0 steps, often specified as k0 ≈ 100 in practice. Also,

the covariance is computed recursively to improve the efficiency so that

Vk+1 =
k − 1

k
Vk +

sp
j

[
kq̄k−1(q̄k−1)T − (k + 1)q̄k(q̄k)T + qk(qk)T + εIp

]
(2.13)

where the sample mean is also computed recursively

q̄k =
1

k + 1

k∑
i=0

qk = qk +
k

k + 1
(q̄k−1 − qk). (2.14)

Second, Delayed Rejection (DR) provides a mechanism for constructing alternative candidates

when the current candidate is rejected. A second-stage candidate is chosen using the proposal

function

q∗2 ∼ J2(q∗2|qk−1, q∗) = N(qk−1, γ2
2Vk) (2.15)

where J2(q∗2|qk−1) is the notation for proposing q∗2 having started at qk−1 and rejected q∗,

and γ2 < 1 ensures that the second-stage proposal function is narrower than the original. The

second-stage step improves the chance that the next candidate will be accepted and increases

mixing. We take γ2 = 1
5 and employ second-stage DR in our examples in Section 2.5, though

different value of γ2 and numbers of delayed rejection stages can be employed.

The DRAM algorithm with noninformative uniform priors is summarized below.

1. Set design parameters ns, σ
2
s , k0

2. Determine q0 = arg min
∑n

i=1[νi − fi(q)]2

3. Set SSq0 =
∑n

i=1[νi − fi(q0)]2

4. Compute the initial variance estimate s2
0 =

SSq0

n−p

5. Construct covariance estimate V = s2
0[χT (q0)χ(q0)]−1

6. For k = 1, . . . ,M

(a) Sample zk ∼ N(0, Ip)

(b) Construct candidate q∗ = qk−1 +Rzk

(c) Compute SSq∗ =
∑n

i=1[νifi(q
∗)]2

(d) Compute the ratio

α(q∗|qk−1) = min
(
q, e
−[SSq∗−SSqk−1 ]/2s2k−1

)
(e) If uα < α
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Set qk = q∗, SSqk = SSq∗

Else

Enter DR Algorithm

(f) Update s2
k ∼ Inv-gamma(aval, bval), where

aval = 0.5(ns, n), bval = 0.5(nsσ
2
s + SSqk)

(g) If mod(k, k0) = 1

Update Vk = spcov(q0, q1, . . . , qk)

Else

Vk = Vk−1

(h) Update Rk = chol(Vk)

The Delayed Rejection algorithm in Step 6(e) is the following.

1. Set the design parameter γ2 = 1
5

2. Sample zk ∼ N(0, Ip)

3. Construct second-state candidate q∗2 = qk−1 + γ2Rkxk

4. Sample uα ∼ U(0, 1)

5. Compute SSq∗2 =
∑n

i=1[νi − fi(q∗2)]2

6. Compute

α2(q∗2|qk−1, q∗) = min

(
1,

π(q∗2|ν)J(q∗|q∗2)[1− α(q∗|q∗2)

π(qk−1|ν)J(q∗|qk−1)[1− α(q∗|qk−1)

)
These two mechanisms DR and AM together provide an efficient algorithm to modify and

update a proposal function. The software for DRAM implementation in Matlab is available at

[39, 40].

2.3.3.1 Conjugate Prior

If the prior and the posterior are in the same family, they are referred to as conjugate distributions,

and the prior in this case is termed the conjugate prior. In DRAM, the user can choose to

update the measurement noise as the chain evolves. If the option for updating sigma is selected,

the measurement noise is updated using the conjugate prior. The computation of σ requires the

specification of the prior accuracy for σ as well as the prior measurement error. In our experiment,

19



we assume that the measurement errors are normally distributed iid random variables with

mean 0 and variance σ2. The likelihood of observing y = [y1, . . . , yn] under this assumption is

π(y|σ2) =
1

(2πσ2)n/2
e−SSq/2σ

2
. (2.16)

This likelihood function is in the inverse-gamma family and its conjugate prior is

π0(σ2) ∝ (σ2)−(α+1)eβ/σ
2

(2.17)

where α is the shape parameter and β is the scale parameter. It then follows that

σ|y ∼ Inv-gamma(a, b),

with a =
n0 + n

2
and b =

n0σ
2
0 + SSq

2
.

(2.18)

Here, n0 is specified to be a small value, such as n0 = 1 or 0.1, and σ2
0 is the variance estimate.

The computed variance is used when constructing prediction intervals. The details about this

topic are discussed in [59].

2.3.3.2 Burn-in and Convergence

The period during which the chain is converging to the region of interest is termed burn-in.

Depending on the initial values, it may take several chain evolutions to reach the region where

the global minimum is located. The parameter values during the burn-in period are excluded

from the computation of mean and variance. In DRAM, a practical way of determining the

burn-in is visually inspecting the chain values. However, one must exercise care when interpreting

the results even when the chains appear stationary for a very large number of simulations.

The chain could transition to another region if the algorithm finds another lower minimum or

parameters are unidentifiable. In an example from [35], the chain shifts after as much as 130,000

iterations.

One way to overcome the difficulty of determining burn-in and convergence is to examine

the acceptance ratio, which is the percentage of accepted candidates. The acceptance ratio

quantifies whether the chain is adequately sampling from the posterior. While the optimal value

of acceptance ratio varies depending on the geometry of the posterior, values between 0.1 and

0.5 are often considered acceptable.

Another way of examining convergence is to check autocorrelation

R(k) =

∑M−k
i=1 (qi − q̄)(qi+k − q̄)∑M

i=1(qi − q̄)2
(2.19)
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between components that are k elements apart. Checking the autocorrelation establishes that

the chain is producing iid samples from the posterior. Quantitatively, DRAM uses Geweke’s

convergence diagnostics based on [13]. This tests for equality of the means of the first 10% and

last 50% of the chain. However, Geweke’s diagnostics is a necessary, not sufficient, condition for

convergence. Hence the Geweke values can only indicate when the chain is not converged, but

not when it is converged.

2.3.4 Differential Evolution Adaptive Metropolis (DREAM)

The second MCMC method we employ is DREAM, which was developed in [66, 67]. DREAM is

an adaptive Metropolis, global optimization algorithm, which efficiently estimates the posterior

probability distributions for parameters in complex, high-dimensional problems. The candidate

parameters are proposed based on differential evolution

zi = xi + (Ip + e)γ(δ, p)

 δ∑
j=1

xr1(j) −
δ∑

n=1

xr2(n)

+ ε (2.20)

where

� zi is the candidate point in chain i

� xi is the initial population

� γ is the value of the jump size

� δ is the number of arms used to generate the proposal

� e ∼ Up(−b, b) with |b| < 1 and ε ∼ Np(0, Ipb
∗) where b and b∗ are small compared to the

width of the target distribution.

DREAM runs multiple chains simultaneously, and the chain values are used to adapt the

proposal distribution, which in turn affects the mixing. The communication between chains occur

at given intervals, and the cost of communication between chains is much lower compared to the

cost of model evaluations. Hence the method is inherently parallel and suitable for parameters

with multi-modal, heavy-tailed densities.

The algorithm is summarized below.

1. Draw an initial population {xi}, i = 1 . . . , N using the prior distribution.

2. Compute π(x).

3. Construct candidate zi = xi + (Ip + e)γ(δ, p)
[∑δ

j=1 x
r1(j) −

∑δ
n=1 x

r2(n)
]

+ ε.
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4. Replace each element (j = 1, . . . , d) of zij with xij using a binomial scheme with probably

1− CR, where CR is the crossover probability.

5. Compute π(z) and accept the candidate point with Metropolis acceptance probability

α(xi, zi) =

 min
(
π(zi)
π(xi)

, 1
)

if π(xi) > 0

1 if π(xi) = 0
.

6. If accepted, move the chain xi = zi, otherwise remain at the old location xi.

7. Remove potential outlier chains using the interquartile range statistics during the burn-in

process.

8. Compute the Gelman and Rubin convergence diagnostic for each dimension j = 1, . . . , p

using the last 50% of samples in each chain.

9. If R ≤ 1.2 for all j, stop, otherwise go to chain evolution (steps 3-6).

To compute the acceptance ratio, DREAM computes the log likelihood. For models with a

single response, the log likelihood function is given by

log(π(y|q)) = log

(
1√

2πσ2
n

)
+ log

[
exp

(
−

n∑
i=1

(ti − fi(q))2/2σ2

)]

= −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(yi − fi(q))2.

(2.21)

In the DREAM software, which can be requested at [65], DREAM can accommodate both

homoscedastic and heteroscedastic types of measurement errors. For models with homoscedastic

errors, the code can easily be modified to accommodate models with multiple responses.

2.3.4.1 Burn-in and Convergence

The burn-in period in DREAM is determined by testing the interquartile quantity IQR = Q3−Q1

where Q1 and Q3 are lower and upper quartile of N different chains, respectively. Chains with

Ω < Q1 = 2IQR are considered outliers, and are moved to current best members of the

population. As stated in [66], this process of outlier removal does not maintain detailed balance

condition and can only be used during burn-in.

Also during the burn-in, DREAM estimates a distribution of crossover values that maximizes

the quantity

∆ =
n∑
i=1

p∑
j=1

(
x̄ij,t − x̄ij,t−1

)2
(2.22)
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between two subsequent samples. This way, DREAM adaptively chooses the CR values that

yield the best mixing of chains since changing all p elements of xi chains is often not optimal.

The convergence of sequences is monitored using R-statistics, which is a factor by which

the scale of the sequences shrink to the posterior distribution as one takes more samples. As

detailed in [29], R-statistics use the mean and variance between sequences as well as within

sequences. R-statistics is fully quantitative, and can be used to determine convergence without

visually inspecting chains.

To compute the R-statistic, take sample of the last 50% of the chain values. Let Ns be the

number of samples and Nc be the number of chains. The steps for computing the factor is the

following.

1. Compute the sequence means.

2. Determine the variance between sequence means, B.

3. Compute variance of various sequences.

4. Determine the average of within sequences variances, W .

5. Estimate the variance of posterior distribution by

σ2 =
Ns − 1

Ns
W +

1

Ns
B.

6. Compute the R-statistics

R =

√
Nc + 1

Nc

σ2

W
− Ns − 1

NcNs
.

The scale reduction near 1 indicates that each set of the Nc chains of Ns simulated values

is close to the target density. We take R ≤ 1.2 as the cut-off for convergence. The chain

evolution is repeated until R ≤ 1.2 is achieved. The convergence is also confirmed by computing

autocorrelation time.

2.4 Predictive Estimates

There are two types of predictions at a parameter value x0 in the domain of the independent

variable x but not among the data used to estimate the parameters. The first is the prediction of

new observation Yx0 at x0, and the second is the mean of the predicted response µx0 = E(Yx0).

Consider first the estimation of E(Yx0). The intervals that bound this estimation are called

confidence intervals. They quantify the accuracy of the model fit and reflect the uncertainty

in parameters. On the other hand, the estimation of Yx0 incorporates the result of uncertainty
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in parameters as well as measurement errors. The intervals in this case are termed prediction

intervals. For example, the 95% confidence interval contains 95% of the mean of the future

measurement x0, while future measurement has 95% chance of falling inside the 95% prediction

interval. We discuss the construction of confidence intervals and prediction intervals in the

following subsections. Details can be found in [59] and the included references.

2.4.1 Confidence Intervals and Prediction Intervals

To motivate techniques for the nonlinear parameterized HIV model, we consider first the linearly

parametrized model

Y = Xq + ε (2.23)

where q = [q1, . . . , qp]
T are the parameters and ε = [ε1, . . . , εn]T are the errors, which are

assumed to be independent and normally distributed with εi ∼ N(0, σ2
0). An example is

Yi = q1 +

p∑
j=2

xijqj + εi, for i = 1, . . . , n (2.24)

where q are regression coefficients and

X =


1 x12 . . . x1p

...
...

...

1 xn2 . . . xnp

 (2.25)

is the design matrix.

Next we summarize discussion in [30]. First we note that

Ŷx0 = x0
T q̂ (2.26)

is an unbiased estimator for E(Yx0). Since the unbiased error covariance estimator is

σ̂2 =
1

n− p
R̂T R̂ (2.27)

where R̂ = Y −Xq is the residual estimator, it follows that

var(Ŷx0) = σ2
0

[
x0
T (XTX)−1x0

]
. (2.28)
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Here, the variance estimator σ̂ is used for unknown σ and

σ̂2(Ŷx0) = σ̂2[x0
T (XTX)−1x0]. (2.29)

With the assumption that εi ∼ N(0, σ2
0), the sampling distribution is a normal distribution with

mean µx0 and variance in (2.28) so that

Ŷx0 − µx0
σ0

√
x0
T (XTX)−1x0

∼ N(0, 1). (2.30)

It then follows that

T =
Ŷx0 − µx0

σ̂
√
x0
T (XTX)−1x0

(2.31)

has a t-distribution with n− p degrees of freedom. The (1− α)× 100% interval estimate for µx0

is [
Ŷx0 ± tn−p,α/2 · σ̂

√
x0
T (XTX)−1x0

]
. (2.32)

This is a confidence interval because it only incorporates the parameter uncertainty only. This

type of interval constructed based on the Bayesian framework are called the credible intervals.

For the construction of the prediction interval, we begin by noting that the random variable

Yx0 − Ŷx0 is normally distributed with mean

E(Yx0 − Ŷx0) = 0 (2.33)

and variance
var(Yx0 − Ŷx0) = var(Yx0) + var(Ŷx0)

= σ2
0

[
1 + x0

T (XTX)−1x0

]
.

(2.34)

It follows that
Ŷx0 − µx0

σ0

√
1 + x0

T (XTX)−1x0

∼ N(0, 1) (2.35)

and

T =
Ŷx0 − µx0

σ̂
√

1 + x0
T (XTX)−1x0

(2.36)

has a t-distribution with n− p degrees of freedom. Then the (1− α)× 100% interval estimate

for Yx0 , i.e. the prediction interval, is[
Ŷx0 ± tn−p,α/2 · σ̂

√
1 + x0

T (XTX)−1x0

]
. (2.37)

We have shown that the credible and prediction intervals are given by (2.32) and (2.37). In
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case of nonlinearly parametrized problems, X is replaced by the sensitivity matrix χ where

χij =
∂f i(t, q)

∂qj
(2.38)

as detailed in [53].

2.4.2 DRAM

To construct the intervals in DRAM, N parameter values as specified by the user are sampled

and the model responses are computed at these parameter values. For example, the 95% credible

interval is constructed by sorting the computed responses and finding the upper 2.5% and

97.5% values. For the 95% prediction interval, the measurement noise is added to the computed

responses before finding the 95% interval. The measurement noise is generated by a normally

distributed random variable with mean 0 and variance σ2, where σ2 is constructed using the

techniques in Section 2.3.3.1. If σ2 is not constructed during model calibration, we use the OLS

estimate of measurement noise in (2.27) to construct the prediction intervals.

2.4.3 DREAM

In DREAM, the values from all of the chains are combined in a matrix so that the ith column

contains all the chain values for the parameter qi. The number of columns corresponds to the

number of parameters that are estimated. The model response is computed for the last 25% of

the values from each column. It is noted that 25% is chosen to ensure that the parameter values

in the chains have converged. The generated responses are sorted, and the appropriate interval

of the response is stored. For instance, the responses at upper 2.5% and 97.5% are stored for the

95% confidence interval. For prediction intervals, measurement noise is added to the response.

The noise is generated from a distribution ε ∼ N(0,RMSE2), where

RMSE =

√√√√ 1

n

n∑
i=1

(f(ti; q)− yi)2. (2.39)

Once the noise is added to the model responses, they are sorted and the responses at the upper

2.5% and 97.5% are stored, for example, to construct the 95% prediction interval. Since the

DREAM package does not come with the feature to update measurement noise, we added this

feature using the prior conjugate in the similar manner it is implemented in DRAM. If the

measurement noise is updated during the chain evolutions, sampled σ2 values are used when

constructing the prediction interval.
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2.5 Results and Verification

2.5.1 Heat Example

Here, we apply DRAM and DREAM as well as the Direct Method to the heat equation in (1.2).

For the direct method, we compute the posterior density using the formula (2.4). Here, we use

201 uniform grid points in each dimension. First, the sum of squares in (2.6) is computed for

the rectangular mesh. The likelihood is computed using the SSq and the measurement error,

σ2 = 0.0627, for the rectangular mesh. The result is then integrated in each direction to obtain

the posterior distribution for each parameter.

We use 30,000 simulations for DRAM and 30,000 maximum function evaluations for DREAM.

We construct the measurement error by using the error variance obtained via OLS, σ2 = 0.0627,

as an initial measurement error. The initial parameter values are also set to be the values

obtained via OLS, which are [Φinitial, hinitial] = [−18.41, 0.00191]. The minimum and maximum

values for the two parameters are set to be [Φmin, hmin] = [−20, 0] and [Φmax, hmax] = [0, 1].

2.5.1.1 Chains and Marginal Densities

We compare the densities from the three methods by plotting them in Figure 2.1. We use 201

grid points for the direct method, 50,000 simulations for DRAM and 400,000 simulations for

DREAM. The parameter correlations are compared in Figure 2.2, where the direct method

correlation is represented by the contour plots, while the DRAM and DREAM correlations are

represented by scatter plots.

2.5.1.2 Convergence

Here we examine the convergence for each method. We first begin with the direct method.

Starting with the 51 grid points in each dimension, we observe the change when we increase the

grid points to 101, 201 and to 401. In this case, we observe that the mean and the standard

deviation of the parameters do not change. This implies that the computation of posterior

distribution is accurate with the number of grid points as low as 51. To get a smooth curve for

densities, we choose 201 grid points for the direct method as a reference.

Next we examine the convergence with DRAM and DREAM. We plot in Figure 2.3 the

results with different simulations numbers along with the 201-grid points direct method as a

reference. The parameter values obtained in this convergence test for DRAM and DREAM

are summarized in Table 2.2 and 2.3. We see that the densities in DRAM match those of the

direct well even for 25,000 simulations. We use the densities from 50,000 simulations for better

accuracy. On the other hand, the densities in DREAM tend to be not so smooth at the peaks.

It is noted that in some runs, the densities are very smooth with just 50,000 simulations.
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Figure 2.1 Densities from DRAM, DREAM and direct methods for (a) Φ and (b) h.
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Figure 2.2 Contour plot from the direct method and the correlation plots from (a) DRAM and (b)
DREAM.
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Table 2.2 Parameter values with difference simulation numbers in DRAM.

Number of DRAM Simulations µΦ σΦ µh σh σ2

25000 -18.419 0.15146 1.9147E-3 1.5140E-5 0.06741

50000 -18.417 0.15241 1.9145E-3 1.5244E-5 0.06778

100000 -18.418 0.15148 1.9147E-3 1.5163E-5 0.06710

Direct -18.417 0.1460 1.9145E-3 1.4611E-5 0.0627

As we can see in Table 2.3, the parameter means and variances are comparable to those from

the direct method with 50,000 simulations. Visually, we need to run at least 400,000 simulations

to obtain a smooth curve as illustrated in Figure 2.3(b). One gets even smoother density curves,

especially for Φ, if 800000 simulations are performed. However, the number is unreasonably large

for a simple example like the heat equation, especially when a good convergence is attained at

50000 simulations with DRAM.

The heat equation in (1.2) was used to develop a verification framework for sampling-

based methods for the uncertainty quantification project funded by Consortium for Advanced

Simulation of Light Water Reactors (CASL). The verification is presented in the milestone

report for CASL [34].

2.5.2 HIV Example

In this section, we demonstrate the performance of the two MCMC methods for the HIV

model (2.1) for two cases. In the first, we consider three parameters q = [bE , δ, d1] to permit

verification of DRAM and DREAM with direct numerical evaluation of (2.4). We also illustrate

the construction of credible and prediction intervals for the model response and demonstrate

that DRAM and DREAM provide comparable results. Secondly, we consider the construction of

posterior densities for 12 parameters to illustrate the feasibility of DRAM and DREAM for a

problem with moderate dimensionality.

To generate the synthetic data, we solve the model (2.1) with the initial condition

y0 =
[

9e+5, 4000, 1, 1, 1, 12
]

(2.40)

29



−19 −18.8 −18.6 −18.4 −18.2 −18 −17.8
0

0.5

1

1.5

2

2.5

3

Parameter Values of Φ

M
a
rg

in
a
l 
D

e
n
s
it
y

 

 

direct

25000 simulations

50000 simulations

100000 simulations

1.86 1.88 1.9 1.92 1.94 1.96 1.98

x 10
−3

0

0.5

1

1.5

2

2.5

3
x 10

4

Parameter Values of h
M

a
rg

in
a
l 
D

e
n
s
it
y

 

 

direct

25000 simulations

50000 simulations

100000 simulations

(a)

−19 −18.8 −18.6 −18.4 −18.2 −18 −17.8
0

0.5

1

1.5

2

2.5

3

Parameter Values of Φ

M
a
rg

in
a
l 
D

e
n
s
it
y

 

 

direct

50000 simulations

100000 simulations

200000 simulations

400000 simulations

1.86 1.88 1.9 1.92 1.94 1.96 1.98

x 10
−3

0

0.5

1

1.5

2

2.5

3
x 10

4

Parameter Values of h

M
a
rg

in
a
l 
D

e
n
s
it
y

 

 

direct

50000 simulations

100000 simulations

200000 simulations

400000 simulations

(b)

Figure 2.3 Distributions of different simulation numbers for (a) DRAM and (b) DREAM.
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Table 2.3 Parameter values with difference simulation numbers in DREAM.

Number of Simulations µΦ σΦ µh σh σ2

50000 -18.4218 0.14588 1.9149E-3 1.4500E-5 0.06721

100000 -18.4165 0.14313 1.9145E-3 1.4380E-5 0.06697

200000 -18.4161 0.14596 1.9144E-3 1.4579E-5 0.06711

400000 -18.4167 0.14674 1.9145E-3 1.4681E-5 0.06724

800000 -18.4169 0.1458 1.9145E-3 1.4580E-5 0.06739

Direct -18.417 0.1460 1.9145E-3 1.4611E-5 0.0627

and the parameter values summarized in Table 2.4, which are reported in [3]. Once the solution

to the model is computed, we add random, normally distributed measurement errors εj ∼
N(0, σ2

j ) for j = 1, . . . , 6, where[
σ1, σ2, . . . , σ6

]
=
[
σT1 , σT2 , σT ∗

1
, σT ∗

2
, σV , σE

]
=
[

2e+4, 10, 3e+3, 10, 10e+4, 2.5
]
.

(2.41)

For comparison, we employ the direct method to compute the parameter densities. In this

example, we use a uniform grid with 101 grid points in each dimension. We restricted the region

of integration to [0.296, 0.304]× [0.69, 0.72]× [0.007, 0.012] for our computations to decrease the

run time since the magnitude of the likelihood function outside the specified region is negligible.

The accuracy of numerical approximation of the direct method is illustrated by the convergence

test with n = 61, 81, and 101 summarized in Table 2.5. The means and standard deviations of

the three parameters remain unchanged between n = 81 and n = 101. This indicates that the

numerical approximation of integrals in (2.4) has converged. Hence the direct method can be

considered a baseline for the verification of the sampling methods.

For the three parameter case, we first perform numerical experiments assuming that the

measurement noise is fixed. In this case, the measurement noise is taken to be the OLS estimate

of measurement noise in (2.27). The chains, marginal densities, correlations and prediction

intervals are compared with this setting. We then perform additional experiments, where the

measurement noise is updated as the chains evolve. For this case, we compare the credible
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Table 2.4 Fixed values for parameters.

λ1 = 1e+4 ε = 0 k1 = 8.0e-7 λ2 = 31.98

d2 = 0.01 f = 0.34 m1 = 1.0e-5 m2 = 1.0e-5

NT = 100 c = 13 ρ1 = 1 ρ2 = 1

λE = 1 Kb = 100 dE = 0.25 Kd = 500

δE = 0.1 k2 = 1e-4 δ = 0.7 bE = 0.3

d1 = 0.01

Table 2.5 Mean and standard deviation of bE , δ and d1 using n = 61, 81, 101 in direct evaluation of
Bayes’ relation.

bE Mean bE Sigma δ Mean δ Sigma d1 Mean d1 Sigma

n = 61 2.9990e-1 7.5089e-4 7.0558e-1 3.0448e-3 9.5777e-3 7.5642e-4

n = 81 2.9990e-1 7.5090e-4 7.0558e-1 3.0448e-3 9.5777e-3 7.5644e-4

n = 101 2.9990e-1 7.5090e-4 7.0558e-1 3.0448e-3 9.5777e-3 7.5645e-4
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Figure 2.4 Chain evolutions of bE , δ and d1 for DRAM.

and prediction intervals of DRAM and DREAM. We do not include DIRECT here since the

method does not update measurement noise. We point out that this is one limitation of the

direct method.

2.5.3 Three Parameter Case

2.5.3.1 Chains and Marginal Densities

Whereas DRAM and DREAM each has convergence criteria to ensure the convergence of

parameters, the chains can also be used to visually examine the convergence for both DRAM

and DREAM. It is noted that DRAM contains a single chain, from which means and variances of

the parameters are computed. In Figure 2.4, we observe that the DRAM chains have converged

in probability to a stationary distribution. On the other hand, DREAM is comprised of multiple

chains, which evolve to fluctuate around the mean value as the iteration number increases. The

initial iterations are plotted in Figure 2.5 to illustrate the mixing between chains. The last 1000

iterations of five chains are plotted in Figure 2.6 and we see that the chains have converged.

We see from the results summarized in Table 2.6 that the means and the standard deviations

for the three parameters are comparable among the three methods. In Figure 2.7, we illustrate

that the marginal densities obtained with the three methods are in agreement. The densities

shown in 2.7 are after applying a kernel density estimator to smooth the densities. Additional

smoothing must be performed especially if the density is multi-modal. Typically, DREAM

requires more smoothing than DRAM. In Figure 2.8, we show the contour plots of likelihood

as a function of two parameters along with the joint sample points from DRAM and DREAM.

While we can not quantify the correlation, we see qualitatively that the shapes of correlations

are in agreement among the three methods. Both the marginal densities and correlations
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Figure 2.5 Initial chain evolutions of bE , δ and d1 for DREAM.

Table 2.6 Mean and standard deviation for bE , δ and d1.

Method bE Mean bE Sigma δ Mean δ Sigma d1 Mean d1 Sigma

Direct 2.999e-1 7.509e-4 7.056e-1 3.045e-3 9.577e-3 7.564e-4

DRAM 2.999e-1 7.416e-4 7.056e-1 3.041e-3 9.565e-3 7.676e-4

DREAM 3.000e-1 7.486e-4 7.055e-1 2.989e-3 9.567e-3 7.476e-4

appear comparable, thus verifying the accuracy of the sampling-based Metropolis algorithms.

Moreover, the scatter plots constructed using DRAM and DREAM coincide with the contour

plots constructed using the direct method. The contour plots represent the values of joint density

functions. We note that the parameters d1 and bE are slightly negatively correlated, while d1

and δ, as well as δ and bE , exhibit minimal correlation.
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Figure 2.6 Final chain evolutions of bE , δ and d1 for DREAM.

2.5.3.2 Prediction Intervals

We next consider the credible and prediction intervals shown in Figure 2.9. The inner intervals

represent the credible intervals, which incorporate parameter uncertainties. The outer intervals

in lighter gray represent the prediction intervals. The results via Direct, DRAM and DREAM are

nearly identical. One can observe that about 95 out of the 100 data points fall in the prediction

intervals, which is consistent with its definition. The prediction interval can also be used to

predict model response outside of the domain that is used in this experiment. In that case, the

next collected measurement is expected to fall inside the prediction interval 95% of the time.

2.5.3.3 Convergence Diagnostics

Here we examine the convergence diagnostics for DRAM and DREAM. The default diagnostics

used in DRAM are summarized in Table 2.7. MC error indicates the standard deviations from

the batch mean, which estimates the Monte Carlo standard deviations. τ is the autocorrelation

time. The Geweke diagnostic near 1 indicates that the mean from the last 10% and 50% samples

are very close. The acceptance ratio without the delayed rejection stage is 0.310 and the ratio

combined with 2nd stage delayed rejection is 0.527.

On the other hand, we look at R-statistics and autocorrelation time for DREAM. The R

values in Figure 2.10 for all three parameters are below 1.2 after 1e+4 iterations. The acceptance

ratio for DREAM is 0.343.
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Figure 2.7 Marginal densities for bE , δ and d1 with different methods.
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Figure 2.8 Contour plots from the direct method plotted with joint sample points from DRAM and
DREAM showing the correlations between bE , δ and d1.

2.5.3.4 Updating Measurement Error

We also test DRAM and DREAM to see how well they estimate the measurement noise. The OLS

estimate is σE = 2.975, whereas the updated measurement for E using DRAM is σE = 2.975

and using DREAM is σE = 2.985. The values are comparable, though updated noise by DRAM

is closer to the OLS estimate than that by DREAM. The direct method does not allow updating

the measurement noise feature, hence we compute the credible and prediction intervals using the

DRAM and DREAM simulations. The 95% credible and prediction intervals for the response E

are plotted in Figure 2.11.
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Figure 2.9 Credible and prediction intervals for response E using (a) Direct, (b) DRAM and (c)
DREAM.

Table 2.7 Convergence diagnostics for DRAM.

Parameter MC error τ Geweke

d1 1.550e-05 8.9863 0.99971

δ 6.150e-05 10.055 0.99941

bE 1.148e-05 9.447 0.98654

2.5.4 12 Parameter Case

Here, we illustrate the verification of DRAM and DREAM by comparing densities for a moderate

number of parameters. We estimate the densities for

Q12 = [bE , δ, d1, k2, λ1,Kb,Kd, k1, λ2, c, ρ1, ρ2]. (2.42)

It is noted here that the orders of magnitudes of these parameters vary greatly. More specifically,

the smallest and the largest parameter values among Q12 that are used to generate the synthetic

data are k1 = 8e-7 and λ1 = 1e+4, respectively.
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Figure 2.10 (a) R-Statistics and (b) autocorrelation for bE , δ and d1 in DREAM.

We use the generated data to perform model calibration using DRAM and DREAM. We

take the total of 1,000,000 chain evaluations including burn-in for DRAM. In DREAM, we set

the maximum number of function evaluations to be 1,000,000 and use 10 chains. The prior for

both DRAM and DREAM is a uniform distribution qi ∼ U(ai, bi) for i = 1, . . . , 12, where ai

and bi are summarized in Table 5.2.

The estimated densities are plotted in Figure 2.12 and the correlation plots are shown in

Figures 2.13 and 2.14. The direct method is not easily applicable in this case due to the larger

dimension of input parameters. The mean values are summarized in Table 2.9, where the values

listed as TRUE represent the parameter values used to generate the synthetic data.

The acceptance ratio for DRAM and DREAM are 0.201 and 0.147, respectively. The

convergence diagnostics for DRAM are summarized in Table 2.10. Larger values of τ compared

to the three parameter case indicate slower convergence for the 12 parameter case. The Geweke

values near 1 for most parameters indicates that the means have remained the same over

iterations. The R-statistics and autocorrelations are plotted in Figure 2.15 and 2.16 as convergence

diagnostics for DREAM. R-statistics values are below the threshold after 1e+5 iterations; however,

the autocorrelation values are not near zero for some parameters. Again, the lack of analytic

values of samples for convergence indicates the necessity for performing a verification test through

comparison of DRAM and DREAM. Figure 2.12 indicates that the two methods give similar
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Figure 2.11 Credible and prediction intervals for E using (a) DRAM and (b) DREAM when σ is
updated.

densities for all 12 parameters.

The mean values are not in agreement among TRUE, DRAM and DREAM for some

parameters. In some cases, the disagreement is due to the measurement noise. In fact, in the

absence of measurement error, the mean values of DRAM and DREAM are much closer to the

true values. The disagreement may also be caused by parameter unidentifiability issues. For

example, correlated parameters and noninfluential parameters may not be estimated uniquely.

In our example, d1 and λ1 as well as k1 and c appear linearly correlated, which affects the

parameter identifiability. Also, Kb and Kd have wider distributions and these may indicate that

the parameters can not be estimated uniquely by the observations.

There are methods to eliminate parameter unidentifiability. Though they perform Frequentist

inference, the authors of [50] presents methods for detecting unidentifiable parameters prior to

estimation. Also, issues with overparameterization are discussed in [58], where the ion channel

model with superfluous states results in parameters that spread over a wide range of values

are multi-modal or uniform distribution. Detection of unidentifiable parameters results not

only in accurate parameter estimation, but also in reduction of parameter dimensions. An

example is illustrated in [32], which demonstrates the reduction of 61 model parameters to 26

parameters through successful isolation of unidentifiable parameters. Alternatively, one could
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Figure 2.12 Densities for 12 parameters with DRAM (solid line) and DREAM (dashed line).
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Figure 2.13 Joint sample points obtained using DRAM.
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Figure 2.14 Joint sample points obtained using DREAM.
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Table 2.8 The lower and upper bounds for the prior distributions qi ∼ U(ai, bi) for i = 1, . . . , 12.

bE δ d1 k2 λ1 Kb Kd k1 λ2 c ρ1 ρ2

ai 0 0 0 0 0 0 0 0 0 0 0 0

bi 0.5 1 0.05 1e-3 1e+5 1e3 1e+3 1e-6 50 50 10 10

perform parameter selection to eliminate unidentifiable parameters prior to model calibration.

Some parameter selection techniques include variance-based methods and screening methods

based on global sensitivity analysis. The details on this topic can be found in [59].

We showed that DRAM and DREAM can be used to construct parameter densities even

when individual parameters differ by many orders of magnitudes. One of the major difference

between DRAM and DREAM is the single-chain in DRAM as opposed to the simultaneous

multiple chains in DREAM. Running multiple chains of DRAM is also an option if a single-chain

DRAM exhibits a behavior of multi-modal distribution. In the case of the HIV model (2.1), a

single-chain DRAM is sufficient to efficiently sample from the posterior distribution.

2.6 Conclusion

We described Bayesian techniques for model calibration and used them to construct prediction

intervals for the HIV model (2.1). We first constructed posterior densities for three parameters

using DRAM and DREAM. A single chain for each parameter evolves to the posterior distribution

using delayed rejection and adaptation features in DRAM, whereas multiple chains are run to

increase efficiency in DREAM. Candidates from both methods are either accepted or rejected

according to the Metropolis ratio, which determines whether the likelihood increased or not.

To verify the accuracy of the DRAM and DREAM methods, we demonstrated that they

yield the same parameter densities and parameter correlations. We then compared the parameter

densities and correlations via DRAM and DREAM to the true values computed directly from (2.4)

via the direct method. The densities for three parameters using the three methods are agreeable.

When we performed parameter estimation using DRAM and DREAM for 12 parameters, both

methods successfully estimated parameter densities despite the large range in the parameters,

which vary from O(10−7) to O(104).
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Table 2.9 Mean values obtained using DRAM and DREAM for 12 parameters.

bE δ d1 k2 λ1 Kb

TRUE 3.00e-1 7.00e-1 1.00e-2 1.00e-4 1.00e+4 1.00e+2

DRAM 2.98e-1 6.90e-1 5.55e-3 1.23e-4 9.12e+3 1.16e+2

DREAM 2.98e-1 6.88e-1 5.36e-3 1.21e-4 9.11e+3 1.18e+2

Kd k1 λ2 c ρ1 ρ2

TRUE 5.00e+2 8.00e-7 3.20e+1 1.30e+1 1.00 1.00

DRAM 5.91e+2 8.54e-7 3.25e+1 1.33e+1 8.33e-1 2.96

DREAM 5.95e+2 8.49e-7 3.24e+1 1.33e+1 8.08e-1 2.63

Table 2.10 Convergence diagnostics for DRAM with 12 parameters.

Parameter MC Error τ Geweke

bE 5.36e-5 83.45 0.9992

δ 1.15e-4 59.92 0.9993

d1 2.33e-5 57.80 0.9988

k2 1.67e-7 83.78 0.9927

λ1 3.52 57.24 0.9996

Kb 1.08 81.52 0.9678

Kd 4.13 81.91 0.9684

k1 5.65e-10 61.40 0.9970

λ2 1.44e-2 57.78 0.9971

c 6.06e-3 59.86 0.9984

ρ1 8.71e-3 64.68 0.9563

ρ2 2.96e-2 75.96 0.9937
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Figure 2.15 R-statistics for 12 parameters in DREAM.

We also discussed credible and prediction intervals, which are constructed by propagating

the input uncertainties through the model. The credible intervals quantify uncertainties in the

model responses due to the parameter uncertainties, whereas the prediction intervals quantify

uncertainties in the responses due to both the parameter uncertainties and the measurement

error. In the HIV example, credible and prediction intervals were constructed for the immune

effector cells, E, using DRAM and DREAM as a part of verification.

The sampling methods, with verified accuracy as discussed here, can be used to perform

parameter estimation and to obtain predictive estimates in other models. They can also be

extended to a larger number of parameters. These methods have been successfully applied to

models involving gene transcription activity [11, 51], cellular signaling pathways [38], and algae

model [32]. Moreover, the application of DRAM and DREAM to models with higher parameter

dimensions has also been documented. Models with input parameter dimensions, 25, 50 and 100,

are examined in [66]. Also, a hydrology model in [68] has 63 to 65 parameters, where DREAM is

performed for model calibration. Recently, [43] presented the use of MCMC methods, including

DRAM and DREAM, as a part of uncertainty quantification for a groundwater flow problem, in

addition to a 10-dimensional multi-modal mathematical function and 100-dimensional Gaussian

functions. In their examples, it is reported that DREAM is more efficient than DRAM. These

applications indicate the efficiency of DRAM and DREAM in model calibration for models
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Figure 2.16 Autocorrelation for 12 parameters in DREAM.
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arising in bioscience with a wide range of parameter dimensions.

Through the HIV model, we illustrated the process for model calibration and uncertainty

quantification using Bayesian inference. Equally importantly, we provided a verification frame-

work by comparing multiple methods. Since sampling methods often lack clear convergence

criteria, it is essential to provide verification when discussing convergence to the posterior

distribution. Numerical approximation of posterior distributions via the direct method is also

possible when the parameter dimension is low.

For future work, we want to show the capabilities of DRAM and DREAM for estimating a

subset or a full set of parameters using experimental data. More extensive study on parameter

identifiability must also be performed to avoid unidentifiable parameters when performing

parameter estimation for a large set of parameters. A final research component will focus on the

use of energy statistics [64] to quantify the distance between posterior distributions generated

using DRAM, DREAM and direct numerical evaluation to provide a rigorous verification metric.

Remark

M.T. Wentworth and R.C. Smith, “Bayesian model calibration, verification and uncertainty

quantification for an HIV model,” submitted, 2014.
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Chapter 3

Energy Statistics

3.1 Introduction

In Chapter 2, we estimated subsets of input parameters for an HIV model presented in [8] and

verified the accuracy of sampling-based Bayesian model calibration methods, DRAM [33] and

DREAM [66, 68]. For this work, we first constructed the posterior densities of bE , δ and d1

using DRAM and DREAM. The constructed densities were compared to those constructed by

directly evaluating Bayes’ formula, which we termed the Direct Method. We then estimated

twelve parameters. In this case, due to the dimensionality of the input parameters, the Direct

Method is not feasible. The verification of DRAM and DREAM was performed by analyzing

convergence statistics, chain evolutions and parameter correlations. Furthermore, we concluded

that the densities from DRAM and DREAM are qualitatively same by visually inspecting the

densities.

Here, we use energy statistic test discussed in [63, 64] to verify that two densities are

essentially equal. The energy test is a statistical hypothesis test to determine whether two sets

of samples come from the same distribution by computing the distance between samples. The

null hypothesis in this case is that the two sets of samples, whether from the Direct Method,

DRAM or DREAM, come from the same distribution.

3.1.1 Energy Distance

To test that two distributions are equal, let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent random

variables. First, we compute the energy distance derived in [63]

εn1,n2(X,Y ) =
2

n1n2

n1∑
i=1

n2∑
m=1

|Xi − Ym| −
1

n2
1

n1∑
i=1

n1∑
j=1

|Xi −Xj | −
2

n2
2

n2∑
k=1

n2∑
m=1

|Yk − Ym| (3.1)
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and the test statistic

Tn1,n2 =
n1n2

n1 + n2
εn1,n2 . (3.2)

By summing the absolute difference between samples from two distributions, the test statistics

indicate the distance between two sets of samples. Smaller test values indicate that samples

from two distributions are close and hence it is more likely that the two sets of samples come

from the same distribution.

For the hypothesis testing, we must compute critical values. The algorithm for computing

the critical values detailed in [63] is the following.

1. Combine the samples from the two sets, X and Y , into one set W = [XY ].

2. Randomly choose, without replacement, n1 entries from W , call it W1, and the rest of n2

entries are in the set W2.

3. Compute the test statistic for W1 and W2.

4. Repeat Steps 2 and 3 for a total of M times to obtain M replicates.

The value M is chosen so that α(1 + M) is an integer, where α is the significance level for

the test. In our examples in Section 3.3, the value of M is chosen based on the computational

capability.

Once M test values are computed, the critical value is chosen to be the test statistic at

the (1− α)× 100 percentile. For example, for α = 0.1, the critical value is the test statistic at

the 90th percentile. If the test statistic from the original two sets X and Y is smaller than the

critical value, we do not reject the null hypothesis. Otherwise, we reject the null hypothesis.

The idea behind this hypothesis testing is the following: if two sets of samples are indeed

coming from the same distribution, then the test statistic for the two sets should be comparable

to the test statistics computed using randomly separated sets of samples. Assuming that the

null hypothesis is true, if we repeat the hypothesis test multiple times, each time with different

samples in X and Y , the test statistic would fall below the critical value (1− α)× 100% of the

time.

3.2 Samples

The samples from DRAM and DREAM are obtained by running 1,000,000 simulations for

DRAM and 1,000,000 total function evaluations with 10 chains for DREAM. To exclude samples

during the burn-in period, we select the last 10,000 parameter values as samples to be used in

the test. For the Direct Method, we compute the probability density function values at uniformly
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distributed parameter values. We use the inverse transform sampling to obtain samples for the

Direct Method.

3.2.1 Inverse Transform Sampling

We use the following algorithm to obtain random samples given a set of parameter values and

corresponding probability density function.

1. Start with a set of values, x ∈ [x0, x1], and corresponding pdf, f(x), for a distribution D.

2. Compute the cumulative density function F (x) at the discrete values, x.

3. Interpolate the inverse of cdf, F−1, at appropriately distributed points in [F (x0), F (x1)].

4. Sample points from a uniform distribution, xnew ∼ U(0, 1).

5. Compute ynew = F−1(xnew). The points ynew are equivalent to samples from the distribu-

tion D.

It is noted that in Step 1, one must choose an appropriate range of [x0, x1] so that f(x0) < ε

and |f(x1)− 1| < ε for some ε small. Also, in Step 3, one must adjust F−1 so that F−1(0) = 0

and F−1(1) = 1.

3.2.2 Example

As an example, we take the known distribution to be N(0, 4), and compute the pdf at points

[−10 : .1 : 10]. We construct 10,000 random samples using the inverse transform sampling. In

Figure 3.1, we plot the points at which pdf is available, kernel density estimator (kde) of samples

from the true distribution N(0, 4) and kde of samples constructed using the pdf. The pdf values,

the samples from the distribution and the samples constructed via the cdf all match well.

3.3 Equality of Distributions

3.3.1 Three Parameter Case

We first focus on the three parameter case. Since the density computed using the Direct Method

is considered the “true solution,” we perform an energy test to see if the samples from DRAM and

DREAM come from distribution constructed via the Direct Method. Here, the null hypothesis

H0 is that the two sets of samples come from the same distribution. For this test, we use 100

samples from each method with M = 999 replicates. We use a small number of samples and

a comparatively large number of replicates to keep the computational cost reasonable, while
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Figure 3.1 Construction of random samples using discrete probability density functions.

approximating the test value as accurately as possible. Moreover, 100 samples are taken randomly

from respective chains after burn-in.

The results are summarized in Table 3.1. The replicates used to approximate the critical

value and the test statistic are plotted in Figures 3.2 and 3.3. For this experiment, the null

hypothesis was not rejected for all cases except bE with α = 0.1. Not rejecting the null hypothesis

implies that the samples from the Direct Method and DRAM, as well as from the Direct Method

and DREAM, may come from the same distribution with α = 0.05 and 0.1. For δ and d1, the

test value (solid line) is to the left of the critical values at α = 0.1 (dotted line) and at α = 0.05

(dashed line). Hence, the distance between the two sets of samples from the Direct Method and

DRAM, as well as the Direct Method and DREAM, was smaller than the distance between

randomly divided two sets of samples.

By definition, we expect that 95% of the energy test will not reject the hypothesis for

α = 0.05. Similarly, for α = 0.1, we expect that 90% of the energy test will not reject the

hypothesis. To show this, we repeated energy tests 950 times for α = 0.1 and α = 0.05. We

summarize the results in Table 3.2. For example, the top left value 8.94 indicates that 8.94% of

the energy test rejected the null hypothesis with α = 0.1 for the parameter bE when samples

from the Direct Method and DRAM were compared. For the same parameter bE , 17.47% of 950

energy tests rejected the hypothesis with α = 0.1 for the comparison of samples from the Direct

Method and DREAM. The percentage of rejection is much more consistent with the definition

for DRAM than for DREAM. Also, for most other cases, the percentage of rejection is much

higher for DREAM than that for DRAM. This implies that the samples from DRAM and Direct
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Table 3.1 Energy test and critical values for α = 0.1, 0.05 for DRAM (above) and DREAM (below).

DRAM Test Value α = 0.1 α = 0.05

bE 1.64e-3 1.55e-3 2.03e-3

δ 1.91e-3 6.52e-3 7.99e-3

d1 1.21e-3 1.76e-3 2.27e-3

DREAM Test Value α = 0.1 α = 0.05

bE 1.19e-3 1.71e-3 2.38e-3

δ 1.38e-3 7.16e-3 8.84e-3

d1 4.68e-4 1.90e-3 2.39e-3
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Figure 3.2 Replicates of energy test and critical values between Direct and DRAM.
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Figure 3.3 Replicates of energy test and critical values between Direct and DREAM.

Table 3.2 Percentage of rejection obtained by repetition of energy test for DRAM and DREAM.

α = 0.1 α = 0.05

Parameter DRAM DREAM DRAM DREAM

bE 8.94 17.47 4.32 10.74

δ 8.95 12.53 4.21 6.32

d1 10.74 9.26 5.47 4.53

are closer than the samples from DREAM and Direct.

Using the hypothesis test, we showed that the samples from the Direct Method and DRAM

are very likely coming from the same distribution for the three parameter case. We showed

the similar results for the samples from the Direct Method and DREAM. When we repeatedly

performed the energy tests, the results using DRAM samples were more consistent with the

definition of hypothesis tests. For DRAM, the energy tests rejected the null hypothesis about

5% of the time for α = 0.05 and approximately 10% of the time for α = 0.1. On the other hand,

for DREAM, the test rejected as high as 11% and 17% for α = 0.05 and α = 0.1, respectively.

The difference in the DRAM and DREAM results arises from the fact that the DREAM chains
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tend to yield densities that are less smooth. The rough chains in DREAM are apprent when

constructing densities from the chain values using a minimum smoothing. Because of this

roughness in DREAM chains, the energy tests are likely to determine that the samples from the

Direct Method and DREAM are not coming from the same distribution.

3.3.2 12 Parameter Case

Next, we perform the energy tests for the 12 parameters from (2.42). There are no samples from

the Direct Method in this case due to the size of the input parameter space. For this test, we

take 1000 samples from each DRAM and DREAM and M = 199 replicates. The samples are

chosen randomly from respective chain evaluations. The results of one energy test are plotted in

Figure 3.4. We see that in many cases, we rejected the null hypothesis. For example, the null

hypothesis was rejected for all parameters except λ1 with α = 0.1. For α = 0.05, we did not

reject the hypothesis for the three parameters d1, λ1, k1.

Based on the energy test using the samples from the chain evolutions, we are unable to show

that samples from DRAM and samples from DREAM come from the same distribution. This

may be due to the fact that the densities constructed using DREAM tend to be rougher than

those using DRAM. During the model calibration process in Chapter 2, more smoothing was

required for DREAM than for DRAM to construct parameter densities from chain values using

kde for visualization.

For this reason, we next perform the energy test using samples from the constructed densities.

After densities are obtained using a kernel density estimator, samples are obtained using the

method described in Section 3.2. The results are plotted in Figure 3.5.

The comparison of test values, along with the corresponding critical values, are summarized

in Table 3.3. Here, chain and kde respectively represent tests performed using samples from

the chains and from the constructed posterior density. The letter R next to the critical values

indicates that we rejected the null hypothesis.

The test values are, in general, much smaller for the samples from the posterior density

obtained using kde. Furthermore, we rejected the null hypothesis for more parameters using the

samples from chain than using the samples from posterior density with kde. For example, at a

α = 0.05 significance level, the null hypothesis is rejected for all but one parameter using the

chain samples, whereas the hypothesis is rejected for seven parameters using the posterior density.

However, testing the hypothesis using samples from constructed densities is not statistically

rigorous.

For the 12 parameter case, we first performed the energy test using 1000 samples from

DRAM chains and 1000 samples from DREAM chains. The null hypothesis was rejected for 9

parameters even at α = 0.05. We then performed the test using samples from posterior densities
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Figure 3.4 Energy test for 1000 samples from DRAM and DREAM with critical values computed
with M = 199.
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Figure 3.5 Energy test for 1000 samples from DRAM and DREAM with critical values computed
with M = 199.
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Table 3.3 Test and critical values for α = 0.1, 0.05 using samples from chain and kde. R indicates the
case in which the null hypothesis is rejected.

Test Value Critical Value (α = 0.10) Critical Value (α = 0.05)

chain kde chain kde chain kde

bE 1.15e-2 1.84e-2 6.21e-3 R 7.24e-3 R 7.58e-3 R 9.63e-3 R

δ 8.13e-2 1.12e-1 2.67e-2 R 2.62e-2 R 4.02e-2 R 3.33e-2 R

d1 5.87e-3 6.24e-3 5.17e-3 R 5.93e-3 R 7.64e-3 8.22e-3

k2 1.13e-4 1.13e-4 2.53e-5 R 2.38e-5 R 3.05e-5 R 3.13e-5 R

λ1 4.99e+2 1.37e+2 8.08e+2 8.73e+2 1.08e+3 1.16e+3

Kb 2.22e+2 7.51e+1 9.75e+1 R 1.08e+2 1.44e+2 R 1.45e+2

Kd 1.25e+3 1.16e+2 3.72e+2 R 5.14e+2 5.71e+2 R 6.75e+2

k1 1.12e-7 1.03e-7 1.06e-7 R 1.03e-7 1.22e-7 1.32e-7

λ2 5.10e+0 3.46e+0 2.45e+0 R 2.64e+0 R 3.06e+0 R 3.36e+0 R

c 2.97e+0 1.47e+0 1.56e+0 R 1.37e+0 R 1.82e+0 R 1.90e+0

ρ1 2.36e+1 6.35e-1 1.12e+0 R 1.19e+0 1.36e+0 R 1.67e+0

ρ2 2.41e+1 3.51e+1 3.83e+0 R 3.93e+0 R 6.53e+0 R 5.19e+0 R
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constructed with kde. Because of our observation that the parameter values tend to be rougher

in DREAM than those in DRAM during the model calibration, sampling from the posterior

densities is intended to help mitigate the difference in the nature of methods. Among the 12

parameters, λ1 was the only parameter for which the null hypothesis was not rejected for all

four cases, chain and kde, α = 0.1 and α = 0.05. This corroborates our observations during

model calibration in Chapter 2 since λ1 was one of the parameters for which the densities from

DRAM and DREAM visually matched well. Other parameters did not result in the way we

expected based on our observation from the model calibration process.

3.4 Conclusion

Using the energy test, we were not able to show with sufficient confidence that the samples

from DRAM and DREAM come from the same distribution for many parameters. Although the

use of samples from posterior density improved the chance at which the null hypothesis is not

rejected, there were still parameters for which the null hypothesis is rejected. Furthermore, a

major issue that remains is the amount of smoothing we performed to construct the posterior

densities. While smoothing helps convert the values from chain evolutions to a density, the

amount of smoothing we can apply without changing the nature of density is not quantified.

More importantly, smoothing is for visualization purpose only, and the energy test using the

samples from constructed densities is not statistically rigorous. We are interested in going back

to the methods of model calibration and examine the possibility of adjusting the parameter

settings, especially for DREAM, so that the densities are smoother without using kde.
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Chapter 4

Parameter Selection

4.1 Introduction

Biological and physical models commonly have tens to hundreds of inputs – comprised of

parameters, discretized spatially-varying coefficients, initial or boundary conditions, or exogenous

forces – many of which have minimal influence on model responses. This necessitates the

development of robust analysis techniques to establish subsets or subspaces of influential

parameters or inputs. This challenge is exacerbated for models such as neutronics equations,

which can have 106 inputs, of which only 50-100 are considered influential. The need for robust

parameter selection techniques is further motivated by the following objectives: (i) determine

those inputs that can be uniquely estimated from measured data; (ii) establish the robustness

or fragility of models with respect to certain parameter sets; (iii) simplify models by fixing

insensitive inputs; and (iv) guide experimental design by ascertaining parameter subsets or

subspaces that have the greatest impact on parameter or response sensitivity.

To establish notation and terminology, we consider the nonlinear input-output relation

y = f(q) (4.1)

where q = [q1, . . . , qp] denotes the model inputs – e.g., parameters, initial or boundary conditions

– and f denotes the mathematical model. For this discussion, we consider real-valued responses

y ∈ R1.

A significant goal of input or parameter selection techniques is to establish subsets or

subspaces of inputs or parameters that can be uniquely identified from data or that strongly

influence model responses. Such subsets can be characterized by the concepts of identifiable and

influential parameter sets.

The concept of identifiability is classical and can be defined as follows. The parameters
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Figure 4.1 Illustration of y = f(q) for (a) identifiable, (b) unidentifiable and (c) noninfluential
parameters q.

q = [q1, . . . , qp] are identifiable at q∗ if f(q) = f(q∗) implies that q = q∗ for all admissible q ∈ Q.

The parameters q are identifiable with respect to a space I(q), termed the identifiable subspace,

if this holds for all q∗ ∈ I(q). Hence identifiable parameters can be uniquely determined from

observations. An example of identifiable and unidentifiable parameters are illustrated in Figure

4.1 (a) and (b).

Influential parameter spaces are sometimes defined differently in various disciplines. We define

the parameter set q = [q1, . . . , qp] to be noninfluential on the space NI(q) if f(q)− f(q∗) < ε

for all q and q∗ ∈ NI(q). The space I(q) of influential parameters is defined to be the orthogonal

complement of NI(q). Noninfluential parameters, like unidentifiable parameters, can be fixed for

model calibration and uncertainty propagation. Hence, the space of noninfluential parameters is

a subspace of the space of unidentifiable parameters. An example of a noninfluential parameter

is illustrated in Figure 4.1 (c). Furthermore, parameter q1 is more influential than parameter q2

if changes in q1 affect greater changes in y than changes in q2 do. See Figure 4.2 for an example

of highly and minimally influential parameters. We will quantify the degree of influence using

global sensitivity analysis.

For linearly parameterized problems y = Aq, it is shown in Chapter 6 of [59] that deterministic

and parametrized QR or SVD algorithms can be used to determine subspaces of influential

parameters. For the nonlinearly parametrized problems, one typically resorts to global sensitivity

analysis or active subspace techniques.
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Figure 4.2 Illustration of influential parameters where q1 is more influential than q2.

In this chapter, we focus on global sensitivity analysis and subset selection based on standard

errors to determine subsets qs = {qs1, . . . , qsp̃} ⊂ q = {q1, . . . , qp} of influential parameters. This

differs from subspace selection techniques – typically based on QR or SVD algorithms with inputs

randomly selected from the admissible input space – which can include linear combinations of

inputs [5, 22, 59]. The comparison of active input subspaces with the subset established here for

the HIV model constitutes an area of future research.

4.1.1 HIV Model, Inputs and Responses

For the application of parameter selection techniques, we employ the HIV model (1.1). Based

on results from [6], we focus on the 15 parameters and initial conditions

q = [λT , d1, ε1, k1, aT , ε2, NT , bE2, aE , pE , aA, pT , T1(0), T ∗1 (0), T2(0)] (4.2)

whose values tend to be patient specific. Here, the input dimensions is p = 15. The associated

random variable, considered for global sensitivity analysis, is denoted by Q. Also, we denoted

the admissible input space of biologically feasible parameters and initial conditions by Q. The

lower and upper bounds for each parameter, where qi ∈ [`bi, ubi], is summarized in Table 4.1.

For more details of the terms and parameters, see [6, 8].

As detailed in [8], data was collected from patients, in a clinical trial, who underwent

anti-retroviral therapy (ART) and had at least one ART interruption. The total CD4+ T-cell

count/micro L-blood (T1 + T ∗1 + T2 + T ∗2 ) as well as total RNA copies/mL-plasma (VI + VNI)
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Table 4.1 The lower and upper bounds of parameters, qi ∈ [`bi, ubi], for i = 1, . . . , 15.

λT d1 ε1 k1 aT ε2 NT bE2

`bi 3.1 0.11 0.43 4.0e-5 2.0e-4 0.63 65 0.28

ubi 3.5 0.15 0.6 5.5e-5 2.7e-4 0.78 85 0.45

aE pE aA pT T1(0) T ∗1 (0) T2(0)

`bi 1.40e-3 0.85 6.5e-5 5 10.5 5.0e-4 720

ubi 1.75e-3 1.3 9.0e-5 6.5 13.5 7.0e-4 950

were recorded during this process.

For global sensitivity analysis, we require a scalar response. At the same time, we are

interested in how parameters affect the model output for the feasible input as well for the entire

duration of therapy. For these reasons, we choose our scalar model response to be

f(q) =

∫ 1500

0
T1(t; q) + T ∗1 (t; q) + T2(t; q) + T ∗2 (t; q) dt+

∫ 1500

0
VI(t; q) + VNI(t; q) dt. (4.3)

To test the parameter selection techniques, we generate synthetic data using the mean values

from the model calibration performed in [8], which are summarized in Table 1.2. The model is

solved numerically using ode15s in MATLAB.

4.1.2 Previous Work and Chapter Organization

Whereas global sensitivity analysis techniques for parameter selection have not previously been

investigated for this dynamic HIV model, certain techniques have been used to analyze other

biological models.

Readers are referred to [21] for a case study illustrating the use of sensitivity analysis for

a rice model, and [41, 62] for examples of parameter selection in computational and systems

biology. The subset selection developed in [7, 9, 20] is applied to the HIV model (1.1) in [6] and

we compare our sensitivity-based parameter subsets to those of [6] in Section 4.4.

In Section 4.2, we illustrate the difference between local and global sensitivity analysis using a

simple portfolio model. In Section 4.3, we discuss four different techniques for parameter selection.

We start with Partial Correlation [4], which quantifies the linear effects of parameters on the
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model response. Secondly, we discuss Sobol indices, which are variance-based methods based

on a second-order Sobol decomposition. For the HIV example, we discuss the limited accuracy

of this decomposition and its affect on parameter selection. Thirdly, we summarize Morris

indices using a screening method that ranks parameters in the order of importance. Finally, we

discuss the parameter subset selection algorithm discussed in [6]. In Section 4.4, we present our

results of applying parameter selection techniques to the HIV model. We interpret the sensitivity

indices from each method and provide a comparison for identifying influential parameters. We

present verification techniques to illustrate that non-influential parameters should not affect the

model output when fixed at nominal values. Finally, we provide comprehensive implications of

parameter selection techniques on the HIV model.

4.2 Global Sensitivity Motivation

There are two types of sensitivity analysis: local and global. In literature, sensitivity analysis often

refers to local sensitivity analysis, which is typically performed by evaluating the derivative of

the response with respect to inputs at nominal input values. On the other hand, global sensitivity

analysis considers the effect of parameters over the entire range of input values. Global sensitivity

analysis is also used to ascertain how uncertainty in model outputs is apportioned to uncertainties

in model inputs; see [55, 57, 59, 60] for details.

We note that global sensitivity techniques rank the relative impact of influential inputs or

parameters. Further tests are required to establish that minimally influential parameters are

non-influential in the sense defined in Section 2.1.

To illustrate the difference between local sensitivity analysis and global sensitivity analysis,

we begin by considering the linear portfolio model

Y = c1Q1 + c2Q2 (4.4)

considered in [57, 59]. Here, the random variable Y is the return for the investment and

Q1 ∼ N(0, σ2
1) and Q2 ∼ N(0, σ2

2) represent hedged portfolios, where c1 and c2 are the amounts

invested in each portfolio. In this example, we take c1 = 2, c2 = 1, σ1 = 1 and σ2 = 3. The fact

that σ2 > σ1 implies that the second portfolio is more volatile than the first. The scatterplots of

1000 joint realizations of q1, q2 and y in Figure 4.3 indicate that Q2 has more influence on Y

than Q1. Hence, globally, Y is more sensitive to Q2 than Q1.

However, the local sensitivity si = ∂Y
∂Qi

for i = 1, 2 yields s1 = 2 and s2 = 1, indicating

that q1 is more sensitive. This reflects the amounts invested in the two portfolios rather than

the effects of their volatility of the return. Hence the local sensitivity does not incorporate the

nonlinear uncertainty structure over the global admissible parameter space nor the effect of
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parameter variability on the response.

In our HIV example, we are interested in how parameters affect the model response in the

entire parameter space, rather than at some nominal parameter values. For this reason, we use

global sensitivity analysis as a parameter selection technique and isolate influential parameters

from noninfluential parameters. In the next section, we discuss three methods of parameter

selection based on global sensitivity analysis and one method based on standard errors.

4.3 Parameter Selection Methods

The first of the four parameter selection methods that we discuss is termed the Partial Correlation,

or Pearson’s Correlations. This method quantifies the linear effect of parameters on the model

response. Secondly, we detail the use of Sobol indices based on a variance-based, second-order

Sobol decomposition. As an initial step, we examine and verify the accuracy of the second-order

expansions. Thirdly, we consider the Morris screening method. We note that this method provides

a mechanism of ranking parameters but does not necessarily quantify their relative importance.

Finally, we summarize the parameter subset selection detailed in [6]. This method quantifies the

importance of parameters by comparing a dimensionless ratio of standard error and mean for

each parameter.
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Figure 4.3 Scatterplots of 1000 joint realizations of y versus (a) q1 and (b) q2.
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4.3.1 Partial Correlation

We begin by computing partial correlations as detailed in [4]. For two random variables X and

Y , the covariance is given by

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ). (4.5)

The partial correlation is then given by

ρXY =
cov(X,Y )

σXσY
. (4.6)

The partial correlation quantifies the degree to which two random variables are correlated.

For example, ρXY = 0 indicates that X and Y are not correlated. We note that ρXY = 0 does

not imply that the two random variables are independent since (4.6) only quantifies linear

dependencies between parameters. On the other hand, ρXY = ±1 indicates a linear algebraic

relation between the variables, in which case they are not jointly identifiable. Values greater

than 0.5 generally indicate significant correlations. However, one must study the parameters

with partial correlation values less than 0.5 for possible confounding factors or nonlinearities

before determining that they are insignificant.

For the HIV example, X = Qi denotes the random variable for the ith parameter, and Y is

the random variable representing the model response. The partial correlation then quantifies

the degree of linear correlation between a parameter Qi and model response Y . We approximate

the correlation

ρQiY ≈

∑
j

((qi)j − q̄i)(yj − ȳ)√∑
j

((qi)j − q̄i)2
∑
k

(yk − ȳ)2
, (4.7)

where qi and y are realizations of Qi and Y , respectively, and q̄i and ȳ respectively are the

sample means of Qi and Y . The number of function evaluations required to compute the partial

correlation for p parameters using M Monte Carlo evaluations is M .

For this method, variables with large partial correlations are considered more influential on

the response than those yielding small values of ρQiY . For the portfolio model (4.4), this would

reflect the results shown in Figure 4.3, which indicate that Q2 is more influential than Q1.

4.3.1.1 Partial Correlation Results

The partial correlation values are computed for the model (1.1) using M = 2000 function

evaluations per parameter. The result is plotted in Figure 4.4 to provide visual comparison for
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Figure 4.4 Partial correlation of the scalar response to the input parameters.

the overall input-output correlation. Since we are interested in the magnitude of correlation

values, the negative correlation values are also shown in the positive direction using red bars.

The result indicates that NT is most correlated to the model response. Also, pT and k1 are

more correlated to the model response than other variables. On the other hand, two of the initial

conditions, T1(0) and T ∗1 (0) are not correlated to the model response, implying that they have

minimum influence.

4.3.2 Sobol Indices

To construct Sobol indices, we assume that parameters have been mapped to [0, 1] and that

q ∼ U [0, 1]p. Details regarding the construction of Sobol indices for general densities are provided

in [59].

4.3.2.1 Sobol Decomposition

Sobol indices are based on a second-order High Dimensional Model Representation (HDMR) or

Sobol representation

f(q) ≈ f0 +

p∑
i=1

fi(qi) +
∑

1≤i<j≤p
fij(qi, qj). (4.8)

Since the representation (4.8) is not unique, additional conditions are imposed to ensure the

uniqueness of component functions fi and fij . As detailed in [44, 48, 59, 60], each component
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function is uniquely specified by minimizing the functional

J =

∫
Γp

[
f(q)−

(
f0 +

p∑
i

fi(qi) + · · ·+
∑

i1<···<is

fi1,··· ,isqi1 , · · · , qis)

)]2

dq (4.9)

subject to ∫
Γ
fi1,...,is(qi1 , . . . , qis) dqik = 0 (4.10)

for k = 1, . . . , s and s = 1, . . . , p, where Γn = [0, 1]n for a positive integer n.

The component functions are given by

fi =

∫
Γp−1

f(q) dq∼i (4.11)

fij =

∫
Γp−2

f(q) dq∼i,j (4.12)

where the notation dq∼i denotes dq1, . . . , dqi−1, dqi+1, . . . , dqp.

The variance-based method employs the expansion (4.8) to quantify the contribution of each

parameter to the variance of response. As detailed in [59], the total variance of response Y is

given by

D = var(Y ) =

∫
Γ
f2(q)dq − f2

0 (4.13)

where f0 is the mean response given by

f0 =

∫
Γ
f(q)dq. (4.14)

The total variance can be expressed as a sum of variances due to first-order and second-order

parameter interactions by expressing D as

D =

p∑
i=1

Di +
∑

1≤i<j≤p
Dij (4.15)

where

Di =

∫
Γ
f2
i (qi) dqi

Dij =

∫
Γ2

f2
ij(qi, qj) dqi dqj .

(4.16)

The Sobol indices are then defined to be

Si =
Di

D
, Sij =

Dij

D
, i, j,= 1, . . . , p. (4.17)
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Here Si are often called the importance measures or first-order sensitivity indices, and they

measure the contribution of the parameter qi on the response variance. A large value of Si

implies stronger influence of parameter qi on the response variance. Similarly, Sij measures the

contribution of parameter interactions between qi and qj on the response variance. Since the

computation of first- and second- order sensitivity indices requires p+ p(p−1)
2 model responses,

we instead consider the total sensitivity indices

STi = Si +

p∑
j=1

Sij (4.18)

which quantify the total effect of the parameter qi on the response [59].

4.3.2.2 Statistical Interpretation

The Sobol indices, along with the expansion terms and partial variances, have expectation or

variance interpretations. Let

E(Y |qi) =

∫
Γp−1

f(q) dq∼i (4.19)

E(Y |qi, qj) =

∫
Γp−2

f(q) dq∼{ij} (4.20)

(4.21)

denote the expected response when qi and qi, qj are fixed. The component functions are

f0 = E(Y )

fi(qi) = E(Y |qi)− f0

fij(qi, qj) = E(Y |qi, qj)− fi(qi)− fj(qj)− f0.

(4.22)

As detailed in [59],

Di = var[E(Y |qi)] (4.23)

and hence

Si =
var[E(Y |qi)]

var(Y )
. (4.24)

Similarly, using the equality

Dij = var[E(Y |qi, qj)]− var[E(Y |qi)]− var[E(Y |qj)], (4.25)
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Figure 4.5 Response for fixed values of (a) q1 and (b) q2 illustrating E(Y |qi) and var[E(Y |qi)].

the total sensitivity index has the variance interpretation

ST i = 1− var[E(Y |q∼i)]
var(Y )

=
E[var(Y |q∼i)]

var(Y )
. (4.26)

The interpretation of E(Y |qi) and var[E(Y |qi)] is illustrated in Figure 4.5 from the portfolio

example in Section 4.2; see also Chapter 15 of [59]. The conditional expectations for fixed q1

and q2 are the average values of Y along vertical slices. Again, we see that mean of response for

fixed values of q2 has more variance than that for fixed values of q1.

4.3.2.3 Sobol Indices Algorithm

Since the computation of the Sobol indices requires high-dimensional integration, the indices

are approximated numerically. If one uses M Monte Carlo evaluations to approximate the

mean E(Y |qi) and repeats the procedure M times to approximate the variance var[E(Y |qi)],
a total of M2 evaluations will be required to evaluate a single index. The total number of

function evaluations required is M2p, which is computationally prohibitive for a large parameter

dimensions p. This motivated the author of [55] to provide a more efficient algorithm to compute

Sobol indices that reduces the required evaluations to M(p+2), based on Sobol’s original approach

in [60]. The algorithm was further improved by the authors of [56, 61] and is summarized here.
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Algorithm

1. Create two sample matrices A and B

A =


q1

1 . . . q1
i . . . q1

p

...
...

qM1 . . . qMi . . . qMp

 , and B =


q̂1

1 . . . q̂1
i . . . q̂1

p

...
...

q̂M1 . . . q̂Mi . . . q̂Mp

 . (4.27)

The entries qji and q̂ji are quasi-random numbers drawn from the respective densities.

2. Create A
(i)
B

A
(i)
B =


q1

1 . . . q̂1
i . . . q1

p

...
...

qM1 . . . q̂Mi . . . qMp

 (4.28)

which is the matrix A except that ith column is taken from B. Similarly, create B
(i)
A .

3. Create C which is the matrix B appended to matrix A such that

C =


A

−

B

 . (4.29)

The rows of C are linearly independent, and this matrix C is used when estimating the

total variance.

4. Compute column vectors f(A), f(B), f(A
(i)
B ) and f(B

(i)
A ) by evaluating the model at

input values from the rows of matrices A, B, A
(i)
B and B

(i)
A . Let f(A)j denote the output

computed from the jth row of A. The computation of f(A) and f(B) requires 2M model

evaluations, whereas the evaluation of f(A
(i)
B ) and f(B

(i)
A ) for i = 1, . . . , p requires 2Mp

evaluations. The total number of model evaluations is 2M(1 + p).

5. Estimate the Sobol indices. The first-order Sobol indices are approximated by

Si =

1

M

M∑
j=1

[
f(A)jf(B

(i)
A )j − f(A)jf(B)j

]
1

2M

2M∑
j=1

f(C)jf(C)j − 〈f(C)〉2
(4.30)
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and the total Sobol indices are approximated by

ST i =

1

2M

M∑
j=1

[
f(A)j − f(A

(i)
B )j

]2

1

2M

2M∑
j=1

f(C)jf(C)j − 〈f(C)〉2
(4.31)

where 〈·〉 denotes the mean.

In the last step, variances are approximated using Monte Carlo approximation. The de-

nominator in (4.30) and (4.31) is the approximation for the total variance with E(Y 2) ≈
1

2M

∑2M
j=1 f(C)jf(C)j and (E(Y ))2 = 〈f(C)〉2. In (4.30), the term 1

M

∑M
j=1 f(A)jf(B

(i)
A )j approx-

imates E(E(Y |qi))2. In essence, we are taking the mean of responses when all input parameters

are varied except qi. The effect of qi is fixed since the ith column is the same in both A and B
(i)
A .

The second term in (4.30),

1

M

M∑
j=1

f(A)jf(B)j , (4.32)

represents the squared mean, f2
0 , using the identity

f2
0 =

∫
Γ2

f(x)f(x′)dxdx′. (4.33)

This approximation is shown in [61] to reduce the loss of accuracy when computing D, compared

to

f2
0 ≈

 1

M

M∑
j=1

f(A)j

 1

M

M∑
j=1

f(B)j

 , (4.34)

which is used in the previous versions of the algorithm.

The computation of ST i follows from the derivations in [37], which uses the approximation

E[var(Y |q∼i)] ≈
1

2M

M∑
j=1

[
f(A)j − f(A

(i)
B )j

]2
(4.35)

instead of the approximation

var[E(Y |q∼i)] ≈
1

M

M∑
j=1

f(A)jf(A
(i)
B )j − f2

0 (4.36)

in (4.26). The comparison of different versions of the algorithm can be found in [56].
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Figure 4.6 Sobol indices ST i for 15 parameters.

4.3.2.4 Sobol Indices Results

The Sobol indices for the 15 parameters in (4.2) are plotted in Figure 4.6. It is clear that NT has

the largest ST i value, indicating that NT affects the model output the most. We note that pT is

also almost as significant. On the other hand, T ∗1 (0) affects the output the least. The parameters

aE and T1(0) are also very insignificant.

4.3.2.5 Verification of the Sobol Decomposition

Since the accuracy of the Sobol indices depends on the accuracy of the approximated second-

order Sobol representation, we test whether the function is accurately approximated by the

second-order Sobol decomposition.

To ensure that we can adequately approximate the integrals, we consider four parameters

q = [λT , d1, ε1, k1] with values in the 4-D hypercube [3.1, 3.5]× [0.11, 0.15]× [0.43, 0.60]× [4e-5,

5.5e-5]. We compute the model response using n = 41 equally-spaced quadrature points in each

dimension to evaluate the integrals (4.11) and (4.12). The function is expanded with a zero-th,

first, second, third and fourth order component functions so that

f = f0 +
∑
i

fi(qi) +
∑
i<j

fij(qi, qj) +
∑
i<j<k

fijk(qi, qj , qk) +
∑

i<j<k<h

fijkh(qi, qj , qk, qh). (4.37)
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In Figure 4.7, we plot the model response along with first- and second-order approximations,

where the fixed parameter values are taken to be λT = 3.19, ε1 = 0.119, d1 = 0.46825, k1 =

4.3375e-5. The model response is represented by the blue solid line, while the first-order

approximation and the second-order approximation are represented by dashed-dot black and by

dashed red, respectively.

We note that both the first- and second-order approximations smooth out the jumps in

the model response, and they do not accurately represent the model response. There is little

difference between the first-order and second-order approximations, which explains the similarity

between the reported values of Si and ST i. In the HIV model (1.1), the higher order interactions

are non-negligible, and the second-order approximation is not sufficiently accurate to completely

represent the model response. This may introduce some inaccuracy when determining the relative

influence of parameters using the Sobol indices.
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Figure 4.7 Model response (solid blue), 1st order (dash-dot black) and 2nd order approximation
(dash red).
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4.3.3 Morris Screening

The third method we consider is Morris screening [46, 55]. Screening methods rank the importance

of parameters by averaging coarse difference relations termed elementary effects. The elementary

effects are then used to compute sensitivity measures. The mean and variance of elementary

effects represent represent the linear effect of parameters and the effect of interaction terms on

the model response, respectively. Morris Screening employs neighbors to compute elementary

effects, which reduces the total model evaluations by approximately a half. Whereas Morris

Screening can only rank the parameter importance, and does not quantify the relative importance

of each parameter, this method is significantly more efficient than computing Sobol indices.

More details regarding the method can be found in [18, 59].

As with Sobol indices, we first map parameters to [0, 1]. We also assume no prior information

about parameters and hence take them to be uniformly distributed. This latter assumption can

be modified if prior parameter information is available. The elementary effect is given by

di(q) =
f(q1, . . . , qi−1, qi + ∆, qi+1, . . . , qp)− f(q)

∆
=
f(q + ei)− f(q)

∆
, (4.38)

where ∆ is the step size chosen from the set ∆ ∈
{

1

`− 1
, . . . , 1− 1

`− 1

}
. Constructed in this

way, di quantifies the approximate, large scale, local sensitivity of the model response relative to

the ith parameter. We note that the step size is taken large to cover the entire parameter space.

As detailed in [18, 46, 59], taking ` to be even and choosing ∆ = `
2(`−1) has the advantage that

it guarantees equal probability sampling from the distribution.

Let

dki =
f(qk + ∆ei)− f(qk)

∆
(4.39)

be the elementary effect associated with the ith parameter and kth sample. For r sample points,

the Morris indices for the parameter qi are

µ∗ =
1

r

r∑
k=1

|dks |

σ2 =
1

r − 1

r∑
k=1

(drs − µ)2 , where µ =
1

r

r∑
k=1

dks .

(4.40)

The mean quantifies the individual effect of the input on output, whereas the variance

incorporates the influence of parameter interactions. Since we must consider both the mean

and the variance, we rank the parameter using the quantity
√
µ∗2 + σ2 when ordering the

importance of parameters. Computing (4.39) requires two model evaluations per parameter per

sample. Hence, a total of 2pr model evaluations is required to compute the Morris indices, µ∗
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and σ2. As detailed in Algorithm 3.3.1 below, taken from [18], one employs neighbors to reduce

the number of total model evaluations to (p+ 1)r.

4.3.3.1 Morris Screening Algorithm

1. Create a (p+ 1)× p matrix A with ones in the lower triangle such that

A =


0 0 . . . 0

1 0 . . . 0
...

. . .

1 1 . . . 1

 . (4.41)

2. Choose the step size ∆. Unless specified by the user, take ∆ =
`

2(`− 1)
.

3. Select a starting vector q∗.

4. Construct a diagonal matrix D∗, whose entries are randomly chosen from {−1, 1}.

5. Calculate the sampling matrix As as the following

As = Jp+1,pq
∗ +

∆

2
[(2A− Jp+1,p)D

∗ + Jp+1,p]P
∗, (4.42)

where Ji,j is a i × j matrix with all ones and P ∗ is a p × p permutation of the identity

matrix.

6. If the parameters are not defined in the hypercube [0, 1]p and instead q ∈ [`bi, ubi] for

i = 1, . . . , p, take `b = [`b1, `b2, . . . ..., `bp] and ub = [ub1, ub2, . . . , ubp]. The sampling

matrix is then scaled to match the range of parameters

C = Jp+1,1`b+As(D(ub− `b)) (4.43)

where D(ub− `b) is a diagonal matrix with entries ub− `b.

7. Compute the elementary effect for s = 1, . . . , p. We let Ck denote the kth row of C. Then

ds =
f(Ci)− f(Cj)

∆
, (4.44)

where i and j denote the indices such that ith row and jth row differ in the sth entry.
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8. Repeat the steps 1− 7 for r samples. The Morris mean µ∗ and σ2 are computed by taking

the average of the local elementary effect

µ∗ =
1

r

r∑
k=1

|dks |

σ2 =
1

r − 1

r∑
k=1

(drs − µ)2 , where µ =
1

r

r∑
k=1

dks .

(4.45)

We note that the denominator of (4.44) in Step 7 is ∆ for all qi, i = 1, . . . , p. The elementary

effects must be computed using the scaled step size, even though model responses are computed

at the parameter values, which are mapped using (4.43).

4.3.3.2 Morris Indices Results

We use ` = 20, r = 50 and the default step size ∆ = `/2(`−1). We plot the elementary effects µ∗

and σ2 in Figure 4.8 to visualize those parameters that are more influential. The most influential

parameter is again NT followed by pT and ε2. The results also coincide with those from Partial

Correlation and Sobol for the least influential parameters, which are T ∗1 (0) and T1(0). The

parameter aE , which is one of the least influential parameters in Partial Correlation and Sobol

after T ∗1 (0) and T1(0), is still ranked low. One difference with Morris screening, however, is that

all three initial conditions are identified as three least influential parameters.

4.3.4 Parameter Subset Selection

Finally, we discuss the parameter subset selection method presented in [6, 7, 9, 20]. This method

can be used to determine a subset of np parameters, np ≤ p, that are identifiable with the smallest

uncertainty measure. The subset selection algorithm uses the optimal parameter estimates as

well as standard errors associated with the parameters in the estimation process. We consider a

ratio of standard errors and parameter estimates to rank the set of parameters that are most

influential for a given np. The parameter subset selection can be used as a parameter selection

technique since identifiable parameters are influential, and the np parameters isolated in this

algorithm correspond to the np most influential parameters.

For a vector of parameters q = [q1, . . . , qp], we first require the optimal parameter estimates

of q, denoted by q̂ = [q̂1, . . . , q̂p], and the corresponding standard errors, SE = [SE1, . . . , SEp].

Then, given the parameter vector q of size p and a number np ≤ p, the subset selection algorithm

returns a set of parameters of size np that minimizes the selection score,

α(q̂) = |ν(q̂)| . (4.46)
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Figure 4.8 Morris µ∗ and σ computed using the Morris screening algorithm.

Here, ν(q̂) = [ν(q̂1), . . . , ν(q̂np)]
T , and ν(q̂i) is the coefficient of variation for q̂i defined by

ν(q̂i) =
SEi
q̂i

, i = 1, . . . , np. (4.47)

The set of parameters with the smallest selection score gives np most influential parameters.

4.3.4.1 Optimal Parameter Estimates

This technique utilizes time-dependent responses. Following the strategy in [6], we employ the

responses

z1 = T1 + T ∗1 + T2 + T ∗2

z2 = VI + VNI ,
(4.48)

which are the total CD4+ T-cells and the total RNA copies, respectively. We assume a statistical

model of the form
Y i

1 = z1(ti1; q0) + ei1, i = 1, 2, , . . . , N1

Y j
2 = z2(tj2; q0) + zγ2 e

j
2, j = 1, 2, . . . , N2,

(4.49)
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where yi1 and yj2 are realizations of the random variables Y i
1 and Y j

2 , respectively, and ei1 and

ej2 are independently identically distributed such that E[ei1] = E[ej2] = 0 with Var(ei1) = σ2
1

and Var(ej2) = σ2
2 for i = 1, . . . , N1, j = 1, . . . , N2. Also, q0 represents the hypothesized true

parameter values.

The weighted least squares estimator is given by

q̂ = arg min
q∈Q

 1

N1

N1∑
i=1

(yi1 − z1(ti1; q0))2

σ2
1

+
1

N2

N2∑
j=1

(yj2 − z2(tj2; q0))2

σ2
2z

2γ
2 (tj2; q0)

 (4.50)

where the variance components are given by

σ2
1(q0) =

1

N1 − dim(q0)

N1∑
i=1

(yi1 − z1(ti1; q0))2

σ2
2(q0) =

1

N2 − dim(q0)

N2∑
j=1

(yj2 − z2(tj2; q0))2

z2γ
2 (tj2; q0)

.

(4.51)

The value of γ is determined based on the underlying assumption for the statistical models (4.49).

More specifically, it was determined in [6, 10] that choosing γ = 1.2 results in the residuals being

approximately iid, which is an assumption for the model (4.49). For this reason, the parameter

estimation was performed with γ = 1.2.

Since the estimates in (4.50) and (4.51) involve an unknown, to-be-estimated parameter

vector q0, the optimal parameter is estimated iteratively with the initial variance σ2
k = 1 for

k = 1, 2 and the weights z2γ
2 (tj2; q0) = 1 for j = 1, . . . , N2. We summarize the parameter

estimation algorithm from [6].

Parameter Estimation Procedure Algorithm

1. Obtain initial estimate q̂(0) using (4.50) with σ2
k = 1 for k = 1, 2 and the weights

z2γ
2 (tj2; q0) = 1 for j = 1, . . . , N2.

2. Compute the variances σ2
k using (4.51), and the weights z2γ

2 (tj2; q0) with q0 replaced by

q̂(0).

3. Initialize the iteration counter ` with the value 1.

4. Do each of the following:

� Compute q̂(`) using (4.50) with current variances σ2
k and weights z2γ

2 (tj2; q̂(`−1)).

� Update the variances σ2
k using (4.51) and the weights z2γ

2 (tj2; q̂(`−1)) with q0, q̂(`−1)

replaced by q̂(`).
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� Compute ∆ε = ||[q̂(`) − q̂(`−1)]./[q̂(`−1)]||.

� Increment ` by 1.

5. If ∆ε > ε, go back to Step 4. Otherwise, terminate the algorithm.

In this algorithm, ε is a user-defined threshold tolerance for a termination criterion, and ./

denotes element-by-element division.

4.3.4.2 Computing Standard Errors

The parameter subset selection algorithm also requires the computation of standard errors

for the parameters. The standard errors are computed using standard asymptotic theory for

generalized least squares (GLS) estimators qnGLS following the procedure discussed in [6]. The

p× p Fisher Information Matrix (FIM) corresponding to z1 and z2 in (4.48) is approximated by

ΣN1+N2
0 ≈

[(
N1∑
i=1

1

σ2
1(q̂n)

∂z1(ti1; q̂n)

∂qk

∂z1(ti1; q̂n)

∂q`

+

N2∑
j=1

1

σ2
2(q̂n)z2γ

2 (tj2; q̂n)

∂z2(tj2; q̂n)

∂qk

∂z2(tj2; q̂n)

∂q`


k,`

 (4.52)

where σ2
1 and σ2

2 are defined in (4.51) with q0 approximated by q̂n.

To approximate q0, we first let z1 = T1 + T ∗1 + T2 + T ∗2 and z2 = VI + VNI . The sensitivities

are computed by solving the system of equations

d

dt

(
∂zm
∂q

)
=
∂gm
∂x

(
∂x

∂q

)
+
dgm
dq

, m = 1, 2. (4.53)

Here, x and q respectively denote the state variables and the parameters being estimated. Define

the 2× p matrices

Di
1(q0) =

 ∂z1
∂q1

(ti1; q0) . . . ∂z1
∂qp

(ti1; q0)

0 . . . 0

 for i = 1, . . . , N1

Di
2(q0) =

 0 . . . 0

∂z1
∂q1

(ti1; q0) . . . ∂z1
∂qp

(ti1; q0)

 for i = 1, . . . , N2.

(4.54)

and define the 2× 2 matrix

V0(t; q0) =

 σ2
1 0

0 σ2
2z

2γ
2 (t; q0)

 . (4.55)
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The matrices Di
1
T
V −1

0 (ti1)Di
1 and Dj

2

T
V −1

0 (tj2)Dj
2 respectively have entries

F 1,i
k,`(q0) = σ−2

1

∂z1

∂qk
(ti1; q0)

∂z1

∂q`
(ti1; q0), k, ` = 1, . . . , p, i = 1, . . . , N1

F 2,j
k,` (q0) = σ−2

2 z−2γ
2 (tj2; q0)

∂z2

∂qk
(tj2; q0)

∂z2

∂q`
(tj2; q0), k, ` = 1, . . . , p, i = 1, . . . , N2

(4.56)

Then, we define the p× p Fisher matrix F (q0) = Fk,`(q0) with entries

Fk,`(q0) =

N1∑
i=1

F 1,i
k,`(q0) +

N2∑
j=1

F 2,j
k,` (q0). (4.57)

The approximate Fisher matrix (4.52) is obtained by evaluating (4.57) at q̂n ≈ q0. Using the

Fisher matrix approximations, F , the standard errors for q̂nk , k = 1, . . . , p, are given by

SEk = SE(q̂nk ) =
√

(F−1(q̂n))k,k . (4.58)

It is illustrated in [59] that the standard errors are related to the variance of parameter

estimates so they quantify the uncertainty of each parameter. Parameters with small standard

errors are estimated with a high degree of certainty, so one can conclude that their impact on

the response is influential. On the other hand, parameters that are noninfluential have minimal

impact on responses, which yields more uncertainty and larger standard error when estimating

optimal parameter values.

4.3.4.3 Parameter Subset Selection Results

As presented in [6], we compile the parameters that give the smallest selection score for a

given number of parameters in the set, np, in Table 4.2. We note that these results are patient-

dependent and NT was not in the top three for the considered patient. For other patients, though

not shown here, NT is in the top 3. See [6] for more details on patient-dependent parameters.

For example, if we want a subset of three parameters that are most influential, we select

λT , ε2 and pT . In this way, the parameter subset selection algorithm selects a set of parameters

for a given value of np; however, it does not specify which parameter is the most influential

among the selected parameters. We see that the set for np = k is a subset for np = k + 1 for all

k, except k = 2. Unlike Partial Correlation, Sobol indices and Morris indices, Parameter Subset

Selection relies on a local sensitivity approach since the sensitivity matrices are computed around

the mean values. Nevertheless, we can use the parameter subset selection result to provide a

comparison regarding which parameters to include when we specify a number of parameters to

choose from the entire set.
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Table 4.2 Parameter subset selection results from [6].

np NT λT ε2 pT pE T2(0) T1(0) ε1 d1 bE2 aE aT k1 aA T ∗
1 (0)

1 x

2 x x

3 x x x

4 x x x x

5 x x x x x

6 x x x x x x

7 x x x x x x x

8 x x x x x x x x

9 x x x x x x x x x

10 x x x x x x x x x x

11 x x x x x x x x x x x

12 x x x x x x x x x x x x

13 x x x x x x x x x x x x x

14 x x x x x x x x x x x x x x

15 x x x x x x x x x x x x x x x

81



4.4 Comparison and Verification

In this section, we illustrate two techniques for verifying the accuracy of the parameter selection

techniques. We first verify the results provided by the global sensitivity techniques, which rank the

impact or influence of the inputs, and the parameter subset selection. We do this in Section 4.4.1

by comparing the input rankings provided by the four methods. In Section 4.4.2, we verify the

noninfluential inputs by comparing responses obtained with various input combinations.

4.4.1 Verification of Input Rankings

Here, we provide comparisons of the four methods. First, we summarize in Table 4.3 sensitivity

measures, a description and the computational cost of each method. The Sobol indices, Morris

indices and Partial Correlation indices are summarized in Table 4.4 in the order of importance.

For Partial Correlation, we rank the importance by the absolute values of the partial correlation.

For the Sobol indices, the parameters are ranked by the magnitude of ST i. For the Morris indices,

we consider the quantity
√
µ∗2 + σ2 to rank the parameters.

To provide a comparison among the four methods, we summarize in Tables 4.5, 4.6, 4.7

and 4.8, the parameters to be selected for a given number of parameters. Here, Pcorr, S, M and

PSS respectively denote Partial Correlation, Sobol indices via Saltelli algorithm, Morris indices

and Parameter Subset Selection. For Partial Correlation, Sobol indices and Morris indices, np

influential parameters correspond to the top np parameters from Table 4.4.

Overall, Partial Correlation is the cheapest method to measure linear correlation between

parameters and response. This often corresponds to the first order Sobol indices. Computing Sobol

indices is expensive and it becomes prohibitively slow as the number of input parameters increases.

For a model with a moderate number of input parameters, we can apply Morris screening.

This employs neighbors to compute statistically averaged local, very coarse approximations to

derivatives. Morris indices are a good measure to isolate influential parameters from noninfluential

parameters with much fewer evaluations than Sobol indices. Finally, the parameter subset

selection algorithm provides sensitivity in terms of uncertainties involved in the estimation

process. The noninfluential parameters determined by this method did not match the results

from the other three.

In terms of accuracy, Sobol indices measure the first- and second-order interaction effects

of parameters most accurately. However, we showed that second-order Sobol decomposition

may not be sufficiently accurate depending on the model. Even though the Sobol indices are

widely used for global sensitivity analysis, one must always consider the accuracy of Sobol

decomposition as an approximation to the model before applying the results of Sobol indices.

When the parameter selection techniques are applied to the HIV model, we found that
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Table 4.3 Summary of parameter selection techniques.

Method Sensitivity
Measure

Description Cost

Partial
Correla-
tion

Degree of linear
correlation be-
tween parameters
and response

Ranks the parameters in the or-
der of strong linear correlation to
response. Considers linearity only.

M model evalua-
tions for M Monte
Carlo samples.

Sobol by
Saltelli

First order Sobol
Si and total sensi-
tivity indices ST i

A type of variance-based method.
Uses 2nd order Sobol decom-
position. Ranks the parameters
and quantifies relative impor-
tance. Measures the effects of in-
dividual parameters as well as in-
teraction terms.

2M(p + 1) model
evaluations for M
Monte Carlo sam-
ples and p param-
eters.

Morris
Screening

Mean µ∗i and vari-
ance σ2 of elemen-
tary effects

Averages coarse local derivative
approximations. Only ranks pa-
rameters. Employs neighbors to
reduce the cost.

(p + 1)r model
evaluations for r
sample points for
averaging and p
parameters.

Parameter
Subset
Selection

np parameters
with minimum
uncertainty

Provides identifiable subset of np
parameters. Requires the optimal
parameter estimate q̂ and stan-
dard errors SE.

C(p, np) subsets
to check for min-
imum uncertainty
for subset of np pa-
rameters among p
parameters.
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Table 4.4 Sensitivity measures provided by Partial Correlation, Sobol by the Saltelli algorithm and
Morris Screening.

Partial Correlation Sobol by Saltelli Morris Indices

Rank q Corr(q, y) q Si ST i q
√
µ∗2 + σ2

1 NT 4.608e-1 NT 1.455e-1 2.134e-1 NT 1.390e+6

2 pT 3.964e-1 pT 1.046e-1 2.038e-1 pT 1.308e+6

3 k1 2.970e-1 k1 1.066e-1 1.335e-1 ε2 1.240e+6

4 d1 -2.630e-1 ε2 7.879e-3 1.329e-1 d1 1.096e+6

5 bE2 -2.526e-1 d1 6.276e-2 1.141e-1 k1 9.876e+5

6 aT 2.178e-1 aT 5.568e-2 9.541e-2 aT 9.824e+5

7 ε2 -2.167e-1 ε1 5.426e-2 7.849e-2 bE2 8.371e+5

8 aA 2.111e-1 bE2 8.948e-2 7.723e-2 ε1 8.161e+5

9 pE -1.789e-1 aA 3.727e-2 5.458e-2 aA 7.378e+5

10 λT 1.774e-1 pE 2.013e-2 5.384e-2 λT 6.971e+5

11 ε1 -1.601e-1 λT 4.682e-2 4.626e-2 pE 6.666e+5

12 T2(0) 1.487e-1 T2(0) -1.032e-2 4.266e-2 aE 5.662e+5

13 aE -9.089e-2 aE 1.057e-2 1.943e-2 T2(0) 5.180e+5

14 T ∗1 (0) -2.721e-2 T1(0) -3.974e-3 1.464e-2 T1(0) 4.084e+5

15 T1(0) 2.410e-2 T ∗1 (0) -8.715e-3 2.423e-3 T ∗1 (0) 9.285e+4
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Table 4.5 Subsets of influential parameters for np = 1, . . . , 4. Here, Pcorr, S, M and Pss denote Partial
Correlations, Sobol indices, Morris indices and Parameter Subset Selection.

1 2 3 4

Pcorr S M Pss Pcorr S M Pss Pcorr S M Pss Pcorr S M Pss

λT x x x

d1 x x

ε1

k1 x x x x

aT

ε2 x x x x x

NT x x x x x x x x x x x x x x x

bE2

aE

pE

aA

pT x x x x x x x x x x x

T1(0)

T ∗1 (0)

T2(0)
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Table 4.6 Subsets of influential parameters for np = 5, . . . , 8.

5 6 7 8

Pcorr S M Pss Pcorr S M Pss Pcorr S M Pss Pcorr S M Pss

λT x x x x

d1 x x x x x x x x x x x x

ε1 x x x x

k1 x x x x x x x x x x x x

aT x x x x x x x x x

ε2 x x x x x x x x x x x x x x

NT x x x x x x x x x x x x x x x x

bE2 x x x x x x x

aE

pE x x x x

aA x

pT x x x x x x x x x x x x x x x x

T1(0) x x

T ∗1 (0)

T2(0) x x x
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Table 4.7 Subsets of influential parameters for np = 9, . . . , 12.

9 10 11 12

Pcorr S M Pss Pcorr S M Pss Pcorr S M Pss Pcorr S M Pss

λT x x x x x x x x x x x x

d1 x x x x x x x x x x x x x x x x

ε1 x x x x x x x x x x x x x x

k1 x x x x x x x x x x x x

aT x x x x x x x x x x x x x

ε2 x x x x x x x x x x x x x x x x

NT x x x x x x x x x x x x x x x x

bE2 x x x x x x x x x x x x x x x

aE x x x

pE x x x x x x x x x x x x x

aA x x x x x x x x x x x x

pT x x x x x x x x x x x x x x x x

T1(0) x x x x

T ∗1 (0)

T2(0) x x x x x x
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Table 4.8 Subsets of influential parameters for np = 13, . . . , 14.

13 14

Pcorr S M Pss Pcorr S M Pss

λT x x x x x x x x

d1 x x x x x x x x

ε1 x x x x x x x x

k1 x x x x x x x x

aT x x x x x x x x

ε2 x x x x x x x x

NT x x x x x x x x

bE2 x x x x x x x x

aE x x x x x x x x

pE x x x x x x x x

aA x x x x x x x

pT x x x x x x x x

T1(0) x x x x

T ∗1 (0) x

T2(0) x x x x x x x x
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certain parameters are determined to be highly influential by all four methods. An example

of highly influential parameters are NT and pT . These parameters respectively represent the

number of RNA copies during the process of T ∗1 lysis and net proliferation of T1 and T1 due

to clonal expansion and programmed contraction. We also observed that both ε1 and ε2 were

ranked above average in their importance. This is essential in designing the optimal control

for drug therapy. We see from our global sensitivity analysis that the relative effectiveness of

protease inhibitor, ε2, has more affect on the model response than that of reverse transcriptase

inhibitor, ε1. On the other hand, for our specific response, it was shown that initial conditions

T1(0), T ∗1 (0) and T2(0) do not play a strong role in determining the response.

4.4.2 Verification of Noninfluential Inputs

To verify that the influential parameters are correctly identified, we compute the probability

density functions of model responses by fixing noninfluential parameters.

Verification Procedure

1. For a set of np influential parameters, sample n = 1000 parameter values from their

respective distributions. For the results reported here, we took the distributions to be

uniform with lower and upper bounds summarized in Table 4.1.

2. Fix p− np noninfluential parameters at pre-specified values, which we take to be the lower

bounds of the parameters.

3. Compute the model response with parameter values from Steps 1 and 2.

4. Construct probability density function using a kernel density estimation.

We then compare the densities for the model responses where all parameters are sampled

randomly. We construct densities for np = 8, 10, 12, 14 influential parameters. That is, we

examine four cases where the numbers of fixed parameters are 7, 5, 3 and 1, and plot the

densities along with the density obtained by varying all the parameters. In Figure 4.9 (a)

and (b), we see that we have fixed too many parameters. In Figure 4.9 (c), densities using

Partial Correlation, Sobol and Morris match the sample density, whereas the density from

parameter subset selection does not match the rest. This is reasonable since the influential

parameters determined via Partial Correlation, Sobol and Morris indices are very similar as

shown in Tables 4.5-4.8. Finally in Figure 4.9 (d), we see that all four methods give comparable

densities. The agreement of densities indicates that the parameter T ∗(0) was determined to be

noninfluential and it did not affect the output significantly.
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Figure 4.9 Densities obtained by fixing (a) 7, (b) 5, (c) 3 and (d) 1 least influential parameters. The
density in solid is obtained by varying all the parameters.
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Table 4.9 Sensitivity measures for y = q1 − q2.

Parameter Partial Correlation S ST µ∗ σ2

q1 0.690 0.498 0.516 1 0.980

q2 -0.700 0.481 0.498 1 1.020

In terms of parameter estimation to be followed after parameter selection, there are two

inherent difficulties. First, the cut-off between influential and noninfluential parameters is not

always clear. Depending on the model, one might observe a cluster of parameters with high

sensitivity measures and another cluster with lower sensitivity measures. For the HIV example,

it was only after we performed a verification test that we learned that fixing one parameter

resulted in insignificant variability of sample densities. This verification requires additional

model evaluations and there is not a simple way to check which parameters are influential just

by observing sensitivity measures.

Second, even if we are successful at isolating influential parameters, the parameter identifia-

bility issues may still remain. Consider a simple example

y = q1 − q2 (4.59)

with q1, q2 ∼ U(0, 1). As we can see from the sensitivity measures summarized in Table 4.9, q1

and q2 are equally influential. Suppose that we have the observation y = 0. It is easy to see

that parameter estimation using this observation will fail to estimate the densities of q1 and

q2 correctly since there are several values of q1 and q2 that match the observation. Therefore,

unless some prior knowledge is specified, q1 and q2 are unidentifiable.

This simple example illustrates that determining influential parameters may not eliminate

parameter identifiability issues completely. In this regard, the parameter subset selection al-

gorithm has the advantage that the selected subset is identifiable. Since Partial Correlation,

Sobol and Morris methods only determine influential parameters, care must be exercised if these

parameter selection techniques are used to isolate identifiable parameters for model calibration.
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4.5 Conclusion

In this chapter, we examined parameter selection techniques based on global sensitivity analysis

and compared the results to a local sensitivity-based method originally performed on the model

(1.1). Four parameter selection techniques were applied to the HIV model (1.1) to determine

the set of influential parameters. This process enables us to fix the noninfluential parameters

and hence reduce the parameter dimensions for subsequent uncertainty quantification. We

also showed that the accuracy of Sobol indices depends greatly on the model. In our HIV

model, the second-order decomposition was not sufficiently accurate to represent the response.

If one requires an insight into determining parameter identifiability issues, then the parameter

subset selection algorithm is recommended since it returns a set of identifiable parameters with

minimized uncertainty.

It is important to note that there are several alternate choices for the model response. Our

choice of the model response was motivated by the types of data that are available to us. However,

one must carefully examine the cases when different model responses are chosen. It is important

to remember that the parameters were determined influential in our analysis for our specific

choice of model response. One idea for future work is to examine global sensitivity analysis using

solely the T-cell counts as a response. Since the treatment attempts to increase the T-cell counts

in patients, it is reasonable to focus on the T-cell counts alone. Similarly, one could focus on

the viral loads VI + VNI in an attempt to keep the viral loads low. Another aspect of analysis

that we did not cover in this chapter is to consider model response as a function of time. Recall

that in our analysis we integrated the response in time to take into consideration of response at

several time steps. In reality, we see that the states T1, T
∗
1 , . . . , E2 can be mostly flat except for

some jumps. Considering time-dependent model response will enable us to incorporate jumps

that occur at certain times.

Finally, there are other methods of parameter selection that eliminate parameter identifiability

issues. In particular, Active Subspace Methods detailed in [5, 22] determine a subspace of input

parameter space which affects the response the most. This method does not isolate influential

parameters from noninfluential parameters and the interpretation of the results may be more

complicated. However, finding a linear combination of parameters that affects the response will

resolve the parameter identifiability issues. Moreover, responses can be approximated based on

the reduced parameter space, which is useful in subsequent model calibration and uncertainty

quantification. Examining active subspace methods more closely as a part of parameter selection

techniques will likely add more complete analysis on parameter selection techniques.
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Remark

M.T. Wentworth, R.C. Smith and H.T. Banks, “Parameter Selection and Verification Techniques

Based on Global Sensitivity Analysis Illustrated for an HIV Model,” submitted, 2015.
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Chapter 5

Active Subspace Methods

5.1 Introduction

To reduce the dimensions of input parameters, parameter selection techniques have been applied

to the model (1.1) in Chapter 4. Parameter selection is a subset selection method, in which a

subset of parameters that strongly influence the model response is identified. Such parameters

are termed influential, and identifying influential parameters allows us to fix noninfluential

parameters at nominal values without affecting the response.

In Chapter 4, we employed parameter selection techniques based on global sensitivity analysis

and a method based on standard errors. More specifically, we applied Partial Correlation [4], Sobol

indices [55, 60, 61], Morris indices [18, 46, 55, 59] and Parameter Subset Selection [6, 7, 9, 20].

The sensitivity indices were computed for the 15 parameters listed in (4.2). In this work, NT

and pT are identified influential with large sensitivity indices, indicating that the changes in

these parameters highly influence the changes in the model response. On the other hand, T ∗1 (0)

is ranked the least influential among the 15 parameters that were considered.

For the verification of these techniques, probability density functions were constructed by

computing 1000 model responses, in which highly influential parameters were sampled randomly

from their corresponding distributions and minimally influential parameters were fixed at nominal

values. In this verification, we found that we must keep most of the parameters to represent the

model response accurately. In fact, T ∗1 (0) was the only parameter whose value could be fixed for

the resulting density to match the response constructed using the full dimensions for all four

methods considered. For Partial Correlation, Sobol indices and Morris indices, three parameters

could be fixed without affecting the output.

Parameter selection techniques can sometimes be used to determine identifiable parameters,

which are the parameters that can be estimated from observations. However, when two parameters

are correlated, those two parameters may not be jointly identifiable even if they are both
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influential. As illustrated in Chapter 4, an example of a response with two correlated parameters

is given by

f(q) = q1 − q2 (5.1)

where q1, q2 ∼ U(0, 1). The two parameters q1 and q2 are equally influential, as Partial Correlation,

Sobol indices and Morris indices indicate, however in this example, the two parameters can not

be uniquely identified from an observation without further information.

5.1.1 Active Subspace Methods

As an alternative to parameter subset selection techniques, we examine parameter subspace

selection techniques to reduce the input parameter dimensions. Unlike parameter selection

methods, subspace selection methods identify a subspace of the input space that strongly affects

the model response. Such subspaces are often termed Active Subspaces, which was introduced

by Russi in [52]. Russi proposed a method called Active Subspace Method to construct active

subspaces using function gradients. Active subspace methods determine the directions of input

parameter space in which the model responses exhibit the greatest change. If the active subspace

aligns with coordinate axes, then the result is identical to parameter subset selection.

An active subspace method has been applied to an elliptic PDE model with a 100-parameter

model for the coefficients in [22]. Other applications of active subspace methods include design

optimization [19, 25], inverse analysis [23] and spatial sensitivity [24]. Additionally, an example

based on Morris’ experiments [46] is detailed in [1], and a radiation transport model employed

in nuclear reactor design calculations is detailed in [5].

In the simple example (5.1), the two parameters are equally influential; however, the model

response is most sensitive to the linear combination of the parameters in the form q1 − q2. As

illustrated in Figure 5.1, the active subspace is [1 , −1]T , which is the direction in which the

response vary the greatest. On the other hand, the model output is constant in the direction

[1 , 1]T .

To construct the active subspace for a nontrivial function, the authors of [22, 52] use

SVD decompositions of the gradient of functions. The theoretical foundation of gradient-based

dimension reduction techniques is detailed in [22]. In [5], the authors employ QR decompositions

for dimension reduction. In both cases, one uses the gradients of functions and determines the

directions of the greatest response change. The two methods are discussed in Section 5.3.

5.1.2 Chapter Organization

In Section 5.2, we discuss three ways to compute gradients that are required in active subspace

methods. First, the finite difference method is commonly used to compute gradient, but we show
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Figure 5.1 Illustration of f(q) = q1 − q2 with q1, q2 ∼ U(0, 1).

using our HIV example that the finite differences may not accurately approximate the gradient.

Secondly, we discuss the method of sensitivity equations, in which we explicitly derive sensitivity

equations of the ODE’s. The system of ODE’s, augmented with the sensitivity equations, is

then solved using an ODE solver. While this method does not have any assumptions, generating

sensitivity equations is time-consuming and is prone to errors. Thirdly, we employ automatic

differentiation, in which the gradient is computed using sensitivity equations in a automated

manner.

Once we obtain the gradients, we detail two active subspace method based on SVD in Section

5.3. One is based on the singular value decomposition detailed in [22] and the other is based on

the QR decomposition as detailed in [5]. The active subspace is constructed using the eigenvalue

decomposition of gradients. Once the active subspace is found, one can use interpolation to

construct a response surface.

In Section 5.4, we apply the active subspace methods to the HIV model (1.1). We show

sufficient summary plots that allow us to determine whether dimension reduction is possible.

We then perform a verification test to verify the accuracy of response surface that is constructed

using a subspace of input parameter space.
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Table 5.1 Nominal values of q0, at which the gradient is computed.

λT = 3.2669 d1 = 1.1199e-1 ε1 = 5.8346e-1 k1 = 5.4172e-1

aT = 2.3436e-4 ε2 = 7.0339e-1 NT = 7.1754e+1 bE2 = 4.3301e-1

aE = 1.5292e-3 pE = 9.0040e-1 aA = 8.4506e-5 pT = 5.5846

Table 5.2 The lower and upper bounds for the distributions qi ∼ U(ai, bi) for i = 1, . . . , 15.

λT d1 ε1 k1 aT ε2 NT bE2

ai 3.1 0.11 0.43 4.0e-5 2.0e-4 0.63 65 0.28

bi 3.5 0.15 0.6 5.5e-5 2.7e-4 0.78 85 0.45

aE pE aA pT T1(0) T ∗1 (0) T2(0)

ai 1.40e-3 0.85 6.5e-5 5 10.5 5.0e-4 720

bi 1.75e-3 1.3 9.0e-5 6.5 13.5 7.0e-4 950

5.2 Computing the Gradient

Before discussing active subspace methods, we discuss different methods to compute the gradient.

We compute the gradient via three different methods: finite difference, sensitivity equations, and

automatic differentiation. The gradient is computed using all three methods at a randomly chosen

set of parameter values, q0 given in Table 5.1, which are sampled uniformly with appropriate

lower and upper bound obtained from [6]. The values of lower and upper bounds are summarized

in Table 5.2.
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Table 5.3 Gradient via finite difference using different step sizes.

h λT d1 ε1 k1 aT ε2

1.00e-1 1.01e+6 -9.32e+5 -1.70e+5 7.72e+5 9.85e+5 -1.95e+5

1.00e-2 1.01e+6 -9.54e+5 -1.78e+5 7.89e+5 9.85e+5 -2.06e+5

1.00e-3 1.02e+6 -9.52e+5 -1.69e+5 7.91e+5 9.94e+5 -1.98e+5

1.00e-4 1.01e+6 -8.62e+5 -8.37e+4 7.73e+5 1.01e+6 -1.13e+5

1.00e-5 9.29e+5 -7.16e+5 -1.90e+5 1.02e+6 1.00e+6 -1.98e+5

1.00e-6 1.41e+6 2.01e+5 8.21e+5 3.04e+6 2.16e+6 3.49e+5

1.00e-7 1.92e+7 8.31e+6 1.25e+6 8.76e+6 1.70e+7 2.94e+6

1.00e-8 8.83e+7 1.02e+8 1.13e+8 4.89e+7 7.06e+7 6.39e+7

5.2.1 Finite Difference

We initially computed the gradient using the finite difference

∂f

∂qi
≈ f(q1, . . . , qi + hi, . . . , qp)− f(q1, . . . , qi, . . . , qp)

hi
(5.2)

for i = 1, . . . , p. To test the convergence, the finite difference is computed at different step sizes

h = [1e-1, . . ., 1e-8] for the parameters (4.2) without the initial conditions. The result for six

parameters is summarized in Table 5.3. The gradient seems to converge as the step size decreases

to 1e-3. However, for most parameters, the gradient then diverges when we further decrease the

step size. As an example, the result for λT with different step sizes is plotted in Figure 5.2.

5.2.2 Sensitivity Equations

Next, we compute the gradient using analytically-derived sensitivity equations. The sensitivity

equations are derived by taking the derivative of the model (1.1) with respect to each parameter.

For example, the sensitivity equations for λT are
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Figure 5.2 Gradient with respect to λT using different step sizes.

d

dt

∂T1

∂λT
= −d1

∂T1

∂λT
− (1− ξ1(t))k1

(
∂VI
∂λT

T1 + VI
∂T1

∂λT

)
− γT

∂T1

∂λT
+ pTDf (T2)

d

dt

∂T ∗1
∂λT

= (1− ξ1(t))k1

(
∂VI
∂λT 1

+ VI
∂T1

∂λT

)
− δ ∂T

∗
1

∂λT
−m

(
∂E1

∂λT
T ∗1 + E1

∂T ∗1
∂λT

)
− γT

∂T ∗1
∂λT

+ pTDf (T ∗2 )

d

dt

∂T2

∂λT
=

Ks

VI +Ks
− λTKs

(VI +Ks)2

∂VI
∂λT

− γT
∂T1

∂λT
− d2

∂T2

∂λT

− (1− fξ1(t))k2

(
∂VI
∂λT

T2 + VI
∂T2

∂λT

)
−Df (T2)

d

dt

∂T ∗2
∂λT

= γT
∂T ∗1
∂λT

+ (1− fξ1(t))k2

(
∂VI
∂λT

T2 + VI
∂T2

∂λT

)
− d2

∂T ∗2
∂λT

−Df (T ∗2 )

d

dt

∂VI
∂λT

= (1− ξ2(t))103δT ∗1 + (1− ξ2(t))103NT δ
∂T ∗1
∂λT

− c ∂VI
∂λT

− 103(1− ξ1(t))ρ1k1

(
∂T1

∂λT
VI + T1

∂VI
∂λT

)
− 103(1− fξ1(t))ρ2k2

(
∂T2

∂λT
VI + T2

∂VI
∂λT

)
d

dt

∂VNI
∂λT

= ξ2(t)103T ∗1 + ξ2103NT δ
∂T ∗1
∂λT

− c∂VNI
∂λT

d

dt

∂E1

∂λT
=

bE1

T ∗1 +Kb1

(
∂T ∗1
∂λT

E1 + T ∗1
∂E1

∂λT

)
− bE1

(T ∗1 +Kb1)2

(
∂T ∗1
∂λT

)
T ∗1E1

− dE
T ∗1 +Kd

(
∂T ∗1
∂λT

E1 +
∂E1

∂λT
T ∗1

)
+

dE
(T ∗1 +Kd)2

∂T ∗1
∂λT

T ∗1E1 − δE1
∂E1

∂λT

− γE
T1 + T ∗1 +Kγ

(
∂T1

∂λT
E1 + T1

∂E1

∂λT

)
+

γE
(T1 + T ∗1 +Kγ)2

(
∂T1

∂λT
+
∂T ∗1
∂λT

)
T1E1

− γE
T1 + T ∗1 +Kγ

(
∂T ∗1
∂λT

E1 + T ∗1
∂E1

∂λT

)
+

γE
(T1 + T ∗1 +Kγ)2
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∂T1

∂λT
+
∂T ∗1
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)
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+
pEaE
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∂E2

∂λT

)
− pEaE

(VI +KV )2

(
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)
VIE2
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− γE
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+
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+
γE

T1 + T ∗1 +Kγ
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∂λT
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)
− γE
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+
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(5.3)
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where

Df (T ) ≡ ∂

∂λT

[(
aTVI

VI +KV
+ aA

)
T

]
=

aT
VI +KV

(
∂VI
∂λT

T + VI
∂T

∂λT

)
− aTVIT

1

(VI +KV )2

∂VI
∂λT

+ aA
∂T

∂λT
.

The sensitivity equations (5.3) are then solved simultaneously with the original model (1.1)

using ode45 with the initial condition

Y0 = [T1(0), T ∗1 (0), T2(0), T ∗2 (0), VI(0), VNI(0), E1(0), E2(0), 0, 0, 0, 0, 0, 0, 0, 0]. (5.4)

The response is again taken as the sum of T1, T ∗1 , T2, T ∗2 , VI and VNI integrated in time; that is,

∂f

∂λT
=

∫ 1500

0

[
∂T1

∂λT
(t) +

∂T ∗1
∂λT

(t) +
∂T2

∂λT
(t) +

∂T ∗2
∂λT

(t) +
∂VI
∂λT

(t) +
∂VNI
∂λT

(t)

]
dt. (5.5)

5.2.3 Automatic Differentiation

Thirdly, we compute the automatic differentiation using Automatic Differentiation. This method

is based on the fact that all computer programs can be decomposed into a combination of

elementary arithmetic operations, which are additions, subtractions, multiplications and divisions,

along with the composition of the functions, and function evaluations, which are exponentials,

logarithms, cosines and sines. The derivatives are then computed by applying chain rules to

these operations. It is noted here that automatic differentiation should not be confused with

symbolic differentiation. Given the ODE system

dy

dt
= f(t, y(q); q), (5.6)

differentiation yields
d

dt

∂y

∂q
=
∂f

∂y

∂y

∂q
+
∂f

∂q
. (5.7)

Here, ∂f
∂y and ∂f

∂q are computed using AD while ∂y
∂q is obtained using ode15s since it is a stiff

system. The augmented system has states, sensitivities for parameters, and sensitivity for IC’s.

One can obtain the gradients by inputting a system of ODE dy
dt = f(t, y(q); q) without further

breaking it into pieces using the myAD package available at the Matlab Central.

5.2.4 Comparison of Gradient

We now compare the gradient obtained by the three methods. We use the result for h =1e-3 for

the finite difference. The derivatives at q0 with respect to 12 parameters from (4.2) without the
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Table 5.4 Derivatives at q0 obtained via finite differences (FD), sensitivity equations (SE) and auto-
matic differention (AD).

FD SE AD

λT 1.0169e+6 1.0086e+6 1.0360e+6

d1 -9.5177e+5 -9.5171e+6 -1.0538e+7

ε1 -1.6900e+5 -4.2746e+5 -2.3624e+5

k1 7.9136e+5 9.5006e+11 2.2509e+10

aT 9.9433e+5 5.6167e+9 4.9934e+9

ε2 -1.9811e+5 -5.5008e+5 -2.9964e+5

NT 1.7486e+6 3.4898e+4 3.5015e+4

bE2 -9.7448e+5 -2.3067e+6 -2.0806e+6

aE -4.8006e+5 -5.5569e+8 -5.1713e+8

pE -1.2164e+6 -1.0882e+6 -9.8223e+5

aA 6.9051e+5 1.1099e+10 1.3500e+10

pT 1.6110e+6 4.2887e+5 4.3642e+5

initial conditions are summarized in Table 5.4.

We see that the values obtained by solving the sensitivity equations and automatic differen-

tiation compare well, whereas the gradient via finite difference yields different values for certain

parameters. This indicates the limitation of finite difference. Since we verified that automatic

differentiation is accurate based on the comparison to the analytic sensitivity equations, we use

automatic differentiation for the computation of gradient in the subsequent analysis.

5.3 Active Subspace Methods

5.3.1 Active Subspace Using SVD

We first illustrate the construction of active subspaces based on the SVD decomposition. As

detailed in [22], for a function f with p continuous inputs, we first consider

f = f(q), q ∈ Q ⊂ Rp. (5.8)
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The gradient of f is denoted by

∇f(q) =

[
∂f

∂q1
. . .

∂f

∂qp

]T
(5.9)

and define the m×m matrix C

C = E[(∇f)(∇f)T ]. (5.10)

Here, C is the uncentered covariance of the gradient vector. The eigenvalue decomposition of C

is

C = WΛW T , Λ = diag(λ1, . . . , λp), λ1 ≥ . . . ≥ λp ≥ 0. (5.11)

The eigenvectors W define the domain of f . The eigenvalues and eigenvectors can be

partitioned such that

Λ =

 Λ1

Λ2

 , W = [W1 W2] (5.12)

where Λ1 = diag(λ1, . . . , λn) with n < p and W1 is p× n. The rotated coordinates y ∈ Rn and

z ∈ Rp−n are defined by

y = W T
1 q, z = W T

2 q. (5.13)

We are interested in finding the subspace Y ⊂ Rn with n ≤ p such that f(q) ≈ Ĝ(y) = Ĝ(W T
1 q)

for y = W T
1 q ∈ Y. Here, Ĝ is approximated using the Monte Carlo approximation

Ĝ(y) =
1

N

N∑
j=1

f(W1y +W2z
j). (5.14)

The choice of n is determined by inspecting the eigenvalues. Ideally, when λn+1 = . . . = λm = 0,

the choice is clear. In other cases, the eigenvalues often have a gap in their magnitude, and we

choose n so that λn − λn+1 is large. See [22] for more detail.

We employ the algorithm detailed in [22] to find the active subspaces. Here, we let q, y and

f denote the full dimensional parameter vector, reduced dimensional parameter vector, and

model response, respectively. We let the superscript denote the sample number, and let the

subscript denote the entry number. For example, qji indicates the ith entry of jth sample vector

qj ∈ Rp. We also use the notation qjn to indicate the jth sample of the parameter vector that is

constructed using n-dimensional active subspace.

Algorithm 1

1. Begin by choosing a set of N random points qj ∈ Rp for j = 1, . . . , N , where qji ∼ U(−1, 1)

for i = 1, . . . , p, and compute f j = f(qj) and ∇f j = ∇f(qj) for j = 1, . . . , N .
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2. Compute the SVD of the matrix

G =
1√
N

[∇f1 . . .∇fN ] = WΣV T (5.15)

and set Λ = Σ2.

3. Considering the decay of eigenvalues, partition W = [W1W2], where W1 ∈ Rp×n and

W2 ∈ Rp×(p−n) for n ≤ p.

4. Choose a set of P points yj such that yji ∼ U(−1, 1) for i = 1, . . . , n and construct the

full dimensional parameter vectors qjn = W1y
j for j = 1, . . . , P .

We note here that in Step 1, the input parameters qj are normalized so that qj ∈ [−1, 1]p.

When computing the responses f j = f(qj), the inputs are mapped to their appropriate ranges

using the values in Table 5.2. The normalization for qj is essential here to allow us to sample

yji ∼ U(−1, 1) for i = 1, . . . , n in Step 4.

5.3.2 Response Surface Representation

Once the active subspaces are identified, the input subspace is no longer physical. This requires

us to represent the response surface with a surrogate model with minimum cost and whose input

may be non-physical. In [22], a standard Kriging is employed to construct the response surface

with the active subspaces.

As detailed in [54, 59], the Kriging emulator is given by f̃(q, β) = gT (q)β + Z(q), where

gT (q)β and Z(q) respectively denote a deterministic trend function and a Gaussian process

error model. In ordinary Kriging, the trend function is constant so that gT (q)β = β0. In the

absence of measurement noise, Z is assumed to be a stationary random process with zero mean,

variance σ2 and nonzero covariance

cov[Z(qj1), Z(qj2)] = σ2R(qj1 , qj2) + σ2
0δ(q

j1 − qj2) (5.16)

where

δ(qj1 − qj2) =

 1, qj1 − qj2 = 0,

0, else.
(5.17)

The correlation function is given by

R(qj1 , qj2) = exp

(
−

p∑
i=1

θi|qj1i − q
j2
i |

γi

)
, 0 < γi ≤ 2, θi > 0. (5.18)
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Here, σ0 and σ are the unadjusted variance and variance of measurement noise, respectively.

Also, the hyperparameters θi and γi can be tuned to achieve varying degrees of correlation.

Based on [4, 22], we choose θi = 0.1 and γi = 2.

Using the set of data {qj , Ĝj}Pj=1, the Kriging prediction f̃(q, β0) for new values of q is given

by

f̃(q, β0) = β0 + rT (q)R−1[Ĝ− β01]. (5.19)

Here,

β0(θ, γ) = [1TR−11]−11TR−1Ĝ (5.20)

is the least squares estimate for β0, where 1 = [1, . . . , 1]T ∈ RP and R is an P × P correlation

matrix defined byRj1j2 = R(qj1 , qj2). Also, rj(q) = R(qj , q) for j = 1, . . . , P is a P×1 vector that

quantifies the Gaussian process correlations between values at which trained data is computed

and the new input.

For our HIV example, we are interested in the parameter selection aspect of active subspace

methods. We focus on finding active subspaces and verifying their accuracy in the next section.

5.4 Example and Verification

In this section, we apply the SVD-based active subspace method detailed in Section 5.3.1 to

the HIV model (1.1). We obtain 15 sample points for each parameter. Here, the parameters are

sampled from uniform distributions with appropriate lower and upper limits summarized in

Table 5.2. The response gradients are computed at these 15 points.

We then compute active subspaces using the SVD. The computed eigenvalues are summarized

in Table 5.5. We note that the order of magnitudes of eigenvalues is large, so to avoid numerical

error, we take the log transform of gradient before computing the SVD. The log transformed

eigenvalues are plotted in Figure 5.3. We see that the trends with and without log transform

are similar. Aside from the gap between the first two eigenvalues, there is no clear gap in

eigenvalues. From this, we expect that we may find a one dimensional active subspace. For an

active subspace with dimension larger than one, it would be difficult to find a cut-off for the

number of dimensions to include in the active subspace.

5.4.1 Sufficient Summary Plot

The purpose of sufficient summary plots is to visually inspect whether or not the function can

indeed be expressed as a function of low dimensional active variables. We produce sufficient

summary plots in two ways. First, we use the eigenvectors associated with the SVD of the

gradient, as computed in the previous section. The active variables are y = W1q, where W1 is
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Table 5.5 Eigenvalues computed using 15 samples.

Eigenvalues Eigenvalues of Log Transform

λ1 2.86e+21 5.94e+4

λ2 3.64e+19 6.16e+1

λ3 4.55e+18 1.65e+1

λ4 1.17e+16 4.48e+0

λ5 2.15e+12 2.05e+0

λ6 1.79e+12 3.28e-1

λ7 4.16e+11 1.77e-1

λ8 6.58e+10 1.04e-1

λ9 2.44e+10 5.81e-2

λ10 1.12e+10 4.99e-2

λ11 6.51e+9 2.91e-2

λ12 1.45e+9 1.79e-2

λ13 1.14e+8 7.19e-3

λ14 7.61e+6 1.35e-3

λ15 1.86e+5 3.11e-5
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Figure 5.3 Log eigenvalues computed using the SVD-based active subspace method.

the first column of W and q is the full dimensional parameter.

Secondly, we approximate the function by a global linear model, and use the coefficients

of gradient to represent the active subspace as detailed in [22]. To compute the coefficients of

gradients, we employ the model

f j = f(qj) ≈ c+ bT qj (5.21)

for j = 1, . . . , N , where N is the number of samples. The constant term c and the vector of

coefficients b are computed using least squares. The weight on parameters is given by

w = b/||b|| (5.22)

which is the normalized gradient of coefficients.

For this problem, the weight is computed using N = 150 samples yielding the result plotted

in Figure 5.4(a). The negative weights are plotted in red in the positive direction to compare

the magnitudes of weights. The active variable in this case is y = wT q. We note here that the

parameters with largest and smallest weights correspond to the influential and noninfluential

parameters identified by global sensitivity analysis. Here, NT and pT are the parameters with the

greatest weights, whereas T ∗1 (0) and T1(0) receive the smallest weights. The result is reasonable

since the global sensitivity analysis methods we considered in Chapter 4 incorporated linear and

quadratic effects of parameters. Since the global linear model linearizes the effect of parameters
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onto the model, we expect that influential parameters have larger weights than noninfluential

parameters. For example, influential parameters, as determined by Partial Correlation and the

Sobol decomposition are plotted in Figure 5.4(b) and (c).

We plot the function evaluations in terms of active variables in Figure 5.5. In Figure 5.5(a),

we employ f(wq), where w is the weight computed in (5.22). Similarly, in Figure 5.5(b), we

employ f(W1q), where W1 is the eigenvector corresponding to the largest eigenvalue from (5.12).

In both cases, q ∼ U(−1, 1) and we sample 100 points. We see that the model response as a

function of the active variance using weight is approximately univariate in Figure 5.5(a). This

indicates the possibility of approximating the response surface with one dimensional active

variable. As illustrated in the next section, however, this one dimensional representation is

only moderately accurate. On the other hand, in Figure 5.5(b), the function in terms of the

principal active variable is not nearly univariate, indicating that we will require more than one

dimensional active subspace to represent the input space.

5.4.2 Verification

To verify the accuracy of model responses computed using active subspaces based on the

eigenvectors from (5.11), we perform the following verification procedure.

1. Sample N = 1000 random points in the full dimensional space {qj}Nj=1 where qji ∼ U(−1, 1)

for i = 1, . . . , p.

2. For n = 1 : p

(a) Let Wn be the first n columns of W , where W comes from SVD in (5.12).

(b) Transform the reduced domain qj1:n into the full domain qjn ≡Wnq
j
1:n for j = 1, . . . , N .

(c) Compute the model response at f j(n) ≡ f(qjn) for j = 1, . . . , N .

(d) Using a kde, compute the probability density function of [f1(n), f2(n), . . . , fN (n)].

To verify the active subspace using the weights, we perform a similar procedure with n = 1,

where W in Step 2(a) is w from (5.22). In both cases, n represents the dimension of the active

subspace. In Figure 5.6, we plot the resulting densities for (a) n = 1, 5, 8, (b) n = 9, 10, 11 and

(c) n = 12, 13, 14 and compare them to the density using the full dimensional input space with

n = 15, as well as the weights in (5.22). In Figure 5.6(a), we see that the densities with n ≤ 8

have completely different shapes. We note that the active subspace using the weights is not

sufficiently accurate, but its performance is remarkable considering that its dimension is one. In

Figure 5.6(b) and (c), the densities for n ≥ 10 closely approximate the density with n = 15. For

n ≥ 12, the densities are almost identical, indicating that the input dimension was definitely

reduced to n = 12 using the active subspace.
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Figure 5.5 Sufficient summary plot produced using (a) the weights and (b) the first eigenvector.

A similar verification test performed in Chapter 4 indicated that one could reduce the input

dimension by three using the parameter selection based on the global sensitivity analysis. We

see here that by determining the parameter subspace using a linear combination of parameters,

we can further reduce the input parameter dimensions.

5.5 Conclusion

We first discussed the methods for computing the gradients. Finite differences are frequently

employed because of their ease of implementation. However, we observed that finite differences

may not approximate gradients accurately. Computing gradients using sensitivity equations and

automatic differentiation is more accurate. To avoid mistakes deriving sensitivity equations, we

used automatic differentiation for the computation of gradients in this chapter.

The sufficient summary plots indicated that the model response can be approximately

expressed in terms of one dimensional reduced input parameter subspace. The weights on

parameters for the global linear model were almost identical to the sensitivity indices obtained

using the global sensitivity analysis reported in Chapter 4. The density constructed using the

weights performed reasonably well considering that the number of dimensions is one. However,

comparison to the density using the full dimension indicated that one dimensional active subspace
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Figure 5.6 Probability density functions of model responses using (a) 2, 5, 8, (b) 9, 10, 11 and (c) 12,
13, 14, along with probability density functions using the full dimensional input space and the active
subspace based on weights.

based on the weights is not sufficiently accurate to represent the response.

The active subspace constructed using eigenvectors of the gradients successfully reduced the

input parameter dimension to n = 12. The active subspace with n ≥ 10 also did reasonably well.

The global sensitivity analysis indicated that 12 out of 15 parameters are influential, but the

active subspace methods reduced the number of dimensions more than the global sensitivity did

by finding a linear combination of parameters that has large impacts on the response.
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