
ABSTRACT

HOLODNAK, JOHN T. Topics in Randomized Algorithms for Numerical Linear Algebra.
(Under the direction of Ilse Ipsen.)

In this dissertation, we present results for three topics in randomized algorithms. Each topic

is related to random sampling.

We begin by studying a randomized algorithm for matrix multiplication that randomly

samples outer products. We show that if a set of deterministic conditions is satisfied, then the

algorithm can compute the exact product. In addition, we show probabilistic bounds on the

two norm relative error of the algorithm.

In the second part, we discuss the sensitivity of leverage scores to perturbations. Leverage

scores are scalar quantities that give a notion of importance to the rows of a matrix. They

are used as sampling probabilities in many randomized algorithms. We show bounds on the

difference between the leverage scores of a matrix and a perturbation of the matrix.

In the last part, we approximate functions over an active subspace of parameters. To identify

the active subspace, we apply an algorithm that relies on a random sampling scheme. We

show bounds on the accuracy of the active subspace identification algorithm and construct an

approximation to a function with 3556 parameters using a ten-dimensional active subspace.
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Chapter 1

Introduction

Computations on matrices are performed in a wide range of disciplines. For example, numerical

analysts may want to solve a system of linear equations or factor a matrix; statisticians may want

to compute a covariance matrix (via matrix multiplication) or perform principal component

analysis on a dataset; graph theorists may want to compute the eigenvalues and eigenvectors

of an adjacency matrix.

If the matrix on which these computations are performed is large (making the computa-

tions time consuming), then an approximation to the exact solution may be desirable. Recently,

randomized algorithms have been used to approximate the solution to matrix computations in-

cluding matrix multiplication [36, 86], least squares [43], the column subset selection problem

[15], the CUR decomposition [41], and the Nyström approximation [96]. Very broadly, ran-

domized algorithms for matrix computations seek to choose either a small number of columns

(rows) or linear combinations of columns (rows) and then perform the computation on the

smaller matrix. Random sampling algorithms choose columns (rows) according to some prob-

ability distribution while random projection algorithms choose linear combinations of columns

(rows) through multiplication by special matrices. For surveys of randomized algorithms in

general, see [57] or [78].

In this dissertation, we study three topics that either use or are directly related to random

sampling. In the following, we give brief overviews of each topic. More detailed introductions

to each topic appear at the beginning of each chapter.

In Chapter 2, we study an algorithm by Drineas, Kannan, and Mahoney [36] that approx-

imates the Gram matrix AAT by randomly sampling outer products. We show deterministic

conditions under which AAT can be computed exactly by the approximation algorithm. In par-

ticular, we show that for matrices with rank one, it is possible for the algorithm to compute the

exact product with just one sample. We also show tighter probabilistic bounds on the relative

error in the two-norm. The bounds are tighter than previous results, because they have smaller

1



constants and do not depend on the size of the matrix A. Experimentally, we investigate two

types of sampling probabilities and show that one, based on the columns norms of A, produces

smaller average errors for a variety of test matrices. Finally, we use our bounds on matrix mul-

tiplication to bound the smallest singular value of a matrix consisting of columns sampled from

a matrix with orthonormal rows.

Chapter 3 focuses on the sensitivity of leverage scores to perturbations. Leverage scores

are quantities associated with the rows of a matrix and are used as sampling probabilities in

randomized algorithms that approximate low rank factorizations [40], CUR decompositions [41],

the column subset selection problem [15], Nyström approximations [96], least squares problems

[38], and matrix completion [16]. We produce bounds on the relative difference between the

leverage scores of a matrix A and a perturbation A + ∆A, when the leverage scores are

computed by a QR decomposition. The bounds recognize that individual leverage scores are

sensitive to the condition number, the total mass of the perturbation, the perturbation to

specific rows, and the magnitude of the leverage score. Experiments show that the bounds

capture the qualitative behavior of the actual perturbation errors.

In Chapter 4, we examine an algorithm by Constantine, Dow, and Wang [28] that approxi-

mates functions depending on random parameters over an “active subspace” of their parameter

space. The construction of the active subspace involves a random sampling scheme that evalu-

ates the gradient of the function at points sampled randomly according to distribution of the

random parameters. We provide a tighter bound on the number of samples necessary to accu-

rately approximate the active subspace. In addition, we extend an existing test problem, which

defines a function with a one-dimensional active subspace, to create test problems that define

functions with active subspaces of any dimension. We describe three criteria for measuring the

error of functions constructed over active subspaces. Finally, for a ten-dimensional version of

our test problem, we find an approximation to the function and demonstrate, using our error

measures, that it approximates the original function with relative accuracy.

2



Chapter 2

Gram Matrix Approximation

2.1 Introduction

Given a real matrix A =

(
A1 . . . An

)
with n columns Aj , can one approximate the Gram

matrix AAT from just a few columns? We answer this question by presenting deterministic

conditions for the exact1 computation of AAT from a few columns, and probabilistic error

bounds for approximations.

Our motivation (Section 2.1.1) is followed by an overview of the results (Section 2.1.2),

and a literature survey (Section 2.1.3). Those not familiar with established notation can find a

review in Section 2.1.4.

2.1.1 Motivation

The objective is the analysis of a randomized algorithm for approximating AAT . Specifically,

it is a Monte Carlo algorithm for sampling outer products and represents a special case of the

ground breaking work on randomized matrix multiplication by Drineas, Kannan, and Mahoney

[35, 36].

The basic idea is to represent AAT as a sum of outer products of columns,

AAT = A1A
T
1 + · · ·+AnA

T
n .

The Monte Carlo algorithm [35, 36], when provided with a user-specified positive integer c,

samples c columns At1 , . . ., Atc according to probabilities pj , 1 ≤ j ≤ n, and then approximates

AAT by a weighted sum of c outer products

X = w1At1A
T
t1 + · · ·+ wcAtcA

T
tc .

1We assume infinite precision, and no round off errors.

3



The weights are set to wj = 1/(cptj ) so that X is an unbiased estimator, E[X] = AAT .

Intuitively, one would expect the algorithm to do well for matrices of low rank.

The intuition is based on the singular value decomposition. Given left singular vectors Uj

associated with the k ≡ rank(A) non-zero singular values σj of A, one can represent AAT as

a sum of k outer products,

AAT = σ2
1 U1U

T
1 + · · ·+ σ2

k UkU
T
k .

Hence for matrices A of low rank, a few left singular vectors and singular values suffice to

reproduce AAT exactly. Thus, if A has columns that “resemble” its left singular vectors, the

Monte Carlo algorithm should have a chance to perform well.

2.1.2 Contributions and Overview

We sketch the main contributions of this chapter. All proofs are relegated to Section 2.7.

Deterministic conditions for exact computation (Section 2.2)

To calibrate the potential of the Monte-Carlo algorithm [35, 36] and establish connections to

existing work in linear algebra, we first derive deterministic conditions that characterize when

AAT can be computed exactly from a few columns of A. Specifically:

• We present necessary and sufficient conditions (Theorem 2.2) for computing AAT exactly

from c ≥ rank(A) columns At1 , . . . , Atc of A,

AAT = w1At1A
T
t1 + · · ·+ wcAtcA

T
tc .

The conditions and weights wj depend on the right singular vector matrix V associated

with the non-zero singular values of A.

• For matrices with rank(A) = 1, this is always possible (Corollary 2.1).

• In the special case where c = rank(A) (Theorem 2.3), the weights are equal to inverse

leverage scores, wj = 1/∥VT etj∥22. However, they do not necessarily correspond to the

largest leverage scores.

Sampling probabilities for the Monte-Carlo algorithm (Section 2.3)

Given an approximation X from the Monte-Carlo algorithm [35, 36], we are interested in the

two-norm relative error due to randomization, ∥X−AAT ∥2/∥AAT ∥2. Numerical experiments

compare two types of sampling probabilities:

4



• “Optimal” probabilities poptj = ∥Aj∥22/∥A∥2F [36], and

• Leverage score probabilities plevj = ∥VT ej∥22/k [12, 14].

The experiments illustrate that sampling columns of X with the “optimal” probabilities pro-

duces a smaller error than sampling with leverage score probabilities. This was not obvious a

priori, because the “optimal” probabilities are designed to minimize the expected value of the

Frobenius norm absolute error, E[∥X−AAT ∥2F ]. Furthermore, corresponding probabilites poptj

and plevj can differ by orders of magnitude.

For matrices A of rank one though, we show (Theorem 2.4) that the probabilities are

identical, poptj = plevj for 1 ≤ j ≤ n, and that the Monte Carlo algorithm always produces the

exact result, X = AAT , when it samples with these probabilities.

Probabilistic bounds (Sections 2.4 and 2.5)

We present probabilistic bounds for ∥X − AAT ∥2/∥AAT ∥2 when the Monte-Carlo algorithm

samples with two types of sampling probabilities.

• Sampling with “nearly optimal” probabilities pβj ≥ β poptj , where β ≤ 1 (Theorems 2.5

and 2.6). We show that

∥X−AAT ∥2/∥AAT ∥2 ≤ ϵ with probability at least 1− δ,

provided the number of sampled columns is at least

c ≥ c0(ϵ)
ln(ρ(A)/δ)

βϵ2
sr(A), where 2 ≤ c0(ϵ) ≤ 2.7.

Here ρ(A) = rank(A) or ρ(A) = 4 sr(A), where sr(A) is the stable rank of A. The bound

containing rank(A) is tighter for matrices with rank(A) ≤ 4 sr(A).

Note that the amount of sampling depends on the rank or the stable rank, but not on

the dimensions of A. Numerical experiments (Section 2.4.4) illustrate that the bounds

are informative, even for stringent success probabilities and matrices of small dimension.

• Sampling with leverage score probabilities plevj (Theorem 2.7). The bound corroborates

the numerical experiments in Section 2.3.2, but is not as tight as the bounds for “nearly

optimal” probabilities, since it depends only on rank(A), and rank(A) ≥ sr(A).

Singular value bounds (Section 2.6)

Given a m × n matrix Q with orthonormal rows, QQT = Im, the Monte-Carlo algorithm

computes QS by sampling c ≥ m columns from Q with the “optimal” probabilities. The
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goal is to derive a positive lower bound for the smallest singular value σm(QS), as well as

an upper bound for the two-norm condition number with respect to left inversion κ(QS) ≡
σ1(QS)/σm(QS).

Surprisingly, Theorem 2.5 leads to bounds (Theorems 2.8 and 2.10) that are not always as

tight as the ones below. These bounds are based on a Chernoff inequality and represent a slight

improvement over existing results.

• Bound for the smallest singular value (Theorem 2.9). We show that

σm (QS) ≥
√
1− ϵ with probability at least 1− δ,

provided the number of sampled columns is at least

c ≥ c1(ϵ)m
ln(m/δ)

ϵ2
, where 1 ≤ c1(ϵ) ≤ 2.

• Condition number bound (Theorem 2.11). We show that

κ(QS) ≤
√
1 + ϵ√
1− ϵ

with probability at least 1− δ,

provided the number of sampled columns is at least

c ≥ c2(ϵ)m
ln(2m/δ)

ϵ2
, where 2 ≤ c2(ϵ) ≤ 2.6.

In addition, we derive corresponding bounds for uniform sampling with and without re-

placement (Theorems 2.9 and 2.11).

2.1.3 Literature Review

We review bounds for the relative error due to randomization of general Gram matrix ap-

proximations AAT , and also for the smallest singular value and condition number of sampled

matrices QS when Q has orthonormal rows.

In addition to [35, 36], several other randomized matrix multiplication algorithms have been

proposed [9, 25, 26, 73, 81, 86]. Sarlós’s algorithms [86] are based on matrix transformations.

Cohen and Lewis [25, 26] approximate large elements of a matrix product with a random walk

algorithm. The algorithm by Belabbas and Wolfe [9] is related to the Monte Carlo algorithm

[35, 36], but with different sampling methods and weights. A second algorithm by Drineas et

al. [36] relies on matrix sparsification, and a third algorithm [35] estimates each matrix element

independently. Pagh [81] targets sparse matrices, while Liberty [73] estimates the Gram matrix

6



Table 2.1: Frobenius-norm error due to randomization: Lower bounds on the number c of
sampled columns in X, so that ∥X−AAT ∥F /∥AAT ∥F ≤ ϵ with probability at least 1− δ. The
second column specifies the sampling strategy: “opt” for sampling with “optimal” probabilities,
and “u-wor” for uniform sampling without replacement. The last two bounds are special cases
of bounds for general matrix products AB.

Bound for # samples Sampling Reference

(1+
√

8 ln(1/δ))2

ϵ2
∥A∥4F

∥AAT ∥2F
opt [36, Theorem 2]

1
ϵ2δ

∥A∥4F
∥AAT ∥2F

opt [46, Lemma 1], [47, Lemma 2]

n2

(n−1)δϵ2

∑n
j=1 ∥Aj∥42
∥AAT ∥2F

u-wor [35, Lemma 7]

36n ln(1/δ)
ϵ2

∑n
j=1 ∥Ai∥42
∥AAT ∥2F

u-wor [13, Lemma 4.13], [50, Lemma 4.3]

AAT by iteratively removing “unimportant” columns from A.

Eriksson-Bique et al. [44] derive an importance sampling strategy that minimizes the vari-

ance of the inner products computed by the Monte Carlo method. Madrid, Guerra, and Rojas

[74] present experimental comparisons of different sampling strategies for specific classes of

matrices.

Excellent surveys of randomized matrix algorithms in general are given by Halko, Martins-

son, and Tropp [57], and by Mahoney [78].

Gram matrix approximations

We review existing bounds for the error due to randomization of the Monte Carlo algorithm

[35, 36] for approximating AAT , where A is a real m× n matrix. Relative error bounds ∥X−
AAT ∥/∥AAT ∥ in the Frobenius norm and the two-norm are summarized in Tables 2.1 and 2.2.

Table 2.1 shows probabilistic lower bounds for the number of sampled columns so that the

Frobenius norm relative error
∥∥X−AAT

∥∥
F
/
∥∥AAT

∥∥
F
≤ ϵ. Not listed is a bound for uniform

sampling without replacement [71, Corollary 1], because it cannot easily be converted to the

format of the other bounds, and a bound for a greedy sampling strategy [9, p. 5].

Table 2.2 shows probabilistic lower bounds for the number of sampled columns so that the

two-norm relative error
∥∥X−AAT

∥∥
2
/
∥∥AAT

∥∥
2
≤ ϵ. These bounds imply, roughly, that the

number of sampled columns should be at least Ω(sr(A) ln(sr(A)) or Ω(sr(A) ln(m)).
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Table 2.2: Two-norm error due to randomization, for sampling with “optimal” probabilities:
Lower bounds on the number c of sampled columns in X, so that ∥X −AAT ∥2/∥AAT ∥2 ≤ ϵ
with probability at least 1−δ for all bounds but the first. The first bound contains an unspecified
constant C and holds with probability at least 1− 2 exp(C̃/δ), where C̃ is another unspecified
constant (our ϵ corresponds to ϵ2/2 in [84, Theorem 1.1]). The penultimate bound is a special
case of a bound for general matrix products AB, while the last bound applies only to matrices
with orthonormal rows.

Bound for # samples Reference

C sr(A)
ϵ2δ

ln(sr(A)/(ϵ2δ)) [84, Theorems 1.1 and 3.1, and their proofs]

4sr(A)
ϵ2

ln(2m/δ) [76, Theorem 17], [75, Theorem 20]

96sr(A)
ϵ2

ln
(
96sr(A)

ϵ2
√
δ

)
[43, Theorem 4]

20sr(A)
ϵ2

ln(16sr(A)/δ) [77, Theorem 3.1], [103, Theorem 2.1]

21(1+sr(A))
4ϵ2

ln(4sr(A)/δ) [65, Example 4.3]

8m
ϵ2

ln(m/δ) [89, Theorem 3.9]

Table 2.3: Smallest singular value of a matrix QS whose columns are sampled from a m × n
matrix Q with orthonormal rows: Lower bounds on the number c of sampled columns, so that
σm(QS) ≥

√
1− ϵ with probability at least 1 − δ. The second column specifies the sampling

strategy: “opt” for sampling with “optimal” probabilities, “u-wr” for uniform sampling with
replacement, and “u-wor” for uniform sampling without replacement.

Bound for # samples Sampling Reference

6nµ
ϵ2

ln(m/δ) u-wor [13, Lemma 4.3]

4m
ϵ2

ln(2m/δ) opt [11, Lemma 13]

3nµ
ϵ2

ln(m/δ) u-wr, u-wor [66, Corollary 4.2]

8nµ
3ϵ2

ln(m/δ) u-wr [13, Lemma 4.4]

2nµ
ϵ2

ln(m/δ) u-wor [49, Lemma 1]
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Singular value bounds

We review existing bounds for the smallest singular value of a sampled matrix QS, where Q is

m× n with orthonormal rows.

Table 2.3 shows probabilistic lower bounds for the number of sampled columns so that the

smallest singular value σm(QS) ≥
√
1− ϵ. All bounds but one contain the coherence µ. Not

listed is a bound [43, Lemma 4] that requires specific choices of ϵ, δ, and µ.

Condition number bounds

We are aware of only two existing bounds for the two-norm condition number κ(QS) of a matrix

QS whose columns are sampled from a m×n matrix Q with orthonormal rows. The first bound

[2, Theorem 3.2] lacks explicit constants, while the second one [66, Corollary 4.2] applies to

uniform sampling with and without replacement. It ensures κ(QS) ≤
√
1+ϵ√
1−ϵ

with probability at

least 1− δ, provided the number of sampled columns in QS is at least c ≥ 3 nµ ln(2m/δ)/ϵ2.

Relation to subset selection

The Monte Carlo algorithm selects outer products from AAT , which is equivalent to selecting

columns from A, hence it can be viewed as a form of randomized column subset selection.

The traditional deterministic subset selection methods select exactly the required number

of columns, by means of rank-revealing QR decompositions or SVDs [18, 51, 52, 56, 63]. In

contrast, more recent methods are motivated by applications to graph sparsification [7, 6, 89].

They oversample columns from a matrix Q with orthonormal rows, by relying on a barrier

sampling strategy2. The accuracy of the selected columns QS is determined by bounding the

reconstruction error, which views (QS) (QS)T as an approximation to QQT = I [7, Theorem

3.1], [6, Theorem 3.1], [89, Theorem 3.2].

Boutsidis [11] extends this work to general Gram matrices AAT . Following [52], he selects

columns from the right singular vector matrix VT of A, and applies barrier sampling simulta-

neously to the dominant and subdominant subspaces of VT .

In terms of randomized algorithms for subset selection, the two-stage algorithm by Boutsidis

et al. [14] samples columns in the first stage, and performs a deterministic subset selection on

the sampled columns in the second stage. Other approaches include volume sampling [46, 47],

and CUR decompositions [42].

2The name comes about as follows: Adding a column q to QS amounts to a rank-one update qqT for the
Gram matrix (QS) (QS)T . The eigenvalues of this matrix, due to interlacing, form “barriers” for the eigenvalues
of the updated matrix (QS) (QS)T + qqT .
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Leverage scores

In the late seventies, statisticians introduced leverage scores for outlier detection in regression

problems [23, 60, 100]. More recently, Drineas, Mahoney et al. have pioneered the use of leverage

scores for importance sampling in randomized algorithms, such as CUR decompositions [42],

least squares problems [39], and column subset selection [14], see also the perspectives on

statistical leverage [78, §6]. Fast approximation algorithms are being designed to make the

computation of leverage scores more affordable [37, 72, 75].

2.1.4 Notation

All matrices are real. Matrices that can have more than one column are indicated in bold face,

and column vectors and scalars in italics. The columns of the m× n matrix A are denoted by

A =

(
A1 · · · An

)
. The n × n identity matrix is In ≡

(
e1 · · · en

)
, whose columns are

the canonical vectors ej .

The thin Singular Value Decomposition (SVD) of a m × n matrix A with rank(A) = k is

A = UΣVT , where the m × k matrix U and the n × k matrix V have orthonormal columns,

UTU = Ik = VTV, and the k×k diagonal matrix of singular values is Σ = diag

(
σ1 . . . σk

)
,

with σ1 ≥ · · · ≥ σk > 0. The Moore-Penrose inverse of A is A† ≡ VΣ−1UT . The unique

symmetric positive semi-definite square root of a symmetric positive semi-definite matrix W is

denoted by W1/2.

The norms in this chapter are the two-norm ∥A∥2 ≡ σ1, and the Frobenius norm

∥A∥F ≡

√√√√ n∑
j=1

∥Aj∥22 =
√

σ2
1 + · · ·+ σ2

k.

The stable rank of a non-zero matrix A is sr(A) ≡ ∥A∥2F /∥A∥22, where 1 ≤ sr(A) ≤ rank(A).

Given a m × n matrix Q =

(
Q1 · · · Qn

)
with orthonormal rows, QQT = Im, the two-

norm condition number with regard to left inversion is κ(Q) ≡ σ1(Q)/σm(Q); the leverage

scores [39, 42, 78] are the squared columns norms ∥Qj∥22, 1 ≤ j ≤ m; and the coherence [2, 17]

is the largest leverage score,

µ ≡ max
1≤j≤m

∥Qj∥22.

The expected value of a scalar or a matrix-valued random random variable X is E[X]; and

the probability of an event X is P[X ].
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2.2 Deterministic conditions for exact computation

To gauge the potential of the Monte Carlo algorithm, and to establish a connection to existing

work in linear algebra, we first consider the best case: The exact computation of AAT from

a few columns. That is: Given c not necessarily distinct columns At1 , . . . , Atc , under which

conditions is w1At1A
T
t1 + · · ·+ wcAtcA

T
tc = AAT ?

Since a column can be selected more than once, and therefore the selected columns may not

form a submatrix of A, we express the c selected columns as AS, where S is a n× c sampling

matrix with

S =

(
et1 . . . etc

)
, 1 ≤ t1 ≤ . . . ≤ tc ≤ n.

Then one can write

w1At1A
T
t1 + · · ·+ wcAtcA

T
tc = (AS)W(AS)T ,

where W = diag

(
w1 · · · wc

)
is diagonal weighting matrix. We answer two questions in this

section:

1. Given a set of c columns AS of A, when is AAT = (AS)W (AS)T without any con-

straints on W? The answer is an expression for a matrix W with minimal Frobenius

norm (Section 2.2.1).

2. Given a set of c columns AS of A, what are necessary and sufficient conditions under

which (AS)W(AS)T = AAT for a diagonal matrix W? The answer depends on the right

singular vector matrix of A (Section 2.2.2).

2.2.1 Optimal approximation (no constraints on W)

For a given set of c columns AS of A, we determine a matrix W of minimal Frobenius norm

that minimizes the absolute error of (AS)W(AS)T in the Frobenius norm.

The following is a special case of [45, Theorem 2.1], without any constraints on the number of

columns in AS. The idea is to represent AS in terms of the thin SVD of A as AS = UΣ(VTS).

Theorem 2.1. Given c columns AS of A, not necessarily distinct, the unique solution of

min
W

∥AAT − (AS)W(AS)T ∥F

with minimal Frobenius norm is Wopt = (AS)† AAT ((AS)†)T .

If, in addition, rank(AS) = rank(A), then

(AS)Wopt(AS)T = AAT and Wopt = (VTS)†((VTS)†)T .
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If also c = rank(AS) = rank(A), then

(AS)Wopt(AS)T = AAT and Wopt = (VTS)−1(VTS)−T .

Proof. See Section 2.7.1.

Theorem 2.1 implies that if AS has maximal rank, then the solution Wopt of minimal

Frobenius norm depends only on the right singular vector matrix of A and in particular only

on those columns VTS that correspond to the columns in AS.

2.2.2 Exact computation with outer products (diagonal W)

We present necessary and sufficient conditions under which (AS)W(AS)T = AAT for a non-

negative diagonal matrix W, that is w1At1A
T
t1 + · · ·+ wcAtcA

T
tc = AAT .

Theorem 2.2. Let A be a m× n matrix, and let c ≥ k ≡ rank(A). Then

c∑
j=1

wj AtjA
T
tj = AAT

for weights wj ≥ 0, if and only if the c×k matrix VT

(
√
w1 et1 · · · √

wc etc

)
has orthonormal

rows.

Proof. See Section 2.7.2.

Remark 2.1 (Comparison with barrier sampling method). Our results differ from those in

[7, 6, 89] in that we present conditions for A and the weights for exact computation of AAT ,

while [7, 6, 89] present an algorithm that can produce an arbitrarily good approximation for any

matrix A.

If A has rank one, then any c non-zero columns of A will do for representing AAT , and

explicit expressions for the weights can be derived.

Corollary 2.1. If rank(A) = 1 then for any c columns Atj ̸= 0,

c∑
j=1

wj AtjA
T
tj = AAT where wj =

1

c ∥VT etj∥22
=

∥A∥2F
∥Atj∥22

, 1 ≤ j ≤ c.

Proof. See Section 2.7.3.

Hence, in the special case of rank-one matrices, the weights are inverse leverage scores of

VT as well as inverse normalized column norms of A. Furthermore, in the special case c = 1,
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Corollary 2.1 implies that any non-zero column of A can be chosen. In particular, choosing the

column Al of largest norm yields a weight w1 = 1/∥VT el∥22 of minimal value, where ∥VT el∥22 is

the coherence of VT .

In the following, we look at Theorem 2.2 in more detail, and distinguish the two cases when

the number of selected columns is greater than rank(A), and when it is equal to rank(A).

Number of selected columns greater than rank(A)

We illustrate the conditions of Theorem 2.2 when c > rank(A). In this case, indices do not

necessarily have to be distinct, and a column can occur repeatedly.

Example 2.1. Let

VT =

1 0 0 0

0 1 0 0


so that rank(A) = 2. Also let c = 3, and select the first column twice, t1 = t2 = 1 and t3 = 2,

so that

VT

(
e1 e1 e2

)
=

1 1 0

0 0 1

 .

The weights w1 = w2 = 1/2 and w3 = 1 give a matrix

VT

(
2−1/2e1 2−1/2e1 e2

)
=

2−1/2 2−1/2 0

0 0 1


with orthonormal rows. Thus, an exact representation does not require distinct indices.

However, although the above weights yield an exact representation, the corresponding weight

matrix does not have minimal Frobenius norm.

Remark 2.2 (Connection to Theorem 2.1). If c > k ≡ rank(A) in Theorem 2.2, then no

diagonal weight matrix W = diag

(
w1 · · · wc

)
can be a minimal norm solution Wopt in

Theorem 2.1.

To see this, note that for c > k, the columns At1 , . . . , Atc are linearly dependent. Hence

the c × c minimal Frobenius norm solution Wopt has rank equal to k < c. If Wopt were to be

diagonal, it could have only k non-zero diagonal elements, hence the number of outer products

would be k < c, a contradiction.
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To illustrate this, let

VT =
1√
2

1 0 1 0

0 1 0 1


so that rank(A) = 2. Also, let c = 3, and select columns t1 = 1, t2 = 2 and t3 = 3, so that

VTS ≡ VT

(
e1 e2 e3

)
=

1√
2

1 0 1

0 1 0

 .

Theorem 2.1 implies that the solution with minimal Frobenius norm is

Wopt = (VTS)†((VST )†) =


1/2 0 1/2

0 2 0

1/2 0 1/2

 ,

which is not diagonal.

However W = diag

(
1 2 1

)
is also a solution since VTSW1/2 has orthonormal rows.

But W does not have minimal Frobenius norm since ∥W∥2F = 6, while ∥Wopt∥2F = 5.

Number of selected columns equal to rank(A)

If c = rank(A), then no column of A can be selected more than once, hence the selected columns

form a submatrix of A. In this case Theorem 2.2 can be strengthened: As for the rank-one case

in Corollary 2.1, an explicit expression for the weights in terms of leverage scores can be derived.

Theorem 2.3. Let A be a m × n matrix with k ≡ rank(A). In addition to the conclusions of

Theorem 2.2 the following also holds: If

VT

(
√
w1et1 · · · √

wketk

)
has orthonormal rows, then it is an orthogonal matrix, and wj = 1/∥VT etj∥22, 1 ≤ j ≤ k.

Proof. See Section 2.7.4.

Note that the columns selected fromVT do not necessarily correspond to the largest leverage

scores. The following example illustrates that the conditions in Theorem 2.3 are non-trivial.
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Example 2.2. In Theorem 2.3 it is not always possible to find k columns from VT that yield

an orthogonal matrix.

For instance, let

VT =

 1/2 1/2 1/2 1/2

−1/
√
14 −2/

√
14 3/

√
14 0

 ,

and c = rank(V) = 2. Since no two columns of VT are orthogonal, no two columns can be

scaled to be orthonormal. Thus no 2× 2 matrix submatrix of VT can give rise to an orthogonal

matrix.

However, for c = 3 it is possible to construct a 2×3 matrix with orthonormal rows. Selecting

columns t1 = 1, t2 = 2 and t3 = 3 from VT , and weights w1 =
√

5/2, w2 =
√

2/5 and

w3 =
√

11/10 yields a matrix

VT

(√
5
2e1

√
2
5e2

√
11
10e3

)
=


√

5
8

√
1
10

√
11
40

−
√

5
28 −

√
4
35

√
99
140


that has orthonormal rows.

Remark 2.3 (Connection to Theorem 2.1). In Theorem 2.3 the condition c = k implies that

the k × k matrix

VT

(
et1 . . . etk

)
= VTS

is non-singular. From Theorem 2.1 follows that Wopt = (VTS)−1(VTS)−T is the unique mini-

mal Frobenius norm solution for AAT = (AS)W(AS)T .

If, in addition, the rows of VTSW
1/2
opt are orthonormal, then the minimal norm solution

Wopt is a diagonal matrix,

Wopt = (VTS)−1(VTS)−T = diag

(
1

∥VT et1∥
2
2

· · · 1
∥VT etk∥

2
2

)
.

2.3 Monte Carlo algorithm for Gram Matrix Approximation

We review the randomized algorithm to approximate the Gram matrix (Section 2.3.1); and

discuss and compare two different types of sampling probabilities (Section 2.3.2).

2.3.1 The algorithm

The randomized algorithm for approximating AAT , presented as Algorithm 1, is a special

case of the BasicMatrixMultiplication Algorithm [36, Figure 2] which samples according to the
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Exactly(c) algorithm [43, Algorithm 3], that is, independently and with replacement. This means

a column can be sampled more than once.

A conceptual version of the randomized algorithm is presented as Algorithm 1. Given a

user-specified number of samples c, and a set of probabilities pj , this version assembles columns

of the sampling matrix S, then applies S to A, and finally computes the product

X = (AS) (AS)T =

c∑
j=1

1

cptj
AtjA

T
tj .

The choice of weights 1/(cptj ) makes X an unbiased estimator, E[X] = AAT [36, Lemma 3].

Algorithm 1 Conceptual version of randomized matrix multiplication [36, 43]

Input: m× n matrix A, number of samples 1 ≤ c ≤ n
Probabilities pj , 1 ≤ j ≤ n, with pj ≥ 0 and

∑n
j=1 pj = 1

Output: Approximation X = (AS) (AS)T where S is n× c with E[SST ] = In

S = 0n×c

for j = 1 : c do
Sample tj from {1, . . . , n} with probability ptj
independently and with replacement
Sj = etj/

√
cptj

end for
X = (AS) (AS)T

Discounting the cost of sampling, Algorithm 1 requires O(m2c) flops to compute an approx-

imation to AAT . Note that Algorithm 1 allows zero probabilities. Since an index corresponding

to pj = 0 can never be selected, division by zero does not occur in the computation of S.

Implementations of sampling with replacement are discussed in [44, Section 2.1]. For matrices

of small dimension, one can simply use the Matlab function randsample.

2.3.2 Sampling probabilities

We consider two types of probabilities, the “optimal” probabilities from [36] (Section 2.3.2), and

leverage score probabilities (Section 2.3.2) motivated by Corollary 2.1 and Theorem 2.3, and

their use in other randomized algorithms [14, 39, 42]. We show (Theorem 2.4) that for rank-one

matrices, Algorithm 1 with “optimal” probabilities produces the exact result with a single sam-

ple. Numerical experiments (Section 2.3.2) illustrate that sampling with “optimal” probabilities
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results in smaller two-norm relative errors than sampling with leverage score probabilities, and

that the two types of probabilities can differ significantly.

“Optimal” probabilities [36]

They are defined by

poptj =
∥Aj∥22
∥A∥2F

, 1 ≤ j ≤ n (2.1)

and are called “optimal” because they minimize E
[∥∥X−AAT

∥∥2
F

]
[36, Lemma 4]. The “opti-

mal” probabilities can be computed in O(mn) flops.

The analyses in [36, Section 4.4] apply to the more general “nearly optimal” probabilities

pβj , which satisfy
∑n

j=1 p
β
j = 1 and are constrained by

pβj ≥ β poptj , 1 ≤ j ≤ n, (2.2)

where 0 < β ≤ 1 is a scalar. In the special case β = 1, they revert to the optimal probabilites,

pβj = poptj , 1 ≤ j ≤ n. Hence β can be viewed as the deviation of the probabilities pβj from the

“optimal” probabilities poptj .

Leverage score probabilities [12, 14]

The exact representation in Theorem 2.3 suggests probabilities based on the leverage scores of

VT ,

plevj =

∥∥VT ej
∥∥2
2

∥V∥2F
=

∥VT ej∥22
k

, 1 ≤ j ≤ n, (2.3)

where k = rank(A).

Since the leverage score probabilities are proportional to the squared column norms of

VT , they are the “optimal” probabilities for approximating VTV = Ik. Exact computation of

leverage score probabilities, via SVD or QR decomposition, requires O(m2n) flops; thus, it is

more expensive than the computation of the “optimal” probabilities.

In the special case of rank-one matrices, the “optimal” and leverage score probabilities are

identical; and Algorithm 1 with “optimal” probabilities computes the exact result with any

number of samples, and in particular a single sample. This follows directly from Corollary 2.1.

Theorem 2.4. If rank(A) = 1, then plevj = poptj , 1 ≤ j ≤ n.

If X is computed by Algorithm 1 with any c ≥ 1 and probabilities poptj , then X = AAT .
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Table 2.4: Eight datasets from [3], and the dimensions, rank and stable rank of the associated
matrices A.

Dataset m× n rank(A) sr(A)

Solar Flare 10× 1389 10 1.10

EEG Eye State 15× 14980 15 1.31

QSAR biodegradation 41× 1055 41 1.13

Abalone 8× 4177 8 1.002

Wilt 5× 4399 5 1.03

Wine Quality - Red 12× 1599 12 1.03

Wine Quality - White 12× 4898 12 1.01

Yeast 8× 1484 8 1.05

Comparison of sampling probabilities

We compare the norm-wise relative errors due to randomization of Algorithm 1 when it samples

with “optimal” probabilites and leverage score probabilities.

Experimental set up We present experiments with eight representative matrices, described

in Table 2.4, from the UCI Machine Learning Repository [3].

For each matrix, we ran Algorithm 1 twice: once sampling with “optimal” probabilities poptj ,

and once sampling with leverage score probabilities plevj . The sampling amounts c range from

1 to n, with 100 runs for each value of c.

Figure 2.1 contains two plots for each matrix: The left plot shows the two-norm relative

errors due to randomization, ∥X−AAT ∥2/∥AAT ∥2, averaged over 100 runs, versus the sampling

amount c. The right plot shows the ratios of leverage score over “optimal” probabilities plevj /poptj ,

1 ≤ j ≤ n.

Conclusions Sampling with “optimal” probabilities produces average errors that are lower,

by as much as a factor of 10, than those from sampling with leverage score probabilities, for

all sampling amounts c. Furthermore, corresponding leverage score and “optimal” probabilities

tend to differ by several orders of magnitude.
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Figure 2.1: Relative errors due to randomization, and ratios of leverage score over “optimal”
probabilities for the matrices in Table 2.4. Plots in columns 1 and 3: The average over 100
runs of

∥∥X−AAT
∥∥
2
/
∥∥AAT

∥∥
2
when Algorithm 1 samples with “optimal probabilities” (□)

and with leverage score probabilities (∗), versus the number c of sampled columns in X. The
vertical axes are logarithmic, and the labels correspond to powers of 10. Plots in columns 2 and
4: Ratios plevj /poptj , 1 ≤ j ≤ n, sorted in increasing magnitude from left to right.

2.4 Error due to randomization, for sampling with “nearly op-

timal” probabilities

We present two new probabilistic bounds (Sections 2.4.1 and 2.4.2) for the two-norm relative

error due to randomization, when Algorithm 1 samples with the “nearly optimal” probabili-
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ties in (2.2). The bounds depend on the stable rank or the rank of A, but not on the matrix

dimensions. Neither bound is always better than the other (Section 2.4.3). The numerical ex-

periments (Section 2.4.4) illustrate that the bounds are informative, even for stringent success

probabilities and matrices of small dimension.

2.4.1 First bound

The first bound depends on the stable rank of A and also, weakly, on the rank.

Theorem 2.5. Let A ̸= 0 be an m×n matrix, and let X be computed by Algorithm 1 with the

“nearly optimal” probabilities pβj in (2.2).

Given 0 < δ < 1 and 0 < ϵ ≤ 1, if the number of columns sampled by Algorithm 1 is at least

c ≥ c0(ϵ) sr(A)
ln (rank(A)/δ)

β ϵ2
, where c0(ϵ) ≡ 2 +

2ϵ

3
,

then with probability at least 1− δ, ∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ ϵ.

Proof. See Section 2.7.5.

As the required error ϵ becomes smaller, so does the constant c0(ϵ) in the lower bound for

the number of samples, that is, c0(ϵ) → 2 as ϵ → 0.

2.4.2 Second bound

This bound depends only on the stable rank of A.

Theorem 2.6. Let A ̸= 0 be an m×n matrix, and let X be computed by Algorithm 1 with the

“nearly optimal” probabilities pβj in (2.2).

Given 0 < δ < 1 and 0 < ϵ ≤ 1, if the number of columns sampled by Algorithm 1 is at least

c ≥ c0(ϵ) sr(A)
ln (4sr(A)/δ)

β ϵ2
, where c0(ϵ) ≡ 2 +

2ϵ

3
,

then with probability at least 1− δ, ∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ ϵ.

Proof. See Section 2.7.6.
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2.4.3 Comparison

The bounds in Theorems 2.5 and 2.6 differ only in the arguments of the logarithms.

On the one hand, Theorem 2.6 is tighter than Theorem 2.5 if 4 sr(A) < rank(A). On the

other hand, Theorem 2.5 is tighter for matrices with large stable rank, and in particular for

matrices A with orthonormal rows where sr(A) = rank(A).

In general, Theorem 2.6 is tighter than all the bounds in Table 2.2, that is, to our knowledge,

all published bounds.

Table 2.5: Matrices from [33], their dimensions, rank and stable rank; and key quantities from
(2.4) and (2.5).

Matrix m× n rank(A) sr(A) c γ1 c γ2

us04 163× 28016 115 5.27 16.43 13.44

bibd 16 8 163× 28016 120 4.29 13.43 10.65

2.4.4 Numerical experiments

We compare the bounds in Theorems 2.5 and 2.6 to the errors of Algorithm 1 for sampling with

“optimal” probabilities.

Experimental set up We present experiments with two matrices from the University of

Florida Sparse Matrix Collection [33]. The matrices have the same dimension, and similar high

ranks and low stable ranks, see Table 2.5. Note that only for low stable ranks can Algorithm 1

achieve any accuracy.

The sampling amounts c range from 1 to n, the number of columns, with 100 runs for each

value of c. From the 100 errors ∥X −AAT ∥2/∥AAT ∥2 for each c value, we plot the smallest,

largest, and average.

In Theorems 2.5 and 2.6, the success probability is 99 percent, that is, a failure probability

of δ = .01. The error bounds are plotted as a function of c. That is, for Theorem 2.5 we plot

(see Theorem 2.15)∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ γ1 +

√
γ1 (6 + γ1), γ1 ≡ sr(A)

ln (rank(A)/.01)

3 c
(2.4)
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Figure 2.2: Relative errors due to randomization from Algorithm 1, and bounds (2.4) and (2.5)
versus sampling amount c, for matrices us04 (left) and bidb 16 8 (right). Error bars represent
the maximum and minimum of the errors

∥∥X−AAT
∥∥
2
/
∥∥AAT

∥∥
2
from Algorithm 1 over 100

runs, while the squares represent the average. The triangles (△) represent the bound (2.4),
while the stars (∗) represent (2.5). The vertical axes are logarithmic, and the labels correspond
to powers of 10.

while for Theorem 2.6 we plot (see Theorem 2.17)∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ γ2 +

√
γ2 (6 + γ2), γ2 ≡ sr(A)

ln (4sr(A)/.01)

3 c
(2.5)

The key quantities c γ1 and c γ2 are shown for both matrices in Table 2.5.

Figure 2.2 contains two plots, the left one for matrix us04, and the right one for matrix

bibd 16 8. The plots show the relative errors ∥X−AAT ∥2/∥AAT ∥2 and the bounds (2.4) and

(2.5) versus the sampling amount c.

Conclusions In both plots, the bounds corresponding to Theorems 2.5 and 2.6 are virtually

indistinguishable, as was is already predicted by the key quantities c γ1 and c γ2 in Table 2.5.

The bounds overestimate the worst case error from Algorithm 1 by a factor of at most 10. Hence

they are informative, even for matrices of small dimension and a stringent success probability.

2.5 Error due to randomization, for sampling with leverage

score probabilities

For completeness, we present a normwise relative bound for the error due to randomization,

when Algorithm 1 samples with leverage score probabilities (2.3). The bound corroborates

the numerical experiments in Section 2.3.2, and suggests that sampling with leverage score
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probabilities produces a larger error due to randomization than sampling with “nearly optimal”

probabilities.

Theorem 2.7. Let A ̸= 0 be an m×n matrix, and let X be computed by Algorithm 1 with the

leverage score probabilites plevj in (2.3).

Given 0 < δ < 1 and 0 < ϵ ≤ 1, if the number of columns sampled by Algorithm 1 is at least

c ≥ c0(ϵ) rank(A)
ln(rank(A)/δ)

ϵ2
, where c0(ϵ) = 2 +

2ϵ

3
,

then with probability at least 1− δ, ∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ ϵ.

Proof. See Section 2.7.7.

In the special case when A has orthonormal columns, the leverage score probabilities plevj

are equal to the “optimal” probabilities poptj in (2.1). Furthermore, rank(A) = sr(A), so that

Theorem 2.7 is equal to Theorem 2.5. For general matrices A, though, rank(A) ≥ sr(A), and

Theorem 2.7 is not as tight as Theorem 2.5.

2.6 Singular value and condition number bounds

As in [43], we apply the bounds for the Gram matrix approximation to a matrix with or-

thonormal rows, and derive bounds for the smallest singular value (Section 2.6.1) and condition

number (Section 2.6.2) of a sampled matrix.

Specifically, let Q be a real m × n matrix with orthonormal rows, QQT = Im. Then, as

discussed in Section 2.3.2, the “optimal” probabilities (2.1) for Q are equal to the leverage score

probabilities (2.3),

poptj =
∥Qj∥22
∥Q∥2F

=
∥Qj∥22
m

= plevj , 1 ≤ j ≤ m.

The connection between Gram matrix approximations (QS) (QS)T and singular values of

the sampled matrix QS comes from the well-conditioning of singular values [54, Corollary 2.4.4],∣∣∣1− σj (QS)2
∣∣∣ =

∣∣σj (QQT
)
− σj

(
(QS) (QS)T

)∣∣
≤

∥∥QQT − (QS) (QS)T
∥∥
2
, 1 ≤ j ≤ m. (2.6)
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2.6.1 Singular value bounds

We present two bounds for the smallest singular value of a sampled matrix, for sampling with the

“nearly optimal” probabilities (2.2), and for uniform sampling with and without replacement.

The first bound is based on the Gram matrix approximation in Theorem 2.5.

Theorem 2.8. Let Q be an m×n matrix with orthonormal rows and coherence µ, and let QS

be computed by Algorithm 1. Given 0 < ϵ < 1 and 0 < δ < 1, we have σm (QS) ≥
√
1− ϵ with

probability at least 1− δ, if Algorithm 1

• either samples with the “nearly optimal” probabilities pβj , and

c ≥ c0(ϵ)m
ln(m/δ)

βϵ2
,

• or samples with uniform probabilities 1/n, and

c ≥ c0(ϵ) nµ
ln(m/δ)

ϵ2
.

Here c0(ϵ) ≡ 2 + 2
3 ϵ.

Proof. See Section 2.7.8.

Since c0(ϵ) ≥ 2, the above bound for uniform sampling is slightly less tight than the last

bound in Table 2.3, i.e. [49, Lemma 1]. Although that bound technically holds only for uniform

sampling without replacement, the same proof gives the same bound for uniform sampling with

replacement.

This inspired us to derive a second bound, by modifying the argument in [49, Lemma 1], to

obtain a slightly tighter constant. This is done with a direct application of a Chernoff bound

(Theorem 2.18). The only difference between the next and the previous result is the smaller

constant c1(ϵ), and the added application to sampling without replacement.

Theorem 2.9. Let Q be an m×n matrix with orthonormal rows and coherence µ, and let QS

be computed by Algorithm 1. Given 0 < ϵ < 1 and 0 < δ < 1, we have σm (QS) ≥
√
1− ϵ with

probability at least 1− δ, if Algorithm 1

• either samples with the “nearly optimal” probabilities pβj , and

c ≥ c1(ϵ)m
ln(m/δ)

βϵ2
,
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• or samples with uniform probabilities 1/n, with or without replacement, and

c ≥ c1(ϵ) nµ
ln(m/δ)

ϵ2
.

Here c1(ϵ) ≡ ϵ2

(1−ϵ) ln(1−ϵ)+ϵ , and 1 ≤ c1(ϵ) ≤ 2.

Proof. See Section 2.7.9.

The constant c1(ϵ) is slightly smaller than the constant 2 in [49, Lemma 1], which is the

last bound in Table 2.3.

2.6.2 Condition number bounds

We present two bounds for the condition number κ(QS) ≡ σ1(QS)/σm(QS) of a sampled

matrix QS with full row-rank.

The first condition number bound is based on a Gram matrix approximation, and is analo-

gous to Theorem 2.8.

Theorem 2.10. Let Q be an m × n matrix with orthonormal rows and coherence µ, and let

QS be computed by Algorithm 1. Given 0 < ϵ < 1 and 0 < δ < 1, we have κ(QS) ≤
√
1+ϵ√
1−ϵ

with

probability at least 1− δ, if Algorithm 1

• either samples with the “nearly optimal” probabilities pβj , and

c ≥ c0(ϵ)m
ln(m/δ)

βϵ2
,

• or samples with uniform probabilities 1/n, and

c ≥ c0(ϵ) nµ
ln(m/δ)

ϵ2
.

Here c0(ϵ) ≡ 2 + 2
3 ϵ.

Proof. See Section 2.7.10.

The second condition number bound is based on a Chernoff inequality, and is analogous to

Theorem 2.9, but with a different constant, and an additional factor of two in the logarithm.

Theorem 2.11. Let Q be an m × n matrix with orthonormal rows and coherence µ, and let

QS be computed by Algorithm 1. Given 0 < ϵ < 1 and 0 < δ < 1, we have κ(QS) ≤
√
1+ϵ√
1−ϵ

with

probability at least 1− δ, if Algorithm 1
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• either samples with the “nearly optimal” probabilities pβj , and

c ≥ c2(ϵ)m
ln(2m/δ)

βϵ2
,

• or samples with uniform probabilities 1/n, with or without replacement, and

c ≥ c2(ϵ) nµ
ln(2m/δ)

ϵ2
.

Here c2(ϵ) ≡ ϵ2

(1+ϵ) ln(1+ϵ)−ϵ , and 2 ≤ c2(ϵ) ≤ 2.6.

Proof. See Section 2.7.11.

It is difficult to compare the two condition number bounds, and neither bound is always

tighter than the other. On the one hand, Theorem 2.11 has a smaller constant than Theorem 2.10

since c2(ϵ) ≤ c1(ϵ). On the other hand, though, Theorem 2.10 has an additional factor of two in

the logarithm. For very large m/δ, the additional factor of 2 in the logarithm does not matter

much and Theorem 2.11 is tighter.

In general, Theorem 2.11 is not always tighter than Theorem 2.10. For example, if m = 100,

δ = 0.01, ϵ = 0.1, β = 1, and Algorithm 1 samples with “nearly optimal” probabilities, then

Theorem 2.11 requires 1.57 · 105 samples, while Theorem 2.10 requires only 1.43 · 105; hence, it
is tighter.
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2.7 Proofs

We present proofs for the results in Sections 2.2 – 2.6.

2.7.1 Proof of Theorem 2.1

We will use the two lemmas below. The first one is a special case of [45, Theorem 2.1] where

the rank of the approximation is not restricted.
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Lemma 2.1. Let H be m×n, B be m×p, and C be q×n matrices, and let PB be the orthogonal

projector onto range(B), and PCT the orthogonal projector onto range(CT ). Then the solution

of

min
W

∥H−BWC∥F

with minimal Frobenius norm is

W = B† PBHPCT C†.

Lemma 2.2. If B is m× p and C is p×n, with rank(B) = p = rank(C), then (BC)† = C†B†.

Proof. Set Y ≡ BC, and use B†B = Ip = CC† to verify that Z ≡ C†B† satisfies the four

conditions defining the Moore-Penrose inverse

YZY = Y, ZYZ = Z, (YZ)T = YZ, (ZY)T = ZY. (2.7)

Proof of Theorem 2.1

Abbreviate A1 ≡ AS and VT
1 ≡ VTS.

In Lemma 2.1, set H = AAT , B = A1, and C = AT
1 . Then PB = A1A

†
1 = PCT , and

Wopt = A†
1 A1A

†
1AAT A1A

†
1 (A

†
1)

T .

The conditions for the Moore-Penrose inverse (2.7) imply A†
1A1A

†
1 = A†

1, and

A1A
†
1 (A

†
1)

T =
(
A1A

†
1

)T
(A†

1)
T = (A†

1)
T AT

1 (A†
1)

T = (A†
1)

T .

Hence Wopt = A†
1 AAT (A†

1)
T .

Special case rank(A1) = rank(A) This means the number of columns c in A1 = UΣVT
1 is

at least as large as k ≡ rank(A). Hence VT
1 is k× c with c ≥ k, and rank(VT

1 ) = k = rank(UΣ).

From Lemma 2.2 follows A†
1 = (V†

1)
T Σ−1UT . Hence

Wopt = (V†
1)

T VTVV†
1 = (V†

1)
T V†

1.

Furthermore rank(A1) = rank(A) implies that A1 has the same column space as A. Hence the

residual in Theorem 2.1 is zero, and A1WoptA
T
1 = AAT .
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Special case c = rank(A1) = rank(A) This means c = k, so that V1 is a k× k matrix. From

rank(A) = k follows rank(V1) = k, so that V1 is nonsingular and V†
1 = V−1

1 .

2.7.2 Proof of Theorem 2.2

Abbreviate

A1 ≡
(
At1 · · · Atc

)
, VT

1 ≡ VT

(
et1 · · · etc

)
,

so that the sum of outer products can be written as
∑c

j=1wj AtjA
T
tj = A1WAT

1 , where W ≡

diag

(
w1 · · · wc

)
.

1. Show: If A1WAT
1 = AAT for a diagonal W with non-negative diagonal, then

VT
1 W

1/2 has orthonormal rows From AAT = A1WAT
1 follows

UΣ2UT = AAT = A1WAT
1 = UΣVT

1 WV1 ΣUT . (2.8)

Multiplying by Σ−1UT on the left and by UΣ−1 on the right gives Ik = VT
1 WV1. Since

W is positive semi-definite, it has a symmetric positive semi-definite square root W1/2. Hence

Ik = VT
1 WV1 = (VT

1 W
1/2) (VT

1 W
1/2)T , and VT

1 W
1/2 has orthonormal rows.

2. Show: If VT
1 W

1/2 has orthonormal rows, then A1WAT
1 = AAT Inserting Ik =

(VT
1 W

1/2) (VT
1 W

1/2)T = VT
1 WV1 into A1WAT

1 gives

A1WAT
1 = UΣ

(
VT

1 WV1

)
ΣUT = UΣ2UT = AAT .

2.7.3 Proof of Corollary 2.1

Since rank(A) = 1, the right singular vector matrix V =

(
v1 . . . vn

)T

is a n×1 vector. Since

A has only a single non-zero singular value, ∥Aj∥2 = ∥UΣ vj∥2 = ∥A∥F vj . Clearly Aj ̸= 0 if

and only vj ̸= 0, and ∥VT ej∥22 = v2j = ∥Aj∥22/∥A∥2F . Let Atj be any c non-zero columns of A.

Then
c∑

j=1

wjAtjA
T
tj = UΣ

 c∑
j=1

wjv
2
tj

 ΣUT = UΣ2UT = AAT

if and only if
∑c

j=1wjv
2
tj = 1. This is true if wj = 1/(cv2tj ), 1 ≤ j ≤ c.
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2.7.4 Proof of Theorem 2.3

Since Theorem 2.3 is a special case of Theorem 2.2, we only need to derive the expression for the

weights. From c = k follows that VT
1 W

1/2 is k×k with orthonormal rows. Hence VT
1 W

1/2 is an

orthogonal matrix, and must have orthonormal columns as well, (W1/2V1) (W
1/2V1)

T = Ik.

Thus

V1V
T
1 = diag

(∥∥VT et1
∥∥2
2

· · ·
∥∥VT etc

∥∥2
2

)
= W−1.

This and W1/2 being diagonal implies wj = 1/
∥∥VT etj

∥∥2
2
.

2.7.5 Proof of Theorem 2.5

We present two auxiliary results, a matrix Bernstein concentration inequality (Theorem 2.12)

and a bound for the singular values of a difference of positive semi-definite matrices (Theo-

rem 2.13), before deriving a probabilistic bound (Theorem 2.14). The subsequent combination

of Theorem 2.14 and the invariance of the two-norm under unitary transformations yields The-

orem 2.15 which, at last, leads to a proof for the desired Theorem 2.5.

Theorem 2.12 (Theorem 1.4 in [99]). Let Xj be c independent real symmetric random m×m

matrices. Assume that, with probability one, E[Xj ] = 0, 1 ≤ j ≤ c and max1≤j≤c ∥Xj∥2 ≤ ρ1.

Let
∥∥∥∑c

j=1 E[X2
j ]
∥∥∥
2
≤ ρ2.

Then for any ϵ ≥ 0

P

∥∥∥∥∥∥
c∑

j=1

Xj

∥∥∥∥∥∥
2

≥ ϵ

 ≤ m exp

(
− ϵ2/2

ρ2 + ρ1ϵ/3

)
.

Theorem 2.13 (Theorem 2.1 in [102]). If B and C are m×m real symmetric positive semi-

definite matrices, with singular values σ1(B) ≥ . . . ≥ σm(B) and σ1(C) ≥ . . . ≥ σm(C), then

the singular values of the difference are bounded by

σj(B−C) ≤ σj

B 0

0 C

 , 1 ≤ j ≤ m.

In particular, ∥B−C∥2 ≤ max{∥B∥2, ∥C∥2}.

Theorem 2.14. Let A ̸= 0 be an m × n matrix, and let X be computed by Algorithm 1 with

the “nearly optimal” probabilites pβj in (2.2).
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For any δ > 0, with probability at least 1− δ,∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ γ0 +

√
γ0 (6 + γ0), where γ0 ≡ sr(A)

ln (m/δ)

3β c
.

Proof. In order to apply Theorem 2.12, we need to change variables, and check that the as-

sumptions are satisfied.

1. Change of variables Define the m × m real symmetric matrix random variables Yj ≡
1

c ptj
AtjA

T
tj , and write the output of Algorithm 1 as

X = (AS) (AS)T = Y1 + · · ·+Yc.

Since E[Yj ] = AAT /c, but Theorem 2.12 requires random variables with zero mean, set Xj ≡
Yj − 1

cAAT . Then

X−AAT = (AS) (AS)T −AAT =

c∑
j=1

(
Yj −

1

c
AAT

)
=

c∑
j=1

Xj .

Hence, we show
∥∥X−AAT

∥∥
2
≤ ϵ by showing

∥∥∥∑c
j=1Xj

∥∥∥
2
≤ ϵ.

Next we have to check that the assumptions of Theorem 2.12 are satisfied. In order to derive

bounds for max1≤j≤c ∥Xj∥2 and
∥∥∥∑c

j=1 E[X2
j ]
∥∥∥
2
, we assume general non-zero probabilities pj

for the moment, that is, pj > 0, 1 ≤ j ≤ n.

2. Bound for max1≤j≤c ∥Xj∥2 SinceXj is a difference of positive semidefinite matrices, apply

Theorem 2.13 to obtain

∥Xj∥2 ≤ max
{
∥Yj∥2, 1

c

∥∥AAT
∥∥
2

}
≤ ρ̂1

c
, ρ̂1 ≡ max

1≤i≤n

{
∥Ai∥22
pi

, ∥A∥22
}
.

3. Bound for
∥∥∥∑c

j=1 E[X2
j ]
∥∥∥
2

To determine the expected value of

X2
j = Y2

j − 1
c AAT Yj − 1

cYj AAT + 1
c2
(AAT )2

use the linearity of the expected value and E[Yj ] = AAT /c to obtain

E[X2
j ] = E[Y2

j ]−
1

c2
(AAT )2.
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Applying the definition of expected value again yields

E[Y2
j ] =

1

c2

n∑
i=1

pi
(AiA

T
i )

2

p2i
=

1

c2

n∑
i=1

(AiA
T
i )

2

pi
.

Hence

c∑
j=1

E[X2
j ] =

1

c

(
n∑

i=1

(AiA
T
i )

2

pi
− (AAT )2

)
=

1

c
A

(
n∑

i=1

ei
∥Ai∥22
pi

eTi −ATA

)
AT

=
1

c
A (L−ATA)AT ,

where L ≡ diag

(
∥A1∥22/p1 . . . ∥An∥22/pn

)
. Taking norms and applying Theorem 2.13 to

∥L−ATA∥2 gives ∥∥∥∥∥∥
c∑

j=1

E[X2
j ]

∥∥∥∥∥∥
2

≤ ∥A∥22
c

max
{
∥L∥2, ∥A∥22

}
=

∥A∥22
c

ρ̂1.

4. Application of Theorem 2.12 The required upper bounds for Theorem 2.12 are

∥Xj∥2 ≤ ρ1 ≡
ρ̂1
c

and

∥∥∥∥∥∥
c∑

j=1

E[X2
j ]

∥∥∥∥∥∥
2

≤ ρ2 ≡
∥A∥22
c

ρ̂1.

Inserting these bounds into Theorem 2.12 gives

P

∥∥∥∥∥∥
c∑

j=1

Xj

∥∥∥∥∥∥
2

> ϵ

 ≤ m exp

(
−cϵ2

2ρ̂1 (∥A∥22 + ϵ/3)

)
.

Hence
∥∥∥∑c

j=1Xj

∥∥∥
2
≤ ϵ with probability at least 1− δ, where

δ ≡ m exp

(
−cϵ2

2ρ̂1 (∥A∥22 + ϵ/3)

)
.

Solving for ϵ gives

ϵ = τ1 ρ̂1 +
√

τ1 ρ̂1
(
6∥A∥22 + τ1 ρ̂1

)
, τ1 ≡

ln (m/δ)

3c
.

5. Specialization to “nearly optimal” probabilities We remove zero columns from the

matrix. This does not change the norm or the stable rank. The “nearly optimal” probabilities
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for the resulting submatrix are pβj = β∥Aj∥22/∥A∥2F , with pj > 0 for all j. Now replace pβj by

their lower bounds (2.2). This gives ρ̂1 ≤ ∥A∥22 τ2 where τ2 ≡ sr(A)/β ≥ 1, and

ϵ ≤ ∥A∥22
(
τ1τ2 +

√
τ1τ2 (6 + τ1τ2)

)
.

Finally observe that γ0 = τ1τ2, and divide by ∥A∥22 = ∥AAT ∥2.

We make Theorem 2.14 tighter and replace the dimension m by rank(A). The idea is to

apply Theorem 2.14 to the k × k matrix (ΣVT ) (ΣVT )T instead of the m×m matrix AAT .

Theorem 2.15. Let A ̸= 0 be an m × n matrix, and let X be computed by Algorithm 1 with

the “nearly optimal” probabilites pβj in (2.2).

For any δ > 0, with probability at least 1− δ,∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ γ1 +

√
γ1 (6 + γ1), where γ1 ≡ sr(A)

ln (rank(A)/δ)

3β c
.

Proof. The invariance of the two-norm under unitary transformations implies

∥X−AAT ∥2 =
∥∥(ΣVTS) (ΣVTS)T − (ΣVT ) (ΣVT )T

∥∥
2
.

Apply Theorem 2.14 to the k × n matrix B ≡ ΣVT with probabilities

pβj ≥ β
∥Aj∥22
∥A∥2F

= β
∥Bj∥22
∥B∥2F

.

Note that Algorithm 1 is still applied to the original matrix A, with probabilities (2.2)

computed from A. It is only the bound that has changed.

Proof of Theorem 2.5

At last, we set γ1 +
√

γ1 (6 + γ1) ≤ ϵ and solve for c as follows. In γ1 +
√

γ1 (6 + γ1), write

γ1 =
ln (rank(A)/δ)

3β c sr(A) = t
3c , where t ≡ ln (rank(A)/δ) sr(A)

β
.

We want to determine α > 0 so that c = αt/ϵ2 satisfies

γ1 +
√

γ1 (6 + γ1) =
t

3c
+

√
t

3c

(
6 +

t

3c

)
≤ ϵ.
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Solving for α gives α ≥ 2 + 2ϵ/3 = c0(ϵ).

2.7.6 Proof of Theorem 2.6

To start with, we need a matrix Bernstein concentration inequality, along with the the Löwner

partial ordering [64, Section 7.7]. and the instrinsic dimension [97, Section 7].

If A1 and A2 are m × m real symmetric matrices, then A1 ⪯ A2 means that A2 − A1

is positive semi-definite [64, Definition 7.7.1]. The intrinsic dimension of a m ×m symmetric

positive semi-definite matrix A is [97, Definition 7.1.1]:

intdim(A) ≡ trace(A)/ ∥A∥2 ,

where 1 ≤ intdim(A) ≤ rank(A) ≤ m.

Theorem 2.16 (Theorem 7.3.1 and (7.3.2) in [97]). Let Xj be c independent real symmetric

random matrices, with E[Xj ] = 0, 1 ≤ j ≤ c. Let max1≤j≤c ∥Xj∥2 ≤ ρ1, and let P be a

symmetric positive semi-definite matrix so that
∑c

j=1 E[X2
j ] ⪯ P. Then for any ϵ ≥ ∥P∥1/22 +

ρ1/3

P

∥∥∥∥∥∥
c∑

j=1

Xj

∥∥∥∥∥∥
2

≥ ϵ

 ≤ 4 intdim(P) exp

(
−ϵ2/2

∥P∥2 + ρ1ϵ/3

)
.

Now we apply the above theorem to sampling with “nearly optimal” probabilities.

Theorem 2.17. Let A ̸= 0 be an m × n matrix, and let X be computed by Algorithm 1 with

the “nearly optimal” probabilities pβj in (2.2).

For any 0 < δ < 1, with probability at least 1− δ,∥∥X−AAT
∥∥
2

∥AAT ∥2
≤ γ2 +

√
γ2 (6 + γ2), where γ2 ≡ sr(A)

ln (4sr(A)/δ)

3β c
.

Proof. In order to apply Theorem 2.16, we need to change variables, and check that the as-

sumptions are satisfied.

1. Change of variables As in item 1 of the proof of Theorem 2.14, we define the real

symmetric matrix random variables Yj ≡ 1
c ptj

AtjA
T
tj , and write the output of Algorithm 1 as

X = (AS) (AS)T = Y1 + · · ·+Yc.

The zero mean versions are Xj ≡ Yj − 1
cAAT , so that X−AAT =

∑c
j=1Xj .
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Next we have to check that the assumptions of Theorem 2.16 are satisfied, for the “nearly

optimal” probabilities pβj = β∥Aj∥22/∥A∥2F . Since Theorem 2.16 does not depend on the matrix

dimensions, we can assume that all zero columns of A have been removed, so that all pβj > 0.

2. Bound for max1≤j≤c ∥Xj∥2 From item 2 in the proof of Theorem 2.14 follows ∥Xj∥2 ≤ ρ1,

where

ρ1 =
1

c
max
1≤j≤n

{
∥Aj∥22
pβj

, ∥A∥22

}
≤

∥A∥2F
βc

.

3. The matrix P From item 3 in the proof of Theorem 2.14 follows

c∑
j=1

E[X2
j ] =

1
cALAT − 1

cAATAAT ,

where L ≡ diag

(
∥A1∥22/p

β
1 · · · ∥An∥22/p

β
n

)
⪯ (∥A∥2F /β) In. Since AATAAT is positive

semi-definite, so is

1
cAATAAT = 1

cALAT − 1
c

(
ALAT −AATAAT

)
= 1

cALAT −
c∑

j=1

E[X2
j ].

Thus,
∑c

j=1 E[X2
j ] ⪯ 1

cALAT ⪯ ∥A∥2F
βc AAT , where the the second inequality follows from [64,

Theorem 7.7.2(a)]. Set P ≡ ∥A∥2F
βc AAT . Then

∥P∥2 =
∥A∥22∥A∥2F

βc
and intdim(P) =

∥A∥4F
∥A∥2F ∥A∥22

= sr(A).

4. Application of Theorem 2.16 Substituting the above expressions for ∥P∥2, intdim(P)

and ρ1 =
∥A∥2F
β c into Theorem 2.16 gives

P

∥∥∥∥∥∥
c∑

j=1

Xj

∥∥∥∥∥∥
2

≥ ϵ

 ≤ 4 sr(A) exp

 −ϵ2βc

2 ∥A∥2F
(
∥A∥22 + ϵ/3

)
 .

Hence
∥∥∥∑c

j=1Xj

∥∥∥
2
≤ ϵ with probability at least 1− δ, where

δ ≡ 4 sr(A) exp

 −ϵ2βc

2 ∥A∥2F
(
∥A∥22 + ϵ/3

)
 .
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Solving for ϵ gives

ϵ = γ̂2 +

√
γ̂2 (6 ∥A∥22 + γ̂2), where γ̂2 ≡ ∥A∥2F

ln(4 sr(A)/δ)

3βc
= ∥A∥22 γ2.

It remains to show the last requirement of Theorem 2.16, that is, ϵ ≥ ∥P∥1/22 + ρ1/3. Replacing

ϵ by its above expression in terms of γ̂2 shows that the requirement is true if γ̂2 ≥ ρ1/3 and√
6∥A∥22 γ̂2 ≥ ∥P∥1/22 . This is the case if ln(4 sr(A)/δ) > 1. Since sr(A) ≥ 1, this is definitely

true if δ < 4/e. Since we assumed δ < 1 from the start, the requirement is fulfilled automatically.

At last, divide both sides of
∥∥X−AAT

∥∥
2
≤ γ̂2 +

√
γ̂2 (6 ∥A∥22 + γ̂2) by

∥∥AAT
∥∥
2
= ∥A∥22.

Proof of Theorem 2.6

As in the proof of Theorem 2.5, solve for c in γ2 +
√
γ2 (6 + γ2) ≤ ϵ.

2.7.7 Proof of Theorem 2.7

To get a relative error bound, substitute the thin SVD A = UΣVT into

∥X−AAT ∥2 = ∥(AS) (AS)T −AAT ∥2 = ∥(ΣVTS) (ΣVTS)T −ΣVTVΣ∥2
≤ ∥Σ∥22 ∥(VTS) (VTS)T −VTV∥2
= ∥AAT ∥2 ∥(VTS) (VTS)T −VTV∥2.

The last term can be viewed as sampling columns from VT to approximate the product VTV =

In. Now apply Theorem 2.5, where ∥V∥2F = k = rank(A) and ∥V∥22 = 1, so that sr(V) = k =

rank(A).

2.7.8 Proof of Theorem 2.8

We present separate proofs for the two types of sampling probabilities.

Sampling with “nearly optimal” probabilities Applying Theorem 2.5 shows that

∥∥QQT − (QS) (QS)T
∥∥
2
≤ ϵ

with probability at least 1− δ, if c ≥ c0(ϵ)
m
βϵ2

ln(m/δ).
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Sampling with uniform probabilities Use the β factor to express the uniform probabilities

as “nearly optimal” probabilities,

1

n
=

m

n µ

µ

m
≥ m

n µ

∥Qj∥22
∥Q∥2F

= β
∥Qj∥22
∥Q∥2F

= β poptj 1 ≤ j ≤ n.

Now apply Theorem 2.5 with β = m/(nµ).

For both sampling methods, the connection (2.6) implies that σm(QS) ≥
√
1− ϵ with

probability at least 1− δ.

2.7.9 Proof of Theorem 2.9

First we present the concentration inequality on which the proof is based. Below λmin(X) and

λmax(X) denote the smallest and largest eigenvalues, respectively, of the symmetric positive

semi-definite matrix X.

Theorem 2.18 (Theorem 5.1.1 in [97]). Let Xj be c independent m×m real symmetric positive

semi-definite random matrices, with max1≤j≤c ∥Xj∥2 ≤ ρ. Define

ρmax ≡ λmax

E

 c∑
j=1

Xj

 , ρmin ≡ λmin

E

 c∑
j=1

Xj

 ,

and f(x) ≡ ex/(1 + x)1+x. Then, for any 0 < ϵ < 1

P

λmin

 c∑
j=1

Xj

 ≤ (1− ϵ)ρmin

 ≤ m f(−ϵ)ρmin/ρ,

and

P

λmax

 c∑
j=1

Xj

 ≥ (1 + ϵ)ρmax

 ≤ m f(ϵ)ρmax/ρ.

Proof of Theorem 2.9

Write (QS)(QS)T =
∑c

j=1Xj , where Xj ≡
QtjQ

T
tj

c ptj
. To apply Theorem 2.18 we need to compute

ρ, ρmin, and ρmax.

Sampling with “nearly optimal” probabilities The definition of “nearly optimal” prob-

abilities (2.2) and the fact that ∥Q∥2F = m imply ∥Xj∥2 =
∥Qtj∥

2

2

cpβtj

≤ m
c β . Hence we can set
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ρ ≡ m
c β . The definition of Xj implies

E

 c∑
j=1

Xtj

 =
1

c

c∑
j=1

n∑
i=1

QiQ
T
i = QQT = Im,

so that ρmin = 1. Now apply Theorem 2.18 to conclude

P

λmin

 c∑
j=1

Xj

 ≤ (1− ϵ)

 ≤ mf(−ϵ)cβ/m.

Setting the right hand side equal to δ and solving for c gives

c =
m

β

ln(δ/m)

ln f(−ϵ)
= c1(ϵ)m

ln(m/δ)

βϵ2
,

where the second equality follows from ln f(x) = x − (1 + x) ln (1 + x). The function c1(x) is

decreasing in [0, 1], and L’Hôpital’s rule implies that c1(ϵ) → 2 as ϵ → 0 and c1(ϵ) → 1 as ϵ → 1.

Sampling with uniform probabilities An analogous proof with pj = 1/n shows that

∥Xj∥2 ≤ ρ ≡ nµ/c.

Uniform sampling without replacement Theorem 2.18 also holds when the matrices Xj

are sampled uniformly without replacement [98, Theorem 2.2].

For all three sampling methods, the connection (2.6) implies that σm(QS) ≥
√
1− ϵ with

probability at least 1− δ.

2.7.10 Proof of Theorem 2.10

The proof follows from Theorem 2.8, and the connection (2.6), since |1−σ2
j (QS)| ≤ ϵ, 1 ≤ j ≤ m,

implies that both, σm(QS) ≥
√
1− ϵ and σ1 (QS) ≤

√
1 + ϵ.

2.7.11 Proof of Theorem 2.11

We derive separate bounds for the smallest and largest singular values of QS.

Sampling with “nearly optimal” probabilities The proof Theorem 2.9 implies that

P

λmin

 c∑
j=1

Xj

 ≤ (1− ϵ)

 ≤ mf(−ϵ)cβ/m.
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Similarly, we can apply Theorem 2.18 with ρmax = 1 to conclude

P

λmax

 c∑
j=1

Xj

 ≥ (1 + ϵ)

 ≤ mf(ϵ)cβ/m.

Since f(−ϵ) ≤ f(ϵ), Boole’s inequality implies

P

λmin

 c∑
j=1

Xj

 ≤ (1− ϵ) and λmax

 c∑
j=1

Xj

 ≥ (1 + ϵ)

 ≤ 2mf(ϵ)cβ/m.

Hence, σm(QS) ≥
√
1− ϵ and σ1(QS) ≤

√
1 + ϵ hold simultaneously with probability at least

1− δ, if

c ≥ c2(ϵ)m
ln(2m/δ)

βϵ2
.

This bound for c also ensures that κ(QS) ≤
√
1+ϵ√
1−ϵ

with probability at least 1− δ. The function

c2(x) is increasing in [0, 1], and L’Hôpital’s rule implies that c2(ϵ) → 2 as ϵ → 0 and c2(ϵ) →
1/(2 ln(2)− 1) ≤ 2.6 as ϵ → 1.

Uniform sampling, with or without replacement The proof is analogous to the corre-

sponding part of the proof Theorem 2.9.
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Chapter 3

Perturbation of Leverage Scores

3.1 Introduction

Leverage scores are scalar quantities associated with the column space of a matrix, and can be

computed from the rows of any orthonormal basis for this space.

Leverage scores

We restrict our discussion here to leverage scores of full column rank matrices.

Definition 3.1. Let A be a real m × n matrix with rank(A) = n. If Q is any m × n matrix

whose columns form an orthonormal basis for range (A), then the leverage scores of A are

ℓj ≡
∥∥eTj Q∥∥22 , 1 ≤ j ≤ m.

Here ej denotes the jth column of the m×m identity matrix, and eTj Q denotes the jth row of

Q.

Note that leverage scores are independent of the orthonormal basis, since

∥∥eTj Q∥∥22 = eTj QQT ej = (QQT )jj , 1 ≤ j ≤ m

and QQT is the unique orthogonal projector onto range (A).

The basic properties of leverage scores are

0 ≤ ℓj ≤ 1, 1 ≤ j ≤ m, and

m∑
j=1

ℓj = n.

Hoaglin and Welsch introduced statistical leverage scores in 1978 to detect outliers in regression

problems [60, Section 2], [66, Section 5.1], [100, Section 2.2]. About thirty years later, Mahoney,
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Drineas and their coauthors started to advocate the use of leverage scores in randomized matrix

algorithms [38, 40, 79]. More specifically, leverage scores are the basis for importance sampling

strategies, in the context of low rank approximations [40], CUR decompositions [41], subset

selection [15], Nyström approximations [96], least squares problems [38], and matrix completion

[16], to name just a few. Leverage scores also play a crucial role in the analysis of randomized

algorithms [66], and fast algorithms have been developed for their approximation [37, 72, 75].

Motivation

Since leverage scores depend only on the column space, and are not tied to any particular

orthonormal basis, the question is how to compute them. Many existing papers, among them the

survey monograph [79, Definition 1], define leverage scores as row norms of a thin left singular

vector matrix. However, the sensitivity of singular vectors is determined by the corresponding

singular value gaps.

This, and the fact that QR decompositions, when implemented via Householder transfor-

mations or Givens rotations, are numerically stable [59, Sections 19.1–19.7], motivated us to

investigate QR decompositions for the computation of leverage scores. In this chapter, we de-

rive bounds on the difference between the leverage scores of a matrix A and a perturbation

A +∆A, when the leverage scores are computed from a QR decomposition. Note that we do

not assume a particular implementation of the QR decomposition and assume that quantities

are computed in exact arithmetic. We consider our results to be a first step towards determining

whether computing leverage scores with a QR decomposition is numerically stable. Since most

of our bounds do not exploit the zero structure of the upper triangular factor, they can be

readily extended to polar decompositions.

3.1.1 Overview

We present a short overview of the contents of the chapter and the main results. For brevity,

we display only the first order terms in the bounds, and omit the technical assumptions.

Notation

Matrices A always appear in boldface. The m×m identity matrix is Im, with columns ej and

rows eTj , 1 ≤ j ≤ m.

For a real m× n matrix A with rank(A) = n, the two-norm condition number with respect

to left inversion is κ2(A) ≡ ∥A∥2∥A†∥2, where A† is the Moore-Penrose inverse. The stable

rank is sr (A) ≡ ∥A∥2F /∥A∥22, where sr (A) ≤ rank(A).

We denote the leverage scores of a perturbed matrixA+∆A by ℓ̃j and refer to the quantities

|ℓ̃j − ℓj | and |ℓ̃j − ℓj |/ℓj as the the absolute leverage score difference and relative leverage
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score difference, respectively. We assume, tacitly, that relative leverage score difference bounds

|ℓ̃j − ℓj |/ℓj apply only for ℓj > 0.

Leverage scores computed with a QR decomposition (Section 3.2)

We present perturbation bounds that represent the first step in assessing the numerical stability

of the QR decomposition for computing leverage scores.

Section 3.2.1 Our first result is a bound derived from existing QR perturbation results that

make no reference to a particular implementation. If ϵF = ∥∆A∥F /∥A∥F is the total mass of

the perturbation, then the leverage scores ℓ̃j computed from a QR decomposition of A+∆A

satisfy

|ℓ̃j − ℓj |
ℓj

≤ 12

√
1− ℓj
ℓj

sr (A)1/2 κ2(A) ϵF +O(ϵ2F ), 1 ≤ j ≤ m.

Therefore, if ∆A is a general matrix perturbation, then leverage scores, computed from a QR

decomposition of A+∆A are well-conditioned in the norm-wise sense, provided they have large

magnitude and A is well-conditioned.

Section 3.2.2 The next bound is derived from scratch and does not rely on existing QR

perturbation results. Again, it makes no assumptions on the matrix perturbation ∆A, but is

able to recognize norm-wise row-scaling in ∆A. If ϵj = ∥eTj ∆A∥2/∥eTj A∥2, 1 ≤ j ≤ m, are

norm-wise perturbations of the rows of A, then the leverage scores ℓ̃j computed from a QR

decomposition of A+∆A satisfy∣∣∣ℓ̃j − ℓj

∣∣∣
ℓj

≤ 2
(
ϵj +

√
2 sr (A)1/2 ϵF

)
κ2(A) +O(ϵ2F ), 1 ≤ j ≤ m.

The perturbation ϵj represents the local effect of ∆A, because it indicates how the jth relative

leverage score difference depends on the perturbation in row j of A. In contrast, ϵF , containing

the total mass of the perturbation, represents the global effect on all leverage scores.

A similar bound holds for projected perturbations ϵ⊥F = ∥(Im − AA†)A∥F /∥A∥F and

ϵ⊥j = ∥eTj (Im −AA†)∆A∥2/∥eTj A∥2, 1 ≤ j ≤ m.

Section 3.2.3 The natural follow up question is: What if ∆A does indeed represent a row-

scaling of A? Can we get tighter bounds? The answer is yes. If |eTj ∆A| ≤ ηj |eTj A|, 1 ≤ j ≤ m,

with η = max1≤j≤m ηj , are component-wise row-scaled perturbations, then the leverage scores

41



ℓ̃j computed from a QR decomposition of A+∆A satisfy∣∣∣ℓ̃j − ℓj

∣∣∣
ℓj

≤ 2
(
ηj +

√
2n η

)
+O(η2), 1 ≤ j ≤ m.

Thus, under component-wise row-scaled perturbations, leverage scores computed with a QR

decomposition have relative leverage score differences that depend, to first order, neither on the

condition number nor on the magnitudes of the leverage scores.

Numerical experiments (Section 3.2)

After each of the bounds presented in Section 3.2, we perform numerical experiments that

illustrate that the bounds correctly capture the relative leverage score differences under different

types of perturbations.

Summary (Section 3.3)

We summarize the results in this chapter and describe a few directions for future research.

Appendix (Section 3.4)

We present the proofs for all results in Section 3.2.

3.2 Leverage scores computed with a QR decomposition

We derive bounds for relative leverage score differences for leverage scores that are computed

with a QR decomposition. The bounds assume exact arithmetic and are based on perturbation

results for QR decompositions; they make no reference to particular QR implementations.

Specifically, our bounds include: Norm-wise bounds for general matrix perturbations (Sec-

tion 3.2.1), bounds for general perturbations that recognize row-scaling in the perturbations

(Section 3.2.2), and bounds for component-wise row-scaled perturbations (Section 3.2.3). Since

the bounds do not exploit the zero structure of the triangular factor in the QR decomposition,

they can be readily extended to the polar decomposition as well.

3.2.1 General normwise perturbations

The first bound is derived from a normwise perturbation result for QR decompositions [93,

Theorem 1.6]. Among the existing and sometimes tighter QR perturbation bounds [10, 19, 20,

21, 22, 90, 91, 94, 95, 101], we chose [93, Theorem 1.6] because it is simple and has the required

key ingredients.
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Theorem 3.1. Let A and A+∆A be real m×n matrices with rank(A) = n and ∥∆A∥2
∥∥A†∥∥ ≤

1/2. The leverage scores ℓ̃j computed from a QR decomposition of A+∆A satisfy

|ℓ̃j − ℓj |
ℓj

≤ 12

(√
1− ℓj
ℓj

+ 3
κ2(A) sr (A)1/2

ℓj
ϵF

)
κ2(A) sr (A)1/2 ϵF , 1 ≤ j ≤ m.

Proof. See Section 3.4.1.

The perturbation bound in Theorem 3.1 sends the message that: If∆A is a general perturba-

tion, then leverage scores computed from a QR decomposition of A+∆A, are well-conditioned

in the norm-wise relative sense, if they have large magnitude and if A is well-conditioned. We

demonstrate that this conclusion is valid in the following experiment.

Numerical experiments: Figure 3.1

The matrix A has dimension 1000 × 25, κ2(A) = 1, and leverage scores that increase in four

steps, from 10−10 to about 10−1. It is generated with the Matlab commands

A1 = diag

(
I250 102 I250 103 I250 104 I250

)
randn(1000, 25) (3.1)

[A,∼] = qr(A1, 0).

The leverage scores of the perturbed matrix A + ∆A are computed with the MATLAB QR

decomposition qr(A+∆A, 0).

For matrices A in (3.1), Figure 3.1 shows the relative leverage score differences |ℓ̃j − ℓj |/ℓj
from norm-wise perturbations ϵF = ∥∆A∥F /∥A∥F and the bound from Theorem 3.1, for two

different perturbations: ϵF = 10−8 and ϵF = 10−5.

Figure 3.1 illustrates that the relative leverage score differences decrease with the same step

size with which the leverage score magnitude increases. In particular, for ϵF = 10−8 in (a), the

relative leverage score differences decrease from 10−5 for the smallest leverage scores to about

10−9 for the largest leverage scores. The differences for ϵF = 10−5 in (b) are larger by a factor

of 1000; the 250 smallest leverage scores have lost all accuracy because they are smaller than

the perturbation ϵF .

The bound in Theorem 3.1 differs from the actual differences by several orders of magnitude,

but reflects the qualitative behavior of the relative leverage score differences.
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Figure 3.1: Relative leverage score differences |ℓ̃j − ℓj |/ℓj (blue stars) and the bound from
Theorem 3.1 (red line above the stars) vs index j for ϵF = 10−8 (a) and ϵF = 10−5 (b).

3.2.2 General normwise perturbation bounds that detect row scaling in the

perturbations

The two first-order bounds presented here are based on a perturbation of the QR decomposition.

Although the bounds make no assumptions on the perturbations ∆A, they are able to recognize

row-scaling in ∆A of the form

ϵj ≡
∥eTj ∆A∥2
∥eTj A∥2

, 1 ≤ j ≤ m.

Theorem 3.2. Let A and A + ∆A be real m × n matrices such that rank(A) = n and

∥∆A∥2
∥∥A†∥∥

2
< 1. The leverage scores ℓ̃j computed from a QR decomposition of A + ∆A

satisfy ∣∣∣ℓ̃j − ℓj

∣∣∣
ℓj

≤ 2
(
ϵj +

√
2 sr (A)1/2 ϵF

)
κ2(A) +O(ϵ2F ), 1 ≤ j ≤ m.

Proof. See Section 3.4.2.

The relative leverage score difference bound for the jth leverage score in Theorem 3.2
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contains three main ingredients:

1. The two-norm condition number of A with respect to left inversion, κ2(A).

It indicates leverage scores computed from matrices with smaller condition numbers have

smaller relative leverage score differences.

2. The relative normwise perturbation in the jth row of A, ϵj .

This perturbation represents the local effect of ∆A, because it shows how the jth relative

leverage score difference depends on the perturbation in row j of A.

3. The total normwise perturbation ϵF .

This is the total relative mass of the perturbation, since

ϵ2F =
m∑
i=1

∥∥eTi ∆A
∥∥2
2
/ ∥A∥2F

represents the global effect of ∆A.

Numerical experiments: Figure 3.2

We illustrate that the local effect described above is real by examining the effect of row scaled

perturbations on the relative accuracy of leverage scores computed with a QR decomposition.

Figure 3.2 shows the relative leverage score difference |ℓ̃j − ℓj |/ℓj from norm wise pertur-

bations ϵF = ∥∆A∥F /∥A∥F = 10−8 and the bound from Theorem 3.2. In panel (a), only rows

501–750 of A are perturbed, while in panel (b) the perturbation has the same row scaling as

A, that is, ∆A = 10−8A1/∥A1∥F , where A1 is of the form (3.1).

In panel (a), the leverage scores corresponding to rows 1–500 and 751-1000 have relative

leverage score differences between 10−12 and 10−10, which illustrates that the local perturba-

tion in rows 501–750 has a global effect on all leverage scores. However, the leverage scores

corresponding to the perturbed rows 501–750 have larger relative differences of 10−8 or more,

which illustrates the strong effect of local perturbations. The bound from Theorem 3.2 hovers

around 10−7, but is slightly larger for the leverage scores corresponding to the perturbed rows.

Thus, Theorem 3.2 is able to detect strongly local row scaling in norm wise perturbations.

In panel (b), almost all leverage scores have relative differences between 10−10 and 10−9,

and the bound from Theorem 3.2 is flat at 10−7. Thus, the relative leverage scores differences

tend to be more uniform when the norm wise perturbations have the same row scaling as the

matrix. This effect is recognized by Theorem 3.2.

Therefore, although Theorem 3.2 makes no assumptions about the perturbations ∆A, it is

able to detect row scaling in norm wise perturbations, and correctly predicts the qualitative

behavior of relative leverage score differences.
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Figure 3.2: Relative leverage score difference |ℓ̃j − ℓj |/ℓj (blue stars) and bound from Theo-
rem 3.2 (red line above the stars) vs index j for row-wise scaled perturbations with ϵF = 10−8.
In (a) only rows 501–750 of A are perturbed, while in (b) the perturbation has the same row
scaling as A.

Projected perturbations

The following bound is a refinement of Theorem 3.2 that projects out the part of the pertur-

bation that lies in range (A) and does not contribute to a change in leverage scores,

ϵ⊥F ≡ ∥(Im −AA†)∆A∥F
∥A∥F

, ϵ⊥j ≡
∥eTj (Im −AA†)∆A∥2

∥eTj A∥2
, 1 ≤ j ≤ m.

Theorem 3.3 (Projected perturbations). Let A and A + ∆A be real m × n matrices with

rank(A) = n and ∥∆A∥2
∥∥A†∥∥

2
≤ 1/2. The leverage scores ℓ̃j computed from a QR decompo-

sition of A+∆A satisfy∣∣∣ℓ̃j − ℓj

∣∣∣
ℓj

≤ 4
(
ϵ⊥j +

√
2 sr (A)1/2 ϵ⊥F

)
κ2(A) +O

(
(ϵ⊥F )

2
)
, 1 ≤ j ≤ m.

Proof. See Section 3.4.3.
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It is not clear that Theorem 3.3 is tighter than Theorem 3.2. First, Theorem 3.3 contains

an additional factor of 2 in the bound. Second, although the total projected perturbation is

smaller, i.e. ϵ⊥F ≤ ϵF , this is not necessarily true for ϵ⊥j and ϵj . For instance, if

A = 1
2



1 1

1 −1

1 1

1 −1


, ∆A =



1 1

0 0

0 0

0 0


,

then

(I−AA†)∆A = (I−AAT )∆A = 1
2



1 1

0 0

1 1

0 0


.

Here we have ϵ3 =
∥∥eT3 ∆A

∥∥
2
/
∥∥eT3 A∥∥2 = 0 and ϵ⊥3 =

∥∥eT3 (I−AA†)∆A
∥∥
2
/
∥∥eT3 A∥∥2 = 1, so

that ϵ⊥3 > ϵ3.

3.2.3 Componentwise row-scaled perturbations

Motivated by Section 3.2.2, where bounds for general perturbations ∆A can recognize row

scaling in ∆A, we ask the natural follow-up question: What if ∆A does indeed represent a

row scaling of A? Can we get tighter bounds? To this end, we consider componentwise row

perturbations of the form |eTj ∆A| ≤ ηj |eTj A|, where ηj ≥ 0, 1 ≤ j ≤ m, and model them as

eTj ∆A = ζj ηj e
T
j A, 1 ≤ j ≤ m, η ≡ max

1≤j≤m
ηj , (3.2)

where ζj are uniform random variables in [−1, 1], 1 ≤ j ≤ m. We show that, under component

wise row-scaled perturbations (3.2), leverage scores computed with a QR decomposition have

relative differences that do not depend, to first order, on the condition number or the magnitudes

of the leverage scores.

Theorem 3.4. Let A be a real m×n matrix with rank(A) = n, and let the perturbations ∆A be

of the form (3.2) with η κ2(A) < 1. The leverage scores ℓ̃j computed from a QR decomposition
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Figure 3.3: Relative leverage score differences |ℓ̃j−ℓj |/ℓj (blue stars) and the bound from The-
orem 3.3 (red line above the stars) vs index j for component wise row-wise scaled perturbations
with ηj = 10−8, 1 ≤ j ≤ m.

of A+∆A satisfy∣∣∣ℓ̃j − ℓj

∣∣∣
ℓj

≤ 2
(
ηj +

√
2n η

)
+O(η2), 1 ≤ j ≤ m.

Proof. See Section 3.4.4.

The quantities ηj represent the local effects of the individual row-wise perturbations, while

the factor n η represents the global effect of all perturbations. In contrast to our previous results,

the bound does not depend on either the condition number or the leverage score magnitude.

Numerical experiments: Figure 3.3

We illustrate the effect of component-wise row-scaled perturbations on the relative accuracy of

leverage scores that are computed with a QR decomposition.

Figure 3.3 shows the relative leverage score differences from a well-conditioned matrix A

with κ2(A) = 1 in (a), and from a worse conditioned matrix B in (b). The condition number
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of B is κ2(B) ≈ 105 and B has leverage scores like those of A. Specifically,

B = diag

(
I250 102 I250 103 I250 104 I250

)
gallery(′randsvd′, [m, n], 106, 3). (3.3)

The component-wise row-scaled perturbations from (3.2) are η = ηj = 10−8 for 1 ≤ j ≤ m.

Figure 3.3 shows that the relative leverage score differences for both matrices look almost

the same, hovering around 10−8, except for a few outliers. Thus, the relative accuracy of most

leverage scores does not depend on the condition number, but a few small leverage scores do

show a slight effect. Note that Theorem 3.3 is based only on a perturbation analysis, not a

round off error analysis of the QR decomposition, and that we did not take into errors arising

in the computation of the two norm.

Furthermore, Figure 3.3 shows that the relative leverage score differences do not depend on

the leverage score magnitude. Hence Theorem 3.3 captures the relative leverage score accuracy

under component-wise row-scaled perturbations.

3.3 Summary

We took the first steps in assessing the numerical stability of QR decompositions for computing

leverage scores (Section 3.2). To this end, we derived several bounds for the relative accuracy of

individual leverage scores. The bounds are expressed for three classes of matrix perturbations:

General norm-wise, norm-wise row-scaled, and component-wise row-scaled.

Since most of the bounds in Section 3.2 do not exploit the zero structure of the upper

triangular factor, they are readily extended to polar decompositions as well.

Future research

The next step is to extend the results in Section 3.2.3 to component-wise perturbations

|∆Ajk| ≤ ηjk|Ajk|, 1 ≤ j ≤ m, 1 ≤ k ≤ n.

Numerical experiments strongly suggest that leverage scores computed from QR decompositions

of such perturbed matrices have relative leverage score differences that do not depend on the

magnitude of the leverage scores.

The most popular method for computing leverage scores is the singular value decomposition.

The numerical stability of the SVD in this context needs to be investigated, and whether the

sensitivity of the singular vectors to singular value gaps matters for leverage score computations.

Another issue is the numerically stable computation of ”k-leverage scores”. These are lever-

age scores of the best rank k approximation to A in the two-norm. Determining leverage scores
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from a truncated SVD is necessary when A is (numerically) rank deficient, or when noisy data

are well represented, as in the case of PCA, by only a few dominant singular vectors.

3.4 Proofs

We present proofs for the results in Section 3.2.

3.4.1 Proof of Theorem 3.1

We start with a special case of [62, Theorem 2.4] applied to m × n matrices Q and Q +∆Q

with orthonormal columns and leverage scores ℓj = ∥eTj Q∥22 and ℓ̃j = ∥eTj (Q +∆Q)∥22. Since
∥Q∥2 = κ2(Q) = 1, we obtain

|ℓ̃j − ℓj |
ℓj

≤

(
2

√
1− ℓj
ℓj

+
∥∆Q∥2

ℓj

)
∥∆Q∥2, 1 ≤ j ≤ m. (3.4)

The bound for ∥∆Q∥2 ≤ ∥∆Q∥F is obtained from a simpler version of the lemma below.

Lemma 3.1 (Theorem 1.6 in [93]). Let A and ∆A be real m× n matrices with rank(A) = n,

and
∥∥A†∥∥

2
∥∆A∥2 < 1. If A+∆A = (Q+∆Q) R̃ is the thin QR decomposition, then

∥∆Q∥F ≤ 1 +
√
2

1− ∥A†∥2 ∥∆A∥2
∥A†∥2 ∥∆A∥F .

Below is a simpler but not much more restrictive version of Lemma 3.1. If ∥∆A∥2∥A†∥2 ≤
1/2, then

∥∆Q∥F ≤ 6 ∥A†∥2 ∥∆A∥F = 6 sr (A)1/2 κ2(A) ϵF .

Substituting this into (3.4) gives Theorem 3.1.

3.4.2 Proof of Theorem 3.2

We start with a simplified version of [62, Theorem 2.4]. Let Q and Q+∆Q be m×n matrices

with orthonormal columns, and ℓj = ∥eTj Q∥22 and ℓ̃j = ∥eTj (Q + ∆Q)∥22, 1 ≤ j ≤ m, their

leverage scores. Multiplying out the inner product in ℓ̃j and using triangle and submultiplicative

inequalities gives

|ℓ̃j − ℓj |
ℓj

≤ 2
∥eTj ∆Q∥2√

ℓj
+

∥eTj ∆Q∥22
ℓj

, 1 ≤ j ≤ m. (3.5)
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Next we derive bounds for ∥eTj ∆Q∥2 in terms of ∆A. To this end we represent the perturbed

matrix by a function A(t), with a smooth decomposition A(t) = Q(t)R(t).

This is a very common approach, see for instance [19, Section 3], [20, Section 4], [21, Section

3], [22, Section 5], [34, Section 2.1] [59, Section 2.4], [90, Section 3], [93, Section 2], [94, Section

4], [95, Section 5], and [101, Section].

Define the function

A(t) ≡ A+
t

ϵF
∆A, 0 ≤ t ≤ ϵF ≡ ∥∆A∥F

∥A∥F
.

Let A(t) = Q(t)R(t) be a thin QR decomposition, where we set Q ≡ Q(0), R ≡ R(0),

Q+∆Q ≡ Q(ϵF ) and R+∆R ≡ R(ϵF ). The derivative of R with regard to t is Ṙ.

Theorem 3.5. Let A and A+∆A be real m × n matrices such that rank(A) = n and

∥∆A∥2∥A†∥2 < 1. Then

∆Q = ∆AR−1 − ϵF QṘR−1 +O(ϵ2F ),

where ∥ṘR−1∥F ≤
√
2 sr (A)1/2 κ2(A).

Proof. The proof is inspired in particular by [20, Section 4] and [58, Section 2.4].

Smooth decomposition From rank(A) = n, ∥ t
ϵF

∆A∥2 ≤ ∥∆A∥2 for 0 ≤ t ≤ ϵF , and

∥∆A∥2∥A†∥2 < 1 follows rank(A(t)) = n. Furthermore, since A(t) has at least two continuous

derivatives, so do Q(t) and R(t) [34, Proposition 2.3].

Expression for ∆Q The existence of two derivatives allows us to take a Taylor expansion

of Q(t) around t = 0, and get Q(t)−Q(0) = t Q̇(0) +O(t2). Evaluating at t = ϵF gives

∆Q = (Q+∆Q)−Q = Q(ϵF )−Q(0) = ϵF Q̇+O(ϵ2F ). (3.6)

To get an expression for Q̇, differentiate A(t) = Q(t)R(t),

∆A

ϵF
= Q̇(t)R(t) +Q(t) Ṙ(t),

and evaluate at t = 0,

Q̇ =
∆A

ϵF
R−1 −QṘR−1.

Inserting the above into (3.6) gives the expression for ∆Q in Theorem 3.2.
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Bound for ∥ṘR−1∥F Differentiating A(t)TA(t) = R(t)TR(t) gives

1

ϵF

(
(∆A)TA+AT∆A+

2t

ϵ
(∆A)T∆A

)
= Ṙ(t)TR(t) +R(t)T Ṙ(t),

and evaluating at t = 0 yields

1

ϵF

(
(∆A)TA+AT∆A

)
= ṘTR+RT Ṙ.

Multiplying by R−T on the left and by R−1 on the right gives

ṘR−1 +
(
ṘR−1

)T
=

1

ϵF

(
QT∆AR−1 +

(
QT∆AR−1

)T)
. (3.7)

Now we take advantage of the fact that ṘR−1 is upper triangular, and define a function that

extracts the upper triangular part of a square matrix Z via

up(Z) ≡ 1

2
diagonal(Z) + strictly upper triangular part(Z).

Applying the function to (3.7) gives

ṘR−1 =
1

ϵF
up
(
QT∆AR−1 +

(
QT∆AR−1

)T)
.

Taking norms yields [20, Equation (3.5)]

∥∥∥ṘR−1
∥∥∥
F

≤
√
2

ϵF

∥∥QT∆AR−1
∥∥
F

(3.8)

≤
√
2

ϵF
∥∆A∥F ∥R−1∥2 =

√
2 sr (A)1/2 κ2(A).

Now we are ready to derive a bound for the row norms of ∆Q. Combining the two bounds

from Theorem 3.5, that is, inserting ∥ṘR−1∥F ≤
√
2 sr (A)1/2 κ2(A) into

∥∥eTj ∆Q
∥∥
2
≤
∥∥eTj ∆A

∥∥
2

∥∥∥A†
∥∥∥
2
+ ϵF

√
ℓj

∥∥∥ṘR−1
∥∥∥
2
+O(ϵ2), 1 ≤ j ≤ m,

gives ∥∥eTj ∆Q
∥∥
2
≤
∥∥eTj ∆A

∥∥
2
∥A†∥2 +

√
2 ℓj

√
sr (A) ϵF κ2(A) +O(ϵ2F ).
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Into the first summand substitute

∥eTj ∆A∥2 = ϵj ∥eTj A∥2 ≤ ϵj ∥eTj Q∥2 ∥R∥2 = ϵj
√

ℓj ∥A∥2,

and obtain

∥eTj ∆Q∥2 ≤
√

ℓj

(
ϵj +

√
2
√

sr (A) ϵF

)
κ2(A) +O(ϵ2F ), 1 ≤ j ≤ m.

Inserting the above into (3.5) and focussing on the first order terms in ϵF gives Theorem 3.2.

3.4.3 Proof of Theorem 3.3

To remove the contribution of ∆A in range (A), let P ≡ AA† be the orthogonal projector

onto range (A), and P⊥ ≡ Im − P the orthogonal projector onto range (A)⊥. Extracting the

contribution in range (A) gives

A+∆A = A+P∆A+P⊥∆A = (A+P∆A) +P⊥∆A = M+∆M,

where M ≡ A+P∆A and ∆M ≡ P⊥ ∆A.

Leverage scores Here rank(M) = n, because P is an orthogonal projector, and we have

that ∥P∆A∥2∥A†∥2 ≤ ∥∆A∥2∥A†∥2 < 1. With M = P (A +∆A) this implies range (M) =

range (A). Furthermore rank(M +∆M) = rank(A +∆A) = n. Thus M and M +∆M have

thin QR decompositions M = QX and M+∆M = (Q+∆Q)X̃, and have the same leverage

scores ℓj and ℓ̃j , respectively, as A and A+∆A.

Ultimately, we want to apply Theorem 3.2 to M and M + ∆M, but the perturbation

∆M = P⊥∆A is to be related to A rather than to M, and the bound is to be expressed in

terms of κ2(A) rather than κ2(M).

Applying Theorem 3.5 With

M(t) ≡ M+ t
µ∆M, 0 ≤ t ≤ µ ≡ ∥∆M∥F

∥A∥F
= ϵ⊥F ,

Theorem 3.5 implies

∆Q = ∆MX−1 − µQẊX−1 +O(µ2). (3.9)
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To bound ∥ẊX−1∥F , we apply (3.8) and obtain

∥ẊX−1∥F ≤
√
2

µ
∥∆M∥F ∥X−1∥2. (3.10)

Bounding ∥eTj ∆Q∥2 Combining (3.9) and (3.10) gives

∥eTj ∆Q∥2 ≤
(
∥eTj ∆M∥2 +

√
2 ∥eTj Q∥2 ∥∆M∥F

)
∥X−1∥2 +O(µ2), 1 ≤ j ≤ m

=

(
ϵ⊥j

∥eTj A∥2
∥A∥2

+
√
2
√

ℓj µ sr (A)1/2
)

∥A∥2∥M†∥2 +O(µ2).

From ∥eTj A∥2 ≤ ∥eTj Q∥2∥A∥2 =
√

ℓj ∥A∥2 follows

∥eTj ∆Q∥2 ≤
√

ℓj

(
ϵ⊥j +

√
2µ sr (A)1/2

)
∥A∥2∥M†∥2 +O(µ2). (3.11)

It remains to express ∥M†∥2 in terms of ∥A†∥2. The well-conditioning of singular values [54,

Corollary 8.6.2] applied to M = A+ Z, where Z ≡ P∆A, implies

∥M†∥2 = ∥(A+ Z)†∥2 ≤
∥A†∥2

1− ∥Z∥2∥A†∥2
≤ 2 ∥A†∥2,

where the last inequality is due to the assumption ∥Z∥2∥A†∥2 ≤ ∥∆A∥2∥A†∥2 ≤ 1/2. Inserting

this bound for ∥M†∥2 into (3.11) yields

∥eTj ∆Q∥2 ≤ 2
√

ℓj

(
ϵ⊥j +

√
2µ sr (A)1/2

)
κ2(A) +O(µ2), 1 ≤ j ≤ m.

At last, substituting the above into (3.5) and focussing on the first order terms in µ = ϵ⊥F gives

Theorem 3.3.

3.4.4 Proof of Theorem 3.4

Write the perturbations (3.2) as ∆A = DA, where D is a diagonal matrix with diagonal

elements Djj = ζjηj , 1 ≤ j ≤ m. By assumption ∥∆A∥2∥A†∥2 ≤ η κ2(A) < 1, so that

rank(A+∆A) = n.

As in the proof of Theorem 3.2, we start with (3.5). To derive bounds for ∥eTj ∆Q∥2 in terms

of ηj and η, represent the perturbed matrix by

A(t) ≡ A+
t

η
∆A, 0 ≤ t ≤ η.

LetA(t) = Q(t)R(t) be a thin QR decomposition, whereQ ≡ Q(0),R ≡ R(0),Q+∆Q ≡ Q(η)
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and R+∆R ≡ R(η). The derivative of R with respect to t is Ṙ.

Theorem 3.5 implies

∆Q = ∆AR−1 − ϵQṘR−1 +O(η2) = DQ−QṘR−1 +O(η2).

With ∆A = DA this gives

eTj ∆Q = ηj e
T
j Q+ η eTj QṘR−1 +O(η2), 1 ≤ j ≤ m.

Taking norms gives

∥eTj ∆Q∥2 ≤
√

ℓj

(
ηj + η ∥ṘR−1∥2

)
+O(η2), 1 ≤ j ≤ m. (3.12)

From (3.8) follows

∥ṘR−1∥2 ≤
∥∥∥ṘR−1

∥∥∥
F
≤

√
2

η

∥∥QT∆AR−1
∥∥
F
=

√
2

η

∥∥QTDQ
∥∥
F

≤
√
2

η

∥∥QT
∥∥
F

∥DQ∥2 ≤
√
2n.

Combining this with (3.12) yields

∥eTj ∆Q∥2 ≤
√

ℓj

(
ηj +

√
2n η

)
+O(η2), 1 ≤ j ≤ m.

Inserting the above into (3.5) and focussing on the first order terms in η gives Theorem 3.4.
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Chapter 4

Approximating functions over active

subspaces

4.1 Introduction

Consider a differentiable function f : Rm → R that is expensive to evaluate. Significant work

has gone into determining functions f̂ that are “close” to f in some sense and are much cheaper

to evaluate. Such a function f̂ is known as a response surface. The basic idea of constructing a

response surface is to evaluate f at a number of training points and then fit a surface f̂ to the

training points. If m is large, we may need to evaluate many training points (i.e. the “curse of

dimensionality”) in order to construct a good approximation to f .

To attempt to reduce the difficulty of constructing a response surface, we can apply a dimen-

sion reduction technique that determines an active subspace1 [28, 85] of the parameter space.

The idea is to determine linear combinations of parameters to which f is most sensitive. To

put it another way, we want to determine orthogonal directions in the m-dimensional param-

eter space along which f changes significantly. Computationally, these directions are just the

dominant eigenvectors of a Monte Carlo approximation to the m×m matrix

E =

∫
Rm

∇f(x) (∇f(x))T ρ(x)dx.

If there are only a few (k) dominant eigenvalues, then we can construct a response surface f̂

over the related k-dimensional subspace. We call this k-dimensional subspace an active subspace.

Since k << m, the number of training points we need to evaluate to construct the response

surface is smaller than if we trained f̂ over the full m-dimensional space.

1Active subspaces are not unique, so we will usually say “an” active subspace, rather than “the” active
subspace, unless we are talking about a particular active subspace.
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4.1.1 Related Literature

The idea of finding an active subspace originates in work by Russi [85, Chapter 6] and was

formalized by Constantine et al. [28]. Active subspaces are also investigated in [92, Algorithm

1] and [4, Section 4.2.2]. The computation of active subspaces is based on the eigendecomposition

of a covariance matrix and is highly related to principal component analysis (PCA) [67].

Active subspaces have been identified and exploited in a number of engineering problems.

In [24], two functions related to the manufacturing error of airfoils, both of which depend

on twenty variables, are approximated by a response surface over a one-dimensional active

subspace. A function related to the wall pressure of combustors, that depends on six variables,

is approximated over an active subspace of three variables in [27]. Functions defined in terms

of solutions to PDEs containing a coefficient that depends on a random field are approximated

with a response surface over an active subspace of a single variable in [28] and [31]. A model of

an annular combustor in 38 variables is approximated using only three variables in [8]. An active

subspace of one dimension is identified for the power of a photovoltaic cell, which depends on

five variables, in [32]. Active subspaces are used in combination with kriging to form response

surfaces for test problems and an airfoil design problem in [80].

4.1.2 Our contributions

We have three major contributions:

1. In Theorem 4.5, we show a tighter bound on the number of Monte Carlo samples necessary

to approximate an active subspace with error less than ϵ. The bound has the advantage

of not depending on m, the total number of parameters.

2. In Section 4.3, we describe three different ways to measure the error of response surfaces

over active subspaces. We are careful to separate the error caused by the response surface

construction method and the error caused by approximating the function over a subspace

of the full parameter space. We emphasize that if care is not taken to construct a good

response surface over an active subspace, then the response surface does a poor job of

approximating f .

3. We extend a simple test problem, which defines a function with a one-dimensional active

subspace, to obtain a test problem that defines a function with a k-dimensional active

subspace. For the ten-dimensional version of the test problem, we approximate a function

of 3556 variables over a ten-dimensional active subspace with relative accuracy.
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4.1.3 Outline

In Section 4.2, we formally define active subspaces, discuss the ideal response surface, give

algorithms to approximate both active subspaces and ideal response surface, and discuss the

error incurred by the approximations. In Section 4.3, we give our perspective on how to, in

practice, evaluate the error between f and the response surface. Section 4.4 describes a test

problem with a one-dimensional active subspace and an extension with a higher-dimensional

active subspace. Finally, in Section 4.5, we compute an active subspace and associated response

surface for the problem described in Section 4.4 and use the criteria discussed in Section 4.3 to

evaluate the error.

Sections 4.6 - 4.9 contain proofs and supplementary material.

4.2 Active subspace identification and response surface con-

struction

In this section, we present the material from [28, Sections 2-4] which is relevant to our dis-

cussion of active subspaces and response surfaces. All of the results in this section are due to

Constantine, Dow, and Wang [28], except for Theorem 4.5, which is a new result.

We assume that f(x) : Rm → R is a continuously differentiable function of m random

variables x = (x1, . . . , xm)T , where the random variables x have probability density function

ρ(x). We also assume that ρ(x) > 0 for all x ∈ Rm and that ρ(x) is bounded for all x ∈ Rm.

Assuming that ρ(x) > 0 ensures that the conditional probability density functions used in

Sections 4.2.1 and 4.2.2 are well-defined, while assuming ρ(x) is bounded ensures that we can

integrate with respect to ρ(x). Since f is continuously differentiable and therefore Lipschitz

continuous, there exists an L > 0 such that ∥∇f(x)∥2 ≤ L, for all x ∈ Rm.

In this section, we describe how to identify an active subspace of f and construct a response

surface. In Section 4.2.1, we define active subspaces, show how they can be computed in theory,

and discuss the ideal response surface. We bound the root mean square error between f and the

ideal response surface in Theorem 4.2. In Section 4.2.2, we discuss the computational difficulties

associated with computing active subspaces and the ideal response surface. We describe how to

approximate active subspaces and the ideal response surface with Monte Carlo (see Algorithms

2 and 3). Assuming that we have approximated an active subspace with error less than ϵ, we

bound the root mean square error between f and our approximation to the ideal response

surface in Theorem 4.3. In Section 4.2.3, we show how many Monte Carlo samples in Algorithm

2 are needed to approximate an active subspace with error less than ϵ.
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4.2.1 Constructing the ideal response surface

As in [28, Lemma 2.1], we construct an active subspace using orthogonal directions v along

which f changes significantly. We use the expected value of the squared directional derivative

of f along v to measure the change in f along v. To be specific, the expected value of the

squared directional derivative along v (∥v∥2 = 1) is

E
[(
vT ∇f(x)

)2]
=

∫
Rm

(
vT ∇f(x)

)2
ρ(x)dx.

Expected values of squared derivatives have been applied previously to measure change along

coordinate directions, for an example see [88]. The advantage of using the directional derivative

is that we can measure the change along any direction, not just the coordinate directions.

In the following theorem, we show that the expected value of the squared directional deriva-

tive along the eigenvectors of

E ≡
∫
Rm

∇f(x) (∇f(x))T ρ(x)dx, (4.1)

are the eigenvalues of E. We will use these eigenvectors to define an active subspace.

Theorem 4.1 (Lemma 2.1 in [28]). Assume that f(x) : Rm → R is continuously differentiable

and that ρ(x) is a probability density function such that ρ(x) is bounded and strictly positive.

If (λi,vi), ∥vi∥2 = 1, 1 ≤ i ≤ m is an eigenvalue-eigenvector pair of the m×m matrix

E =

∫
Rm

∇f(x) (∇f(x))T ρ(x)dx,

then

E
[
(vT

i ∇f(x))2
]
= λi.

Proof. Observe that

E
[
(vT

i ∇f(x))2
]
= vT

i Evi = vT
i (λivi) = λi.

The matrix E is symmetric positive semi-definite and so the eigenvalues are all non-negative.

Thus, if we can compute the eigenvalues and eigenvectors of E, we obtain a set of m orthog-

onal directions that are ordered (by the eigenvalues) according to the change in f along those

directions. If there are only a few large eigenvalues (say k), then the function f(x) changes

primarily over the k directions defined by the k dominant eigenvectors of E. We write the
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eigendecomposition of E as

E = V ΛV T , where V = [ V1︸︷︷︸
k

V2︸︷︷︸
m−k

], and Λ = diag(λ1, . . . , λm), (4.2)

where V is an m×m real orthogonal matrix, λ1 ≥ . . . ≥ λk > λk+1 ≥ . . . ≥ λm and define an

active subspace as range (V1).

We now want to approximate f with a response surface over an active subspace. In the

discussion below, we will make use of the following “decomposition” of a random vector x ∈ Rm

into the sum of a random vector in the active subspace and a random vector orthogonal to the

active subspace. In other words, decompose x into

x = [V1 V2][V1 V2]
Tx = V1V

T
1 x+ V2V

T
2 x = V1y + V2z,

where y = V T
1 x and z = V T

2 x are random vectors. The random vector y ∈ Rk represents the

coordinates of the projection of x onto the active subspace, while the random vector z ∈ Rm−k

represents the coordinates of the projection of x onto the orthogonal complement of the active

subspace.

We want to approximate f(x) with a function that depends only on y. A simple approxima-

tion to f(x) would be f(V1y) = f(V1V
T
1 x).2 In fact, if f does not change at all over the m− k

directions in V2 (i.e. λk+1 = . . . = λm = 0), then f(V1y) = f(x). In the case where λk+1, . . . , λm

are not all zero, we can improve our approximation by averaging over all z. Specifically, we will

approximate f(x) with the conditional expectation of f(x) given y = y∗3

f(x) = f(V1y + V2z) ≈

E [f(V1y + V2z) | y = y∗] =

∫
Rm−k

f(V1y
∗ + V2z)ρz|y(z | y∗) dz.

In the above, ρz|y is the conditional probability density function of z given y = y∗. See Section

4.7 for a brief review of the conditional density function.

In the sense of the mean squared error, the conditional expectation of f(x) = f(V1y+ V2z)

given y = y∗ is the best approximation to f(x) = f(V1y + V2z) given y = y∗ [55, Section 7.9:

Theorem 17]. Specifically,

E
[(
(f(x)−E [f(x) | y = y∗]

)2 | y = y∗
]
≤ E

[
(f(x)− g(z))2 | y = y∗

]
2Since we have assumed that f is defined over all of Rm, V1V

T
1 x is in the domain of f . If we let the domain

of f be a subset of Rm, this may not be true. See [92, Section 1.1] and [28, Section 4.1.2].
3We use y∗ to denote a specific instance of the random variable y.
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for all functions g(z) such that E
[
g(z)2

]
< ∞.

The following theorem bounds the root mean squared error incurred by approximating f(x)

given y = y∗ with the conditional expectation E [f(x) | y = y∗].

Theorem 4.2 (Theorem 3.1 in [28]). Assume that f(x) : Rm → R is continuously differentiable

and that ρ(x) is a probability density function such that ρ(x) is bounded and strictly positive.

Let E be defined as in (4.1) and let E have the eigendecomposition described in (4.2). Then,√∫
Rm

(
f(x)−E [f(x) | y = y∗]

)2
ρ(x)dx ≤ c1

√
λk+1 + . . .+ λm,

where c1 is a constant that depends on ρ(x).

Theorem 4.2 indicates that if the eigenvalues corresponding to the orthogonal complement of

the active subspace are small, then the error incurred by approximating f with the conditional

expectation is small.

4.2.2 Approximation to ideal response surface

There are a few computational problems with the approach outlined in the previous section.

The first computational difficulty is that computing E (and thus the eigenvalues and eigen-

vectors) is difficult because all of the entries of E are integrals over an m-dimensional space. We

estimate E with a Monte Carlo approximation as in [28, (2.16)]. In other words, approximate

E with

Ê =
1

n1

n1∑
i=1

∇f(xi) (∇f(xi))
T

where xi ∈ Rm are chosen randomly according to ρ(x) and we choose n1 ≤ m. Then, compute

the eigenvalues and eigenvectors of Ê = V̂ Λ̂V̂ T . Note that, by construction, Ê is also symmetric

positive semidefinite. The number of samples n1 necessary to approximate the eigenvectors of

E is discussed in Section 4.2.3.

We can avoid computing the m×m matrix Ê if we define

G =

[
∇f(x1) . . . ∇f(xn1)

]
and compute the singular value decomposition of G. The left singular vectors of G are the

eigenvectors of Ê. We also have that 1
n1
σ2
i (G) = λi(Ê), 1 ≤ i ≤ n1, where σi(G) are the

singular values of G.

At this point we must determine, based on the magnitudes of the eigenvalues, the dimension

(k) of an active subspace. Constantine et al. [30, Section 4.1] recommend looking for large gaps
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Algorithm 2 Approximate active subspace of f

Input:
f(x) : Rm → R

• f continuously differentiable

ρ(x) : probability density function

• ρ(x) > 0 for all x ∈ Rm

• ρ(x) is bounded

0 < n1 ≤ m, n1 ∈ Z
Output:

m× k matrix V̂1

G = 0m×n1

for i = 1 : n1 do
Sample xi ∈ Rm according to ρ(x)
Set G(:, i) = ∇f(xi)

end for
Compute SVD of G = V̂ ΣW T , Σ = diag(σ1, . . . , σñ1

)
Choose an integer k such that σ2

k+1/σ
2
k is large

Set V̂1 = V̂ (:, 1 : k), the first k columns of Ṽ

between eigenvalues. In other words, choose k so that λk+1/λk is large. Having chosen a k,

partition V̂ = [V̂1 V̂2], where V̂1 has k columns and V̂2 has m− k columns. We summarize our

approximation to an active subspace of E in Algorithm 2.

The second computational difficulty, having identified approximations (V̂1) to the dominant

eigenvectors of E, is that we need to compute the conditional expectation of f(x) = f(V̂1y+V̂2x)

given ŷ = ŷ∗, where ŷ = V̂ T
1 x and ẑ = V̂ T

2 x. More precisely, we need to compute the conditional

expectation for a set of training points {ŷi}, which we will use to build the response surface.

The conditional expectation of f(x), given ŷ = ŷi, is again an integral over a high-

dimensional space and thus difficult to compute. We will approximate the conditional expecta-

tion at T training points ŷi using Monte Carlo. Specifically, the approximation at the training

points is

E
[
f
(
V̂1ŷ + V̂2ẑ

)
| ŷ = ŷi

]
=

∫
Rm−k

f
(
V̂1ŷi + V̂2ẑ

)
ρẑ|ŷ ( ẑ | ŷi) d ẑ

≈ 1

n2

n2∑
j=1

f
(
V̂1ŷi + V̂2ẑj

)
≡ t̂i,

where the ẑj are chosen at random according to the conditional density function ρẑ|ŷ. In gen-
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Algorithm 3 Compute training pairs

Input:
f(x) : Rm → R

• f continuously differentiable

ρ(x) : probability density function

• ρ(x) > 0 for all x ∈ Rm

• ρ(x) is bounded

m× k matrix V̂1, with orthonormal columns
n2 > 0, n2 ∈ Z
T training points ŷi (coordinates in the active subspace), 1 ≤ i ≤ T

Output:
T training points (ŷi, ti), 1 ≤ i ≤ T

for i = 1 : T do
ti = 0
for j = 1 : n2 do

Sample zj ∈ range
(
V̂2

)
according to ρẑ|ŷ

ti = ti + f(V̂1ŷi + V̂2ẑj)
end for

end for

eral, the conditional density function may be very complicated. However, if ρ(x) is a standard

Gaussian density, that is, x is a standard Gaussian random vector, then y and z are standard

Gaussian random vectors and ρẑ|ŷ is also a standard Gaussian density [82, p. 200]. Algorithm

3 summarizes our computation of the training points.

We now have training pairs (ŷi, ti)
T
i=1, 1 ≤ i ≤ T , and can fit a response surface to them (i.e.

using some form of regression or interpolation). A natural question to ask at this point is: How

much error is incurred by the Monte Carlo approximation to E, the Monte Carlo approximation

to the conditional expectation at the training points, and by fitting a response surface to the

training pairs?

We answer the question in Theorem 4.3, which is a restatement of [28, Theorem 3.7]. Since

we have not specified how to compute the response surface, we will merely assume that the

root mean squared error between the response surface, which we call f̂ , and the conditional

expectation of f , is bounded above by some constant. The actual error is obviously affected

by the number of training points, the location of the training points, and the response surface

construction method.
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Theorem 4.3 (Theorem 3.7 in [28], [29]). Make the following assumptions:

1. f(x) : Rm → R is continuously differentiable and ρ(x) is a probability density function

such that ρ(x) is bounded and strictly positive

2. Algorithm 2 produces V̂1 such that
∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
≤ ϵ

3. Algorithm 3 approximates the conditional expectation of f given ŷ = ŷi with n2 samples

at training points ŷi to produce training pairs (ŷi, t̂i)

4. We construct f̂ using the training pairs such that the root mean squared error between f̂

and the conditional expectation of f given ŷ = ŷ∗ is bounded by c2.

Then,√∫
Rm

(
f(x)− f̂(ŷ)

)2
ρ(x)dx ≤

c1

(
1 +

1
√
n2

)(
ϵ
√

λ1 + . . .+ λk +
√

λk+1 + . . .+ λm

)
+ c2,

where c1 is a constant that depends on the probability density function ρ(x).

Remark 4.1. We make the following observations about Theorem 4.3:

1. The quality of the response surface approximation depends on the eigenvalues of E, the

accuracy (ϵ) of the approximation to V1, the number of Monte Carlo samples (n2) used to

estimate the conditional expectation, a constant c1, and the method used to construct the

response surface (through c2).

2. The method we choose to construct the response surface is of critical importance. Since

c2 appears as an additive term, if a large error is incurred while constructing the response

surface, the overall error will be large, regardless of how well we have approximated an

active subspace.

3. The influence of n2, the number of Monte Carlo samples used to approximate the condi-

tional expectation, on the root mean square error is weak, since (1 + 1√
n2
) is between one

and two.

In Theorem 4.3, we assumed that we computed V̂1 so that
∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
≤ ϵ. In the

next section, we show how many samples n1 are needed to obtain an absolute error of at most

ϵ.
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4.2.3 Bounds on estimating eigenvectors

In this section, we answer the question: How large does n1 need to be to approximate the

eigenvalues and eigenvectors of E? We present a bound by Constantine et al. [30, Corollary 3.6]

on the number of samples n1 to ensure, with high probability, that the distance between the

subspaces defined by V1 and V̂1,
∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
(see [54, Section 2.5.3]), is not too large.

Theorem 4.4 (Corollary 3.6 in [30]). Assume that f(x) : Rm → R is continuously differentiable

and that ρ(x) is a probability density function such that ρ(x) is bounded and strictly positive.

Let E be defined as in (4.1) and let E have the eigendecomposition described in (4.2).

Assume 0 < ϵ <
λk−λk+1

5λ1
and 0 < δ < 1. If

n1 ≥
3

ϵ2
L2

λ1
ln

(
2m

δ

)
,

then, with probability at least 1− δ,∥∥∥V1V
T
1 − V̂1V̂

T
1

∥∥∥
2
≤ 4ϵ

λk − λk+1
.

We derive a bound on the number of samples necessary to approximate∥∥∥V1V
T
1 − V̂1V̂

T
1

∥∥∥
2

that does not depend on the total number of parameters m. The structure of our bound is

slightly different, since we want it to hold for any 0 < ϵ < 1, and do not want terms other than

ϵ on the right hand side.

Theorem 4.5. Assume that f(x) : Rm → R is continuously differentiable and that ρ(x) is a

probability density function such that ρ(x) is bounded and strictly positive.

Let E be defined as in (4.1) and let E have the eigendecomposition described in (4.2).

Assume 0 < ϵ < 1 and 0 < δ < 1. If

n1 ≥
(
2 +

2ϵ

3

)
25L2

ϵ2min{1, 1/λ1}2 (λk − λk+1)
2 ln

(
4 (λ1 + . . .+ λm)

λ1δ

)
,

then, with probability at least 1− δ, ∥∥∥V1V
T
1 − V̂1V̂

T
1

∥∥∥
2
≤ ϵ.
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Proof. See Section 4.6.

Remark 4.2. We have the following comments about Theorem 4.4 and 4.5.

1. The proof of Theorem 4.5, see Section 4.6, relies on a deterministic bound on the distance

between subspaces and a probabilistic bound on the sum of random matrices. The proof

is similar to the earlier work by Constantine et al. but relies on a different probabilistic

bound.

2. Both Theorems 4.4 and 4.5 are somewhat conceptual. In order to determine the number

of samples necessary for ϵ accuracy, we need to know the true eigenvalues as well as an

upper bound L on ∥∇f(x)∥2, for all x ∈ Rm.

While we are unlikely to know these quantities, the bounds tell us that approximating

an active subspace is more difficult when the absolute eigenvalue gap between an active

subspace and its orthogonal complement is small, f is not smooth, or the eigenvalues decay

slowly.

3. The logarithmic term in Theorem 4.5 is usually an improvement over the logarithmic term

in Theorem 4.4, because it does not directly depend on the total number of parameters, m.

For example, if the eigenvalues are such that λk
λ1

≥ γ
λk+1

λ1
, for some γ > 1, then

k∑
i=1

λi

λ1
≤ k and

m∑
i=k+1

λi

λ1
≤ 1

γ
(m− k).

It follows that 4(λ1+...+λm)
λ1

≤ 4
γm. If γ ≥ 2, then

4(λ1 + . . .+ λm)

λ1
≤ 2m.

4. Theorem 4.5 emphasizes that the number of samples does not depend explicitly on m,

which indicates that Algorithm 2 should scale well as the total number of parameters m

becomes very large.

4.3 Evaluating response surface error

In Section 4.2, we described how to identify an active subspace of a function f and approximate

f with a response surface f̂ over the active subspace. In this section, we discuss how to evaluate

the error incurred by approximating f with f̂ .

One way to measure the error between f and f̂ is to compute the root mean square error. In

Theorems 4.2 and 4.3, we presented a bound on the root mean square error between f and f̂ .
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The mean is taken over all x ∈ Rm, with respect to ρ(x). The root mean square error provides

a very general idea of how well f̂ approximates f . We say that it is very general because one

would expect that the error for x in an active subspace would be considerably smaller than

the error for x outside an active subspace. The root mean square error blends all these points

together. It is also an absolute, rather than relative, measure of the error.

A more precise way to measure the error is to compute the relative error between f̂ and f

at different testing locations. Specifically, we want to get a sense for the magnitude of

|f(x)− f̂(y)|
|f(x)|

, (4.3)

where y = V T
1 x.

Consider the following decomposition of the error, which we obtain by adding and subtract-

ing f(V1y), using the triangle inequality, and reordering the terms

|f(x)− f̂(y)|
|f(x)|

≤ |f(V1y)− f̂(y)|
|f(x)|

+
|f(x)− f(V1y)|

|f(x)|
.

The magnitude of the first term depends primarily on the method used to construct the re-

sponse surface. In particular, it should be small at the training points. The second term is the

information lost by computing f using the projected version of x. While we do not have a bound

on this term, we expect that it depends primarily on the “size” of the information outside the

active subspace (λk+1, . . . , λm).

With the intuition from the bound above, we want to see whether the relative error is

small for two types of points x. First, we should verify that f̂ is a good approximation to f

on the active subspace, range (V1), over which we trained the response surface. To do this, we

choose testing points x ∈ range (V1). If these relative errors are small, then our response surface

construction method has done an acceptable job of approximating f over the active subspace.

Second, we compute the relative error for points x outside the active subspace. If these

relative errors are small, then our response surface is a good approximation to f for points

outside the active subspace.

Note that if we fail to construct an accurate enough response surface over the active subspace

(i.e. the errors are large for testing points x outside the active subspace.) it is unlikely that the

response surface will well approximate points outside the active subspace. Thus, care should be

taken to construct a response surface in such a way as to ensure some degree of accuracy.

Also note that even if we construct a “good” response surface over the active subspace,

we may still have large errors for testing points outside the active subspace, if, for example,

λk+1, . . . , λm are large or we do not accurately approximate the important directions.
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4.4 Description of specific problem

We want to demonstrate our approach to evaluating the response surface error for a problem

with an active subspace of more than a few dimensions. To do this, we extend a problem

considered by Constantine et al. [28, Section 5]. We describe the original problem in Section

4.4.1 and our extension in Section 4.4.2.

4.4.1 Original problem

Our quantity of interest f is defined in terms of the solution of a partial differential equation.

We begin by describing the PDE and how we obtain a numerical solution, and then define the

quantity of interest.

Consider

−∇s · (a(s)∇su(s, a(s))) = 1, s ∈ [0, 1]× [0, 1],

with boundary conditions u = 0 on the top, left, and bottom boundaries and ∂u
∂s1

= 0 on the

right boundary. The coefficient a(s) is a log-Gaussian second order random field with zero mean

and covariance function C(s, s′). The random field can be expressed in terms of the eigenvalues

(µi) and orthonormal eigenfunctions (ϕi(s)) of C using a Karhunen-Loéve expansion [87, (5.5)]

ln(a(s)) =

∞∑
i=1

√
µiϕi(s)xi.

In the expansion above, xi are independent standard Gaussian random variables. For more

details about random fields and the Karhunen-Loéve expansion, see Section 4.8.

We discretize and solve the PDE with finite elements in MATLAB’s PDE Toolbox. Let

{ni}Ni=1 be the nodes of the finite element discretization. The eigenvalues and eigenfunctions

of C are approximated by the eigenvalues and eigenvectors of the N ×N covariance matrix C

with elements

Cij = C(ni,nj), 1 ≤ i ≤ N, 1 ≤ j ≤ N.

We choose to discard eigenvalues that are smaller than 10−12. Let m < N be the number of

eigenvalues larger than 10−12. Then, we approximate

ln(a(s)) ≈
m∑
i=1

√
µ̂iϕ̂ixi ≡ â(s,x),

where µ̂i and ϕ̂i are the eigenvalues and eigenvectors of the covariance matrix C and x is a

vector of m independent standard Gaussian random variables. Notice that â(s,x) approximates

ln(a(s)) at the nodes {ni}Ni=1.
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Let v(s, â(s,x)) be the N × 1 vector containing the solution to the discretized PDE at the

nodes. We define our quantity of interest to be

f(x) = rTMv ≈
∫ 1

0
u


 1

s2

 , a


 1

s2



 ds2

where M is the mass matrix of the discretization and r is a vector of zeros and ones, with ones

for the nodes located on the right boundary.

The function f(x) depends on m random variables. Constantine et al. ([28, Section 5.2] and

[30, Section 5.2]) determined that, for two specific choices of covariance functions, f(x) changes

primarily along a single direction in the m-dimensional parameter space. In Section 4.4.2, we

extend the problem to obtain a function f that changes along multiple directions.

4.4.2 Modified problem

Since we are interested in evaluating the effectiveness of approximating a function over an active

subspace of several dimensions, we modify the function described in Section 4.4.1 to incorporate

more than one direction of change. Consider a family of PDEs

−∇s · (a(s, w)∇su(s, a(s, w)) = 1, s ∈ [0, 1]× [0, 1], 1 ≤ w ≤ W.

The boundary conditions for each separate PDE are identical to that of the original prob-

lem. The random fields are log-normal with mean zero and covariance function Cw. Using the

Karhunen-Loéve expansion, we express each random field in terms of mw eigenvalues and eigen-

vectors of the related covariance matrix and mw standard Gaussian random variables.

Let vw(s, â(s,xw)) be the solution to the wth discretized PDE. Our quantity of interest is

f(x1, . . . ,xW ) =

W∑
w=1

rTMvw ≈
W∑
w=1

∫ 1

0
u


 1

s2

 , a


 1

s2

 , w


 ds2.

As before r is a vector of zeros and ones, with ones for the nodes located on the right bound-

ary, and M is the mass matrix associated with the discretization. We hypothesize that the f

defined above, which depends on
∑W

w=1mw total parameters, should change primarily along W

directions, provided that the covariance functions Cw are sufficiently different.

To use Algorithm 2 to identify an active subspace, we will need to compute ∇f(x1, . . . ,xW ).

Constantine et al. in [28, Section 5] outline a procedure to compute ∇f when W = 1. It is easy

to extend the procedure to compute the gradient when W > 1.
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4.5 Numerical example

To see if we can construct a response surface f̂ that is a good approximation to f , in the sense of

the error measures discussed in Section 4.3, for a problem with an active subspace of more than

a few dimensions, we consider the modified problem described in Section 4.4.2 with W = 10.

We choose the covariance functions from two families, the exponential and the rational

quadratic (see [82, p. 86] and [1, Section 4.2.3 and 4.2.4]). Specifically, we choose

C = exp(−
∥∥s− s′

∥∥α
2
) and C =

(
1 +

∥s− s′∥22
2α

)α

for α = [2/5 4/5 6/5 8/5 10/5].

To compute values of f and ∇f , we must approximate the solution to each of the 10 PDEs.

We use a finite elements on a mesh with N = 727 nodes and solve the PDEs with MATLAB’s

PDE Toolbox. For the covariance matrices that we chose,
∑W

w=1mw = 3556.

In the remainder of the section, we will use Algorithm 2 to identify an active subspace

(Section 4.5.1), use Algorithm 3 to compute training points (Section 4.5.2), fit a response surface

to the training points (Section 4.5.2), and evaluate the error between f and the response surface

(Section 4.5.3) using the criteria discussed in Section 4.3.

4.5.1 Identify active subspace

We hypothesize, because of its construction, that there is a ten-dimensional active subspace.

To verify this (and to find a basis V̂1), we will run Algorithm 2 using n1 = 100 and n1 = 1000

Monte Carlo samples.

We show the normalized squared singular values computed by Algorithm 2 for n1 = 100 and

n1 = 1000 in Figure 4.1. In both cases, there is clearly one largest gap, between the tenth and

eleventh singular values. The gap is roughly 102, and indicates, as we anticipated, that it is be

appropriate to approximate f(x) = f(x1, . . . ,x10) over an active subspace of ten dimensions.

4.5.2 Compute training points and construct response surface

To construct a response surface f̂ , we build a piecewise multilinear interpolation approxima-

tion to f(x) using the Sparse Grid Interpolation Toolbox [69, 70] in MATLAB. We choose this

method because it is designed to be practical in high-dimensions, is implemented in existing soft-

ware, and is fairly simple. Of course, many other options for constructing the response surface

exist. In particular, one could fit a Gaussian process, as was done in [28, Section 5]. Gaussian

processes have the advantage of coming with “confidence intervals” around the constructed

surface.
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Figure 4.1: Normalized squared singular values of G. Left plot: G constructed with 100 gradient
samples. Right plot: G constructed with 1000 gradient samples.

Though we are primarily interested in constructing a response surface in a 10-dimensional

subspace, we construct surfaces in k = 1, 2, . . . , 14 dimensions to get a sense for how well the

interpolation method performs and to confirm that 10 is the “right” dimension. Since we cannot

fit a surface over all of Rk, we choose to fit the surface over [−3, 3]k = [−3, 3]× . . .× [−3, 3]. This

comprises three standard deviations of the standard Gaussian random variables. The toolbox

constructs a sparse grid over [−3, 3]k (here the coordinates are with respect to range (V1)). We

set the relative tolerance of the toolbox to 10−1.

Thus, our training points ŷi are the sparse gridpoints chosen by the toolbox. We display the

number of training points for each k in Table 4.1. With these in hand, we compute the training

pairs using Algorithm 3. Because of the small effect on the root mean square error caused by

increasing n2 (see Theorem 4.3), we simply set n2 = 1, as was done in [28, Section 4.2]. Since

we have decided to estimate the conditional expectation using only one “sample,” we set ẑ1 = 0

in Algorithm 3, rather than choosing it randomly from the conditional distribution.

Table 4.1: Number of points in sparse grid for active subspaces of dimension k.

k 1 2 3 4 5 6 7

Training points 5 29 177 1 105 6 993 15 121 30 241

k 8 9 10 11 12 13 14

Training points 56 737 100 897 171 425 280 017 442 001 677 041 1 009 905
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Figure 4.2: Root mean square error using 100 testing points between f and response surfaces f̂
constructed over k = 1, . . . , 14 dimensions. Left plot: G constructed with 100 gradient samples.
Right plot: G constructed with 1000 gradient samples.

4.5.3 Evaluate error

We are interested in several types of error (see Section 4.3) incurred by approximating f over

the active subspace. To begin with, there is the root mean squared error that we bounded in

Theorem 4.3, which averages together the squared error between f̂ and f over all of Rm.

To approximate the root mean squared error, we choose 100 points xi ∈ Rm so that each

entry of xi is a standard Gaussian random variable. Figure 4.2 shows the root mean square

error for the active subspaces of dimension k = 1, . . . , 14√√√√ 1

100

100∑
i=1

(f(xi)− f̂(V̂ T
1 xi)2.

The root mean square error decreases as the dimension k increases. Notice that there is almost

no gain moving past k = 10, which indicates, as expected, that f changes primarily over a

k = 10 dimensional subspace. Additionally, we see that there is not a significant difference

between the root mean square error when n1 = 100 and n1 = 1000.

To evaluate the relative error (4.3) for points in the active subspace, we compute the relative

error between the response surface f̂ and the original function f at testing points ai chosen

at random from [−3, 3]k. In the left plot of Figure 4.3, we display the maximum, mean, and

minimum relative error computed at 10k points for surfaces computed over k = 1, . . . , 14

dimensions. For each surface constructed, the maximum observed relative error is less than

10−1. When G is constructed with n1 = 1000 gradient samples, the maximum and mean relative

error for k = 9, . . . , 14 is slightly smaller than for n1 = 100.

To get a better sense for the distribution of errors when k = 10, we plot all 100 relative
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Figure 4.3: Maximum, mean, and minimum relative error |f̂ − f |/|f | at 10k testing points for
response surfaces over active subspaces of dimension k = 1, 2, . . . , 14. Testing points chosen from
active subspace. Left plot: G constructed with 100 gradient samples. Right plot: G constructed
with 1000 gradient samples.

errors in Figure 4.4. When n1 = 100, about half of the relative errors are smaller than 10−2.

For n1 = 1000, about 80% of the relative errors are smaller than 10−2.

To evaluate the relative error for points outside the active subspace, we choose 10k random

points ai from [−3, 3]k. For each ai, we choose 10 random points oij from the affine orthogonal

subspace. Thus, we evaluate 100k testing points ai+oij that live (almost certainly) outside the

active subspace. The relative error between the true value of f and the approximate value f̂ is

computed.

In Figure 4.5, we display the maximum, mean, and minimum relative error over the 100k

testing points for the surface computed over k = 1, 2, . . . , 14 dimensions. Notice that as the

dimension increases, the mean error decreases, until k = 10, where it levels off. The maximum

for n1 = 100 is just above 10−1, while for n1 = 1000, it is almost exactly 10−1.

In Figure 4.6, we show all relative errors for the surfaces constructed over dimension k = 10.

While the maximum error for k = 10 is above 10−1 for both choices of n1, notice that nearly all

relative errors are below 10−1. The errors are somewhat smaller, on the whole, for n1 = 1000,

than for n1 = 100.

Based on our examination of the errors in Figures 4.2 - 4.6, we conclude that the k =

10 dimensional response surface is able to approximate points inside and outside the active

subspace with relative errors generally smaller than 10−1.
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Figure 4.4: Relative errors |f̂ − f |/|f | at 100 testing points for response surface over active
subspace of dimension 10. Testing points chosen from active subspace. Left plot: G constructed
with 100 gradient evaluations. Right plot: G constructed with 1000 gradient evaluations.
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Figure 4.5: Maximum, mean, and minimum relative error |f̂ − f |/|f | at 10k testing points for
response surfaces over active subspaces of dimension k = 1, 2, . . . , 11. Testing points chosen
from outside active subspace. Left plot: G constructed with 100 gradient samples. Right plot:
G constructed with 1000 gradient samples.
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Figure 4.6: Relative errors |f̂ − f |/|f | at 1000 testing points for response surfaces over ac-
tive subspace of dimension 10. Testing points chosen from outside active subspace. Left plot:
G constructed with 100 gradient evaluations. Right plot: G constructed with 1000 gradient
evaluations.

4.6 Proof of Theorem 4.5

To prove the bound, we will need a concentration inequality that relies on the intrinsic dimen-

sion of a matrix P . If P is an m×m symmetric positive semi-definite matrix then the intrinsic

dimension is [97, Definition 7.1.1]:

intdim (P ) ≡ trace (P ) / ∥P∥2 .

It is easy to see that 1 ≤ intdim (P ) ≤ rank (P ) ≤ m.

The following matrix concentration inequality bounds a sum of random matrices in terms

of the intrinsic dimension of a matrix (P ) that succeeds (in the sense of the Löwner partial

ordering [64, Section 7.7]) a sum of second moments.

Theorem 4.6 (Theorem 7.3.1 and (7.3.2) in [97]). Let Xj be n1 independent real symmetric

random matrices, with E [Xj ] = 0, 1 ≤ j ≤ c. Let max1≤j≤n1 ∥Xj∥2 ≤ p1, and let P be a

symmetric positive semi-definite matrix so that
∑n1

j=1E
[
X2

j

]
⪯ P . Then for any ϵ ≥ ∥P∥1/22 +

p1/3

Pr

∥∥∥∥∥∥
n1∑
j=1

Xj

∥∥∥∥∥∥
2

≥ ϵ

 ≤ 4 intdim (P ) exp

(
−ϵ2/2

∥P∥2 + p1ϵ/3

)
.

We are now ready to apply the theorem to our problem. Note that the proof of the following

theorem is very similar to [61, Theorem 7.8].

Theorem 4.7. Let E be defined as in (4.1) and let E have the eigendecomposition described
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in (4.2). For any δ > 0, with probability at least 1− δ,∥∥∥Ê − E
∥∥∥
2
≤ γ +

√
γ(γ + 6), where γ =

1

3n1
L2 ln

(
4trace (E)

∥E∥2 δ

)
.

Proof. To use Theorem 4.6, we define

Xj =
1

n1
∇f(xj)(∇f(xj))

T − 1

n1
E

and perform the following computations:

1. Zero mean.

E [Xj ] =
1

n1

∫
(∇f(x)(∇f(x))T − E)ρ(x) dx

=
1

n1

∫
∇f(x)(∇f(x))Tρ(x) dx− 1

n1

∫
Eρ(x) dx = 0.

2. Bound on ∥Xj∥2. We have that

∥Xj∥2 ≤
1

n1
max

{∥∥∇f(xj)(∇f(xj))
T
∥∥
2
, ∥E∥2

}
≤ 1

n1
max{L2, ∥E∥2}.

Now,

∥E∥2 =

∥∥∥∥∫ ∇f(x))(∇f(x))Tρ(x) dx

∥∥∥∥
2

≤
∫ ∥∥∇f(x)(∇f(x))T

∥∥ ρ(x) dx
≤ L2.

Thus, ∥Xj∥2 ≤ L2/n1 ≡ ρ1.

3. The matrix P . We first calculate E
[
X2

j

]
. We have

E
[
X2

j

]
=

1

n1
2

∫ (
∇f(x)(∇f(x))T − E

)2
ρ(x)dx

=
1

n1
2

[∫
(∇f(x)(∇f(x))T )2ρ(x)dx−

∫
∇f(x)(∇f(x))TEρ(x)dx

−
∫

E∇f(x)(∇f(x))Tρ(x)dx+

∫
E2ρ(x)dx

]
=

1

n1
2

[∫
(∇f(x)(∇f(x))T )2ρ(x)dx−

∫
∇f(x)(∇f(x))Tρ(x)dxE
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−E

∫
∇f(x)(∇f(x))Tρ(x)dx+

∫
E2ρ(x)dx

]
=

1

n1
2

[∫
(∇f(x)(∇f(x))T )2ρ(x)dx− E2 − E2 +E2

]
=

1

n1
2

[∫
(∇f(x)(∇f(x))T )2ρ(x)dx− E2

]
.

Thus, E
[
X2

j

]
⪯ 1

n1
2

∫
(∇f(x)(∇f(x))T )2ρ(x)dx. Now note that

∫
(∇f(x)(∇f(x))T )2ρ(x)dx =

∫
∥∇f(x)∥22∇f(x)(∇f(x))Tρ(x)dx.

It follows that

1

n1
2

∫
∥∇f(x)∥22 (∇f(x)(∇f(x))T )2ρ(x)dx ⪯ L2

n1
2
E.

since L2 − ∥∇f(x)∥22 ≥ 0 for every x ∈ Rm.

We have shown that E
[
X2

j

]
⪯ L2

n1
2E. Thus,

∑n1
j=1E

[
X2

j

]
⪯ L2

n1
E, and we set P = L2

n1
E.

4. Compute intdim (P ). Since trace () is a linear function

intdim (P ) =
trace

(
L2

n1
E
)

∥∥∥L2

n1
E
∥∥∥
2

=
trace (E)

∥E∥2

5. Application of Theorem 4.6. Substitute the quantities we computed into Theorem 4.6. We

see that

Pr
[∥∥∥Ê − E

∥∥∥
2
≥ ϵ
]
≤ 4

trace (E)

∥E∥2
exp

(
−ϵ2/2

L2/n1 ∥E∥2 + L2ϵ/(3n1)

)
.

Set the right hand side of the above equation equal to δ and solve for ϵ to obtain

ϵ = γ +
√

γ(γ + 6 ∥E∥2), where γ =
L2

3n1
ln

(
4trace (E)

∥E∥2 δ

)

6. Check condition. We need to verify that

ϵ ≥ ∥P∥1/22 + p1/3,
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for the quantities computed above. In other words, we need to check that

γ +
√

γ(γ + 6 ∥E∥2) ≥
L

√
n1

∥E∥1/22 +
L2

3n1
.

Expanding the terms on the left hand side, notice that

L2

3n1
ln

(
4trace (E)

∥E∥2 δ

)
+

√
L2

3n1
ln

(
4trace (E)

∥E∥2 δ

)(
L2

3n1
ln

(
4trace (E)

∥E∥2 δ

)
+ 6 ∥E∥2

)

≥ L2

3n1
ln

(
4trace (E)

∥E∥2 δ

)
+

√
2L ∥E∥1/22√

n1
.

Now,
L2

3n1
ln

(
4trace (E)

∥E∥2 δ

)
+

√
2L

√
n1

∥E∥1/22 ≥ L
√
n1

∥E∥1/22 +
L2

3n1

provided that ln (4trace (E) /(∥E∥2 δ)) > 1, which is true for any 0 < δ < 1. We made

this assumption in the statement of the theorem.

We can use the previous result to get a bound on the number of samples (n1) to obtain an

error of at most ϵ.

Corollary 4.1. Let 0 < ϵ < 1 and 0 < δ < 1. If

n1 ≥
(
2 +

2ϵ

3

)
1

ϵ2
L2 ln

(
4trace (E)

∥E∥2 δ

)
,

then ∥∥∥Ê − E
∥∥∥
2
≤ ϵ.

Proof. We want to determine n1 such that γ +
√
γ(γ + 6 ∥E∥2) ≤ ϵ, where

γ =
L2

3n1
ln(4trace (E) /(∥E∥2 δ)).

Set γ = t/(3n1) and n1 = αt/ϵ2. Our goal now is to determine an α such that

ϵ2

3α
+

√
ϵ2

3α

(
ϵ2

3α
+ 6 ∥E∥2

)
≤ ϵ.

Multiply both sides by α/ϵ and simplify to obtain√
ϵ2 + 18α ≤ 3α− ϵ.
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Square both sides and solve for α to find

α ≥ 2 +
2

3
ϵ.

We will also need one final result, which bounds
∥∥∥V1V

T
1 − V̂1V̂

T
1

∥∥∥
2
in terms of Ê − E, to

prove our theorem.

Theorem 4.8 (Corollary 8.1.11 in [53]). Let E and Ê be m×m symmetric matrices. Let V ΛV T

be the eigenvalue decomposition E, where V = [V1 V2] and V1 is m× k. Then, if λk − λk+1 > 0

and ∥∥∥Ê − E
∥∥∥
2
≤ λk − λk+1

5

we have that ∥∥∥V1V
T
1 − V̂1V̂

T
1

∥∥∥
2
≤ 4

(λk − λk+1)

∥∥∥V T
2 (Ê − E)V1

∥∥∥
2
.

Proof of Theorem 4.5: We assumed in the statement of the theorem that 0 < ϵ < 1 and

0 < δ < 1. Set

ϵ̂ =
min{ϵλ1, ϵ}(λk − λk+1)

5λ1
.

By Corollary 4.1, we know that, since 0 < ϵ̂ < 1, that if

n1 ≥
(
2 +

2ϵ

3

)
25λ2

1L
2

min{ϵλ1, ϵ}2(λk − λk+1)2
ln

(
4trace (E)

∥E∥2 δ

)

then, with probability at least 1− δ,
∥∥∥Ê − E

∥∥∥
2
≤ ϵ̂.

We now want to apply Theorem 4.8. Since it is also true that ϵ̂ <
λk−λk+1

5 , we have that,

with probability at least 1− δ,∥∥∥V1V
T
1 − V̂1V̂

T
1

∥∥∥
2

≤ 4

λk − λk+1

∥∥∥V T
2 (Ê − E)V1

∥∥∥
2

≤ 4

λk − λk+1

∥∥∥Ê − E
∥∥∥
2

≤ 4

λk − λk+1
ϵ̂

=
4

5

min{ϵλ1, ϵ}
λ1

≤ ϵ.
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4.7 Conditional probability

Let ρ(x) be the probability density function of x and ρ(x) > 0 for all x. Also let V = [V1 V2]

be an m×m orthogonal matrix, where V1 is m× k and V2 is m× (m− k) and define y = V T
1 x,

and z = V T
2 x.

Let ρy,z(y, z) ≡ ρ(V1y+V2z) be the joint probability density function of y and z and recall

that the marginal density of y is

ρy(y) ≡
∫
Rm−k

ρy,z(y, z)dz.

Notice that since we assumed that ρ(x) is strictly positive, the marginal density of y is also

strictly positive. Finally, the conditional density function of z given y = y∗ is

ρz|y(y, z) ≡
ρy,z(y, z)

ρy(y)
.

Since the marginal density of y is strictly positive, we do not divide by zero.

Similarly, one can also define the conditional density function of y given z = z∗ using the

marginal density of z.

4.8 Random Fields

A Gaussian random field a(s) [1, Definition 1.3] over R2 is a function such that, for any integer

k > 0, and any k fixed points s1, . . . , sk ∈ R2, the vector[
a(s1) . . . a(sk)

]
has a multivariate Gaussian distribution. We can thus describe a Gaussian random field on R2

with a mean function m(s) and a covariance function C(s, s∗).
Similarly, a log-Gaussian random field is a random field such that the natural log of the

field is a Gaussian random field. Thus, if a(s) is a log-Gaussian random field, then ln(a(s)) is a

Gaussian random field. Using our description of Gaussian random fields above, we can also say

that, for any integer k > 0, and any k fixed points s1, . . . , sk ∈ R2 the vector[
ln(a(s1)) . . . ln(a(sk)

]
has a multivariate Gaussian distribution. Log-Gaussian fields are described by specifying the

mean and covariance function of the underlying Gaussian random field.
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If a(s) is a second order random field, meaning that E
[
a(s)2

]
≤ ∞ [87, Definition 4.43],

then a(s) can be expressed with a Karhunen-Loéve expansion (see [87, (5.5)]). Let µi and ϕi(s),

1 ≤ i ≤ ∞, be the eigenvalues and orthonormal eigenfunctions of C(s, s′). Then,

a(s) =
∞∑
i=1

√
µiϕi(s)xi,

where xi are random variables. If a(s) is a Gaussian random field, then xi are standard Gaussian

random variables [87, pg 110].

4.9 Piecewise multilinear interpolation on sparse grids

We borrow the notation of Barthelmann et. al [5] to describe piecewise multilinear interpolation

over a sparse grid. See also [68, Section 3.3] and [48]. The main advantage of sparse grids is

that the accuracy of a base interpolation method (for us, piecewise linear interpolation) in one

dimension is preserved in d dimensions, using many fewer points than are contained in a full

grid in d dimensions.

Suppose we want to interpolate a function f in d dimensions on [0, 1]d and that for each

dimension we have a set of

mi =


1 : i = 1

2i−1 + 1 : i > 1

equally spaced nodes xij1 , . . . , x
i
jmi

where

xijk =


1
2 : k = 1, mi = 1

k−1
mi−1 : k = 1, . . . ,mi, mi > 1;

the standard hat functions hij1(x
i), . . . , hijmi

(xi) (see [68, pg. 38 (c)]) centered at the nodes; and

a corresponding one-dimensional interpolation formula

U i(f) =

mi∑
j=1

f(xij)h
i
j .

To construct the interpolant over all d dimensions, we simply tensor product the individual
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approximations

(U i1 ⊗ . . .⊗ U id)(f) =

mi1∑
j1=1

. . .

mid∑
jd=1

f(xi1j1 , . . . , x
id
jd
)(hi1j1 ⊗ . . .⊗ hidjd),

where hi1j1 ⊗ . . .⊗hidjd ≡
∏d

k=1 h
ik
jk
. This approximation is over the full grid and is very expensive

to compute.

The sparse grid and the approximation over the sparse grid are defined as follows. Let

∆i = U i − U i−1 where U0 = 0. Then the sparse grid interpolation, for i = (i1, . . . , id)
T 4 and

any integer q ≥ d, is ∑
∥i∥1≤q

(∆i1 ⊗ . . .⊗∆id)(f).

The level ℓ of a sparse grid is defined to be ℓ ≡ q − d.

The sparse grid we have described is called the Clenshaw-Curtis grid. Other sparse grids

are possible (see [68, Section 3.3], and not all sparse grids have equally spaced nodes.

As an example, let d = 2 and choose q = 3 so that we construct the sparse grid of level

ℓ = 1. Then we have the sparse grid interpolation formula

(∆1 ⊗∆1)(f) + (∆1 ⊗∆2)(f) + (∆2 ⊗∆1)(f).

The node associated with ∆1 = U1−U0 = U1 is {1/2}. The nodes associated with ∆2 = U2−U1

are {0, 1}. The nodes associated with each tensor product are shown in Figure 4.7, along with

the complete level one sparse grid. In Figure 4.8, we show the level two sparse grid, which

consists of the level one sparse grid, as well as the nodes associated with ∆2 ⊗ ∆2, ∆3 ⊗ ∆1,

and ∆1 ⊗∆3.

4Each ij is a positive integer.
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Figure 4.7: Top left: ∆1 ⊗∆1. Top right: ∆1 ⊗∆2. Bottom left: ∆2 ⊗∆1. Bottom right: level
one sparse grid.

Figure 4.8: Level two sparse grid.
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