
ABSTRACT

DALEO, NOAH S. Algorithms and Applications in Numerical Elimination Theory. (Under
the direction of Jonathan D. Hauenstein.)

Numerical algebraic geometry provides tools for solving systems of polynomial equa-

tions and manipulating their solution sets. The focus of this dissertation is the application

of these tools to problems arising in elimination theory. In Chapter 1, we introduce

numerical elimination theory and provide motivation for the methods that follow. In

Chapter 2, we provide prerequisite background material from classical and numerical

algebraic geometry. In Chapter 3, we establish an effective numerical test for determining

whether or not a polynomial image of an algebraic set is arithmetically Cohen-Macaulay.

Using the results of this test, we compute several properties describing the structure of the

image. In Chapter 4, we focus on discriminant loci, which arise as elimination problems

when one wants to compute special points in a parameter space. Finally, in Chapter 5,

we focus on the special case in which a polynomial image of an algebraic set is a secant

variety. As we introduce new algorithms throughout this work, we demonstrate their

effectiveness on examples and applications. These applications include an investigation

of the vacuum space in the Minimal Supersymmetric Standard Model, computing the

critical coupling strength for synchronization in the Kuramoto model, and testing the

validity of a model in lattice field theory.
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Chapter 1

Introduction

1.1 An illustrative example

A classical object in algebraic geometry is the twisted cubic curve, which can be written as

X =
{

(x, y, z) ∈ C3 : F (x, y, z) = 0
}

where F (x, y, z) =

y − x2
z − x3

 (1.1)

or as

X = π(C) where π : C→ C3 is given by π(t) = (t, t2, t3), (1.2)

where the closure is in the standard complex topology. We say that (1.1) is an impliciti-

zation of X and (1.2) is a parameterization of X.

Both of these constructions are useful in different ways. From (1.1), we can quickly

see that the points in X describe the intersection of two surfaces in C3. Specifically, the

set of points (x, y, z) satisfying y − x2 = 0 forms a surface, and the set of points (x, y, z)

1
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Figure 1.1: The twisted cubic curve X.

satisfying z − x3 = 0 forms a surface; we see that X is the intersection of these two sets.

On the other hand, from (1.2), we can quickly see that every point on C maps to a point

on X. In this way, our two characterizations of X highlight different features of the set.

A natural question is the following:

Given a parameterization, can we compute an implicitization?

For the twisted cubic curve, we may start with (1.2) and write

X = π(C) where π : C→ C3 is given by π(t) = (t, t2, t3)

= {(x, y, z) : x = t, y = t2, z = t3}.

We then eliminate t from the system:


x− t

y − t2

z − t3

 = 0 −→ F (x, y, z) =

y − x2
z − x3

 .

2



Thus, elimination of variables is an important goal if we want to translate from one

construction to the other. Since an implicitization indicates certain structure of the set,

this elimination problem is an important one. If our equations were linear rather than

polynomial, then we could eliminate variables using Gaussian elimination. Instead, we

must use other methods.

1.2 Symbolic elimination theory

For the elimination problem posed in Section 1.1, the equation x = t made it easy for us

to eliminate t. Here, we consider an example in which a more sophisticated method is

preferred.

Let π : C2 → C2 be the map π(x, y) = (x2, y3), and let

A =
{

(x, y) ∈ C2 : x2 + y2 − 1 = 0
}

and X = π(A).

Although A ⊂ C2 and X ⊂ C2, we can plot points in R2 to gain some intuition of the

problem. Figure 1.2 depicts the real-valued points of A and X.

Note that we have an implicitization for A, but we only have a parameterization of X.

This will be a common theme. To find an implicitization for X, we want to eliminate x

and y from a system of polynomial equations. Our problem is of the form:


z1 − x2

z2 − y3

x2 + y2 − 1

 = 0 −→ F (z1, z2) =?

One method for solving problems of this form utilizes the multivariate resultant,

3
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Figure 1.2: Real-valued points of A and X = π(A).

introduced by Macaulay in 1902 [Mac02]. At roughly the same time, Gordan introduced

what would eventually become known as Gröbner bases, but he did not have an algorithm

for computing one at the time [Gor99]. It was Buchberger’s 1965 Ph.D. thesis [Buc65] that

introduced such an algorithm. The resultant and Gröbner basis methods are powerful

tools for eliminating variables from systems of polynomials. For our problem above,

Buchberger’s algorithm computes a set of polynomials A = {f1, . . . , fr} such that the

polynomial we seek is

F =


fα1

...

fαs


where fα1 , . . . , fαs are precisely the elements of A that are polynomials in x, y [Has06].

Modern software implementations based on these methods include Maple 16 [Map12] and

Macaulay2 [GS]. Using Maple’s EliminationIdeal command, we find

X =
{

(z1, z2) ∈ C2 : F (z1, z2) = 0
}

where F (z1, z2) = z31 − 3z21 + z22 + 3z1 − 1.

4



This polynomial F was used earlier when plotting X in Figure 1.2.

In addition to Buchberger’s algorithm, more recent algorithms have been developed

for computing Gröbner bases, including strategies utilizing numerical methods (e.g.,

[Kon04]) and parallel processing (e.g., [Amr96]). In particular, [Fau99] uses sparse linear

algebra methods to facilitate simultaneous reduction of several polynomials instead of

the traditional polynomial reduction found in Buchberger’s algorithm. A more recent

method [Fau02] detects superfluous critical pairs to reduce the amount of time spent on

S-polynomials that reduce to zero. An overview of some recent developments can be

found in [EF14].

1.3 Numerical elimination theory

In practice, elimination problems may arise that are difficult or impractical to solve

symbolically. For example, in Section 3.5.2 we will define polynomial systems G : C16 →

C16 and π : C16 → C25. As we will see, a problem arising in theoretical physics is the

study of the set

X = π(V ) where V = {x ∈ C16 : G(x) = 0}. (1.3)

Although an implicitization of X exists, an attempt at computing one using Macaulay2

was unsuccessful after running for 4 weeks. Problems such as these motivate us to develop

new strategies for studying X, whether by computing an implicitization or through other

methods.

In 1996, Sommese and Wampler coined the term numerical algebraic geometry (NAG)

to describe a new research area focused on the numerical solution of systems of polynomial

equations [Som96]. Simply put, NAG is to algebraic geometry what numerical linear

5



algebra is to linear algebra. Recent developments in this area provide a new set of tools to

apply to elimination problems. Using information from the fiber set V , we may be able to

perform operations on the image X [HS10]. For example, this allows one to test points for

membership in an image [HS13]. Applications of numerical elimination theory include the

moduli space of vacua [Hau13b], the computational complexity of matrix multiplication

[Hau13a], tensor decomposition [Hau14], and computing algebraic matroids [Ros14].

The goal of this work is to make advances in the numerical study of sets arising

in elimination problems. In some cases this may lead to computing the corresponding

polynomial system as we did in Sections 1.1 and 1.2. However, in most cases, such as

the set X in (1.3), we will forgo the determination of polynomials and instead study

the set geometrically. In doing so, we will avoid difficult Gröbner basis and resultant

computations.

6



Chapter 2

Background

2.1 Preliminaries from algebraic geometry

Let C denote the field of complex numbers and let C[x1, . . . , xn] denote the ring of poly-

nomials in x1, . . . , xn with coefficients in C. We may write a polynomial f ∈ C[x1, . . . , xn]

in multi-index notation as

f =
∑
α∈A

cαx
α,

where A is a finite set of n-tuples of nonnegative integers, cα = cα1...αn , xα = xα1
1 . . . xαn

n ,

and |α| =
∑n

i=1 αi. The degree of f is deg f = {max |α| : α ∈ A, cα 6= 0}. If cα = 0

whenever |α| < deg f , then f is said to be homogeneous.

We will often work with a system F =


f1
...

fm

 such that f1, . . . , fm ∈ C[x1, . . . , xn].

Given such a system F , we define the algebraic set

V (F ) = {x ∈ Cn : F (x) = 0},

7



where 0 is understood to represent the n-vector of all zeros. The system F is said to

define the algebraic set V (F ). In Section 2.3, we will see that an algebraic set is either

reducible or irreducible. Some authors refer to any algebraic set V (F ) as a variety, but

other authors only use this term to refer to an irreducible algebraic set. To avoid this

ambiguity, we will typically avoid the term variety. We define the ideal generated by F as

I(F ) =

{
m∑
1

hifi : h1, . . . , hm ∈ C[x1, . . . , xn]

}
.

Algebraic sets and ideals are fundamental objects for working with sets of polyno-

mials geometrically and algebraically, respectively. Every algebraic set X ⊆ Cn has a

corresponding system of polynomials F , but we may investigate X geometrically without

explicitly knowing F . Similarly, from Hilbert’s Basis Theorem, we know that every ideal

in C[x1, . . . , xn] is generated by a finite number of polynomials, but we may discuss an

ideal I whose defining equations F are not known.

In some cases, we may wish to work in n-dimensional projective space, which is denoted

Pn and defined as follows. Consider the equivalence relation ∼ on the nonzero points of

Cn+1 such that x ∼ y if and only if there is a nonzero element λ ∈ C such that x = λy.

Then we define Pn = (Cn+1 − {0}) / ∼. In projective space we work with homogeneous

polynomials, because these satisfy the property f(λx) = λdeg ff(x). If g ∈ C[x1, . . . , xn] is

not homogeneous, then we can always construct a corresponding homogeneous polynomial

in C[x0, x1, . . . , xn] by multiplying each monomial of g with the appropriate power of x0.

We refer to V (F ) ⊆ Pn as a projective algebraic set. When the context is clear, we will

refer to both V (G) ⊆ Cn and V (F ) ⊆ Pn simply as algebraic sets.

8



2.2 The general form of problems

In this section, we formalize the type of problem introduced in Chapter 1. Given two

known polynomial maps

G : Cm → Ck and π : Cm → Cn,

our object of interest is

X = π(V (G)) ⊂ Cn,

where the closure is in the usual complex topology. From the following theorem, we

know that π(V (G)) is a constructible set, meaning that it is constructed by starting with

algebraic sets and performing a finite sequence of the operations of union, intersection,

and complementation.

Theorem 2.2.1 (Chevalley’s Theorem [Bat13]) Let f : A→ B be an algebraic map

between algebraic sets and let Z ⊂ A be constructible. Then f(Z) is a constructible set.

We make use of the following lemma.

Lemma 2.2.2 (Lemma 16.2 of [Bat13]) Let W ⊂ CN be a constructible set. Then

the closure W of W in the usual topology is an algebraic set.

Thus, X = π(V (G)) is an algebraic set. In other words, the expression π(V (G)) has the

same meaning whether we consider the closure to be in the usual topology or the Zariski

topology on Cn.

9



Another way to view X is to consider

H(x, y) =

y − π(x)

G(x)


where x = (x1, . . . , xm) and y = (y1, . . . , yn). If we define the projection map γ : Cm+n →

Cn so that γ(x, y) = y, then we have

X = γ(V (H)). (2.1)

Thus, we want to eliminate the fiber variables x to acquire a set only in the image

coordinates y. Algebraically, X = V (J) where J is the elimination ideal J = I(H)∩C[y].

The primary goal of classical elimination theory is to symbolically compute the generators

of J , because they describe and define X. In numerical elimination theory, our goals

include computing properties describing X and J , locating points of interest in X, and

testing points for membership in X.

2.3 Irreducible decomposition

2.3.1 Reducible and irreducible algebraic sets

An algebraic set X is said to be reducible if there exist algebraic sets X1, X2 such that

X = X1 ∪ X2 with X 6= X1 and X 6= X2. If X is not reducible, then it is said to be

irreducible. Irreducible algebraic sets can be thought of as the building blocks of all

algebraic sets in the following sense.

Theorem 2.3.1 (e.g., Theorem 4 of [Cox07]) Let X ∈ Cn be an algebraic set. Then

10



there exists a unique decomposition

X = X1 ∪ · · · ∪Xk

such that each Xi is an irreducible algebraic set and Xi 6⊂ Xj for all i 6= j. This

decomposition is unique up to reordering.

2.3.2 Dimension, degree, and multiplicity

Let X ⊂ Cn be an algebraic set. A point p∗ ∈ X is called a manifold point of X if it has

a neighborhood U ⊂ X for which there exists a mapping φ sending U one-to-one and

onto a neighborhood of the origin in Ck. The integer k is called the local dimension of X

at p∗, which we denote dimp∗ X. The set of manifold points of X is dense in X [Bat13].

For an arbitrary point x∗ ∈ X, we define dimx∗ X to be the maximum local dimension of

the irreducible components containing x∗. Finally, we define the dimension of X as

dimX = max{dimx∗ X : x∗ ∈ X}.

If all of the irreducible components of X are the same dimension, then we say X is

pure-dimensional.

With respect to polynomials, we are used to the notion that 0 has multiplicity 1

with respect to f(x) = x and multiplicity 2 with respect to f(x) = x2. However, with

respect to algebraic sets, we note that V (x) = V (x2). Therefore, multiplicity is a piece of

information missing from algebraic sets. However, given X = V (f), we may consider the

corresponding scheme f−1(0), which contains points as well as multiplicity information.

We say that the multiplicity of X with respect to f is the multiplicity of a smooth point

11



of X when considered as a solution to f(x) = 0.

As we will see, a common construction in numerical algebraic geometry is the intersec-

tion of an algebraic set with a generic linear space of carefully chosen dimension. We may

refer to this process as slicing or taking linear sections. Let X ⊂ Cn be an algebraic set

of dimension d, and let L be a generic linear space of codimension d. That is, L = V (P )

where P : Cn → Cd is a generic linear map; in practice, we may define P by a randomly

generated matrix. Then the intersection X ∩ L consists of a finite number of points, and

we define the degree of X as degX = |X ∩L|. This leads us to the notion of a witness set.

2.4 Numerical algebraic geometry

2.4.1 Witness sets and sampling

The fundamental data structure for representing an irreducible algebraic set in numerical

algebraic geometry, a witness set, is based on linear sections of complimentary dimension.

Let F ∈ C[x1, . . . , xn] be a system of polynomials and let V ⊂ Pn be an irreducible

algebraic set of dimension d which is an irreducible component of V (F ). Then, a witness

set for V is a triple {F,L,W} where L ⊂ Pn is a general linear space of codimension

d and W = V ∩ L ⊂ Pn is a witness point set consisting of deg V points. We refer the

reader to [SW05] for more details about witness sets.

Example 2.4.1 Consider the following curve in P3:

C = {(s3, s2t, st2, t3) : (s, t) ∈ P1},
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which is the algebraic set defined by

F (w, x, y, z) =


xz − y2

yw − z2

xw − yz

 = 0.

This is the projectivization of the twisted cubic curve discussed in Section 1.1; note that

we can recover the formulation of (1.1) by setting w = 1 and simplifying. To construct a

witness set for C, consider L = V (
√

2w +
√
−3x+

√
5y +

√
−7z). Then a witness set for

C is {F,L,W} where W := C ∩ L consists of the 3 points

W = {(0.152026i, 1,−0.533711i,−0.284847),

(1,−0.079630i,−0.185091, 0.430222i),

(−0.962272i, 1,−0.987262i,−0.974687)}.

We note that L was chosen here for readability and the points of W have been rounded

to 6 digits. In typical use, a generic linear space L would be used.

One key operation in numerical algebraic geometry, called sampling, is the ability to

use a witness set {f, L,W} for an algebraic set V to produce a collection of arbitrarily

close numerical approximations of arbitrarily many smooth points on V . In particular,

suppose that x ∈ W = V ∩L and let L∗ ⊂ Pn be a linear space of codimension d. Consider

the path z(t) : [0, 1]→ V defined by z(1) = x and z(t) ∈ V ∩ (t · L+ (1− t) · L∗). Except

on a Zariski closed proper subset of choices for L∗, z(t) is a smooth point of V for all

t ∈ [0, 1], i.e., z(0) is also a smooth point of V . We note the smooth points of V are

(path) connected since V is irreducible. Linear sections and witness sets are also used
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in membership testing; more details regarding these algorithms can be found in [Som01;

SW05].

Suppose we are given a problem of the form introduced in Section 2.2 in which we

wish to study irreducible components of X = π(V (G)) ⊂ Cn for polynomial systems

G : Cm → Ck and π : Cm → Cn. In this case, the defining equations for X may not be

readily available; indeed, determining them is the primary goal of classical elimination

theory. Since the construction of a witness set requires defining equations, we instead

utilize an analogous data structure known as a pseudowitness set [HS10; HS13]. First, let

H : Cm+n → Ck+n and γ : Cm+n → Cn be the maps defined in (2.1) so that X = γ(V (H)).

Let V ⊂ V (H) ⊂ Cm+n be an irreducible algebraic set so that Y := γ(V ) ⊂ X is

irreducible. Let d = dimV and ` = dimY , which we will show how to compute in Section

2.4.2. A pseudowitness set for Y is a set {H, γ,L,W} where L ⊂ Cm+n is the linear

space constructed as follows and W = V ∩ L ⊂ Cm+n. Let L1 : Cm+n → C` be the map

defined by L1(x, y) = L(γ(x, y)) where L : Cn → C` is a general linear system, and let

L2 : Cm+n → Cd−` be a general linear system. Then we construct L = V (L1, L2) ⊂ Cm+n.

With this setup, W is a finite set and we have |γ(W )| = deg Y .

2.4.2 Computing a pseudowitness set

Let G : Cm → Ck and π : Cm → Cn be known polynomial maps. We have seen in (2.1)

that an irreducible component Y ⊂ π(V (G)) can be written as an image of a linear

projection γ. Our present goal is to compute a pseudowitness set {H, γ,L,W} for Y as

defined in 2.4.1. The construction of H, γ, and L are straightforward, and this section

will describe how to compute the pseudowitness point set W from G and π. Although an

algorithm can be found in [HS10], in this section we describe an algorithm that relies on
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monodromy loops.

We assume that we already have a witness set for V , which can be computed via a

standard procedure in numerical algebraic geometry, e.g., as implemented in Bertini

[Bat]. We also assume that we know dimY , which can be determined as follows. First, if

the multiplicity of V is greater than 1, then we use isosingular deflation [HW13] to reduce

to a multiplicity 1 case. Let z∗ be a generic point on V . Then with probability one by

Lemma 3 of [HS10],

dimY = dimV − dim null

Jπ(z∗)

JG(z∗)


where dimV is already known from the witness set for V .

Let d = dimV and ` = dimY . Let v∗ be a sufficiently general point in V , which in

practice is accomplished by choosing a witness point. Let y∗ = π(v∗) ∈ Y . Construct

general linear systems L : Cn → C` and L′ : Cm → Cd−` such that L(y∗) = 0 and

L′(v∗) = 0.

We will use monodromy loops to compute the pseudowitness point set W . First, set

W := {v∗}. Each monodromy loop will be performed using two homotopies as follows.

Choose random vectors q∗ ∈ C` and r∗ ∈ Cd−`, and let the point(s) in W be the start

points for the homotopy 

G(x)

y − π(x)

L(y) + (1− t)q∗

L′(x) + (1− t)r∗


= 0

as t ∈ R continuously deforms from 1 to 0. The endpoints of this homotopy will be used

as the start points of the next homotopy.
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Let α ∈ C be a random constant. We perform the homotopy



G(x)

y − π(x)

L(y) + αt
1−t+αt · q

∗

L′(x) + αt
1−t+αt · r

∗


= 0

as t ∈ R continuously deforms from 1 to 0. Next, we update W to include all distinct

endpoints of this homotopy.

The pair of homotopies above comprises one monodromy loop. We repeat these loops

using different random vectors q∗ and r∗ until no new pseudowitness points are found for

several loops.

When W is unchanged for several iterations, our next goal is to use a trace test to

verify that a complete pseudowitness set has been found, i.e., that |π(W )| = deg Y . We

accomplish this with two more homotopies. Choose random vectors q∗ ∈ C` and r∗ ∈ Cd−`.

Let

H1(x, y, t) =



G(x)

y − π(x)

L(y) + (1− t)q∗

L′(x) + (1− t)r∗


= 0 and H2(x, y, t) =



G(x)

y − π(x)

L(y)− (1− t)q∗

L′(x)− (1− t)r∗


= 0.

We use the points in W as start points for both homotopies and track solution paths to

H1 = 0 and H2 = 0 as t continuously deforms from 1 to 0. Let E1 and E2 denote the

endpoints of these homotopies, respectively.

We now consider the sets of points π(W ), π(E1), and π(E2). Since H1 and H2 move the
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linear space parallel to itself, we can reach a conclusion based on how the pseudowitness

points moved. Given corresponding points w ∈ π(W ), e1 ∈ π(E1), and e2 ∈ π(E2), we

want to check whether or not e1+e2
2

= w. For each coordinate, we check
∑

( e1+e2
2
− w)

where the summation is over all points. If this sum is zero for all coordinates, then π(W )

describes a linear slice of Y and we have found a pseudowitness set. Otherwise, there are

still remaining points to be found for W and we perform more monodromy loops until

the trace test is successful.

2.4.3 Homotopy continuation

The key algorithm behind numerical algebraic geometry is homotopy continuation. A full

description of the methods and challenges present in homotopy continuation is outside the

scope of this work, but we give an overview below. The interested reader is encouraged

to see [SW05; Bat13] for more information.

Let x = (x1, . . . , xn) and suppose we are given a system of polynomial equations,

F (x) =


f1(x)

...

fn(x)

 = 0,

for which we want to compute all isolated solutions. We begin by constructing a simpler

start system,

G(x) =


g1(x)

...

gn(x)

 = 0,

whose isolated solutions are known. There are several ways to construct a start system,
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with the key requirement being that the number of isolated solutions is an upper bound

on the number of isolated solutions for F . For example, one may construct G so that its

number of isolated solutions is the Bézout bound, which is
∏n

i=1 di where di is the degree

of fi. One way to accomplish this is with the start system G = (g1, . . . , gn) = 0 where

gi(x) = xdii − 1 for each i.

Next, we consider the homotopy

H(x, t) = (1− t)F (x) + γtG(x) = 0,

where γ is a general complex number. In this setting, we know the solutions of H = 0

when t = 1, and we want to compute the solutions of H = 0 when t = 0. Homotopy

continuation entails numerically tracking solution paths via a predictor-corrector method

as t ∈ R continuously deforms from 1 to 0. In this dissertation, we use the software

implementation in Bertini [Bat], which uses adaptive precision to track paths within a

user-defined tolerance. Since each path can be tracked independently, we make use of

parallel processing in these computations.

2.4.4 Parameter homotopies

In some applications, it is useful to study solution sets corresponding to many points

in the parameter space. Although this can be accomplished through repeated uses of

homotopy continuation, it is inefficient to start over each time. In these situations, we

use a two-phase technique known as a parameter homotopy. We give a brief overview

here, and the reader is directed to [SW05; Bat13] for more details. For simplicity we

describe the method for one parameter P ∈ C, but it is straightforward to generalize this

approach to an arbitrary number of parameters.
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First, in the ab initio phase, we choose a generic complex parameter P = P0 ∈ C and

numerically compute the set of solutions S0 to the system using homotopy continuation

implemented in Bertini. Although solving the system for a general value of P is relatively

costly, we only perform this computation once, and our subsequent computations make

use of these results to significantly reduce the overall effort.

Next, in the parameter homotopy phase, we consider various choices of P ∈ C. For

each value of interest, we use Bertini to numerically track solution paths starting at

the points in S0. These paths are defined by a continuous deformation from P0 to P so

that the endpoints are the solutions we want. Each of these computations is relatively

inexpensive, thereby making it practical to compute the solutions at hundreds of different

choices for P . In particular, we will make use of this technique in Chapter 4 when studying

discriminant loci.
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Chapter 3

Computing properties with

numerical elimination theory

3.1 Introduction

Let X ⊂ Pn be a pure-dimensional algebraic set of dimension d > 0 arising as a polynomial

image of an algebraic set. In this chapter, we introduce strategies for computing properties

of X without requiring the defining ideal I(X). A key aspect of this work is determining

whether or not X is arithmetically Cohen-Macaulay (aCM), which we define in 3.2.1.

We propose a test for deciding if X is aCM given the ability to sample points lying

(approximately) on a general curve section of X. This chapter is largely based on [DH15].

An important fact regarding algebraic sets of dimension at least 2 is that arithmetically

Cohen-Macaulayness is preserved under slicing by a general hyperplane (or hypersurface).

In particular, a pure-dimensional algebraic set X of positive dimension is aCM if and

only if a general curve section of X is aCM. In the case that X is a curve, i.e., dimX = 1,

a numerical test provided in [Hau09] can determine if X is aCM. This test relies upon
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computing Hilbert functions of zero-dimensional schemes defined by intersecting X with

general hypersurfaces of various degrees. Unfortunately, due to the increasingly higher

degree zero-dimensional schemes under consideration, this test becomes impractical for

curves of even moderate degree. Section 3.6.2 presents an example that compares the

approach of [Hau09] with our approach.

If X is arithmetically Cohen-Macaulay (aCM) or if dimX = 1, then one of the

properties we can compute is the Castelnuovo-Mumford regularity of X. Since we are

working over a field of characteristic zero, the Castelnuovo-Mumford regularity is equal to

the maximum degree of the elements in a Gröbner basis for I(X) when working with generic

coordinates in the reverse lexicographic ordering (see [BS87] for more information). Thus,

the Castelnuovo-Mumford regularity provides a measure of complexity for performing

symbolic computations on I(X).

The arithmetic and geometric genus are two invariants of a curve C of particular

interest in computational algebraic geometry. These genera must be equal if C is smooth.

A numerical algebraic geometric procedure for computing the geometric genus is presented

in [Bat11] which was extended in [HS13] to curves which arise as the image of an algebraic

set under a polynomial map. The geometric genus of a general four-bar coupler curve

was verified to be one in [Bat11] with the arithmetic genus of such a curve computed in

Section 3.6.1.

The main result of this chapter is an effective version of a test for arithmetically

Cohen-Macaulayness (Corollary 3.3.3) which immediately yields an algorithm given the

ability to numerically compute Hilbert functions up to a specified degree. The upper

bound on our test is sharp, as demonstrated by the example in Section 3.6.2, which

is also used to compare our new approach with that of [Hau09]. We review Hilbert

functions in Section 3.2.2, and throughout this chapter we explain how they can be used
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to compute certain invariants of an algebraic set. We also describe how to compute

additional information in the special case that the set is a curve.

Even though it is not directly related to deciding arithmetically Cohen-Macaulayness,

we note that a symbolic-numeric approach for computing Hilbert functions and Hilbert

polynomials in local rings is described in [Kro13]. This approach is based on computing

the Macaulay dual space of an ideal at a point that (approximately) lies in the solution

set of the ideal. There are no assumptions related to the point, e.g., multiple components

could pass through the point including embedded components. The practicality of this

approach, especially for high dimensional components, is limited by the stopping criterion

which requires that the Macaulay dual space is computed in degree up to twice the

maximum degree of a “g-corner.”

The rest of this chapter is organized as follows. In Section 3.2 we describe several

properties of algebraic sets and introduce some of the tools we will use. Section 3.3

develops an algorithm for deciding the arithmetically Cohen-Macaulayness of a curve

with Section 3.4 considering the general case. In Section 3.5 we discuss an application to

physics, and in Section 3.6 we discuss other applications.

3.2 Properties and tools

3.2.1 Arithmetically Cohen-Macaulay

A positive dimensional algebraic set X with ideal sheaf IX is said to be arithmetically

Cohen-Macaulay (aCM) if

H i
∗(IX) = 0 for 1 ≤ i ≤ dimX (3.1)
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where H i
∗(IX) denotes the ith cohomology module of IX . Equivalently, X is aCM if and

only if its coordinate ring has Krull dimension equal to its depth [Mig98] (in this case,

the coordinate ring is called a Cohen-Macaulay ring). All zero-dimensional algebraic sets

are aCM, and a consequence of the above definition is that all aCM algebraic sets must

be pure-dimensional.

Example 3.2.1 Consider the curves in P3:

C = {(s3, s2t, st2, t3) : (s, t) ∈ P1} and Q = {(s4, s3t, st3, t4) : (s, t) ∈ P1}

with corresponding ideals

I(C) = 〈xz−y2, yw−z2, xw−yz〉 and I(Q) = 〈xw−yz, x2z−y3, xz2−y2w, z3−yw2〉.

C is the twisted cubic curve which has been discussed in Section 1.1 and Example 2.4.1,

while Q is a smooth rational quartic curve. The twisted cubic curve is well-known to

be aCM, while Example 1.7 of [Gor06] shows that Q is not. We verify this statement

using the definition by comparing the Krull dimension and depth. First, we see that

both coordinate rings have Krull dimension 2. Computations using the Depth package of

Macaulay2 [GS] find that the depth of C is 2 and the depth of Q is 1.

The cohomology characterization presented in (3.1) imposes conditions on the Hilbert

function, which is defined next. For a curve, Corollary 3.3.3 presents an effective test

of arithmetically Cohen-Macaulayness that can be performed using numerical algebraic

geometry.
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3.2.2 Hilbert functions, genus, and regularity

Let X ⊂ Pn be an algebraic set with corresponding homogeneous ideal I ⊂ C[x0, . . . , xn].

Let C[x0, . . . , xn]t denote the vector space of homogeneous polynomials of degree t, which

has dimension
(
n+t
t

)
, and let It = I ∩C[x0, . . . , xn]t. The Hilbert function of X is defined

as

HFX(t) =

 0 if t < 0(
n+t
t

)
− dim It otherwise.

(3.2)

The initial degree of X is the smallest t such that dim It > 0. If X = Pn, that is,

I = 〈0〉, then the initial degree is defined as −∞. If X = ∅, that is, I = 〈1〉, then the

initial degree is 0. For all other X ⊂ Pn, the initial degree is a positive integer.

Since HFX(t) = 0 for t < 0, we will often express HFX via the list HFX(0), HFX(1),

HFX(2), . . . . The generating function of HFX is called the Hilbert series of X, namely

HSX(t) =
∞∑
j=0

HFX(j) · tj.

One key operation on Hilbert functions is taking differences, e.g., the first difference

of HFX is

∆HFX(t) = HFX(t)−HFX(t− 1) for all t ∈ Z.

By (3.2), we know ∆HFX(t) = 0 for t < 0 and ∆HFX(0) = 1. One can also iterate this

process. For example, the kth difference of HFX is

∆kHFX(t) = ∆ ◦ · · · ◦∆︸ ︷︷ ︸
k times

HFX(t).

The Hilbert function of X becomes polynomial in t for t� 0. That is, there exists
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a polynomial HPX , called the Hilbert polynomial of X, such that HFX(t) = HPX(t)

for all t� 0. The Hilbert polynomial has rational coefficients with highest degree term

degX
(dimX)!

· tdimX . When X is a curve, the Hilbert polynomial of X is of the form

HPX(t) = degX · t+ (1− gX) (3.3)

where gX is the arithmetic genus of X.

Example 3.2.2 Consider the quartic curve Q ⊂ P3 from Ex. 3.2.1. From the generators

of I(Q), we compute via Macaulay2 [GS] that

HFQ = 1, 4, 9, 13, 17, 21, 25, HSQ(t) = (1+2t+2t2−t3)/(1−t)2, and HPQ(t) = 4t+1.

From HFQ, the initial degree of Q is 2. From HPQ and (3.3), the arithmetic genus of Q

is gQ = 0.

We will discuss two types of regularity for X. The index of regularity of X is

the smallest integer ρX such that HFX(t) = HPX(t) for all t ≥ ρX . Let IX be the

sheafification of the ideal I corresponding to X. The Castelnuovo-Mumford regularity of

X is

regX = min{m : H i(IX(m− i)) = 0 for all i > 0}.

If X is aCM, then ρX , regX, and dimX are related as follows.

Proposition 3.2.3 Suppose that X ⊂ Pn is an aCM scheme.

1. regX = ρX + dimX + 1.

2. Let L ⊂ Pn be a general linear space with codimL ≤ dimX and Z = X ∩ L. Then

regZ = regX and ρZ = ρX + codimL.
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Proof. See, for example, Remark 2.5a of [Cio09] for Item 1. Item 2 follows immediately

by combining pg. 30 of [Mig98] and Item 1. �

For aCM algebraic sets, this proposition shows that the index of regularity increases

under intersection with a general hyperplane. Thus, the index of regularity can be negative

so that the Hilbert polynomial has roots at negative integers. Sections 3.5.2 and 5.4.3

present examples of this.

The following will be used in Section 3.3 for computing regC where C ⊂ Pn is a curve,

that is, a union of irreducible one-dimensional algebraic sets.

Proposition 3.2.4 Let C ⊂ Pn be a curve and H ⊂ Pn be a general hyperplane. If

W = C ∩H, then

regC = max{ρC + 1, ρW + 1} = min{t ≥ ρW + 1 | ∆HFC(t) = HFW (ρW )}. (3.4)

Proof. By Lemma 2.6 of [Cio09], regC = max{ρC + 1, regW}. Since dimW = 0, W is

aCM yielding regW = ρW + 1 by Item 1 of Prop. 3.2.3 and HFW (ρW ) = degC. The last

equality thus follows from § 3 of [Cio09]. �

For example, using the notation of Prop. 3.2.4, if C is also aCM, then ρW = ρC + 1 so

that

regW = regC = ρW + 1 = ρC + 2. (3.5)

Example 3.2.5 From HFQ and HPQ presented in Ex. 3.2.2, we have ρQ = 2. If

W = Q ∩ H for a general hyperplane H ⊂ P3, then one can use [Gri14] to compute

HFW = 1, 3, 4, 4, . . . and ρW = 2. Hence, (3.4) yields regQ = 3 and, since (3.5) does not

hold, this again shows Q is not aCM.
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3.2.3 Interpolation

The process by which we compute Hilbert functions relies on standard interpolation theory.

To demonstrate, suppose an algebraic set X ⊂ C3 has coordinates x, y, z and we want

to compute HFX(2). Using the method outlined in Section 2.4.1, we compute sample

points (x1, y1, z1), . . . , (xr, yr, zr) lying approximately on X. In the context of elimination

problems, this may involve sampling points in the fiber using a witness set and then

mapping the points into the image.

We note from (3.2) that computing the Hilbert function in degree 2 only requires

computing dim I2. That is, we want to compute the dimension of the vector space of

degree 2 polynomials p satisfying p(xi, yi, zi) = 0 for all sample points. Such a polynomial

must be in the form

p(x, y, z) = a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz + a7x+ a8y + a9z + a10

for some a1, . . . , a10. Thus, we formulate the nullspace problem


x21 y21 z21 · · · 1

...
...

x2r y2r z2r · · · 1



a1
...

a10

 =


0

...

0

 ,

which can be solved numerically, e.g., using MATLAB [Mat14]. In general, this nullspace

problem requires
(
n+t
t

)
coefficients ai when computing HFX(t) for X ⊂ Cn. Although the

size of these nullspace problems grows combinatorially, we find applications for which the

aCM method that follows only requires HFX(t) for relatively small t.
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3.3 Computations for a curve

The following considers curves with Section 3.4 exploring higher-dimensional cases.

3.3.1 Computing invariants

Let C ⊂ Pn be a curve, that is, C is a union of one-dimensional irreducible algebraic

sets. The defining equations for C may be unknown, but we assume that we have either a

witness set or a pseudowitness set for each irreducible component of C, thereby providing

the ability to sample points from each irreducible component of C. We also need the

ability to compute HFC(t) as described in Section 3.2.3.

For a curve C ⊂ Pn, six invariants of interest are the Castelnuovo-Mumford regularity,

index of regularity, arithmetic genus, geometric genus, Hilbert polynomial, and Hilbert

series. The geometric genus can be computed using [Bat11] from a witness set for C. The

following uses the ability to compute HFC(t) via the method of Section 3.2.3 given HFW

and ρW , both of which can be computed via [Gri14], to compute the other five invariants.

3.3.1.1 Castelnuovo-Mumford regularity

The Castelnuovo-Mumford regularity regC is derived from (3.4) by using the method of

Section 3.2.3 to compute enough terms of HFC .
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3.3.1.2 Hilbert polynomial, arithmetic genus, and index of regularity

If regC > ρW + 1, then (3.4) also yields ρC = regC − 1. Thus, HFC(ρC) = HPC(ρC) so

that (3.3) yields

gC = degC · ρC −HFC(ρC) + 1 = HPW (ρW ) · ρC −HFC(ρC) + 1 (3.6)

HPC(t) = degC · t+ (1− gC) = HPW (ρW ) · t+ (HFC(ρC)−HPW (ρW ) · ρC). (3.7)

If regC ≤ ρW + 1, then (3.4) yields ρC ≤ ρW . Since HFC(ρW ) = HPC(ρW ), (3.3)

yields

gC = degC · ρW −HFC(ρW ) + 1 = HPW (ρW ) · ρW −HFC(ρW ) + 1 (3.8)

HPC(t) = degC · t+ (1− gC) = HPW (ρW ) · t+ (HFC(ρW )−HPW (ρW ) · ρW ). (3.9)

In this case, ρC = min{−1 ≤ t ≤ ρW | HFC(t) = HPC(t)}.

3.3.1.3 Hilbert series

By adapting p. 28 of [Mig98] to this situation, we have

HSC(t) =

∑ρC+1
j=0 ∆2HFC(j) · tj

(1− t)2
. (3.10)

Example 3.3.1 Consider the degree 8 curve in P3 derived from Ex. 1.7 of [Gor06]:

C = {(s8, s7t, st7, t8) | (s, t) ∈ P1}.
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We can verify that the corresponding ideal is

I(C) = 〈xw − yz, x6z − y7, x5z2 − y6w, x4z3 − y5w2, x3z4 − y4w3, x2z5 − y3w4, xz6 − y2w5, z7 − yw6〉.

Let H be a general hyperplane and W = C ∩H. Using [Gri14], we find that

HFW = 1, 3, 5, 7, 8, 8 and ρW = 4.

Using interpolation, we find that

HFC = 1, 4, 9, 16, 25, 36, 49, 57, ∆HFC = 1, 3, 5, 7, 9, 11, 13, 8, ∆2HFC = 1, 2, 2, 2, 2, 2, 2,−5.

Hence, regC = 7 and ρC = regC − 1 = 6. Additionally, (3.6), (3.7), and (3.10) yield

gC = 8 · 6− 49 + 1 = 0, HPC(t) = 8t+ 1, HSC(t) =
1 + 2t + 2t2 + 2t3 + 2t4 + 2t5 + 2t6 − 5t7

(1− t)2
.

The geometric genus of a curve is the arithmetic genus of the desingularization of the

curve. Since the curve in Ex. 3.3.1 is smooth, its geometric genus is equal to its arithmetic

genus, namely 0. Section 3.6.1 compares these genera on a nonsmooth curve.

3.3.2 Testing arithmetically Cohen-Macaulayness of a curve

The following tests the arithmetically Cohen-Macaulayness of a curve.

Theorem 3.3.2 Let C ⊂ Pn be a curve, H ⊂ Pn be a general hyperplane, and W = C∩H.

Then, C is aCM if and only if ∆HFC(t) = HFW (t) for all t ≥ 0.

Proof. Since C is a curve, C is aCM if and only if H1
∗ (IC) = 0. By Prop. 1.3.4 of [Mig98],

this is equivalent to J = I(C) + 〈`〉 being a saturated ideal in R := C[x0, . . . , xn] where
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H = V(`). That is, C is aCM if and only if J = I(W ). Since J ⊂ I(W ), this is equivalent

to HFR/J(t) = HFW (t) for all t ≥ 0. The result now follows since HFR/J(t) = ∆HFC(t)

because C is a curve. �

The following is a so-called effective version of Theorem 3.3.2.

Corollary 3.3.3 Let C ⊂ Pn be a curve, H ⊂ Pn be a general hyperplane, and W = C∩H.

Then, C is aCM if and only if ∆HFC(t) = HFW (t) for all 1 ≤ t ≤ ρW + 1.

Proof. We know ∆HFC(0) = HFW (0) = 1 and HFW (ρW ) = HFW (ρW + t) for all t ≥ 0.

If ∆HFC(ρW + 1) = HFW (ρW + 1) = HFW (ρW ), then ρC + 1 ≤ ρW + 1 so that ρC ≤ ρW .

Hence, HPC(ρW + t) = HFC(ρW + t) for all t ≥ 0 which yields

∆HFC(ρW + t) = HFW (ρW + t) = HFW (ρW ) for all t ≥ 1.

In particular, we have shown that ∆HFC(t) = HFW (t) for 1 ≤ t ≤ ρW + 1 is equivalent

to ∆HFC(t) = HFW (t) for all t ≥ 0. Therefore, the statement holds by Theorem 3.3.2. �

Section 3.6.2 provides an example that is not aCM such that ∆HFC(t) = HFW (t) for

all 1 ≤ t ≤ ρW . Hence, the effective upper bound of ρW + 1 provided in Corollary 3.3.3 is

sharp.

Corollary 3.3.3 immediately yields an algorithm for determining whether or not

a curve C is arithmetically Cohen-Macaulay. As discussed in Section 3.2.3, [Gri14]

can be used to compute both HFW and ρW , where W is a general hyperplane section

of C, upon fixing a general affine patch. Additionally, interpolation can be used to

compute HFC(1), . . . , HFC(ρW + 1) with HFC(0) = 1. Thus, C is aCM if and only if

HFC(t)−HFC(t− 1) = HFW (t) for t = 1, . . . , ρW + 1.
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Example 3.3.4 Recall the curves C and Q in P3 from Ex. 3.2.1. Let H be a general

hyperplane, WC = C ∩H, and WQ = Q ∩H. For the twisted cubic curve C, we compute

HFWC
= 1, 3, 3, ρWC

= 1, HFC = 1, 4, 7, ∆HFC = 1, 3, 3.

Since ∆HFC(t) = HFWC
(t) for 1 ≤ t ≤ ρWC

+ 1 = 2, Corollary 3.3.3 shows that C is

aCM.

Similarly, for the quartic curve Q, we compute

HFWQ
= 1, 3, 4, 4, ρWQ

= 2, HFQ = 1, 4, 9, 13, ∆HFQ = 1, 3, 5, 4.

Since ∆HFQ(2) = 5 6= 4 = HFWQ
(2), Corollary 3.3.3 shows that Q is not aCM.

3.4 Higher-dimensional cases

3.4.1 Testing arithmetically Cohen-Macaulayness

The key to testing the arithmetically Cohen-Macaulayness of an algebraic set of dimension

at least 2 is to test the arithmetically Cohen-Macaulayness of a general curve section.

Theorem 3.4.1 Let X ⊂ Pn be a pure-dimensional algebraic set of dimension d > 1 and

L ⊂ Pn be a general linear space of codimension d− 1. Then, X is aCM if and only if

the curve X ∩ L is aCM.

Proof. If X is aCM, then Theorem 1.3.3 of [Mig98] yields that X ∩ L is also aCM.

Conversely, if the projective curve X ∩ L is aCM, then Prop. 2.1 of [HU93] provides that

X must also be aCM. �
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The combination of Theorem 3.4.1 and Corollary 3.3.3 yields a test for deciding the

arithmetically Cohen-Macaulayness of a pure-dimensional algebraic set of dimension at

least 2 by determining the arithmetically Cohen-Macaulayness of a general curve section.

Additional information about this general curve section can be computed via Section 3.3.1,

such as its arithmetic genus.

Example 3.4.2 Let X ⊂ P4 be the degree 4 surface defined by the ideal

I = 〈x0x1 − x22, x0x3 − x24〉 ⊂ C[x0, x1, x2, x3, x4].

Let L and H be general hyperplanes with C = X ∩ L and W = C ∩H. Since

HFW = 1, 3, 4, 4, ρW = 2, HFC = 1, 4, 8, 12, ∆HFC = 1, 3, 4, 4,

Corollary 3.3.3 yields that C is aCM so that X is aCM by Theorem 3.4.1.

If X ⊂ Pn is aCM of dimension d > 1 and W ⊂ Pn is a general linear section of compli-

mentary dimension, then the index of regularity of X and Castelnuovo-Mumford regularity

of X can be computed directly from the index of regularity of W via Prop. 3.2.3. The

remainder of this section describes how to compute the Hilbert function, Hilbert series,

and Hilbert polynomial of X given the Hilbert function and index of regularity of W .

3.4.1.1 Hilbert function

Using Corollary 1.3.8(d) of [Mig98] applied d times, we have

∆dHFX(t) = HFW (t) for all t ≥ 0.

33



In particular, unrolling this formula provides

HFX(t) =
t∑

j1=0

j1∑
j2=0

· · ·
jd−1∑
jd=0

HFW (jd). (3.11)

3.4.1.2 Hilbert series

By adapting pg. 28 of [Mig98] to this situation, we have

HSX(t) =

∑ρW
j=0 ∆d+1HFX(j) · tj

(1− t)d+1
=

∑ρW
j=0 ∆HFW (j) · tj

(1− t)d+1
. (3.12)

3.4.1.3 Hilbert polynomial

Since HPX(t) is a polynomial of degree d with rational coefficients and HPX(ρX + j) =

HFX(ρX + j) for all j ≥ 0, standard polynomial interpolation computes HPX .

Example 3.4.3 Let X ⊂ P4 be the surface from Ex. 3.4.2, which is aCM. From Prop.

3.2.3 and (3.5),

ρC = 1, ρX = 0, regX = 3.

Following (3.11) and (3.12) with data from Ex. 3.4.2, we have

HFX(t) = 1, 5, 13, 25, 41, 61, . . . and HFS(t) =
1 + 2t+ t2

(1− t)3
.

Interpolation yields HPX(t) = 2t2 + 2t+ 1.
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3.4.2 Minimal generators

Let I ⊂ C[x0, . . . , xn] be a homogeneous ideal. For each j ≥ 0, there exists dj(I) ≥ 0

such that every minimal generating set consisting of homogeneous polynomials for I

consists of exactly dj(I) polynomials of degree j. For an algebraic set X ⊂ Pn, dj(X)

is defined as dj(I) where I is the corresponding homogeneous ideal. In fact, dj(X) = 0

for j > regX. When X is arithmetically Cohen-Macaulay, the following provides an

approach to compute dj(X).

Proposition 3.4.4 Let X ⊂ Pn be an arithmetically Cohen-Macaulay scheme of dimen-

sion d > 0, L ⊂ Pn be a general linear space of codimension 0 < ` ≤ d, and Z = X∩L ⊂ L.

Then, dj(X) = dj(Z) for all j. In particular, the initial degree of X is the initial degree

of Z.

Proof. By treating Z as a subscheme of L, the result follows from Theorem 1.3.6 of

[Mig98]. �

Example 3.4.5 Let X ⊂ P4 be the aCM surface introduced in Ex. 3.4.2. By looking at

the generating set of the ideal, one sees d2(X) = 2 with dj(X) = 0 for all other j. Thus,

by Prop. 3.4.4, we have d2(W ) = 2 with dj(W ) = 0 for all other j. This can be verified

directly by performing computations on W as follows. We have d0(W ) = 0 and, since

regW = 3, dj(W ) = 0 for j ≥ 4. Since HFW (1) =
(
2+1
1

)
and HFW (2) =

(
2+2
2

)
− 2, we

know d1(W ) = 0 and d2(W ) = 2. Using linear algebra, we find that this two dimensional

space of quadratic polynomials generates a six dimensional space of cubic polynomials.

Since HFW (3) =
(
2+3
3

)
− 6, d3(W ) = 0.

35



3.5 An application to physics

3.5.1 Statement of the problem

An open question in theoretical physics is the nature of the vacuum space in the Min-

imal Supersymmetric Standard Model (MSSM) [Gra06]. This gives rise to a family of

problems that can be written as polynomial images of algebraic sets. In [Gra06], many of

these problems were studied symbolically using Macaulay2, but some were found to be

impractical. In these sections, we discuss an ongoing investigation into these image sets

using numerical elimination theory.

These elimination problems arise due to a superpotential in the MSSM containing

operators which represent different particle interactions. In our work we consider 9 such

operators, each of which can either be present or absent from the model. Thus, we

consider 29 = 512 different scenarios. An open question is whether certain phenomenology

in physics correlates to certain geometry in these image sets. To investigate this, we

want to compute properties in as many scenarios as possible. Specifically, we are given

512 polynomial maps G1, . . . , G512, where each Gi maps from C16 → C16. We are given

one map π : C16 → C25, and our objects of interest are the image sets π(V (Gi)) for

i = 1, . . . , 512. Although many of these sets were successfully analyzed in [Gra06], we

perform our numerical computations for all 512 problems to demonstrate the effectiveness

of our approach.

3.5.2 A close look at one system

In this section, we take a close look at one scenario. In Section 3.5.3, we summarize the

results from all 512 problems.
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Let G : C16 → C16 be defined by

g1 = 6x11x4 + 2x13x4 − 6x10x5 − 2x12x5 − 4x5x8 + 4x4x9

g2 = 6x10x3 + 2x12x3 − 3x14x6 − x15x6 − 4x16x6 + 4x3x8 + 3x2x10 + 3x2x12 + 8x2x8

+2x1x10 + 5x1x12 + 10x1x8

g3 = 10x1x5 + 8x2x5 + 4x3x5

g4 = 6x11x3 + 2x13x3 − 3x14x7 − x15x7 − 4x16x7 + 2x1x11 + 5x1x13 + 10x1x9 + 3x2x11

+3x2x13 + 8x2x9 + 4x3x9

g5 = 10x1x4 + 8x2x4 + 4x3x4

g6 = 2x1x5 + 3x2x5 + 6x3x5

g7 = 2x1x4 + 3x2x4 + 6x3x4

g8 = 5x1x5 + 3x2x5 + 2x3x5

g9 = 5x1x4 + 3x2x4 + 2x3x4

g10 = 2x5x10 + 5x5x12 + 10x5x8 − 2x4x11 − 5x4x13 − 10x4x9

g11 = 3x5x10 + 3x5x12 + 8x5x8 − 3x4x11 − 3x4x13 − 8x4x9

g12 = 3x14x5 + x15x5 + 4x16x5

g13 = 2x14 + 6x2
14 + 3x15 + 4x14x15 + 8x2

15 + 10x16 + 16x14x16 + x15x16 + 3x2
16 − 3x5x6 + 3x4x7

g14 = 3x14x4 + x15x4 + 4x16x4

g15 = 3x14 + 2x2
14 + 6x15 + 16x14x15 + 3x2

15 + 2x16 + x14x16 + 4x15x16 + 4x2
16 − x5x6 + x4x7

g16 = 10x14 + 8x2
14 + 2x15 + x14x15 + 2x2

15 + 4x16 + 6x14x16 + 8x15x16 + 27x2
16 − 4x5x6 + 4x4x7

37



and let π : C16 → C25 be

π1 = x14 π14 = x1x11x12 − x1x10x13

π2 = x15 π15 = x2x11x12 − x2x10x13

π3 = x16 π16 = x3x11x12 − x3x10x13

π4 = x7x8 − x6x9 π17 = x1x5x8 − x1x4x9

π5 = x7x10 − x6x11 π18 = x2x5x8 − x2x4x9

π6 = x7x12 − x6x13 π19 = x3x5x8 − x3x4x9

π7 = x5x6 − x4x7 π20 = x1x5x10 − x1x4x11

π8 = x1x9x10 − x1x8x11 π21 = x2x5x10 − x2x4x11

π9 = x2x9x10 − x2x8x11 π22 = x3x5x10 − x3x4x11

π10 = x3x9x10 − x3x8x11 π23 = x1x5x12 − x1x4x13

π11 = x1x9x12 − x1x8x13 π24 = x2x5x12 − x2x4x13

π12 = x2x9x12 − x2x8x13 π25 = x3x5x12 − x3x4x13

π13 = x3x9x12 − x3x8x13

Consider the algebraic set A = π(V (G)) ⊂ C25. An attempt using Macaulay2 to

symbolically perform the elimination was unsuccessful after running for 4 weeks. Using

the approach presented in [Hau13b] and Bertini, we find that A has 11 irreducible

components, namely Y1, . . . , Y8 each of dimension 5 and degree 6, and 3 three-dimensional

linear spaces. We let Y1, . . . , Y4 denote the self-conjugate ones whereas Y6 and Y8 are

conjugate to Y5 and Y7, respectively. For j = 1, . . . , 8, let Xj ⊂ P25 be the closure of the

image of Yj under the map C25 ↪→ P25 defined by x→ (1, x).

We first investigate the arithmetically Cohen-Macaulayness of each Xj . After selecting

a random linear space L ⊂ P25 of codimension 4 and a random hyperplane H ⊂ P25, we
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compute the following for each Cj = Xj ∩ L and Wj = Cj ∩H:

HFWj
= 1, 5, 6, 6, HFCj

= 1, 6, 12, 18, ∆HFCj
= 1, 5, 6, 6.

Thus, Corollary 3.3.3 and Theorem 3.4.1 yield Cj and Xj are aCM for each j = 1, . . . , 8.

In particular, regXj = regCj = regWj = 3, ρCj
= 1, ρXj

= −3, and (3.8) yields gCj
= 1.

Using Prop. 3.4.4, we can describe the minimal generators of Xj via Wj. For k >

regXj = 3, we know dk(Xj) = 0. By treating Wj ⊂ L ∩H, HFWj
(1) =

(
20+1
1

)
− 5 = 16

implies that d1(Xj) = d1(Wj) = 16. By additionally restricting to this 16 dimensional

linear space, we know d2(Xj) = d2(Wj) = 9 since HFWj
(2) =

(
4+2
2

)
− 9 = 6. Moreover,

since these quadratics generate a 29 dimensional space of cubics with HFWj
(3) =

(
4+3
3

)
−

29 = 6, d3(Xj) = d3(Wj) = 0. Therefore, each Xj is minimally generated over C by 16

linear and 9 quadratic polynomials with

HPCj
(t) = 6t HSCj

(t) = (1 + 4t+ t2)/(1− t)2

HFXj
= 1, 10, 46, 146, 371, . . . HSXj

(t) = (1 + 4t+ t2)/(1− t)6

HPXj
(t) = 1/20 · t5 + 1/2 · t4 + 23/12 · t3 + 7/2 · t2 + 91/30 · t+ 1

= 3·t2+12·t+10
60

∏3
j=1(t+ j).

Next, we investigate the R-irreducible components X5 ∪X6 and X7 ∪X8. Since

HFWj∪Wj+1
= 1, 9, 12, 12, HFCj∪Cj+1

= 1, 10, 24, 36, ∆HFCj∪Cj+1
= 1, 9, 14, 12

for j = 5 and j = 7, X5 ∪X6 and X7 ∪X8 are not aCM.

Finally, we test the arithmetically Cohen-Macaulayness of X = X1 ∪ · · · ∪ X8 by

considering C = C1 ∪ · · · ∪ C8 and W = W1 ∪ · · · ∪W8. Since HFW (1) = 11 6= 13 =
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∆HFC(1), X is not aCM.

3.5.3 Summary of results

For each of the 512 scenarios, we performed a numerical irreducible decomposition of the

image set, with the exception of 42 scenarios for which we find V (G) = ∅. Altogether, we

found 2730 irreducible components. For each component, we computed the dimension,

degree, Hilbert function, Hilbert polynomial, and Hilbert series. The dimensions ranged

from 0 to 10, and the degrees ranged from 1 to 56.

We have also begun analyzing additional scenarios which consider different choices of

particle interactions. In a preliminary investigation of 256 such problems, we found 484

irreducible components and computed the same properties mentioned above. In these

cases, the dimensions range from 0 to 13 and the degrees ranged from 1 to 1872.

As of the time of this writing, we are investigating other variations of the model while

these results are interpreted for physical significance.

3.6 Other applications

3.6.1 The coupler curve of a planar four-bar linkage

Since the curve in Ex. 3.3.1 was smooth, its arithmetic genus and geometric genus are

equal. Here, we investigate a nonsmooth curve arising in kinematics. In particular, the

coupler curve of a planar four-bar linkage describes the motion allowed by a mechanism

consisting of four hinged bars arranged as a quadrilateral in the plane. The arrangement
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of the mechanism is described by ten parameters (p, p, q, q, s, s, t, t, r, R) ∈ C10. If

a1 = s(z − p), a1 = s(z − p), α1 = (z − p)(z − p) + ss− r,

a2 = t(z − q), a2 = t(z − q), α2 = (z − q)(z − q) + tt−R,

then the coupler curve is the set of points (z, z) ∈ C2 satisfying

∣∣∣∣∣∣∣
a1 α1

a2 α2

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
a1 α1

a2 α2

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
a1 a1

a2 a2

∣∣∣∣∣∣∣
2

= 0. (3.13)

By fixing random values for the parameters and homogenizing (3.13), we will treat a

general coupler curve C as a projective algebraic set in P2. The degree of C is 6, and the

numerical algebraic geometry approach of [Bat11] verified that the geometric genus is 1.

Let W = C ∩H where H ⊂ P2 is a random hyperplane. Then

HFW = 1, 2, 3, 4, 5, 6, 6, HFC = 1, 3, 6, 10, 15, 21, 27, ∆HFC = 1, 2, 3, 4, 5, 6, 6

shows that C is aCM by Corollary 3.3.3. In particular, from (3.8) we determine that the

arithmetic genus is gC = 10.

3.6.2 A non-aCM example

Consider the map π : C4 × C4 × C4 × C4 → C16 defined by

(s, t,u,v) 7→ sk`tij + uikvj` for i, j, k, ` = 1, 2.
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Let Y = π(C4 × C4 × C4 × C4) ⊂ C16. Our object of interest is the projectivization of

Y , which we will denote by X = P(Y ) ⊂ P15. Using π, we compute dimX = 13. After

selecting a random linear space L ⊂ P15 of codimension 12 and random hyperplane

H ⊂ P15, consider the curve C = X ∩ L and witness point set W = C ∩ H. We use

Bertini to compute W and a pseudowitness set [HS10] for C which yields degX = 28.

Interpolation and [Gri14] produces

HFW = 1, 3, 6, 10, 15, 21, 28, 28

HFC = 1, 4, 10, 20, 35, 56, 84, 120

∆HFC = 1, 3, 6, 10, 15, 21, 28, 36.

In particular, ρW = 6 with ∆HFC(7) = 36 6= 28 = HFW (7) which yields that C is not

aCM. Therefore, by Theorem 3.4.1, X is not aCM.

For this non-aCM example, the terms of HFC computed while testing C for arithmeti-

cally Cohen-Macaulayness are not enough to determine ρC . Since regC > ρW + 1, we use

(3.4) to compute regC with ρC = regC − 1. The additional terms of HFC needed are

HFC = 1, 4, 10, 20, 35, 56, 84, 120, 165, 196, 224, ∆HFC = 1, 3, 6, 10, 15, 21, 28, 36, 45, 31, 28

showing that regC = 10 with ρC = 9. Using (3.6), the arithmetic genus of C is gC = 57

with

HPC(t) = 28t− 56

HSC(t) = (1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 − 14t9 − 3t10)/(1− t)2.

For comparison, consider Algorithm 2.4 of [Hau09] for numerically testing the arith-
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metically Cohen-Macaulayness of C. This test requires an a priori bound on regC. One

could use (3.4) to compute regC exactly. However, this computation provides enough

data needed to use Corollary 3.3.3 to decide the arithmetically Cohen-Macaulayness of

C. Alternatively, one could bound regC, for example, by using [Gru83] to conclude that

regC ≤ 28 + 2 − 3 = 27. In any event, if r ≥ regC is the selected bound, Algorithm

2.4 of [Hau09] requires computing HFC(r − 1). Additionally, Algorithm 2.4 of [Hau09]

also requires computing HFC∩F (r − 1) where F is a general form of degree at most r − 1.

Using r = 27 from [Gru83], one at least needs to compute HFC(26) and HFC∩F (26) where

F is a general form of degree 26, that is, C ∩ F is a zero-dimensional scheme of degree

28 · 26 = 728. Two advantages of using Corollary 3.3.3 are that the zero-dimensional

scheme under consideration arises as a general hyperplane section of C rather than a

general hypersurface section of C of possibly high degree and that HFC(t) is only needed

up to ρW + 1 with ρW + 1 ≤ regC ≤ r.
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Chapter 4

Investigating discriminant loci

4.1 Introduction

Consider the following polynomial equation in one variable x depending on parameters a,

b, and c:

f(x; a, b, c) = ax2 + bx+ c = 0.

For a generic choice of (a, b, c) ∈ C3, this equation has 2 distinct complex solutions.

However, for special parameter choices (a, b, c) ∈ C3, the equation has 0 or 1 complex

solution. For example, (a, b, c) = (1,−2, 1) results in f(x; a, b, c) = (x− 1)2, which has a

double root at x = 1.

Continuing with the above example, we consider the system

F (x; a, b, c) =

 f(x; a, b, c)

d
dx
f(x; a, b, c)

 =

ax2 + bx+ c

2ax+ b

 = 0.

To find special points in the parameter space, we want to eliminate x from F (x; a, b, c) = 0.
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Let π : C4 → C3 be the projection defined by π(x, a, b, c) = (a, b, c). The discriminant

locus or discriminant variety is the set

X = π(V (F )) ⊂ C3.

Thus, we can view the discriminant locus as an image of an algebraic set under a linear

map. Using elimination theory, one can verify that X = V (b2 − 4ac).

More generally, given a polynomial system G(x; a) = 0 in variables x = (x1, . . . , xn)

depending on parameters a = (a1, . . . , a`), we construct the system

F (x; a) =

 G(x; a)

det JxG(x; a)

 = 0, (4.1)

where we write JxG to indicate that the Jacobian of G is taken with respect to x only. Note

that det JxG(x; a) = 0 when JxG is singular, so solutions to F (x; a) = 0 are solutions to

G(x; a) = 0 for which nongeneric behavior occurs. To obtain points in the parameter space

we must eliminate x, so we let π : Cn+` → C` be the projection defined by π(x, a) = a.

The discriminant locus is the set

X = π(V (F )) ⊂ C`.

Although finding defining equations for a discriminant locus is not always practical, we

will show that valuable information can be found numerically.
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4.2 The Kuramoto model

The following covers most of the material found in [Meh15], with Section 4.2.7 presenting

a new algorithm to expand this work.

4.2.1 Description of the model

The Kuramoto model was proposed in 1975 to study synchronization phenomena among

coupled oscillators [Kur75]. The state of an oscillator at time t, denoted θ(t), is called its

phase and is defined to have range [0, 2π). The rate of change dθ
dt

is called the frequency of

the oscillator. Given N coupled oscillators with phases θ1, . . . , θN , the Kuramoto model

describes the behavior of the network via the following system of ordinary differential

equations:

dθi
dt

= ωi −
K

N

N∑
j=1

ai,j sin(θi − θj), for i = 1, ..., N, (4.2)

where K is the coupling strength, Ω = (ω1, . . . , ωN) is the vector of intrinsic natural

frequencies, and ai,j ∈ {0, 1} is the (i, j)th element of the adjacency matrix of the coupling

graph. The natural frequencies ωi indicate how the oscillators would behave in the absence

of any coupling or external forces. We assume that the coupling graph is undirected

and that the natural frequencies satisfy
∑N

i=1 ωi = 0. We will see that an interesting

discriminant locus problem arises which we will approach using numerical algebraic

geometry. As a byproduct of our numerical investigation into this discriminant locus

problem, we will also encounter new results regarding equilibria of the Kuramoto model.

Since the Kuramoto model’s introduction in 1975 [Kur75], it has gained attention

from various scientific communities, including biology, chemistry, physics, and electrical

engineering, due to its applicability. This model has been used to study various phenomena
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including neural networks, chemical oscillators, Josephson junctions and laser arrays,

power grids, particle coordination, spin glass models, and rhythmic applause [Ace05;

Str00; DB14].

A system of coupled phase oscillators is said to be at frequency synchronization if there

is a constant c such that dθi
dt

= c for all i. In this case, system (4.2) yields c = 1
N

∑N
i=1 ωi.

If c 6= 0, then we can rotate the problem by increasing (or decreasing) all of the natural

frequencies ωi by the same amount so that c = 0. Thus, in the discussion that follows, we

investigate synchronization by computing equilibria of the system.

Since we are working with undirected coupling graphs, i.e., ai,j = aj,i for all i, j, we

point out that the equilibria of system (4.2) can also be viewed as the stationary points

of the potential energy landscape drawn by the mean-field XY model with an exogeneous

perturbation term:

V (θ) =
K

2N

N∑
i,j=1

ai,j(1− cos(θi − θj))−
N∑
i=1

ωiθi, (4.3)

whose gradient reproduces the right-hand side of equation (4.2). Hence, in the following,

we use the words equilibria and stationary points interchangeably.

All stationary points of the finite N mean-field XY model (i.e., the Kuramoto model

with homogeneous frequencies) were identified in [Casne]. Building on this, all stationary

points of the one-dimensional nearest-neighbor XY model (i.e., the Kuramoto model with

local coupling) for any given N with either periodic or anti-periodic boundary conditions

have been found [Meh09a; MK11; Sme07; Sme08].

Using these solutions, a class of stationary points of the 2-dimensional nearest-neighbor

XY model [Ner13] and the XY model with long-range interactions [Kas11] were built

and analyzed (see also [Hug13; MS14]). In [Meh09a; MK11; Meh09b; Hug13], all of

47



the stationary points for small lattices were found using algebraic geometry methods.

Bounds on the number of equilibria [BB82] as well as some counterintuitive examples to

plausible conjectures [Ara81] have been reported for the same model in the domain of

power systems. In [Casne] for the finite N mean-field XY model, and in [Meh09a; Ner13]

for the nearest-neighbor XY models, it was shown that there were exponentially many

isolated stationary solutions as N increases.

4.2.2 Algebraic geometry interpretation

We initiate an approach to study the Kuramoto model by using an algebraic geometry

interpretation of the equilibrium conditions. In Section 4.2.3, we will see how a discriminant

locus problem arises.

The equilibrium conditions are dθi
dt

= 0 for all i. This system of equations has an O(2)

freedom, i.e., for any α ∈ (−π, π], the equations are invariant under replacing all θi with

θi + α. This rotational symmetry leads to a continua of equilibria. To remove this O(2)

freedom and therefore result in only finitely many equilibria, we fix one of the angles,

e.g., θN = 0, and remove the equation dθN
dt

= 0 from the system. The remaining system

consists of N − 1 nonlinear equations in N − 1 angles. Since we assume
∑N

i=1 ωi = 0, no

information is lost by removing one equation from the system. In [Meh15], we discuss

other steps for removing the O(2) freedom.

Upon fixing θN = 0 and removing the Nth equation, we have

0 = ωi −
K

N

N∑
j=1

ai,j sin(θi − θj)
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for i = 1, ..., N − 1. We use the identity

sin(x− y) = sin x cos y − sin y cosx

and substitute si = sin θi and ci = cos θi to transform the N−1 equations into polynomials

that are coupled by the Pythagorean identity s2i + c2i = 1. This results in a system of

2(N − 1) polynomials in 2(N − 1) variables:

0 = ωi + K
N

∑N
j=1 ai,j (sicj − sjci)

0 = s2i + c2i − 1
(4.4)

for i = 1, . . . , N − 1.

4.2.3 The critical coupling strength Kc

Provided that the coupling strength K is strong enough, the oscillators will synchronize as

t→∞. In particular, a critical coupling Kc exists at which the number of stable equilibria

switches from 0 to a nonzero value. Given a network size N , natural frequency vector

Ω, and coupling network A, the critical coupling strength Kc is precisely a point on the

discriminant locus of system (4.4). Our goal is to compute Kc using numerical algebraic

geometry. We will begin by introducing a straightforward algorithm for computing upper

and lower bounds on Kc.

In the special case of N →∞ and long-range (all-to-all) coupling ai,j = 1, one may

analytically compute Kc. In particular, in [Str00] it is shown that Kc = 2/(πg(0)) when

the ωi’s are chosen according to a unimodal probability density g(ω) symmetric about a

mean of zero. However, for the finite size Kuramoto model, such an analysis may turn out

to be very difficult. In particular, finding all equilibria, analyzing stability, and computing
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Kc is known to be prohibitively difficult for a finite but large oscillator population.

We will consider N = 3, . . . , 18, and we may denote the critical coupling strength as

Kc(N) to emphasize that it is a function of the network size. Different graphs A will

be studied, but we will fix the natural frequencies Ω = (ω1, . . . , ωN) to be N equidistant

numbers according to ωi = −1 + (2i− 1)/N . In the case of N →∞ this corresponds to

natural frequencies uniformly distributed on [−1, 1] and it is known that Kc = 4/π. We

will study the finite case with these frequencies, and it is straightforward to generalize

our method to other distributions.

In [VM09; VM08; DB11], necessary and sufficient conditions are given for fixed points

to exist for the finite size Kuramoto model for complete and bipartite graphs, and explicit

upper and lower bounds of Kc(N) for these systems were also computed, followed by

providing an algorithm to compute Kc(N). For the complete graph, similar results were

presented in [AR04; MS05], where it was additionally shown that there is exactly one

single stable equilibrium for K > Kc(N). In [Dör13], an analogous result was shown for

acyclic graphs, short cycles, and complete graphs as well as combinations thereof. In the

case of homogeneous natural frequencies networks with sufficiently high nodal degrees, the

only stable fixed point is known to be the phase-synchronized solution [Tay12]. In [OG09],

all of the stable synchronized states were classified for the one-dimensional Kuramoto

model on a ring graph with random natural frequencies in addition to computing a lower

bound on Kc(N) (see also [Erm85; SM88]).

Our algebraic geometry interpretation of the Kuramoto model immediately yields

the following algorithm for numerically computing upper and lower bounds on Kc(N)

given fixed Ω = (ω1, . . . , ωN−1) and A = [aij]. First, we begin with known or esti-

mated bounds B` and Bu. Using parameter homotopies as outlined in Section 2.4.4,

we compute all solutions to polynomial system (4.4) at many K values in the interval
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[B`, Bu]. For each K value tested, we discard nonreal solutions. For each real solution

(s1, . . . , sN−1, c1, . . . , cN−1), we compute the corresponding angles (θ1, . . . , θN) and com-

pute the eigenvalues of the Jacobian of (4.2) evaluated at (θ1, . . . , θN). The index of

the solution is the number of positive eigenvalues, and real solutions with index zero

correspond to stable steady states. The maximum value of K tested such that no stable

solutions exist is a lower bound on Kc, and the minimum value of K tested such that

stable solutions exist is an upper bound on Kc.

4.2.4 Results for the complete graph

We start with the most prominent and well studied case, which is the complete graph,

namely ai,j = 1 for all i, j. We perform the algorithm of Section 4.2.3 for N = 3, . . . , 18

with [B`, Bu] = [1, 2]. Figure 4.1 summarizes the number of real-valued solutions to the

polynomial system (4.4).
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Figure 4.1: Number of equilibria for the case of equidistant natural frequencies on the
complete graph at 1 ≤ K ≤ 2.
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Once the real solutions are found, we turn our attention to determining which ones are

stable. Via Jacobian analysis we find that there is exactly one stable steady state solution

for N = 3, . . . , 18 at each K value tested, with the exception of small values of K which

result in no real solutions. This result is consistent with theoretic findings for the complete

graph [AR04; MS05; DB11; VM08]. Next, for each N we use the results of our stability

analysis to determine numerical upper and lower bounds on Kc(N). These results are

presented in Figure 4.2. We verify that these bounds for Kc(N) are consistent with the

known explicit bounds from Corollary 6.7 of [DB14]. For N ∈ {3, 4}, our computed lower

bound is less than the explicit lower bound due to the coarse resolution of tested numeric

values for Kc(N).
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Figure 4.2: Bounds for Kc(N) in the case of equidistant natural frequencies on the
complete graph. Known explicit bounds from Corollary 6.7 of [DB14] are shown for
comparison.

As mentioned earlier, our stability analysis is based on computing the index corre-

sponding to each real solution. Figure 4.3 shows a histogram of these values for the
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case K = 100. In this case, we use a large coupling strength to demonstrate a greater

number of equilibria. We observe that when j is small enough relative to N , the number

0 5 10 15
10

0

10
1

10
2

10
3

10
4

10
5

index

n
u

m
b

e
r 

o
f 

e
q

u
ili

b
ri
a

 

 

N=18

N=17

N=16

N=15

N=14

N=13

N=12

N=11

N=10

N=9

N=8

N=7

N=6

N=5

N=4

N=3

Figure 4.3: Number of equilibria with given index for equidistant natural frequencies
and a complete graph with K = 100.

of real solutions with index j is exactly
(
N
j

)
. In particular, for 3 ≤ N ≤ 4 this behavior

occurs for j ≤ 1 and, for 5 ≤ N ≤ 18, this behavior occurs for j ≤ d2
5
(N − 1)e. Based

on these results, we conjecture that this phenomenon occurs in general: for equidistant

natural frequencies, if 0≤j�N and K � 0, then the number of equilibria with index j

is expected to be
(
N
j

)
. This conjecture can be used when N may be too large to compute

all solutions. For example, we expect 75,287,520 real equilibria of index 5 for N = 100.

4.2.5 Results for cyclic graphs

Although our investigation initially focused on the complete graph being the most well

studied case, we also performed a preliminary analysis of the coupling arrangement defined
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by an undirected cyclic graph. Cyclic graphs are known for having multi-stable equilibria

[DB14] and entirely unstable equilibrium landscapes [Ara81], and therefore exhibit quite

distinct behavior from acyclic or complete graphs [Dör13; Wil06; Erm85].

For N = 10, we used the same equidistant natural frequencies mentioned earlier with

Figure 4.4 showing the number of equilibria and the number of stable equilibria at each

integer K = 0, . . . , 100. For some values of K, the system possesses only unstable equilibria.
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Figure 4.4: Number of equilibria and number of stable equilibria for a cyclic coupling
arrangement when N = 10.

In particular, when K is 13, 14, or 15, there are 76, 164, and 260 equilibria, respectively,

all of which are unstable. Since the critical points of the potential (4.3) correspond to

power flow in a transmission network, an interesting technological implication of these

results is that there are power demands which can be met only with unstable equilibria.

We find one stable equilibria at K = 16 and conclude 15 ≤ Kc(10) ≤ 16. Figure 4.4 also

indicates multistability for some values of K, with at most three stable equilibria for each

investigated sample. These results are in contrast to the complete graph case, in which
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exactly one stable equilibria exists whenever the system has real-valued solutions.

Next, we take a closer look at the geometric configuration of angles occurring at the

stable equilibria shown in Figure 4.4. For relatively small K such as K = 16, 17, 18, the

configuration of angles at stable equilibria shows no discernible structure. For K = 35

there are two stable equilibria, with one exhibiting phase sync, i.e., angles clustered around

0, and one exhibiting a splay state, i.e., angles approximately uniformly distributed on

[0, 2π). For the splay state, the θi decrease on [0, 2π).

For each K = 36, . . . , 100 there are three stable equilibria, with each case consisting of

one phase sync and two splay states. In one of these splay states θ1, . . . , θ9 are arranged in

increasing order on [0, 2π), and in the other θ9, . . . , θ1 are arranged in decreasing order on

[0, 2π). In Figure 4.5, we depict the three stable equilibria at K = 100. As K increases,

the steady state phase sync gradually becomes more tightly clustered, with the angle range

decreasing from ∼ 0.9432 for K = 35 to ∼ 0.3256 for K = 100. This is in accordance

with the asymptotic result that exact phase sync is a critical point of the Kuramoto

potential (4.3) as K →∞ [DB14].
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Figure 4.5: Configuration of θ1, . . . , θ10 for the three stable equilibria occurring at K = 100
for a cyclic graph with N = 10.
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4.2.6 Results for random graphs

We now turn our attention to random coupling arrangements. In these computations,

we choose each ai,j as 0 or 1 according to a pre-determined probability P while setting

aj,i = ai,j. In other words, [ai,j] is the adjacency matrix of a symmetric Erdös-Rényi

random graph with coupling probability P , where we restrict our attention to undirected,

connected graphs. For these numerical experiments, we use the same equidistant natural

frequencies discussed earlier.

We fix N = 10 and investigate how Kc(N) depends on the density of the graph. For

each coupling probability P = 0.25, 0.375, . . . , 0.875, we generated 100 random graphs.

For each graph, we computed equilibria and determine stability at the following values of

K: for P = 0.25 we use K = 1, . . . , 20; for P = 0.375 we use K = 1, . . . , 15; for P = 0.5

we use K = 1, . . . , 10; and for each P = 0.625, 0.75, 0.875, we use K = 1, . . . , 5. In all

cases, we find a value of K such that at least one stable equilibrium occurs at K while

no stable equilibria occur at K − 1, thereby allowing us to estimate bounds on Kc(10).

Figure 4.6 shows these results sorted according to the number of cycles in the graph.

For undirected and connected graphs, a theoretic lower bound and a conjectured

theoretic upper bound are [DB14; Dör13]

N ·max
i

{
|ωi|
degi

}
≤ Kc(N) ≤ N · ‖BTL†ω‖∞,

where degi =
∑

j aij is the degree of node i, B is the oriented incidence matrix, and L is

the network Laplacian matrix. These bounds are shown in Figure 4.6 for comparison. We

verified that our 600 individual results as well as the averages shown are consistent with

these theoretic bounds and validate their accuracy. Figure 4.6 indicates that the numerical
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upper bound is tighter than the theoretic bound on average, while the numerical lower

bound tends to be weaker. Since the tightness of our computed bounds depends on the

resolution of K values tested, one could check more refined K values to obtain tighter

numerical bounds for particular graphs of interest.
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Figure 4.6: Average bounds on Kc(N) for random graphs according to number of cycles
in the case of N = 10.

4.2.7 Further progress towards Kc

In our discussion of the Kuramoto model thus far, we have not fully utilized the fact

that Kc is a point on a discriminant locus. In this subsection, we present recent progress

towards a more precise method of computing Kc.

Fix Ω = (ω1, . . . , ωN) and A = [aij]. Let G(θ;K) = 0 denote the polynomial system
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(4.4), where θ = (θ1, . . . , θN). The critical point K = Kc is a solution to

F (θ;K) =

 G(θ;K)

det JθG(θ;K)

 = 0 (4.5)

for some θ ∈ RN , where we write JθG to indicate that the Jacobian is taken with respect

to θ only. One approach to find Kc would be to use system (4.5) directly. However, this

would require computing det JθG(θ;K), which quickly becomes difficult as N increases.

Rather than work directly with det JθG(θ;K), we can instead construct a homotopy

to force the system to become rank deficient. In this way, we obtain the desired solution

(θ;Kc) to system (4.5) without having a symbolic expression for the determinant.

First, let α, β ∈ C2(N−1) be random nonzero vectors, and let γ = α · β. Let v∗ = β/γ

so that α · v∗ = 1. Next, we choose a value K∗ ∈ R that is known to be larger than Kc

but such that K∗−Kc is small. We fix a time step ∆t and run iterations of the Kuramoto

model as a dynamical system, where K = K∗ with random starting phases θi. At each

step, we check the rate of change of each θi. After a sufficient number of iterations, we

find every θi has a rate of change below some pre-defined threshold, indicating that dθi
dt

is

numerically zero. We let θ∗ denote the angles of this equilibrium.

Next, we use (θ, v,K; t) = (θ∗, v∗, K∗; 1) as a starting point in the following homotopy:

H(θ, v,K; t) =


G(θ;K)

JθG(θ;K) · v − t · JθG(θ∗;K∗) · v∗

α · v − 1

 = 0. (4.6)

We track t ∈ R from 1 to 0. At t = 0 we have JθG(θ;K) · v = 0 while v 6= 0, and therefore

system (4.5) is satisfied. We arrive at a value of K on the discriminant locus, which is a

58



finite set of points. Provided that we began with a sufficiently close initial guess K∗, the

endpoint of homotopy (4.6) is (θ, v,K; t) = (θ, v,Kc; 0) for some θ and v.

In Figure 4.7 we summarize our results for this method in the case of the complete

graph with equidistant natural frequencies. For comparison, we also show the bounds

that were presented earlier in Figure 4.2. In Figure 4.8, we show zoomed in regions to

illustrate that the new results are within our numerical bounds.
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Figure 4.7: Kc(N) for the complete graph with equidistant natural frequencies.

Performing this algorithm with numerical homotopy tracking in Bertini allows us to

compute Kc to an arbitrary precision. For example, the first 80 digits of Kc(4) are

1.1876643518860658360229782501927358440069407488781514622506477832646215508035377.

Since we know Kc is algebraic, computing its value to a high precision is useful for finding

its minimal polynomial. Using these high precision expressions for Kc with Maple’s

MinimalPolynomial command, we find the following results to be true to at least 1000

digits.
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Proposition 4.2.1 For the complete graph with equidistant natural frequencies as de-

scribed above, the following hold.

1. Kc(3) is a root of

1024− 828x2 + 27x4.

Specifically,

Kc(3) =
1

3

√
2(69− 11

√
33).

2. Kc(4) is a root of

−81− 2380x2 + 1728x4.

Specifically,

Kc(4) =
1

12

√
1

6
(595 + 73

√
73).
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3. Kc(5) is a root of

−603979776− 2267545600x2 − 2583168000x4 + 3785280000x6

−536930000x8 − 2475000x10 + 84375x12.

4. Kc(6) is a root of

−2562890625− 645012112500x2 − 8952920813214x4

+1647652604060x6 − 7193942886921x8 + 6402589992960x10

+333734078464x12 − 60280012800x14 + 1387266048x16.

4.3 An application to lattice field theory

4.3.1 Statement of the problem

In theoretical physics, quantum field theory (QFT) provides a foundation for quantum

mechanical models. Although fields in physics are continuous, lattice field theories use a

discretized view of spacetime. Treating spacetime as a lattice facilitates computations

which may provide valuable insight into QFT. Such formulations often make use of a

function known as a gauge-fixing partition function, denoted ZGF . In recent years, a

theory has been proposed for the stereographic lattice Landau gauge [Sme07; Sme08;

Meh09a]. To test the validity of this theory, we are interested in determining whether

or not it yields a valid function ZGF when working on the 3× 3 lattice. The work that

follows can be found in [Meh14], which includes more technical details regarding the

physics involved. The problem and its formulation are based on [Meh09a].
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In this setting, ZGF counts the number of real stationary points for a system of ODEs.

As we did in Section 4.2, we convert the stationary point conditions into a system of

polynomials depending on parameters. For the proposed theory to be valid, ZGF must

be orbit independent, meaning that all choices of parameters must result in the same

number of real solutions. We find that randomly choosing parameter values leads to

the same number of real solutions each time. Our goal is to determine whether or not

a discriminant locus exists for which nongeneric behavior occurs in the number of real

solutions. Using numerical algebraic geometry, we will see that such parameter choices

do exist, and hence the proposed theory is not a valid topological field theory. These

parameter values form a discriminant locus which we investigate numerically.

Let j = (j1, j2) denote a position on the two-dimensional lattice. The variables of

the system are angles at each lattice site, which we denote θj. We use µ to denote a

directional index, which indicates movement along one of the two dimensions of the lattice.

In practice, we use µ = 1 to denote “move one unit to the left” and µ = 2 to denote “move

one unit up”. We let µ̂ denote the opposite direction of µ, and j + µ or j + µ̂ indicates

the position on the lattice that is one unit from j in the indicated direction. The model

has 18 parameters φj,µ, and we let φθj,µ = φj,µ + θj+µ̂ − θj. In this setting, the system of

equations we are interested in is

0 =
∑
µ

(
tan(φθj,µ/2)− tan(φθj−µ̂,µ/2)

)
(4.7)

for each j = (1, 1), . . . , (3, 3).

As we did in Section 4.2, we fix θ3,3 = 0 and remove the last equation to ensure that

there are only isolated solutions. Next, we will transform our system of trigonometric

equations into a system of polynomial equations. Our first step is to expand (4.7) and

62



use the trigonometric identity

tan
x+ y + z

2
=

sinx+ cos z sin y + cos y sin z

cosx+ cos y cos z − sin y sin z
.

This yields equations of the form

0 =
∑
µ

( sinφj,µ cos θj − cosφj,µ sin θj + sin θj+µ̂
sinφj,µ sin θj + cosφj,µ cos θj + cos θj+µ̂

− sinφj−µ̂,µ cos θj−µ̂ − cosφj−µ̂,µsj−µ̂ + sin θj
sinφj−µ̂,µ sin θj−µ̂ + cosφj−µ̂,µ cos θj−µ̂ + cos θj

)
.

We then remove the trigonometric conditions by letting sj = sin θj and cj = cos θj for

all j and introducing the equations s2j + c2j − 1 = 0. Then, for all j except (3, 3) we have

0 =
∑
µ

(sinφj,µcj − cosφj,µsj + sj+µ̂
sinφj,µsj + cosφj,µcj + cj+µ̂

−sinφj−µ̂,µcj−µ̂ − cosφj−µ̂,µsj−µ̂ + sj
sinφj−µ̂,µsj−µ̂ + cosφj−µ̂,µcj−µ̂ + cj

)
0 = s2j + c2j − 1. (4.8)

Next, we introduce auxiliary variables aj,µ, bj,µ in place of denominators along with

the appropriate polynomial conditions to satisfy the system. The resulting polynomial
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system is:

0 =
∑
µ

(
aj,µ(sinφj,µcj − cosφj,µsj + sj+µ̂)

−bj,µ(sinφj−µ̂,µcj−µ̂ − cosφj−µ̂,µsj−µ̂ + sj)
)

0 = aj,µ(sinφj,µsj + cosφj,µcj + cj+µ̂)− 1

0 = bj,µ(sinφj−µ̂,µsj−µ̂ + cosφj−µ̂,µcj−µ̂ + cj)− 1

0 = s2j + c2j − 1. (4.9)

We now have 48 polynomial equations in 48 variables. Although this system is larger

than system (4.7), the key benefit of this polynomial formulation is that it enables us to

use numerical algebraic geometry. We note that this is a one-to-one transformation and

no solutions of the original system are lost in the transformation.

4.3.2 Methods and results

To determine the behavior of the system at general points in the parameter space, we use

parameter homotopies to sove the system for 780 random sets of parameters {φj,µ}. In

each instance, we find that there are 11664 real solutions. As a result, we conjecture that

for all points in the parameter space except a set of measure zero, the system has exactly

11664 real solutions.

Next, we investigate the measure zero discriminant locus on which the system has

nongeneric behavior. We find that when the angles in {φj,µ} are deliberately chosen

so that they adhere to some structure, such as rational multiples of π, it is quite easy

to find a point in the parameter space such that the system has fewer than 11664 real

solutions. Thus, the number of stationary points differs for various orbits, and ZGF for
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the stereographic lattice Landau gauge-fixing functional is orbit-dependent. We conclude

that the proposed theory is not a valid topological field theory.

We summarize our results in the following figures. In Figure 4.9, we plot the number

of real solutions corresponding to various sets of parameters P1, . . . , P4. In Figure 4.10,

we plot a subset of the discriminant locus projected onto the two parameters φ(1,1),1 and

φ(1,1),2 in which the rest of the parameters are fixed to the angles given in Table 4.1. To

locate points on the discriminant locus, we used the fact that for parameter values to

result in fewer than 11664 real solutions, we must have denominator(s) equal to zero in

system (4.8). Since we introduced auxiliary variables for denominators when constructing

the polynomial system, we can perform parameter homotopies in which the destination

systems have one or more of these ‘denominators’ equal to zero. We note that the points

shown here are only a subset of the discriminant locus, which is an algebraic curve in this

projection. Nevertheless, these computed points illustrate the abundance of parameter

choices for which the system has nongeneric behavior.

Table 4.1: Fixed parameter values used for Figure 4.10.

j1 1 1 2 2 2 3 3 3
j2 2 3 1 2 3 1 2 3
µ 1 1 1 1 1 1 1 1

φ(j1,j2),µ −π
2

π
5
−5π

11
15π
17

−15π
23

28π
31

24π
41

−7π
47

j1 1 1 2 2 2 3 3 3
j2 2 3 1 2 3 1 2 3
µ 2 2 2 2 2 2 2 2

φ(j1,j2),µ
2π
3
−5π

7
π
13

17π
19

27π
29

− π
37
−30π

43
44π
53
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Figure 4.9: ZGF corresponding to various sets of parameters Pk which are defined as
follows. For P1, we set each parameter to a distinct angle via φj1,j2,µ = π/(j2 + 3(j1 −
1) + 9(µ− 1)). For P2, we set φj,µ = π/2 for all j and µ. For P3, we set φj,µ = 0 for all j
and µ. For P4, we set φj,µ = π/3 + (π/6)(µ− 1).

Figure 4.10: Subset of the discriminant locus projected onto two parameters for the 3× 3
lattice.
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Chapter 5

Secant varieties and tensor rank

5.1 Introduction

Let X ⊂ Pn be an irreducible, projective algebraic set. The X-rank of an element T ∈ Pn,

denoted rkX(T ), is the minimum r ∈ N such that T can be written as a sum of r elements

of X:

T =
r∑
i=1

xi, xi ∈ X.

Let σ0
r(X) ⊂ Pn denote the set of elements with rank at most r. The kth secant variety

of X is

σk(X) = σ0
k(X).

If T ∈ σr(X), then T is the limit of a sequence of elements of X-rank at most r. The

X-border rank of an element T ∈ Pn, denoted brkX(T ), is the minimum r ∈ N such that

T ∈ σr(X). From these definitions, we naturally have

brkX(T ) ≤ rkX(T )
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for any T ∈ Pn and X ∈ Pn. When X is clear from context, we may simply write brk(T )

and rk(T ) instead of brkX(T ) and rkX(T ).

Secant varieties are classical objects in algebraic geometry, and there has been a renewed

interest in them in recent years due to applications of tensor decomposition. Tensor

decomposition plays a fundamental role in areas including computational complexity, signal

processing for telecommunications [DLC07], [Com02], scientific data analysis [Smi05],

[JS04], electrical engineering [Che05], and statistics [McC87]. Some other applications

include the complexity of matrix multiplication [Str83], the complexity problem of P

versus NP [Val01], the study of entanglement in quantum physics [EG05], matchgates

in computer science [Val01], the study of phylogenetic invariants [AR08], independent

component analysis [Com92], blind identification in signal processing [Sid00], branching

structure in diffusion images [SS08], and other multilinear data analytic techniques in

bioinformatics and spectroscopy [CJ10].

From the definitions above, secant varieties can be written as the closure of a polynomial

image of an algebraic set. In principle, one can test whether or not an element T belongs

to a given kth secant variety (and hence whether brkX(T ) ≤ k) via the defining equations

of the variety. However, these defining equations are often of high degree, making it

difficult or impractical to compute them using symbolic elimination theory. This secant

varieties natural targets for algorithms in numerical elimination theory.

5.2 Determining tensor rank

In this section, we work with secant varieties σk(X) where X is a Veronese variety which

arises in the following setting.
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Fix n ∈ N and let S = C[x0, . . . , xn]. Then

SdV =
〈
xd0, x

d−1
1 x1, . . . , x

d
n

〉
.

That is, SdV is the vector space of homogeneous forms in n + 1 variables of degree d.

Or, equivalently, SdV is the space of symmetric tensors of order d over a vector space of

dimension n+ 1.

Finding the minimum r ∈ N such that T ∈ SdV is equivalent to computing the X-rank

where X is the Veronese variety X = νd(Pn). We can view the problem of decomposing a

symmetric tensor as

T =
r∑
i=1

v⊗di

where vi ∈ V , or equivalently as decomposing the corresponding homogeneous polynomial

T =
r∑
i=1

Ldi (5.1)

where each Li is a linear form.

We utilize the fact that σ0
k(X) can be written as a polynomial image of an algebraic set.

The closure of the image, σk(X) = σ0
k(X), is the set of elements with border rank less than

or equal to k. Thus if T ∈ σk(X) we can conclude brk(T ) ≤ k, and if T 6∈ σk(X) we can

conclude brk(T ) > k. Although these membership tests can be performed symbolically,

difficulties may arise in practice due to the degree of X. In these cases, we may be able

to compute a pseudowitness set and use it for numerical membership testing.

The X-rank and the X-border rank of monomials with respect to the Veronese variety
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are well known over the complex numbers ([RS11], [Boi11]): if T = xα1
1 · · ·xαn

n , then

brk(T ) =
Πn
i1

(αi + 1)

maxi(αi + 1)

and

rk(T ) =
Πn
i1

(αi + 1)

mini(αi + 1)
.

For other homogeneous polynomials, there are a multitude of open problems.

We will proceed using a numerical membership test from [HS13] adapted to our current

problem. For each r ≥ 1, consider the smooth irreducible variety

Xr =

{
(S, L1, . . . , Lr)

∣∣∣∣∣ S =
r∑
i=1

Ldi

}
⊂ SdV × S1V × · · · × S1V︸ ︷︷ ︸

r times

. (5.2)

which has dimension r · dimV . For the projection map π(S, L1, . . . , Lr) = S, we have

π(Xr) = σ0
r(νd(V )) and π(Xr) = σr(νd(V )).

The key to the membership test of [HS13] is to perform all numerical computations on

Xr for which defining equations are known, namely Xr = V (Fr) where

Fr(S, L1, . . . , Lr) = S − pd(L1, . . . , Lr) where pd(L1, . . . , Lr) =
r∑
i=1

Ldi .

One way to compute the dimension of σr(νd(V )) is by using Lemma 3 of [HS13] which, in

this case, states that

dimσr(νd(V )) = dimXr − dim null Jpd(L
∗
1, . . . , L

∗
r)
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for generic L∗i ∈ S1V where Jpd is the Jacobian matrix of pd.

The membership test provided in [HS13] is based on the standard homotopy mem-

bership test described in [Bat13] using pseudowitness sets. Let T ∈ SdV be given and

suppose that m = dimσr(νd(V )) and k = dimXr −m. For i = 1, . . . ,m, let Mi(S) and

Ri(S) be general linear forms such that Ri(T ) = 0. That is, M = V(M1, . . . ,Mm) and

R = V(R1, . . . , Rm) are general codimension m linear spaces with T ∈ V(R1, . . . , Rm).

The underlying idea of the homotopy membership test is that, given the finitely many

points in σr(νd(V )) ∩M, we follow the paths starting at each of these points defined by

σr(νd(V )) ∩ (M· t+R · (1− t)) as t moves from 1 to 0. Then, T ∈ σr(νd(V )) if and only

if one of the paths limits to T as t→ 0.

This computation is performed on Xr as follows. For j = 1, . . . , k, let M̂j(L1, . . . , Lr)

be general linear forms with M̂ = V(M̂1, . . . , M̂k). Then, Xr ∩M∩M̂ consists of finitely

many points with |π(Xr)M∩ M̂| = deg σr(νd(V )). Let W ⊂ Xr ∩M∩ M̂ be a set of

deg σr(νd(V )) such that |π(W )| = |W |. For each w ∈ W , consider the path Zw(t) with

Zw(1) = w and Zw(t) ∈ Xr ∩ (M · t+R · (1− t)) ∩ M̂.

With this setup, we have the following basic membership test of Lemma 1 from [HS13].

Proposition 5.2.1 For the setup described above, the following hold.

1. T ∈ σr(νd(V )) if and only if there exists w ∈ W such that limt→0 π(Zw(t)) = T .

2. T ∈ σ0
r (νd(V )) if there exists w ∈ W such that limt→0 Zw(t) ∈ Xr and limt→0 π(Zw(t)) =

T .

3. If, for every w ∈ W , limt→0 Zw(t) ∈ Xr, then, T ∈ σ0
r(νd(V )) if and only if there

exists w ∈ W such that limt→0 π(Zw(t)) = T .
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We demonstrate our method with the following examples. Further applications are

explored in [Ber15].

Example 5.2.2 Consider the X-border rank over the complex numbers with respect to

the Veronese variety ν5(P2) of

T = x3y2 + x4z.

T is the sum of two monomials with x appearing in both, and therefore it is not covered by

[Car12]. We begin by testing for border rank 4, which requires computing a pseudowitness

set for σ4(ν5(P2)).

Tensors in σ4(ν5(P2)) correspond to degree 5 homogeneous polynomials in 3 variables

with degree less than or equal to 4, so we consider the expression

4∑
i=1

(ai,1x+ ai,2y + ai,3z)5.

There are
(
5+3−1

3

)
= 21 monomials of degree 5 in 3 variables, and expanding the above

allows us to write these monomials with coefficients in ai,j . For example, the coefficient of

x3y2 in the above expression is 10a311a
2
12 + 10a321a

2
22 + 10a331a

2
32 + 10a341a

2
42.

Altogether, our object of interest is the closure of the image of the polynomial map

p : C12 → C21 defined by:
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p1 = 20a11a12a
3
13 + 20a21a22a

3
23 + 20a31a32a

3
33 + 20a41a42a

3
43

p2 = 30a211a12a
2
13 + 30a221a22a

2
23 + 30a231a32a

2
33 + 30a241a42a

2
43

p3 = 30a211a
2
12a13 + 30a221a

2
22a23 + 30a231a

2
32a33 + 30a241a

2
42a43

p4 = 20a11a
3
12a13 + 20a21a

3
22a23 + 20a31a

3
32a33 + 20a41a

3
42a43

p5 = 20a311a12a13 + 20a321a22a23 + 20a331a32a33 + 20a341a42a43

p6 = 30a11a
2
12a

2
13 + 30a21a

2
22a

2
23 + 30a31a

2
32a

2
33 + 30a41a

2
42a

2
43

p7 = a513 + a523 + a533 + a543

p8 = a512 + a522 + a532 + a542

p9 = a511 + a521 + a531 + a541

p10 = 5a411a13 + 5a421a23 + 5a431a33 + 5a441a43

p11 = 10a311a
2
13 + 10a321a

2
23 + 10a331a

2
33 + 10a341a

2
43

p12 = 10a211a
3
13 + 10a221a

3
23 + 10a231a

3
33 + 10a241a

3
43

p13 = 5a11a
4
13 + 5a21a

4
23 + 5a31a

4
33 + 5a41a

4
43

p14 = 5a412a13 + 5a422a23 + 5a432a33 + 5a442a43

p15 = 10a312a
2
13 + 10a322a

2
23 + 10a332a

2
33 + 10a342a

2
43

p16 = 10a212a
3
13 + 10a222a

3
23 + 10a232a

3
33 + 10a242a

3
43

p17 = 5a12a
4
13 + 5a22a

4
23 + 5a32a

4
33 + 5a42a

4
43

p18 = 5a11a
4
12 + 5a21a

4
22 + 5a31a

4
32 + 5a41a

4
42

p19 = 10a211a
3
12 + 10a221a

3
22 + 10a231a

3
32 + 10a241a

3
42

p20 = 5a411a12 + 5a421a22 + 5a431a32 + 5a441a42

p21 = 10a311a
2
12 + 10a321a

2
22 + 10a331a

2
32 + 10a341a

2
42

Using monodromy loops, we find a pseudowitness set of degree 1430. To test for

membership of T in σ4(ν5(P2)), we use the vector of coefficients corresponding to the

monomials in x3y2 + x4z, which in this case is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) ∈ C21.
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We perform the homotopy described above and find T ∈ σ4(ν5(P2)), and therefore we

conclude brk(T ) ≤ 4.

Using similar computations, we find a pseudowitness set for σ3(ν5(P2)) of degree 859.

Membership testing reveals T 6∈ σ3(ν5(P2)) and therefore we conclude brk(T ) = 4. This

is in agreement with the result of [BB13a].

Example 5.2.3 The following example demonstrates that our method computes the

X-border rank and not a different notion of rank. This example was shown by W.

Buczyńska and J. Buczyński as a peculiar but illustrative case where the X-border rank

of a polynomial cannot be computed by taking limiting points on the Veronese variety

[BB13b]. The example is the following:

T = x20x2 + 6x21x3 − 3(x0 + x1)
2x4.

To test for border rank 5, we compute a pseudowitness set for σ5(ν3(P4)). We find

deg σ5(ν3(P4)) = 24047, and a membership test shows brk(T ) ≤ 5. Next, we perform

similar computations to test for border rank 4 in which we find deg σ4(ν3(P4)) = 36505.

The membership test indicates brk(T ) > 4, and we conclude brk(T ) = 5. In fact, there

exists a sequence of X-rank 5 elements in P19 that converges to T , but it is not possible to

find a sequence of 5 points on X whose limit spans a space containing T [Ber12], [BB13b].

5.3 Segre-Grassmann hypersurfaces

In 1770, Waring posed the following question in number theory [War82]: Does each k ∈ N

have an associated positive integer s(k) such that every natural number is the sum of at

most s(k) kth powers of natural numbers? This problem was answered affirmatively by
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Hilbert in 1909 [Hil09], but research continues today on variations of Waring’s problem.

In 2013, Abo and Wan studied a variant of Waring’s problem arising in algebraic geometry

regarding systems of skew-symmetric forms [AW13]. In their work, Abo and Wan identified

several secant varieties of interest that are hypersurfaces. For each hypersurface, both the

degree and defining equation were unknown.

We remark that when considering an image of an algebraic set in Chapter 3, we avoided

computing defining equations. In Section 3.2.3, we saw that computing polynomials of

degree t vanishing on an image in n variables required interpolating at least
(
n+t
n

)
sufficiently general sample points. For small problems, such interpolation may be sufficient

to compute the equations defining an image of an algebraic set. For example, in [Som03],

the authors use sample points for the twisted cubic curve projected onto a random

plane; interpolation is then used to compute equations of the image. Unfortunately, the

combinatorial growth in the number of sample points required makes this interpolation

impractical in all but the smallest problems.

In the special case of a hypersurface H written as an image of an algebraic set, we

may utilize the fact that H = V (f) for a single polynomial f ∈ C[x1, . . . , xn] such that

degH = deg f.

We find that for appropriate problems, determining deg f by obtaining a pseudowitness

set for H is a first step towards computing a symbolic representation of f .

Specifically, we are interested in certain secant varieties of the form

σs(Seg(Pm ×G(k, n)))
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which are hypersurfaces in certain cases. That is, the objects of interest are σs(X)

where X is the Segre product of a projective m-plane and the Grassmann variety of

k-dimensional projective subspaces of an n-dimensional projective space. The Grassmann

variety, denoted G(k, n), is the set of all k-dimensional subspaces of Pn.

Using the algorithm from Section 2.4.2, we are able to compute the degrees of four of

these hypersurfaces, which allows us to answer Problem 6.5 from [AW13] and leads to

defining polynomials via representation theory. The monodromy approach facilitated by

path tracking using Bertini yields the following.

Theorem 5.3.1 The following hold.

1. The hypersurface σ5(Seg(P2 ×G(2, 5))) ⊂ P59 has degree 6.

2. The hypersurface σ5(Seg(P2 ×G(1, 6))) ⊂ P62 has degree 21.

3. The hypersurface σ8(Seg(P2 ×G(1, 10))) ⊂ P164 has degree 33.

4. The hypersurface σ11(Seg(P2 ×G(1, 14))) ⊂ P314 has degree 45.

In our execution of the procedure for the hypersurface σ5(Seg(P2×G(2, 5))), it took 6

random monodromy loops to compute a pseudowitness set. The last three hypersurfaces

are part of an infinite family of hypersurfaces of the form

σ3`+2(Seg(P2 ×G(1, 4`+ 2)))

for ` ≥ 1. In our execution for these hypersurfaces, it took 13, 12, and 13 random

monodromy loops to yield the pseudowitness set for each case, respectively.

All four cases of Theorem 5.3.1 have numerical proofs via the method presented in

Section 2.4.2. One may object that the results hold up only to the numerical precision
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of our calculations. However, these computations have served as strong evidence and

motivation to search for, and eventually find, non-numerical proofs of these results as

well as generalizations. These proofs, which utilize representation theory, can be found

in [Dal14]. In particular, [Dal14] uses representation theory with the degrees from

Theorem 5.3.1 as input to show that these hypersurfaces are minimally defined by known

determinantal equations. The defining equation for σ5(Seg(P2 ×G(2, 5))) ⊂ P59 provides

an answer for Problem 6.5 from [AW13]. This degree 6 polynomial in 10080 monomials is

presented in an ancillary file to the arXiv version of [Dal14].

5.4 Investigating σ4(Pa × Pb × Pc)

5.4.1 Statement of the problem

Given vector spaces A,B,C, the Segre product is the following embedding into the tensor

product:

Seg :P(A)× P(B)× P(C)→ P(A⊗B ⊗ C)

([a], [b], [c]) 7→ [a⊗ b⊗ c].

The image of this map is called a Segre variety. In this section we study the secant

variety σk(X) where X is a Segre variety as constructed above. Such secant varieties are

commonly denoted σk(Pa × Pb × Pc); we omit the mention of Seg when the meaning is

clear from context.

The secant variety σ4(P3 × P3 × P3) arises in molecular phylogenetics, and in 2007

E. Allman posed the problem of determining its defining ideal [All]. Work on this problem
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has led to a set-theoretic solution [Fri13; BO11; FG12], but the ideal-theoretic question is

still open. In the following subsections, we use numerical methods to study σ4(P3×P3×P3)

and related secant varieties. The work in this section is adapted from [DH15].

5.4.2 σ4(P3 × P3 × P3) and σ4(P2 × P3 × P3)

The secant variety σ4(P3 × P3 × P3) poses a significant computational challenge when

we try to work with it directly. When attempting the algorithm of Section 2.4.2 for

computing a pseudowitness set, the large degree of σ4(P3 × P3 × P3) necessitates tracking

of a great number of paths. Consequently, an attempt at performing this algorithm did

not terminate.

Given A′ ⊂ A, B′ ⊂ B, and C ′ ⊂ C, equations in the ideal of σk(PA′ × PB′ × PC ′)

can help lead to equations on σk(PA × PB × PC) via a process known as inheritance

[LM04]. This motivates us to consider secant varieties related to σ4(P3 × P3 × P3) rather

than working with it directly. For example, when we consider σ4(P2 × P3 × P3), we are

able to compute a pseudowitness set and find the following result.

Proposition 5.4.1 The secant variety σ4(P2 × P3 × P3) has degree 252776.

In addition to providing the degree of σ4(P2 × P3 × P3), this pseudowitness set can be

used to test points for membership as described in Section 5.2.

A theorem of Landsberg and Manivel [LM08] with an error in the proof corrected by

Friedland [Fri13] shows how σ4(P2×P2×P3) can be used to inform us about σ4(Pa×Pb×Pc)

for any a, b, c ≥ 3. Thus, we turn our attention to σ4(P2 × P2 × P3).
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5.4.3 σ4(P2 × P2 × P3)

Let S = σ4(P2×P2×P3) ⊂ P35. In [BO11], numerical computations showed that S is set-

theoretically defined by 10 polynomials of degree 6 and 20 polynomials of degree 9. This

result, which was used to determine set-theoretic defining equations for σ4(P3 × P3 × P3),

was also shown without the use of a computer in [FG12]. Here, we apply the methods of

Chapter 3 to show that S is aCM and use this to show that I(S) is minimally generated

by 10 polynomials of degree 6 and 20 polynomials of degree 9.

Rather than start with known polynomials vanishing on S, we derive our results from

a parameterization of S. In particular, consider the map π : C12 × C12 × C16 → C36

defined by

(a,b, c) 7→
4∑
`=1

ai`bj`ck` for 1 ≤ i, j ≤ 3 and 1 ≤ k ≤ 4.

If Y = π(C12 × C12 × C16) ⊂ C36, then S is the projectivization of Y , namely S =

P(Y ) ⊂ P35. Using π, we verify that S is non-defective with dimS = 31. After selecting

a random linear space L ⊂ P35 of codimension 30 and random hyperplane H ⊂ P35,

consider the curve C = X ∩ L and witness point set W = C ∩H. We used Bertini to

compute W and the strategy described in Section 2.4.2 to compute a pseudowitness set

for C = S ∩ L. This computation, in particular, verified that degS = 345 as reported in

[BO11]. Interpolation and [Gri14] produces

HFW = 1, 5, 15, 35, 70, 126, 200, 280, 345, 345

HFC = 1, 6, 21, 56, 126, 252, 452, 732, 1077, 1422

∆HFC = 1, 5, 15, 35, 70, 126, 200, 280, 345, 345
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which, by Corollary 3.3.3 and Theorem 3.4.1, shows that both C and S are aCM. Since

ρW = 8, we know regS = regC = regW = 9, ρC = 7, and ρS = −23. In particular, (3.8)

yields gC = 1684 and the strategy outlined in Section 3.4 provides

HFS = 1, 36, 666, 8436, 82251, 658008, 4496378, 26977968, 145001853, 708846128, . . .

HSS(t) = (1 + 4t+ 10t2 + 20t3 + 35t4 + 56t5 + 74t6 + 80t7 + 65t8)/(1− t)32

HPS(t) = 345/31! · t31 + · · ·+ 299405047890287/72201776446800 · t+ 1.

In fact, ρS = −23 so that HPS(j) = 0 for −23 ≤ j ≤ −1, and HPS(t) can be written as

HPS(t) =
G(t)

31!

23∏
j=1

(t+ j) where

G(t) = 345 · t8 + 13032 · t7 + 484578 · t6 + 11904840 · t5 + 218110185 · t4

+ 2831500368 · t3 + 24772341372 · t2 + 131202341280 · t+ 318073392000.

We now turn our attention to describing a minimal generating set for I(S) using

Prop. 3.4.4. Since regS = 9, we know that I(S) is minimally generated by polynomials of

degree at most 9. That is, dj(W ) = dj(S) = 0 for j ≥ 10. Moreover, dj(W ) = dj(S) = 0

for 0 ≤ j ≤ 5, since HFW (t) =
(
4+t
t

)
for 0 ≤ t ≤ 5. Also, HFW (6) =

(
4+6
6

)
− 10 yields

d6(W ) = d6(X) = 10 with the initial degree of X being 6. Using linear algebra, we

verified that this 10 dimensional space of sextic polynomials vanishing on W generates a 50

dimensional space of septic polynomials, a 150 dimensional space of octic polynomials, and

a 350 dimensional space of nonic polynomials. Since HFW (7) =
(
4+7
7

)
− 50, HFW (8) =(

4+8
8

)
− 150, and HFW (9) =

(
4+9
9

)
− 370, we know dW (7) = dS(7) = dW (8) = dS(8) = 0

and dW (9) = dS(9) = 20. Therefore, I(S) is minimally generated by 10 sextic polynomials
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and 20 nonic polynomials.

Up to high numerical accuracy, our results suggest that the set-theoretic solution

found in [BO11; FG12] is in fact an ideal-theoretic solution to Allman’s problem.
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putations” (2014). arXiv: 1404.1774.

[EG05] Eisert, J. & Gross, D. “Multi-particle entanglement” (2005). arXiv: quant-
ph/0505149.

[Erm85] Ermentrout, G. B. “The behavior of rings of coupled oscillators”. Journal of
mathematical biology 23.1 (1985), pp. 55–74.

[Fau99] Faugère, J.-C. “A new efficient algorithm for computing Gröbner bases (F4)”.
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