
ABSTRACT

BOOKMAN, LAKE DAWSON. Approximate Solitons of the Landau-Lifshitz Equation . (Under the
direction of Dr. Mark Hoefer.)

Under highly idealized assumptions the model for a thin ferromagnetic film supports a family

of large amplitude, localized waves in the magnetization, termed droplet solitons [Kos90; HS12]. In

physical systems, these highly idealized assumptions cannot be met, yet there have been recent

observations of structures similar to droplet solitons in experiments where both damping and spin-

transfer torque effectively cancel each other out [Moh13; Mac14]. Typically, damping and forcing

are small and may be viewed as a perturbation of the classical model. This thesis derives a general

framework for investigating such perturbations, as well as many others, using the techniques of

soliton perturbation theory. The method utilized here is generalized to a broad class of Hamiltonian

systems which includes the model of magnetic systems studied here. Also derived is an approximate,

analytical representation of the droplet soliton, which is valid for low frequencies and low velocities.

Leveraging the approximate droplet, many analytical results can be obtained for quite complex

systems. A wide range of physically relevant effects are explored determining the particle-like

dynamics of the droplet. The most important of these applications is the nanocontact spin torque

oscillator which corresponds to the experimental conditions where the droplet has been observed.

The framework here is used to probe the existence and stability of the droplet in certain parameter

regimes utilizing classical tools from dynamical systems theory. The validity of the approximate

theory is tested by comparison with careful numerical experiments.
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CHAPTER

1

INTRODUCTION

Even the most elementary study of magnetic materials reveals the importance of coherent structures.

The tendency of ferromagnetic materials to form domains of aligned magnetization was well known

in quite early models and experiments [CG11]. When using a continuous model for the magnetiza-

tion, solitons or domain walls, as localized solutions, offer a mathematical explanation for the rapid

transition which occurs between magnetic domains. Accordingly, solitons are a rich area of research

in ferromagnetic materials where a wide array of such structures can be observed[Kos90]. In this

context, solitons correspond to regions of a magnetic material where the direction of the magnetiza-

tion vector, M= [Mx , M y , Mz ], exhibits a significant deviation from a uniform background. Solitons

in magnetic media are of particular interest as a mechanism for data storage or information transfer.

Since the discovery of the spin torque effect by Slonczewski[Slo96] and Berger[Ber96], magnetic

vortices, domain walls and skyrmions have all been created and studied with exactly that application

in mind [Cow07; Par08; Fer13]. This thesis focuses primarily on a different localized structure, the

magnetic droplet soliton (or droplet from here on), illustrated in Fig. 1.1. There is a current need
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for more theory relating to the droplet because of its recent observation in experiment [Moh13;

Mac14]. Broadly speaking, solitons are special solutions of nonlinear partial differential equations

that receive significant attention because of their nontrivial dynamics and often appear in the long

time behavior of solutions.

In a more precise sense, solitons are a particular class of analytical solution to integrable partial

differential equations. The model for a one-dimensional ferromagnet is integrable, but the focus of

this thesis is for a ferromagnetic film where the model is non-integrable. The droplet here is a two-

dimensional analogue of the exact solution to the one-dimensional model, but no analytical solution

is known to exist. The droplet can be computed numerically and its stability numerically verified

[HS12]. It is also possible to approximate the droplet in certain parameter regimes, as will be done

later in this chapter. The mathematical term soliton is often reserved for integrable systems, and the

droplet is more properly dubbed a solitary wave. However, this mathematical distinction is often

ignored in physical systems and the terms soliton and solitary wave will be used interchangeably

throughout this thesis.

Figure 1.1(a) shows a plot of an approximate solution for the droplet (an explicit formula will

be given later in this chapter). An assumption on the model here is that the ferromagnetic layer is

saturated so that the magnetization vector is of uniform length (Ms ) throughout the medium. It is

therefore convenient to work with a nondimensionalized magnetization, m=M/Ms = (mx , my , mz ).

The arrows represent the in-plane component of the magnetization vector, (mx , my ), and the color

corresponds to the out of plane component of the magnetization, mz . Far from the origin, the

magnetization is pointing nearly straight up: the arrows in plane are small and all the magnitude is

concentrated in mz . Near the origin, the magnetization is nearly, but not quite, pointing straight

down and in between there is a rapid transition region where mz ≈ 0 (the white band). Figure

1.1(b) plots the mz profile along the line y = 0. Superimposed on this profile is the vector (mx , mz ).

Moving from left to right, the vector can clearly be observed to point (at least slightly) to the left.

If instead the vector transitioned from pointing left to pointing right, a nonzero winding number
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(a) (b)

Figure 1.1 (a) A representation of the approximate droplet with precessional frequency,ω, of 0.1 and prop-
agation velocity, V, of [.02, 0]. In this figure, the arrows represent the in-plane component of the magnetiza-
tion and the color the out of plane component. One key contribution of this thesis is the extension of the
approximate droplet to the propagating case. The non-trivial phase contribution can clearly be seen in the
variation of the arrows. (b) A slice down the x−axis of the plot in (a). The vectors representing (mx , mz ) are
superimposed on the vertical profile of the droplet to illustrate the manner in which the droplet transitions
from the far-field to the nearly reversed state and back.

would be necessary to transition between the left and right states, commonly called topological

charge [Kos90]. For the droplet, this is prevented by the restriction that the magnetization never

fully reverse, since any such transition would require an instant of full reversal. Hence the droplet

has no overall topological charge which is one of the most fundamental properties distinguishing it

from other magnetic solitons.

One of the key differences between the droplet and other magnetic solitons is that the droplet is

fundamentally a dynamic structure. As time advances, the arrows will rotate in plane with a fixed

frequency. This contrasts to other magnetic solitons where the magnetization may remain static or

is characterized by a switching frequency (e.g. magnetic bubbles) [DL80; Fin13]. As will be clarified

later in this chapter, the precession of the droplet plays a vital role in stabilizing the droplet and

preventing it from relaxing to the uniform state. Such a mechanism is necessary since the droplet

has no topological charge and hence is not stabilized by its topology as happens with other magnetic

solitons. Additionally, droplets can propagate through a medium and are not fixed to a particular
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point. This propagation is made possible by the fact that the magnetization never fully reverses. A

single reversal of the magnetization vector in a homogenous medium leads to pinning (as happens

with vortices), by general arguments involving conserved quantities [PT91].

The droplet in Fig. 1.1 is one example from a six-parameter family of solutions to an idealized

model. This model, the Landau-Lifshitz equation, is elaborated on in the next section (Section 1.1).

The model presented there includes certain physical assumptions: a sufficiently thin ferromagnetic

layer, strong perpendicular anisotropy (preferred direction of the magnetization due to its crystal

structure) and perpendicular applied field. These assumptions introduce certain symmetries in

the mathematical model, which in turn generate free parameters in the general solution. As will be

further clarified later, the typical parameterization involves the rest precession frequency,ω, and a

propagation velocity, V, as well as parameters corresponding to the initial state for these angular

and linear velocities.

The main goal of this thesis is to characterize the influence of additional physical effects (e.g.

damping and forcing) on these solitons. The strategy employed involves a combination of numerical

investigation and careful asymptotic analysis to elucidate the underlying physics. To accomplish

this analysis, these previously neglected physical effects must be added back into the underlying

model. However, many of these effects are small and it is natural to consider the adiabatic evolution

of the solitons along the soliton manifold. This strategy has been broadly employed in the field of

nonlinear waves (see [KM89] for an exhaustive review). Additionally, the Landau-Lifshitz equation

is a Hamiltonian system and this structure can be utilized to simplify the asymptotic calculation

involved.

Hamiltonian systems are among the most common models in physics. Examples within the

context of nonlinear partial differential equations are the Nonlinear Schrödinger (NLS), Korteweg-de

Vries equation (KdV) and the Sine-Gordon equation. Such systems are characterized by a skew-
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adjoint operator J and the Hamiltonian, E :

∂ z

∂ t
= J∇E (z ) (1.1)

where z is the state variable. E is typically viewed as the energy of the system, since the structure of

Hamiltonian systems guarantees that this quantity remains constant in time. To extend to possibly

non-Hamiltonian systems, the model is augmented by adding a small perturbation, P , to the

equation. Soliton solutions can often be found in these systems and the general question of soliton

stability has been characterized in the celebrated works [Gri87; Gri90]. In what follows, the existence

of a stable soliton solution is assumed.

The core principle is that the complicated dynamics of the perturbed system can be projected

onto a lower dimensional space, similar to the strategy employed in a truncated Galerkin discretiza-

tion. Much information can be gleaned form simply projecting onto a family of functions which

contains most of the key features of the target solution as has been done recently for modifications

of the NLS equation in [CS14]. However, greater physical insight can be gained into perturbed,

soliton-supporting equations by projecting onto the soliton solution manifold. The dynamics of the

perturbed problem reduce to the dynamics of a few parameters with specific physical meaning. In

this way the solitons are thus ascribed particle like qualities, and the reduced-order system can be

viewed as analogous to Newton’s laws in a field theoretic context.

One standard approach is to consider the conserved quantities of the P = 0 model. This idea

is immediately sensible since the existence of soliton solutions is intimately connected with the

existence of symmetries of an equation (and via Noether’s theorem with the existence of conserved

quantities). When P 6= 0 these quantities will no longer be conserved, but balance laws can be

derived relating the change in time of these quantities to the perturbation (See Appendix C for

an example). Evaluating along the soliton manifold, the dynamics of these conserved quantities

can be mapped to the dynamics of the soliton parameters. Such approaches have been used in
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many applications, e.g. for NLS and optics [KS95; Abl09]. The main obstacle here is that often many

conserved quantities are unknown and ad hoc approaches of balance laws must be employed to

determine equations for all the parameters. Systematic approaches can be taken to determining

these conserved quantities, but such strategies require full knowledge of the underlying symmetries

of an equation which may be difficult to determine.

In Chapter 2, a singular perturbation theory approach, previously applied to NLS in [Wei85], is

generalized to a broad class of Hamiltonian systems. The main advantage of this approach is that

no knowledge of the conserved quantities or symmetries of the system are needed, only knowledge

of the parameters. This is in contrast to more ad hoc approaches involving conserved quantities

[KS95]. The main obstacle is the need to characterize the generalized null space of a linear operator,

which in general is a difficult problem. With the addition of a physically motivated assumption,

however, enough elements from the generalized null space can be obtained to close the modulation

equations even in this very abstract setting. Thus the aim is to recover a practical method to describe

perturbed soliton dynamics in general systems, much like the stability criterion of Grillakis, Shatah

and Strauss, [Gri87; Gri90]. Note that these equations only govern the leading order dynamics, but

do not give the next order correction and neglect coupling to dispersive radiation. In most physical

contexts understanding the modification of the soliton is sufficient, but finding these corrections

could be done in principle.

Using the general machinery developed for Hamiltonian systems, Chapters 3 and 4 derive and

utilize the modulation equations for a range of perturbations of physical interest. These examples

include the effect of field gradients, damping and forcing. The combination of these different

perturbations are sufficient to make qualitative comparison to the recent experimental work of

[Moh13; Mac14] and offer possible insight into the usefulness of droplets in nanoscale magnetic

devices. Finally, Chapter 5 discusses numerical approaches to computing solitons for the perturbed

models without appealing to asymptotic theory.
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1.1 Mathematical Model

1.1.1 Torque Equation

The mathematical model considered here is the following torque equation for the vector field

magnetization M

∂M

∂ t
=−

�

�γ
�

�µ0M×Heff+P,

Heff =
2A

µ0M 2
s

∇2M+

�

H0+
2Ku

µ0M 2
s

Mz

�

z+Hm.
(1.2)

The ferromagnetic material is taken to be of infinite extent in the x -y directions and of finite

thickness δ in z . The parameters are the gyromagnetic ratio γ, the permeability of free space µ0,

the exchange stiffness parameter A, the perpendicular magnetic field amplitude H0, the crystalline

anisotropy constant Ku, and the saturation magnetization Ms. P represents any perturbation that

maintains the magnetization’s total length, i.e. P ·M ≡ 0. The structure of Eq. 1.2 immediately

guarantees that ∂ |M|∂ t = 0. The Landau-Lifshitz equation refers specifically to a model which includes

a specific form of damping. The torque equation becomes the Landau-Lifshitz equation when

P=αM× (M×Heff)where α, the damping parameter, is typically small but nonzero. Note that this

choice of P satisfies the constraint that P ·M= 0.

The boundary conditions are limx 2+y 2→∞M=Msz and ∂M/∂ z = 0 when z =±δ/2. Hm is the

magnetostatic field resulting from Maxwell’s equations. That is, Hm satisfies ∇×Hm and can be

written in terms of a potential Hm =−∇U . Additionally in the ferromagnetic layer,∇·Hm =−∇·M.
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In terms of the potential U this requirement becomes

∇2U =











∇·M |z |< δ
2

0 |z |> δ
2

(1.3)

∂U

∂ z

�

�

�

�

z=± δ2

=∓mz (x , y ,±
δ

2
) (1.4)

Altogether, Heff represents a net effective magnetic field, due to the combined effects of magnetic

exchange, applied field, anisotropy and the long range effects of the magnetostatic field. By assuming

a uniform in z magnetization distribution, the two-dimensional (2D), film thickness averaged

magnetostatic field can be greatly simplified. As derived in [GC04a], the magnetostatic energy for a

z independent magnetization can be given in Fourier space as

Em =
δ

2

∫

R2

�

|k ·ÒM⊥|2

k 2
[1−bΓ (kδ)]

+ |ÛMz −Ms|2bΓ (kδ)
�

dk,

(1.5)

where

bΓ (κ) =
1− e −κ

κ
. (1.6)

Computing the negative variational derivative of Em with respect to M and expanding bΓ (kδ) for

|kδ| � 1 gives the result

Hm ∼−Mz z+
δ

2
Hnl,

Hnl = z
p

−∇2(Mz −Ms) +
1

p
−∇2

∇(∇·M⊥),
(1.7)

where M⊥ = (Mx , M y ), δ is assumed to be small relative to the typical transverse wavelength of

excitation, i.e., the exchange length, and the operators are interpreted in Fourier space, e.g., Û
p
−∇2 f =

|k| bf and bf (k) is the two-dimensional Fourier transform of f at wavevector k. We will absorb the
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nonlocal magnetostatic correction −δM×Hnl/2 into the small perturbation P.

Nonlocal magnetostatic corrections have also been used to study domain patterns and vortices

in materials with easy-plane anisotropy [GCE01]. Further simplification can be obtained using the

magnetic exchange length lex =
Æ

2A/(µM 2
s ) and the dimensionless quality factor Q = 2Ku/(µ0M 2

s ),

assumed to be greater than unity to guarantee the existence of droplet solutions in the unper-

turbed (P= 0, δ= 0) problem [Kos90]. Nondimensionalizing time by [
�

�γ
�

�µ0Ms(Q −1)]−1, lengths by

lex/
p

Q −1, fields by Ms(Q −1), and setting m=M/Ms, eq. (1.2) becomes the 2D model

∂m

∂ t
=−m×

�

∇2m+ (mz +h0)z
�

+p,

p=
P

|γ|µ0M 2
s (Q −1)

−
δ

2
m×hnl, (x , y ) ∈R2.

(1.8)

While the presentation of the torque equation in vectorial form (Eq. (1.8)) is natural, it is not

always the most convenient form to work in. Since m(x, t ) ∈ S 2 for all x, t , one can use different

parameterizations of the sphere to give different expressions for the range space of m. In this way

the constraint that |m|= 1 is encoded in the equations. Two natural choices are used extensively in

this work: 1) classical spherical coordinates and 2) stereographic projection of the coordinates.

To make the transformation to spherical variables, set m= [sin(Θ)cos(Φ), sin(Θ)sin(Φ), cos(Θ)]

(See Figure 1.2). Substituting into Eq. (1.8) and solving for ∂ Θ∂ t and ∂ Φ
∂ t , yields

∂ Θ

∂ t
= F [Θ,Φ] +PΘ (1.9)

sin(Θ)
∂ Φ

∂ t
=G [Θ,Φ]−h0 sin(Θ) +PΦ (1.10)

where
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F [Θ,Φ] =
∇·

�

sin2 (Θ)∇Φ
�

sin (Θ)
(1.11)

G [Θ,Φ] =
1

2
sin (2Θ)

�

|∇Φ|2+1
�

−∇2Θ (1.12)

and PΘ = p · eΘ, PΦ = p · eΦ where eΘ, eΦ are the canonical polar and azimuthal basis vectors. The

primary advantage of this coordinate system stems from its relationship to the Hamiltonian variables

for the torque equation: cos(Θ),Φ [HS12]. As a result, many analytical computations are greatly

simplified by working in these variables.

ϕ
ρ

x

y
Θ

Φ

~m
ẑ

Figure 1.2 A representation of the relationship between the polar variables (Θ,Φ) parameterizing the mag-
netization (range-space), which differs from a polar representation of the plane (ρ,ϕ) for the domain.

The stereographic projection motivates the change of variables w =
mx+i my

1+mz
(See Figure 1.3 ).

There is a singularity of this transformation as mz →−1, but this transformation remains useful for

the droplet as this case corresponds to full reversal of the magnetization which is excluded from

consideration. Differentiating this expression for w with respect to t , substituting into Eq. (1.8) and

simplifying yields the equation

i
∂ w

∂ t
=∇2w −

2w ∗∇w ·∇w +w (1−w ∗w )
1+w ∗w

−h0w +Pw (1.13)
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x

y

Im

Re

w

m

m

w

D O M AI N

R AN G E

Figure 1.3 An illustration of the relationship between w and m via the stereographic projection. While
both sets have the same domain R2, w takes on a value in the complex plane such that m ∈ S 2, w and the
south pole are collinear. This introduces a singularity as m approaches pointing straight down. This pro-
jection is reverse of the more common stereographic projection from the northern pole, but is convenient
here as the droplet never fully reverses.

where z ∗ denotes the complex conjugate of z and

Pw =
1

2

�

i px

�

1+ |w |2
�

−py

�

1− |w |2
�

− i pz w
�

1+ |w |2
��

(1.14)

and px , py , pz are defined by p= [px , py , pz ]. Eq. (1.13) is frequently more convenient for numerical

calculations since it reformulates the torque system as a single equation for a complex-valued func-

tion. Furthermore, in the weakling nonlinear regime Eq. (1.13) reduces to the Nonlinear Schrödinger

equation. However, the nonlinear gradient terms offer significant complexity to the equation. The

similarity to NLS makes the droplet analogous to the Townes mode, with the important distinc-

tion that the droplet is a stable structure. Throughout this thesis, all three presentations of the

Landau-Lifshitz equation will be extensively used.

In the case that p= 0, the torque equation admits several conserved quantities which will be

used throughout this work. The total energy (also the Hamiltonian for this system) is given by
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E [m] = 1

2

∫

R2

�

‖D m‖2
F + (1−m 2

z ) +h0(1−mz )
�

d x (1.15)

where D m denotes the usual matrix derivative of m and ‖·‖F denotes the Frobenius norm of a

matrix. Equivalently, in spherical variables the energy is given by

E [Θ,Φ] =
1

2

∫

R2

�

|∇Θ|2+ sin2 (Θ)
�

1+ |∇Φ|2
�

+h0(1− cos(Θ)
�

d x (1.16)

or

E [w ] = 2

∫

R2

∇w ∗ ·∇w +w ∗w

(1+w ∗w )2
+

h0w ∗w

1+w ∗w
d x (1.17)

in stereographic variables. The total spin, given by

N [m] =
∫

R2

(1−mz )d x, (1.18)

N [Θ,Φ] =

∫

R2

(1− cos(Θ))d x, (1.19)

or

N [w ] = 2

∫

R2

w ∗w

1+w ∗w
d x, (1.20)

is also conserved. The total momentum,

P [m ] =
∫

R2

�my∇mx −mx∇my

1+mz

�

d x, (1.21)

P [Θ,Φ] =−
∫

R2

(1− cos(Θ))∇Φd x, (1.22)

or

P [w ] =−2

∫

R2

�Im (w ∗∇w )
1+w ∗w

�

d x, (1.23)

is the final conserved quantity that this thesis uses extensively. Via Noether’s theorem, each of these
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conserved quantities corresponds to a symmetry of the equation. For instance, the momentum is

generated by translation invariance of the torque equation. There are additional conserved quantities

corresponding to other symmetries of the equation (e.g. rotational invariance of the domain or

range leading to angular momentum)[PT91]. Solitons are often formulated as energy minimizing

solutions subject to specific constraints (see [RW88; Siv08] for examples of this procedure applied to

NLS). Similarly, the droplet can be viewed as energy minimizing solution subject to the constraints

that the momentum and total spin are fixed values. This formulation relates the three conserved

quantities with soliton parameters (ω and V ) arising as Lagrange multipliers in the optimization

problem. This relationship means that these three quantities are not independent for the droplet,

which has implications for deriving the modulation equations using the perturbed conservation

law approach.

1.1.2 Droplet Solitons

In order to study the droplet, some approximate representation of this soliton, particularly capturing

its dependence on the soliton parameters is required. This could be performed numerically with a

“database” of droplet solutions as in [HS12]. This section derives an approximate solution to eq. (1.8)

when p = 0, a restriction maintained for the remainder of this section. The solution describes a

slowly moving droplet with frequency just above the Zeeman frequency. A droplet soliton can be

characterized by six parameters: its precession frequencyω above the Zeeman frequency h0 in these

non-dimensional units, propagation velocity V= [Vx , Vy ], initial phase Φ0, and the coordinates of

the droplet center ξ= [ξx ,ξy ] =Vt +x0 (see Fig. 1.4).

Previously, approximate droplet solutions have been found in two regimes: (i) frequencies,

velocities near the linear (spin-wave) band edge corresponding to propagating, weakly nonlinear

droplets approximated by the NLS Townes soliton 0 < 1−w − V 2

4 � 1 [Iva01] (ii) 0 < ω� 1 with

zero velocity corresponding to stationary, strongly nonlinear droplets approximated by a circular

domain wall [Kos86; IS89]. The focus here is on large amplitude propagating solitons where the

13
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x

y
x0

Φ0

ω

V

Figure 1.4 Illustration of the droplet parameters. The vector in the middle represents the in-plane compo-
nent of the magnetization at the center of the droplet.

magnetization is nearly reversed because experiments operate in this regime. Note, however, that

the weakly nonlinear regime could also be studied. The defining equation for the droplet can be

formulated as a boundary value problem by expressing the magnetization in spherical variables in

the frame moving and precessing with the soliton Θ→Θ(x−ξ), Φ→Φ0+ (h0+ω)t +Φ(x−ξ):

−sin(Θ)V ·∇Θ =∇·
�

sin2Θ∇Φ)
�

(1.24)

sin(Θ)(ω−V ·∇Φ) =−∇2Θ+
1

2
sin(2Θ)(1+ |∇Φ|2) (1.25)

lim
|x|→∞

∇Φ=−
V

2
, lim
|x|→∞

Θ = 0.


































(1.26)

This problem can be further simplified by exploiting the invariance of Eq. (1.8) under rotation

of the domain to align the x -axis with the propagation direction. In this coordinate system, V=V x̂.

Adding the assumptions of small frequency and propagation speed, a simple correction to the

known, approximate stationary droplet can be found.

14
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1.1.3 Approximate Stationary Droplet

For the sake of completeness, what follows is a detailed derivation of the smallω approximation for

the stationary droplet. First, take as an ansatz

Θ =Θ0(ρ) +ωΘ1(ρ,ϕ) + . . . and Φ= a constant . (1.27)

Above, (ρ,ϕ) are polar variables for the plane, whose origin is centered on the droplet. That is

ρ =
Æ

(x −ξx )2+ (y −ξy )2 and ϕ = arctan
� y−ξy

x−ξx

�

(see Fig. 1.2) .

The ansatz in Eq. (1.27) trivially satisfies Eq. (1.24) when V= 0. Substituting into Eq. (1.25) yields



















−
�

d 2

dρ2
+

1

ρ

d

dρ

�

Θ0+ sinΘ0 cosΘ0−ωsinΘ0 = 0

dΘ0

dρ
(0;ω) = 0, lim

ρ→∞
Θ0(ρ;ω) = 0.

(1.28)

The goal is a uniformly valid approximate solution to this problem in the limit that 0 < ω � 1.

Motivated by the 1D domain wall solution [LL35], begin by introducing a shifted coordinate system

ρ = R + A
ω , where A is some constant which will be determined by solvability conditions. In this

coordinate, (1.28) becomes

−

�

d 2

d R 2
+

1
�

R + A
ω

�

d

d R

�

Θ0+ sinΘ0 cosΘ0−ωsinΘ0 = 0 (1.29)

Expanding (1.29) and keeping terms only to first order inω,

−
d 2Θ0

d R 2
+ sinΘ0 cosΘ0+ω

�

−
1

A

dΘ0

d R
− sinΘ0

�

=O
�

ω2
�

. (1.30)

Inserting the asymptotic expansion Θ0 = Θ0,0+ωΘ0,1+O
�

ω2
�

into (1.30) and matching terms at

15
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leading order

O (1) : −
d 2Θ0,0

d R 2
+ sinΘ0,0 cosΘ0,0 = 0 (1.31)

O (ω) : −
d 2Θ0,1

d R 2
+ cos(2Θ0,0)Θ0,1 =

1

A

dΘ0,0

d R
+ sinΘ0,0 (1.32)

It is readily verified that the solution to (1.31) isΘ0,0 = cos−1 (tanh(R +R0))where R0 is some arbitrary

constant. This is the Landau-Lifshitz domain wall solution [LL35]. For simplicity, choose R0 = 0 since

it is not restricted unless seeking a higher order solution. Taking L = −∂R R + cos(2Θ0,0), equation

(1.32) is of the form Lψ= f . In this case, L is a Schrödinger operator and hence self-adjoint with

kernel spanned by sech(R ). Solvability then requires that

1

A

dΘ0,0

d R
+ sinΘ0,0 =

�

1−
1

A

�

sech(R )

is orthogonal to the kernel of L = L †. Thus
�

1− 1
A

�

sech(R )will be a nontrivial element of the kernel of

L unless A ≡ 1. Further, this choice of A means the equation at O (ω) is trivially satisfied. Substituting

back to the ρ coordinate system, the leading order solution

Θ0 = cos−1
�

tanh
�

ρ−
1

ω

��

+O
�

ω2
�

. (1.33)

is obtained, which agrees with previous derivations [Kos90; BH13].

This solution is expected to be valid in the regime that R is O (1), that is ρ is on the same order

as 1
ω . By examining the residual of eq. (1.29) with the approximate solution (1.33), this solution

can be seen to be valid for all ρ. Substituting this approximate solution into (1.28), the residual is

(1−ρω)sech(ρ− 1
ω )/ρ. For all ρ, asω→ 0, the residual is no larger than O

�

ω2
�

and the solution is

uniformly valid.

Matching the approximate solution (1.33) for ρ� 1 using regular perturbation theory demon-

strates that Θ0(0) =π to all orders inω. Therefore, the approximate droplet is exponentially close to
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being fully reversed at its core.

1.1.4 Approximate Propagating Droplet

The derivation of the approximate moving droplet is significantly simplified by exploiting the

invariance of Eqs. (1.24)-(1.25) under rotation of the domain and working in the frame where Vy = 0

and |V|= |Vx |=V . The derivation proceeds as before by substituting the ansatz

Θ =Θ0(ρ) +V Θ1(ρ,ϕ) +O
�

V 2
�

and Φ=Φ0+V Φ1(ρ,ϕ) +O
�

V 2
�

(1.34)

into Eqs. (1.24)-(1.25). At order O (1), this yields one nontrivial equation: precisely Eq (1.28). From

here on out, it is further assumed that 0 < ω � 1. While it is assumed that V is small, the rela-

tive ordering of ω and V will be determined during the derivation to guarantee validity of the

approximation. At order O (V ),

sin(Θ0)∆Φ1+
�

cos(ϕ) +2 cos(Θ0)
∂ Φ1

∂ ρ

�

dΘ0

dρ
= 0, (1.35)

∆Θ1+ (ωcos (Θ0)− cos (2Θ0))Θ1 = 0. (1.36)

Equation (1.36) is solved by Θ1 = 0. Substituting the approximate solution for Θ0 into Eq. (1.35)

�

∆Φ1− cos(ϕ)−2 tanh
�

ρ−
1

ω

�

∂ Φ1

∂ ρ

�

sech
�

ρ−
1

ω

�

= 0 (1.37)

The residual in Eq. (1.37) is determined by two considerations. If 1�
�

�ρ ∼ 1
ω

�

�, sech
�

ρ− 1
ω

�

dominates

and the residual is exponentially small. In the other case, i.e. ρ ∼ 1
ω , the residual will only be small if

∆Φ1−cos(ϕ)−2 tanh
�

ρ− 1
ω

� ∂ Φ1
∂ ρ is small since sech

�

ρ− 1
ω

�

is O (1). This suggests that the boundary

condition, limρ→∞∇Φ1 =− 1
2 x̂ , may be neglected. It is possible to treat the boundary condition at

infinity; however, this requires multiple boundary layers and complicated matched asymptotics.

These calculations significantly complicate the form of the final solution and only contribute to
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second-order corrections. While these calculations could improve the overall error bounds, for

the purposes of this thesis, it is sufficient to capture only the leading order behavior. Assuming

Φ1 is separable of the form Φ1(ρ,ϕ) = f (ρ)cos(ϕ), Eq. (1.37) simplifies to the ordinary differential

equation
d 2 f

dρ2
+
�

1

ρ
−2 tanh

�

ρ−
1

ω

��

d f

dρ
−

1

ρ2
f = 1. (1.38)

Numerical solutions of Eq. (1.38) demonstrate that f becomes quite large, approximately O
�

1
ω2

�

near ρ = 1
ω . Factoring this into the analysis, changing to the coordinate system R = ρ − 1

ω and

expanding f in the series

f (ρ) =
f0(ρ)
ω2

+
f1(ρ)
ω
+ f2(ρ) + · · · . (1.39)

We define the linear operator L = d 2

d R 2 −2tanh(R ) d
d R . Substituting the ansatz in Eq. (1.39) into Eq.

(1.38) yields,

O
�

1

ω2

�

: L f0 = 0 (1.40)

O
�

1

ω

�

: L f1 =−
d f0

d R
(1.41)

O (1) : L f2 =−
d f1

d R
+1+ f0+R

d f0

d R
(1.42)

Eq. (1.40) admits any constant solution. Take f0 = A. Substituting this expression for f0 into Eq. (1.41),

yields L f1 = 0. Thus, any constant solution is admissible for f1 as well. Take f1 = B . Substituting

these expressions for f0 and f1 into Eq. (1.42), yields L f2 = 1+A. L † = d 2

d R 2 +2tanh(R ) d
d R + sech(R ).

L †g = 0 is solved by g = sech(R ). Hence solvability of L f2 = 1+ A requires that
∫∞
−∞ sech(R )(1+

A)d R = 0 which implies that A =−1. Similarly, solvability at O (ω) requires B = 0. This process can

be continued indefinitely, but further higher order corrections will not improve global accuracy

unless the boundary condition at infinity is included requiring more complex matched asymptotic

methods. Hence, it is sufficient to take f (ρ) =− 1
ω2 +O

�

1
ω

�

,ω→ 0, which gives rise to the form of
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the approximate droplet

Θ = cos−1
�

tanh
�

ρ−
1

ω

��

+O
�

ω2, V 2
�

(1.43)

Φ=Φ0+ (h0+ω)t −
V

ω2
cos(ϕ) +O

�

V

ω

�

. (1.44)

The error estimates provided here are supported by numerical investigations solving Eqs. (1.28) and

(1.38) for Θ0 and f respectively (see Fig: 1.5 )
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Figure 1.5 (a) Comparison between the numerical solution to Eq. (1.28). The dashed line shows good
agreement between the computed error and the theoretical error bound O

�

ω2
�

. (b) Comparison between
the numerical solution to Eq. (1.38) for f . The dashed line shows good agreement between the computed
error and the theoretical error bound O

�

1
ω

�

, owing to the neglected boundary conditions.

This approximation is valid so long as

0≤ |V | �ω, 0<ω� 1. (1.45)

As for the stationary case, the propagating droplet can be viewed as a precessing, circular domain

wall with a radius that is the inverse of the frequency. The new term −V cos(ϕ)/ω2 reveals the

deviation of the propagating droplet’s phase from spatial uniformity. While the relations in (1.45)
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may, at first, seem overly restrictive, as demonstrated in Chapter 3 and Chapter 4, important and

practical information about propagating droplets can be obtained in this regime. This approximate

solution offers both an error estimate and is amenable to further analysis in the context of the

perturbed Landau-Lifshitz equation (1.8). Furthermore, it provides a significant improvement over

the approximate droplets used in past numerical experiments [PZ98], when the asymptotic relations

(1.45) hold.

1.1.5 Approximate Droplet as a Particle-like Dipole

Utilizing the approximate form (1.43), (1.44) for the droplet, a map can be constructed between

its parameters and the conserved quantities. Evaluating the integrals in Eqs. (1.15) - (1.23) at the

approximate droplet,

N = 2π

ω2
, (1.46)

P = 2π

ω3
V (1.47)

E = π

ω3

�

|V|2+4ω2+h0ω
�

. (1.48)

where higher order terms inω and |V|have been neglected. These formulae extend the predictions for

stationary droplets, see, e.g., [Kos90], and offer an analogy to classical particle dynamics. Rewriting

E in terms of the other conserved quantities,

E =
p

2π

�

1

2

|P |2

N 3
2

+N
1
2

�

+
1

2
h0N . (1.49)

By analogy to classical systems,
p

2π |P |2 /2N 3
2 can interpreted as the kinetic energy of the

droplet,
p

2πN 1
2 as the droplet’s potential energy due to precession, and h0N /2 as the Zeeman

energy of the droplet with the net dipole moment N . Inspection of the kinetic energy term shows
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that

meff =
N 3/2

p
2π
=

2π

ω3
(1.50)

serves as the effective mass for the droplet. Therefore, the 0<ω� 1 regime corresponds to droplets

with large mass. This is a natural interpretation since it is the precession of the droplet which

determines its size and prevents the structure from collapsing in on itself. On the other hand,

eq. (1.47) implies that the slowly propagating |V| �ω regime supports droplets with up to |P |=O
�

1
ω

�

momenta. This observation of an effective mass for the droplet will be revisited in Chapter 3,where

dynamical equations induced by spatial inhomogeneity in the external magnetic field are derived.

One description of the magnetic droplet is as a bound state of magnons [Kos90]. It is then natural

to interpret the potential energy
p

2πN 1
2 as the energy released by decay into these constituent

“subatomic particles”. The expressions (1.46) and (1.47) can also be utilized to verify the Vakhitov-

Kolokolov stability criteria [VK73; Gri90] for a propagating droplet (see [HS12]), namely that Nω < 0

and Nω∇V ·P −∇V N ·Pω < 0.

For the remainder of this work, the approximate droplet in eqs. (1.43), (1.44) will be used when-

ever an analytical solution is appropriate.
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CHAPTER

2

MODULATION THEORY FOR
HAMILTONIAN SYSTEMS

This chapter develops an algorithmic approach to soliton perturbation theory for Hamiltonian

systems. The technique of soliton perturbation theory has been extensively used in the nonlinear

waves community to investigate the behavior of solitary waves in nearly-integrable systems [KM89].

The approach developed in this chapter does not appeal to the underlying integrability of the

system, but instead allows for numerical or asymptotic approximations to be used in lieu of an exact

solution. While integrability is not required, an assumption is placed on the soliton parameters

relating these parameters in a particular way. This statement will be made more precise later in this

chapter. The main result of this analysis is Eq. 2.4, which determines the slow time dynamics of

the parameters of the soliton. The equations determining the time-evolution of parameters will be

referred to as modulation equations. Of course, while this procedure greatly simplifies the derivation

of modulation equations, certain knowledge of the base system (e.g. the parameters being allowed to

vary) is still required. In practice, however, knowledge of the parameters of the soliton is often easier
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to obtain, than knowledge of the conserved quantities [KS95]. Eq. 2.4 reduces to the result of Keener

and McLaughlin [KM77b] for perturbations of multi-soliton solutions in (1+1)D, but this derivation

makes no assumption on the dimension of the system and provides an alternative approach to their

derivation.

In terms of the primary application of this thesis, this analysis is valuable because the Landau-

Lifshitz equation is a Hamiltonian system, with canonically conjugate variables cos(Θ),Φ. That is, the

Landau-Lifshitz system may be written as ∂ cosΘ
∂ t = δEδΦ and ∂ Φ

∂ t =−
δE

δcosΘ , where the right hand sides

are expressed in terms of variational derivatives of the energy E , defined in eq. (1.16). Section 2.4

applies this procedure step by step to derive the modulation equations pertinent for the droplet. For

a comparison of the advantages of this approach, a direct approach of calculating the modulation

equations for the Landau-Lifshitz equation, without overtly appealing to the Hamiltonian structure

is provided in Appendix B.2. The calculation in Appendix B.2 is quite long and involved, but implicitly

relies on the Hamiltonian structure. Many of the steps taken in Appendix B.2 are simply long form

execution of the ideas of this section. The key advantage to observe between the direct approach and

the approach presented here is that a great deal of tedious algebra can be avoided. To demonstrate

both the restrictions and generality of the assumptions imposed by this approach, other Hamiltonian

systems are discussed in Section 2.2

2.1 General Setup for Hamiltonian Systems

The basic procedure is to allow the parameters to vary on a time scale proportional to the strength of

of the perturbation, ε. By allowing the parameters to vary in this way, additional degrees of freedom

are introduced which can be used to resolve the difficulties arising from singular perturbations.

Expanding about the soliton solution in an asymptotic series, one obtains a linear problem at order

ε. In general, this linear equation will not admit solutions bounded in time. However, as utilized by

Weinstein [Wei85], by enforcing orthogonality to the generalized kernel of a linear operator, bounded

solutions are assured, guaranteeing that the linear problem at order ε does not break the asymptotic

23



2.1. GENERAL SETUP FOR HAMILTONIAN SYSTEMS CHAPTER 2.

ordering. Imposing these conditions leads to the modulation equations. This procedure is equivalent

to projecting the solution of the perturbed model onto the family of solitons, neglecting coupling

to small-amplitude dispersive waves. While one might wish to then solve the linear equation at

order ε to obtain a further correction, this will not be done in this work. As will be demonstrated by

the examples in later chapters, quite satisfactory predictions can be made by considering only the

leading order dynamics.

A Hamiltonian system requires a real inner product space, X ; a functional, H : X →R; and a

skew adjoint operator J : X → X . The notation 〈·, ·〉 denotes the inner product on X . The standard

form for a Hamiltonian system is
∂ z

∂ t
= J∇H (z ) (2.1)

where z ∈ X is referred to as the state variable. H represents the Hamiltonian, which is often assigned

the physical meaning of energy since it is automatically a conserved quantity of such a system. In

this context,∇H means the first variation of this nonlinear function and∆H refers to the second

variation (both taken with respect to the state variable, z ). Hamiltonians considered here may

depend explicitly upon additional parameters, q ∈Rm (m is the number of such parameters). Such

parameters may arise due to underlying symmetries and a change of coordinates, such as to a

comoving reference frame. For the examples which arise in this work, the parameters q arise from

just such a transformation, so this thesis will typically refer to these parameters as “frequencies".

In order to perform perturbation theory, there must exist a base state to perturb around. There-

fore it is necessary to assume that Eq. (2.1) admits a solitary wave solution, u .

0= J∇H (u , q). (2.2)

If H depends on q, naturally u will depend on q as well. Typically, the parameters q do not provide

a full parameterization of the solitary wave manifold due to underlying symmetries in the equation

such as translation invariance. Accordingly, u may depend on a separate set of parameters r ∈Rs
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(s is the number of such parameters). For reasons that will become clear in later examples we

refer to these parameters as “phases”. Owing to the relationship between frequencies and phases,

typically s =m ; however, the analysis which follows is possible provided s ≥m . To express this

dependence on these two classes of parameters, the solitary wave will be written u = u (x; q, r). There

is a formal way to recognize a relationship between qi and ri due to the existence of symmetries

[CS07]. Symmetry group methods, for example, applied to rotational invariance imply that if qi is a

frequency, then ri is a phase and the soliton, u , depends on them according to the independent

variable η= qi t + ri . Often times, the Hamiltonian system (2.1) admitting solitary wave solutions

(2.2) is idealized, neglecting important physical effects. While some such effects may give rise to a

different Hamiltonian system, in general such effects do not preserve the Hamiltonian structure.

This analysis treats both cases the same by introducing a small perturbation into the equation itself.

The perturbed model is
∂ z

∂ t
= J∇H (z , q) +εP (2.3)

where 0<ε� 1 and P is a perturbation. The parameters q, r are allowed to vary on a slow time scale,

T = εt . In order to apply the solvability condition presented in Section 2.1.1, perturbations will be

restricted to depend explicitly on time only through this slow time variable, T . In this case, ordinary

differential equations governing the evolution of these parameters can be determined according to

the following theorem.

Theorem 2.1.1. Given the perturbed Hamiltonian system (2.3). If

1. The solitary wave solution, u, exists for the unperturbed system (2.3), ε= 0, and is independent

of t .

2. J has a bounded inverse.

3. ∆H

�

�

�

�

z=u

is self-adjoint for all admissible q.

4. ∀ 1≤ k ≤m, ∃ 1≤ j ≤ s such that ∂
∂ qk
∇H (z , q)

�

�

�

�

z=u

∈ span
¦

J −1 ∂ u
∂ r j

©
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then letting v= [r, q]T ∈Rs+m , the modulation equations are

�

s+m
∑

i=1

�

J −1 ∂ u

∂ vi
,
∂ u

∂ v j

�

d vi

d T

�

=

�

J −1P,
∂ u

∂ v j

�

(2.4)

Equation 2.4 is consistent with previous general results when applied to Hamiltonian systems

[KM77b]. The assumptions of Theorem 2.1.1 may seem restrictive at first, but these conditions are

frequently met in physical systems of interest. In all systems under consideration here there does

exist a solitary wave solution. These solutions generically depend on time, but for the case of a single

solitary wave solution, transforming to the reference frame moving, rotating, and/or precessing

with the solitary wave can eliminate this explicit dependence on time. Such a transformation will

introduce parameters in q and alter the Hamiltonian but leaves the Hamiltonian structure intact.

The second does offer a restriction. For instance, in the Korteweg-de-Vries equation, J does

not admit a bounded inverse and correspondingly the modulation equations require additional

considerations [AS81]. Nevertheless, formal calculations are possible and J is frequently invertible

for Hamiltonian systems (as it is, e.g., for NLS and the Landau-Lifshitz equation).

With appropriate restrictions on the Hamiltonian, the third assumption always holds. The self-

adjoint property of the second variation essentially follows from the same calculation which proves

the equality of mixed partial derivatives in finite-dimensional calculus. More care needs to be taken

in the corresponding calculation on function spaces, but the Hamiltonians derived in physically

relevant systems typically are well enough behaved.

The fourth assumption is restrictive and may seem obscure. However, the parameters of the

soliton are often speeds or frequencies. These parameters are typically linked to initial positions or

initial phase values so that q and r have the same length (s =m). In such cases, the dependence of

the soliton on the parameters in the laboratory frame will be in the form r+ t q. From this tempo-

ral dependence, the relations in Assumption (iv) follow directly. As noted earlier, this parametric

dependence, r+ t q, can follow from symmetry considerations [CS07].
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2.1.1 Solvability Condition

Theorem 2.1.1 relies on the lemma proved in Section 2.1.1, which provides a suitable solvability

condition.

Lemma 2.1.2. Let X be a Hilbert space. Let A be a bounded linear operator mapping X to itself. Let

f ∈ X . Let A† be the adjoint of A, i.e. the unique linear operator satisfying 〈A† x , y 〉= 〈x , Ay 〉 for all

x , y ∈ X . Define Υ : [0,∞)→ X as the solution of the initial value problem











∂ Υ
∂ t = AΥ + f

Υ (0) = Υ0 ∈ X .

(2.5)

Let µ−1 = 0 and A†µi =µi−1 for 0≤ i ≤N , where N denotes the highest integer such that (A†)N has

nontrivial kernel. Then Υ (t )will not be bounded in time unless



µi−1,Υ0

�

+



µi , f
�

= 0 for 0≤ i ≤N .

This lemma is a minor generalization of the solvability condition proven in [Wei85].

Proof. Consider the change of variables given byψ= Υ −Υ0. Equation (2.5) becomes











∂ ψ
∂ t = Aψ+AΥ0+ f

ψ(0) = 0

(2.6)

Note, since A is time-independent its (generalized) null vectors, µi will be time-independent as well.

Consider i = 1. By definition A†µ0 =µ−1 = 0, hence µ0 ∈ ker
�

A†
�

. Projecting (2.6) onto µ0



µ0,
∂ ψ

∂ t

·

=



µ0, Aψ+AΥ0+ f
�

=



A†µ0,ψ
�

+



A†µ0,Υ0

�

+



µ0, f
�

∂

∂ t




µ0,ψ
�

=



µ0, f
�
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Solving this ordinary differential equation yields



µ0,ψ
�

=



µ0, f
�

t +



µ0,ψ(0)
�

. Since ψ(0) = 0,



µ0,ψ(0)
�

= 0 as well. It follows that either the mode



µ0,ψ
�

grows linearly in time or is 0 for all time.

Since µ−1 = 0, imposing the condition that



µ−1,Υ0

�

+



µ0, f
�

= 0 is equivalent to the condition that



µ0, f
�

= 0.

Next assume that for some value i ,



µi ,ψ
�

= 0 for all time. Projecting (2.6) onto µi+1



µi+1,
∂ ψ

∂ t

·

=



µi+1, Aψ+AΥ0+ f
�

=



A†µi+1,ψ
�

+



A†µi+1,Υ0

�

+



µi+1, f
�

∂

∂ t




µi+1,ψ
�

=



µi ,ψ
�

+



µi ,Υ0

�

+



µi+1, f
�

∂

∂ t




µi+1,ψ
�

=



µi ,Υ0

�

+



µi+1, f
�

As for i = 0, the solution the mode



µi+1,ψ
�

will grow linearly in time if



µi ,Υ0

�

+



µi+1, f
�

6= 0 or be

0 for all time. Inductively, the lemma follows.

There are a few key limitations which may not be clear upon first reading the statement of the

lemma itself. First, A and f are assumed to be independent of time. Second, all assumptions of

smoothness of the function space are bound up in the choice of X which is problem specific. In

the context of Hamiltonian systems, X is given and the required smoothness of f is clear. In our

intended application, Eq. (2.5) arises from a linearization of a nonlinear problem about a given state.

Here, A is an unbounded operator. The rigorous generalization of this lemma to an unbounded

operator could be done in principle [Wei85]. In this case, A and f are given, but not X . In order

that Lemma 2.1.2 apply, there must exist an X which makes A and f compatible, and it will be

in that sense which Υ (t ) remains bounded in time. If a given linearization gives rise to Aψ= ∂ 2ψ
∂ x 2 ,

then Lemma 2.1.2 would require f be at least twice differentiable in order for there to be a natural

choice of the underlying Hilbert space. From here on out, sufficient smoothness in the perturbation

that such a Hilbert space is naturally chosen will be assumed. For the perturbations investigated in
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Chapter 3 and Chapter 4 this is the case.

2.1.2 Derivation of Equation (2.4)

The proof of Theorem 2.1.1 proceeds by substituting the ansatz

z = u (x; r(T ), q(T ))+εu1(x, t , T ) +O
�

ε2
�

(2.7)

into (2.3). Expanding in powers of ε, the first order equation becomes

O (ε) : ∂ u1

∂ t
= J∆H (u , q)u1−

∂ u

∂ r

d r

d T
−
∂ u

∂ q

d q

d T
+P (2.8)

Note that Eq. (2.8) is of the form in Lemma 2.1.2, allowing for unbounded operators (A = J∆H (u , q),

f = P − ∂ u
∂ r

d r
d T −

∂ u
∂ q

d q
d T ). In order that the expansion in (2.7) remain asymptotically ordered, it is

necessary that u1(x , t , T ) remain O (1) for sufficiently long times. Lemma 2.1.2 thus gives a condition

that must be satisfied. It remains to characterize the generalized nullspace of (J∆H (u , q))†. Note

that since∆H (u , q) is self-adjoint, (J∆H (u , q))† =−∆H (u , q)J .

Differentiating (2.2) with respect to the parameter r j for 1≤ j ≤ s and applying J −1 to the result

yields∆H (u , q) ∂ u
∂ r j
= 0. It follows that J −1 ∂ u

∂ r j
is in the kernel of (J∆H (u , q))† for all j . Differentiating

(2.2) with respect to the parameter qk for 1≤ k ≤m yields

∆H (u , q)
∂ u

∂ qk
+
∂

∂ qk
∇H (z , q)

�

�

�

�

z=u

= 0. (2.9)

Utilizing assumption (iv),∇H (z , q)

�

�

�

�

z=u

=β J −1 ∂ u
∂ r j

for some scalar β and some j . Now, the second

term in (2.9) may be replaced to obtain

∆H (u , q)J
�

J −1 ∂ u

∂ qk

�

=−β J −1 ∂ u

∂ r j
. (2.10)
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Hence, J −1 ∂ u
∂ qk
∈ ker(∆H (u , q)J )2 and therefore in the generalized nullspace. These two sets of

vectors do not necessarily fully characterize the generalized nullspace; however, these offer a

sufficient number of constraints to uniquely determine the modulation system. Requiring that

f = P − ∂ u
∂ r

d r
d T −

∂ u
∂ q

d q
d T be orthogonal to J −1 ∂ u

∂ qk
and J −1 ∂ u

∂ r j
yields equations (2.4). The modes J −1 ∂ u

∂ qk

and J −1 ∂ u
∂ r j

may not give rise to a complete characterization of the nullspace. As a result, Eqs. (2.4)

are only a necessary but not sufficient condition to prevent secular growth. This concludes the proof

of Theorem 2.1.1.

2.2 Application to NLS

To better explain the results of the preceding section, this section presents how this theory works to

obtain the modulation equations for the Nonlinear Schrödinger equation,

i
∂ ψ

∂ t
+
∂ 2ψ

∂ x 2
+2

�

�ψ
�

�

2
ψ= 0 (2.11)

To begin, the assumptions of Theorem 2.1.1 must be verified. Sinceψ is complex, it may seem a

contradiction that a real Hilbert space is assumed. However, the Hilbert space in question is real,

since the relevant inner product is 〈Υ ,Γ 〉= 1
2

∫∞
−∞(Υ

∗Γ +ΥΓ ∗)d x . This is only an inner product if the

field of scalars is take to be real, which can be readily verified by checking the linearity condition for

inner products. The first assumption is that there is a solitary wave solution. A standard presentation

of a single, bright soliton solution for NLS is given by [Abl09],

ψ(x , t ) =ηe i (t (α2+η2)+α(−2αt+x−x0)+φ0)sech
�

η (−2αt + x − x0)
�

(2.12)

In this presentation, the soliton parameters are η, the amplitude; x0, an initial position; φ0, an

initial phase and α, half the soliton speed. However, the soliton is not independent of time in

these variables and a change of coordinates is necessary for Theorem 2.1.1 to apply. For notational
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simplicity, the parameters V = 2α, the soliton velocity andω=α2+η2 a precession frequency will

be used. Note that in these variables, the time dependence of the soliton is related to the parameters

by the quantities x0+V t andωt +φ0. This motivates the change of coordinates x → ξ+V t and

ψ→ e −iωtχ(ξ, t ). Under this transformation, Eq. (2.11) becomes

i
∂ χ

∂ t
+
∂ 2χ

∂ ξ2
+2

�

�χ
�

�

2
χ −ωχ − i V

∂ χ

∂ ξ
= 0 (2.13)

and the solution of Eq. (2.11) given in Eq. (2.12) maps to the time independent function

χs (ξ) =
1

2

p

4ω−V 2 e i ( 1
2 V (ξ−x0)+φ0)sech

�

1

2

p

4ω−V 2 (ξ− x0)
�

(2.14)

Eq. 2.13 is still a Hamiltonian system, with Hamiltonian

H (χ ,ω, V ) =

∫

R

�

−
�

�

�

�

dχ

dξ

�

�

�

�

2

+
�

�χ
�

�

4−ω
�

�χ
�

�

2
+V Im

�

χ∗
dχ

dξ

�

�

dξ (2.15)

where Im (·) denotes the imaginary part of the argument. Note that the Hamiltonian explicitly

depends on the soliton parameters, ω and V . In the general terminology used in the previous

section, q= [ω, V ]. Note that the soliton in Eq. (2.14) additionally depends on the parametersφ0 and

x0 (i.e. r= [φ0, x0] using the previous notation). Computing the variational derivative of H (χ ,ω, V )

yields

∇H (χ ,ω, V ) =
∂ 2χ

∂ x 2
− i V

∂ χ

∂ x
+ (2

�

�χ
�

�

2−ω)χ (2.16)

and Eq. (2.13) can be rewritten as
∂ χ

∂ t
= i∇H (χ ,ω, V ) (2.17)

By inspection of Eq. (2.17), the skew adjoint linear operator J for this system is multiplication by the

imaginary unit i . It remains to verify the assumptions of Theorem 2.1.1. Eq. 2.13 admits a soliton
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solution independent of time and it is to this system that Theorem 2.1.1 will be applied. Since

multiplication by i is invertible, J −1 exists and the second assumption is satisfied. The second

variation of H ,

∇2H (χ ,ω, V )[Υ ] =
∂ 2Υ

∂ x 2
− i V

∂ Υ

∂ x
+ (4

�

�χ
�

�

2−ω)Υ +2χ2Υ ∗ (2.18)

is self-adjoint, independent of the choice ofω and V , which can be verified by a straightforward

calculation. The final assumption holds by direct computation. For example,

∂

∂ V
∇H (χ)

�

�

�

�

χ=χs

=−i
∂ χs

∂ ξ
= i
∂ χ

∂ x0
=−(−i )−1 ∂ χ

∂ x0
=−J −1 ∂ χ

∂ x0
. (2.19)

therefore ∂
∂ V ∇H (χ)

�

�

�

�

χ=χs

∈ span
¦

J −1 ∂ χ
∂ x0

©

. A similar calculation can be done verifying the relation-

ship between ∂
∂ ω∇H (χ) and ∂ χ

∂ φ0
, and assumption 4 holds. Introducing a perturbation P to equation

(2.13) and applying the result of the previous section, the modulation equations are





























0 0
1

2η
−

V

4η

0 0 0 −
η

2

−
1

2η
0 0 −

x0

4η

V

4η

η

2

x0

4η
0

























































dφ0

d T

d x0

d T

dω

d T

d V

d T





























=

































i

2

∫ ∞

−∞

�

P ∗
dψ

dφ0
−P

dψ

dφ0

∗�

dξ

i

2

∫ ∞

−∞

�

P ∗
dψ

d x0
−P

dψ

d x0

∗
+
�

dξ

i

2

∫ ∞

−∞

�

P ∗
dψ

dω
−P

dψ

dω

∗�

dξ

i

2

∫ ∞

−∞

�

P ∗
dψ

d V
−P

dψ

d V

∗�

dξ

































(2.20)

This result is consistent with references [KS95], [Abl09] under the appropriate change of variables.

2.3 Non-Application to KdV

The famous Korteweg-de Vries (KdV) equation is another Hamiltonian system where adiabatic

perturbation theory has been extensively applied [KM77a; Cal78; KM89]. However, in the context
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of a dissipative perturbation the modulation equations are known to break down as a shelf forms

trailing the soliton [KN78]. Essentially, this means that in the presence of a dissipative perturbation,

the resulting solution no longer stays close to the soliton manifold. This manifests as a coupling of

higher order effects into the modulation equation governing the phase of the soliton [AS81]. The

theorem derived in Section 2.1 does not apply to KdV. Nevertheless, it is instructive to consider the

ways in which the theorem fails for KdV and what insight can still be obtained.

To begin, KdV must be expressed in Hamiltonian form. This can be accomplished in multiple

ways [Olv84], but for the current purposes the simplest form is

H (u ) =

∫ ∞

−∞

�

−u (x )3+
1

2

�

∂ u

∂ x

�2�

d x (2.21)

with the skew symmetric operator J = ∂
∂ x . This yields the standard form of KdV ut = J [∇H (u )] =

−6u ∂ u
∂ x −

∂ 3u
∂ x 3 . An expression for the 1-soliton solution to KdV is given by

u =
1

2
c sech2

�p
c

2
(x − c t −a )

�

(2.22)

where the soliton parameters are the speed, c and the initial position, a . Boosting to the comoving

frame the Hamiltonian becomes, H [u , c ] =
∫∞
−∞

�

−u (x )3+ 1
2

�

∂ u
∂ x

�2− c
2 u 2

�

d x and assumptions 1,3

and 4 of Theorem 2.1.1 are all readily verified. However, J is does not have a bounded inverse. The

derivation of Eq. 2.4 relies extensively on symbolic manipulation of J −1 which is no longer well-

defined and these calculations may no longer hold. However, for data decaying smoothly to zero as

x →−∞, J +[ f ] =
∫ x

−∞ f (ξ)dξ satisfies many of the properties one might wish for an inverse. Namely

J [J +[ f ]] = J +[J [ f ]] = f . However, this does not mean that J + is a sufficient surrogate for J −1 for the

analysis of the proceeding section to go through. It is immediate that ker(J )⊆ ker(∇2H J ) . Therefore

whenever the kernel of J is nontrivial, there are additional modes which must be accounted for

which were not treated in Section 2.1. The most troubling property that J + lacks is that there is no

guarantee that J + f ∈ L 2(R) if f ∈ L 2(R). As a result, the inner products in Eq. 2.4 cease to make sense
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and this is what ultimately goes wrong attempting to apply Theorem 2.1.1 substituting J + for J −1.

While the calculation in Section 2.1, primarily used the properties of inverse that J + has, an

additional property was invoked in the calculation: if J is skew-adjoint and J −1 exists, J −1 is skew

adjoint1. In addition to simplifying calculations in steps, this property has consequences for the

modulation system in Eq. 2.4. The modulation system as presented is in the form of a matrix-vector

product. That the matrix multiplying the time derivatives of the soliton parameters is anti-symmetric

follows directly from the fact that J −1 is skew-adjoint. J + is not skew-adjoint, and this structure is

lost. To see that J + is not skew-adjoint, consider 〈J + f , g 〉=
∫∞
−∞

��

∫ ξ

−∞ f (ζ)dζ
�

g (ξ)
�

dξ. Integrating

by parts, 〈J + f , g 〉 =
�

∫∞
−∞ f (ζ)dζ

��

∫∞
−∞ g (ζ)dζ

�

− 〈 f , J +g 〉. Generically for smooth data in L 2(R),

these boundary terms will not vanish.

Nevertheless, substituting J + for J −1 and formally proceeding with analysis for KdV, the following

system is obtained





0 −
p

c
2

p
c

2
1

2c











d a
d T

d c
d T






=









− 1
2 c
∫∞
−∞

�

P sech2
�

1
2
p

c (x −a )
��

d x

∫∞
−∞

�

P

�

e
p

c (x−a )+1p
c −a+x

2(cosh(pc (a−x ))+1)

��

d x









(2.23)

where P stands for an arbitrary perturbation to KdV. Evidently, the matrix multiplying the time deriva-

tives of the parameters is not anti-symmetric, a visible consequence of the lack of a bounded inverse.

For the dissipative perturbation, P =−γu , considered in [AS81], the integral
∫∞
−∞

�

P

�

e
p

c (x−a )+1p
c −a+x

2(cosh(pc (a−x ))+1)

��

d x

does not converge, which is a consequence of the fact that J +
�

∂ u
∂ c

�

6∈ L 2(R). However, the system

decouples and d c
d T can be expressed exclusively in terms of the convergent integral. The resulting

modulation equation for d c
d t is equivalent to expressions found in [AS81]. That d a

d t cannot be resolved

utilizing this method is consistent with the drastically different methods that have been utilized to

derive the modulation equation for a in other work.

1 J J −1 = I ,⇒ (J J −1)† = I ,⇒ (J −1)† J † = I ,⇒−(J −1)† J = I ,⇒ (J −1)† =−J −1
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2.4 Application to Landau-Lifshitz

Now that a general framework has been established, the modulation equations for the Landau-

Lifshitz equation may be readily derived. As is carefully verified in Appendix B.1, the Hamiltonian

variables for the Landau-Lifshitz equation are (cos(Θ),Φ). For notational simplicity, take u = cos(Θ)

for the remainder of this section. In these variables, the Landau-Lifshitz equation becomes the

system
∂ u

∂ t
=−∇·

�

(1−u 2)∇Φ
�

∂ Φ

∂ t
=
∇2u

1−u 2
+

u |∇u |2

(1−u 2)2
+u (1+ |∇Φ|2)

(2.24)

The next step in the analysis is to boost to the co-moving reference frame via the transformation

u (x, t )→ u (x−Vt , t ), Φ(x, t )→ωt +Φ(x−Vt , t ) and obtain

∂ u

∂ t
=−∇·

�

(1−u 2)∇Φ
�

+V ·∇u

∂ Φ

∂ t
=
∇2u

1−u 2
+

u |∇u |2

(1−u 2)2
+u (1+ |∇Φ|2) +V ·∇Φ−ω

(2.25)

The Hamiltonian in the comoving variables, is given by

H (u ,Φ,ω, V) =
1

2

∫

R2

�

|∇u |2

1−u 2
+ (1−u 2)(1+ |∇Φ|2) +V · (−u∇Φ+∇uΦ) +2ωu

�

d x (2.26)

and the corresponding skew-adjoint operator is J =





0 1

−1 0



.

Now that the Hamiltonian structure is established, it remains to verify the assumptions of

Theorem 2.1.1. The condition of soliton existence is assumed. The specific form is provided by the

approximate droplet derived in Chapter 1. That J is invertible is an elementary calculation. Verifying

that∇2H (u ,Φ,ω, V) is self adjoint requires a somewhat involved if straightforward calculation and

is done in Appendix B.1. What remains is the fourth condition. Taking the derivative of∇H with
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respect toω yields

∂ω∇H (u ,Φ,ω, V) =





0

1



 (2.27)

and with respect to the components of V yields

∂Vi
∇H (u ,Φ,ω, V) =







∂ u
∂ xi

− ∂ Φ∂ xi






(2.28)

To verify the final condition, derivatives of the soliton with respect to its parameters are necessary,

but the analytical form for the droplet is unknown. However, it suffices to differentiate the ansatz

made to compute the droplet with respect to the parameters (see Section 1.1.2). For clarity, the

soliton takes the form

u (x) = u0(x−x0−Vt ) (2.29)

Φ(x) =Φ0+ωt +Ψ(x−x0−Vt ) (2.30)

Differentiating Eq. 2.29 with respect to ω, ∂ u
∂ Φ0
= 0 and differentiating Eq. 2.29 with respect to ω,

∂ u
∂ Φ0
= 1. Hence

J −1 ∂

∂ Φ0





u

Φ



=





0 −1

1 0









0

1



=





−1

0



 (2.31)

and ∂ω∇H (u ,Φ,ω, V) ∈ span







J −1 ∂
∂ Φ0





u

Φ











. Similarly, differentiating Eq. 2.29 with respect to the

components of x0 (i.e x0,i ), ∂ u
∂ x0,i

=− ∂ u
∂ xi

and differentiating Eq. 2.29 with respect to x0,i , ∂ Φ
∂ x0,i

=− ∂ Φ∂ xi
.

Thus,

J −1 ∂

∂ x0,i





u

Φ



=





0 −1

1 0









− ∂ u
∂ x0

− ∂ Φ∂ xi



=





∂ Φ
∂ xi

− ∂ u
∂ x0,i



 (2.32)
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and ∂Vi
∇H (u ,Φ,ω, V) ∈ span







J −1 ∂
∂ x0,i





u

Φ











.

Now that the assumptions of the Theorem 2.1.1 are verified, the modulation equations may be

written down simply by evaluating Eq. (2.4). Formally, this can be expressed as



















































0 0 0 −
∫

R2
∂ u
∂ ωd x −

∫

R2
∂ u
∂ Vx

d x −
∫

R2
∂ u
∂ Vy

d x

0 0 0
∫

R2 (
∂ Φ
∂ x

∂ u
∂ ω −

∂ Φ
∂ ω

∂ u
∂ x )d x

∫

R2 (
∂ Φ
∂ x

∂ u
∂ Vx
− ∂ Φ
∂ Vx

∂ u
∂ x )d x

∫

R2 (
∂ Φ
∂ x

∂ u
∂ Vy
− ∂ Φ
∂ Vy

∂ u
∂ x )d x

0 0 0
∫

R2 (
∂ Φ
∂ y

∂ u
∂ ω −

∂ Φ
∂ ω

∂ u
∂ y )d x

∫

R2 (
∂ Φ
∂ y

∂ u
∂ Vx
− ∂ Φ
∂ Vx

∂ u
∂ y )d x

∫

R2 (
∂ Φ
∂ y

∂ u
∂ Vy
− ∂ Φ
∂ Vy

∂ u
∂ y )d x

∫

R2
∂ u
∂ ωd x −

∫

R2 (
∂ Φ
∂ x

∂ u
∂ ω −

∂ Φ
∂ ω

∂ u
∂ x )d x −

∫

R2 (
∂ Φ
∂ y

∂ u
∂ ω −

∂ Φ
∂ ω

∂ u
∂ y )d x 0 −

∫

R2 (
∂ Φ
∂ ω

∂ u
∂ Vx
− ∂ u
∂ ω

∂ Φ
∂ Vx
)d x −

∫

R2 (
∂ Φ
∂ ω

∂ u
∂ Vy
− ∂ u
∂ ω

∂ Φ
∂ Vy
)d x

∫

R2
∂ u
∂ Vx

d x −
∫

R2 (
∂ Φ
∂ x

∂ u
∂ Vx
− ∂ Φ
∂ Vx

∂ u
∂ x )d x −

∫

R2 (
∂ Φ
∂ y

∂ u
∂ Vx
− ∂ Φ
∂ Vx

∂ u
∂ y )d x

∫

R2 (
∂ Φ
∂ ω

∂ u
∂ Vx
− ∂ u
∂ ω

∂ Φ
∂ Vx
)d x 0 −

∫

R2 (
∂ Φ
∂ Vx

∂ u
∂ Vy
− ∂ u
∂ Vx

∂ Φ
∂ Vy
)d x

∫

R2
∂ u
∂ Vy

d x −
∫

R2 (
∂ Φ
∂ x

∂ u
∂ Vy
− ∂ Φ
∂ Vy

∂ u
∂ x )d x −

∫

R2 (
∂ Φ
∂ y

∂ u
∂ Vy
− ∂ Φ
∂ Vy

∂ u
∂ y )d x

∫

R2 (
∂ Φ
∂ ω

∂ u
∂ Vy
− ∂ u
∂ ω

∂ Φ
∂ Vy
)d x

∫

R2 (
∂ Φ
∂ Vx

∂ u
∂ Vy
− ∂ u
∂ Vx

∂ Φ
∂ Vy
)d x 0































































































dΦ0
d T

d x0
d T

d y0
d T

dω
d T

d Vx
d T

d Vy

d T
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−
∫

R2 Pu d x

∫

R2 (
∂ Φ
∂ x Pu − ∂ u

∂ x PΦ)d x

∫

R2 (
∂ Φ
∂ y Pu − ∂ u

∂ y PΦ)d x

−
∫

R2
∂ Φ
∂ ωPu − ∂ u

∂ ωPΦd x

−
∫

R2
∂ Φ
∂ Vx

Pu − ∂ u
∂ Vx

PΦd x

−
∫

R2
∂ Φ
∂ Vy

Pu − ∂ u
∂ Vy

PΦd x





















































. (2.33)

above Pu and PΦ represent perturbations to the Landau-Lifshitz equation in Hamiltonian form.

It is important to note that this representation can be simplified by recasting in block matrix

form and recognizing that some of the integrals can be represented in terms of derivatives of the

conserved quantities discussed in Section 1.1 (e.g.
∫

R2
∂ u
∂ ωd x=− ∂N∂ ω ).
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∫

R2 Pu d x

∫

R2 (
∂ Φ
∂ x Pu − ∂ u

∂ x PΦ)d x

−
∫

R2
∂ Φ
∂ ωPu − ∂ u

∂ ωPΦd x

−
∫

R2
∂ Φ
∂ V Pu − ∂ u

∂ V PΦd x

























(2.34)
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with

K =





∫

R2 (
∂ Φ
∂ ω

∂ u
∂ Vx
− ∂ Φ
∂ Vx

∂ u
∂ ω )d x

∫

R2 (
∂ Φ
∂ ω

∂ u
∂ Vy
− ∂ Φ
∂ Vy

∂ u
∂ ω )d x



 (2.35)

and

W =





0 −
∫

R2 (
∂ Φ
∂ Vx

∂ u
∂ Vy
− ∂ Φ
∂ Vy

∂ u
∂ Vx
)d x

∫

R2 (
∂ Φ
∂ Vx

∂ u
∂ Vy
− ∂ Φ
∂ Vy

∂ u
∂ Vx
)d x 0



 (2.36)

the structure of the matrix in Eq. (2.33) shows how the method of deriving the modulation equa-

tions from conserved quantities is approached. In particular, differentiating N with respect to the

parameters of the droplet would yield exactly the first row. So the first of these equations is simply

dN
d t decomposed via the chain rule into the time dependence of the parameters. The procedure

employed here did not require knowledge of the time evolution for the conserved quantities, nor

even knowledge of the quantities themselves. However, as the approach employed here is equivalent

to the perturbed conservation law approach, it is natural that the conserved quantities would arise.

Substituting in the form of the approximate droplet into Eq. (2.34) gives an explicit expression

for the modulation equations. While the Hamiltonian variables are convenient for derivation of

the modulation equations, they are not the most physically familiar. Recasting into the spherical

variables, the modulation equations utilizing the approximate droplet are given by

dΦ0

d T
=

1

4π

∫

R2

(V · ρ̂)sech
�

ρ−
1

ω

�

PΘd x+
ω

4π

∫

R2

sech
�

ρ−
1

ω

�

PΦd x, (2.37)

d x0

d T
=
ω

2π

∫

R2

sech
�

ρ−
1

ω

�

ρ̂ PΘd x, (2.38)

dω

d T
=−

ω3

4π

∫

R2

sech
�

ρ−
1

ω

�

PΘd x, (2.39)

d V

d T
=−

ω2

2π

∫

R2

�

3

2
V−

�

V · ϕ̂
�

ρω
ϕ̂

�

sech
�

ρ−
1

ω

�

PΘd x−
ω3

2π

∫

R2

sech
�

ρ−
1

ω

�

ρ̂ PΦd x, (2.40)

where ρ̂ = [cos(ϕ), sin(ϕ)], ϕ̂ = [−sin(ϕ), cos(ϕ)] are the canonical polar basis vectors for the plane.
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Eqs. (2.37)-(2.40) will be extensively used throughout Chapters 3&4 to investigate perturbations of

physical interest. It is through these applications that the importance of the modulation equations

will become clear. In practical applications, the initial soliton center is often of less interest than

the actual soliton center ξ= x0+
∫ t

0
Vd t ′. By differentiating this relationship, an equation for the

soliton center is obtained
dξ
d T =

d x0
d T +

V
ε , where εmeasures the slow time scale. When appropriate,

this relation will be used instead of Eq. 2.38.

Finally, many of the perturbations investigated in later chapters focus exclusively on the station-

ary droplet. In this case, the modulation equations greatly simplify, but the equation for V becomes

a constraint on the admissible perturbations which preserve stationarity. The reduced equations for

the stationary droplet are given by

dΦ0

d T
=
ω

4π

∫

R2

sech(ρ−1/ω)PΦdx, (2.41)

d x0

d T
=
ω

2π

∫

R2

sech(ρ−1/ω)PΘρ̂ dx, (2.42)

dω

d T
=−

ω3

4π

∫

R2

sech(ρ−1/ω)PΘ dx, (2.43)

0=

∫

R2

sech(ρ−1/ω)PΦρ̂ dx, (2.44)

When possible, these simplified equations may be referred to in the applications to specific pertur-

bations in Chapters 3 & 4.
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CHAPTER

3

APPLICATION OF THE MODULATION
EQUATIONS TO THE TORQUE EQUATION

Chapter 2 developed a framework for exploring general perturbations to a soliton bearing Hamil-

tonian system. The aim of this chapter is to explore specific perturbations to the magnetic torque

equation and demonstrate the kind of physical insight that can be gained utilizing this framework.

Section 3.1 considers the impact of a nonuniform applied field and Section 3.2 examines the influ-

ence of damping. These examples are intended not only to more closely model real experimental

conditions, but to offer a relatively straightforward application of modulation theory for the droplet.

One of the primary contributions of this work applied to the Landau-Lifshitz equation is the de-

termination of the evolution of the phase parameters, namely Φ0 and x0. In the droplet ansatz of

Eqs. 1.24-1.25, in full generality it is not possible to distinguish between a time dependent phase

and the frequency. Consequently, it may not be intuitively obvious why the dynamics of the phase

parameters are important. In this asymptotic framework, the dynamics ofΦ0 and x0 represent higher

order corrections to the dynamics ofω and V. In many applications these dynamics are critical, a
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point which this chapter aims to make clear.

Section 3.3 analyzes the impact of relaxing the thin-film assumption used to reduce Eq. (1.2) to

Eq. (1.8). When applied to the stationary droplet, the resulting modulation equations only impact

the dynamics of Φ0 providing a relatively simple example where these higher order effects become

significant. Finally, the complex situation of two interacting droplets is considered. This is a strongly

nonlinear interaction requiring numerical investigation (Section 3.4.1). While the interactions

observed are quite complex, Section 3.4.2 analyzes a simple case of two stationary droplets providing

analytic insight into the observations of numerical simulations.

3.0.1 Numerical Methods

In order to validate the theoretical predictions, comparison is made to direct numerical simulations

of Eq. (1.8). The numerical simulations (micromagnetics) utilized a periodic, Fourier psuedospectral

spatial discretization. For exponentially localized data, the assumption of periodicity is good, pro-

vided the domain is large relative to the droplet footprint. In the simulations throughout Chapter 3

and Chapter 4, the spatial domain was chosen to be [−50, 50]× [−50, 50], sufficiently large so that the

perturbed solitary waves were well-localized within it. In each spatial dimension, 29 grid points were

used. Time-stepping was done using a version of the Runge-Kutta-Fehlberg algorithm, modified so

that the magnetization maintained unit length at every grid point and each time step.

To make comparison to modulation theory, it is also necessary to extract the droplet parameters

from micromagnetics. The velocity, V, was extracted from numerical data by computing the center of

mass, ξ(t ) =
∫

R2 x(1−mz (x, t ))d x/N . V= dξ
d t may then be approximated using a forward difference

of ξ(t ). This method does not work for perturbations which excite higher order changes in
dξ
d t and V

will not be estimated in such cases.

For the precessional frequency ω, the phase of the in-plane magnetization (mx , my ) was ex-

tracted at a point a fixed distance from the center of mass ξ. Differentiating this phase with respect
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to time yields Ω(t ), the total frequency of the droplet in the moving, droplet reference frame

Ω(T ) = h0(εξ(T ), T ) +ω(T ) +ε
dΦ0

d T
. (3.1)

The precessional frequency,ω, was obtained by subtracting h0 and dΦ0
d t . In the laboratory frame, the

frequency exhibits a doppler shift ofO
�

V 2
�

, significantly smaller than the asymptotic accuracy of the

approximate droplet [HS12].The contribution from dΦ0
d t was estimated via the modulation equation

(2.37). An alternative method based on computing the conserved quantities in Eqs. (1.15)-(1.21)

was used for comparison. The relations for total spin and momentum of the approximate droplet

Eqs. (1.46)-(1.47) were inverted to obtainω and V. While careful analysis on the degree of agreement

of these methods was not performed, when time series data for the parameters computed via both

methods were plotted on the same axes, the lines were on top of each other with some small noisy

discrepancies.

3.1 Slowly Varying Applied Field

In practical applications, the magnetic field will typically have some spatial variation whose scale is

much larger than the scale of the droplet, i.e., the exchange length. This is well modeled by assuming

that the perpendicular applied field has the form, h0 = h0(εt ,εx), 0 < ε� 1. This inhomogeneity

is best treated by introducing an appropriate perturbation p in eq. (1.8). Expanding h0 about the

soliton center, ξ,

h0(εt ,εx) = h0(εt ,εξ) +ε∇̃h0

�

�

x=ξ · (x−ξ) +O
�

ε2
�

, (3.2)

where ∇̃ represents the gradient with respect to the slow variable X = εx . Inserting the expansion

(3.2) into the cross product −m× (h0ẑ) from eq. (1.8) introduces the perturbation

pΘ = 0 and pΦ =
�

∇̃h0 · ρ̂
�

ρ. (3.3)
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Substituting these into eqs. (2.37)-(2.40) leads to Newton’s second law for the droplet center

d 2ξ

d t 2
= ε

d V

d T
=−ω∇h0. (3.4)

Note that∇ here represents the gradient with respect to the fast variable x, distinguishing it from ∇̃.

The phase Φ0 and frequencyω are unchanged by the field gradient.

A favorable comparison of direct numerical simulations for eq. (1.8) with the solution to (3.4) is

shown in Fig. 3.1. The explicit equation (3.4) agrees with the previous result in [Hoe12] obtained
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0

2

4

6

x 10
-3

t

V

 

 
OD E t h e o r y

n u me r i c s

Figure 3.1 Acceleration of the droplet due to the inhomogeneous magnetic field h0 = 0.5− 10−4 x with
ω(0) = 0.1 and |V(0)| = 0. The exact solution to eq. (3.4) (solid) compares favorably to direct numerical
simulations of the PDE (dashed).

by perturbing conservation laws and integrating the resulting modulation equations numerically.

Previously, the nontrivial dynamical equation was dP
d t =−N∇h0. To demonstrate the equivalence,

transform this equation into eq. (3.4) by using the explicit formulae (1.46), (1.47) for N and P . Since

dω
d T = 0 and N depends only onω, dN

d T = 0. Then

d P

d T
=
N 3/2

p
2π

d V

d T
=

meff

ε

d 2ξ

d t 2
=−

N
ε
∇h0. (3.5)
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This is exactly (3.4). The particle-like droplet with mass meff in eq. (1.50) experiences a conservative

force due to the potential Nh0. This interpretation is consistent with the analysis of the effective

mass derived from the kinetic energy in Section 1.1.2. Furthermore, it demonstrates that a droplet in

a magnetic field gradient behaves effectively like a single magnetic dipole with net dipole moment

N .

The effect of an inhomogeneous magnetic field on a massive two-dimensional droplet is markedly

different from its effect on a one-dimensional droplet [Kos98] and a vortex [PT91]. A one-dimensional

droplet experiences periodic, Bloch-type oscillations for a magnetic field with constant gradient,

while a magnetic vortex exhibits motion perpendicular to the field gradient direction.

3.2 Damping

In [Hoe12], it was observed that the droplet accelerates as it decays in the presence of damping

alone. Micromagnetic simulations illustrated in Figure 3.2 illustrate this decay of the droplet to the

uniform state.

mz

-1.0

-0.5

0

0.5

1.0

Figure 3.2 Time series plots of an approximate droplet propagating in the presence of damping. The initial
droplet parameters for this numerical experiment wereω= 0.1 and V= [0.01,0]T and the nondimensional
damping was chosen as α = 0.1. As time increases left to right, the droplet radius can clearly be seen to
decrease, which corresponds to increasing precessional frequency. The droplet also appears to move
farther to the right than a droplet propagating at constant velocity would predict.
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The framework presented here offers an analytical tool to understand this slightly counterintu-

itive result, namely that damping can cause the otherwise steady droplet to speed up. The relevant

contributions to eq. 1.8 are

pΘ =−α(ω+h0−V ·∇Φ)sin(Θ) and pΦ =−αV ·∇Θ (3.6)

where the Landau-Lifshitz magnetic damping parameter, usually denoted α, plays the role of the

small parameter (ε). In many practical situations, the damping parameter is quite small.

Evaluation of equations (2.37)-(2.40) with these perturbations yields two nontrivial equations

dω

d T
=ω2 (ω+h0) (3.7)

d V

d T
=ωV (ω+2h0) . (3.8)

These equations are again consistent with the perturbed conservation law approach taken in [Hoe12]

when evaluated at the approximate solution. When h0 = 0 and V = 0, the remaining ODE dω
d t =αω

3

agrees with the result in [Bar86].

Note that the right hand sides of the modulation equations are both positive for h0 > −ω/2.

Hence, the frequency and velocity increase. Equation (3.7) can be interpreted as a dynamical equa-

tion for the droplet’s mass meff (eq. (1.50)). The mass is decreasing at a faster rate than the velocity. In

light of the interpretation given in Section 3.1, even though the droplet is losing energy consistently,

it sheds mass fast enough that its acceleration is not a contradiction. Fig. 3.3 illustrates quite good

agreement between the modulation theory and full micromagnetic simulations.

Since Eq. (3.7) decouples in this system, an analytical solution can be found. Elementary appli-

cation of partial fractions yields an explicit solution in terms of the Lambert W-function; however,

the analysis is significantly simplified when h0 = 0. In this case, the analytical solution to Eqs. (3.7)-
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Figure 3.3 The evolution of droplet frequency (a) and velocity (b) due to damping for both numerical
solutions of eqs. (3.7), (3.8) (solid) and direct numerical simulations of eq. (1.8) (dashed) when ε=α= 0.01,
h0 = 0.5,ω(0) = 0.1 and |V(0)|= 0.01.

Eq. (3.8) is

ω(t ) =
ω0

q

1−2αω2
0t

(3.9)

V(t ) =
V0

q

1−2αω2
0t

(3.10)

whereω0 is the initial precession frequency and V0 the initial velocity. These expressions reveal two

facts: a clear time of breakdown for modulation theory and the existence of an adiabatic invariant.

Dividing Eq. (3.9) by the components of Eq. (3.10) demonstrates that the quantitiesω/Vx andω/Vy

are constant in time.

3.3 Dipolar Field

This section considers the nonlocal impact of the magnetostatic field. As discussed in Section 1.1,

this long range coupling of the magnetization through Maxwell’s equations can be disregarded for

sufficiently thin ferromagnets. Including the first order correction in thickness, δ, gives rise to the
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Figure 3.4 Negative frequency shift due to nonlocal, thickness dependent magnetostatic corrections. Equa-
tion (3.12) (solid) and micromagnetic simulations with δ= 0.1 (dots).

perturbations (see Appendix B.3 for a derivation)

pΘ = 0, pΦ =−δsinΘ0

p

−∇2(1− cosΘ0)/2, (3.11)

where
p
−∇2 is defined as an operation in Fourier space as discussed in Section 1.1. Consequently,

thickness dependent magnetostatic effects only enter in Eqs. (2.44) and (2.41). The constraint

equation (2.44) is automatically satisfied because pΦ depends only on ρ so the ϕ integrals vanish.

What is left is the expression for the slowly varying phase Φ0. Restricting to the case of the stationary

droplet and evaluating (2.41) with (3.11) yields a precessional frequency shift of the droplet

dΦ0

d t
=−

δω

4

∫ ∞

0

sech2(ρ−1/ω)

×{
p

−∇2[1− tanh(ρ−1/ω)]}ρdρ.

(3.12)

Recall, the total droplet frequency, Ω, as in Eq (3.1), results from the combined contributions of the

applied field, droplet frequency and the higher order phase correction, dΦ0
d t . Since the integrand is

strictly positive for ρ ∈ (0,∞), Eq. (3.12) represents a negative frequency shift, which is plotted in

Fig. 3.4 as a function ofω. Micromagnetic simulations yield good, asymptotic O(δω) agreement as

expected.
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Further, since 0 < ω < 1, stationary droplets in the absence of nonlocal magnetostatics and

applied field are always dynamic. The negative frequency shift induced by nonlocal magnetostatics

suggests that a droplet in a sufficiently thick film can be static, which would correspond to a magnetic

bubble [DL80].

3.4 Interacting Droplets

3.4.1 Summary of Numerical Results

An intriguing, indeed defining aspect of solitary wave dynamics is their interaction behavior. In

integrable systems, solitons are known to interact elastically [ZK65] and such interactions are either

attractive or repulsive [Gor83]. In more general systems, soliton interactions are more complicated,

exhibiting fusion, fission, annihilation or spiraling [SS99; Kra12]. Previous numerical investigations

on the interacting droplet revealed that two counter-propagating droplets would merge and then

scatter at 90◦ [PZ98]. In those experiments, the droplets lack sufficient energy to escape the influence

of one another. After scattering along the perpendicular, the droplet pair then reverse direction,

scattering at 90◦ again, losing energy after each scattering event. In long time, the interaction settled

into a single coherent droplet-like structure. While these experiments suggest droplet interactions

can be complex, they do not tell the full story of droplet interaction. As proposed in [Mai14], the

study of soliton interaction is of particular interest in magnetic systems as a nonliner method of

images offers insight into the interaction of a droplet with either pinned or free boundary conditions

common in experiment.

The previous work, [PZ98], did not carefully explore the impact of soliton parameters on the

nature of interaction. The relative initial phase,∆Φ=Φ2−Φ1, of the droplet has a significant impact

on determining the resulting interaction. In the experiments presented here, an initial condition

was constructed by an appropriate superposition of two droplets (subscripted as 1 and 2 throughout

this section). The parameters of the two droplets could be chosen independently, though typically
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the velocities and initial positions were chosen to guarantee the two droplets would interact. The

precise initial condition chosen for the experiments presented in this chapter was m= m̃/|m̃|, where

m̃x =mx ,1 +mx ,2, m̃y =my ,1 +my ,2 and m̃z =mz ,1 +mz ,2 − 1. By constructing the initial data in

this way, the unit length condition is preserved while also representing a superposition of two

droplets. Rather than utilizing the approximate droplet solution, a database of numerically exact

solitons computed in [HS12]was utilized. By doing so, the influence of radiation on the interaction

is minimized.

mz
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-0.5

0

0.5

1.0

Figure 3.5 Time series of mz during the attractive interaction of two droplets. The initial parameters were
ω1 =ω2 = .4 and V1 = .6[cos(2π/3), sin(2π/3)]T , V2 = .6[−cos(2π/3), sin(2π/3)]T ,∆Φ= 0.

A typical experiment is illustrated in Figures 3.5-3.6. The two figures represent two presentations

of the data. The first is sequential time data for mz . It can be difficult to tell exactly what the motion is

from one time step to the next. To clarify this, an annotated graph with all time slices superimposed

is presented in Figure 3.6. In this experiment, the two droplets start with the same initial phase (i.e.

∆Φ= 0). When the droplets are close enough, they merge and then scatter along the axis of symmetry.

Note that the two resultant droplets are not of equal mass, with a droplet of larger radius going up.

This inequality can be tuned via the angle of interaction, with two identical droplets emerging from

the intermediate merged state and scattering along the perpendicular when Vy ,1 = Vy ,2 = 0, i.e. a

head-on collision. The opposite occurs for the interactions between droplets which start exactly out

of phase,∆Φ=π. A typical experiment illustrating these repulsive dynamics is illustrated in Figures

3.7-3.8. With such drastically different results determined exclusively by the relative initial phase,
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it is natural to conjecture that there is a crossover point where the dynamics shift from generally

attractive to generally repulsive.
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Figure 3.6 A time-lapsed image of an attractive droplet interaction. Color corresponds to mz and the ar-
rows represent the [mx , my ] component at the center of the droplet. Initial parameters are the same as Fig.
3.5. The arrows indicate that droplets are in phase initially as well as just before and just after the strongly
nonlinear interaction.
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Figure 3.7 Time series of mz during the repulsive interaction of two droplets. The initial parameters were
ω1 =ω2 = .4 and V1 = .6[cos(2π/3), sin(2π/3)]T , V2 = .6[−cos(2π/3), sin(2π/3)]T ,∆Φ=π.

Indeed, there does exist a critical value of∆Φ=∆Φcr which divides the attractive and repulsive

regimes. This critical value depends on the frequencies and velocities of the initial droplets and

is typically near∆Φ= π/2, but not precisely this value. As |∆Φ| approaches∆Φcr, the two droplets
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Figure 3.8 A time-lapsed image of an repulsive droplet interaction. Color corresponds to mz and the
arrows represent the [mx , my ] component at the center of the droplet. The initial parameters were
ω1 = ω2 = .4 and V1 = .6[cos(2π/3), sin(2π/3)]T , V2 = .6[−cos(2π/3), sin(2π/3)]T ,∆Φ = π. The arrows clearly
show the droplets are out of phase initially as well as just before and just after the strongly nonlinear inter-
action.

collide with one preferentially absorbing the other, then transferring a significant portion of their

energy into spin waves followed by the spontaneous formation of a breather state as shown in the

head-on collision of Figure 3.9. The preferred direction in the interaction of Figure 3.9 is due to the

choice 0<∆Φ<π. A change in the sign of∆Φ reverses the asymmetry.

An examination of the mz component over time reveals a significant decrease in the excitation

amplitude, 1−mz , during the loss of energy to spin waves (magnons) and an amplitude coalescence

associated with the formation of the breather. Because a single droplet can be interpreted as a bound

state of magnon quasi-particles [Kos90], this sort of interaction can broadly be interpreted as a fission-

type event. Annihilation is possible during the crossover from attractive to repulsive scattering

where the incommensurate phases of the colliding droplets cannot be resolved at high kinetic

energies, resulting in the explosive release of spin waves accompanied by an apparent breather

bound state. Such observations of soilton annihilation are quite novel. Previous observations of

soliton annihilation in optics were of a very different type [Kró98]where the simultaneous collision

of three solitons could result in annihilation of only one of them.

The summary of phenomena presented here is not complete, but sufficient to introduce the
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Figure 3.9 Time series of two droplets undergoing an annihilation type interaction. The initial parameters
wereω1 = ω2 = .4 and V1 = [.6,0]T = −V2. The relative initial phase was chose at the critical value∆Φ =
∆Φcr ≈ 1.61

broad categories of interaction that the next section attempts to explain via the modulation equa-

tions. A more comprehensive discussion of this numerical investigation of droplet interaction can

be found in [Mai14]. While the results presented here are for relatively high velocities, the same kinds

of attractive and repulsive phenomena can be observed for weakly interacting stationary droplets.

It is not possible, however, to achieve annihilation at low velocities. The attractive interaction of two

stationary droplets appears to resolve in very long times to a stable-stationary breather in which the

boundary of the droplet oscillates in time. This will be revisited in Chapter 5.

3.4.2 Modulation Theory for Interacting Droplets

The interactions studied studied so far are strongly nonlinear, hence a perturbation theory would

be insufficient to study the full complement of observed phenomena. Nevertheless, it is possible to

gain insight into the nature of the interaction (attractive/repulsive) by studying two well-separated

droplets perturbatively, with the small parameter being the inverse of the droplet separation. This

approach is well-known and has been applied successfully to several systems, including NLS-type

models [ZY07; Abl09; Mal98].

In full generality, the perturbations arising from this analysis are complex. However, since the

validity of these equations is strongly dependent on the separation of the two droplets, these equa-
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tions are expected to be valid over short time scales. Hence, the aim of this section is only to describe

the initial behavior of two stationary, weakly overlapping droplets. As the interaction immediately

accelerates the two droplets, it would be necessary to incorporate Vk 6= 0 in the modulation equa-

tions for t > 0. Nevertheless, these assumptions make it possible to describe much of the behavior

observed in full numerical simulations [Mai14]. The initial configuration places one droplet on the

left (subscripted 1) and another droplet (subscripted 2) a distance d away along the x−axis. The

relative phase difference will emerge as an important quantity in the modulation equations. Con-

sidering the modulation equations, two weakly interacting droplets with motion in the x direction

at the initial time only yields

Φ̇0,k =−
ω

2π
cos(∆Φ)

∫

R2

Kk (x)d x (3.13)

ξ̇k =
ω

2π
(−1)k+1 sin(∆Φ)

∫

R2

Kk (x)sech
�

ρ−
1

ω

�

cosϕd x (3.14)

ω̇k =−
ω3

4π
(−1)k+1 sin(∆Φ)

∫

R2

Kk (x)sech
�

ρ−
1

ω

�

d x (3.15)

V̇k =
ω3

π
cos(∆Φ)

∫

R2

Kk (x)cosϕd x (3.16)

where

Kk (x) = sech
�

ρ̃k −
1

ω

�

sech
�

ρ−
1

ω

�

×
�

2sech2
�

ρ−
1

ω

�

−ω
�

1− tanh
�

ρ−
1

ω

���

. (3.17)

Kk defines an interaction kernel which depends on the separation between the two droplets through

ρ̃k =
p

(x + (−1)k d )2+ y 2. Throughout this section the notation ż will be used for d z
d t for notational

simplicity. Utilizing this framework, it is now possible to offer some insight into the nature of

two interacting droplets. The precise derivation of these equations is based on determining the

perturbation of one droplet on the other via the overlapping exponential tails. Using the form of the

approximate two-soliton solutions used in [Mai14], these perturbations are carefully worked out in
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Appendix B.4.

3.4.3 Attraction and Repulsion

The attractive or repulsive nature of two droplets can be understood by considering Eq. 3.16. As∆Φ

varies, the sign of cos(∆Φ) is clear. Thus determining the accleration of motion of the droplet comes

down to determining the sign of the integral term in (3.16). Figure 3.10, left shows the numerical
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Figure 3.10 Left: Initial acceleration for varied initialω and several values of separation. Right: Plot of dω1
d t

as a function of initialω for several values of separation. In both, the initial relative phase was∆Φ= 1.

evaluation of the right hand side of V̇1 (droplet on left) when ∆Φ = 1 < π/2, leading to positive

values only. Thus, the left droplet experiences a positive acceleration to the right, towards the

other droplet when |∆Φ|<π/2. Since the kernel exhibits symmetry with respect to droplet choice

K1(x , y ) =K2(−x , y ), the integral in (3.16) for the right droplet, k = 2, has the opposite sign. The right

droplet experiences a negative acceleration to the left when |∆Φ|<π/2. Therefore, two droplets are

attractive when |∆Φ|<π/2, i.e., when they are sufficiently in phase. Similarly, when π/2< |∆Φ|<π,

the signs of V̇k are reversed and the droplets move away from each other. Thus, two droplets are

repulsive when they are sufficiently out of phase.

As was noted in [Mai14], by a nonlinear method of images, the attractive or repulsive nature
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of two droplets with the special initial values∆Φ= 0 or∆Φ=π describes the dynamics of a single

droplet near a magnetic boundary with either a free spin (Neumann type) boundary condition or a

fixed spin (Dirichlet type) boundary condition, respectively. The analysis presented here confirms

this fact for any droplet that weakly interacts with a magnetic boundary. Such behavior was observed

in micromagnetic simulations of a droplet in a NC-STO, nanowire geometry [Iac14].

3.4.4 Asymmetry

Despite a highly symmetric initial condition, an asymmetry was observed in so-called “head-on

collisions" of two droplets in [Mai14]. Equation (3.15) provides an explanation of this in the limit

of very small velocities. Figure 3.10, right contains the relevant information. The asymmetry is

encoded in the sign of ω̇k . The range of∆Φ considered in the numerical experiments of [Mai14]were

between∆Φ= 0 and∆Φ=π. Since the sign of ω̇k is determined by the overall factor (−1)k+1 sin(∆Φ),

ω̇1 < 0 and ω̇2 > 0 for all the experiments considered here with ∆Φ ≥ 0. Again using (3.15), and

K1(x , y ) =K2(−x , y ), it can be seen that the integrals involved in computing ω̇1 and ω̇2 are equal.

Hence the sign of ω̇k is determined by (−1)k+1, and the signs of ω̇1 and ω̇2 will always be opposite.

For the parameters discussed here, this means that the frequency decreases for the droplet on the

left and increases on the right. This change in droplet structure is asymmetric because a reduced

(increased) frequency implies larger (smaller) droplet mass and corresponds precisely with the

observations of [Mai14]. Such symmetry breaking has been explained in 1D systems [KM06]with a

similar analysis to what is provided here for 2D droplets.

3.4.5 Acceleration

The discussion of attraction and repulsion in Section 3.4.3 suggests that the boundary between the

two behaviors is∆Φcr =π/2. But this does not agree with numerical experiments where the crossover

∆Φwas found to vary with the initial droplet parameters [Mai14]. To offer an explanation for this,

we must consider the total acceleration of the initial droplets, i.e., ξ̈k . This incorporates higher order
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information not included in V̇k . Since the full modulation equations for interacting droplets when

V 6= 0 are complex, the framework laid out here does not access this information for all values of

∆Φ. However, at∆Φ= π2 , V̇k = 0 (since cos(∆Φ) = 0) and those terms will not contribute. Similarly,

Φ̇0 = 0 at∆Φ= π2 for the same reason which simplifies the calculation. Figure 3.11 shows the initial,

total droplet acceleration ξ̈1, evaluated numerically, as the initial frequency and separation are

varied. The variable sign of this quantity as parameters change demonstrates that subtle, higher
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Figure 3.11 Numerical evaluation of ξ̈1 initially for∆Φ=π/2, variable droplet separation d and frequency
ω. There is not one sign of acceleration, i.e., the left droplet can be repelled or attracted to the right droplet
depending on the choice of parameters.

order effects cause the crossover value of∆Φ to deviate from its nominal value π/2.

The perturbations investigated in this chapter are far from exhaustive. Chapter 4, continues

this investigation for perturbations which model spin transfer torque, a mechanism which can

directly oppose the natural damping of a magnetic material. The above examples demonstrate a

versatility of the modulation equations for modeling complex phenomena. The relatively simple

results of a spatially varying applied field offer clean physical insight and intuition into the motion
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of the droplet. In more complex perturbations, the higher-order parameters play an important role,

leading to conclusions that could not be reached by relying upon dynamics of the frequency and

velocity alone. The role of these phase parameters will continue to be important as the investigation

is continued in Chapter 4.
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CHAPTER

4

APPLICATIONS INVOLVING
SPIN-TORQUE

As established in the previous chapter, damping has the tendency to cause the droplet to relax to

the uniform state. Since damping is ubiquitous in magnetic materials, the droplet would remain a

mathematical novelty if there did not exist a means to overcome this effect. The idea that dissipation

can be compensated in solitonic systems is by no means unique to the droplet. Dissipative solitons

have been extensively studied in the context of non-linear optics, with some early experimental

observations made in [Pic91] and theoretical work for a dissipatively modified Korteweg de-Vries

equation [CV95] and for the Swift-Hohenberg equation [AA05] (see [AA08] for a thorough discussion).

In the context of magnetics, the idea that spin transfer torque could balance damping and stabilize

the droplet was proposed and investigated in [Hoe10]. In this chapter, that idea is explored using

the analytical framework of the previous chapters.

The primary focus of this chapter is on a device known as the nanocontact spin-torque oscillator

(NC-STO), in which the spin accumulation due to polarized spin current exerts a torque on the
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magnetization, the spin transfer torque [Ber96; Slo96]. This forcing can be confined to a localized

region via a nanocontact [Slo99]. Perturbations of this sort can lead to dynamics within all the

parameters of the droplet. In addition to spin torque, a droplet in a NC-STO also experiences

damping and it is precisely the balance between the two that leads to the stable droplet observed in

experiments. At the end of this chapter, other forms of spin-torque are investigated. As these do not

appear to support the dissipative droplet, they are not investigated in detail.

ρ∗∼20nm

Free LayerConductive Spacer
Fixed Layer

Conductive Base

C
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rren
t,σ

m f

m∼
5n

m
�

5n
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External Field

Nanocontact

→

Insulating Cap

Wire →

→
→

θf

Figure 4.1 Schematic of nanocontact device. The magnetization dynamics in the free layer are modeled by
the perturned Landau-Lifshitz equation, while the fixed layer acts a polarizer. The electrons in the current
become spin polarized as they interact with the fixed layer and in turn the electrons exert a torque on the
free layer.

4.1 Nanocontact Devices

4.1.1 Application to Stationary Droplets

This section considers the effects of damping and spin-transfer torque (STT) on a stationary droplet

where V ≡ 0. A NC-STO consists of two magnetic layers, one that acts as a spin polarizer of the
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driving DC current and the other where the dynamics according to eq. (1.8) occur. This assumption

corresponds to taking m f = z in Figure 4.1. For simplicity, the spin torque asymmetry, which

introduces another parameter into the analysis but does not appear to have a significant effect on

the dynamics [Hoe10] will be neglected. Under these assumptions, the perturbation p takes the

form [Hoe10]

pΘ =−αωsinΘ0+σH (ρ∗−ρ)sinΘ0, pΦ = 0, (4.1)

where α is the damping coefficient, ρ∗ is the nanocontact radius, andH is a localized function.

For the following analysis, takeH to be the Heaviside step function thus defining the region of

spin polarized current flow as a disk with radius ρ∗. The STT coefficient σ = I /I0 is proportional

to the applied, dc current I with nondimensionalization I0 = 2M 2
s eµ0πρ∗

2δ/(ħhε) where ε is the

spin-torque polarization, e is the electron charge, and ħh is the modified Planck’s constant. For

simplicity, take λst = 1, i.e., no asymmetry. Experiments [Moh13; Mac14] and analysis [Hoe10; BH13]

have shown that the ratio of damping, α, to forcing strength,σ (proportional to current), are roughly

order 1 for the existence of droplets to be satisfied. Sinceα is small in these systems (α≈ 0.0 [Moh13]),

α and σ can be taken as small parameters of the same order. Substituting this perturbation into

(2.43)–(2.42) results in a system of three ordinary differential equations (ODEs). However, since

rotational symmetry is not broken for a circular nanocontact, it is possible to rotate the plane so

that motion occurs in the x−direction only and thereby eliminate one of the two equations for the

center. The modulation system is

dω

d t
=αω2(ω+h0) (4.2)

−
σω3

4π

∫

|x|<ρ∗
sech2(|x−x0| −1/ω)dx

d x0

d t
=−

σω3

2π

∫

|x|<ρ∗
sech2(|x−x0| −1/ω)

x − x0

|x−x0|
dx, (4.3)
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where the integrals are performed in a coordinate system centered on the nanocontact. Note that

these equations do not depend upon the slowly varying phase Φ0 so that the inclusion of nonlocal

magnetostatic effects will lead to the same frequency shift given in eq. (3.12), decoupling from the

ODEs (4.2) and (4.3). The fixed points of this system correspond to steady state conditions where

there is a balance between uniform damping and localized spin torque, i.e., a dissipative droplet

soliton. A fixed point at (ω, x0) = (ω∗,0) leads to the relationship between current and precession

frequency
σ

α
=

2(ω∗+h0)

1+ω∗
�

log[sech(ρ∗− 1
ω∗
)/2] +ρ∗ tanh

�

ρ∗− 1
ω∗

�� . (4.4)

Note that there is an error in Eq. 17 of [BH13], where parentheses have been dropped. Linearizing

about the fixed point, the eigenvalues of the system are found to be

λ1 =
1
2ω∗[σ tanh(ρ∗−1/ω∗) (4.5)

+σ−ρ∗σsech2(ρ∗−1/ω∗)−2αh0],

λ2 =− 1
2ρ∗σω∗ sech2(ρ∗−1/ω∗). (4.6)

For physical parameters,λ2 is always negative, howeverλ1 can change sign asω∗ is varied and hence

the stability of the fixed point can change. This family of fixed points arises from a saddle-node

bifurcation occurring as the current is increased through the minimum sustaining current (Fig. 4.2(a-

d)). Figures 4.2(b)-(d) show the vector field of this system below onset and after the appearance of

the stable and unstable equilibria. The stable branch of this saddle node bifurcation is the dissipative

soliton. Furthermore, micromagnetic simulations verify the stable branch of Eq. (4.4) shown in

Fig. 4.2(a). However, the dissipative soliton is not a global attractor. The saddle point’s stable manifold

(solid curve in Fig. 4.2(c-d)) denotes the upper boundary in phase space of the basin of attraction for

the dissipative soliton. A droplet with frequencyω and position x0 lying within the basin of attraction

will generally increase in frequency and move toward the nanocontact center, then decrease in

frequency toω∗, converging to the dissipative soliton fixed point as illustrated in Figure 4.3. If initial
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Figure 4.2 (a) Dissipative soliton relation (4.4). Horizontal line isω = 1/ρ?. (b-d) ODE vector fields cor-
responding to equations (4.4), (4.15) asσ varies (b) just before the saddle-node bifurcation (c), just after
and (d) far past bifurcation. The upper/lower dot corresponds to the unstable/stable fixed point. The solid
black curve encloses the basin of attraction. Parameters are ρ? = 12, h0 = 0.5, and α = 0.01. (d) includes
trajectories from ODE theory (dashed) and micromagnetics (solid).
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Figure 4.3 Time series plots of the magnetization illustrating the droplet centering on the nanocontact in
long time. In the simulations presented here σ

α = .65 and ρ∗ = 12. The initial droplet frequency was selected
asω∗, but the initial droplet center is chosen just outside the nanocontact x0 = 13.
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y

x x x

mz

Figure 4.4 Time series plots of the magnetization illustrating the droplet outside the basin of attraction of
the nanocontact decaying to the uniform state. In the simulations presented here σ

α = .65 and ρ∗ = 12. The
initial droplet frequency was selected asω∗, but the initial droplet center so that the droplet just overlaps
the nanocontact x0 = 18.

conditions lie outside the basin of attraction, the soliton will decay to spin waves (ω increases to 1)

as in Figure 4.4.

That the dissipative soliton is not a global attractor was observed in micromagnetic simulations

previously in the form of the drift instability [Hoe10]. As shown in Chapter 3, a magnetic field gradient

can accelerate a stationary droplet, so it is reasonable to conjecture that STT provides a restoring

force that could keep the droplet inside the nanocontact for a sufficiently small gradient. However,

a sufficiently strong field gradient could lead to expulsion of the droplet, hence a drift instability.

Further investigation of this requires the study of modulated propagating droplets in the presence of

an NC-STO, because the perturbation due to an inhomogeneous field necessarily excites dynamics

in V , see Eq. (3.4).

The other physical parameters in eq. (4.4) are h0 and ρ∗. Figures 4.5 & 4.6 demonstrate that h0

serves to shift the fixed point curves and that this shift is almost exactly h0. Changes to h0 have little

to no visible impact on the corresponding frequency of the fixed point,ω∗, or phase portraits. The

motivation for this observation is that in the limit of smallω and when the nanocontact and droplet

radius are approximately equal, the denominator in the fixed point relation Eq. (4.4) is O (1).

Figure 4.7 depicts the basin of attraction radius ρb (the value of x0 at the edge of the basin of

attraction whenω=ω∗) scaled by ρ∗. As the current is increased, the basin radius rapidly exceeds
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Figure 4.5 Fixed points, both stable and unstable for several values of h0. The primary effect of h0 is to shift
these curves of fixed points along the σ

α axis. For the present purposes, it is not important to differentiate
between the stable and unstable branches, since both are shifted in the same manner.
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Figure 4.6 While the center of the basin of attraction depends on h0, the width of the basin remains essen-
tially unchanged as h0 varies.
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Figure 4.7 Basin of attraction radius, ρb atω=ω∗ scaled by nanocontact radius, ρ∗.

3
2ρ∗ so that a droplet placed well outside the nanocontact may still experience a restoring force to

the nanoncontact center.

The robustness of magnetic droplet solitons to symmetry breaking perturbations demonstrated

here suggests that their initial observation in [Moh13] represents the beginning of a rich inquiry

into novel nonlinear physics.

4.1.2 NC-STO and Spatially Inhomogeneous Applied Field

So far the focus has been on the stationary droplet. This was possible because the damping, Eq.

3.6 , and spin-torque, Eq. 4.1, perturbations satisfy the constraint that d V
d t = 0 when V= 0 which is

shown by evaluating Eq. 2.40. In contrast, a spatially varying field cannot satisfy this constraint. In

this section, the addition of weak spatial inhomogeneity of the applied magnetic field is considered,

in addition to damping and spin-transfer torque. For simplicity, consideration will be restricted to a

field that is linear in x .

This investigation has broader implications for the practical use and understanding of droplets

in real devices. These three physical effects influence the system in competing ways, which can

balance, allowing for the existence of stable droplets. Alternatively, a strong enough field gradient can

push the droplet out of the NC-STO, giving rise to a previously unexplained drift instability [Hoe10].
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As seen in Sec. 3.2, damping decreases the effective mass of the droplet. In Sec. 3.1, it was shown

that a field inhomogeneity accelerates the droplet while leaving the mass of the droplet unaffected.

The inclusion of forcing due to spin transfer torque in a nanocontact opposes both of these effects.

As discussed in Section 4.1.1 the spin torque increases the droplet mass and generates an effective

restoring force that centers the droplet in the nanocontact region. Hence, there could exist a delicate

balance between all of these effects: the NC-STO restoring force balancing the potential force due

to the field gradient and the mass gain due to spin-torque balancing the mass loss due to damping.

Previous studies have been unable to identify when such a balance occurs and when it fails. Here,

we analytically demonstrate stable droplets as fixed points of the modulation equations with all of

these perturbations.

Because the perturbation components pΘ and pΦ appear linearly in the modulation equations

(2.37)-(2.40), it is possible to simply add the field inhomogeneity eq. (3.3) and damping eq. (3.6)

perturbations to those due to spin torque Eq. 4.1. The perturbation components are

pΘ =−α (ω+h0−V ·∇Φ)sinΘ+σH (ρ∗− r )sinΘ, (4.7)

pΦ =
�

∇h0 · ρ̂
�

ρ−αV ·∇Θ. (4.8)

The coordinate r in the argument of the Heaviside functionH is measured from the center of the

nanocontact, which differs from the coordinates ρ and ϕ which are measured from the center of

the droplet. The magnetic field is assumed to be spatially linear

h0 = a + b x , |b | � 1. (4.9)

In this way, droplet motion is restricted to the x direction only. Insertion of the perturbations in Eq.

66



4.1. NANOCONTACT DEVICES CHAPTER 4.

(4.7)- (4.8) into the modulation equations (2.37)-(2.40) results in the following system

Φ̇0 =
αb V

2ω2
−
σV

4π

∫

Ξ

cos(ϕ)sech2
�

ρ−
1

ω

�

d x (4.10)

ξ̇=V −
αb

ω
+
σω

2π

∫

Ξ

cos(ϕ)sech2
�

ρ−
1

ω

�

d x (4.11)

ω̇=αω2 (ω+a )−
σω3

4π

∫

Ξ

sech2
�

ρ−
1

ω

�

d x (4.12)

V̇ =−bω+αVω (ω+2a )−
σVω

4π

∫

Ξ

(3ρω+ cos(2ϕ)−1)
ρ

sech2
�

ρ−
1

ω

�

d x (4.13)

whereξ= ξx , V =Vx and the integrals are performed over the nanocontact region,Ξ=
�

x ∈R2
�

� |x|<ρ∗
	

. None of the right hand sides in the equations above depend explicitly on the parameter Φ0 so that

the dynamics of the remaining parameters can be considered separately. For the remainder of the

analysis the evolution of Φ0 is ignored, noting that Φ̇0 corresponds to a small frequency shift as in

Eq. (3.1).

There is a complex interplay between the many small parameters in this problem. Since there is

not an exact analytical solution, it is necessary that these perturbations dominate over the error

terms in our approximate solution, while still remaining small. To keep an overall consistent error

estimate it is required that |V |®ω2 for the approximate droplet. The variation in the applied field is

a little more subtle. The actual requirement is that the applied field vary slowly compared to the

length scale of the soliton. For the approximate droplet this length scale is roughly 1/ω, hence the

requirement is that b /ω be small and b �ω. In particular, this means b should be at least an order

of magnitude smaller than the other parameters.

The stationary droplet without a field gradient is stable when centered on the nanocontact

[Hoe10; BH13]. From the previous section, taking d h0
d x = b = 0 and V = 0, the modulation equations

(4.11)-(4.10) for propagating droplets exhibit the fixed point (ξ,ω, V ) = (0,ω∗,0) when damping

balances forcing. The precise relationship is the same as that given in Eq. 4.4 (taking h0 = a ). To be
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explicit, in this context

σ

α
=

2 (a +ω∗)

1+ω∗
�

log
�

1
2 sech

�

ρ∗− 1
ω∗

��

+ρ∗ tanh
�

ρ∗− 1
ω∗

�� . (4.14)

For this section, a more careful analysis of the fixed point will be required. Recall, ω∗ = ω∗(σ)

corresponds to the stable branch with a minimum sustaining value of the current corresponding to

a saddle-node bifurcation. Forσ sufficiently large, the stable branch quickly approaches

ω∗ =ρ
−1
∗ +arctanh

�

2aα

σ
−1

�

ρ−2
∗ +O

�

ρ−3
∗
�

, ρ∗� 1, 0<ω∗−ρ−1
∗ � 1. (4.15)

Near the critical valueσ= 2aα, where the second term is zero, the asymptotic form is

ω∗ =ρ
−1
∗ +

�

2aα

σ
−1

�

ρ−2
∗ +

�

2α

σ
+ ln 2

�

ρ−3
∗ +O

�

ρ−4
∗
�

,

�

�

�

�

2aα

σ
−1

�

�

�

�

=O
�

ρ−1
∗
�

. (4.16)

Linearizing equations (4.11)- (4.13) about this fixed point, the Jacobian matrix is given by

J (0,ω∗, 0) =











λ1 0 1

0 λ2 0

0 0 λ3











, (4.17)

λ1 =−
1

2
σρ∗ω∗sech2

�

ρ∗−
1

ω∗

�

, (4.18)

λ2 =−αaω∗+λ1+
1

2
σω∗

�

tanh
�

ρ∗−
1

ω∗

�

+1
�

, (4.19)

λ3 =−2αω2
∗ +λ2−λ1. (4.20)

Unlike the analysis on the stationary droplet, there is now a third eigenvalue (corresponding to

the inclusion of velocity dynamics). This linearization therefore represents a generalization of that
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considered in the previous section. Utilizing the approximation from Eq. (4.16),

λ1 =−
σ

2
+O

�

ρ−2
∗
�

, λ2 ∼λ1, λ3 =
�

−α+
ln 2

2
σ

�

ρ−2
∗ +O

�

ρ−4
∗
�

,

�

�

�

�

2aα

σ
−1

�

�

�

�

=O
�

ρ−1
∗
�

. (4.21)

Since ρ∗ > 1/ω∗, all three eigenvalues are negative when σ> 2aα, so the fixed point will be stable.

The critical forcing value σ = 2aα, below which the droplet is predicted to be unstable could be

considered as an estimate for the minimum sustaining current of a droplet [Hoe10]. Note, however,

that this is a dubious estimate due toω∗−ρ−1
∗ not being a small quantity.

Next, consider the case of a small field gradient 0< |b | � 1. It will be shown that the droplet fixed

point persists for very small |b |. These fixed points exist as a balance between the expulsive force

provided by the field gradient and the attractive force provided by the nanocontact. This attraction

manifests in nonzero ξ and V at the fixed point, so this balance can also be viewed as a balance

between leading order effects (in V ) and higher order effects (in ξ̇). Unlike the b = 0 fixed point,

exact analytical expressions for the fixed point cannot be found when b 6= 0 since the droplet is no

longer centered on the nanocontact (ξ 6= 0). Nevertheless, it is possible to obtain an approximate

form for these fixed points as follows. The structure of J in Eq. (4.17) yields very simple predictions

in the regime of small field gradient. The key observation here is that the system of Eqs. (4.11)-(4.13)

can be written as










ξ̇

ω̇

V̇











= F (ξ,ω, V )− b











α
ω

0

ω











. (4.22)

By virtue of the stationary fixed point, F satisfies F (0,ω∗, 0) = 0. Next, seek a fixed point that slightly

deviates from the stationary one according to ξ= bξ1+ · · · ,ω=ω∗+ bω1+ · · · and V = b V1+ · · · .

Expanding and equating the right hand side of Eq. (4.22) to zero gives the correction

69



4.1. NANOCONTACT DEVICES CHAPTER 4.

-2 -1 0

x 10
-6

0

0.5

1

1.5

d h 0

d x

ξ

 

 

(a)

modulation theory

approximation

numerics

-2 -1 0

x 10
-6

0.084

0.085

0.086

d h 0

d x

ω

 

 

(b)

modulation theory

approximation

numerics

-2 -1 0

x 10
-6

0

2

4

x 10
-3

d h 0

d x

V

 

 

(c)

modulation theory

approximation

Figure 4.8 Fixed points from modulation theory, exact (solid) and approximate Eq. (4.23) (dashed), and
direct numerical simulation of Eq. (1.8) (circles) when α = σ = 0.01, a = 0.5, ρ∗ = 12. In this case, the
parameter V cannot be extracted from direct numerical simulations without additional assumptions (See
Section 3.0.1). Accordingly, this data is not presented in (c).
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, (4.23)

where the approximations (4.16) and (4.21) were used to obtain the large ρ∗ estimate.

As summarized in Fig. 4.8, these simple expressions make predictions in good agreement with the

fixed points found by numerical continuation in b and those observed in long time micromagnetic

simulations of eq. (1.8) with perturbations (4.7) and (4.8) where the droplet relaxes to the fixed

points shown in Fig. 4.8. The Jacobian matrix of Eqs. (4.11)-(4.13) can also be numerically evaluated,

showing that all eigenvalues are negative, until continuation breaks down when one eigenvalue

reaches zero. After this bifurcation, no fixed points were found. The condition of this eigenvalue

reaching zero then corresponds exactly to the crossover where the attractive nanocontact is no

longer strong enough to balance the expulsive force supplied by the field gradient. A strong enough

field gradient, on the scale of ασ/2ρ∗, can eject the droplet from the nanocontact, causing a drift

instability previously observed in numerical simulations [Hoe10]. For the example studied here,

b ≈ 10−6 compared to the NC-STO forcing magnitudeσ= 10−2 for a fixed point to no longer exist.

This demonstrates that droplet attraction due to spin torque is quite weak. A strong enough field
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gradient, sufficiently larger than ασ
2ρ∗

, can eject the droplet from the nanocontact, causing a drift

instability previously observed in numerical simulations [Hoe10].

4.2 Other Forms of Spin Torque

Given the presence of damping, it is important to consider terms which could potentially oppose

this in the medium and clearly the NC-STO offers just such a means to do so. However, in practice,

it would be desirable to exploit a propagating droplet as a means of transferring information. While

the field gradient offers a way to direct and control the droplet, the presence of damping will always

cause the droplet to decay. The NC-STO is limited in that the droplet must be localized on or near the

nanocontact. While it is theoretically possible to pattern a ferromagnetic wafer with nanocontact

devices and push the droplet from one nanocontact to the next, this is unlikely to be practical

in laboratory devices. It may be extremely difficult to find an appropriate balance of forcing and

damping to observe this in experiment. As such it is desirable to consider other forms of spin-torque.

Two other physical mechanisms are considered in this section: adiabatic spin-torque and the spin

hall effect. Under the analysis provided by modulation theory, neither of these seem to be a suitable

mechanism to stabilize the droplet. These forms of forcing are no longer localized and hypothetically

could provide the appropriate balance to oppose damping globally in the medium, and hence a

mechanism for a propagating dissipative droplet to be sustained. However, as the following analysis

will show, this is not the case.

4.2.1 Adiabatic and Non-adiabatic Spin Torque

The form of spin torque considered here is exerted by a current as it flows in-plane interacting with

the magnetization. The interaction of electrons with the magnetization can leave electron spins

nearly parallel with the magnetization [Sti07], which is deemed an adiabatic response. Notably the

adiabatic and non-adabatic spin-torques exert torques on the magnetization which are perpendicu-

lar to one another. This form of forcing has been of particular recent interest in manipulating the
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dynamics of domain walls [LZ04; Sti07] and magnetic vortices [Shi06]. Therefore, it is reasonable to

hypothesize that this form of forcing could stabilize the droplet. Following [Bea08], if the current

flows uniformly in the x direction the model equation is

∂m

∂ t
=−m×heff− v

∂m

∂ x
+βm×

∂m

∂ x
(4.24)

where v ≥ 0 and β ≥ 0 represent strength of the adiabatic and non-adiabatic spin-torques respec-

tively. These constants are typically proportional to the current density in the medium. Executing a

similar procedure as was used to derive the damping perturbations,

pΘ =−v
∂ Θ

∂ x
−β sin(Θ)

∂ Φ

∂ x
(4.25)

and

pΦ =−v sin(Θ)
∂ Φ

∂ x
+β

∂ Θ

∂ x
(4.26)

Substituting the approximate propagating droplet into Eqs 4.25 & 4.26 , adding the contribution

from damping and using the result in Eqs 2.37-2.40 yields

dξx

d t
=Vx + v (4.27)

dξy

d t
=Vy (4.28)

dω

d t
=αω2 (h0+ω)−

1

2
βωVx (4.29)

d Vx

d t
=βω2+αω (2h0+ω)Vx (4.30)

d Vy

d t
=αω (2h0+ω)Vy −βVx Vy (4.31)

where terms have only been kept up to leading order inω and V . By making the choice that the

current flows in the x−direction only, the symmetry of the equations is broken and hence the
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equations for Vx and Vy are not symmetric with respect to the exchange of x and y .

Stable fixed points are of particular interest here. Such fixed points would correspond to what

might be observed in numerics or laboratory experiments. Accordingly, the first step in the analysis

is to seek fixed points of the system in Eqs. 4.27-4.31. Eq. 4.27 is quite limiting. Seeking a solution in

which the soliton center is not changing, i.e. ξ̇x = 0 requires that Vx =−v This restriction implies

there exists only one fixed point given byω= 0, Vx =−v and Vy = 0, which corresponds to a reversed,

uniform state. By instead working in a reference frame that moves to the right with velocity v , the

restriction that ξ̇x = 0 is satisfied without requiring Vx =−v . Searching for fixed points in this frame

yields the fixed points Vy = 0, Vx =
2αω(ω+h0)

β , andω± =−
3h0

2 ±
Ç

h 2
0 −2β

2

α2 . However, for physically

reasonable values of the parameters, h 2
0 −2β

2

α2 < 0 which leads to complexω. Such solutions are not

physically meaningful.

If the target is freely propagating droplets, however, it is natural to expect that ξ̇x 6= 0. Droplet the

restriction of fixed point of the full system and looking instead for a fixed point of the subsystem Eqs.

(4.29)-(4.30) does not lead to more desirable results. The restriction to two equations as opposed to

three is made possible by taking Vy = 0 which trivially satisfies Eq. (4.31). This system admits three

fixed points, none of which are physically relevant. The firstω= 0, Vx = 0 again corresponds to a

reversed, uniform state. The other two are complex conjugate pairs

ω± =−
3h0

2
±

q

−2β2+α2h 2
0

2α
(4.32)

V ±x =−
β

α
+

2h0

�

αh0∓
q

−2β2+α2h 2
0

�

β
(4.33)

Again, to avoid the appearance of parameters, it is required that h 2
0 −2β

2

α2 > 0 which does not hold at

physically reasonable values. Even if very large values of h0 are chosen a straightforward stability

analysis shows that for each of these fixed points at least one eigenvalue of the system is positive and

such a fixed point would be unstable. While it remains possible that other terms could contribute to

a complex balance which would stabilize the droplet in the presence of adiabatic and non-adiabatic
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spin torques, it is the conclusion of this work that droplets are unlikely to be observed in this context.

4.2.2 Spin Hall Effect

Another mechanism for inducing spin torques is based on manipulation of the spin Hall effect

[And08; Liu11; Liu12]. Like adiabatic spin torque, this form of spin-torque has its origin in a lon-

gitudinal charge current density. However, in the right experimental configuration, a transverse

spin current density develops via spin-orbit scattering [Hir99]. Spin torque based on manipulation

of the spin Hall effect offers a theoretical advantage in that the form of the forcing is relatively

simple and therefore analytically tractable. In contrast, to the results of the preceeding section, this

analysis does find the existence of a fixed point to the modulation equations in the presence of this

kind of forcing that has physically admissible parameter values. However, this fixed point has two

undesirable properties. First, the fixed point corresponds to a stationary droplet, whereas the hope

was to sustain a propagating droplet. Worse, this fixed point is unstable and therefore unlikely to be

observed in experiments.

Essentially, the spin Hall effect contributes the same term as the Slonczewski spin-torque contri-

bution for the NC-STO, but the effect is global. The equation under study then is

∂m

∂ t
=−m×heff+αm× (m×heff) +σm× (m× ẑ)

which is a modification of Eq. (1) from [Liu11]. The spin hall effect always induces an in plane stray

field, which is neglected here. Assuming the droplet is propagating only in the x−direction, the

modulation equations can be reduced to the 2×2 system below.







dω
d t

d V
d t






=







1
2ω (2ω(α(h0+ω)−σ))

2(h0α−σ)ωV






(4.34)
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Eq. 4.34 admits 4 fixed points

ω= 0 V = 0 (4.35)

ω= h0−
σ

α
V =−2i

�

h0−
σ

α

�

(4.36)

ω= h0−
σ

α
V = 2i

�

h0−
σ

α

�

(4.37)

ω=−h0+
σ

α
V = 0 (4.38)

Only the last of these fixed points is of physical interest. The fixed point in (4.35) corresponds to

the uniform reversed state, mz =−1. The fixed points in Eqs (4.36)&(4.37) have complex velocities,

which are disregarded as physically meaningless. This leaves only the fixed point in Eq. (4.38) to

consider, which requires the admissibility condition σ
α > h0. The linearization of this system about

this fixed point is given by

d z

d t
=





1
2ω (2αω+2 (α (h0+ω)−σ))+ 1

2

�

2ω (α (h0+ω)−σ)+αV 2
�

αVω

2V (αh0−σ) +2αVω αω2+2ω (αh0−σ)+ 9αV 2

4



z (4.39)

Evaluating the Jacobian at the fixed point of interest yields

J =





(σ−αh0)2
α 0

0 − (σ−αh0)2
α



 (4.40)

Since this matrix is diagonal, the eigenvalues are easily read off. Both are real and one strictly positive,

the other strictly negative. The strictly positive eigenvalue corresponds to growth ofω and defines

the unstable direction. Hence the fixed point will not be stable with the unstable manifold in the

ω-direction. The conclusion of this analysis is that the droplet is unlikely to be observed in the

presence of spin hall torque alone and the droplet is most likely to decay to the uniform state.
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4.3 Summary

The analysis of this section offers a theoretical framework for understanding the observations of

droplets made in [Moh13; Mac14]. In particular, spin-torque can balance the natural damping of a

material and a droplet may be stabilized in a nanocontact. This process selects a single frequency

dependent on the NC-STO’s properties, suggesting a tuning mechanism for spin-torque oscillators.

However, the geometric contribution of the nanocontact seems to play a critical role in the existence

of the dissipative droplet. In the absence of a nanocontact, other mechanisms of spin-torque appear

to not be able to stabilize the droplet on their own. Nevertheless, the droplet is quite robust in

the context of the nanocontact and the theory here offers the first steps toward learning how to

manipulate the droplet in experiments. Further work is still required to include more effects, such as

the stochastic perturbation due to finite temperature, to move even closer to laboratory experiments.
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5

NUMERICAL COMPUTATION OF
DROPLET SOLITONS

The previous chapters investigated extensions of the Landau-Lifshitz equation utilizing an ap-

proximate analytical framework. In one such example, Section 4.1.1, that analysis concluded the

existence of a stable, time-periodic droplet-like structure in an extended model. These conclusions

were backed up by direct numerical simulations and analysis on the resulting time series. Relying on

time marching to compute time-periodic solitons in extended models is not only computationally

expensive, but will only reveal stable solutions whose basin of attraction includes the initial data.

The aim of this chapter is to take the initial steps toward developing an efficient numerical method

suitable for the direct compution of solitons in this extended context. Such methods would enable

direct computation of a bifurcation diagram (similar to Figure 4.2d) for truly time periodic solutions

of the full nonlinear partial differential equation, offer a more accurate means of validating the

conclusions of the previous chapters and enable the study of solitons when methods of the previous

chapters are not applicable.
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Much work has been devoted to the numerical computation of solitons and accordingly there

are many strategies which have been employed. One common approach is the Petviashvili method,

which was originally proposed to compute solitons for power-law nonlinearity [Pet76]. The Petvi-

ashvili method, crudely speaking, converts a partial differential equation of this type into a functional

which can converge under fixed point iteration. This method remains popular today with recent

application, for example, to solutions of the Dysthe equation (an NLS-type model for water waves

with higher order corrections) [FD12]. However, the method does not guarantee a convergent itera-

tion except in special cases [PS04] and extensions of the method to more general equations is an

area of active research [LY07; ÁD14b; ÁD14a]. A similar scheme to the Petviashvili method called

spectral renormalization was developed [AM05]. This method instead operates in Fourier space and

obtains convergence by rescaling the Fourier coefficients by a constant self-consistently determined

via an integral equation. The method has been successfully used in previous work to compute

propagating droplet solitons [HS12]. In addition to these schemes, there exist other methods for

computing solitons based on fixed point iteration such as the squared-operator iteration [YL07] and

variational iteration methods [HW06; He07; Abb07]which also enjoy popularity. However, since all

these methods are based on fixed point iteration, they all converge linearly and it may be desirable

to use a scheme with faster nonlinear convergence properties.

In addition to these schemes, there exist Newton based approaches (e.g. [Yan09; Yan02] ) which

address exactly this concern. Similar to the methods already discussed, these methods convert the

partial differential equation into a nonlinear functional where the roots of the functional correspond

to the soliton. A variant on this idea called the adjoint continuation method has recently been

employed in a number of systems [AW10b; AW10a; Wil11]. This method converts the problem of

finding roots of the functional into a minimization problem and then leverages recent advances in

numerical optimization to compute the soliton. The adjoint continuation method has the desirable

property that it is no longer necessary for the number of unknowns (e.g. spatiotemporal Fourier

components) to match the number of equations because the temporal dependency is enforced

78



CHAPTER 5.

via an adjoint calculation. Hence additional parameters can potentially be determined with the

addition of specific constraints, provided a solution actually exists. This method is briefly explored

in Section 5.2, but proves unsuitable for the computation of conservative droplet solitons.

As is done in Chapter 2, solitons are often viewed as fixed points of a nonlinear system. To do this,

typically an ansatz is made such as is done for the droplet in Section 1.1.2. This converts the problem

of soliton computation into a nonlinear eigenvalue problem and greatly reduces the complexity

involved at the cost of generality. Often soliton solutions are time-periodic, as is the case for the

Landau-Lifshitz equation. If the ansatz does not scale out the time-dependence, some generality

can be regained, but at the cost of multiplying the size of the computational problem. Viewing the

soliton either as a fixed point or a time-periodic orbit frames soliton computation in the classical

terms of bifurcation analysis. Problems of this sort have been extensively studied in the context

of ordinary differential equations. In principle, it would be possible to leverage well-established

software packages in bifurcation analysis such as AUTO [Doe81] or MATCONT [Dho03]. Unfortunately,

once discretized, partial differential equations often have too many unknowns for such packages

to be practical and these investigations are typically limited to problems in (1+1)D with relatively

coarse discretizations [CS07].

An additional motivation for pursuing a new method for the computation of droplets comes

from interaction problems discussed earlier. In [Mai14], we observed that the interaction of two

droplets could resolve into an apparently stable, time-periodic state which was not a droplet (called

a breather). The simplest breather observed there arose from the interaction of two stationary

droplets initially in phase. When situated far enough apart that the support of the droplets only

weakly overlapped, these two droplets were attracted toward each other. An explanation of this

phenomenon is given in Section 3.4.2. In long times the droplets merged, forming a droplet-like

structure with a boundary that modulated shape with the precession frequency (See Figure 5.1) .

Such a structure like this populates higher temporal Fourier harmonics than a stationary droplet

residing in one Fourier component. Therefore, the computation cannot be approached as a nonlinear
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mz
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Figure 5.1 Time series of breather solution from [Mai14]. Notice that as time evolves, the boundary of this
structure evolves as well. The structure is stationary and periodic with precession frequencyω≈ .3

eigenvalue problem. Furthermore, while spectral renormalization is known to compute droplets as

the solution to a nonlinear eigenvalue problem, this method is expected to converge to the ground

state [PS04], the droplet for this problem. Even if the spectral renormalization method of [HS12]

were generalized to include more than a single Fourier mode in time, it would not resolve this state

and another method would be needed.

The next section makes precise the problem under consideration and subsequent sections

outline different approaches taken, mostly based on Newton’s method. The conclusion of this work

is that the methods are unsuitable for a large scale numerical investigation of the droplet. Among

other problems, these methods suffer from current limitations of computer memory. Even with

Jacobian-free approaches such as Newton-GMRES, the cost of storing the Krylov basis becomes

prohibitive in (2+1)D for discretizations necessary to fully resolve the droplet. While the method is

demonstrated to work on the (2+1)D problem with large computational expense, the application of

this method to the breather converges to the underlying droplet. This leaves the possibility that the

initial data provided based on Figure 5.1 is not in the basin of attraction for Newton’s method or

that the observations in [Mai14]were of a metastable state that in longer time would have decayed

to the droplet. If the latter, this would indicate that there may not exist exact breathers of this sort to

the Landau-Lifshitz equation.
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5.1 Problem Statement

The basic goal is to find localized, time-periodic solutions to the Landau-Lifshitz equation. The

particular focus is to find (numerically) solutions which are valid in more realistic models of physical

experiments or cannot be characterized by a single frequency mode. Since shooting methods and

the adjoint continuation method have failed in the past, the approach tried here is to consider this

as a boundary value problem in space and time. That is we seek solutions of



















ı
�

∂ w

∂ t
−V ·∇w

�

−∇2w +
2w ∗∇w ·∇w +w

�

1− |w |2
�

1+ |w |2
+εP [w ] = 0

w (x , 0) =w0(x ), w (x , T ) =w0(x ), x ∈Rn , lim
|x |→∞

w (x , t )→ w̄ ∈C, t ∈ [0, T ]

(5.1)

The unknowns in this problem are the period, T and the initial data w0(x ). The term εP [w ] repre-

sents any number of arbitrary other terms which we wish to incorporate at a later date: damping,

Slonczewski Spin-Torque etc. The −V ·∇w term comes from the fact that we may wish to consider

propagating solutions. Such solutions will (in general) not be periodic in time in the “lab frame". As

a result, we formulate the problem in the co-moving frame. The constant w̄ satisfies the stationary

problem,
w̄ (1− |w̄ |2)

1+ |w̄ |2
+εP [w̄ ] = 0 (5.2)

It is convenient to work with the stereographic form of because of (a) it’s similarity to NLS where

similar methods have been successful in the past and (b) there are obvious linear terms which

suggest a preconditioner.

5.1.1 Simplest Problem

To start, this section considers the (1+1)D problem without additional terms (ε= 0). In this case, a

family of solutions is known and we will test the method by doing numerical continuation within

the family of solutions. Since one of the parameters for this family of solutions is the frequency
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ω, T = 2π
ω will be fixed. Additionally, the spatial domain will be restricted to [−L , L ] instead of R.

Since the solution is required to decay to a constant w̄ , it is possible to utilize periodic boundary

conditions in space as well. Hence, the target is a solution to
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−
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∂ x 2
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2w ∗
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∂ w
∂ x

�2
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�

1− |w |2
�

1+ |w |2
= 0

w (x , 0) =w (x , T ) =w0(x ), w (−L , t ) =w (L , t ),

x ∈ [−L , L ], t ∈ [0, T ]

(5.3)

Because of the periodic boundary conditions, a Fourier discretization may be used in space and

time and the problem can be reformulated as a nonlinear function which vanishes for solutions of

Eq. (5.3). That is, Eq. (5.3) is solved by zeroing

F [w ] = ı ∂ w
∂ t − ı V ∂ w

∂ x −
∂ 2w
∂ x 2 +

2w ∗
�

∂ w
∂ x

�2
+w (1−|w |2)

1+|w |2 = 0

F : C2 (R× [0, T ],C)→ C(R× [0, T ],C)

(5.4)

using Newton’s method, where the periodic boundary conditions are encoded in the discretization.

5.2 Adjoint Continuation Method

This section explores the feasibility of the adjoint continuation method (ACM) for the Landau-

Lifshitz equation. What follows describes the general setup of ACM as explained in Section 4 of

[AW10b]. The basic problem attempts to minimize

G [w0] =

∫ ∞

−∞
‖w (x , T )−w0(x )‖2 d x (5.5)
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with respect to w0(x ) where w (x , t ) satisfies Eq. (5.3). In principle, a minimization procedure could

be used to compute the period T as well as the initial data, w0, but for current purposes, the period

is treated as given. The minimization is conducted by seeking a zero of the gradient. Hence it is

necessary to find an efficient means to evaluate the gradient numerically. A brief explanation of

how this is done is provided here. For notational simplicity N [w ]will be defined to be such that the

differential equation ∂ w
∂ t =N [w ] is equivalent to Eq. (5.3).

Computing the variational derivative of Eq. 5.5

Ġ [w0, T ]≡
∂

∂ ε
G (w0+εv0)

�

�

�

�

ε=0

=

∫

R
[w (x , T )−w0(x )][v (x , T )− v0(x )]d x ≡

∫

R

δG

δw0
v0d x ≡



δG

δw0
, v0

·

(5.6)

where v satisfies the PDE given by the linearization ofN , namely ∂ v
∂ t =DN [w ]v, v (x ,0) = v0(x )

(an explicit expression will be given shortly). If this was where the computation was left, evaluation

of the gradient, δG
δw0

, would require evolving the PDE for v N times where N is the number of grid-

points in the discretization. However, significant gains can be made by evaluating the adjoint PDE

∂ u
∂ s = −DN [w [T − s ]]†u , u (x ,0) = u0(x ) = w (x , T )−w0(x ). A brief digression explains why and

exactly what properties the adjoint PDE satisfies. Defining u in the fashion described,



∂

∂ s
u (·, s ), v (·, T − s )

·

=−



DN †(w (·, T − s ))u , v (·, T − s )
�

(5.7)

=−〈u (·, s ), DN (w (·, T − s ))v (·, T − s )〉 (by definition of the adjoint) (5.8)

=−


u (·, s ),
∂ v (·, T − s )
∂ (T − s )

·

(5.9)

The critical claim here is that d
d s 〈u (·, s ), v (·, T − s )〉= 0.This is readily verified by the computation

∂

∂ s
〈u (·, s ), v (·, T − s )〉=−



∂ u (·, s )
∂ s

, v (·, T − s )
·

+


u (·, s ),
∂ v (·, T − s )

∂ s

·

(5.10)

=


u (·, s ),
∂ v (·, T − s )
∂ (T − s )

·

−


u (·, s ),
∂ v (·, T − s )
∂ (T − s )

·

(5.11)

= 0 (5.12)

83



5.2. ADJOINT CONTINUATION METHOD CHAPTER 5.

This calculation implies that 〈u (·, s ), v (·, T − s )〉 is constant and 〈u (·, 0), v (·, T )〉= 〈u (·, T ), v (·, 0)〉. It is

this relation which enables efficient evaluation of the gradient.

Ġ = 〈u0(·), v (·, T )− v0(·)〉

= 〈u0(·), v (·, T )〉− 〈u0(·), v0(·)〉

= 〈u (·, T ), v0(·)〉− 〈u0(·), v0(·)〉

= 〈u (·, T )−u0(·), v0(·)〉

=


δG

δw0
, v0(·)

·

.

With this property, evaluation of the gradient is reduced to a single evolution of the adjoint PDE to

determine u (x , t ) and a series of inner products.

For Eq. (5.3), the linearization is given by















i vt = vx x −
4w ∗wx vx

1+|w |2 +
(−1+2|w |2+|w |4+2w ∗2w 2

x )
(1+|w |2)2 v + (

2w 2−2w 2
x )

(1+|w |2)2 v ∗

v (x , 0) = v0(x ).

(5.13)

The algebraic details of this computation are in Appendix B.5.1. The adjoint of this linearization is

given by














−i ut = ux x +
�

4w ∗wx u
1+|w |2

�

x
+ −1+2|w |2+|w |4+2w 2(w ∗x

2)
(1+|w |2)2 u + 2w 2

x−2w 2

(1+|w |2)2 u∗

u (x , 0) = u0(x ) =w (x , T )−w0(x ).

(5.14)

which is carefully derived in Appendix B.5.2. Numerical evaluation of the hessian remains computa-

tionally expensive. Accordingly a quasi-Newton method of the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm is the standard choice for optimization. In the studies attempted here, Tim Kelley’s

implementationbfgswopt.m [Kel11]was used to perform the optimization. The theory for Newton’s

method in the complex plane is more restrictive, requiring the function to be analytic to properly

define the Newton iterates. To avoid this, optimization was performed over the real and imaginary

84



5.2. ADJOINT CONTINUATION METHOD CHAPTER 5.

parts of w0. BFGS requires an initial guess for the hessian, which was here taken to be the identity.

Such a choice is not atypical [Kel11].

Time-marching for Eqs. (5.3) and (5.14) was performed with an 11-stage, 8th order explicit

Runge-Kutta method [CV72]. The high order of the method significantly improved evaluation times

compared to more traditional methods like the Runge-Kutta-Fehlberg algorithm without drastically

altering the stability properties of the method. Similar high-order approaches have been used in

previous implementations of ACM [WY12]. Figure 5.2 makes a comparison between the stability

region of this method compared to the classical 4th order Runge-Kutta method. Spatial discretization
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Figure 5.2 Plot comparing the stability regions of the explicit 8th order Runge-Kutta method used here and
the classical 4th order Runge-Kutta method. The method chosen has a higher-order of accuracy, but does
not suffer significantly decreased stability properties and is suitable for use on non-stiff problems.

of the PDEs was done via a Fourier spectral method. Since Eq. (5.3) admits an exact analytical

solution [Kos90], the accuracy of the method can be directly queried. A careful investigation of the

discretization was conducted to determine the impact of time-step size and spatial resolution on

the accuracy of the solution. Taking the known solution, the difference between the initial and final

states was used as a surrogate for the global error. The results of that investigation are summarized

in Figure 5.3. Using these as a guide, the discretization parameters were chosen such that the
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global error in the computed solution was less than 10−10. Typical choices took the spatial domain

whereL = 50 with 512 grid points in space (δx ≈ .2) and δt ≈ 0.03 for the time step, yielding an

estimated error in time on the order of 10−12.
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Figure 5.3 (left) The difference between the initial and final states using the known stationary soliton
solution withω= 0.5, for a range of domain sizes L and mesh widths d x . The time step d t = 10−4 was held
fixed. (right) Holding L = 50 fixed, for a given d x the time step was increased until ‖w (x , T )−w0(x )‖∞
increased beyond 10−3. The error increased dramatically as the edge of the stability region was reached.
Together the right and left plots can be used as a guide for choosing optimal grid resolutions.

The evaluation of the gradient was also extensively validated. This was done in two ways. The

first was based on comparison to a finite difference approximation of the gradient. For several

randomly selected localized function w and v , the quantity G (w +εv )−G (w )−ε〈G ′[w ], v 〉=O
�

ε2
�

was computed for a range of ε. The residual was then computed and fit to a function of the from

C εp , with the expectation that p ≈ 2. For every test there was good agreement, supporting that the

numerical implementation of the gradient was correct. An example is provided in Figure 5.4

An additional test was run by implementing the linearized PDE. Rather than evaluate the gradient

using this method, the linearized PDE solution was used to verify numerically that the desired

property of the adjoint PDE was satisfied, namely that 〈u (s ), v (T − s )〉 is constant. This property

held to a remarkable degree for a wide range of choices of w0 and v0 chosen to be exponentially

localized solutions, but otherwise dissimilar to the analytical solution. An example of such a test is

shown in Figure 5.5.
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Figure 5.4 This plot is one example of the finite difference test done to validate the gradient. The functions
w and v used in this test were Guassians of different length scales, chosen to be quite far from the known
analytical solution. The least squares fit of the residuals is given by 6.95908 ∗ε1.92215 which matches nicely
with the theoretical expectation.
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Figure 5.5 This graph shows the deviation from the mean of 〈u (s ), v (T − s )〉.
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Despite these efforts to validate the implementation, ACM never converged to the soliton solu-

tion. Private communications with the authors of [AW10b] revealed that the method worked best for

problems for which the solution was a global attractor. This is not the case for the droplet. Further

communication revealed that ACM used with BFGS is highly sensitive to the initial estimate of the

hessian. Apparently it has been necessary in past work to allow many hundreds or thousands of

iterations of a first line search for BFGS to sufficiently update the hessian estimate. Once the hessian

estimate was sufficiently accurate, ACM did converge in those applications. Additionally it was

recommended that the PDEs be solved in quadruple precision. Since the ultimate aim of this work

was to compute droplet solitons in (2+1)D, it seemed unlikely that these requirements would allow

ACM to be a viable option. At this point, ACM was abandoned in favor of a different Newton based

method, which is discussed in the next section.

5.3 Newton-GMRES approach

The approach taken in this section simply attempts to solve Eq. (5.3) as a boundary value problem in

space and time. Newton’s method does typically converge for complex-valued functions of complex

variables, as briefly discussed in the previous section. However, this issue is readily patched by

converting a nonlinear function which maps real-valued functions to real-valued functions. To

do this, let w = u + ı v , where u and v represent the real and imaginary parts of w . Executing this

procedure, an equivalent functional

G [u , v ] =
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G : C2 (R× [0, T ])×C2(R× [0, T ])→ C(R× [0, T ])×C(R× [0, T ])

(5.15)
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is obtained. The function G is equivalent in the sense that F [u + ı v ] = (G [u , v ])1+ ı (G [u , v ])2 (F

as defined by Eq (5.4) ). Most importantly, G vanishes exactly where F vanishes, thus solutions of

G can be used to construct solutions to Eq. (5.3). In practice, it is not necessary to implement the

function G numerically, rather G can be evaluated by composing F with maps which identifyR2

with the complex plane and vice versa.

In order to apply Newton-GMRES it is not necessary to compute and store the Jacobian. However,

an algorithm to compute the matrix vector product for the Jacobian is required. This is often done

with finite differences, but in this case, an analytical form of the matrix vector product can be derived,

which offers accuracy gains and little additional computational cost. This is done by computing the

Frechét derivative of G which is done in Appendix B.5.3. The result is given by

D G [u , v ]
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. (5.16)

As with the functional itself, there is an equivalent representation in terms of complex variables (See

Appendix B.5.3) which offers computational efficiency gains.

In general, inverting the Jacobian of G would be a difficult task. In particular, the eigenvalues

are quite spread out and a preconditioner is required to accelerate the convergence of GMRES. The

linear part of the Jacobian, which is diagonalizable in Fourier space, is easy to invert. Furthermore,

it is the continuous spectrum of the differential operator in Eq. (5.16) which causes the greatest

difficulty for GMRES. A standard method of computing the continuous spectrum is to analyze the

far field behavior of the linear operator [Yan10]. Therefore, linearizing around the far field of the

soliton (decay to zero in this case) should give an operator with roughly an equivalent continuous
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spectrum to the Jacobian in Eq. (5.16), which makes this a suitable candidate for a preconditioner.

G [u , v ]≈M
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 (5.17)

The differential operator M is a block 2× 2 linear operator. Noting that in Fourier space, all the

operators in sight are diagonal simplifies the computation. That is

M̂ =







1+k 2
x ı (−kt +V kx )

ı (kt −V kx ) 1+k 2
x






, (5.18)

where kt is the discrete conjugate temporal frequency in Fourier space. Now, one can invert this

2×2 matrix and obtain

M̂ −1 =
1

det(M̂ )







1+k 2
x ı (kt −V kx )

ı (−kt +V kx ) 1+k 2
x






(5.19)

This preconditioner works quite well for problems in (1+1)D, but in (2+1)D this preconditioner

slowed convergence rather than accelerated it. This is due to catastrophic cancelation in 1
det(M̂ )

.

Consequently, an ad-hoc constant was added to the preconditioner,

P̂ −1 =
1

det(M̂ ) +C







1+k 2
x ı (kt −V kx )

ı (−kt +V kx ) 1+k 2
x






(5.20)

which was found to exhibit satisfactory convergence properties.

Similar to what was done for the gradient in the adjoint continuation problem, a finite-difference

based test was used to validate the Jacobian for the preconditioned problem. The results of one such

experiment are shown in Fig. 5.6. The problem was discretized using the parameters Nx =Ny = 1024

and Nt = 16 where Ni is the number of grid points in the i th direction. The domain of discretization
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was [−50, 50]×[−50, 50]×[0, 4π]. Using the approximate droplet formula, two localized structures with

different parameters were generated. These were far out of the regime of validity of the droplet itself,

but this is a convenient way to generate reasonable inputs. For the data shown, U was generated with

the parametersω= .6, V = .2,Φ0 = 0, x0 = 0. For W the parametersω= .45, V = .3,Φ0 = π/3, x0 = 4

were taken. For several choices of ε. As before, a least squares fit of F [U +εW ]− F [U ]−εD F [U ]W

was used to validate that the error term was O
�

ε2
�

.
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Figure 5.6 Loglog plot of F [U + εW ]− F [U ]− εD F [U ]W for several choices of ε. Also shown is a least
squares fit to the data showing consistency with Taylor’s theorem.

It is worth noting that the symmetries of the equation guarantee that the Jacobian is singular at

the root. This can be seen readily by differentiating the functional evaluated at the known solution

with respect to the parameters. This means that one of the theoretical gains of a Newton based

approach (quadratic nonlinear convergence) is not guaranteed. In practice, for the (1+1)D method

Newton’s method avoided singular search directions and quadratic convergence was observed. Nev-

ertheless, it is probable that significant improvements in this method could be realized if constraints

were added to break these symmetries, although other exhaustive studies have not experienced

difficulties due to a singular Jacobian [Yan09]. In the numerical computation of periodic orbits, this
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is a well known problem and a standard phase constraint is typically imposed [CS07]. Unfortunately,

such constraints significantly complicate the development of an effective preconditioner. It is likely

that these constraints could be treated by application of the Sherman-Morrison-Woodbury formula.

This is a goal for future work.

5.3.1 Results

In (1+1)D, the method above was used to compute a family of droplets parameterized byω. Simple

continuation was used taking the previous, final iterate of Newton’s method as the initial iterate of

the next continuation step. The discretization parameters used in this experiment were Nx = 213

and Nt = 16 on the domain [−600, 600]× [0, 2π/ω]. The large spatial domain was required to resolve

droplets at lower frequencies which are characterized by longer length scales. Note that since the

droplet corresponds to a nonlinear eigenfunction, only the first Fourier mode should be required

to resolve the temporal structure of the droplet. Nt = 16 was chosen to verify that that the method

would work with a nontrivial Fourier series in time. The results were then compared to the known

solution to this problem. The ‖·‖∞ of the error is plotted in Figure 5.7. Also plotted is the residual–

error owing only to the discretization and round off error–determined by evaluating the functional

G on the known true solution. Visibly, the error of the computed solitons is on the order of the

discretization error. Even with a large number of grid points, continuation managed to compute the

∼ 100 solitons on the order of a few hours on a desktop with a 3.5 Ghz processor.

Armed with success in (1+1)D, a similar trial was run in (2+1)D. While individual solitons could

be computed, there were serious limitations. The preconditioner proposed for the method required

10− 200 Krylov iterations per newton iteration. This held true across a wide range of choices of

the acceleration parameter, C ; however, the constant C had to be chosen such that C >max(kt )

to see reasonable performance. Spatial discretizations with more than ∼ 1000 grid points in each

separate spatial dimension were prohibitively expensive in terms of memory storage when the

preconditioner was less efficient. This could be alleviated by utilizing GMRES with restarts, but this
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Figure 5.7 Plot of the inf-norm error of computed solitons based on (1+1) Newton-GMRES continuation

was not explored. At the cost of on the order of hours per newton iteration, individual continuation

steps did successfully compute droplets. One such example computed is illustrated in Figures

5.8-5.9, which demonstrate sufficient spatial and temporal resolution by analysis of the Fourier

coefficients. For all of the experiments presented in (2+1)D the numerical parameters were chosen

to be Nx =Ny = 256, Nt = 16 and the computational domain was [−40, 40]× [−40, 40]× [0, 2π/ω].

Given the high computational cost involved, it seems unlikely that this method is suitable for

large scale exploration of solitons in perturbed Landau-Lifshitz equations. However, this method

still offers the potential benefit of capturing solutions which are not the ground state. Consequently,

the breather observed in [Mai14]was taken as an initial guess. Newton-GMRES converges to the

underlying droplet (as illustrated in Figure 5.10-5.12). The slow convergence of Newton’s method

means the absolute and relative tolerances in this experiment were chosen to be quite coarse∼ 10−6,

but the trend is clear. It remains possible that with a more refined initial guess, a breather state

could be computed via this method. It is the conclusion here that the breather is likely a meta-

stable solution and does not precisely solve the boundary value problem. Such an interpretation is

consistent with similar observations of [PZ98].

Neither of the methods explored in this chapter seem feasible for a large scale investigation.

Given the apparent non-existence of a numerically exact breather state, it seems most likely that a

proven method like spectral renormalization will be a more practical tool for investigating droplets
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Figure 5.8 This plot shows the temporal resolution of the droplet. On the left is a droplet computed via
spectral renormalization and lifted to (2+1)D. The quantity plotted is the integral over space of the droplet
in stereographic form. The spectral content of the the resulting time series is concentrated in a single
Fourier mode as is expected for a nonlinear eigenvalue problem. On the right, the same data is plotted for
a droplet computed with Newton-GMRES, taking the droplet on the left as an initial iterate. In both plots,
the vertical blue line corresponds to the target frequency of the droplet. This plot suggests that the solution
computed is in fact a droplet and is resolved sufficiently in time.

Figure 5.9 Spatial resolution of the droplet. The plotted quantity is the temporal average absolute spatial
Fourier coefficients of the (2+1)D droplet computed via Newton-GMRES. The contour plotted reflects
machine precision. There is clear decay in the spatial Fourier modes indicating that a sufficient number of
spatial grid points were used.
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Figure 5.10 Spatial and temporal resolution of the breather in Fig 5.1. The contour plotted on the right is at
10−10. The plot on the left shows the Fourier coefficients of the integral over space of the droplet. There is
a peak at the expected frequency with slow decay in the Fourier coefficients. This is consistent with obser-
vations of time series where the period is slightly off the nominal value. The plot on the right indicates the
spatial content of the breather is sufficiently resolved.

Figure 5.11 Spatial and temporal resolution of the breather in Fig 5.12. The contour plotted on the right is
at 10−10. The plot on the left shows the Fourier coefficients of the integral over space of the droplet. There
is a peak at the expected frequency and Newton-GMRES seems to be driving the other Fourier modes in
time to zero. The plot on the right shows that the structure is still quite well resolved in space after New-
ton’s method has converged.
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Figure 5.12 Time series of the structure after Newton’s method. Compare this to the times series of the
initial Newton iterate in Figure 5.1. Note the boundary of the structure remains nearly circular as time
progresses and there is no modulation of the boundary.
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in perturbed contexts. Fixed point iteration schemes would resolve the memory-constrained issues

related to storing either the Jacobian or the Krylov-basis for Newton approaches. Even given these

constraints, the approach outlined here does enjoy modest success and has the potential to investi-

gate some regimes not accessible to spectral renormalization if further evidence of breathers in the

Landau-Lifshitz equation should arise.
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CONCLUSION

The primary contribution of this thesis is two-fold: a mathematical result providing a simple formula

for the evaluation of modulation equations in Hamiltonian systems and a physical result developing

a general framework for investigating perturbations of droplet solitons. Each of these contributions

provide a tool which can be used for further investigation. The straightforward evaluation of modu-

lation equations for Hamiltonian systems makes evaluation simple, allowing new frameworks to

be developed in solitonic systems when the appropriate structure can be recognized. The physical

result presents a model which can be used to guide the recent experimental work where droplets

have been observed [Moh13; Mac14]. These experiments are only beginning the exploration of

properties of droplets in laboratory devices and theoretical input can help guide these experiments

into physically practical devices.

In particular, the investigation of the NC-STO is of particular importance, providing insight

into experimentally observed dissipative droplets. The combination of effects creates a complex

balance in which a rich array of structures can be observed. One key theoretical prediction is that

the higher order dynamics of soliton center can balance the small change in droplet velocity in
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a nanocontact. This enables a stationary structure with nontrivial phase structure to be trapped

by the an nanocontact. It opens up the possibility that wider array of solitons may be observed in

experimental configurations than has previously been predicted [BH13]. Current work being done

to directly image the magnetization [Bon15; Bac15] in nanocantact devices may reveal this complex

structure, which the indirect measurements of past experiments would not reveal [Moh13].

The examples provided in this thesis are meant to demonstrate the many ways in which the

modulation equations can be used to make predictions. For instance, in the example alluded to

above, the droplet in a nanocontact appears robust in the presence of weak field gradients, but

can be ejected from the nanocontact if the gradient becomes too large. This not only offers an

explanation of the previously observed drift instability, but also highlights the importance of the

higher order parameters (initial phase and position). In this example, the restoring force of the

nanocontact, which arises from modulation of the soliton center, can balance the direct acceleration

provided by the field gradient when the terms are of the same order. Observations of this sort are

the first steps toward utilizing the droplet as a mechanism for information storage and transfer. The

role of field gradients in propagation and control of droplets in the absence of a nanocontact has

previously been understood in [Hoe12]. The key contribution here is to see that higher order effects,

not considered in previous work, play an important role in modeling dissipative droplets.

In Chapter 4, perturbations relating to various experimental configurations were investigated.

The conclusion that neither adiabatic spin torque or the spin hall effect can stabilize the droplet

suggests the symmetry breaking provided by the nanocontact region plays a very important role in

these experimental devices. The modulation equations make such analysis comparatively straight-

forward, offering a quick means to determine that experimental investigation of droplets should

continue to focus the nanocontact and it is not simply that the nanocontact offers an expedient way

of nucleating the droplet.

In the context of the nanocontact, a large number of physical perturbations can now be investi-

gated providing many avenues for future work. There are countless additional perturbations that

98



CHAPTER 6.

could be investigated. In present work, the experiments are typically conducted at room tempera-

ture [Mac14] and thermal effects are likely to play a significant role. Temperature dependence has

been neglected in this work. It is possible that initiation of the drift instability could be a thermally

activated process and understanding the role of this stochastic perturbation could clarify the im-

portance of temperature control in the lab. This is just one of a number of neglected effects which

could prove important in laboratory experiments. Stray fields, canted applied fields and spin torque

asymmetry are all likely to play some role in experimental devices and warrant further investigation

as well.

Much more than being limited to the droplet, the Hamiltonian systems approach generalizes a

long history of soliton perturbation theory. Work of this sort has a long history in physically relevant

solitonic models. The early works of [Gor74] and [KM77b] posed these important questions in quite

general settings. The work here provides an equation which is straightforward to use and offers

significant generality in the systems to which it can be applied. The class of Hamiltonian systems

considered here is quite general with the necessary properties a direct consequence of symmetry

arguements [CS07]. Many new systems can now be readily investigated without extend asymptotic

calculations, ad hoc balance laws or knowledge of the Lagrangian which have been required in past

work [Wei85; KA81; KS95]. As a result modulation equations in new soliton bearing systems should

be a more accessible tool for investigation.

Understanding the general framework for Hamiltonian systems accomplishes multiple goals.

Not only is simpler to apply soliton perturbation theory to systems other than the Landau-Lifshitz

equation, it is also straightforward to model other solitary wave solutions to to the torque equations

such as magnetic vortices. In [BH15] it was proposed that the invariance of the Landau-Lifshitz

equation under rotation of the domain suggests the possibility of structures which both rotate and

precess. Such a solitary wave would be parameterized differently than the droplet, but if the relevant

parameters could be understood and an approximate solution obtained, the framework could be

extended to study perturbations of this structure readily.
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For direct computation of solitons in these extended contexts, much work remains to be done.

While the Newton based approaches seem impractical at this time, serious effort should be put into

spectral renormalization. Computation of solitary waves in extended versions of the Landau-Lifshitz

equation provides an avenue to probe questions of existence and stability directly in the context

of the partial differential equation. Work of this sort provides another mechanism for probing

experimental configurations which could support droplets. While potentially expensive to compute,

these solitons could help to verify the validity of modulation theory, but can also draw conclusions

well outside of the perturbative regime.

Numerically exact droplets can also be used to improve upon the existing modulation theory.

While the approximate droplet utilized in this thesis represents the best current approximation,

the limitation of studying only very slowly propagating droplets represents a significant limitation

in the theory developed here. However, sufficient generality is preserved throughout much of this

work that if a better approximation is presented, modulation equations not limited to slowly propa-

gating droplets could readily be derived. A numerically exact droplet cannot provide an analytical

tool for investigating droplet perturbations. However, with a sufficiently complete database, these

exact droplets could be interpolated providing a better surrogate for the droplet in the modulation

equations. These equations would then have to be integrated numerically. Such a tool could still

offer significant insight and computational savings over micromagnetic simulations.

There is a wide gap that exists between the theory of the droplet and experimental work. At

present, theoretical work can only make qualitative comparisons to physical experiments [Moh13].

The quantitative comparisons made in this thesis are to micromagnetic simulations, which also

provide only qualitative insight into experimental work. This suggests that there additional effects

present in experiment, but neglected by the fully nonlinear model that will need to be incorporated

before quantitative comparison is realistic. While this thesis has detailed many perturbations, there

is still much more which requires work. By continuing to investigate new effects in the torque

equation and refining approximations, the theoretical models will be able to provide stronger
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quantitative agreement with experimental work. It is through a combination of numerical and

analytical techniques, like those provided in this thesis, that the critical connections will be made

and that gap will be bridged.
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APPENDIX

A

NOTATIONAL CONVENTIONS

Unless otherwise stated, bold-face variables (e.g. m ) will denote vector quantities. Generally, sub-

scripts are reserved for labeling, not partial derivatives. However, in Appendix B, subscripts will

be used to denote partial derivatives since many of the equations are quite long and this notation

is more compact. The remainder of this appendix is dedicated to tables enumerating common

notation throughout this thesis.

Symbol Name Typical Value
Ms - Saturation magnetization 7.37×105A/m = .926T/µ0

Lex - Exchange Length 6 nm
δ - Free layer thickness 5 nm
r∗ - nanocontact radius 75 nm

H0 - applied field 5.57 ×105A/m = .7T/µ0

Hk - anisotropy field 9.36 ×105A/m = 1.18T/µ0

I - applied current ∼ 30mA
ε - spin torque efficiency 75 nm

Table A.1 Table of physical constants.
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Symbol Name Relation to Physical Constants

Q - Quality factor Hk/µ0

I0 - Spin torque scaling
4M 2

s eµ0πr 2
∗ δ(Q−1)

ħhεΘp

τ - Time scale (
�

�γ
�

�µ0Ms (Q −1))−1

L - Length scale Lex/
p

Q−1

h0 - Dimensionless perpendicular field H0/Ms (Q−1)

ρ∗ - Dimensionless nanocontact radius r∗/L

σ - Dimensionless current I/I0

α - Dimensionless damping ∼ 0.01

Table A.2 Table of scaling parameters and dimensionless constants

M - Magnetization vector, satisfying |M|=Ms

Mi - i -component of the magnetization, i.e M= [Mx , M y , Mz ]

m - Nondimensional magnetization vector, satisfying |m|= 1

mi - i -component of the nondimensional magnetization, i.e m= [mx , my , mz ]

Θ - Azimuthal angle of magnetization, m= [cos(Φ)sin(Θ), sin(Φ)sin(Θ), cos(Θ)]

Φ - Polar angle of magnetization, m= [cos(Φ)sin(Θ), sin(Φ)sin(Θ), cos(Θ)]

w - Stereographic representation of the magnetization, w =
mx+i my

1+mz
= e iΦ sinΘ

1+cos(Θ)

Table A.3 Variables used for the magnetization
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E - Energy (See Eq. (1.15))

N - Total spin (See Eq. (1.18))

P - Momentum (See Eq. (1.21))

Φ0 - Overall droplet phase

x0 - Initial soliton center

ω - Droplet frequency (above Zeeman)

V - Droplet velocity

ξ - Droplet center (ξ= x0+
1
ε

∫ εt

0
V(t ′)d t ′)

Table A.4 Droplet parameters and conserved quantites

x

y
x0

Φ0

ω

V

Figure A.1 Illustration of the droplet parameters. The vector in the middle represents the in-plane compo-
nent of the magnetization at the center of the droplet.
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B

SUPPLEMENTARY CALCULATIONS

B.1 Hamiltonian of the Torque Equatioun

As is repeatedly referred to in the main body of Eq. (1.8) represents a Hamiltonian system. The canon-

ical Hamiltonian variables are mz and Φwhere mz is the vertical component of the magnetization

and Φ is the phase. In these variables, the torque equation becomes

∂mz

∂ t
=−∇·

�

(1−m 2
z )∇Φ

�

(B.1)

∂ Φ

∂ t
=
∇2mz

1−m 2
z

+
mz |∇mz |2

(1−m 2
z )2
+mz (1+ |∇Φ|2). (B.2)

The corresponding Hamiltonian for this system is

H (mz ,Φ) =
1

2

∫

Rn

�

|∇mz |2

1−m 2
z

+ (1−m 2
z )(1+ |∇Φ|

2)

�

d x (B.3)
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It remains to verify that this is the Hamiltonian by computing the variational derivatives of the

torque equation. However, this form is not suitable for modulation theory, so the verification will be

suspended until the Hamiltonian is in the appropriate form. Shifting into the precessing, comoving

frame: i.e

mz (x , t )→ m̃z (x −V t , t ) (B.4)

Φ(x , t )→ωt + Φ̃(x −V t , t ) (B.5)

the Landau-Lifshitz equation becomes

∂mz

∂ t
=−∇·

�

(1−m 2
z )∇Φ

�

+V ·∇mz (B.6)

∂ Φ

∂ t
=
∇2mz

1−m 2
z

+
mz |∇mz |2

(1−m 2
z )2
+mz (1+ |∇Φ|2) +V ·∇Φ−ω (B.7)

where gradients are now with respect toξ= x−Vt the comoving coordinate and ˜ ’s will be dropped

from variables for clarity. Since there are now new terms in the equation, the Hamiltonian must

change correspondingly,

H (mz ,Φ) =
1

2

∫

Rn

�

|∇mz |2

1−m 2
z

+ (1−m 2
z )(1+ |∇Φ|

2) +V · (−mz∇Φ+∇mzΦ) +2ωmz

�

d x (B.8)
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This Hamiltonian now explicitly depends on the parametersω and V . The next several computations

verify that this is the Hamiltonian corresponding to the system in Eqs. (B.6)& (B.7).

〈HΦ,Ψ;ω, V〉= d

dε

�

1

2

∫

Rn

�

|∇mz |2

1−m 2
z

+ (1−m 2
z )(1+ |∇(Φ+εΨ)|

2)

�

d x+V · (−mz∇(Φ+εΨ) +∇mz (Φ+εΨ) +2ωmz

� �

�

�

�

ε=0

(B.9)

=

∫

Rn

�

(1−m 2
z )∇Φ∇Ψ +V · (−mz∇Ψ +∇mzΨ)

�

d x (B.10)

=

∫

Rn

�

−∇· ((1−m 2
z )∇Φ)Ψ +

1

2
V · (−mz∇Ψ +∇mzΨ)

�

d x (B.11)

by an application of Green’s identities

=

∫

Rn

�

−∇· ((1−m 2
z )∇Φ)Ψ +

1

2
V · (∇mzΨ +∇mzΨ)

�

d x (B.12)

by integration by parts on each component of the gradient

=

∫

Rn

�

−∇· ((1−m 2
z )∇Φ) +V ·∇mz

�

Ψd x (B.13)

⇒HΦ =−∇· ((1−m 2
z )∇Φ) +V ·∇mz (B.14)
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Hmz
,Ψ
�

=
d

dε

�

1

2

∫

Rn

�

|∇(mz +εΨ)|2

1− (mz +εΨ)2

+(1− (mz +εΨ)
2)(1+ |∇Φ|2)

+V (−(mz +εΨ)∇Φ+∇(mz + εΨ)Φ) +2ω(mz +εΨ)]d x]

�

�

�

�

ε=0

(B.15)

=

∫

Rn

�

mz |∇mz |2Ψ
(1−m 2

z )2
+
∇mz ·∇Ψ

1−m 2
z

−mzΨ(1+ |∇Φ|2) +
1

2
V · (−∇ΦΨ +Φ∇Ψ) +ωΨ

�

d x (B.16)

by elementary calculus

=

∫

Rn

�

mz |∇mz |2

(1−m 2
z )2
Ψ −∇·

�

∇mz

1−m 2
z

�

Ψ −mz (1+ |∇Φ|2)Ψ +
1

2
V · (−∇ΦΨ +Φ∇Ψ) +ωΨ

�

d x (B.17)

by an application of Green’s identities

=

∫

Rn

�

mz |∇mz |2

(1−m 2
z )2
Ψ −∇·

�

∇mz

1−m 2
z

�

Ψ −mz (1+ |∇Φ|2)Ψ +
1

2
V · (−∇ΦΨ −∇ΦΨ) +ωΨ

�

d x (B.18)

by integration by parts on each component of the gradient

=

∫

Rn

�

−
∇2mz

1−m 2
z

−
mz |∇mz |2

(1−m 2
z )2
−mz (1+ |∇Φ|2)−V ·∇Φ+ω

�

Ψd x (B.19)

by elementary calculus

⇒Hmz
=−
∇2mz

1−m 2
z

−
mz |∇mz |2

(1−m 2
z )2
−mz (1+ |∇Φ|2)−V ·∇Φ+ω (B.20)

Armed with this it is now clear that

∂

∂ t





mz

Φ



=





0 1

−1 0



∇H (mz ,Φ) (B.21)

which verifies that indeed the Eq. 1.8 is Hamiltonian with the Hamiltonian given by Eq. B.3 and the

skew-adjoint operator being J =





0 1

−1 0



.
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B.1.1 Second Variation of the Hamiltonian

It remains to compute the second variation of the functional in Eq. B.3 and verify that the resulting

operator is self adjoint. This will require computing Hmz ,mz
, HΦ,Φ, HΦ,mz

and Hmz ,Φ. Further, it

remains to verify that Hmz ,mz
= H †

mz ,mz
,HΦ,Φ = H †

Φ,Φ and HΦ,mz
= H †

mz ,Φ which will verify that the

second variation

∇2H =





Hmz ,mz
Hmz ,Φ

HΦ,mz
HΦ,Φ



 (B.22)

is self adjoint.

These derivatives are readily computed,

Hmz ,mz
(mz ,Φ)Ψ =

d

dε

�

−
∇2mz

1−m 2
z

−
mz |∇mz |2

(1−m 2
z )2
−mz (1+ |∇(Φ+εΨ)|2)−V ·∇Φ+εΨ +ω

� �

�

�

�

ε=0

(B.23)

=−
∇2Ψ

1−m 2
z

−
2mz∇mz∇Ψ
�

1−m 2
z

�

2
−

�

2∆m 2
z

�

1−m 2
z

�

2
+
(∇mz )2
�

1−m 2
z

�

2
+

4m 2
z (∇mz )2

�

1−m 2
z

�

3
+ (∇Φ)2+1

�

Ψ (B.24)

Hmz ,Φ(mz ,Φ)Ψ =
d

dε

�

−
∇2mz

1−m 2
z

−
mz |∇mz |2

(1−m 2
z )2
−mz (1+ |∇(Φ+εΨ)|2)−V ·∇(Φ+εΨ) +ω

� �

�

�

�

ε=0

(B.25)

=−2mz∇Φ∇Ψ −V ∇Ψ (B.26)

HΦ,Φ(mz ,Φ)Ψ =
d

dε

�

−∇· ((1−m 2
z )∇(Φ+εΨ))+V ·∇mz

�

�

�

�

�

ε=0

=−∇· ((1−m 2
z )∇Ψ) (B.27)

⇒HΦ,Φ(mz ,Φ) =−∇· (1−m 2
z )∇ (B.28)
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HΦ,mz
(mz ,Φ)Ψ =

d

dε

�

−∇· ((1− (mz +εΨ)
2)∇Φ) +V ·∇(mz +εΨ)

�

�

�

�

�

ε=0

(B.29)

= 2∇· (mzΨ∇Φ) +V ·∇Ψ (B.30)

The next step is to verify that∇2H is self adjoint, which will be done by individually computing



Υ , Hmz ,mz
Ψ
�

=



Hmz ,mz
Υ ,Ψ

�

,



Υ , HΦ,ΦΨ
�

=



HΦ,ΦΥ ,Ψ
�

and



Υ , Hmz ,ΦΨ
�

=



HΦ,mz
Υ ,Ψ

�

. First HΦ,Φ is

famously self-adjoint which is shown by simply integrating by parts twice. Verifying that Hmz ,mz
=

H †
mz ,mz

is slightly more involved, HΦ,mz
=H †

mz ,Φ will be verified first.




Υ , Hmz ,ΦΨ
�

=

∫

Rn

[Υ (−2mz∇Φ∇Ψ −V ∇Ψ)]d x (B.31)

=−
∫

Rn

2Υmz∇Φ∇Ψd x−
∫

Rn

ΥV ∇Ψd x (B.32)

=

∫

Rn

∇· (2mzΥ∇Φ)Ψd x−
∫

Rn

ΥV ∇Ψd x (B.33)

by Green’s Identities

=

∫

Rn

2∇· (mzΥ∇Φ)Ψd x+

∫

Rn

V ∇ΥΨd x (B.34)

by integration by parts

on each component of the gradient

=

∫

Rn

[2∇· (mzΥ∇Φ)+V ∇Υ ]Ψd x (B.35)

=



HΦ,mz
Υ ,Ψ

�

(B.36)

Hence, HΦ,mz
=H †

mz ,Φ as desired. What remains to finish showing that∇2H =∇2H † is that Hmz ,mz
=
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H †
mz ,mz

.




Υ , Hmz ,mz
Ψ
�

=

∫

Rn

�

Υ

�

−
∆Ψ

1−m 2
z

−
2mz∇mz∇Ψ
�

1−m 2
z

�

2

−

�

2∆m 2
z

�

1−m 2
z

�

2
+
(∇mz )2
�

1−m 2
z

�

2
+

4m 2
z (∇mz )2

�

1−m 2
z

�

3
+ (∇Φ)2+1

�

Ψ

��

d x (B.37)

=−
∫

Rn

Υ
∆Ψ

1−m 2
z

d x

︸ ︷︷ ︸

¬

−
∫

Rn

Υ
2mz∇mz∇Ψ
�

1−m 2
z

�2 d x

︸ ︷︷ ︸



−
∫

Rn

�

2∆m 2
z

�

1−m 2
z

�

2
+
(∇mz )2
�

1−m 2
z

�

2
+

4m 2
z (∇mz )2

�

1−m 2
z

�

3
+ (∇Φ)2+1

�

ΨΥd x

︸ ︷︷ ︸

®

(B.38)

Consider ¬ and . No further computation will be required on ®. So, ¬:

∫

Rn

Υ
∆Ψ

1−m 2
z

d x=−
∫

Rn

∇
�

Υ

1−m 2
z

�

·∇Ψd x (B.39)

by Green’s identities

=−
∫

Rn

�

∇Υ
1−m 2

z

+2
Υmz∇mz

(1−m 2
z )2

�

·∇Ψd x (B.40)

by basic calculus

=

∫

Rn

∇·
�

∇Υ
1−m 2

z

+2
Υmz∇mz

(1−m 2
z )2

�

Ψd x (B.41)

by Green’s identities

=

∫

Rn

�

∇2Υ

1−m 2
z

+
2mz∇Υ ·∇mz

1−m 2
z

+∇·
�

2Υmz∇mz

(1−m 2
z )2

��

Ψd x (B.42)

by basic calculus
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Next, consider .

∫

Rn

Υ
2mz∇mz∇Ψ
�

1−m 2
z

�2 d x=−
∫

Rn

∇·

 

2Υmz∇mz
�

1−m 2
z

�2

!

Ψd x (B.43)

by an application of Green’s identities. All together this becomes

¬+=

∫

Rn

�

∇2Υ

1−m 2
z

+
2mz∇Υ ·∇mz

1−m 2
z

�

Ψd x (B.44)

which greatly simplifies the calculation. Finally,




Υ , Hmz ,mz
Ψ
�

=−
∫

Rn

Υ
∆Ψ

1−m 2
z

d x

︸ ︷︷ ︸

¬

−
∫

Rn

Υ
2mz∇mz∇Ψ
�

1−m 2
z

�2 d x

︸ ︷︷ ︸



−
∫

Rn

�

2∆m 2
z

�

1−m 2
z

�

2
+
(∇mz )2
�

1−m 2
z

�

2
+

4m 2
z (∇mz )2

�

1−m 2
z

�

3
+ (∇Φ)2+1

�

ΨΥd x

︸ ︷︷ ︸

®

(B.45)

=−
∫

Rn

�

∇2Υ

1−m 2
z

+
2mz∇Υ ·∇mz

1−m 2
z

�

Ψd x

−
∫

Rn

�

2∆m 2
z

�

1−m 2
z

�

2
+
(∇mz )2
�

1−m 2
z

�

2
+

4m 2
z (∇mz )2

�

1−m 2
z

�

3
+ (∇Φ)2+1

�

ΨΥd x (B.46)

=

∫

Rn

�

−
∇2Υ

1−m 2
z

−
2mz∇Υ ·∇mz

1−m 2
z

−

�

2∆m 2
z

�

1−m 2
z

�

2
+
(∇mz )2
�

1−m 2
z

�

2
+

4m 2
z (∇mz )2

�

1−m 2
z

�

3
+ (∇Φ)2+1

�

Υ

�

Ψd x (B.47)

=



Hmz ,mz
Υ ,Ψ

�

(B.48)

Therefore Hmz ,mz
is self-adjoint and it follow immediately that∇2H is self-adjoint as desired.
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B.1.2 Derivatives of the Hamiltonian

The final computation in this section regards the somewhat unusual assumption in Theorem 2.1.1.

The assumption in question is assumption 4: ∀ 1≤ k ≤m , ∃ 1≤ j ≤ s such that ∂
∂ qk
∇H (z , q)

�

�

�

�

z=u

∈

span
¦

J −1 ∂ u
∂ r j

©

. In the terminology of this section, it’s necessary to compute ∂ω∇H and ∂Vi
∇H ,

∇H =







− ∇
2mz

1−m 2
z

−mz |∇mz |2

(1−m 2
z )

2 −mz (1+ |∇Φ|2)−V ·∇Φ+ω

−∇· ((1−m 2
z )∇Φ) +V ·∇mz






(B.49)

The important observation is that when taking partial derivatives, the fact that mz will later depend

onω and V does not impact the present calculation.

∂ω∇H =





1

0



 (B.50)

∂Vi
∇H =





−Φxi

mz ,xi



 (B.51)

In order for the assumption of Theorem 2.1.1 to be satisfied either





1

0



=





mz ,s ,Φ0

ΦsΦ0



 (B.52)

or




1

0



=





mz ,s ,x0,i

Φs ,x0,i



 . (B.53)

It will become clear which choice makes more sense. In order to verify the assumptions, it is nec-

essary to understand the dependence on the parameters. This dependence, however, is entirely
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encapsulated in the ansatz.

mz ,s =mz ,s (x + x0−V t ;ω) (B.54)

Φs =Φ0+ωt +Ψ(x + x0−V t ;ω). (B.55)

Utilizing this ansatz,

∂Φ0





mz ,s

Φs



=





0

1



 (B.56)

∂x0,i





mz ,s

Φs



=





mz ,s ,xi

Φs ,xi



 (B.57)

it is immediate that

∂Φ0





mz ,s

Φs



=





0

1



=−J ∂ω∇H (B.58)

and

∂x0,i





mz ,s

Φs



=





mz ,s ,xi

Φs ,xi



=−J ∂Vi
∇H (B.59)

which verifies ∂Φ0





mz ,s

Φs



 ∈ span{−J ∂ω∇H } and ∂x0,i





mz ,s

Φs



 ∈ span
�

−J ∂Vi
∇H

	

and the assump-

tions of Theorem 2.1.1 hold.

B.2 Direct Calculation of Landau-Lifshitz Modulation Equations

B.2.1 Setup for General Perturbations of the Landau Lifshitz Equation

As explained in the main body of this thesis (Section 2.1), determining the modulation equations in

Hamiltonian variables is significantly easier than other coordinate systems. In the derivation that

follows for the Landau-Lifshitz equation, the Hamiltonian variables will be used. These variables
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have already been given names by other presentations of the Landau-Lifshitz equation, but for the

sake of clarity, and minimization of subscripts, in this section take

u =mz (B.60)

Φ̄=Φ. (B.61)

Thus the Landau-Lifshitz equation becomes

ut =−∇· ((1−u 2)∇Φ̄) (B.62)

Φ̄t =
∇2u

1−u 2
+

u |∇u |2

(1−u 2)2
+u (1+

�

�∇Φ̄
�

�

2
) +h0 (B.63)

Under the presence of perturbations Eq. B.62-Eq. B.63 become

ut =−∇· ((1−u 2)∇Φ̄) +εPu (B.64)

Φ̄t =
∇2u

1−u 2
+

u |∇u |2

(1−u 2)2
+u (1+

�

�∇Φ̄
�

�

2
) +h0(εx ,εt ) +εPΦ̄ (B.65)

Note that Pu = −sin(Θ)PΘ and PΦ̄ =
PΦ

sin(Θ) relates these perturbations to the perturbations of the

Landau-Lifshtiz equation in spherical variables as used in [BH13]. Also, as argued in the main body

of this thesis (Section 2.1), the calculation becomes significantly easier in the co-moving frame.

However, for the purposes of this computation, it is equivalent to build the necessary information

into the form of the perturbation expansion.
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Take the ansatz for u , Φ̄ given by

u (x , t ) =U (x −ξ(t , T );ω, V ) +εu1(x −ξ(t , T ), t , T ) + . . . (B.66)

Φ̄(x , t ) =Φ0(T ) +

∫ t

0

�

ω(εt ′) +h0(εt ′)
�

d t +Ψ(x −ξ(t , T );ω, V ) +εΥ (x −ξ(t , T ), t , T ) + . . . (B.67)

ξ(t , T ) = x0(T ) +

∫ t

0

V (εt ′)d t ′ (B.68)

where T = εt . Note this ansatz mandates the next order term is centered on the soliton. Further, this

ansatz does not allow h0 to vary slowly on space. Attempting to include such variation directly into

h0 leads to secularity which is not readily handled by this theory. Instead, as explained in (Section

3.1) it is possible to expand the field around a constant background and treat spatial variation as a

perturbation so little generality is lost by this assumption .

Differentiating the anstaz in Eqs B.66-B.68 with respect to t ,

ut =−∇U (x −ξ) ·ξt +ε
�

u1t∇u1(x −ξ) ·ξt −∇U (x −ξ) ·ξT +Uωω
′(T ) +UV V ′(T )

�

+O
�

ε2
�

(B.69)

=−∇U ·V +ε
�

u1t −∇u1 ·V −∇U · x ′0(T ) +Uωω
′(T ) +UV V ′(T )

�

+O
�

ε2
�

(B.70)

(B.71)

Φ̄t =ω+h0−V ·∇Ψ +ε
�

Υt −V ·∇Υ +Φ′0(T )−∇Ψ · x
′
0(T ) +Ψωω

′(T ) +ΨV V ′(T )
�

+O
�

ε2
�

(B.72)

Next define,

Hu ,u (u , Φ̄) =−
∆

1−u 2
−

2u∇u ·∇
(1−u 2)2

−
�

2u∆u + |∇u |2

(1−u 2)2
+

4u 2 |∇u |2

(1−u 2)3
+ (∇Φ̄)2+1

�

(B.73)

Hu ,Φ̄(u , Φ̄) =−2u∇Φ̄∇−V ·∇ (B.74)

HΦ̄,u = 2u∇Φ̄ ·∇+
�

2u∇2Φ̄+2∇u ·∇Φ̄
�

+V ·∇ (B.75)
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( i.e.⇒HΦ̄,u (u , Φ̄)(?) = 2∇· (u∇Φ̄?) )+V ·∇? )

HΦ̄,Φ̄(u , Φ̄) =−∇· (1−u 2)∇ (B.76)

L =





Hu ,u Hu ,Φ̄

HΦ̄,u HΦ̄,Φ̄



 (B.77)

Note: H †
u ,u = Hu ,u , H †

Φ̄,Φ̄
= HΦ̄,Φ̄ and H †

u ,Φ̄
= HΦ̄,u so that L = L †. L is exactly the Hessian of the

Hamiltonian as it presents in the co-moving frame.

For computational simplicity, take u = A+εB +O
�

ε2
�

and Φ̄=C +εD +O
�

ε2
�

to evaluate the

right hand sides. A, B , C and D will be substituted back in when the remainder of the calculation is

complete.

−∇· ((1−u 2)∇Φ̄) =−∇· ((1− (A+εB )2)∇ (C ) +εD )) +O
�

ε2
�

(B.78)

=−∇· ((1−A2−ε2AB ) (∇C +ε (∇D ))) +O
�

ε2
�

(B.79)

=−
�

∇· ((1−A2−ε2AB ) (∇C +ε (∇D )))
�

) +O
�

ε2
�

(B.80)

=−
�

∇· ((1−A2)∇C +ε
�

(1−A2)∇D −2AB∇C
��

+O
�

ε2
�

(B.81)

=−∇· ((1−A2)∇C ) +ε
�

∇· (2A∇C B )−∇· (1−A2)∇D
�

+O
�

ε2
�

(B.82)

=−∇· ((1−A2)∇C ) +ε
�

HΦ̄,u (A, C )B −V ·∇B +HΦ̄,Φ̄(A, C )D
�

+O
�

ε2
�

(B.83)

Now,

A =U B = u1 C =Φ0+

∫ t

0

ω(εt ′)d t ′+Ψ D = Υ (B.84)

and note that it’s really only∇C that enters these equations (anywhere) so it’s enough to evaluate at
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Ψ instead and

−∇· ((1−u 2)∇Φ̄) =−∇· ((1−U 2)∇Ψ) +ε
�

HΦ̄,u u1+HΦ̄,Φ̄Υ −V ·∇u1

�

+O
�

ε2
�

(B.85)

Similarly,

∇2u

1−u 2
=
∇2(A+εB )

1− (A+εB )2
+O

�

ε2
�

(B.86)

= (∇2A+ε∇2B )
�

1

1−A2
+ε

�

2AB

(1−A2)2

��

+O
�

ε2
�

(B.87)

=
∇2A

1−A2
+ε

�

∇2B

1−A2
+

2A∇2AB

(1−A2)2

�

+O
�

ε2
�

(B.88)

u |∇u |2

(1−u 2)2
=
(A+εB ) |∇(A+εB )|2

(1− (A+εB )2)2
+O

�

ε2
�

(B.89)

=
�

(A+εB )(|∇A|2+ε2∇A ·∇B )
�

�

1

(1−A2)2
+ε

�

4AB

(1−A2)3

��

+O
�

ε2
�

(B.90)

=
�

(A |∇A|2+ε
�

B |∇A|2+2A∇A ·∇B )
��

�

1

(1−A2)2
+ε

�

4AB

(1−A2)3

��

+O
�

ε2
�

(B.91)

=

�

A |∇A|2

(1−A2)2
+ε

�

B |∇A|2+2A∇A ·∇B

(1−A2)2
+

4A2B |∇A|2

(1−A2)3

��

+O
�

ε2
�

(B.92)

u
�

1+
�

�∇Φ̄
�

�

2�

= (A+εB )
�

1+ |∇ (C +εD )|2
�

+O
�

ε2
�

(B.93)

= (A+εB )
�

1+ |∇C +ε (∇D )|2
�

+O
�

ε2
�

(B.94)

= (A+εB )
�

1+ |∇C |2+ε2∇C · (∇D )
�

+O
�

ε2
�

(B.95)

= A
�

1+ |∇C |2
�

+ε
�

2A∇C · (∇D )+B
�

1+ |∇C |2
��

+O
�

ε2
�

(B.96)

Note

∇2B

1−A2
+

2A∇2AB

(1−A2)2
+

B |∇A|2+2A∇A ·∇B

(1−A2)2
+

4A2B |∇A|2

(1−A2)3
+B

�

1+ |∇C |2
�

=−Hu ,u (A, C )B (B.97)
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and

2A∇C · (∇D ) =−Hu ,Φ̄(A, C )D −V ·∇D (B.98)

So putting this all together

∇2u

1−u 2
+

u |∇u |2

(1−u 2)2
+u

�

1+
�

�∇Φ̄
�

�

2�

=
∇2A

1−A2
+

A |∇A|2

(1−A2)2
+A

�

1+ |∇C |2
�

(B.99)

+ε
�

−Hu ,u (A, C )B −Hu ,Φ̄(A, C )D −V ·∇D
�

+O
�

ε2
�

(B.100)

=
∇2U

1−U 2
+

U |∇U |2

(1−U 2)2
+U

�

1+ |∇Ψ|2
�

(B.101)

+ε
�

−Hu ,u u1−Hu ,Φ̄Υ −V ·∇Υ
�

+O
�

ε2
�

(B.102)

Collecting terms of like order in the original PDE

O (1):



























−∇U ·V = −∇· ((1−U 2)∇Ψ)

ω+��h0−∇Ψ ·V = ∇2U
1−U 2 +

U |∇U |2
(1−U 2)2 +U

�

1+ |∇Ψ|2
�

+��h0

O (ε):























u1t −����V ·∇u1−∇U · x ′0+Uωω
′+UV V ′ = HΦ̄,u u1+HΦ̄,Φ̄Υ −����V ·∇u1+Pu

Υt −����V ·∇Υ +Φ′0−∇Ψ · x
′
0+Ψωω

′+ΨV V ′ = −Hu ,u u1−Hu ,Φ̄Υ −���
�V ·∇Υ +PΦ̄

Moving stuff over, the first order problem becomes

O (ε):























u1t = HΦ̄,u u1+HΦ̄,Φ̄Υ +∇U · x ′0−Uωω
′−UV V ′+Pu

Υt = −Hu ,u u1−Hu ,Φ̄Υ −Φ′0+∇Ψ · x
′
0−Ψωω

′−ΨV V ′+PΦ̄
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Casting this in matrix form





u1

Υ





t
︸ ︷︷ ︸

Υt

=





0 1

−1 0





︸ ︷︷ ︸

J





Hu ,u Hu ,Φ̄

HΦ̄,u HΦ̄,Φ̄





︸ ︷︷ ︸

L





u1

Υ





︸ ︷︷ ︸

Υ

+





∇U T

∇ΨT



 x ′0−





0

Φ′0



−





U

Ψ





ω

ω′−





U

Ψ





V

V ′+





Pu

PΦ̄





︸ ︷︷ ︸

f
(B.103)

As explained in (Section 2.1.1), solvability on this ODE requires that f be orthogonal to the

generalized null space of of (J L )† =−L J since L is self-adjoint and J is skew-adjoint. Define E (L J )

to be this generalized null space. It is a fact, requiring justification, that

span











−1

0



 ,





Ψxi

−Uxi



 ,





−Ψω

Uω



 ,





−ΨVi

UVi











⊆ E (L J ). (B.104)

More specifically,

L J





−1

0



= 0 and L J





−Ψx0,i

Ux0,i



= 0 (B.105)

and the remaining terms are generalized null vectors which can be seen by verifying

L J





−Ψω

Uω



=





−1

0



 and L J





−ΨVi

UVi



=





Ψxi

−Uxi



 . (B.106)

Next, verify these claims.

L J





−1

0



= L





0 1

−1 0









−1

0



=





Hu ,u Hu ,Φ̄

HΦ̄,u HΦ̄,Φ̄









0

1



=





Hu ,Φ̄1

HΦ̄,Φ̄1



 (B.107)

But

Hu ,Φ̄1=−2U∇Ψ��*
0

∇1= 0 (B.108)
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and

HΦ̄,Φ̄1=−∇· ((1−U 2)��*
0

∇1) = 0 (B.109)

and so evidently (−1, 0)T ∈ ker(L J ). The next claim was that

L J





−Φ̄xi

Uxi



= L





0 1

−1 0









−Ψxi

Uxi



=





Hu ,u Hu ,Φ̄

HΦ̄,u HΦ̄,Φ̄









Uxi

Ψxi



=





Hu ,uUxi
+Hu ,Φ̄Ψxi

HΦ̄,uUxi
+HΦ̄,Φ̄Ψxi



= 0. (B.110)

Start by considering the first of the two O (1) equations:

−∇U ·V =−∇· ((1−U 2)∇Ψ). (B.111)

Differentiating this equation with respect to x0,i . Note that since the ansatz in Eqs B.66-B.66 has the

form U (x − x0−V t ;ω), ∂x0,i
U →−∂xi

U and similarly for Ψ.

∂x0,i
−∇U ·V =∇Uxi

·V = ∂x0,i

�

−∇· ((1−U 2)∇Ψ)
�

(B.112)

=−
�

−∇·
�

−2Uxi
∇Ψ + (1−U 2)∇Ψxi

��

(B.113)

=−∇·
�

2Uxi
∇Ψ

�

+∇·
�

(1−U 2)∇Ψxi

�

(B.114)

��
���∇Uxi
·V =−HΦ̄,uUxi

+���
�V ·∇Uxi
−HΦ̄,Φ̄Ψxi

(B.115)

0=−(HΦ̄,uUxi
+HΦ̄,Φ̄Ψxi

) (B.116)

0= (HΦ̄,uUxi
+HΦ̄,Φ̄Ψxi

). (B.117)
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Next differentiate the other equation to verify the other component vanishes as desired.

∂x0,i
(ω−∇Ψ ·V ) =∇Ψxi

·V = ∂x0,i

�

∇2U

1−U 2
+

U |∇U |2

(1−U 2)2
+U

�

1+ |∇Ψ|2
�

�

(B.118)

=−
��

∇2Uxi

1−U 2
+

2U∇2U

(1−U 2)2
Uxi

�

+
4U 2 |∇U |2 Uxi

(1−U 2)3
+

2U∇U ·∇Uxi

(1−U 2)2

(B.119)

+
Uxi
|∇U |2

(1−U 2)2
+Uxi

�

1+ |∇Ψ|2
�

+2U∇Ψ ·∇Ψxi

�

(B.120)

=−
�

∇2

1−U 2
+

2U∇2U

(1−U 2)2
+

4U 2 |∇U |2

(1−U 2)3
+

2U∇U ·∇
(1−U 2)2

(B.121)

+
|∇U |2

(1−U 2)2
+
�

1+ |∇Ψ|2
�

�

Uxi
(B.122)

−2U∇Ψ ·∇Ψxi
−V ·∇Ψxi

+V ·∇Ψxi
(B.123)

��
��∇Ψxi
·V =Hu ,uUxi

+Hu ,Φ̄Ψxi
+���

�V ·∇Ψxi
(B.124)

0=Hu ,uUxi
+Hu ,Φ̄Ψxi

(B.125)

which is precisely as desired and evidently (Ψxi
,−Uxi

)T ∈ ker(L J ) for all i . There are two more

computations to verify, namely the generalized kernel–or as much of it as can be known ahead of

time. Next, verify the claim that

L J





−Ψω

Uω



= L





0 1

−1 0









−Ψω

Uω



=





Hu ,u Hu ,Φ̄

HΦ̄,u HΦ̄,Φ̄









Uω

Ψω



=





Hu ,uUω+Hu ,Φ̄Ψω

HΦ̄,uUω+HΦ̄,Φ̄Ψω



=





−1

0



 (B.126)
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This calculation is essentially the same as the previous, so skipping a few steps:

∂ω (ω−∇Ψ ·V ) = 1−∇Ψω ·V (B.127)

=

�

∇2

1−U 2
+

2U∇2U

(1−U 2)2
+

4U 2 |∇U |2

(1−U 2)3
+

2U∇U ·∇
(1−U 2)2

+
|∇U |2

(1−U 2)2
+
�

1+ |∇Ψ|2
�

�

Uω

(B.128)

+2U∇Ψ ·∇Ψω+V ·∇Ψω−V ·∇Ψω (B.129)

1−���
�∇Ψω ·V =−(Hu ,uUω+Hu ,Φ̄Ψω)−����V ·∇Ψω (B.130)

1=−
�

Hu ,uUω+Hu ,Φ̄Ψω
�

(B.131)

−1=
�

Hu ,uUω+Hu ,Φ̄Ψω
�

(B.132)

and

∂ω(−∇U ·V ) =−∇Uω ·V = ∂ω
�

−∇· ((1−U 2)∇Ψ)
�

(B.133)

=−∇·
�

−2Uω∇Ψ + (1−U 2)∇Ψω
�

(B.134)

=∇· (2Uω∇Ψ)−∇·
�

(1−U 2)∇Ψω
�

(B.135)

���
��−∇Uω ·V =HΦ̄,uUω−����V ·∇Uω+HΦ̄,Φ̄Ψω (B.136)

0=HΦ̄,uUω+HΦ̄,Φ̄Ψω. (B.137)

which again is precisely what had previously been asserted.

The final claim is

L J





−ΨVi

UVi



= L





0 1

−1 0









−ΨVi

UVi



=





Hu ,u Hu ,Φ̄

HΦ̄,u HΦ̄,Φ̄









UVi

ΨVi



=





Hu ,uUVi
+Hu ,Φ̄ΨVi

HΦ̄,uUVi
+HΦ̄,Φ̄ΨVi



=





Ψxi

−Uxi



 .

(B.138)
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Again, via the same exact calculation,

∂Vi
(−∇Ψ ·V ) =−Ψxi

−∇ΨVi
·V (B.139)

=

�

∇2

1−U 2
+

2U∇2U

(1−U 2)2
+

4U 2 |∇U |2

(1−U 2)3
+

2U∇U ·∇
(1−U 2)2

+
|∇U |2

(1−U 2)2
+
�

1+ |∇Ψ|2
�

�

UVi

(B.140)

+2U∇Ψ ·∇ΨVi
+V ·∇ΨVi

−V ·∇ΨVi
(B.141)

−Ψxi
−���

�∇ΨVi
·V =−(Hu ,uUVi

+Hu ,Φ̄ΨVi
)−����V ·∇ΨVi

(B.142)

−Ψxi
=−

�

Hu ,uUVi
+Hu ,Φ̄ΨVi

�

(B.143)

Ψxi
=
�

Hu ,uUVi
+Hu ,Φ̄ΨVi

�

(B.144)

and

∂Vi
(−∇U ·V ) =−Uxi

−∇UVi
·V = ∂Vi

�

−∇· ((1−U 2)∇Ψ)
�

(B.145)

=−∇·
�

−2UVi
∇Ψ + (1−U 2)∇ΨVi

�

(B.146)

=∇·
�

2UVi
∇Ψ

�

−∇·
�

(1−U 2)∇ΨVi

�

(B.147)

−Uxi
−���

��∇UVi
·V =HΦ̄,uUVi

−����V ·∇UVi
+HΦ̄,Φ̄ΨVi

(B.148)

−Uxi
=HΦ̄,uUVi

+HΦ̄,Φ̄ΨVi
. (B.149)

which is precisely as claimed.

Hence a subset of the generalized null space E (L J ) has been properly characterized. It is impor-

tant to note, that there may well be other elements of the generalized nullspace E (L J ). These other

elements would correspond to additional restrictions which may be placed on the admissible set of

perturbations, but would not impact the validity of the equations derived with this subset of the

generalized null space. It would be desirable to fully characterize E (L J ); however, such undertakings

often rely on the integrability of the underlying system [Yan10; KM77b]. Since the 2D Landau-Lifshitz
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equation is not known to be integrable at this time, such a complete characterization would require

novel techniques which are beyond the scope of this thesis. For this reason, the modulation equa-

tions are necessary, but not sufficient conditions, in order that the ansatz in Eqs B.66-B.68 remain

well-ordered in ε for t �O
�

ε2
�

.

B.2.2 Step down to 2D

Up to this point, no restrictions have been put on dimension in this problem. While possible to

do, it will be cumbersome to write the general modulation equations for magnetics since it would

require inverting a 2n +2×2n +2 matrix (n =dimension). Nevertheless, since the 2D soliton is what

is of interest in this work and the approximate droplet in 2D is what is known, there is now reason to

continue on in full generality. From this point on, take (x1, x2) = (x , y ) and V = (Vx , Vy ) to hopefully

keep subscripts to a minimum.

As discussed in the previous section, solvability requires that f ⊥ E (L J )where

E (L J ) = span











−1

0



 ,





Ψx

−Ux



 ,





Ψy

−Uy



 ,





−Ψω

Uω



 ,





−ΨVx

UVx



 ,





−ΨVy

UVy











= span{k1, k2, k3, k4, k5, k6}

(B.150)
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where k1, . . . , k6 are defined by the above relation and

f =−





0

Φ′0



+





∇U T

∇ΨT



 x ′0−





U

Ψ





ω

ω′−





U

Ψ





V

V ′+





Pu

PΦ̄



 (B.151)

=−





0

Φ′0



+





Ux Uy

Ψx Ψy









x ′0

y ′0



−





Uω

Ψω



ω′−





UVx
UVy

ΨVx
ΨVy









Vx
′

Vy
′



+





Pu

PΦ̄



 (B.152)

=−





0

Φ′0



+





Ux Uy

Ψx Ψy









x ′0

y ′0



−





Uω

Ψω



ω′−





UVx
UVy

ΨVx
ΨVy









Vx
′

Vy
′



+





Pu

PΦ̄



 (B.153)

=





Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄



 . (B.154)

Orthogonality here is in the sense of the standard L 2 inner product,



g, h
�

=
∫

R2 (g
T h)d x. It re-

mains to compute



k1, f
�

,



k2, f
�

,



k3, f
�

,



k4, f
�

,



k5, f
�

and



k6, f
�

to explicitly obtain the relations

necessary for solvability (i.e. the modulation equations) .

0=



k1, f
�

=

∫

R2

�

−1 0
�





Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄



d x (B.155)

=−
∫

R2

�

Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

�

d x (B.156)

=−





�
��

�
��
�*0

�∫

R2

Ux d x

�

x ′0+
��

�
��

��*0
�∫

R2

Uy d x

�

y ′0 −
�∫

R2

Uωd x

�

ω′ (B.157)

−
�∫

R2

UVx
d x

�

Vx
′−

�∫

R2

UVy
d x

�

Vy
′+

∫

R2

Pu d x

�

(B.158)

where the cancelation occurs since the boundary conditions on the soliton are decay at infinity.
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Rearranging, this equation becomes

�

−
∫

R2 Uωd x −
∫

R2 UVx
d x −

∫

R2 UVy
d x
�











ω′

Vx
′

Vy
′











=−
∫

R2

Pu d x (B.159)

So now one of six equations has been obtained. Next,

0=



k2, f
�

=

∫

R2

�

Ψx −Ux

�





Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄



d x (B.160)

=

∫

R2

Ψx

�

Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

�

d x (B.161)

+

∫

R2

−Ux

�

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄

�

d x (B.162)

−
∫

R2

(Ψx Pu −Ux PΦ̄)d x=
��

��
�
��*0

�∫

R2

Ux d x

�

Φ′0+
���

���
���

��:0�∫

R2

Ψx Ux −Ψx Ux d x

�

x ′0+
���

���
���

��:0�∫

R2

Ψx Uy −Ψy Ux d x

�

x ′0

(B.163)

−
�∫

R2

Ψx Uω−ΨωUx d x

�

ω′−
�∫

R2

Ψx UVx
−ΨVx

Ux d x

�

Vx
′

(B.164)

−
�∫

R2

Ψx UVy
−ΨVy

Ux d x

�

Vy
′ (B.165)

Rearranging this becomes











∫

R2 (Ψx Uω−ΨωUx )d x
∫

R2 (Ψx UVx
−ΨVx

Ux )d x
∫

R2 (Ψx UVy
−ΨVy

Ux )d x











·











ω′

Vx
′

Vy
′











=
∫

R2 (Ψx Pu −Ux PΦ̄)d x (B.166)
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The computation for



k3, f
�

= 0 is symmetric so it is possible to immediately write down the resulting

expression










∫

R2 (Ψy Uω−ΨωUy )d x
∫

R2 (Ψy UVx
−ΨVx

Uy )d x
∫

R2 (Ψy UVy
−ΨVy

Uy )d x











·











ω′

Vx
′

Vy
′











=
∫

R2 (Ψx Pu −Ux PΦ̄)d x (B.167)

Now, half way to the general, 2D modulation equations. 3 more conditions, and then moving on to

the smallω, small V limit where it is possible to obtain analytical expressions.

0=



k4, f
�

=

∫

R2

�

−Ψω Uω

�





Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄



d x (B.168)

=

∫

R2

−Ψω
�

Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

�

d x (B.169)

+

∫

R2

Uω
�

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄

�

d x (B.170)

=−
∫

R2

ΨωPu d x+

∫

R2

UωPΦ̄d x (B.171)

+
���

���
���

���:
0�∫

R2

(ΨωUω−UωΨω)d x

�

ω′−
�∫

R2

(ΨωUx −UωΨx )d x

�

x ′0 (B.172)

−
�∫

R2

(ΨωUy −UωΨy )d x

�

y ′0 +

�∫

R2

(ΨωUVx
−UωΨVx

)d x

�

Vx
′ (B.173)

+

�∫

R2

(ΨωUVy
−UωΨVy

)d x

�

Vy
′−

�∫

R2

Uωd x

�

Φ′0 (B.174)
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Rearranging, this becomes

























∫

R2 Uωd x

−
∫

R2 (Ψx Uω−ΨωUx )d x

−
∫

R2 (Ψy Uω−ΨωUy )d x

−
∫

R2 (ΨωUVx
−UωΨVx

)d x

−
∫

R2 (ΨωUVy
−UωΨVy

)d x

























·

























Φ′0

x ′0

y ′0

Vx
′

Vy
′

























=−
∫

R2 ΨωPu d x+
∫

R2 UωPΦ̄d x (B.175)

Now the last two (which again can be done simultaneously because of symmetry in the algebra)

0=



k5, f
�

=

∫

R2

�

−ΨVx
UVx

�





Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄



d x (B.176)

=

∫

R2

−ΨVx

�

Ux x ′0+Uy y ′0 −Uωω
′−UVx

Vx
′−UVy

Vy
′+Pu

�

d x (B.177)

+

∫

R2

UVx

�

−Φ′0+Ψx x ′0+Ψy y ′0 −Ψωω
′−ΨVx

Vx
′−ΨVy

Vy
′+PΦ̄

�

d x (B.178)

+

�∫

R2

(−ΨVx
Ux +Ψx UVx

)d x

�

x ′0 (B.179)

=

∫

R2

(−ΨVx
Pu +UVx

PΦ̄)d x−
�∫

R2

UVx
d x

�

Φ′0 (B.180)

+

�∫

R2

(−ΨVx
Uy +Ψy UVx

)d x

�

y ′0 +

�∫

R2

(ΨVx
Uω−ΨωUVx

)d x

�

ω′ (B.181)

+
��

���
���

���
��:0

�∫

R2

(ΨVx
UVx
−ΨVx

UVx
)d x

�

Vx
′+

�∫

R2

(ΨVx
UVy
−ΨVy

UVx
)d x

�

Vy
′ (B.182)
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Rearranging this becomes

























∫

R2 UVx
d x

−
∫

R2 (Ψx UVx
−ΨVx

Ux )d x

−
∫

R2 (Ψy UVx
−ΨVx

Uy )d x
∫

R2 (ΨωUVx
−UωΨVx

)d x

−
∫

R2 (ΨVx
UVy
−UVx

ΨVy
)d x

























·

























Φ′0

x ′0

y ′0

ω′

Vy
′

























=−
∫

R2 ΨVx
Pu d x+

∫

R2 UVx
PΦ̄d x (B.183)

and the symmetric condition induced by



k6, f
�

= 0 is simply

























∫

R2 UVy
d x

−
∫

R2 (Ψx UVy
−ΨVy

Ux )d x

−
∫

R2 (Ψy UVy
−ΨVy

Uy )d x
∫

R2 (ΨωUVy
−UωΨVy

)d x
∫

R2 (ΨVx
UVy
−UVx

ΨVy
)d x

























·

























Φ′0

x ′0

y ′0

ω′

Vx
′

























=−
∫

R2 ΨVy
Pu d x+

∫

R2 UVy
PΦ̄d x (B.184)

Eqs. B.159-B.184, can be recast in matrix form



















































0 0 0 −
∫

R2 Uωd x −
∫

R2 UVx
d x −

∫

R2 UVy
d x

0 0 0
∫

R2 (Ψx Uω−ΨωUx )d x
∫

R2 (Ψx UVx
−ΨVx

Ux )d x
∫

R2 (Ψx UVy
−ΨVy

Ux )d x

0 0 0
∫

R2 (Ψy Uω−ΨωUy )d x
∫

R2 (Ψy UVx
−ΨVx

Uy )d x
∫

R2 (Ψy UVy
−ΨVy

Uy )d x

∫

R2 Uωd x −
∫

R2 (Ψx Uω−ΨωUx )d x −
∫

R2 (Ψy Uω−ΨωUy )d x 0 −
∫

R2 (ΨωUVx
−UωΨVx

)d x −
∫

R2 (ΨωUVy
−UωΨVy

)d x

∫

R2 UVx
d x −

∫

R2 (Ψx UVx
−ΨVx

Ux )d x −
∫

R2 (Ψy UVx
−ΨVx

Uy )d x
∫

R2 (ΨωUVx
−UωΨVx

)d x 0 −
∫

R2 (ΨVx
UVy
−UVx

ΨVy
)d x

∫

R2 UVy
d x −

∫

R2 (Ψx UVy
−ΨVy

Ux )d x −
∫

R2 (Ψy UVy
−ΨVy

Uy )d x
∫

R2 (ΨωUVy
−UωΨVy

)d x
∫

R2 (ΨVx
UVy
−UVx

ΨVy
)d x 0































































































Φ0

x0

y0

ω

Vx

Vy













































′

=





















































−
∫

R2 Pu d x

∫

R2 (Ψx Pu −Ux PΦ̄)d x

∫

R2 (Ψx Pu −Ux PΦ̄)d x

−
∫

R2 ΨωPu d x+
∫

R2 UωPΦ̄d x

−
∫

R2 ΨVx
Pu d x+

∫

R2 UVx
PΦ̄d x

−
∫

R2 ΨVy
Pu d x+

∫

R2 UVy
PΦ̄d x





















































(B.185)
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This matrix is antisymmetric as the theory suggests it would be (Section 2.1). In fact, this matrix is

written out almost exactly (Section 2.4) (as is the right hand side). From here on out in this appendix,

the notation M will be used to refer to the matrix in Eq. B.185.

There’s a little more processing that can be done. Recall N =
∫

R2 (1− u )d X. For the soliton

solution it is evident that −Nω =
∫

R2 Uωd x,−NVx
=
∫

R2 UVx
d x, and −NVy

=
∫

R2 UVy
d x. Further note,

if∇Ψ goes to a constant at infinity,

∫

R2

(Ψx Uy −Ψy Ux )d x=

∫

R2

Ψx Uy d x−
∫

R2

Ψy Ux d x (B.186)

=−
∫

R2

Ψx (1−U )y d x+

∫

R2

Ψy (1−U )x d x (B.187)

integrating by parts this becomes (B.188)

=
���

���
���:0

Ψx (1−U )

�

�

�

�

y→±∞
+

∫

R2

Ψx y (1−U )d x+

∫

R2

Ψy (1−U )x d x (B.189)

integrating by parts again (B.190)

=
���

���
���:0

Ψx (1−U )

�

�

�

�

x→±∞
−
∫

R2

Ψx y (1−U )d x+

∫

R2

Ψy (1−U )x d x (B.191)

=

��
���

���
���

���
���

��:0

−
∫

R2

Ψx y (1−U )d x+

∫

R2

Ψy (1−U )x d x= 0. (B.192)

So that integral vanishes identically as well. A few more comments, recall P =−
∫

R2∇Ψ(1−U )d x.

Consider the first component of this vector-valued conserved quantity. P1 = −
∫

R2 Ψx (1−U )d x.
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Differentiate this with respect toω.

∂ω(−
∫

R2

Ψx (1−U )d x) =−
∫

R2

Ψxω(1−U )d x−
∫

R2

Ψx (1−U )ωd x (B.193)

=−
∫

R2

Ψxω(1−U )d x+

∫

R2

Ψx Uωd x (B.194)

integrating by parts, (B.195)

=
��

���
���

�:0
Ψω(1−U )

�

�

�

�

x→±∞
+

∫

R2

Ψω(1−U )x d x+

∫

R2

Ψx Uωd x (B.196)

=−
∫

R2

ΨωUx d x+

∫

R2

Ψx Uωd x (B.197)

=

∫

R2

Ψx Uω−ΨωUx d x (B.198)

which is a recognizable term in the matrix above. Similar calculations hold for differentiation with

respect to Vx , Vy and will not be presented here. The computations are identical for the second

component of the momentum. With these observations it is possible to write the matrix in blockwise

form as follows.

M =

















0 0 −Nω −(∇V N )T

0 0 Pω (∇V P )T

Nω −Pω 0 (∇V K)T

∇V N −∇V P −∇V K ∇V W

















(B.199)

where generally ∇V is the gradient operation with respect to the components (Vx , Vy ). However,

defining

∇V K =





−
∫

R2 (ΨωUVx
−ΨVx

Uω)d x

−
∫

R2 (ΨωUVy
−ΨVy

Uω)d x



 (B.200)

and

∇V W =





0 −
∫

R2 (ΨVx
UVy
−ΨVy

UVx
)d x

∫

R2 (ΨVx
UVy
−ΨVy

UVx
)d x 0



 . (B.201)
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This notation has been chosen to emphasize the hypothesis that K and W represent two other

conserved quantities that have not yet been recognized. If this is so (and it may not be) then the

chain rule (differentiating with respect to time and therefore the parameters ) would require that

Nω =KΦ0
,−Pω =−∇x0

K,Kω = 0,∇V N =WΦ0
,−∇V P =∇x0

W and∇V W =−∇V WT . (B.202)

B.2.3 Smallω, small |V|

The conserved quantities form of the matrix will now be used and computations will be executed as

explicitly as possible. Another step down in generality must be taken at this point. The step down to

2D was moderately optional, but now it is necessary to evaluate a bunch of integrals and nothing

further can be done without an explicit solution. The approximate soliton solution is

u = tanh
�

ρ−
1

ω

�

+O
�

ω2, V 2
�

(B.203)

Φ̄=ωt +Φ0−
V · ρ̂
ω2
︸︷︷︸

Ψ

+O
�

V

ω

�

(B.204)

whereρ is the coordinate measured from the droplet center. This approximation is carefully derived

in detail in Section 1.1.2.
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The derivatives with respect to all the parameters can now be computed

Uω ≈ ∂ω tanh
�

ρ−
1

ω

�

=
1

ω2
sech2

�

ρ−
1

ω

�

(B.205)

Ux ≈ ∂x tanh
�

ρ−
1

ω

�

= sech2
�

ρ−
1

ω

�

ρx = sech2
�

ρ−
1

ω

�

cos(ϕ) (B.206)

Uy ≈ ∂y tanh
�

ρ−
1

ω

�

= sech2
�

ρ−
1

ω

�

ρy = sech2
�

ρ−
1

ω

�

sin(ϕ) (B.207)

UVx
≈ ∂Vx

tanh
�

ρ−
1

ω

�

= 0 (B.208)

UVy
≈ ∂Vy

tanh
�

ρ−
1

ω

�

= 0 (B.209)

and

Ψω ≈ ∂ω
�−V · ρ̂
ω2

�

=
2(V · ρ̂)
ω3

=
2
�

Vx cos(ϕ) +Vy sin(ϕ)
�

ω3
(B.210)

Ψx ≈ ∂x

�

−
V · ρ̂
ω2

�

(B.211)

=−∂x

��

Vx cos(ϕ) +Vy sin(ϕ)
�

ω2

�

(B.212)

=−
1

ω2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

ϕx (B.213)

=
sin(ϕ)
ρω2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

(B.214)
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Ψy ≈ ∂y

�

−
V · ρ̂
ω2

�

(B.215)

=−∂y

��

Vx cos(ϕ) +Vy sin(ϕ)
�

ω2

�

(B.216)

=
−1

ω2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

ϕy (B.217)

=
−cos(ϕ)
ρω2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

(B.218)

ΨVx
≈ ∂Vx

�

−
V · ρ̂
ω2

�

=−∂Vx

��

Vx cos(ϕ) +Vy sin(ϕ)
�

ω2

�

=
−cos(ϕ)
ω2

(B.219)

ΨVy
≈ ∂Vy

�

−
V · ρ̂
ω2

�

=−∂Vy

��

Vx cos(ϕ) +Vy sin(ϕ)
�

ω2

�

=
−sin(ϕ)
ω2

. (B.220)

The first step is to start evaluating integrals.

∫

R2

Uωd x=

∫ ∞

0

∫ 2π

0

1

ω2
sech2

�

ρ−
1

ω

�

ρdϕdρ (B.221)

=
2π

ω2

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρdρ (B.222)

=
2π

ω2
log

�

1+ e
2/ω
�

(B.223)

≈
2π

ω2
log

�

e
2/ω
�

(B.224)
∫

R2

Uωd x=
4π

ω3
(B.225)

∫

R2

UVx
d x=

∫ ∞

0

∫ 2π

0

(0)ρdϕdρ = 0 (B.226)

∫

R2

UVy
d x=

∫ ∞

0

∫ 2π

0

(0)ρdϕdρ = 0 (B.227)
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Breaking up
∫

R2 (Ψx Uy −Ψy Ux )d x into
∫

R2 (Ψx Uy )d x and
∫

R2 (Ψy Ux )d x

∫

R2

(Ψx Uy )d x=

∫ ∞

0

∫ 2π

0

�

sin(ϕ)

�ρω
2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

��

sech2
�

ρ−
1

ω

�

sin(ϕ)
�

�ρdϕdρ (B.228)

=
−1

ω2






Vx

∫ ∞

0






sech2

�

ρ−
1

ω

�

��
��

�
��
�*0

∫ 2π

0

sin3(ϕ)dϕ






dρ (B.229)

+Vy

∫ ∞

0



sech2
�

ρ−
1

ω

�

��
���

���
���

��:0
∫ 2π

0

�

−cos(ϕ)sin2(ϕ)
�

dϕ



dρ



 (B.230)

∫

R2

(Ψx Uy )d x= 0 (B.231)

∫

R2

(Ψy Ux )d x=

∫ ∞

0

∫ 2π

0

�−cos(ϕ)

�ρω
2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

��

sech2
�

ρ−
1

ω

�

cos(ϕ)
�

�ρdϕdρ

(B.232)

=
−1

ω2



Vx

∫ ∞

0



sech2
�

ρ−
1

ω

�

���
���

���
���

�:0
∫ 2π

0

(−sin(ϕ)cos2(ϕ))dϕ



dρ (B.233)

+Vy

∫ ∞

0

 

sech2
�

ρ−
1

ω

�

��
���

���
�:0∫ 2π

0

�

cos3(ϕ)
�

dϕ

!

dρ



 (B.234)

= 0 (B.235)
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Hence
∫

R2 (Ψx Uy −Ψy Ux )d x= 0 . Next, breaking up
�∫

R2 (Ψx Uω−ΨωUx )d x
�

into
∫

R2 (Ψx Uω)d x and
∫

R2 (ΨωUx )d x

∫

R2

(Ψx Uω)d x=

∫ ∞

0

∫ 2π

0

�

sin(ϕ)

�ρω
2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

��

1

ω2
sech2

�

ρ−
1

ω

��

�ρdϕdρ (B.236)

=
−1

ω4

�

Vx

∫ ∞

0

�

sech2
�

ρ−
1

ω

�

∫ 2π

0

(sin2(ϕ))dϕ

�

dρ (B.237)

+Vy

∫ ∞

0



sech2
�

ρ−
1

ω

�

���
���

���
���:

0
∫ 2π

0

�

−cos(ϕ)sin(ϕ)
�

dϕ



dρ



 (B.238)

=
−π
ω4

Vx

∫ ∞

0

�

sech2
�

ρ−
1

ω

��

dρ (B.239)

=
−π
ω4

Vx

�

1+ tanh
�

1

ω

��

(B.240)

≈
−π
ω4

Vx (1+1) =
−2π

ω4
Vx (B.241)

∫

R2

(ΨωUx )d x=

∫ ∞

0

∫ 2π

0

�

2
�

Vx cos(ϕ) +Vy sin(ϕ)
�

ω3

�

�

sech2
�

ρ−
1

ω

�

cos(ϕ)
�

ρdϕdρ (B.242)

=
2

ω3

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρ



Vx

∫ 2π

0

cos2(ϕ)dϕ+
���

���
���

���:
0

Vy

∫ 2π

0

sin(ϕ)cos(ϕ)dϕ



dρ (B.243)

=
2π

ω3
Vx

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρdρ (B.244)

=
2π

ω3
Vx log

�

1+ e
2
ω

�

(B.245)

≈
2π

ω3
Vx log

�

e
2
ω

�

(B.246)

≈
4π

ω4
Vx (B.247)

Putting this together,

�∫

R2

(Ψx Uω−ΨωUx )d x

�

=
−2π

ω4
Vx −

4π

ω4
Vx =−

6π

ω4
Vx (B.248)
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Next consider
�∫

R2 (Ψx UVx
−ΨVx

Ux )d x
�

again by separating out into
∫

R2 (Ψx UVx
)d x and

∫

R2 (ΨVx
Ux )d x.

The first of these is immediately zero since UVx
= 0.

∫

R2

(ΨVx
Ux )d x=

∫ ∞

0

∫ 2π

0

�−cos(ϕ)
ω2

��

sech2
�

ρ−
1

ω

�

cos(ϕ)
�

ρdϕdρ (B.249)

=
−1

ω2

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρ

�

∫ 2π

0

�

cos2(ϕ)
�

dϕ

�

dρ (B.250)

=
−π
ω2
=
−π
ω2

log
�

1+ e
2
ω

�

≈
−π
ω2

log
�

e
2
ω

�

(B.251)

≈
−2π

ω3
(B.252)

So
∫

R2

(Ψx UVx
−ΨVx

Ux )d x=
2π

ω3
(B.253)

Next consider
�

∫

R2 (Ψx UVy
−ΨVy

Ux )d x
�

again by separating out into
∫

R2 (Ψx UVy
)d x and

∫

R2 (ΨVy
Ux )d x.

The first of these is immediately zero since UVy
= 0.

∫

R2

(ΨVy
Ux )d x=

∫ ∞

0

∫ 2π

0

�−sin(ϕ)
ω2

��

sech2
�

ρ−
1

ω

�

cos(ϕ)
�

ρdϕdρ (B.254)

=
−1

ω2

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρ
���

���
���

���:
0�

∫ 2π

0

�

cos(ϕ)sin(ϕ)
�

dϕ

�

dρ (B.255)

= 0 (B.256)

So
∫

R2

(Ψx UVy
−ΨVy

Ux )d x= 0 (B.257)
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Next consider
�∫

R2 (Ψy Uω−ΨωUy )d x
�

. As always, separate out into
∫

R2 Ψy Uωd x and
∫

R2 ΨωUy d x

∫

R2

(Ψy Uω)d x=

∫ ∞

0

∫ 2π

0

�−cos(ϕ)

�ρω
2

�

−Vx sin(ϕ) +Vy cos(ϕ)
�

��

1

ω2
sech2

�

ρ−
1

ω

��

�ρdϕdρ (B.258)

=
1

ω4



Vx

∫ ∞

0



sech2
�

ρ−
1

ω

�

��
���

���
���

�:0∫ 2π

0

�

cos(ϕ)sin(ϕ)
�

dϕ



dρ



dρ (B.259)

+Vy

∫ ∞

0

�

sech2
�

ρ−
1

ω

�

∫ 2π

0

(−sin2(ϕ))dϕ

�

(B.260)

=
−π
ω4

Vy

∫ ∞

0

�

sech2
�

ρ−
1

ω

��

dρ (B.261)

=
−π
ω4

Vy

�

1+ tanh
�

1

ω

��

(B.262)

≈
−π
ω4

Vy (1+1) =
−2π

ω4
Vy (B.263)

∫

R2

(ΨωUy )d x=

∫ ∞

0

∫ 2π

0

�

2
�

Vx cos(ϕ) +Vy sin(ϕ)
�

ω3

�

�

sech2
�

ρ−
1

ω

�

sin(ϕ)
�

ρdϕdρ (B.264)

=
2

ω3

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρ





���
���

���
���:

0

Vx

∫ 2π

0

cos(ϕ)sin(ϕ)dϕ+Vy

∫ 2π

0

sin2(ϕ)dϕ



dρ (B.265)

=
2π

ω3
Vy

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρdρ (B.266)

=
2π

ω3
Vy log

�

1+ e
2
ω

�

(B.267)

≈
2π

ω3
Vy log

�

e
2
ω

�

(B.268)

≈
4π

ω4
Vy (B.269)

and
�∫

R2

(Ψy Uω−ΨωUy )d x

�

=
−2π

ω4
Vy −

4π

ω4
Vy =−

6π

ω4
Vy (B.270)
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Next consider
�∫

R2 (Ψy UVx
−ΨVx

Uy )d x
�

. As always, separate out into
∫

R2 Ψy UVx
d x and

∫

R2 ΨVx
Uy d x.

Note the first of these integrals immediately vanishes since UVx
= 0.

∫

R2

(ΨVx
Uy )d x=

∫ ∞

0

∫ 2π

0

�−cos(ϕ)
ω2

��

sech2
�

ρ−
1

ω

�

sin(ϕ)
�

ρdϕdρ (B.271)

=
−1

ω2

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρ
���

���
���

���:
0�

∫ 2π

0

�

cos(ϕ)sin(ϕ)
�

dϕ

�

dρ (B.272)

= 0 (B.273)

Hence
∫

R2

(Ψy UVx
−ΨVx

Uy )d x= 0 (B.274)

Next consider
�

∫

R2 (Ψy UVy
−ΨVy

Uy )d x
�

again by separating out into
∫

R2 (Ψy UVy
)d x and

∫

R2 (ΨVy
Uy )d x.

The first of these is immediately zero since UVy
= 0.

∫

R2

(ΨVy
Uy )d x=

∫ ∞

0

∫ 2π

0

�−sin(ϕ)
ω2

��

sech2
�

ρ−
1

ω

�

sin(ϕ)
�

ρdϕdρ (B.275)

=
−1

ω2

∫ ∞

0

sech2
�

ρ−
1

ω

�

ρ

�

∫ 2π

0

�

sin2(ϕ)
�

dϕ

�

dρ (B.276)

=
−π
ω2
=
−π
ω2

log
�

1+ e
2
ω

�

≈
−π
ω2

log
�

e
2
ω

�

(B.277)

≈
−2π

ω3
(B.278)

So
∫

R2

(Ψy UVy
−ΨVy

Uy )d x=
2π

ω3
(B.279)

The last three are easier. It is immediately evident that they will all be zero, but to be explicit they

will be computed. Consider
∫

R2 (ΨωUVx
−ΨVx

Uω)d x.
∫

R2 (ΨωUVx
−ΨVx

Uω)d x=−
∫

R2 ΨVx
Uωd x since
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UVx
= 0. Next

∫

R2

ΨVx
Uωd x=

∫ ∞

0

∫ 2π

0

�−cos(ϕ)
ω2

��

1

ω2
sech2

�

ρ−
1

ω

��

ρdϕdρ (B.280)

=
−1

ω4

∫ ∞

0

�

sech2
�

ρ−
1

ω

��

ρ

��
�
��

�
��
�*0

�

∫ 2π

0

cos(ϕ)dϕ

�

dρ (B.281)

= 0 (B.282)

and therefore
∫

R2 (ΨωUVx
−ΨVx

Uω)d x= 0. Similarly
∫

R2 (ΨωUVy
−ΨVy

Uω)d x==−
∫

R2 ΨVy
Uωd x since

UVx
= 0.

∫

R2

ΨVy
Uωd x=

∫ ∞

0

∫ 2π

0

�−sin(ϕ)
ω2

��

1

ω2
sech2

�

ρ−
1

ω

��

ρdϕdρ (B.283)

=
−1

ω4

∫ ∞

0

�

sech2
�

ρ−
1

ω

��

ρ

�
��

�
��

��*
0

�

∫ 2π

0

sin(ϕ)dϕ

�

dρ (B.284)

= 0 (B.285)
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and therefore
∫

R2 (ΨωUVy
−ΨVy

Uω)d x= 0. Finally,
∫

R2 (ΨVx
UVy
−ΨVy

UVx
)d x= 0 since UVx

=UVy
= 0.

Finally all the integrals are done and

M =



















































0 0 0 − 4π
ω3 0 0

0 0 0 − 6πVx
ω4

2π
ω3 0

0 0 0 − 6πVy

ω4 0 2π
ω3

4π
ω3

6πVx
ω4

6πVy

ω4 0 0 0

0 − 2π
ω3 0 0 0 0

0 0 − 2π
ω3 0 0 0



















































(B.286)

This matrix is easily inverted to find

M −1 =



















































0 0 0 ω3

4π
3Vxω

2

4π
3Vyω

2

4π

0 0 0 0 −ω
3

2π 0

0 0 0 0 0 −ω
3

2π

−ω
3

4π 0 0 0 0 0

− 3Vxω
2

4π
ω3

2π 0 0 0 0

− 3Vyω
2

4π 0 ω3

2π 0 0 0



















































(B.287)

That’s about as nice as the story gets. The next step is to try to simplify f , but since it includes

arbitrary perturbations very little can be done.
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Φ0

x0

y0

ω

Vx

Vy



















































′

=



















































3 f5Vxω
2

4π +
3 f6Vyω

2

4π + f4ω
3

4π

− f5ω
3

2π

− f6ω
3

2π

− f1ω
3

4π

− 3 f1Vxω
2

4π + f2ω
3

2π

− 3 f1Vyω
2

4π + f3ω
3

2π



















































(B.288)

where ( f1, f2, f3, f4, f5, f6) are the components of f and are defined by what follows. Note that

it is possible to write this in vector form by grouping f2, f3 together and f5, f6 together since the

coefficients on these terms are the same.

f1 =−
∫

R2

Pu d x (B.289)

Next consider f2 and f3 together.

f2 =

∫

R2

Ψx Pu d x−
∫

R2

Ux PΦ̄d x (B.290)

f3 =

∫

R2

Ψy Pu d x−
∫

R2

Uy PΦ̄d x (B.291)





f2

f3



=

∫

R2

∇ΨPu d x−
∫

R2

∇U PΦ̄d x (B.292)
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The following identities will prove useful.





f2

f3



=−
∫

R2

1

ρω2

�

V · ϕ̂
�

ϕ̂Pu d x−
∫

R2

sech2
�

ρ−
1

ω

�

ρ̂PΦ̄d x (B.293)

Next, f4

f4 =−
∫

R2

ΨωPu d x+

∫

R2

UωPΦ̄d x (B.294)

=−
∫

R2

2V · ρ̂
ω3

Pu d x+

∫

R2

1

ω2
sech2

�

ρ−
1

ω

�

PΦ̄d x (B.295)

Finally, consider f5, f6 together.

f5 =−
∫

R2

ΨVx
Pu d x+

∫

R2

UVx
PΦ̄d x (B.296)

f6 =−
∫

R2

ΨVy
Pu d x+

∫

R2

UVy
PΦ̄d x (B.297)





f5

f6



=−
∫

R2

∇VΨPu d x+

∫

R2

∇VU PΦ̄d x (B.298)

where∇V =





∂Vx

∂Vy



.∇VU = 0 and∇VΨ =− 1
ω2 ρ̂ hence





f5

f6



=
1

ω2

∫

R2

(Pu ρ̂)d x (B.299)
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So the equations for (x ′0, y ′0 ) only depend on f5, f6 in the following way

x0
′(T ) =−

ω3

2π





f5

f6



 (B.300)

=−
ω3

2π

�

1

ω2

∫

R2

(Pu ρ̂)d x

�

(B.301)

=−
ω

2π

∫

R2

(Pu ρ̂)d x (B.302)

The next simplest equation to unpack is forω′(T ) since it just depends on f1

ω′(T ) =−
f1ω

3

4π
(B.303)

=
ω3

4π

�∫

R2

Pu d x

�

(B.304)

Next consider V′(T )

V′(T ) =−
3Vω2

4π
f1+

ω3

2π





f2

f3



 (B.305)

=
3Vω2

4π

�∫

R2

Pu d x

�

+
ω3

2π

�

−
∫

R2

1

ρω2

�

V · ϕ̂
�

ϕ̂Pu d x−
∫

R2

sech2
�

ρ−
1

ω

�

ρ̂PΦ̄d x

�

(B.306)

=
3Vω2

4π

�∫

R2

Pu d x

�

−
ω

2π

∫

R2

1

ρ

�

V · ϕ̂
�

ϕ̂Pu d x−
ω3

2π

∫

R2

sech2
�

ρ−
1

ω

�

ρ̂PΦ̄d x (B.307)
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Note that the contributions to Φ′0 from f5, f6 can be written in terms of V ·





f5

f6





Φ′0 =
3ω2

4π
V ·





f5

f6



+
f4ω

3

4π
(B.308)

=
3ω2

4π
V ·
�

1

ω2

∫

R2

(Pu ρ̂)d x

�

+
f4ω

3

4π
(B.309)

=
3ω2

4π
V ·
�

1

ω2

∫

R2

(Pu ρ̂)d x

�

+
ω3

4π

�

−
∫

R2

2V · ρ̂
ω3

Pu d x+

∫

R2

1

ω2
sech2

�

ρ−
1

ω

�

PΦ̄d x

�

(B.310)

=
3V

4π
·
�∫

R2

(Pu ρ̂)d x

�

−
V

2π
·
∫

R2

ρ̂Pu d x+
ω

4π

∫

R2

sech2
�

ρ−
1

ω

�

PΦ̄d x (B.311)

=
V

4π
·
�∫

R2

(Pu ρ̂)d x

�

+
ω

4π

∫

R2

sech2
�

ρ−
1

ω

�

PΦ̄d x (B.312)

So the modulation equations are a mess, but here’s my best attempt at presenting them:































Φ0

x0

ω

V































′

=































V
4π ·

�∫

R2 (Pu ρ̂)d x
�

+ ω
4π

∫

R2 sech2
�

ρ− 1
ω

�

PΦ̄d x

− ω2π
∫

R2 (Pu ρ̂)d x

ω3

4π

∫

R2 Pu d x

3Vω2

4π

�∫

R2 Pu d x
�

− ω
2π

∫

R2
1
ρ

�

V · ϕ̂
�

ϕ̂Pu d x− ω
3

2π

∫

R2 sech2
�

ρ− 1
ω

�

ρ̂PΦ̄d x































(B.313)

Taking V = 0.






























Φ0

x0

ω

0































′

=































ω
4π

∫

R2 sech2
�

ρ− 1
ω

�

PΦ̄d x

− ω2π
∫

R2 (Pu ρ̂)d x

ω3

4π

∫

R2 Pu d x

−ω
3

2π

∫

R2 sech2
�

ρ− 1
ω

�

ρ̂PΦ̄d x































(B.314)
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or in more natural variables,






























Φ0

x0

ω

0































′

=































ω
4π

∫

R2 sech
�

ρ− 1
ω

�

PΦd x

ω
2π

∫

R2 sech
�

ρ− 1
ω

�

ρ̂Pu d x

−ω
3

4π

∫

R2 sech
�

ρ− 1
ω

�

Pu d x

−ω
3

2π

∫

R2 sech
�

ρ− 1
ω

�

ρ̂PΦd x































(B.315)

which is precisely what had previously been found.

B.3 Calculation of the Magnetostatic Field Perturbation

Before beginning a discussion of how the magnetostatic field perturbation presented in Chapter 3

is derived it is important to understand the asymptotic reduction of the nonlocal magnetostatic

field to the local contribution overall equation. The derivation here closely follows work in [GC04b;

HS12]where more complete descriptions are given. Recall, that the contribution to the effective

field in the torque equation is given by hm =∇U where U solves

∇2U =











∇·m |z |< δ
2 ,

0 |z |> δ
2

∂U
∂ z

�

�

�

�

z=±δ/2

=∓mz

�

x , y ,±δ2
�

.

(B.316)

Eq. B.316 admits an exact solution

U (x , y , z ) =

∫
δ
2

− δ2

�

N (·, ·, z − z ′) ∗∇ ·m(·, ·, z ′)
�

(x , y )d z ′− [N (·, ·, z − δ/2) ∗ (m(·, ·,δ/2)−1)] + [N (·, ·, z + δ/2) ∗ (m(·, ·,−δ/2)−1)]− z (B.317)
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where ∗ denotes convolution with respect to x , y and N represents the Newtonian potential

N (x , y , z ) =−
1

4π
p

x 2+ y 2+ z 2
. (B.318)

Progress can be made in simplifying the given expression for U by working in Fourier space and by

assuming that the magnetization is independent of z . Under this assumption the Fourier transform

of U , denoted by F [U ], is given by

F [U (·, ·, z ) + z ](kx , ky ) = (i kxF [mx ] + i ky F [mx ])

∫
δ
2

− δ2

F [N (·, ·, z − z ′)]d z ′+F [mz −1] (−N (·, ·,δ/2)] +N (·, ·,−δ/2)]) (B.319)

Utilizing the factF [N (·, ·, z )] =− e −k |z |

2k where k =
q

k 2
x +k 2

y , it is readily computed that
∫
δ
2

− δ2
F [N (·, ·, z−

z ′)]d z ′ = e kδ/2 cosh(k z )−1
k 2 and (−N (·, ·,δ/2)]+N (·, ·,−δ/2)]) = e kδ/2

k sinh(k z ). Hence,

F [U (·, ·, z ) + z ](kx , ky ) = (i kxF [mx ] + i ky F [mx ])

�

e kδ/2 cosh(k z )−1

k 2

�

+F [mz −1]
e kδ/2

k
sinh(k z )

(B.320)

The above expression can then be used to determine an approximate expression for hm .

F [hm +ez ] =F [∇U +ez ] =F [∇(U + z )] (B.321)

=





kx

ky



 (kxF [mx ] +ky F [mx ])

�

e kδ/2 cosh(k z )−1

k 2

�

+ i





kx

ky



F [mz −1]
e kδ/2

k
sinh(k z )

−i





kx

ky



 (kxF [mx ] +ky F [mx ])

�

e kδ/2 sinh(k z )
k

�

ez −





kx

ky



F [mz −1]e kδ/2 cosh(k z )ez

(B.322)

where the final two terms come from taking the z−derivative of Eq B.320. In the thin film limit it is

natural to assume that hm does not vary much from the mean value in z . That is, the assumption
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hm ≈ 1
δ

∫
δ
2

− δ2
hm d z will not be imposed. As a result,

F [hm +ez ] =≈
1

δ

∫
δ
2

− δ2

F [hm +ez ]d z (B.323)

=−
kxF [mx ] +ky F [mx ]

k 2





kx

ky



 (1− Γ̂ (kδ))− (F [mz −1])Γ̂ (kδ)ez (B.324)

where Γ̂ (κ) = 1−e −κ
κ . From this, the magnetostatic field expansion can be determined utilizing an

inverse Fourier transform to obtain

(hm )z =−mz +
δ

2
F−1 [kF [mz −1]] (B.325)

(hm )⊥ =−
δ

2
F−1

�

k
k

k
F [m⊥]

�

(B.326)

where k=





kx

ky



 and ⊥ denotes the (x , y ) directions.

The relevant contributions to the torque equation for the magnetostatic field are then given by

eΦ ·hm to ∂ Θ
∂ t and −eΘ ·hm to ∂ Φ

∂ t where

eΦ =











−sinΦ

cosΦ

0











(B.327)

and

eΘ =











cosΦcosΘ

sinΦcosΘ

−sinΘ











(B.328)
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First consider eΦ ·hm

eΦ ·hm =−
δ

2
eΦ ·F−1

�

k
k

k
F [m⊥]

�

(B.329)

=
δ

2
eΦ ·∇

�

F−1
�

i k

k
F [m⊥]

��

(B.330)

=−
δ

2

§

sin(ϕ−Φ)
∂

∂ ρ

�

F−1
�

i k

k
F [m⊥]

��

+
cos(ϕ−Φ)

ρ

∂

∂ ϕ

�

F−1
�

i k

k
F [m⊥]

��ª

. (B.331)

From this point on only stationary droplets will be consider which greatly simplifies the calculation.

The stationary droplet is independent of ϕ and consequently ∂
∂ ϕ

�

F−1
�

i k
k F [m⊥]

��

= 0.

Next consider eΘ ·hm

eΘ ·hm =
1

2
sin(2Θ)−

δ

2















sin(Θ)F−1 [kF [mz −1]] + cos(Θ)cos(ϕ−Φ)
∂

∂ ρ

�

F−1
�

i k

k
F [m⊥]

��

−

��
���

���
���

���
���

��:0

cos(Θ)sin(ϕ−Φ)
ρ

∂

∂ ϕ

�

F−1
�

i k

k
F [m⊥]

��















(B.332)

Recall that mz = cos(Θ) and

eΘ ·hm =
1

2
sin(2Θ)−

δ

2

§

sin(Θ)F−1 [kF [cos(Θ)−1]] + cos(Θ)cos(ϕ−Φ)
∂

∂ ρ

�

F−1
�

i k

k
F [m⊥]

��ª

(B.333)

The final step is to recognize what terms of the contribution of the magnetostatic field contribute

to the perturbations PΘ and PΦ. Note that the term 1
2 sin(2Θ) in Eq. B.333 represents the leading order

behavior for the magnetostatic field which has already be incorporated into the torque equations

(Eqs. 1.11-1.12). The contributions to PΦ from this equation, then are only fromO (δ) terms. Addition-

ally, the terms involving ∂
∂ ρ

�

F−1
�

i k
k F [m⊥]

��

in both contributions constitute a regular perturbation

to the equation. That is, considered on their own an exact solution to those perturbations can be

found without appealing to secularity. Accordingly, these terms do not play a role in the modulation

equations (or the evolution of soliton parameters) and will be neglected from the forms of PΘ and

PΦ. This neglects the only term in eΦ ·hm that would contribute to PΘ. The final result is that

PΘ = 0 (B.334)
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and

PΦ =−
δ

2

�

sin(Θ)F−1 [kF [cos(Θ)−1]]
	

(B.335)

exactly what is claimed in Eq. 3.11.

B.4 Calcualignlation of the Interacting Droplet Perturbation

The approximate two-soliton droplet solutions studied in [Mai14]were constructed as follows













m̃x

m̃y

m̃z













=













mx ,1+mx ,2

my ,1+my ,2

mz ,1+
�

mz ,2−1
�













(B.336)

where the numbered subscript denotes “droplet 1" or “droplet 2" . Since it is required that m is

normalized to unit length, after a superposition of the form above this condition was subsequently

enforced. Note that near the center of droplet 1, the quantities γ=m2,x ,δ=m2,y and ε=m2,z −1

are all small in absolute value since lim|x|m2→ ez , so this can be used to simplify the normalization

process. Note that it is required that m 2
x ,1 +m 2

y ,1 +m 2
z ,1 = 1 and γ2 +δ2 + (1+ ε)2 = 1, since they

represent magnetization of droplets independently. The second of these can be rearranged to

conclude that γ2+δ2+ε2 =−2εwhich implies a) ε< 0 and b) γ2+δ2+ε2 is of order ε not higher

order. To get the appropriate form of the perturbation we need to normalize m̃. Compute ‖m̃‖.

‖m̃‖= (mx ,1+γ)
2+ (my ,1+δ)

2+ (mz ,1+ε)
2 (B.337)

=m 2
x ,1+2γmx ,1+γ

2+m 2
y ,1+2δmy ,1+δ

2+m 2
z ,1+2εmz ,1+ε

2 regrouping (B.338)

=m 2
x ,1+m 2

y ,1+m 2
z ,1

︸ ︷︷ ︸

=1

+2(γmx ,1+δmy ,1+εmz ,1) +γ
2+δ2+ε2

︸ ︷︷ ︸

=−2ε

(B.339)

= 1+2(γmx ,1+δmy ,1+ε(mz ,1−1)) = ζ (B.340)
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The perturbed magnetization will then be

m=
m̃

‖m̃‖
=

1

1+2(γmx ,1+δmy ,1+ε(mz ,1−1))











mx ,1+γ

my ,1+δ

mz ,1+ε











=
�

mx , my , mz

�

(B.341)

However, it will ultimately be necessary to work in spherical coordinates. Consider how this might

be expressed in Θ and Φ variables. By definition

Θ = arccos(mz ) and Φ= arctan (my/mx ) (B.342)

Expanding

Θ = arccos(mz ) (B.343)

= arccos
�

mz ,1+ε
ζ

�

(B.344)

= arccos
�

mz ,1+ε
1+ (ζ−1)

�

(B.345)

= arccos(mz ,1−
ε− (ζ−1)mz ,1
q

1−m 2
z ,1

) +O
�

ε2
�

(B.346)

Viewing, m1 in polar coordinates, Θ1 = arccos(mz ,1) and it follows that

Θ =Θ1−
ε− (ζ−1)cos(Θ1)

sin(Θ1)
+O

�

ε2, (ζ−1)2
�

(B.347)

It is also the case that cos(Θ2) =mz ,2. Hence, mz −1= ε⇒ ε=−1+ cos(Θ2). More generally,

(mx ,1, my ,1, mz ,1) = (sin(Θ1)cos(Φ1), sin(Θ1)sin(Φ1), cos(Θ1)) (B.348)

and

(mx ,2, my ,2, mz ,2) = (sin(Θ2)cos(Φ2), sin(Θ2)sin(Φ2), cos(Θ2)) = (γ,δ, 1+ε) (B.349)
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by definition. Substituting these in, I find

ζ−1

2
= γmx ,1+δmy ,1+ε(mz ,1−1) (B.350)

= sin(Θ2)cos(Φ2)(sin(Θ1)cos(Φ1) + sin(Θ2)sin(Φ2)sin(Θ1)sin(Φ1) +ε(cos(Θ1)−1) (B.351)

= sin(Θ2)sin(Θ1) (cos(Φ2)cos(Φ1) + sin(Φ2)sin(Φ1))+ε(cos(Θ1)−1) (B.352)

= sin(Θ2)sin(Θ1)cos(Φ1−Φ2) +ε(cos(Θ1)−1) (B.353)

letting∆Φ=Φ2−Φ1 (B.354)

= sin(Θ2)sin(Θ1)cos(∆Φ) +ε(cos(Θ1)−1) (B.355)

Consequently

⇒ ε−2(γmx ,1+δmy ,1+ε(mz ,1−1) = ε−2(sin(Θ2)sin(Θ1)cos(∆Φ) +ε(cos(Θ1)−1)) (B.356)

= ε(3−2 cos(Θ1))−2 sin(Θ2)sin(Θ1)cos(∆Φ) (B.357)

⇒
ε−2(γmx ,1+δmy ,1+ε(mz ,1−1)

q

1−m 2
z ,1

=
(1− cos(Θ2))(3−2 cos(Θ1))−2 sin(Θ2)���

�sin(Θ1)cos(∆Φ)

���
�sin(Θ1)

(B.358)

=
(1− cos(Θ2))(3−2 cos(Θ1))

sin(Θ1)
−2 sin(Θ2)cos(∆Φ) (B.359)

So,

Θ =Θ1+2 sin(Θ2)cos(∆Φ)
︸ ︷︷ ︸

α

(B.360)
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where α is small. The next case is for Φ

Φ= arctan (my/mx ) (B.361)

= arctan





my ,1+δ

�ζ
mx ,1+γ

�ζ



 (B.362)

= arctan

�

my ,1+δ

mx ,1+γ

�

(B.363)

= arctan

�

my ,1

mx ,1

�

+
mx ,1δ−my ,1γ

m 2
x ,1+m 2

y ,1

+O
�

δ2,γ2
�

Note: m 2
x ,1+m 2

y ,1+m 2
z ,1 = 1 (B.364)

= arctan

�

my ,1

mx ,1

�

+
mx ,1δ−my ,1γ

1−m 2
z ,1

+O
�

δ2,γ2
�

Note: arctan

�

my ,1

mx ,1

�

=Φ1 (B.365)

Using that

(mx ,1, my ,1, mz ,1) = (sin(Θ1)cos(Φ1), sin(Θ1)sin(Φ1), cos(Θ1)) (B.366)

and

(mx ,2, my ,2, mz ,2) = (sin(Θ2)cos(Φ2), sin(Θ2)sin(Φ2), cos(Θ2)) = (γ,δ, 1+ε) (B.367)

by definition,

Φ=Φ1+
1

sin(Θ1)�2
�

δ���
�sin(Θ1)cos(Φ1)−γ����sin(Θ1)sin(Φ1)

�

+O
�

δ2,γ2
�

(B.368)

=Φ1+
1

sin(Θ1)
(sin(Θ2)sin(Φ2)cos(Φ1)− sin(Θ2)cos(Φ2)sin(Φ1)) +O

�

δ2,γ2
�

(B.369)

=Φ1+
sin(Θ2)
sin(Θ1)

(sin(Φ2)cos(Φ1)− cos(Φ2)sin(Φ1))+O
�

δ2,γ2
�

(B.370)

=Φ1+
sin(Θ2)
sin(Θ1)

sin (Φ2−Φ1)+O
�

δ2,γ2
�

(B.371)

Defining ∆Φ = Φ2 −Φ1, we note Φ = Φ1 +
sin(Θ2)
sin(Θ1)

sin (∆Φ)
︸ ︷︷ ︸

β

+O
�

δ2,γ2
�

where β is small (just like α.

Because of the exponential decay of the soliton tails it is evident that Θ2� 1. Accordingly it can be
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deduced that α,β ought to be small contributions to Θ and Φ. Summarizing this section

α= 2 sin(Θ2)cos(∆Φ) and β =
sin(Θ2)
sin(Θ1)

sin (∆Φ) (B.372)

B.4.1 Linearization

The target has now shifted. Since the small contribution of one droplet on the other has now been

expressed in terms ofα andβ , it suffices to consider general perturbations based on small deviations

away from the droplet itself. The interaction initial condition gives Θ ≈Θ1+α and Φ≈Φ1+β where

α and β are small. For simplicity subscripts will be dropped until they are required again. First

consider the torque equation in spherical coordinates,

∂ Θ

∂ t
=
∇·

�

sin2(Θ)∇Φ
�

sin(Θ)
(B.373)

sin(Θ)
∂ Φ

∂ t
=

1

2
sin (2Θ)

�

|∇Φ|2+1
�

−∇2Θ (B.374)

Here are some necessary expansions:

sin(Θ+α) = sin(Θ) + cos(Θ)α+O
�

α2
�

(B.375)

sin2(Θ+α) = sin2(Θ) +2 sin(Θ)cos(Θ)α+O
�

α2
�

(B.376)

sin2(Θ+α)∇(Φ+β)=(sin2(Θ)+2 sin(Θ)cos(Θ)α)(∇Φ+∇β)+O(α2)=sin2(Θ)∇Φ+2 sin(Θ)cos(Θ)α∇Φ+sin2(Θ)∇(β )+O(α2,‖∇(β )‖) (B.377)

1

sin(Θ+α)
=

1

sin(Θ)
−

cos(Θ)

sin2(Θ)
α+O

�

α2
�

(B.378)
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Putting all of these things together,

∂ Θ

∂ t
+
∂ α

∂ t
=
∇·

�

sin2(Θ+α)∇(Φ+β )
�

sin(Θ+α)
(B.379)

=
�

1

sin(Θ)
−

cos(Θ)

sin2(Θ)
α

�

∇·
��

sin2(Θ) + (2 sinΘcosΘ)α
� �

∇Φ+∇β
��

+O
�

α2,


∇β




2�

(B.380)

=
�

1

sin(Θ)
−

cos(Θ)

sin2(Θ)
α

�

∇·
�

sin2(Θ)∇Φ+ (2 sinΘcosΘ)α∇Φ+ sin2(Θ)∇β
�

+O
�

α2,


∇β




2�

(B.381)

=
∇·

�

sin2(Θ)∇Φ
�

sin(Θ)
+

�

−
cos(Θ)α∇·

�

sin2Θ∇Φ
�

sin2Θ
+
∇· ((2 sinΘcosΘ)α∇Φ)

sinΘ

�

+
∇·

�

sin2(Θ)∇β
�

sin(Θ)
+O

�

α2,


∇β




2�(B.382)

So

∂ Θ

∂ t
=
∇·

�

sin2(Θ)∇Φ
�

sin(Θ)
+

�

−
cos(Θ)α∇·

�

sin2Θ∇Φ
�

sin2Θ
+
∇· ((2 sinΘcosΘ)α∇Φ)

sinΘ

�

+
∇·

�

sin2(Θ)∇β
�

sin(Θ)
−
∂ α

∂ t
︸ ︷︷ ︸

PΘ

+O
�

α2,


∇β




2� (B.383)

An additional expansion is still required:

1

2
sin(2(Θ+α)) =

1

2
sin(2Θ) + cos(2Θ)α+O

�

α2
�

. (B.384)
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Doing a similar calculation on the Φ equation yields,

∂ Φ

∂ t
+
∂ β

∂ t
=

1

sin(Θ+α)

�

1

2
sin(2(Θ+α))

�


∇Φ+∇β




2
+1

�

−∇2(Θ+α)
�

(B.385)

=
�

1
sin(Θ) −

cos(Θ)
sin2(Θ)

α
�

��

1
2 sin(2Θ) + cos(2Θ)α

� �

‖∇Φ‖2+2∇Φ∇β +1
�

−∇2Θ−∇2α
�

+O
�

α2,


∇β




2� (B.386)

=
�

1
sin(Θ) −

cos(Θ)
sin2(Θ)

α
�

��

1
2 sin(2Θ)

�

‖∇Φ‖2+1
�

−∇2Θ
�

+
�

cos(2Θ)α
�

‖∇Φ‖2+1
�

−∇2α
�

+ sin(2Θ)∇Φ∇β
�

+O
�

α2,


∇β




2� (B.387)

=
1

sin(Θ)

�

1

2
sin(2Θ)

�

‖∇Φ‖2+1
�

−∇2Θ

�

+

�

1

sin(Θ)

�

cos(2Θ)α
�

‖∇Φ‖2+1
�

−∇2α
�

−
cos(Θ)

sin2(Θ)
α

�

1

2
sin(2Θ)

�

‖∇Φ‖2+1
�

−∇2Θ

�

�

+
sin(2Θ)
sin(Θ)

∇Φ∇β +O
�

α2,


∇β




2�

(B.388)

sin(Θ)
∂ Φ

∂ t
=
�

1

2
sin(2Θ)

�

‖∇Φ‖2+1
�

−∇2Θ

�

+
�

�

cos(2Θ)α
�

‖∇Φ‖2+1
�

−∇2α
�

−
cos(Θ)
sin(Θ)

α

�

1

2
sin(2Θ)

�

‖∇Φ‖2+1
�

−∇2Θ

��

+ sin(2Θ)∇Φ∇β − sin(Θ)
∂ β

∂ t
︸ ︷︷ ︸

PΦ

+O
�

α2,


∇β




2�

(B.389)

To summarize this section:

PΘ(Θ,Φ,α,β ) =

�

−
cos(Θ)α∇·

�

sin2Θ∇Φ
�

sin2Θ
+
∇· ((2 sinΘcosΘ)α∇Φ)

sinΘ

�

+
∇·

�

sin2(Θ)∇β
�

sin(Θ)
−
∂ α

∂ t
(B.390)

and

PΦ(Θ,Φ,α,β ) =
�

�

cos(2Θ)α
�

‖∇Φ‖2+1
�

−∇2α
�

−
cos(Θ)
sin(Θ)

α

�

1

2
sin(2Θ)

�

‖∇Φ‖2+1
�

−∇2Θ

��

+ sin(2Θ)∇Φ∇β − sin(Θ)
∂ β

∂ t
(B.391)

B.4.2 Evaluating only the right hand side at t = 0

At this point the calculation becomes vastly easier under the assumption that both droplets are

initially stationary. The most important simplification is that these stationary droplets will have

trivial phase gradient. This assumption implies other conditions that will break down immediately.
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Under these conditions it is possible to chooseω1 =ω2 =ω and V1 =V2 = 0

That is,

∂ Θ1

∂ t
= 0=

∇·
�

sin2(Θ1)∇Φ1

�

sin(Θ1)
(B.392)

sin(Θ1)
∂ Φ1

∂ t
=ωsin(Θ1) =

1

2
sin (2Θ1)

�

|∇Φ1|2+1
�

−∇2Θ1 (B.393)

and

∂ Θ2

∂ t
= 0=

∇·
�

sin2(Θ2)∇Φ2

�

sin(Θ2)
(B.394)

sin(Θ2)
∂ Φ2

∂ t
=ωsin(Θ2) =

1

2
sin (2Θ2)

�

|∇Φ2|2+1
�

−∇2Θ2 (B.395)

In this case the approximate solutions are given by

Θ1 = arccos(tanh(ρ−
1

ω
) (B.396)

Φ1 =ωt +Φ0,1 (B.397)

Θ2 = arccos(tanh(ρ̃−
1

ω
) (B.398)

Φ2 =ωt +Φ0,2 (B.399)

where (B.400)

ρ =
Æ

x 2+ y 2 and ρ̃ =
Æ

(x −δ)2+ y 2 (B.401)

where δ is the separation between the droplets (and assumed large).

B.4.3 Evaluation of PΘ

PΘ(Θ,Φ,α,β ) =

�

−
cos(Θ)α∇·

�

sin2Θ∇Φ
�

sin2Θ
+
∇· ((2 sinΘcosΘ)α∇Φ)

sinΘ

�

+
∇·

�

sin2(Θ)∇β
�

sin(Θ)
−
∂ α

∂ t
(B.402)
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First consider ∂ α∂ t .

∂ α

∂ t
=
∂

∂ t
(2 sin(Θ2)cos(Φ2−Φ1)) (B.403)

= 2



cos(Θ2)
�
�
��

0
∂ Θ2

∂ t
cos(∆Φ)− sin(Θ2)sin(∆Φ)

���
���

�:0�

∂ Φ2

∂ t
−
∂ Φ2

∂ t

�



= 0 (B.404)

Note∇Φ1 = 0 so the first term in PΘ vanishes. All that remains is the middle term.

∇·
�

sin2(Θ)∇β
�

sin(Θ)
=
∇·

�

sin2(Θ1)∇
�

sin(Θ2)
sin(Θ1)

sin (∆Φ)
��

sin(Θ1)
(B.405)

note that∆Φ is independent of space

= sin (∆Φ)
∇·

�

sin2(Θ1)∇
�

sin(Θ2)
sin(Θ1)

��

sin(Θ1)
(B.406)

= sin (∆Φ)
∇· (cosΘ2 sinΘ1∇Θ2− cosΘ1 sinΘ2∇Θ1)

sinΘ1
(B.407)

= sin (∆Φ)
h�

cos(Θ2)∇2Θ2 sinΘ1− sin(Θ2) |∇Θ2|2 sin(Θ1) +((((
((((

((((
cos(Θ1)cos(Θ2)∇Θ1 ·∇Θ2

�

−
�

cos(Θ1)∇2Θ1 sinΘ2− sin(Θ1) |∇Θ1|2 sin(Θ2) +((((
(((

((((
(

cos(Θ1)cos(Θ2)∇Θ1 ·∇Θ2

�i

(B.408)

Note that for the droplet

ωsin(Θ) =
1

2
sin (2Θ)

�

|∇Φ|2+1
�

−∇2Θ (B.409)

⇒∇2Θ = sinΘcosΘ
�

|∇Φ|2
�

−ωsin(Θ) = sinΘcosΘ−ωsinΘ
︸ ︷︷ ︸

for stationary droplet

= sin(Θ)(cos(Θ)−ω) (B.410)

Hence,

∇·
�

sin2(Θ)∇β
�

sin(Θ)
= sin (∆Φ)

�

sin(Θ1

�

cos(Θ2) (sin(Θ2)(cos(Θ2)−ω))− sin(Θ2) |∇Θ2|2
�

− sinΘ2

�

cos(Θ1) (sin(Θ1)(cos(Θ1)−ω))− sin(Θ1) |∇Θ1|2
�� (B.411)

= sin(∆Φ)sin(Θ1)sin(Θ2)
�

cos2(Θ2)− cos2(Θ1)−ω(cosΘ2− cosΘ1)− |∇Θ2|2+ |∇Θ1|2
�

(B.412)
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Noting that Θ2 is small it is possible make the additional simplification that cos(Θ2)≈ 1 obtaining

that

PΘ = sin(∆Φ)sin(Θ1)sin(Θ2)
�

sin2(Θ1)−ω(1− cosΘ1) + |∇Θ1|2
�

(B.413)

B.4.4 Evaluation of PΦ

PΦ(Θ,Φ,α,β ) =
�

�

cos(2Θ)α
�

‖∇Φ‖2+1
�

−∇2α
�

−
cos(Θ)
sin(Θ)

α

�

1

2
sin(2Θ)

�

‖∇Φ‖2+1
�

−∇2Θ

��

+ sin(2Θ)∇Φ∇β − sin(Θ)
∂ β

∂ t
(B.414)

Observing that the middle term is the defining relationship for the droplet and noting that∇Φ= 0,

this relation can be drastically simplified.

PΦ(Θ,Φ,α,β ) = (cos(2Θ1)−ωcosΘ1)α−∇2α− sin(Θ)
∂ β

∂ t
(B.415)

First compute ∂ β
∂ t

∂ β

∂ t
=
∂

∂ t

�

sin(Θ2)
sin(Θ1)

sin (∆Φ)
�

=
sin(Θ2)
sin(Θ1)

∂

∂ t
(sin (∆Φ)) (B.416)

=
sin(Θ2)
sin(Θ1)

cos (∆Φ)
���

���
�:0�

∂ Φ2

∂ t
−
∂ Φ1

∂ t

�

= 0 (B.417)

Next compute∇2α

∇2α=∇·∇ (2 sin(Θ2)cos(∆Φ)) (B.418)

= 2 cos(∆Φ)∇·∇ (sin(Θ2)) = 2 cos(∆Φ)∇· (cos(Θ2)∇Θ2) (B.419)

= 2 cos(∆Φ)
�

cos(Θ2)∇2Θ2− sin(Θ2) |∇Θ2|2
�

(B.420)

= 2 cos(∆Φ)
�

cos(Θ2) (sin(Θ2)(cos(Θ2)−ω))− sin(Θ2) |∇Θ2|2
�

using droplet equation (B.421)

Using that Θ2 is small (and nearly flat) (i.e. cos(Θ2)≈ 1 and∇Θ2 = 0)

∇2α= 2 cos(∆Φ)sin(Θ2)(1−ω). (B.422)

168



B.4. CALCUALIGNLATION OF THE INTERACTING DROPLET PERTURBATION APPENDIX B.

So all together,

PΦ = (cos(2Θ1)−ωcosΘ1) (2 sin(Θ2)cos(∆Φ))− (2 cos(∆Φ)sin(Θ2)(1−ω)) (B.423)

= 2 cos(∆Φ)sin(Θ2) [cos(2Θ1)−ωcosΘ1−1+ω] (B.424)

= 2 cos(∆Φ)sin(Θ2)
�

cos2(Θ1)− sin2(Θ1)−ωcosΘ1−1+ω
�

(B.425)

= 2 cos(∆Φ)sin(Θ2)
��

cos2(Θ1)−1
�

− sin2(Θ1) +ω(1− cosΘ1)
�

(B.426)

PΦ = 2 cos(∆Φ)sin(Θ2)
�

−2 sin2(Θ1) +ω(1− cosΘ1)
�

(B.427)

B.4.5 Evaluating the Right Hand Side of the Modulation Equations

First evaluate PΘ, PΦ for the approximate Θ1.

PΘ = sin(∆Φ)sin(Θ2)sech
�

ρ−
1

ω

��

2sech2
�

ρ−
1

ω

�

−ω
�

1− tanh
�

ρ−
1

ω

���

(B.428)

and

PΦ = 2 cos(∆Φ)sin(Θ2)
�

−2sech2
�

ρ−
1

ω

�

+ω
�

1− tanh
�

ρ−
1

ω

���

(B.429)

In general, the modulation equations are































Φ0

x0

ω

V































′

=































V
4π ·

�∫

R2 (Pu ρ̂)d x
�

+ ω
4π

∫

R2 sech2
�

ρ− 1
ω

�

PΦ̄d x

− ω2π
∫

R2 (Pu ρ̂)d x

ω3

4π

∫

R2 Pu d x

3Vω2

4π

�∫

R2 Pu d x
�

− ω
2π

∫

R2
1
ρ

�

V · ϕ̂
�

ϕ̂Pu d x− ω
3

2π

∫

R2 sech2
�

ρ− 1
ω

�

ρ̂PΦ̄d x































(B.430)
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These simplify somewhat under the assumption that V = 0 initially.































Φ0

x0

ω

V































′
�

�

�

�

t = 0

=































ω
4π

∫

R2 sech2
�

ρ− 1
ω

�

PΦ̄d x

− ω2π
∫

R2 (Pu ρ̂)d x

ω3

4π

∫

R2 Pu d x

−ω
3

2π

∫

R2 sech2
�

ρ− 1
ω

�

ρ̂PΦ̄d x































(B.431)

Using that Pu =−sin(Θ)PΘ =−sech
�

ρ− 1
ω

�

PΘ and PΦ̄ =
PΦ

sin(Θ) =
PΦ

sech(ρ− 1
ω )

and substituting the precise

form of the perturbation































Φ0,1

x0,1

ω1

V1































′
�

�

�

�

t = 0

=































ω
2π cos(∆Φ)

∫

R2

�

sech
�

ρ− 1
ω

� �

sin(Θ2)
�

−2sech2
�

ρ− 1
ω

�

+ω
�

1− tanh
�

ρ− 1
ω

�����

d x

ω
2π sin(∆Φ)

∫

R2

�

sech
�

ρ− 1
ω

�

ρ̂
�

sin(Θ2)sech
�

ρ− 1
ω

� �

2sech2
�

ρ− 1
ω

�

−ω
�

1− tanh
�

ρ− 1
ω

�����

d x

−ω
3

4π sin(∆Φ)
∫

R2

�

sech
�

ρ− 1
ω

� �

sin(Θ2)sech
�

ρ− 1
ω

� �

2sech2
�

ρ− 1
ω

�

−ω
�

1− tanh
�

ρ− 1
ω

�����

d x

−ω
3

π cos(∆Φ)
∫

R2

�

sech
�

ρ− 1
ω

�

ρ̂
�

sin(Θ2)
�

−2sech2
�

ρ− 1
ω

�

+ω
�

1− tanh
�

ρ− 1
ω

�����

d x































(B.432)

Obviously there is a duplicate set of equations for the action droplet 1 on droplet 2–but these can be

deduced by symmetry arguments (some signs will flip). These expressions can be further simplified

by defining the quantity

I (ρ,ω,δ) = sin(Θ2)sech
�

ρ−
1

ω

��

2sech2
�

ρ−
1

ω

�

−ω
�

1− tanh
�

ρ−
1

ω

���

(B.433)
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ω
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′
�

�

�

�

t = 0

=































− ω2π cos(∆Φ)
∫

R2 I (ρ,ω,δ)d x

ω
2π sin(∆Φ)

∫

R2 I (ρ,ω,δ)sech
�

ρ− 1
ω

�

ρ̂d x

−ω
3

4π sin(∆Φ)
∫

R2 I (ρ,ω,δ)d x

ω3

π cos(∆Φ)
∫

R2 I (ρ,ω,δ)sech
�

ρ− 1
ω

�

ρ̂d x
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These equations are equivalent to those presented in Section 3.4.

B.5 Supplementary Calculations for Numerical Methods

B.5.1 Gradient Evaluation for Adjoint Continuation

The first step is to compute the linearization for











ı wt =∆w − 2w ∗∇w ·∇w+w (1−|w |2)
1+|w |2

w (±∞) = 0, w (x , 0) =w0

(B.435)

Let w denote the solution to Eq. B.435. Let ŵ =w +εv +O
�

ε2
�

denote the solution to the Eq. B.435

with initial data w0+εv0.

ı ŵt = ı wt +ε(i vt ) +O
�

ε2
�

(B.436)

∆ŵ =∆w +ε∆v. (B.437)
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2ŵ ∗∇ŵ ·∇ŵ = 2(w +εv )∗∇(w +εv ) ·∇(w +εv ) +O
�

ε2
�

(B.438)

= 2(w ∗+εv ∗) (∇w +ε∇v ) · (∇w +ε∇v )+O
�

ε2
�

(B.439)

= 2(w ∗+εv ∗) (∇w ·∇w +ε(2∇w ·∇v )+O
�

ε2
�

(B.440)

= 2w ∗∇w ·∇w +ε (4w ∗∇w ·∇v +2v ∗∇w ·∇w )+O
�

ε2
�

(B.441)

|ŵ |2 = |w +εv |2+O
�

ε2
�

(B.442)

= (w +εv )∗(w +εv ) +O
�

ε2
�

(B.443)

=w ∗w +ε(w ∗v + v ∗w ) +O
�

ε2
�

+O
�

ε2
�

(B.444)

= |w |2+ε(w ∗v + v ∗w ) +O
�

ε2
�

(B.445)

ŵ (1− |ŵ |2) = (w +εv )(1− (w ∗w +ε(w ∗v + v ∗w )))+O
�

ε2
�

(B.446)

=w (1− |w |2) +ε
�

v (1− |w |2)−w (w ∗v + v ∗w )
�

+O
�

ε2
�

(B.447)

=w (1− |w |2) +ε
�

v (1− |w |2)− v |w |2− v ∗w 2)
�

+O
�

ε2
�

(B.448)

=w (1− |w |2) +ε
�

v (1−2 |w |2)− v ∗w 2)
�

+O
�

ε2
�

(B.449)

The following approximation will be useful.

1

a +εb
=

1

a
−
εb

a 2
+O

�

ε2
�

=
1

a

�

1−ε
b

a

�

+O
�

ε2
�

(B.450)
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to expand the denominator.

1

1+ |ŵ 2|
=

1

1+ |w |2
︸ ︷︷ ︸

a

+ε (w ∗v + v ∗w )
︸ ︷︷ ︸

b

+O (ε2)
(B.451)

=
1

1+ |w |2

�

1−ε
w ∗v + v ∗w

1+ |w |2

�

+O
�

ε2
�

(B.452)

Substituting this into the PDE for ŵ , namely











ı ŵt =∆ŵ − 2ŵ ∗∇ŵ ·∇ŵ+ŵ (1−|ŵ |2)
1+|ŵ |2

ŵ (±∞) = 0, ŵ (x , 0) =w0+εv0

(B.453)

yields

ı ŵt =∆ŵ −
2ŵ ∗∇ŵ ·∇ŵ + ŵ (1− |ŵ |2)

1+ |ŵ |2
(B.454)

= (∆w +ε∆v )

−
�

1
1+|w |2

�

1−εw ∗v+v ∗w
1+|w |2

��

(2w ∗∇w ·∇w +ε (4w ∗∇w ·∇v +2v ∗∇w ·∇w )

+w (1− |w |2) +ε
�

v (1−2 |w |2)− v ∗w 2)
��

+O
�

ε2
�

(B.455)

��ı wt +ε(ı vt ) = (���∆w +ε∆v )−

�

���
���

���
���

�
2w ∗∇w ·∇w +w (1− |w |2)

1+ |w |2

+ε

�

4w ∗∇w ·∇v +2v ∗∇w ·∇w + v (1−2 |w |2)− v ∗w 2

1+ |w |2

��

−ε

�

− (w ∗v + v ∗w )
�

2w ∗∇w ·∇w +w (1− |w |2
�

(1+ |w |2)2

�

+O
�

ε2
�

(B.456)

ı vt =∆v −
�

4w ∗∇w ·∇v +2v ∗∇w ·∇w + v (1−2 |w |2)− v ∗w 2

1+ |w |2

+
− (w ∗v + v ∗w )

�

2w ∗∇w ·∇w +w (1− |w |2
�

�

1+ |w |2
�2

!

+O (ε) (B.457)
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With a little more processing this becomes

ı vt =∆v −

 

4w ∗∇w ·∇v

1+ |w |2
+

 

1−2 |w |2

1+ |w |2
−

2w ∗2∇w ·∇w + |w |2 (1− |w |2
�

1+ |w |2
�2

!

v +

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2
�

1+ |w |2
�2

!

v ∗

!

(B.458)

B.5.2 Adjoint Calculation

Taking the complex conjugate of Eq. (B.458),

−ı v ∗t =∆v ∗− 4w∇w ∗·∇v ∗

1+|w |2 −
�

1−2|w |2

1+|w |2 −
2w 2∇w ∗·∇w ∗+|w |2(1−|w |2)

(1+|w |2)2
�

v ∗−
�

2∇w ∗·∇w ∗−w ∗2

1+|w |2 − 2|w |2∇w ∗·∇w ∗+w ∗2(1−|w |2)
(1+|w |2)2

�

v (B.459)

Recall that,

G (w0, T ) =
1

2

∫

R2

|w (x , T )−w0(x )|2 d x (B.460)

=
1

2

∫

R2

(w (x , T )−w0(x ))
∗(w (x , T )−w0(x ))d x (B.461)

With this formulation, the functional G is guaranteed to map to real numbers. Further this functional

corresponds to a L 2 norm over the set of complex functions. As a result, this functional exhibits the

same convexity structure of traditional least squares minimization problems. If minimization of G

will include variation of the period, T , it is necessary to compute

∂

∂ t
G (w0, T ) =

1

2

∫

R2

|w (x , T )−w0(x )|2 d x (B.462)

=
∂

∂ t

1

2

∫

R2

(w (x , T )−w0(x ))
∗(w (x , T )−w0(x ))d x (B.463)

=
1

2

∫

R2

((wt (x , T ))∗(w (x , T )−w0(x ))+ (w (x , T )−w0(x ))
∗(wt (x , T )))d x (B.464)

=Re

�∫

R2

(w (x , T )−w0(x ))
∗(wt (x , T ))d x

�

(B.465)
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The more important quantity is the variational derivative with respect to the initial condition. Let

ŵ (x , T ,ε) denote the solution to the equation with perturbed initial data, then

G (w0+εv0) =
1

2

∫

R2

(ŵ (x , T ,ε)−w0(x )−εv0(x ))
∗ (ŵ (x , T ,ε)−w0(x )−εv0(x ))d x (B.466)

Differentiating with respect to ε

∂

∂ ε
G (w0+εv0) =

∂

∂ ε

1

2

∫

R2

(ŵ (x , T ,ε)−w0(x )−εv0(x ))
∗ (ŵ (x , T ,ε)−w0(x )−εv0(x ))d x (B.467)

=
1

2

∫

R2

(ŵε(x , T ,ε)− v0(x ))
∗ (ŵ (x , T ,ε)−w0(x )−εv0(x ))

+ (ŵ (x , T ,ε)−w0(x )−εv0(x ))
∗ (ŵ (x , T ,ε)− v0(x ))d x (B.468)

=Re

�∫

R2

(ŵε(x , T ,ε)− v0(x ))
∗ (ŵ (x , T ,ε)−w0(x )−εv0(x ))d x

�

(B.469)

Finally the variation derivative becomes

Ġ =
∂

∂ ε
G (w0+εv0)

�

�

�

�

ε=0

=Re

�∫

R2

(ŵε(x , T , 0)− v0(x ))
∗ (ŵ (x , T , 0)−w0(x ))d x

�

(B.470)

Note that ŵ (x , T ,0) = w (x , T ) and that ŵε(x , T ,0) is the solution to the linearized problem with

initial data v0, therefore call ŵε(x , T , 0) = v (x , T ). Finally, define u (x , 0) = u0 =w (x , T )−w0(x ) and

obtain

Ġ =Re

�∫

R2

(v (x , T )− v0(x ))
∗ (w (x , T )−w0(x ))d x

�

=Re

�∫

R2

(v (x , T )− v0(x ))
∗ u0(x )d x

�

(B.471)

This is fundamentally similar to the anlaysis in [AW10b], only the inner product has changed.

Expanding a little further Ġ =Re
�∫

R2 (v (x , T )∗u0(x )− v0(x )∗u0(x ))d x
�

.
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Letting 〈p (x ), q (x )〉=Re
�∫

R2 p (x )∗q (x )d x
�

, it is clear that u needs to be such that

〈v (x , T ), u0〉= 〈v0(x ), u (x , T )〉 ≡ 〈u (x , T ), v0(x )〉 (B.472)

To understand why this is the adjoint requires a short digression. Let s = T − s and define u (x , s ) be

the adjoint.

Remark

Note Re
�∫

R2 p (x )∗q (x )d x
�

= 1
2

∫

R2

�

p (x )∗q (x ) +p (x )q (x )∗
�

d x The distinction be-

tween simply proceeding as though the operators were acting on a scalar or as

though they were acting on the vector [w , w ∗]T amounts to a factor of 2 difference

in how we view the inner product. This will not be significant.

The adjoint is meant to satisfy the relation,

〈vt , u〉= 〈v, us 〉 (B.473)
∫

R2

�

v ∗t u + vt u∗
�

d x =

∫

R2

�

v ∗us + v u∗s
�

d x (B.474)

This computation will be done in several pieces. Consider vt u∗.

vt u∗ =−ı

 

∆v −
4w ∗∇w ·∇v

1+ |w |2
−

 

1−2 |w |2

1+ |w |2
−

2w ∗2∇w ·∇w + |w |2 (1− |w |2)
�

1+ |w |2
�2

!

v (B.475)

−

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

v ∗

!

u∗ (B.476)

=−ı









∆v u∗
︸ ︷︷ ︸

(1)

−
4w ∗∇w ·∇v

1+ |w |2
u∗

︸ ︷︷ ︸

(2)

−

 

1−2 |w |2

1+ |w |2
−

2w ∗2∇w ·∇w + |w |2 (1− |w |2)
�

1+ |w |2
�2

!

v u∗ (B.477)

−

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

v ∗u∗

!

(B.478)
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Only terms (1) and (2) will require further processing. The next step is to apply the integral and

integrate by parts to turn this into an operator acting on u∗ instead of v . Not that by the boundary con-

ditions, lim|x |→∞w (x ) = 0. Assuming that perturbations do not destroy this property requires that

lim|x |→∞ v (x ) = 0. Note that if lim|x |→∞ v (x ) = 0 goes to zero smoothly, requires that lim|x |→∞
∂ v
∂ x = 0

as well. Assuming that ∂ v
∂ x → 0 as x →±∞, it is immediate that term (1) yields

∫

R2

∆v u∗d x =

∫

R2

v∆u∗d x . (B.479)

Consider term (2). Let α= x , y or z , then

∫

R2

4w ∗wα · vα
1+ |w |2

u∗dα=
�
��

�
��
�*0

4w ∗wα · v
1+ |w |2

u∗
�

�

�

�

α=±∞
−
∫

R2

�

4w ∗wα
1+ |w |2

u∗
�

α

v dα. (B.480)

More compactly, ,

∫

R2

4w ∗∇w ·∇v

1+ |w |2
u∗d x =−

∫

R2

∇·
�

4w ∗∇w u∗

1+ |w |2

�

v d x . (B.481)
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Putting these pieces of information together,

∫

R2

vt u∗d x =

∫

R2

−ı

 

∆v −
4w ∗∇w ·∇v

1+ |w |2
−

 

1−2 |w |2

1+ |w |2
−

2w ∗2∇w ·∇w + |w |2 (1− |w |2)
�

1+ |w |2
�2

!

v

−

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

v ∗

!

u∗d x (B.482)

=

∫

R2

−ı

  

∆u∗+∇·
�

4w ∗∇w u∗

1+ |w |2

�

−

 

1−2 |w |2

1+ |w |2
−

2w ∗2∇w ·∇w + |w |2 (1− |w |2)
�

1+ |w |2
�2

!

u∗

!

v

−

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

u∗

!

v ∗d x (B.483)

=

∫

R2

ı

  

−∆u∗−∇·
�

4w ∗∇w u∗

1+ |w |2

�

+

 

1−2 |w |2

1+ |w |2
−

2w ∗2∇w ·∇w + |w |2 (1− |w |2)
�

1+ |w |2
�2

!

u∗

!

v

+

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

u∗v ∗

!

d x (B.484)

Next consider the very similar term v ∗t u .

v ∗t u = ı









∆v ∗−
4w∇w ∗ ·∇v ∗

1+ |w |2
︸ ︷︷ ︸

(3)

−

 

1−2 |w |2

1+ |w |2
−

2w 2∇w ∗ ·∇w ∗+ |w |2 (1− |w |2)
�

1+ |w |2
�2

!

v ∗ (B.485)

−

 

2∇w ∗ ·∇w ∗−w ∗2

1+ |w |2
−

2 |w |2∇w ∗ ·∇w ∗+w ∗2(1− |w |2)
�

1+ |w |2
�2

!

v

!

u (B.486)

Again here only term (3)will require any attention from integration by parts and it will very closely

mimic the work above. So putting these pieces of information together,

∫

R2

v ∗t ud x=

∫

R2

ı

  

∆u +∇·
�

4w∇w ∗u

1+ |w |2

�

−

 

1−2 |w |2

1+ |w |2
−

2w 2∇w ∗ ·∇w ∗+ |w |2 (1− |w |2)
�

1+ |w |2
�2

!

u

!

v ∗

−

 

2∇w ∗ ·∇w ∗−w ∗2

1+ |w |2
−

2 |w |2∇w ∗ ·∇w ∗+w ∗2(1− |w |2)
�

1+ |w |2
�2

!

u v

!

d x (B.487)
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Grouping terms by v and v ∗ in
∫

R2 (vt u∗+ v ∗t u )d x .

∫

R2

(vt u∗+ v ∗t u )d x=

∫

R2

ı

  

∆u +∇·
�

4w∇w ∗u

1+ |w |2

�

−

 

1−2 |w |2

1+ |w |2
−

2w 2∇w ∗ ·∇w ∗+ |w |2 (1− |w |2)
�

1+ |w |2
�2

!

u

+

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

u∗

!

v ∗

−
�

∆u∗+∇·
�

4w ∗∇w u∗

1+ |w |2

�

−

 

1−2 |w |2

1+ |w |2
−

2w ∗2∇w ·∇w + |w |2 (1− |w |2)
�

1+ |w |2
�2

!

u∗

+

�

2∇w ∗ ·∇w ∗−w ∗2

1+ |w |2
−

2 |w |2∇w ∗ ·∇w ∗+w ∗2(1− |w |2)
�

1+ |w |2
�2

!

u

!

v

!

d x (B.488)
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By inspection, this expression is of the form

∫

R2

(v ∗L †(u ) + v (L †(u ))∗)d x (B.489)

where

L †(u ) = ı

 

∆u +∇·
�

4w∇w ∗u

1+ |w |2

�

−

 

1−2 |w |2

1+ |w |2
−

2w 2∇w ∗ ·∇w ∗+ |w |2 (1− |w |2)
�

1+ |w |2
�2

!

u

+

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

u∗

!

(B.490)

If us = L †u , then the adjoint condition is met. This implies the adjoint equation to solve is

−ı us =∆u +∇·
�

4w∇w ∗u

1+ |w |2

�

−

 

1−2 |w |2

1+ |w |2
−

2w 2∇w ∗ ·∇w ∗+ |w |2 (1− |w |2)
�

1+ |w |2
�2

!

u

+

 

2∇w ·∇w −w 2

1+ |w |2
−

2 |w |2∇w ·∇w +w 2(1− |w |2)
�

1+ |w |2
�2

!

u∗ (B.491)

with u0 =w (x , T )−w0(x ).

B.5.3 Computation of the Jacobian

The challenge is to evaluate the matrix-vector product of the Jacobian so that Newton’s method

may be applied to the Landau-Lifshitz equation as formulated as a boundary value problem. The

boundary conditions will be ignored for the time being, since these can be encapsulated in the

discretization instead. The solution to the Landau-Lifshitz equation can be found as a root of the

equation

F [U ] = i
�

∂U

∂ t
−Vx

∂U

∂ x
−Vy

∂U

∂ y

�

−
∂ 2U

∂ x 2
−
∂ 2U

∂ y 2
+

2U ∗
�

�

∂U
∂ x

�2
+
�

∂U
∂ y

�2�

+U (1− |U |2)

1+ |U |2
(B.492)

180



B.5. SUPPLEMENTARY CALCULATIONS FOR NUMERICAL METHODS APPENDIX B.

Equivalently F can be expressed as a function of the real and imaginary parts of U = u + i v ,

G [u , v ] =







− ∂ v
∂ t −

∂ 2u
∂ x 2 − ∂

2u
∂ y 2 +Vx

∂ v
∂ x +Vy

∂ v
∂ y +

u(1−u 2−v 2)+2u
�

�

∂ u
∂ x

�2
+
�

∂ u
∂ y

�2
−
�

∂ v
∂ x

�2
−
�

∂ v
∂ y

�2�

+4v
�

�

∂ u
∂ x

��

∂ v
∂ x

�

+
�

∂ u
∂ y

��

∂ v
∂ y

��

1+u 2+v 2

∂ u
∂ t −

∂ 2v
∂ x 2 − ∂

2v
∂ y 2 −Vx

∂ u
∂ x −Vy

∂ u
∂ y +

v (1−u 2−v 2)−2v
�

�

∂ u
∂ x

�2
+
�

∂ u
∂ y

�2
−
�

∂ v
∂ x

�2
−
�

∂ v
∂ y

�2�

+4u
�

�

∂ u
∂ x

��

∂ v
∂ x

�

+
�

∂ u
∂ y

��

∂ v
∂ y

��

1+u 2+v 2






(B.493)

and the reader may verify that F is equivalent to G (as described above).

B.5.4 Computing the action of the Jacobian

What follows is the most explicit expression of the derivation of the jacobian, but it is not the most

efficient derivation.

d

dε
G [u +εq , v +εw ]

�

�

�

�

ε=0

=D G [u , v ]





q

w



 (B.494)

The linear portion of this is a trivial calculation and will be skipped. The remaining parts will be

computed in several steps. Of the rest, there are only four really distinct calculations, so rather than

do it all out, only examples of the distinct parts will be presented. First, compute the variational

derivative for the term
2u
�

�

∂ u
∂ x

�2
+
�

∂ u
∂ y

�2�

1+u 2+v 2 :

2(u +εq )
�
�

∂ u
∂ x +ε

∂ q
∂ x

�2
+
��

∂ u
∂ y +ε

∂ q
∂ y

��2�

1+ (u +εq )2+ (v +εw )2
=

2
�

u
�

∂ u
∂ x

�2
+u

�

∂ u
∂ y

�2�

ε(2q u +2v w ) +1+u 2+ v 2

+
2ε
�

q
�

∂ u
∂ x

�2
+q

�

∂ u
∂ y

�2
+2

�

∂ q
∂ x

�

u
�

∂ u
∂ x

�

+2
�

∂ q
∂ y

�

u
�

∂ u
∂ y

�
�

ε(2q u +2v w ) +1+u 2+ v 2
+O

�

ε2
�

(B.495)

Differentiating the above expression with respect to ε yields

d

dε





2(u +εq )
�
�

∂ u
∂ x +ε

∂ q
∂ x

�2
+
��

∂ u
∂ y +ε

∂ q
∂ y

��2�

1+ (u +εq )2+ (v +εw )2



=
2
�

q
�

∂ u
∂ x

�2
+q

�

∂ u
∂ y

�2
+2

�

∂ q
∂ x

�

u
�

∂ u
∂ x

�

+2
�

∂ q
∂ y

�

u
�

∂ u
∂ y

�
�

ε(2q u +2v w ) +1+u 2+ v 2

−
2
�

u
�

∂ u
∂ x

�2
+u

�

∂ u
∂ y

�2�

(2q u +2v w )
�

ε(2q u +2v w ) +1+u 2+ v 2
�2 +O (ε) (B.496)
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Evaluating at ε= 0 this becomes

d

dε





2(u +εq )
�
�

∂ u
∂ x +ε

∂ q
∂ x

�2
+
��

∂ u
∂ y +ε

∂ q
∂ y

��2�

1+ (u +εq )2+ (v +εw )2





�

�

�

�

�

�

ε=0

=
2
�

q
�

∂ u
∂ x

�2
+q

�

∂ u
∂ y

�2
+2

�

∂ q
∂ x

�

u
�

∂ u
∂ x

�

+2
�

∂ q
∂ y

�

u
�

∂ u
∂ y

�
�

1+u 2+ v 2

−
2
�

u
�

∂ u
∂ x

�2
+u

�

∂ u
∂ y

�2�

(2q u +2v w )

(1+u 2+ v 2)2
(B.497)

Next compute the variational derivative of
2u
�

−
�

∂ v
∂ x

�2
−
�

∂ v
∂ y

�2�

1+u 2+v 2 :

2(u +εq )
�

−
��

∂ v
∂ x

�

+ε
�

∂ w
∂ x

��2−
��

∂ v
∂ y

�

+ε
�

∂ w
∂ y

��2�

1+ (u +εq )2+ (v +εw )2
=

2ε
�

−q
�

∂ v
∂ x

�2−q
�

∂ v
∂ y

�2
−2u

�

∂ v
∂ x

� �

∂ w
∂ x

�

−2u
�

∂ v
∂ y

��

∂ w
∂ y

�
�

ε(2q u +2v w ) +1+u 2+ v 2

+
2
�

−u
�

∂ v
∂ x

�2−u
�

∂ v
∂ y

�2�

ε(2q u +2v w ) +1+u 2+ v 2
+O

�

ε2
�

(B.498)

Differentiating the above expression with respect to ε yields

d

dε





2(u +εq )
�

−
��

∂ v
∂ x

�

+ε
�

∂ w
∂ x

��2−
��

∂ v
∂ y

�

+ε
�

∂ w
∂ y

��2�

1+ (u +εq )2+ (v +εw )2



=
2
�

−q
�

∂ v
∂ x

�2−q
�

∂ v
∂ y

�2
−2u

�

∂ v
∂ x

� �

∂ w
∂ x

�

−2u
�

∂ v
∂ y

��

∂ w
∂ y

�
�

ε(2q u +2v w ) +1+u 2+ v 2

−
2
�

−u
�

∂ v
∂ x

�2−u
�

∂ v
∂ y

�2�

(2q u +2v w )
�

ε(2q u +2v w ) +1+u 2+ v 2
�2 +O (ε) (B.499)

Evaluating at ε= 0 this becomes

d

dε





2(u +εq )
�

−
��

∂ v
∂ x

�

+ε
�

∂ w
∂ x

��2−
��

∂ v
∂ y

�

+ε
�

∂ w
∂ y

��2�

1+ (u +εq )2+ (v +εw )2





�

�

�

�

�

�

ε=0

=
−2

�

q
�

∂ v
∂ x

�2
+q

�

∂ v
∂ y

�2
+2u

�

∂ v
∂ x

� �

∂ w
∂ x

�

+2u
�

∂ v
∂ y

��

∂ w
∂ y

�
�

1+u 2+ v 2

+
2
�

u
�

∂ v
∂ x

�2
+u

�

∂ v
∂ y

�2�

(2q u +2v w )

(1+u 2+ v 2)2
(B.500)

Next compute the variational derivative of
4v
�

�

∂ u
∂ x

��

∂ v
∂ x

�

+
�

∂ u
∂ y

��

∂ v
∂ y

��

1+u 2+v 2 :

4(v +εw )
��

∂ u
∂ x +ε

∂ q
∂ x

�

�

∂ v
∂ x +ε

∂ w
∂ x

�

+
�

∂ u
∂ y +ε

∂ q
∂ y

��

∂ v
∂ y +ε

∂ w
∂ y

��

1+ (u +εq )2+ (v +εw )2
=

4ε
��

∂ q
∂ x

�

v
�

∂ v
∂ x

�

+
�

∂ q
∂ y

�

v
�

∂ v
∂ y

�

+
�

∂ u
∂ x

�

v
�

∂ w
∂ x

�

+
�

∂ u
∂ x

� �

∂ v
∂ x

�

w +
�

∂ u
∂ y

�

v
�

∂ w
∂ y

�

+
�

∂ u
∂ y

��

∂ v
∂ y

�

w
�

ε(2q u +2v w ) +1+u 2+ v 2

+
4
�

�

∂ u
∂ x

�

v
�

∂ v
∂ x

�

+
�

∂ u
∂ y

�

v
�

∂ v
∂ y

��

ε(2q u +2v w ) +1+u 2+ v 2
+O

�

ε2
�

(B.501)
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Differentiating the above expression with respect to ε yields

d

dε

 

4(v +εw )
��

∂ u
∂ x +ε

∂ q
∂ x

�

�

∂ v
∂ x +ε

∂ w
∂ x

�

+
�

∂ u
∂ y +ε

∂ q
∂ y

��

∂ v
∂ y +ε

∂ w
∂ y

��

1+ (u +εq )2+ (v +εw )2

!

=

4
��

∂ q
∂ x

�

v
�

∂ v
∂ x

�

+
�

∂ q
∂ y

�

v
�

∂ v
∂ y

�

+
�

∂ u
∂ x

�

v
�

∂ w
∂ x

�

+
�

∂ u
∂ x

� �

∂ v
∂ x

�

w +
�

∂ u
∂ y

�

v
�

∂ w
∂ y

�

+
�

∂ u
∂ y

��

∂ v
∂ y

�

w
�

ε(2q u +2v w ) +1+u 2+ v 2

−
4(2q u +2v w )

�

�

∂ u
∂ x

�

v
�

∂ v
∂ x

�

+
�

∂ u
∂ y

�

v
�

∂ v
∂ y

��

�

ε(2q u +2v w ) +1+u 2+ v 2
�2 +O (ε)

(B.502)

Evaluating at ε= 0 this becomes

d

dε

 

4(v +εw )
��

∂ u
∂ x +ε

∂ q
∂ x

�

�

∂ v
∂ x +ε

∂ w
∂ x

�

+
�

∂ u
∂ y +ε

∂ q
∂ y

��

∂ v
∂ y +ε

∂ w
∂ y

��

1+ (u +εq )2+ (v +εw )2

!�

�

�

�

�

ε=0

=

4
��

∂ q
∂ x

∂ v
∂ x +

∂ q
∂ y

∂ v
∂ y +

∂ u
∂ x

∂ w
∂ x +

∂ u
∂ y

∂ w
∂ y

�

v +
�

∂ u
∂ x

∂ v
∂ x +

∂ u
∂ y

∂ v
∂ y

�

w
�

1+u 2+ v 2
−

4v (2q u +2v w )
�

∂ u
∂ x

∂ v
∂ x +

∂ u
∂ y

∂ v
∂ y

�

(1+u 2+ v 2)2

(B.503)

Finally, compute the variational derivative of
u(−u 2−v 2+1)

1+u 2+v 2 :

(u +εq )
�

−(u +εq )2− (v +εw )2+1
�

(u +εq )2+ (v +εw )2+1
=
ε
�

−3q u 2−q v 2+q −2u v w
�

ε(2q u +2v w ) +1+u 2+ v 2
+

−u 3−u v 2+u

ε(2q u +2v w ) +1+u 2+ v 2
+O

�

ε2
�

(B.504)

Differentiating the above expression with respect to ε yields

d

dε

�

(u +εq )
�

−(u +εq )2− (v +εw )2+1
�

(u +εq )2+ (v +εw )2+1

�

=
−3q u 2−q v 2+q −2u v w

ε(2q u +2v w ) +1+u 2+ v 2
−

�

−u 3−u v 2+u
�

(2q u +2v w )
�

ε(2q u +2v w ) +1+u 2+ v 2
�2 +O (ε) (B.505)

Evaluating at ε= 0 this becomes

d

dε

�

(u +εq )
�

−(u +εq )2− (v +εw )2+1
�

(u +εq )2+ (v +εw )2+1

�

�

�

�

�

�

ε=0

=
−3q u 2−q v 2+q −2u v w

1+u 2+ v 2
−

�

−u 3−u v 2+u
�

(2q u +2v w )

(1+u 2+ v 2)2
(B.506)
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All together this yields,

D G [u , v ]
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∂ 2q
∂ x 2 −

∂ 2q
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∂ x

�

+
�

∂ u
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∂ y

��

−2v
�

�

∂ u
∂ x

�2
+
�

∂ u
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(B.507)

B.5.4.1 An alternate approach

Both analytically and computationally the formulation of the Jacobian in Eq. (B.507) is extremely

inefficient. It takes a lot more algebra than necessary to arrive at that equation by decoupling into

real an imaginary parts from the start. Evaluating this computationally is inefficient since it requires

more FFTs than necessary, unless you take derivatives of u , v and q , w together (which essentially

brings you to the main point of this section). DefineC :R2n →Cn to be the canonical map from the

real numbers to the complex numbers. taking the variational derivative of F yields

d

dε
F [U +εW ]

�

�

�

�

ε=0

=D F [U ]W

= i
�

∂W

∂ t
−V ·∇W

�

−∆W

−
2W ∗∇U ·∇U +4U ∗∇U ·∇W −U (U ∗W +U W ∗)+ (1−U U ∗)W

1+U U ∗

+
(2U ∗∇U ·∇U +U (1−U U ∗)) (U ∗W +U W ∗)

(1+U U ∗)2
(B.508)

184



B.5. SUPPLEMENTARY CALCULATIONS FOR NUMERICAL METHODS APPENDIX B.

The computation has been skipped since it essentially repeats the calculations of the previous

sections. It is both intuitively obvious and a fact readily verified that

D G [u , v ]





q

w



=C −1



D F



C









u

v











C









q

w











 (B.509)

It is via this equation that the Jacobian has actually been evaluated numerically. In reality, this is just

a consequence of the chain rule since G =C −1 ◦ F ◦C .
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APPENDIX

C

PERTURBED CONSERVATION OF
ENERGY

While this thesis utilizes singular perturbation theory to derive the modulation equation, another

quite popular method exists based on the conserved quantities of the underlying equation. As can

be seen in this section, the calculation under this method is quite straightforward. The method is

limited, however, by knowledge of the conserved quantities. In order to determine the evolution

of the higher order parameters, the conserved quantities must be supplemented by balance law

conditions. Such balance laws are either ad hoc or must be derived by asymptotic expansions of

the conserved quantities and balancing higher order corrections. In such cases, the computational

advantages of this method are often negated. For those who wish to pursue this approach, a simple

example, based on determining the evolution of the energy in the presence of a perturbation is

provided here.
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C.1. DERIVATION IN SPHERICAL VARIABLES APPENDIX C.

C.1 Derivation in Spherical Variables

C.1.1 Problem Formulation

The challenge is to determine the time evolution of the energy for a perturbed version of the Landau-

Lifshitz equation. This calculation will be done in two ways. First, based on the spherical variables.

Since these are closely related to the Hamiltonian structure of the Landau-Lifshitz equation, the

derivation is considerably simplified.

∂ Θ

∂ t
= F [Θ,Φ] +PΘ (C.1)

sin (Θ)
∂ Φ

∂ t
=G [Θ,Φ] +PΦ (C.2)

where PΘ and PΦ represent arbitrary additional terms to the Landau-Lifshitz equation (damping,

Oersted field etc. ) and F and G are defined by

F [Θ,Φ] =
∇·

�

sin2 (Θ)∇Φ
�

sin (Θ)
(C.3)

G [Θ,Φ] =
1

2
sin (2Θ)

�

|∇Φ|2+1
�

−∇2Θ (C.4)

respectively. The definitions F and G will make the subsequent calculation much easier. The energy

equation is given by

E [Θ,Φ] =
1

2

∫

R2

�

|∇Θ|2+ sin2 (Θ)
�

1+ |∇Φ|2
��

d x (C.5)
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C.1. DERIVATION IN SPHERICAL VARIABLES APPENDIX C.

C.1.2 Calculation

Let’s differentiate the energy with respect to time

d

d t
E [Θ,Φ] =

d

d t

1

2

∫

R2

�

|∇Θ|2+ sin2 (Θ)
�

1+ |∇Φ|2
��

d x (C.6)

move time derivative inside derivative

=
�
��
1

2

∫

R2

�

�2∇Θ ·∇
�

∂ Θ

∂ t

�

+ �2 sin (Θ)cos (Θ)
�

1+ |∇Φ|2
� ∂ Θ

∂ t
+ sin2 (Θ)�2∇Φ ·∇

�

∂ Φ

∂ t

��

d x (C.7)

integrate by parts so that it is not necessary to differentiate Eqs. (1.9)& (1.10) (C.8)

(Green’s first identity, boundary terms vanish)

=

∫

R2

�

−∇2Θ

�

∂ Θ

∂ t

�

+ sin (Θ)cos (Θ)
�

1+ |∇Φ|2
� ∂ Θ

∂ t
−∇·

�

sin2 (Θ)∇Φ
�

�

∂ Φ

∂ t

��

d x (C.9)

At this point things should start to look familiar

d

d t
E [Θ,Φ] =

∫

R2

�

�

−∇2Θ+ sin (Θ)cos (Θ)
�

1+ |∇Φ|2
��

︸ ︷︷ ︸

G [Θ,Φ]

∂ Θ

∂ t
−∇·

�

sin2 (Θ)∇Φ
�

�

∂ Φ

∂ t

��

d x (C.10)

=

∫

R2

�

G [Θ,Φ]
∂ Θ

∂ t
−
∇·

�

sin2 (Θ)∇Φ
�

sinΘ
︸ ︷︷ ︸

F [Θ,Φ]

�

sinΘ
∂ Φ

∂ t

��

d x (C.11)

Substituting based on Eqs. (C.1)- (C.2)

d

d t
E [Θ,Φ] =

∫

R2

(G [Θ,Φ] (F [Θ,Φ] +PΘ)− F [Θ,Φ] (G [Θ,Φ] +PΦ))d x (C.12)

=

∫

R2

�

((((
(((G [Θ,Φ]F [Θ,Φ] +G [Θ,Φ]PΘ −(((((

((F [Θ,Φ]G [Θ,Φ]− F [Θ,Φ]PΦ
�

d x (C.13)
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C.2. DERIVATION IN STEREOGRAPHIC VARIABLES APPENDIX C.

Hence, the time evolution for the energy is governed by

dE
d t
=

∫

R2

(G [Θ,Φ]PΘ − F [Θ,Φ]PΦ)d x (C.14)

C.2 Derivation in Stereographic Variables

While the preceding section is certainly sufficient for determining the modulation equations, often

a problem is presented in variables that are not so closely linked with the Hamiltonian structure.

In such cases, the calculation may be some what less straightforward. The procedure remains

essentially the same no matter how the equation is presented. This section provides the derivation

in stereographic variables to provide an example. Additionally, knowing the evolution of the energy

based on the stereographic formulation may be of some use in future work, and the transformation

of Eq (C.14) to stereographic variables is a nontrivial exercise.

C.2.1 Problem Formulation

The Landau-Lifshitz equation in stereographic variables

ı
∂ w

∂ t
=N [w ] +Pw (C.15)

where

N [w ] =∇2w −
2w ∗∇w ·∇w +w (1−w ∗w )

1+w ∗w
(C.16)

and Pw is some arbitrary additional term to the Landau-Lifshitz equation in stereographic form.

The energy is given by

E [w ] = 2

∫

∇w ∗ ·∇w +w ∗w

1+w ∗w
d x (C.17)
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C.2. DERIVATION IN STEREOGRAPHIC VARIABLES APPENDIX C.

C.2.2 Calculation

dE
d t
= 2

∫

¨

d
d t (∇w ∗ ·∇w +w ∗w ) (1+w ∗w )2− (∇w ∗ ·∇w +w ∗w ) d

d t (1+w ∗w )2

(1+w ∗w )4

«

d x (C.18)

= 2

∫ �
�

∇
�

∂ w ∗

∂ t

�

·∇w +∇w ∗ ·∇
�

∂ w
∂ t

�

+w ∗ ∂ w
∂ t +

∂ w ∗

∂ t w
�

��
���

�
(1+w ∗w )2−2 (∇w ∗ ·∇w +w ∗w )���

��(1+w ∗w )
�

w ∗ ∂ w
∂ t +

∂ w ∗

∂ t w
�

(1+w ∗w )�4

�

d x (C.19)

= 2

∫ �

∇w

(1+w ∗w )2
·∇

�

∂ w ∗

∂ t

�

+
∇w ∗

(1+w ∗w )2
·∇

�

∂ w

∂ t

�

+
w ∗ ∂ w

∂ t +
∂ w ∗

∂ t w

(1+w ∗w )2
+
−2 (∇w ∗ ·∇w +w ∗w )

�

w ∗ ∂ w
∂ t +

∂ w ∗

∂ t w
�

(1+w ∗w )3

�

d x (C.20)

integrate the first two terms by parts, boundary terms will vanish...

= 2

∫ �

−∇·
� ∇w

(1+w ∗w )2

��

∂ w ∗

∂ t

�

−∇·
� ∇w ∗

(1+w ∗w )2

��

∂ w

∂ t

�

+
w ∗ ∂ w

∂ t +
∂ w ∗

∂ t w

(1+w ∗w )2
+
−2 (∇w ∗ ·∇w +w ∗w )

�

w ∗ ∂ w
∂ t +

∂ w ∗

∂ t w
�

(1+w ∗w )3

�

d x (C.21)

The first of these derivative terms expands to become

−∇·
� ∇w

(1+w ∗w )2

��

∂ w ∗

∂ t

�

=
∂ w ∗

∂ t

�

−
∇2w

(1+w ∗w )2
+

2∇w · (w ∗∇w +∇w ∗w )
(1+w ∗w )3

�

. (C.22)
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C.2. DERIVATION IN STEREOGRAPHIC VARIABLES APPENDIX C.

The other term expands in a similar fashion. Substituting based on these results and collecting like

terms in ∂ w ∗

∂ t and ∂ w
∂ t ,

dE
d t
= 2

∫

1

(1+w ∗w )2

§�

∂ w ∗

∂ t

��

−∇2w +w +
2w ∗∇w ·∇w +2w∇w ·∇w ∗

(1+w ∗w )
+
−2 (∇w ∗ ·∇w +w ∗w ) (w )

(1+w ∗w )

�

+
�

∂ w

∂ t

��

−∇2w ∗+w ∗+
2w∇w ∗ ·∇w ∗+2w ∗∇w ∗ ·∇w

(1+w ∗w )
+
−2 (∇w ∗ ·∇w +w ∗w ) (w ∗)

(1+w ∗w )

�ª

d x (C.23)

= 2

∫

1

(1+w ∗w )2

�

�

∂ w ∗

∂ t

�

�

−∇2w +
w (1+w ∗w )
(1+w ∗w )

+
2w ∗∇w ·∇w

(1+w ∗w )
+
���

���
�2w∇w ∗ ·∇w

(1+w ∗w )
−
���

���
�2w∇w ∗ ·∇w

(1+w ∗w )
−

2w ∗w 2

(1+w ∗w )

�

+
�

∂ w

∂ t

�

�

−∇2w ∗+
w ∗(1+w ∗w )
(1+w ∗w )

+
2w∇w ∗ ·∇w ∗

(1+w ∗w )
+
��
���

���2w ∗∇w ∗ ·∇w

(1+w ∗w )
−
��
���

���2w ∗∇w ∗ ·∇w

(1+w ∗w )
−

2(w ∗)2w

(1+w ∗w )

��

d x (C.24)

= 2

∫

1

(1+w ∗w )2

�

�

∂ w ∗

∂ t

�

�

−∇2w +
w

(1+w ∗w )
+
��

��
��w ∗w 2

(1+w ∗w )
+

2w ∗∇w ·∇w

(1+w ∗w )
− �2w ∗w 2

(1+w ∗w )

�

+
�

∂ w

∂ t

�

�

−∇2w ∗+
w ∗

(1+w ∗w )
+
��

�
��
�(w ∗)2w

(1+w ∗w )
+

2w∇w ∗ ·∇w ∗

(1+w ∗w )
− �

2(w ∗)2w

(1+w ∗w )

��

d x (C.25)

= 2

∫

1

(1+w ∗w )2

�

�

∂ w ∗

∂ t

�

�

−∇2w +
2w ∗∇w ·∇w +w −w ∗w 2

(1+w ∗w )

�

+
�

∂ w

∂ t

�

�

−∇2w ∗+
2w∇w ∗ ·∇w ∗+w ∗− (w ∗)2w

(1+w ∗w )

��

d x (C.26)

= 2

∫

1

(1+w ∗w )2

§�

∂ w ∗

∂ t

��

−∇2w +
2w ∗∇w ·∇w +w (1−w ∗w )

(1+w ∗w )

�

+
�

∂ w

∂ t

��

−∇2w ∗+
2w∇w ∗ ·∇w ∗+w ∗(1−w ∗w )

(1+w ∗w )

�ª

d x (C.27)

= 2

∫

1

(1+w ∗w )2

§�

∂ w ∗

∂ t

�

(−N [w ]) +
�

∂ w

∂ t

�

(−N [w ∗])
ª

d x (C.28)
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C.2. DERIVATION IN STEREOGRAPHIC VARIABLES APPENDIX C.

From Eq. (C.15), ∂ w
∂ t =−ı (N [w ] +Pw )⇒ ∂ w ∗

∂ t = ı
�

(N [w ])∗+P ∗w
�

= ı
�

N [w ∗] +P ∗w
�

. Substituting into

the previous relation,

dE
d t
= 2

∫

1

(1+w ∗w )2
�

ı
�

N [w ∗] +P ∗w
�

(−N [w ])− ı (N [w ] +Pw ) (−N [w ∗])
	

d x (C.29)

= 2ı

∫

1

(1+w ∗w )2
�

−(((((
(

N [w ]N [w ∗]−N [w ]P ∗w +(((
(((N [w ]N [w ∗] +N [w ∗]Pw

	

d x (C.30)

= 2ı

∫

1

(1+w ∗w )2
�

N [w ∗]Pw −N [w ]P ∗w
	

d x (C.31)

=−4Im

�∫

N [w ∗]Pw

(1+w ∗w )2
d x

�

(C.32)

where Im (z ) denotes the imaginary part of z . So that’s my final answer

dE
d t
=−4Im

�∫

N [w ∗]Pw

(1+w ∗w )2
d x

�

(C.33)

This calculation has some bearing on the numerical computation of droplets. The methods

outlined in Chapter 5 attempt to calculate the droplet in stereographic form. If a constraint based

on the energy is to be employed, it is reasonable to additionally assume that the energy is periodic

with period T

∫ T

0

dE
d t

d t = E (T )−E (0) = 0=−4

∫ T

0

Im

�∫

N [w ∗]Pw

(1+w ∗w )2
d x

�

d t . (C.34)

Hence, 0=
∫ T

0
Im

�

∫ N [w ∗]Pw
(1+w ∗w )2 d x

�

d t could be the additional constraint for the droplet system. Such

a constraint would make it possible to solve for the necessary forcing while keeping the overall

energy of the computed family of droplets constant.
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