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(Under the direction of Dr. Kailash Misra.)

Lie algebras and their representations have been an important area of mathematical research due

to their relevance in several areas of mathematics and physics. It is known that the representation

of a Lie algebra can be studied by considering the representations of its universal enveloping al-

gebra, which is an associative algebra. In 1968, Victor Kac and Robert Moody defined a class of

infinite dimensional Lie algebras called affine Lie algebras. An affine Lie algebra can be viewed

as the universal central extension of the Lie algebra of polynomial maps from the unity circle to

a finite dimensional simple Lie algebra. In this thesis, we consider the affine Lie algebra ŝ l (n )

associated with the finite dimensional simple Lie algebra s l (n ) of n ×n trace zero matrices over the

field of complex numbers. We consider certain representations of the quantum affine Lie algebra

Uq (ŝ l (n )), which is a q -deformation of the universal enveloping algebra U (ŝ l (n )) of ŝ l (n ) intro-

duced by Michio Jimbo and Vladimir Drinfeld in 1985. In 1988, it was shown by George Lusztig that

the q -deformation of a representation of Uq (ŝ l (n ))parallels the representation of ŝ l (n ) for generic q .

It is known that for any dominant integral weightλ there is a unique (up to isomorphism) irreducible

Uq (ŝ l (n ))- module V (λ). It was shown by Kashiwara that this irreducible module V (λ) admits a

crystal base (L (λ), B (λ)). The set B (λ) is called a crystal, and it provides a nice combinatorial tool to

study the combinatorial properties of the representation space V (λ).

Let W be the Weyl group of the affine Lie algebra ŝ l (n ). For w ∈W we consider the subspace Vw (λ)

generated by the extremal weight vector vwλ and the positive half U +
q (ŝ l (n )) of the quantum affine

algebra Uq (ŝ l (n )). We note that
⋃

w∈W Vw (λ) =V (λ). These subspaces Vw (λ) are called Demazure

modules and are used for inductive arguments. In 1993, Kashiwara showed that Vw (λ) admits a

crystal base and that a certain subset Bw (λ) of the crystal B (λ) is the crystal for Vw (λ). Kang, Kashi-

wara, Misra, Miwa, Nakashima and Nakayashiki gave the path realizations of affine crystals as a

semi-infinite tensor product of some finite crystals called perfect crystals in 1991.

In this thesis, we use this path realization and study the combinatorial properties of certain De-

mazure crystals Bw (λ) for the quantum affine algebra Uq (ŝ l (n )). In particular, it is shown that the

intersection and union of a certain family of Demazure crystals for Uq (ŝ l (n )) can be realized as

tensor products of finitely many perfect crystals.
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ŝ l (n )
�

by
Margaret Lynn Rahmoeller

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2015

APPROVED BY:

Dr. Ernest Stitzinger Dr. Thomas Lada

Dr. Donald Martin Dr. Kailash Misra
Chair of Advisory Committee



Dedication

I dedicate this to my Mom. She is my biggest role model, and has supported me wholeheartedly

throughout my entire life. Thank you, Mom, for all of your encouragement when life threw me

curveballs, your patience when I was struggling, your comfort when I was sad or upset, and your

unconditional love.

ii



Biography

Margaret Rahmoeller was born in June of 1988 in the wonderful Webster Groves, a suburb of St.

Louis, Missouri. Nicknamed Maggie, she was the third child of Ken and Diane Rahmoeller, their

first being Katie and second being Brad. Not too long after, Maggie was the proud older sister of

Karen and Brenda. Maggie grew up playing outside, climbing trees, collecting bugs and slugs for her

teachers, and being an all-around adorable child.

As a child, she dreamed of being an astronaut or an actress. Little did she know that she was destined

to be a teacher. In sixth grade, she began playing the oboe, much to the horror of her family. A

unique woodwind instrument, the oboe is typically called the “duck" instrument. However, after

starting lessons and practicing very hard, she began to sound more like an oboist. She already had

a love for music, since she had taken piano lessons for several years; however, playing the oboe

increased her appreciation for classical music.

At the end of high school, she had a very important decision to make- what to study in college. She

chose to study mathematics and music, since she loved them both dearly. She spent an amazing

four years studying both at McKendree University, located in Lebanon, Illinois. Along the way, she

also picked up a computer science minor. Although most of her time was filled with her studies and

tutoring, she managed to spend quality time with stupendous new friends, performing with the

St. Louis Symphony Youth Orchestra as principal oboist, and helping out with math club. At the

end of her time at good ‘ole McK, she had another important decision to make- what to do after

graduation.

Maggie spent a summer doing an internship in Maryland before heading off to graduate school to

study mathematics at North Carolina State University in Raleigh, North Carolina. During her first

semester as a teaching assistant for a Calculus III class, she had the opportunity to teach one lecture.

She fell in love with teaching that day. By participating in pedagogical programs such as Certificate

of Accomplishment in Teaching and Preparing the Professoriate, she learned as much as she could

about different aspects of teaching.

She also performed as principal oboist with both the Raleigh Civic Symphony and the Raleigh Civic

Chamber Orchestra, ensembles at NCSU consisting of both students and community members.

In her fourth year at NCSU, she joined the Raleigh Civic Symphony Association, a nonprofit orga-

nization, which works in partnership with the music department to promote the orchestras at NCSU.

iii



But most of her time was spent studying mathematics. She was introduced to Lie algebras in her

third year, and quickly became intrigued. She decided to work with Dr. Kailash Misra in the field of

Lie algebra representation theory. After several years of hard work, she will be defending her thesis

in front of a live audience in the summer of 2015. Then, in August of 2015, she will begin a position

at Roanoke College in Salem, Virginia as a Visiting Assistant Professor. She is super excited for the

next chapter of her life to begin!

iv



Acknowledgements

Graduate school is hard work. The friends you make and the mentors you find, along with your

family, are what helped to push me through the experience. I would like to first thank my advisor,

Dr. Kailash Misra, whose impressive knowledge and innate ability to explain mathematics helped

me through the toughest years of my graduate school career. I honestly could not have had a better

advisor. Dr. Misra is an incredibly kind-hearted man and a superb teacher and mentor. Dr. Misra,

thank you for all of those "epsilon" talks, all of the opportunities for travel and networking, and all

of the wisdom you shared with me.

I’d also like to thank my family. Thank you Mom for being there for all my tearful phone calls,

for encouraging me to stay strong and push through the hard times, and for celebrating all of the

wonderful times. Dad, thank you for all of the fun trips in which we toured all of North Carolina, for

all the advice you shared with me, and for all the help with the ridiculous electronics in my life. I

can’t wait for all of our future trips in other states. I’d like to thank my older sister Katie for all of the

care packages she sent me, and my brother Brad for all of his fun stories and great humor, which

kept me smiling and laughing even during the rough times. I’d like to thank my sister Karen for all

of the wonderful phone conversations we had and for the paper chain she made me for the final

countdown. And I’d like to thank my sister Brenda for all of the adorable dog pictures she sent me,

which always cracked me up.

I would also like to thank my Grandpa for his words of wisdom and encouragement. I’ve always

looked up to him, both literally and figuratively, and have enjoyed all of the times we have shared.

Thank you to Mr. and Mrs. Nuelle, who I have always considered grandparents, for the many

memorable lunches and for many of my wonderful childhood memories. Mr. Nuelle, thank you

for pushing me to finish my degree in five years and for all the math documentaries we watched

together. And I of course want to thank one Mr. Russ for all of the fun times in orchestra at State

and the delightful duets we played. You are an incredibly talented bassoonist and a wonderful friend.

I had other mentors at NCSU who I’d also like to thank. Professor Stitz, you have always been im-

mensely helpful, whether by having an answer to all of my questions, or helping me make important

decisions, or by always having a smile and words of encouragement. You never minded when I

stopped by to ask a question or just to have a friendly conversation. Thank you! I would also like

to thank Dr. Molly Fenn for all of her help with my teaching dilemmas and questions. You are an

amazing teacher, and I learned so much from you. And thank you to my committee members, Dr.

Lada, Dr. Stitz, and Dr. Martin, for all of your help, your time, and your advice.

v



Last, but not least, I’d like to thank all of my friends. Abby, I’m so glad we became friends- I couldn’t

have made it through graduate school without you. We survived the initial shock of graduate school

together and had so many awesome times together. I still can’t believe we made ravioli! I’d also

like to thank Kristin for being the best roommate ever, and for all the fun times we had. Thank you,

Alex, for all of your helpful lecture notes, your wisdom (you are still one of the smartest people I

know), and all of our adventures. Will, thanks for your help with the LaTex technicalities, the many

trips to different restaurants, and your friendship. TJ, thanks for all of the long walks and good

conversations! And, Alyssa, thank you for all of your help, patience when answering all my questions,

and words of encouragement.

There are many others who I’d like to thanks, but I have to keep this decently short. So, thank you to

all of my other friends who have supported me and who have helped create wonderful memories

for the past five years. I could not have made it without you.

vi



Table of Contents

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Lie Algebra Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Lie Algebra Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Kac-Moody Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Quantum Groups and Crystal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Quantum Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Crystal Base Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Perfect Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Path Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 4 Demazure Modules and Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1 Demazure Modules and Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 λ= `Λ j Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 5 Uq

�
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Chapter

1

Introduction

In the late 1800’s, Sophus Lie was studying contact transformations in geometry and differential

equations. This led to his discovery of continuous transformation groups and infinitesimal groups,

which today are what we call Lie groups and Lie algebras, respectively. Wilhelm Killing also discov-

ered Lie algebras, independently of Lie. His main contribution in the late 1880’s was the classification

of the complex finite-dimensional simple Lie algebras. Along the way, he made several important

conjectures and introduced the concepts behind Cartan subalgebras, the Cartan matrix, and root

systems. He also discovered the exceptional Lie algebras, though he tried hard to get rid of them.

Élie Cartan continued the work of Lie and Killing, rewriting a lot of Killing’s work on the classification

of semisimple Lie algebras and proving the existence of the exceptional Lie algebras (cf. [7]). He

also introduced representations of semisimple Lie algebras, tying together geometry, differential

geometry, and topology. In differential geometry, he developed a theory of moving frames, leading

to the idea of a fibre bundle [3]. The Cartan matrix A = (ai j ) associated with a finite dimensional

semisimple Lie algebra g is a n ×n positive definite integral matrix with ai i = 2, ai j ≤ 0 and ai i = 0 if

and only if a j i = 0. The algebraist Jean-Pierre Serre [29] gave the construction of any finite dimen-

sional semisimple Lie algebra with Cartan matrix A via generators and relations.

An n ×n integral matrix A is a generalized Cartan matrix (GCM) if ai i = 2, ai j ≤ 0 and ai i = 0 if and
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Chapter 1. Introduction

only if a j i = 0. A GCM A is said to be an affine GCM if it has corank 1 and if it has a positive null

vector. An affine GCM is indecomposable if it is not equivalent to a matrix in block form. If we delete

the first row and column of an indecomposable GCM A the remaining matrix is a Cartan matrix for a

finite dimensional simple Lie algebra. Motivated by Serre’s result, Victor Kac [10] and Robert Moody

[28] defined Lie algebras associated with any GCM A via generators and relations that we now call

Kac-Moody Lie algebras. When the GCM A is not positive definite the associated Kac-Moody Lie

algebra is infinite dimensional. The Kac-Moody Lie algebra associated with an affine GCM is called

an affine Lie algebra.

Consider the finite-dimensional simple special linear Lie algebra s l (n ,C), consisting of the set of all

n ×n trace zero matrices with entries in the field of complex numbers C. In this thesis, we focus on

the corresponding affine Kac-Moody Lie algebra ŝ l (n ,C) = s l (n ,C)⊗C[t , t −1]⊕Cc ⊕Cd , where c is

a central element and d is a derivation. In Chapter 2 of this thesis, we review some basic definitions

about the structure and representation theory of Lie algebras from ([7], [12]).

In 1985, Michio Jimbo [8] and Vladimir Drinfeld [4] introduced the notion of the quantum group

Uq (g), as a q -deformation of the universal enveloping algebra of a symmetrizable Kac-Moody Lie

algebra g. It is known [23] that for generic q , the integrable representation of Uq (g) parallels that of g.

The quantum group associated with an affine Lie algebra is called a quantum affine algebra. In this

thesis we focus on the quantum affine algebra Uq (ŝ l (n )). In Chapter 3, we recall some necessary

definitions and properties about the representation theory of quantum groups from [6].

For each dominant integral weight λ, there exists a unique (up to isomorphism) irreducible inte-

grable highest weight Uq (g)-module V q (λ). Let W denote the Weyl group of g. For each w ∈W , the

wλweight space of V q (λ) is one-dimensional and spanned by the extremal weight vector vwλ. Let

U +
q (g) be the upper half of the quantum group Uq (g). The subspace Vw (λ) =U +

q (g)vwλ is called a

Demazure module.

The work by Jimbo and Drinfeld led to the development of crystal base theory by Masaki Kashiwara

[16] and Lusztig [23], independently. Crystal base theory provides a combinatorial tool to study Lie

algebra representation theory. Each irreducible integrable highest weight Uq (g)-module V q (λ) has

an associated crystal basis [16]. In Chapter 3 we recall some basic definitions and properties about

crystal bases from [6]. We also recall the path realization of affine crystals as semi-infinite tensor

products of certain finite crystals called "perfect crystals" [14].
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Chapter 1. Introduction

In 1993, Kashiwara proved the existence of crystal bases for Demazure modules [18] and showed that

the associated crystals are subsets of the crystal for V q (λ). He showed that the Demazure crystals

have certain a recursive property. Later, Kuniba, Misra, Okada, and Uchiyama gave path realizations

of Demazure crystals and showed that under certain criterion the Demazure crystals have tensor

product-like structures [21].

In Chapter 4, we define Demazure modules and their crystals. For certain Weyl group elements

w (L , i ), we give explicit descriptions for Demazure crystals Bw (L ,i )(`Λ j ) for Uq (ŝ l (n )). We then prove

that the union (respectively, the intersection) over i of these Demazure crystals can be realized as the

tensor product of L (respectively, L−1) copies of the associated perfect crystal. In Chapter 5, we give

explicit realizations of Demazure crystals Bw (L ,i )(λ) for Uq (ŝ l (3)), whereλ is any dominant integrable

weight. In Chapter 6, we use our algorithms to generalize the previous results, giving realizations of

Demazure crystals Bw (L ,i )(λ) for Uq (ŝ l (n )) and showing that the union and the intersection over i of

these crystals are tensor products of finitely many perfect crystals.
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Chapter

2

Lie Algebra Representations

In this chapter, we recall the basic definitions and properties of Lie algebras and their representations

from [7], [11], and [25]. We use the Lie algebra s l (n ,C) and its associated affine Lie algebra ŝ l (n ,C)
as the running example.

2.1 Lie Algebras

We begin this section with the definition of a Lie algebra, and then recall background information

about Lie algebra representation theory.

Definition 2.1.1. [25] A vector space g over the field C is a Lie algebra if there is a product, which is

called the bracket, [·, ·] : g×g→ g, such that

1. [a x + b y , z ] = a [x , z ] + b [y , z ] and [x , a y + b z ] = a [x , y ] + b [x , z ] (bilinearity),

2. [x , x ] = 0,

3. [x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]] (Jacobi identity),

for all x , y , z ∈ g and a , b ∈C.

4



2.1. Lie Algebras Chapter 2. Lie Algebra Representations

Note that the first two axioms in Definition 2.1.1 imply that [x , y ] = −[y , x ] for all x , y ∈ g. A Lie

algebra g is abelian if [x , y ] = 0 for all x , y ∈ g.

Any associative algebra g is a Lie algebra under the commutator bracket, defined by [x , y ] = x y − y x

for all x , y ∈ g. One of the simplest Lie algebra is the vector space of all 2×2, trace-zero matrices

with the commutator bracket.

Example 2.1.2. Let g=

¨�

a b

c −a

�

�

�

�

�

�

a , b , c ∈C

«

be the vector space of all 2×2, trace-zero matrices.

Then the set
¨

H =

�

1 0

0 −1

�

, E =

�

0 1

0 0

�

, F =

�

0 0

1 0

�«

is a basis for g. Using the commutator bracket, [A, B ] = AB −B A for all A, B ∈ g, we have

[H , E ] = 2E , [H , F ] =−2F, [E , F ] =H .

Then g is a Lie algebra, which we denote by both A1 and s l (2,C).

Example 2.1.3. [25] The Lie algebra s l (2,C) from the above example can be extended to the Lie

algebra s l (n +1,C) of (n +1)× (n +1) trace-zero matrices, called the special linear Lie algebra. We

can also denote this Lie algebra by An . The set
�

Hi = Ei i −Ei+1,i+1, E j k

�

�1≤ i ≤ n , 1≤ j 6= k ≤ n +1
	

,

where Ei j denotes the (n +1)× (n +1)matrix with a one in the (i , j )-entry and zeros elsewhere, is a

basis for the Lie algebra s l (n +1,C). Note that, under the commutator bracket,

[Ei j , Ek l ] =δ j k Ei l −δi l Ek j , where δi j =







1, if i = j ,

0, if i 6= j .

A subspace s of a Lie algebra g is a subalgebra if [x , y ] ∈ s for all x , y ∈ s. Under the bracket in g, a

subalgebra s is a Lie algebra.

Example 2.1.4. [7] Let g = s l (n + 1,C). Then the set h = span
�

Hi = Ei i −Ei+1,i+1 | 1≤ i ≤ n
	

is a

subalgebra of g. We call this subalgebra the Cartan subalgebra.

Let g be a Lie algebra. Then a subspace s of g is an ideal of g if [x , y ] ∈ s for all x ∈ g and y ∈ s. If g is

nonabelian, i.e. [g,g] 6= {0}, and if {0} and g are the only ideals of g, then g is simple. For example,

s l (n +1,C) is a simple Lie algebra. A Lie algebra g is solvable if g(m ) = {0} for some m ∈Z>0, where

g(0) = g,

5



2.2. Lie Algebra Representation Theory Chapter 2. Lie Algebra Representations

g(m ) =
�

g(m−1),g(m−1)� ,

for m ∈Z>0. The g(m ) are ideals of g, and the series

g⊇ g(1) ⊇ g(2) ⊇ g(3) ⊇ · · ·

is called the derived series of g. If g contains no nonzero proper solvable ideals, then we say g is

semisimple. In other words, if we can write g as a direct sum of simple ideals, then g is semisimple.

Note that a simple Lie algebra is also a semisimple Lie algebra, but the converse is not necessarily

true.

2.2 Lie Algebra Representation Theory

Let (A,+, ·,0,1) be a ring over C, where A is a vector space overCwith the same addition rule and

zero element. Suppose a (x · y ) = (a x ) · y = x · (a y ) for all a ∈C and x , y ∈ A. Then we say that A

is an associative algebra. Under the commutator bracket, with an associative product, A is a Lie

algebra.

Example 2.2.1. [25] Let V be a vector space over C, and let g l (V ) denote the set of all linear

transformations from V to V . Then g l (V ) is an associative algebra, where the associative product

is the composition of maps. Hence, g l (V ) is a Lie algebra under the commutator bracket.

Not every Lie algebra is an associative algebra. But, if we are given a Lie algebra, we can construct

an associative algebra called a universal enveloping algebra. Let g be a Lie algebra over C. Suppose

we have an associative algebra U (g) over C and a linear map j : g → U (g) such that j ([x , y ]) =

j (x ) j (y )− j (y ) j (x ) for all x , y ∈ g. Then the pair (U (g), j ) is called a universal enveloping algebra of

g if it satisfies the following universal property [6]:

For any pair (A,φ), where A is an associative algebra andφ : g→ A is a linear map satisfying

φ([x , y ]) = φ(x )φ(y )−φ(y )φ(x ) for all x , y ∈ g, there exists a unique homomorphism of

associative algebrasψ : U (g)→ A such thatφ =ψ ◦ j .

The following commutative diagram depicts the universal property of U (g) [6]:
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2.2. Lie Algebra Representation Theory Chapter 2. Lie Algebra Representations

g U (g)

A

j

φ
∃!ψ

Figure 2.1 Universal Property for the Universal Enveloping Algebra

Let T (g) be the tensor algebra of g so that

T (g) =
⊕

k≥0

T kg,

and let I be the two-sided ideal generated by elements of the form x ⊗ y − y ⊗ x − [x , y ], for x , y ∈
g. Then the universal enveloping algebra can be constructed as U (g) = T (g)/I . The linear map

j : g→U (g) is constructed by composing the natural maps g ,→ T (g) and π : T (g)→U (g). The

Poincaré-Birkhoff-Witt Theorem, which is known as the PBW Theorem, proves that j is injective

and gives a basis for U (g) [7].

Theorem 2.2.2. [7] [Poincaré-Birkhoff-Witt]

1. The map j : g→U (g) is injective.

2. Let {xi |i ∈ I } be an ordered basis for g, where I is an index set. Then the set {xi1
xi2
· · · xik

|i1 ≤
i2 ≤ · · · ≤ ik , k ≥ 0}, along with 1, forms a basis for U (g).

The PBW Theorem allows us to identify the Lie algebra g with the image j (g).

We now discuss special maps on Lie algebras called homomorphisms. Suppose we have two Lie

algebras g1 and g2. We say that a linear transformation ϕ : g1→ g2 is a Lie algebra homomorphism if

ϕ([x , y ]) = [ϕ(x ),ϕ(y )] for all x , y ∈ g1. A Lie algebra homomorphism ϕ : g1→ g2 is an epimorphism

ifϕ is onto and is a monomorphism ifϕ is one-to-one. Ifϕ is both one-to-one and onto, we say that

ϕ is a Lie algebra isomorphism.

Let V be a vector space overC. Recall that g l (V ), the set of all linear operators on V , is a Lie algebra

under the commutator bracket. A representation of the Lie algebra g on the vector space V is a

7



2.2. Lie Algebra Representation Theory Chapter 2. Lie Algebra Representations

homorphism ϕ : g→ g l (V ). We say that V is a g-module if there is an operation g×V → g, given by

(x , v ) 7→ x · v , such that

1. x · (a u + b v ) = a (x ·u ) + b (x · v ),

2. (a x + b y ) · v = a (x · v ) + b (y · v ),

3. [x , y ] · v = x · (y · v )− y · (x · v )

for all x , y ∈ g, u , v ∈V , and a , b ∈C [7].

Suppose V is a g-module. Then the mapϕ : g→ g l (V )defined byϕ(x )v = x ·v for all x ∈ g and v ∈V

is a representation. Conversely, if ϕ : g→ g l (V ) is a representation, then by defining x · v =ϕ(x )v
for all x ∈ g and v ∈V , we see that V is a g-module. Thus, representations and g-modules can be

used interchangeably.

Example 2.2.3. [25] Let g= s l (2,C) and V =C2. Define the map ϕ : s l (2,C)→ g l (C2) by ϕ(x )v =

x v (matrix multiplication) for x ∈ s l (2,C) and v ∈C2. The map ϕ is a representation, and hence,

C2 is an s l (2,C)-module by x · v = x v .

Example 2.2.4. [25] Let g be a Lie algebra. Define the map ad:g→ g l (g) by ad(x )y = adx y = [x , y ]

for x , y ∈ g. This map is a representation of g on itself and is called the adjoint representation [7].

Let V be a g-module, and let S be a subspace of V . We say that S is a submodule of V if x · u ∈ S

for all x ∈ g and u ∈ S [7]. Suppose that V 6= {0} and that V has no proper submodules. Then V is

irreducible.

Example 2.2.5. [25] Let g= s l (n +1,C) and V =Cn . Under the action x · v = x v (matrix multipli-

cation), V is an irreducible g-module.

Now let g be a Lie algebra, and let V and W be two g-modules. Suppose we have a linear transforma-

tionϕ : V →W . Ifϕ(x ·v ) = x ·ϕ(v ) for all x ∈ g and v ∈V , thenϕ is a g-module homomorphism. As

with Lie algebra homomorphisms, if ϕ is one-to-one and onto, then the g-module homomorphism

ϕ is an isomorphism, i.e. V ∼=W .

In [6], we see that the representation theory of a Lie algebra g parallels the representation theory of

its universal enveloping algebra U (g). Hence we can extend all of the aforementioned definitions

for the Lie algebra g to U (g).

8
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2.3 Kac-Moody Lie algebras

In this section, we define a class of infinite-dimensional Lie algebras called Kac-Moody Lie algebras.

These algebras can be constructed from a special matrix, called a generalized Cartan matrix, and

are a generalization of finite-dimensional semisimple Lie algebras.

But first, we will define the special affine Lie algebra, denoted A(1)n or ŝ l (n +1,C), by construction,

starting from the finite-dimensional simple Lie algebra s l (n+1,C). This affine Lie algebra is infinite-

dimensional and is the base of our main focus in this thesis. First recall that a linear transformation

∂ : g→ g is a derivation of g if ∂ ([x , y ]) = [∂ (x ), y ] + [x ,∂ (y )] for all x , y ∈ g.

The special affine Lie algebra can be constructed as follows [12]. Let

A(1)n = ŝ l (n +1,C) = s l (n +1,C)⊗C[t , t −1]⊕Cc ⊕Cd ,

where C[t , t −1] is the Laurent polynomial ring, c is central, and d is the derivation 1⊗ t d
d t , with the

following bracket structure:

[x ⊗ t i , y ⊗ t j ] = [x , y ]⊗ t i+ j + tr(x , y )iδi+ j ,0c ,

[d , x ⊗ t i ] = i (x ⊗ t i ),

[d , c ] = 0,

for all x , y ∈ s l (n +1,C) and i , j ∈Z.

The following elements generate this algebra:

e0 = F0⊗ t ,

f0 = E0⊗ t −1,

h0 =−H0⊗1+ c ,

ei = Ei ⊗1,

fi = Fi ⊗1,

hi =Hi ⊗1,

and c = h0+h1+ · · ·+hn and the Ei , Fi , and Hi generate s l (n +1,C).

An n × n integer matrix A = (ai j ) is called a generalized Cartan matrix (GCM) if the following

conditions hold:

1. ai i = 2 for all i = 1, . . . , n ,

9



2.3. Kac-Moody Lie algebras Chapter 2. Lie Algebra Representations

2. ai j ≤ 0 if i 6= j ,

3. ai j = 0 if and only if a j i = 0.

A matrix A is a Cartan matrix if it satisfies the above conditions and is positive-definite. If there

exists an n × n diagonal matrix D = diag(si ), such that si ∈ Z>0 and D A is symmetric, then A is

symmetrizable. The GCM A is indecomposable if for every pair of nonempty subsets I1, I2 ⊂ I with

I1 ∪ I2 = I , there exists some i ∈ I1 and j ∈ I2 such that ai j 6= 0.

Theorem 2.3.1. [12] Let A = (ai j ) be an indecomposable n ×n GCM, and let u , v ∈Rn . We say that

u > 0 if ui > 0 and that u ≥ 0 if ui ≥ 0 for all i = 1,2, . . . , n. Then one and only one of the following

three possibilities hold for both A and AT :

(Finite) detA 6= 0; there exists u > 0 such that Au > 0; Av ≥ 0 implies v > 0 or v = 0.

(Affine) corankA = 1; there exists u > 0 such that Au = 0; Av ≥ 0 implies Av = 0.

(Indefinite) There exists u > 0 such that Au < 0; Av ≥ 0 and v ≥ 0 imply v = 0.

We say that the GCM A is of finite, affine, or indefinite type if A satisfies the corresponding condition.

Let A = (ai j ) be an n × n GCM. Then there exists an oriented graph, which we call the Dynkin

diagram, which has n vertices. The directed edges are defined by the following [12]:

• If ai j a j i ≤ 4 and |ai j |≥ |a j i |, then the vertices i and j are connected with |ai j | edges, with the

arrow pointing toward i if |ai j |> 1.

• If ai j a j i > 4, then the vertices i and j are connected with a bold edge, labeled with the ordered

pair (|ai j |, |a j i |).

Hence, given a GCM we can create a Dynkin diagram, and we can recover the GCM if given the

Dynkin diagram, up to the order of indices.

Example 2.3.2. Here is one example of a GCM and its corresponding Dynkin diagram:

A =

�

2 −1
−1 2

�

1 2

Figure 2.2 Generalized Cartan matrix and Dynkin diagram

10
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Let A = (ai j ) be an n × n symmetrizable GCM. The Cartan datum [12] of A is the quintuple

(A,Π,Π∨, P, P ∨), where Π, Π∨, P , and P ∨ are defined as follows:

(dual-weight lattice) P ∨ is a free abelian group of rank 2n − rankA with Z-basis

{hi |i = 1, . . . , n}∪ {ds |s = 1, 2, . . . , n − rankA}.

(Cartan subalgebra) h=C⊗Z P ∨.

(weight lattice) P = {λ ∈ h∗|λ(P ∨)⊂Z}.

(simple coroots) Π∨ = {hi |i = 1, . . . , n}.

(simple roots) Π= {αi |i = 1, . . . , n} ⊂ h∗, a linearly independent subset satisfying

α j (hi ) =αi j and α j (ds ) =δs j .

The fundamental weights Λi ∈ h∗ are linear functionals on h and defined as follows:

Λi (h j ) =δi j and Λi (ds ) = 0

for i , j ∈ I and s = 1, 2, . . . , |I |−rankA.

Definition 2.3.3. [12] The Kac-Moody Lie algebra g associated with a Cartan datum (A,Π,Π∨, P, P ∨)

is the Lie algebra generated by the elements ei , fi (i ∈ I ) and h ∈ P ∨ such that the following relations

hold:

1. [h , h ′] = 0 for h , h ′ ∈ P ∨,

2. [ei , fi ] =δi j hi ,

3. [h , ei ] =αi (h )ei for h ∈ P ∨,

4. [h , fi ] =−αi (h ) fi for h ∈ P ∨,

5. (adei )1−ai j e j = 0 for i 6= j ,

6. (ad fi )1−ai j f j = 0 for i 6= j .

Example 2.3.4. [12] The special linear Lie algebra An = s l (n + 1,C) is a Kac-Moody Lie algebra

and has the following GCM and corresponding Dynkin diagram:

11
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A =

























2 −1 0 0 · · · 0

−1 2 −1 0
... 0

0 −1 2 −1
... 0

0 0 −1 2
...

...
...

...
...

...
... −1

0 0 0 · · · −1 2

























· · ·
21 n-1 n

Figure 2.3 Generalized Cartan matrix and Dynkin diagram for An = s l (n +1,C)

If A is a GCM of affine type, then we call the quintuple (A,Π,Π∨, P, P ∨) an affine Cartan datum and

to each we can associate the affine Kac-Moody Lie algebra g.

Example 2.3.5. [12] The special affine Lie algebra A(1)n = ŝ l (n+1,C) is also a Kac-Moody Lie algebra,

with GCM and Dynkin diagram as follows:

A =

























2 −1 0 0 · · · −1

−1 2 −1 0
... 0

0 −1 2 −1
...

...

0 0 −1 2
...

...
...

...
...

...
... −1

−1 0 0 · · · −1 2

























n+1

· · ·
21 n-1 n

Figure 2.4 Generalized Cartan matrix and Dynkin diagram for A(1)n = ŝ l (n +1,C)

The affine Kac-Moody Lie algebra A(1)n has root basisΠ= {α0,α1, . . . ,αn}, coroot basisΠ∨ = {h0, h1, . . . , hn} ⊂
h, and the imaginary roots of g are nonzero integral multiples of the null root δ=α0+α1+ · · ·+αn .

The free abelian group A =
⊕

i Zαi , for i = 1, . . . , n , is called the root lattice, which can be separated

into two parts: the positive root lattice Q+ =
∑

i∈I

Z≥0αi and the negative root lattice Q− =−Q+ [12].

For each α ∈Q , let

gα = {x ∈ g|[h , x ] =α(h )x for all h ∈ h}.

12
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If α 6= 0 and gα 6= {0}, then α is a root of g and gα is called the root space. The dimension of gα is

called the root multiplicity of α. Let ∆ represent the set of all roots, ∆+ =∆∩Q+ be the set of all

positive roots, and∆− =∆∩Q− be the set of all negative roots.

Proposition 2.3.6. [12] The Kac-Moody Lie algebra g has the following triangular decomposition:

g=

�

⊕

α∈∆−
gα

�

⊕h⊕

�

⊕

α∈∆+
gα

�

= g−⊕h⊕g+,

where dim gα <∞ for all α ∈∆.

We also have the Chevalley involution, which leads to special properties of the triangular decompo-

sition.

Proposition 2.3.7. [12] There exists an involutionω : g→ g, called the Chevalley involution, such

that ei 7→ − fi , fi 7→ −ei , and h 7→ −h.

The triangular decomposition given in Proposition 2.3.6 implies that if α is a positive root, then we

have gα ∈ g+, and ifα is negative, then gα ∈ g−. Proposition 2.3.7 implies that mult(α) =mult(−α) [12].

Now we introduce the Weyl group, which plays a key role in this paper. The simple reflection ri ,

i=1,. . . ,n, on h∗ is the linear functional given by ri (λ) =λ−λ(hi )αi [7]. The simple reflections generate

a subgroup W of End(h∗), which we call the Weyl group. Let w ∈W . Then w can be written in terms

of the simple reflections, w = ri1
ri2
· · · rit

. If t is minimal, then we say that w is reduced and t is

called the length of w , denoted l (w ).

Example 2.3.8. [25] The Weyl group for An = s l (n +1,C) is isomorphic to the symmetric group

Sn+1. The Weyl group for A(1)n is W = 〈r0, r1, . . . , rn 〉. In particular, the Weyl group W = 〈r0, r1〉 for A(1)1

is the infinite Dihedral group {(r0r1)m , r1(r0r1)m |m ∈Z}.

Let g be a Kac-Moody Lie algebra. We can construct an associative algebra for g using the following

proposition.

Proposition 2.3.9. [6] The universal enveloping algebra U (g) of g is the associative algebra over C
with unity generated by ei , fi (i ∈ I ) and h satisfying the following relations:

1. hh ′ = h ′h for h , h ′ ∈ h,

2. ei f j − f j ei =δi j hi , for i , j ∈ I ,

3. hei − ei h =αi (h )ei for h ∈ h, i ∈ I ,

13
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4. h fi − fi h =−αi (h ) fi for h ∈ h, i ∈ I ,

5.

1−ai j
∑

k=0

(−1)k
�

1−ai j

k

�

e
1−ai j−k
i e j e k

i = 0 for i 6= j ,

6.

1−ai j
∑

k=0

(−1)k
�

1−ai j

k

�

f
1−ai j−k

i f j f k
i = 0 for i 6= j .

LetU + (respectively, U 0 andU −) be the subalgebra ofU (g) generated by the elements ei (respectively,

h and fi ), for i = 1, . . . , n . We define the root spaces of U (g) by the following equations:

Uβ = {u ∈U (g)|h u −uh =β (h )u for all h ∈ h} for β ∈Q ,

U ±
β = {u ∈U ±|h u −uh =β (h )u for all h ∈ h} for β ∈Q±.

Proposition 2.3.10. [6] Let g be a Kac-Moody Lie algebra and let U (g) be the associated universal

enveloping algebra. Then we have the following:

1. U (g)∼=U −⊗U 0⊗U +.

2. U (g) =
⊕

β∈Q

Uβ .

3. U ± =
⊕

β∈Q±

U ±
β .

2.4 Representation Theory

For this section, let g be a symmetrizable Kac-Moody Lie algebra, and let V be a g-module. Recall

that, by the PBW Theorem, the representation theory of g parallels the representation theory of

its universal enveloping algebra U (g). Hence, the definitions and properties in this section can be

extended for U (g).

For any µ ∈ h∗, the µ-weight space is defined as

Vµ = {v ∈V |h v =µ(h )v for all h ∈ h}.

If Vµ 6= 0, then µ is called a weight and vectors v ∈ Vµ are called weight vectors of weight µ. The

dimension of Vµ is called the weight multiplicity of µ [25]. A g-module V is called a weight module if

14



2.4. Representation Theory Chapter 2. Lie Algebra Representations

it admits a weight space decomposition

V =
⊕

µ∈h∗
Vµ.

Recall the positive root lattice Q+ =
∑

i∈I

Z≥0αi . Define a partial ordering on h∗ by

λ≥µ if and only if λ−µ ∈Q+

for λ,µ ∈ h∗. For λ ∈ h∗, let D (λ) = {µ ∈ h∗|µ ≤ λ}, which is called the λ-cone [25]. The category O
[25] is the set of weight modules V over g with finite-dimensional weight spaces for which there

exists a finite number of elements λ1,λ2, . . . ,λs ∈ h∗ such that

wt(V )⊂D (λ1)∪ · · · ∪D (λs ).

A weight module V is a highest weight module of highest weight λ ∈ h∗ if there exists a nonzero

vector vλ ∈V , called a highest weight vector, such that

ei vλ = 0 for all i ∈ I ,

h vλ =λ(h )vλ for all h ∈ h,

V =U (g)vλ.

For example, if we fix λ ∈ h∗ and let J (λ) be the ideal of U (g) generated by all ei and h −λ(h )1, for

i = 1, . . . , n and h ∈ h, then M (λ) =U (g)/J (λ) is called the Verma module if it has a U (g)-module

structure by left multiplication [25].

Proposition 2.4.1. [12]

1. M (λ) is a highest weight g-module with highest weightλ and highest weight vector vλ = 1+ J (λ).

2. Every highest weight g-module with highest weight λ is a homomorphic image of M (λ).

3. As a U −-module, M (λ) is free of rank 1, generated by the highest weight vector vλ = 1+ J (λ).

4. M (λ) has a unique maximal submodule.

Let N (λ) be the unique maximal submodule of M (λ). Then V (λ) =M (λ)/N (λ) is the irreducible

highest weight module [25].

15



2.4. Representation Theory Chapter 2. Lie Algebra Representations

Proposition 2.4.2. [12] Every irreducible g-module in the category O is isomorphic to V (λ) for some

λ ∈ h∗.

Suppose we have a Kac-Moody algebra g and a g-module V . If for any v ∈V , there exists a positive

integer N such that x N · v = 0, then x ∈ g is locally nilpotent on V . We say that a weight module

V over a Kac-Moody Lie algebra g is integrable if all ei and fi , i ∈ I , are locally nilpotent on V [25].

We call the elements in the weight lattice P = {λ ∈ h∗|λ(hi ) ∈Z for all i = 1, . . . , n} integral weights,

and if we restrict this set to the positive part P + = {λ ∈ P |λ(hi ) ∈Z≥0 for all i = 1, . . . , n}, we call the

resulting set the dominant integral weights.

We define category Oi n t to be the category containing all integrable g-modules in the category O
such that wt(V ) ⊂ P . Any g-module in category Oi n t is completely reducible, with weight space

decomposition V =
⊕

λ∈P

Vλ, where Vλ = {v ∈V |hi v =λ(hi )v for all i ∈ I } [25].

We have the following results:

Proposition 2.4.3. [12] Let V (λ) be the irreducible highest weight g-module with highest weight

λ ∈ h∗. Then V (λ) is in category Oi n t . Namely, V (λ) is integrable if and only if λ ∈ P +.

Theorem 2.4.4. [12] Let g be a symmetrizable Kac-Moody Lie algebra associated with the Cartan

datum (A,Π,Π∨, P, P ∨). Then every irreducible g-module in the category Oi n t is isomorphic to V (λ),

where λ ∈ P +.
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Chapter

3

Quantum Groups and Crystal Bases

In this chapter, we recall the definitions of quantum groups, their representation theory, and the

associated crystal bases from [6]. We’ll start with the definition of the quantum group Uq (g) asso-

ciated with a symmetrizable Kac-Moody Lie algebra g, focusing on the special case g= A(1)n . Then

we’ll discuss the integrable representations of Uq (g) and their crystal bases.

3.1 Quantum Groups

In this section, we introduce some definitions and facts about quantum groups and their represen-

tations.

Let m , n ∈ Z and let q be any indeterminate. A q-integer is defined as [n ]q =
q n −q−n

q −q−1
. We also

define q-factorials by the following equations:

[0]q != 1 and [n ]q != [n ]q [n −1]q · · · [1]q ,

17
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for n > 0. Let m ≥ n ≥ 0. Then we define the q-binomial coefficient by the equation [6]:

�

m

n

�

q

=
[m ]q !

[n ]q ! [m −n ]q !
.

Let (A,Π,Π∨, P, P ∨) be a Cartan datum associated with n × n symmetrizable GCM A = (ai j ). Let

D = diag(si ∈Z>0|i = 1, . . . , n ) be the symmetrizing matrix for A. The quantum group or the quan-

tized universal enveloping algebra Uq (g) associated with the Cartan datum (A,Π,Π∨, P, P ∨) is the

associative algebra over C(q )with unity generated by the elements ei , fi , and q h , where i = 1, . . . , n

and q ∈ P ∨, with the following relations [6]:

1. q 0 = 1, q h q h ′ = q h+h ′ for h , h ′ ∈ P ∨,

2. q h ei q−h = qαi (h )ei for h ∈ P ∨,

3. q h fi q−h = q−αi (h ) fi for h ∈ P ∨,

4. ei f j − f j ei =δi j
q si hi −q−si hi

q si −q−si
for i , j ∈ I ,

5.

1−ai j
∑

k=0

(−1)k
�

1−ai j

k

�

q si

e
1−ai j−k
i e j e k

i = 0 for i 6= j ,

6.

1−ai j
∑

k=0

(−1)k
�

1−ai j

k

�

q si

f
1−ai j−k

i f j f k
i = 0 for i 6= j .

As q → 1, notice that Uq (g)→U (g).

Example 3.1.1. [25] Let g= s l (2,C). Then the quantum group Uq (s l (2,C)) is the associative algebra

generated by {e , f , q h} satisfying the following relations:

1. q h e q−h = q 2e ,

2. q h f q−h = q−2 f ,

3. e f − f e =
q h −q−h

q −q−1
.

As with U (g), the quantum group Uq (g) has the following triangular decomposition [6]:

Uq (g)∼=Uq (g)
+⊗Uq (g)

0⊗Uq (g)
−,
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where Uq (g)+ (respectively, Uq (g)− and Uq (g)0) is the subalgebra generated by the elements ei (re-

spectively, fi and q h for h ∈ P ∨).

Now let V q be a Uq (g)-module. The following definitions are recalled from [6]. For any µ ∈ P , the

µ-weight space is

V q
µ = {v ∈V q |q h v = qµ(h )v for all h ∈ P ∨.

If V
q
µ 6= 0, then µ is called a weight, and all vectors v ∈V

q
µ are weight vectors of weight µ. The weight

multiplicity of µ is defined as the dimension of V
q
µ . If a Uq (g)-module V q admits a weight space

decomposition

V q =
⊕

µ∈P

V q
µ ,

then V q is a weight module. And V q is a highest weight module with highest weight λ ∈ P if there

exists 0 6= vλ ∈V q such that

ei vλ = 0 for all i ∈ I ,

q h vλ = qλ(h )vλ for all h ∈ P ∨,

V q =Uq (g)vλ.

As with U (g), we can define the Verma module associated with Uq (g) by

M q (λ) =Uq (g)/J q (λ),

where λ ∈ P is fixed and J q (λ) is the left ideal of Uq (g) generated by ei and q h −qλ(h )1, for i = 1, . . . , n

and h ∈ P ∨ [6]. The Verma module M q (λ) is a Uq (g)-module if we use left multiplication. By [6],

M q (λ) is a highest weight module with highest weight λ and highest weight vector vλ = 1+ J q (λ),

and M q (λ) has a unique maximal submodule, denoted N q (λ). The module V q (λ) =M q (λ)/N q (λ)

is the irreducible highest weight module with highest weight λ [6]. V q (λ) is integrable if all ei and

fi are locally nilpotent on V q . We also recall the definition of the category Oq , which consists of

weight modules V q with finite-dimensional weight spaces such that

wt(V q )⊂D (λ1)∪D (λ2)∪ · · · ∪D (λs ),

where wt(V q ) is the set of weights of V q , s <∞, and D (λ) = {µ ∈ P |µ≤ λ} is the λ-cone [6]. If we

restrict category ′ to integrable Uq (g)-modules, then we have the category ′qi n t , in which all modules

are completely reducible and have weight space decompositions.
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Proposition 3.1.2. [6] Let V q (λ) be the irreducible highest weight Uq (g)-module with highest weight

λ ∈ P . Then V q (λ) is in category Oq
i n t . Namely, V q (λ) is integrable if and only if λ ∈ P +.

3.2 Crystal Base Theory

We recall necessary definitions and properties of crystal base theory from [6]. We begin by recalling

the definitions of Kashiwara operators upon which we will rely heavily.

Lemma 3.2.1. [6] Let V q =
⊕

λ∈P

V
q
λ be a Uq (g)-module in the category Oq

i n t and let λ be a weight of

V q such that V
q
λ 6= 0. For each i ∈ I , every weight vector v ∈V

q
λ may be written in the form

v = v0+ fi v1+ · · ·+ f (n )i vn ,

where n ∈ Z≥0, vk ∈ V
q
λ+kαi

∩ kerei , and f (k )i =
f k

i

[k ]q !
. Each vk in the above expression is uniquely

determined by v , and vk 6= 0 only if λ(hi ) +k ≥ 0.

We can now define the Kashiwara operators ẽi , f̃i : V q →V q , for i ∈ I , which are endomorphisms

on V q such that for v ∈V q ,

ẽi v =
n
∑

k=1

f (k−1)
i vk and f̃i v =

n
∑

k=1

f (k+1)
i vk .

Note that for v ∈V
q
λ , ẽi v ∈V

q
λ+αi

and f̃i v ∈V
q
λ−αi

. Let

A=
�

g (q )
h (q )

�

�

�

�

g (q ), h (q ) ∈C[q ], h (0) 6= 0

�

,

which is a principal ideal domain with C(q ) as its field of quotients. And let V q ∈ Oq
i n t . A free

A-submodule L of V q is a crystal lattice if

1. L generates V q as a vector space over C(q ), or equivalently, V
q
µ
∼= C(q )⊗A Lµ for each µ ∈

wt(V q ),

2. L=
⊕

λ∈P

Lλ, where Lλ =L∩V
q
λ for all λ ∈ P ,

3. ẽiL⊂L, f̃iL⊂L for all i ∈ I .

Let J= 〈q 〉 be the unique maximal ideal of A. Then there exists an isomorphism of fields A/J→C
given by f (q )+J 7→ f (0). Hence,C⊗AL∼=L/qL. Since the operators ẽi and f̃i preserve the lattice
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L, we can also define the Kashiwara operators ẽi and f̃i on L/qL [6].

Recall from [6] that a crystal base for V q is a pair (L,B) such that

1. L is a crystal lattice of V q ,

2. B is a C-basis of L/qL∼=C⊗AL,

3. B =
⊔

λ∈P

Bλ, where Bλ =B∩ (Lλ/qLλ),

4. ẽiB ⊂B∪{0}, f̃iB ⊂B∪{0} for all i ∈ I ,

5. for any b , b ′ ∈B and i ∈ I , we have f̃i b = b ′ if and only if b = ẽi b ′.

Each crystal base (L,B) for V q ∈Oq
i n t has an associated crystal graph, which is a directed graph.

The vertex set consists of all elements of B, and the edge set consists of i -colored arrows. Two nodes

b , b ′ ∈ B are joined by an i -colored arrow, b
i→ b ′, if and only if f̃i b = b ′ for i ∈ I . We denote the

crystal graph of V q by B. We define the maps εi , ϕi :B→Z for i ∈ I by

εi (b ) =max
�

k ≥ 0|ẽi
k b ∈B

	

,

ϕi (b ) =max
¦

k ≥ 0| f̃i
k

b ∈B
©

.

Hence, εi denotes the number of i -colored arrows coming into the vertex b , and ϕi denotes the

number of i -colored arrows coming out of the vertex b . Therefore, ϕi (b ) + εi (b ) is the length of the

i -string through b and ϕi (b )− εi (b ) =λ(hi ) [6].

Theorem 3.2.2. (cf. [6]) Let λ ∈ P + be a dominant integral weight, and let V q (λ) be the irreducible

highest weight Uq (g)-module with highest weight λ and highest weight vector vλ. Let

L(λ) =
∑

r≥0,ik∈I

A f̃i1
f̃i2
· · · f̃ir

vλ,

and

B(λ) =
�

f̃i1
f̃i2
· · · f̃ir

vλ+qL(λ) ∈L(λ)/qL(λ)
�

� r ≥ 0, ik ∈ I
	

\{0}.

Then the pair (L(λ),B(λ)) is a crystal base of V q (λ).

We have the following result for crystal bases:

21



3.2. Crystal Base Theory Chapter 3. Quantum Groups and Crystal Bases

Theorem 3.2.3. [6] Let V
q

j be a Uq (g)-module in the category Oq
i n t , and let (L j ,B j ) be a crystal base

of V
q

j , for j = 1, 2. Set L=L1⊗AL2 and B =B1×B2. Then (L,B) is a crystal base of V
q

1 ⊗C(q )V
q

2 where

the Kashiwara operators ẽi and f̃i on B are defined as follows:

ẽi (b1⊗ b2) =







ẽi b1⊗ b2, if ϕi (b1)≥ εi (b2),

b1⊗ ẽi b2, if ϕi (b1)< εi (b2),

f̃i (b1⊗ b2) =







f̃i b1⊗ b2, if ϕi (b1)> εi (b2),

b1⊗ f̃i b2, if ϕi (b1)≤ εi (b2).

Hence, we have the following:

wt (b1⊗ b2) =wt (b1) +wt (b2),

εi (b1⊗ b2) =max (εi (b1),εi (b2)−〈hi , wt (b1)〉),

ϕi (b1⊗ b2) =max (ϕi (b2),ϕi (b1) + 〈hi , wt (b2)〉).

Note that b1⊗0= 0⊗ b2 = 0, and that we write b1⊗ b2 instead of (b1, b2) ∈B×B2. Also, we denote the

crystal graph of V
q

1 ⊗V
q

2 as B1⊗B2.

Let A = (ai j ) be an n × n GCM with Cartan datum (A,Π,Π∨, P, P ∨). Define the maps wt: B → P ,

ẽi , f̃i : B→ B ∪ {0}, and εi ,ϕi : B→ Z∪ {−∞}, for i ∈ I , a finite index set, such that the following

conditions hold:

1. ϕi (b ) = ε(b ) + 〈hi , wt (b )〉 for all i ∈ I ,

2. wt (ẽi b ) =wt (b ) +αi if ẽi b ∈B,

3. wt ( f̃i b ) =wt (b )−αi if f̃i b ∈B,

4. εi (ẽi b ) = εi (b )−1, ϕi (ẽi b ) =ϕi (b ) +1 if ẽi b ∈B,

5. εi ( f̃i b ) = εi (b ) +1, ϕi ( f̃i b ) =ϕi (b )−1 if f̃i b ∈B,

6. f̃i b = b ′ if and only if b = ẽi b ′ for b , b ′ ∈B, i ∈ I ,

7. if ϕi (b ) =−∞ for b ∈B, then ẽi b = f̃i b = 0.

A set B, along with the above maps and conditions, is called a crystal that is associated with the

Cartan datum and hence, with Uq (g) [6]. Recall from [6] that Theorem 3.2.3 also holds for these
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3.3. Perfect Crystals Chapter 3. Quantum Groups and Crystal Bases

crystals. Now suppose we have two crystals B1,B2 associated with the same Cartan datum. A crystal

morphism Ψ :B1→B2 is a map Ψ :B1 ∪{0}→B2 ∪{0} such that

1. Ψ(0) = 0,

2. if b ∈B1 and Ψ(b ) ∈B2, then wt (Ψ(b )) =wt (b ), εi (Ψ(b )) = εi (b ), and ϕi (Ψ(b )) =ϕi (b ) for all

i ∈ I ,

3. if b , b ′ ∈B1, Ψ(b ),Ψ(b ′) ∈B2, and f̃i b = b ′, then f̃iΨ(b ) =Ψ(b ′) and Ψ(b ) = ẽiΨ(b ′) for all i ∈ I .

A crystal morphism Ψ :B1→B2 is an isomorphism if it is both one-to-one and onto from B1 ∪{0} to

B2 ∪{0} [6].

3.3 Perfect Crystals

In this section, we introduce the notion of a perfect crystal for a quantum affine algebra. Again, let

A = (ai j ) be an (n +1)× (n +1) affine GCM, with indices i , j = 0,1, . . . , n . Let (A,Π,Π∨, P, P ∨) be the

Cartan datum for the quantum affine algebra Uq (g).

Let U ′
q (g) be the subalgebra of Uq (g) generated by {ei , fi , q±si hi |i ∈ I }. This subalgebra is also called

the quantum affine algebra [6]. Let

P̄ ∨ =Zh0⊕Zh1⊕ · · ·⊕Zhn and h̄=C⊗Z P̄ ∨.

If we consider αi and Λi as linear functionals on h̄, we can define the classical weights as elements of

P̄ =ZΛ0⊕ZΛ1⊕ · · ·⊕ZΛn .

We call the quintuple (A,Π,Π∨, P̄ , P̄ ∨) a classical Cartan datum. Hence, the quantum affine algebra

U ′
q (g) is the quantum group associated with the classical Cartan datum [6]. The crystal associated

with (A,Π,Π∨, P̄ , P̄ ∨) is called a classical crystal, or a U ′
q (g)-crystal [6].

Example 3.3.1. [25] Let g = A(1)1 and consider Uq (g) and V q = C(q )v0 ⊕C(q )v1. Then V q is a

U ′
q (g)-module where

e1v0 = 0,

f1v0 = v1,

q s1λ(h1)v0 = q v0,

e1v1 = v0,

f1v1 = 0,

q s1λ(h1)v1 = q−1v1,
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and the affine action is given by:

e0v0 = v1,

f0v0 = 0,

q s0λ(h0)v0 = q−1v0,

e0v1 = 0,

f0v1 = v0,

q s0λ(h0)v1 = q v1.

Hence, defining L = Av0 ⊕Av1 and B = {v0, v1}, we have that (L,B) is a crystal base for V q as a

U ′
q (g)-module. The following diagram depicts the crystal graph for V q :

v0 v11

0

Figure 3.1 Crystal graph for U ′
q (g)-module V q

Now, let B be a classical crystal. For b ∈B, define

ε(b ) =
∑

i∈I

εi (b )Λi and ϕ(b ) =
∑

i∈I

ϕi (b )Λi .

Note that wt (b ) =ϕ(b )− ε(b ). For a positive integer ` > 0, set

P̄ +` =
�

λ ∈ P̄ +
�

� 〈c ,λ〉= `
	

.

Definition 3.3.2. [6] For a positive integer ` > 0, we say that a finite classical crystal B` is a perfect

crystal of level ` if it satisfies the following conditions:

1. There exists a finite-dimensional U ′
q (g)-module with a crystal basis whose crystal graph is

isomorphic to B`.

2. B`⊗B` is connected.

3. There exists a classical weight λ0 ∈ P̄ such that

wt (B)⊂λ0+
∑

i 6=0

Z≤0αi , #(Bλ0
) = 1.

24



3.3. Perfect Crystals Chapter 3. Quantum Groups and Crystal Bases

4. For any b ∈B, we have 〈c ,ε(b )〉 ≥ `.

5. For each λ ∈ P̄ +` , there exist unique vectors b λ, bλ ∈B such that ε(b λ) =λ and ϕ(bλ) =λ.

For λ ∈ P̄ +` , we say that bλ is λ-minimal if

λ=ϕ(bλ) =
∑

i∈I

ϕi (bλ)Λi .

Example 3.3.3. [6] Let g= A(1)2 and let `= 2. Define

B2 =

¨

(m1, m2, m0) ∈Z3
≥0

�

�

�

�

�

3
∑

i=1

mi = `

«

.

Define the following for b ∈B2:

ẽ0(b ) = (m1−1, m2, m0+1),

f̃0(b ) = (m1+1, m2, m0−1),

ϕ0(b ) =m0,

ε0(b ) =m1,

ẽ1(b ) = (m1+1, m2−1, m0),

f̃1(b ) = (m1−1, m2+1, m0),

ϕ1(b ) =m1,

ε1(b ) =m2,

ẽ2(b ) = (m1, m2+1, m0−1),

f̃2(b ) = (m1, m2−1, m0+1),

ϕ2(b ) =m2,

ε2(b ) =m0,

and

wt(b ) = (mn −m0)Λn +
n−1
∑

i=0

(mi −mi+1)Λi

=
n
∑

i=0

(ϕi (b )− εi (b ))Λi ,

ϕ(b ) =
n
∑

i=0

ϕi (b )Λi ,

ε(b ) =
n
∑

i=0

εi (b )Λi .

By the axioms listed in Definition 3.3.2, B2 is a perfect crystal of level 2 for Uq

�

A(1)2

�

, and is depicted

in Figure 3.2. In this figure, the labels on the edges represent the Kashiwara operator action used.

Notice that for λ= 2Λ0, the λ-minimal element is b2Λ0
= (0, 0, 2), since ϕ(0, 0, 2) =λ.
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(2,0,0)

(1,0,1)

(0,0,2)

(1,1,0)

(0,1,1)

(0,2,0)

2

2

2

0

0

0

1

1

1

Figure 3.2 Perfect crystal of level 2 for Uq

�

A(1)2

�

We end this section with a result that is essential for understanding path realization, which we

discuss in the next section.

Theorem 3.3.4. [6] The following map

Ψ :B(λ)→B(ε(bλ))⊗B`

given by uλ 7→ uε(bλ)⊗bλ, where uλ is the highest weight vector of B(λ) and uε(bλ) is the highest weight

vector of B(ε(bλ)), is a strict isomorphism of crystals.

3.4 Path Realizations

At the end of the previous section, we gave Theorem 3.3.4. This theorem contributed to the develop-

ment of path realizations of crystal graphs, which we recall from [6].

Let

λ1 =λ, λk+1 = ε(bλk
),

b1 = bλ, bk+1 = bλk+1
.
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These definitions give us a crystal isomorphism

Ψ :B(λ j )→B(λ j+1)⊗B`,

which is defined by uλ j
7→ uλ j+1

⊗ b j . We can then construct a sequence of crystal isomorphisms

B(λ)→B(λ2)⊗B`→B(λ3)⊗B`⊗B`→ ·· ·→B(λk+1)⊗B⊗k
` → ·· · ,

which is defined by

uλ 7→ uλ2
⊗ b1 7→ uλ3

⊗ b2⊗ b1 7→ · · · 7→ uλk+1
⊗ bk ⊗ · · ·⊗ b2⊗ b1 7→ · · · .

Now we have two infinite sequences, which we denote by

wλ = (λk )
∞
k=1 = (. . . ,λk+1,λk , . . . ,λ2,λ1) ∈ (P̄ +` )

∞,

pλ = (bk )
∞
k=1 = · · · ⊗ bk+1⊗ bk ⊗ · · ·⊗ b2⊗ b1 ∈B⊗∞.

Hence, for each k ≥ 1, we have the crystal isomorphism

Ψk :B(λ)→B(λk+1)⊗B⊗k

defined by

uλ 7→ uλk+1
⊗ bk ⊗ · · ·⊗ b2⊗ b1.

Because P̄ +` and in B` each have a finite number of elements, there exist N > 0 and k ≥ 1 such that

λk+N =λk , and hence, bk+N = bk since ϕ is bijective. Since ε is also bijective, we have the following

equations:

b1 =ϕ
−1(λ1) =ϕ

−1(λN+1) = bN+1,

λ2 = ε(b1) = ε(bN+1) =λN+2,

b2 =ϕ
−1(λ2) =ϕ

−1(λN+2) = bN+2,

...

λ j = ε(b j−1) = ε(bN+ j−1) =λN+ j ,

b j =ϕ
−1(λ j ) =ϕ

−1(λN+ j ) = bN+ j ,

...
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λN = ε(bN−1) = ε(b2N−1) =λ2N ,

bN =ϕ
−1(λN ) =ϕ

−1(λ2N ) = b2N .

Thus, wλ and pλ are periodic sequences, each with period N > 0. We call pλ = (bk )∞k=1 = · · · ⊗ bk+1⊗
bk ⊗ · · · ⊗ b2 ⊗ b1 the ground-state path of weight λ, and p = (pk )

∞
k=1 = · · ·pk+1 ⊗pk ⊗ · · · ⊗p2 ⊗p1 a

λ-path, where pk ∈B` such that pk = bk for all k � 1. We use P(λ) to denote the set of all λ-paths in

B` [6].

Example 3.4.1. We refer back to Example 3.3.3, in which g = A(1)2 , level ` = 2, and λ = 2Λ0. We

construct the ground-state path for this example- see Figure 3.2 for a visual of the perfect crystal B2.

From Example 3.3.3, we know that the λ-minimal element is (0, 0, 2); hence, we set bλ1
= b1 = (0, 0, 2)

and λ1 = 2Λ0 = λ. We compute ε(b1) = 2Λ2, and set λ2 = 2Λ2 and bλ2
= (0,2,0). Next we compute

ε(b2) = 2Λ1, and set λ3 = 2Λ1 and b3 = (2, 0, 0). If we compute ε(b3), we obtain 2Λ0, which is equiva-

lent to λ1.

Hence, the ground-state path is

pλ = . . .⊗ b3⊗ b2⊗ b1⊗ b3⊗ b2⊗ b1

= . . .⊗ (2, 0, 0)⊗ (0, 2, 0)⊗ (0, 0, 2)⊗ (2, 0, 0)⊗ (0, 2, 0)⊗ (0, 0, 2).

An example of a λ-path is

p= . . .⊗ (2, 0, 0)⊗ (0, 2, 0)⊗ (0, 0, 2)⊗ (2, 0, 0)⊗ (1, 1, 0)⊗ (0, 1, 1).

Theorem 3.4.2. [6] Let p= (pk )
∞
k=1 be a λ-path in B` and let N > 0 be the smallest positive integer

such that pk = bk for all k ≥N . For each i ∈ I , define

wtp=λN +
N−1
∑

k=1

wtpk ,

ẽi p= · · · ⊗pN+1⊗ ẽi (pN ⊗ · · ·⊗p1),

f̃i p= · · · ⊗pN+1⊗ f̃i (pN ⊗ · · ·⊗p1),

εi (p) =max (εi (p
′)−ϕi (bN ), 0),

ϕi (p) =ϕi (p
′) +max (ϕi (bN )− εi (p

′), 0),

where p′ = pN−1 ⊗ · · · ⊗p1 ⊗p1 and wt denotes the classical weights. Then the maps wt : P(λ)→ P̄ ,

ẽi , f̃i :P(λ)→P(λ)t{0}, and εi ,ϕi :P(λ)→Z define a U ′
q (g)-crystal structure on P(λ).
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Theorem 3.4.3. [14] There exists an isomorphism of U ′
q (g)-crystals

Ψ :B(λ)→P(λ)

given by

uλ 7→ pλ.

The previous theorem defines the path realization of the classical crystal B(λ). Now we are ready to

provide the reader with the definitions of Demazure modules and crystals.
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4

Demazure Modules and Crystals

A Demazure module is a certain finite-dimensional subspace of an integrable module for a Kac-

Moody algebra parameterized by elements in the Weyl group and dominant integral weights. Kashi-

wara showed that the crystal for a Demazure module is a subset of the crystal for the corresponding

integrable highest weight module. Subsequently, path realizations of these Demazure crystals were

given in [21]. They also showed that these path realizations have tensor product-like structures. We

focus on Demazure crystals for Uq

�

A(1)n

�

. We recall definitions and main results from ([20], [21], [14]).

4.1 Demazure Modules and Crystals

Let V q (λ) be the irreducible highest weight Uq (g)-module in Oq
i n t . Then V q (λ) has highest weight λ

and highest weight vector uλ [6]. We recall that dimV q (λ)λ = dimV q (λ)wλ = 1 for any w ∈W , where

W is the Weyl group [12]. We call the basis vector uwλ of V q (λ)wλ the extremal vector.

Definition 4.1.1. Fix w ∈W and λ ∈ P̄ +. Then Vw (λ) =Uq (g)+uwλ is called the Demazure module

associated with w .

Demazure modules are finite-dimensional subspaces of V q (λ) such that

1. V q (λ) =
⋃

w∈W
Vw (λ),
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2. For w , w ′ ∈W with w �w ′ (the Bruhat order), Vw (λ)⊂Vw ′ (λ).

Now letB(λ) andL(λ) be the crystal and crystal lattice for V q (λ), respectively. Kashiwara [18] showed

that for each w ∈W , there exists a subset Bw (λ) of B (λ) such that

Vw (λ)∩L(λ)
Vw (λ)∩qL(λ)

=
⊕

b∈Bw (λ)

Qb .

The subset Bw (λ) of B (λ) defined above is the crystal for the Demazure module Vw (λ), and it is called

the Demazure crystal [18]. Kashiwara also proved that the Demazure crystal Bw (λ) has the following

recursive property:

If ri w �w , then Bri w (λ) =
⋃

n≥0

f̃ n
i Bw (λ)\{0}. (4.1)

Let B` be a perfect crystal of level ` for Uq (g), where λ(c ) = `≥ 1. Recall that by Theorem 3.3.4, there

exists an isomorphism between the crystal B(λ) and the set of λ-paths P =P(λ,B`), in which the

highest weight vector uλ ∈B(λ) identifies with the ground-state path pλ = · · ·⊗b3⊗b2⊗b1. The path

realizations for the Demazure crystals Bw (λ) are defined in the following way [21]:

First, choose d ,κ ∈Z>0. For a sequence of elements {i ( j )a | j ≥ 1,1≤ a ≤ d } ⊂ {0,1, . . . , n}, define the

subsets {B ( j )a | j ≥ 1, 0≤ a ≤ d } as follows:

B
( j )
0 = {b j }, B ( j )a =

⋃

k≥0

f̃ k

i
( j )
a

B
( j )
a−1\{0}.

Now define B
( j+1, j )
a for j ≥ 1, 0≤ a ≤ d , by

B
( j+1, j )
0 = B

( j+1)
0 ⊗B

( j )
d , B ( j+1, j )

a =
⋃

k≥0

f̃ k

i
( j+1)
a

B
( j+1, j )
a−1 \{0}.

Continue in this way, until we define:

B
( j+κ−1,..., j )
0 = B

( j+κ−1)
0 ⊗B

( j+κ−2,..., j )
d ,

B ( j+κ−1,..., j )
a =

⋃

k≥0

f̃ k

i
( j+κ−1)
a

B
( j+κ−1,..., j )
a−1 \{0}.

Let

w (0) = 1, w (k ) = r
( j )

ia
w (k−1)

define a sequence of Weyl group elements {w (k )|w (k ) ∈ W , k > 0}, where j and a are fixed by

k = ( j −1)d +a , for j ≥ 1, 1≤ a ≤ d . Also, define the subsets P (k )(λ,B`) of P(λ,B`), for k ≥ 0, by the
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following:

P (0)(λ,B`) = {pλ},

P (k )(λ,B`) =







· · · ⊗B
( j+2)
0 ⊗B

( j+1)
0 ⊗B

( j ,...,1)
a if j <κ,

· · · ⊗B
( j+2)
0 ⊗B

( j+1)
0 ⊗B

( j ,..., j−κ+1)
a ⊗B⊗( j−κ) if j ≥ κ.

We end this section with a theorem that describes the combinatorial structure of Demazure crystals

Bw (k ) (λ).

Theorem 4.1.2. [21] Let λ ∈ P̄ + with λ(c ) = `, and let B` be a perfect crystal of level ` for the quantum

affine algebra Uq (g). For fixed d ,κ ∈Z>0, suppose we have a sequence of integers {i ( j )a | j ≥ 1,1≤ a ≤
d } ⊂ {0, 1, . . . , n} satisfying the following conditions:

1. for any j ≥ 1, B
( j+κ−1,..., j )
d = B

( j+κ−1,..., j+1)
d ⊗B`,

2. for any j ≥ 1 and 1≤ a ≤ d , 〈λ j , h
i
( j )
a
〉 ≤ ε

i
( j )
a
(b ), b ∈ B

( j )
a−1, and

3. the sequence of elements {w (k )}k≥0 is an increasing sequence of Weyl group elements with respect

to the Bruhat order.

Then we have that Bw (k ) (λ)∼=P (k )(λ,B`).

4.2 λ= `Λ j Case

In this section, we give explicit descriptions corresponding to Demazure crystals Bw (λ) of Uq (A
(1)
n ),

for which λ= `Λ j . For the rest of this thesis, assume that g= A(1)n .

First, we define the set

B` =
¨

(m1, m2, . . . , mn , m0) ∈Zn+1
≥0

�

�

�

�

�

n
∑

i=0

mi = `

«

and give the actions of ẽi and f̃i as follows:

ẽ0(m1, m2, . . . , mn , m0) = (m1−1, m2, . . . , mn , m0+1),

ẽi (m1, m2, . . . , mn , m0) = (m1, . . . , mi +1, mi+1−1, mi+2, . . . , mn , m0),

f̃0(m1, m2, . . . , mn , m0) = (m1+1, m2, . . . , mn , m0−1),
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f̃i (m1, m2, . . . , mn , m0) = (m1, . . . , mi −1, mi+1+1, mi+2, . . . , mn , m0),

for 1≤ i ≤ n . For any b ∈B`, if ẽi (b ) or f̃i (b ) /∈B`, e.g. if mi becomes negative, then we understand

it to be 0. We also define

εi (b ) =mi+1,

ϕi (b ) =mi ,

wt(b ) =
n
∑

i=0

(ϕi (b )− εi (b ))Λi ,

for 0≤ i ≤ n , where n +1≡ 0.

By [15], B` is a perfect crystal of level ` for Uq (A
(1)
n ). We note that B`, with ϕi , εi , ẽi , f̃i , and wt(b )

defined as above for 1≤ i ≤ n , is the crystal for the irreducible s l (n +1)-module V (`Λ1). By [7], we

then have

|B`|=
∏

α�0(`Λ1+δ,α)
∏

α�0(δ,α)
.

Note that

δ=
1

2

∑

α�0

α

=
1

2

∑

1≤i< j≤n+1

(εi − ε j )

=
1

2

n+1
∑

m=1

(n −2(m −1))εm .

Hence, the numerator

∏

α�0

(`Λ1+δ,α) =
∏

1≤i< j≤n+1

�

`ε1+
1

2

n+1
∑

m=1

(n −2(m −1))εm ,εi − ε j

�

=
∏

2≤ j≤n+1

�

1

2

�

(2`+n )ε1+
n+1
∑

m=2

(n −2(m −1))εm

�

,ε1− ε j

�

·
∏

2≤i< j≤n+1

�

1

2

�

(2`+n )ε1+
n+1
∑

m=2

(n −2(m −1))εm

�

,εi − ε j

�

=
∏

2≤ j≤n+1

1

2

�

2`+n − (n −2( j −1))
�

∏

2≤i< j≤n+1

1

2

�

n −2(i −1)− (n −2( j −1))
�

,
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and the denominator

∏

α�0

(δ,α) =
∏

1≤i< j≤n+1

�

1

2

n+1
∑

m=1

(n −2(m −1))εm ,εi − ε j

�

=
∏

1≤i< j≤n+1

�

1

2

�

n −2(i −1)− (n −2( j −1))
�

�

=
∏

1≤i< j≤n+1

( j − i ).

Thus,

|B`|=
(k +1)(k +2) · · · (k +n )(1)n−1(2)n−2 · · · (n −2)2(n −1)

(1)n (2)n−1(3)n−2 · · · (n −2)3(n −1)2(n )1
=

�

n + `
`

�

.

Now we construct the sequence of integers

{i ( j )a | j ≥ 1, 1≤ a ≤ d } ⊂ {0, 1, . . . , n}.

In this thesis, we study A(1)n -perfect crystals B` =B1,`. So, as in [20], set d = n , r = a −1−ng , and

g =
�

a−1
n

�

, where 1≤ a ≤ n . Hence, g = 0 for all a and n . Then we define

i ( j )a = 1− j − g + r = 1− j + (a −1) = a − j .

Thus, we have the sequence of integers {i ( j )a = a − j | j ≥ 1, 1≤ a ≤ n}. Using this sequence of integers,

we can define

w (0) = 1 and w (k ) = r
i
( j )
a

w (k−1),

where j and a are fixed by k = ( j −1)d +a = ( j −1)n +a .

We define

w (n ) = ri (1)n
ri (1)n−1
· · · ri (1)2

ri (1)1

= rn−1rn−2 · · · r1r0,

w (2n ) =
�

ri (2)n
ri (2)n−1
· · · ri (2)2

ri (2)1

��

ri (1)n
ri (1)n−1
· · · ri (1)2

ri (1)1

�

= (rn−2 · · · r0rn ) (rn−1 · · · r1r0) ,

...

w (Ln ) =
�

ri (L )n
ri (L )n−1
· · · ri (L )2

ri (L )1

�

· · ·
�

ri (2)n
ri (2)n−1
· · · ri (2)2

ri (2)1

��

ri (1)n
ri (1)n−1
· · · ri (1)2

ri (1)1

�
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= (rn−L · · · rn−L+3rn−L+2) · · · (rn−2 · · · r0rn ) (rn−1 · · · r1r0) .

We denote w (L , 0) =w (Ln ). Note that w (L , 0) has length Ln .

Remark 1. Each sequence of simple reflections ris
· · · ri2

ri1
, for it ∈ {0,1, . . . , n}, corresponds to a

sequence of Kashiwara operators f̃is
· · · f̃i2

f̃i1
, in which each Kashiwara operator is applied as many

times as possible to elements in B`.

We have the automorphismσ such thatσ(ri ) = ri+1 for 0≤ i ≤ n , where ri is a simple reflection in

W andσ(rn ) = r0. We define the notation

w (L , j ) =σ j (w (Ln )) =
�

r j+n−L · · · r j+2−L r j+1−L

�

· · ·
�

r j+n−2 · · · r j r j+n

� �

r j+n−1 · · · r j+1r j

�

.

Let λ= `Λ j . Then the λ-minimal element is (0, . . . , 0,`, 0, . . . , 0), where the ` is in the ( j )t h coordinate,

and the ground-state path is:

pλ = . . .⊗ b1⊗ bn+1⊗ bn ⊗ . . .⊗ b2⊗ b1

= . . .⊗ (0, . . . , 0,`, 0, . . . , 0)⊗ . . .⊗ (0, . . . ,`, 0)⊗ (0, . . . , 0,`)⊗ (`, 0, . . . , 0)⊗ . . .

. . .⊗ (0, . . . ,`, 0, 0, . . . , 0)⊗ (0, . . . , 0,`, 0, . . . , 0),

where the ` in the rightmost component of the tensor product is in the ( j )t h component, and as we

move left along the tensor product, the ` shifts left in the (n +1)-tuple.

We wish to construct the Demazure crystals Bw (L , j )(`Λ j ). Recall Equation 4.1, which gives a recur-

sive property of these Demazure crystals. In order to use this definition, we need to define the

(i )-signature of a path [21].

Let p ∈P(λ, B ) correspond to uλk
⊗p (k )⊗ · · ·⊗p (1). For each p (t ), we associate the following:

ε(t ) =
�

ε(t )1 ,ε(t )2 , . . . ,ε(t )m

�

,

m = εi (p (t ))+ϕi (p (t )),

ε(t )a =







−, if 1≤ a ≤ εi (p (t ))

+, if εi (p (t ))< a ≤m .

For the highest weight vector uλk
, we have ε(k+1) = (+, . . . ,+), where there are 〈λk , hi 〉 pluses. Then

we append the ε( j )’s, forming ε=
�

ε(k+1),ε(k ), . . . ,ε(1)
�

. We call this the (i )-signature of p truncated
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at the k t h position. We can also form a sequence of signatures, ε= η0,η1, . . . ,ηmax, where ηt+1 is

obtained from ηt by removing the leftmost adjacent (+,−) pair of ηt and ηmax is of the form:

ηmax = (−, . . . ,−,+, . . . ,+)

for n− ≥ 0 minuses and n+ ≥ 0 pluses. We call ηmax the reduced (i )-signature and denote it by ε̄.

We can use these (i )-signatures to determine on which component of the path p ẽi or f̃i acts. If

n− = 0 (respectively, n+ = 0), then we set ẽi p = 0 (respectively, f̃i p = 0). Otherwise, take the rightmost

− (respectively, leftmost +) and find the component ε(t ) to which it belongs. Then

ẽi p = · · · ⊗ ẽi p (t )⊗ · · ·⊗p (2)⊗p (1),

or respectively,

f̃i p = · · · ⊗ f̃i p (t )⊗ · · ·⊗p (2)⊗p (1).

Note that if k is large enough, then t doesn’t depend on the choice of k .

Example 4.2.1. Referring back to Example 3.4.1, we have g = A(1)2 , level ` = 2, and λ = 2Λ0. Our

example of a λ-path was

p= . . .⊗ (2, 0, 0)⊗ (0, 2, 0)⊗ (0, 0, 2)⊗ (2, 0, 0)⊗ (1, 1, 0)⊗ (0, 1, 1).

The (2)-signature for the above λ-path is (. . . ,•,+2,−2,•,+,−+), where we place •’s as placeholders

for components in the tensor product that don’t have any +’s or −’s in the (2)-signature. The

corresponding reduced (2)-signature is (+), since the sequence (•,+2,−2) is repeated infinitely many

times and all (+,−) pairs cancel. The (0)-signature for the above λ-path is (. . . ,−2,•,+2,−2,−,+),

which reduces to (−,+), and the (1)-signature is (. . . ,+2,−2,•,+2,−+,−), which reduces to (+,•,•).

In general, for b = (m1, m2, . . . , mn , m0) ∈B`, the (i )-signature is
�

−mi+1
+mi

�

.

We write the ground-state path as

uλ = . . .⊗ bn+2⊗ bn+1⊗ . . .⊗ b3⊗ b2⊗ b1

= . . .⊗ b`Λ j
⊗ b`Λ j+1

⊗ . . .⊗ b`Λ j+n−1
⊗ b`Λ j+n

⊗ b`Λ j
,
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and we denote

u`Λ j−L
⊗BL

` = u`Λ j−L
⊗B`⊗ . . .⊗B`
︸ ︷︷ ︸

L

=
n

u`Λ j−L
⊗ bρ1

⊗ bρ2
⊗ . . .⊗ bρL

�

�

�bρt
∈B` for 1≤ t ≤ L

o

.

Remark 2. The (i )-signature for any path in the set u`Λ j−L
⊗ bµ⊗BL−1

` is of the form















�

−`,•,∗µ,∗1, . . . ,∗L−1

�

, if i = j − L −1,
�

+`,∗µ,∗1, . . . ,∗L−1

�

, if i = j − L ,
�∗µ,∗1, . . . ,∗L−1

�

, if i 6= j − L −1, j − L ,

where ∗t is a sequence of the form (−at
+st
), at , st ∈Z≥0, for each 1≤ t ≤ L −1. Hence, the (L +1)s t

component from the right for any path in the set u`Λ j−L
⊗ bµ⊗BL−1

` is only affected if i = j − L .

Lemma 4.2.2. Let λ= `Λ j . Then Bw (L , j )(λ)⊂ u`Λ j−L
⊗BL

` .

Proof. Let L = 1. Then we have w (1, j ) = (r j+n−1 · · · r j+1r j ). By Remark 2, the second component

from the right in u`Λ j
can only be affected if r j−1 is in the sequence w (1, j ). Hence, the only compo-

nent affected in ukΛ j
is the first component from the right. Thus, Bw (1, j )(`Λ j )⊂ u`Λ j−1

⊗B`.

Now, suppose Bw (L−1, j )(`Λ j )⊂ u`Λ j−L+1
⊗B L−1. We want to prove the claim for L . Note that

w (L , j ) = (r j+n−L · · · r j+2−L r j+1−L ) · · · (r j+n−2 · · · r j r j+n )(r j+n−1 · · · r j+1r j )

= (r j+n−L · · · r j+2−L r j+1−L )w (L −1, j ).

By our induction hypothesis, we know that Bw (L−1, j )(`Λ j )⊂ u`Λ j−L+1
⊗BL−1

` . By definition, Bw (L , j )(`Λ j )

is formed by applying each f̃t , for j + 2− L ≤ t ≤ j +n − L , in the given order as many times as

possible to every path in Brt−1···r j+1−L w (L−1, j )(`Λ j ). By Remark 2, we need to apply f̃ j−L to paths in the

set u`Λ j−L
⊗ b`Λ j−L+1

⊗BL−1
` in order to affect the (L +1)s t component from the right. But the Weyl

group sequence w (L , j ) does not contain the simple reflection r j−L in the last n simple reflections.

Hence, only the first L components in the tensor product u`Λ j−L
⊗ b`Λ j−L+1

⊗BL−1
` can be affected.

Thus, Bw (L , j )(kΛ j )⊂ ukΛ j−L
⊗B L .

We now give explicit descriptions for the Demazure crystals Bw (L , j )(`Λ j ).
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Theorem 4.2.3. We have the following:

Bw (L , j+1)(`Λ j ) = u`Λ j−L+1
⊗BL−1

` ,

Bw (L , j+s )(`Λ j ) =
¦

u`Λ j−L
⊗ bµs−1

⊗BL−1
`

©

,

Bw (L , j )(`Λ j ) = u`Λ j−L
⊗BL

` ,

where

bµs−1
=
�

m1, m2, . . . , m j+s−L , 0, . . . , 0, m j+1−L , m j+2−L , . . . , mn , m0

�

∈B`, s = 2, 3, . . . , n .

Proof. Let L = 1. Then we have the sequence of Weyl group elements w (1, j ) = r j+n−1 · · · r j+1r j . By

definition and by Remark 2, the only Kashiwara operator that will affect u`Λ j
is f̃ j . Hence, we apply

f̃ j exactly (m j+1) times to u`Λ j
to produce the paths u`Λ j−1

⊗ bµ1
, where

bµ1
= (0, . . . , 0, m j , m j+1, 0, . . . , 0) ∈B`.

Then these paths have ( j +1)-signature (+m j+1
). Hence, we can apply f̃ j+1 a total of (m j+2) times to

these new paths to produce the following paths u`Λ j−1
⊗ bµ2

, where

bµ2
= (0, . . . , 0, m j , m j+1, m j+2, 0, . . . , 0) ∈B`.

The ( j +2)-signature for these paths is
�

+m j+2

�

, and hence, we can apply f̃ j+3 a sufficient number of

times to produce the paths u`Λ j−1
⊗ bµ3

, where bµ3
= (0, . . . ,0, m j , m j+1, m j+2, m j+3,0, . . . ,0) ∈B`. If

we continue this pattern, we form the paths u`Λ j−1
⊗ bµs

, where

bµs
= (m1, . . . , m j+s , 0, . . . , 0, m j , m j+1, . . . , mn , m0) ∈B`,

with ( j + s )-signature (+m j+s
), for s = 1, 2, . . . , n −1.

If s = n−1, then we can apply f̃ j+n−1 a total of (m j+n ) times to produce the paths u`Λ j−1
⊗bµn

, where

bµn
=
�

m1, . . . , m j+n−1, m j+n , m j , . . . , m0

�

∈B`.

Note that the set
¦

u`Λ j−1
⊗ bµn

©

= u`Λ j−1
⊗B` = Bw (1, j )(`Λ j ),
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by construction. Also, notice that

w (1, j +1) =
�

r j+n r j+n−1 · · · r j+2r j+1

�

, which doesn’t contain r j , and

w (1, j + s ) =
�

r j+s+n−1 · · · r j+s+1r j+s

�

=
�

r j+s+n−1 · · · r j+1r j · · · r j+s+1r j+s

�

.

Since only r j affects u`Λ j
, we have

Bw (1, j+1)(`Λ j ) = u`Λ j
,

Bw (1, j+s )(`Λ j ) = B(r j+s+n−1···r j+1r j )(`Λ j )

=
¦

u`Λ j−1
⊗ bµs−1

©

,

where bµs−1
= (m1, . . . , m j+s−1, 0, . . . , 0, m j , m j+1, . . . , mn , m0) ∈B` and s = 2, . . . , n .

Now, let L = 2. Then we have the sequence of Weyl group elements

w (2, j ) =
�

r j+n−2 · · · r j r j+n

� �

r j+n−1 · · · r j+1r j

�

=
�

r j+n−2 · · · r j r j+n

�

w (1, j ).

By Lemma 4.2.2, we know that Bw (2, j )(`Λ j ) ⊂ u`Λ j−2
⊗ B2

` . We want to show that u`Λ j−2
⊗ B2

` ⊂
Bw (2, j )(`Λ j ). Note that by applying the Kashiwara operators corresponding to the Weyl group se-

quence w (1, j ), we obtain all paths in the set u`Λ j−1
⊗B`. Suppose we want to obtain all paths of the

form

u`Λ j−2
⊗ bµ1

⊗B`,

where bµ1
= (0, . . . ,0, m j−1, m j ,0, . . . ,0) ∈ B`. Note that the ( j − 1)-signature for paths of the form

u`Λ j−1
⊗bν, where bν ∈B`, is of the form (+`,∗1). Suppose∗1 contains no more than (`−m j )negatives.

Then we can apply f̃ j−1 exactly m j times to form the paths u`Λ j−2
⊗ bµ1

⊗ bν. If ∗1 contains more

than (`−m j ) negatives, then we can form all other paths of the form u`Λ j−2
⊗ bµ1

⊗ bν by letting f̃ j−1

act a total of (m j + v j − (`−m j )) times on the paths

u`Λ j−1
⊗
�

v1, . . . , v j−1+ v j − (`−m j ),`−m j , v j+1, . . . , vn , v0

�

,

which have ( j −1)-signatures
�

+m j
,+v j−1+v j−(`−m j )

�

. By only using the Weyl reflections r j−1w (1, j ),

we have produced all paths of the form u`Λ j−2
⊗ bµ1

⊗B`.
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Now suppose we want to obtain all paths of the form

u`Λ j−2
⊗ bµ2

⊗B`,

where bµ2
= (0, . . . , 0, m j−1, m j , m j+1, 0, . . . , 0) ∈B`. Note that the ( j )-signature for paths u`Λ j−2

⊗bµ1
⊗

bν, where bν ∈B`, is of the form
�

+m j
,∗1

�

. Suppose∗1 contains no more than (m j −m j+1) negatives.

Then we can apply f̃ j exactly m j+1 times to form the paths u`Λ j−2
⊗ bµ2

⊗ bν. If ∗1 contains more

than (m j −m j+1) negatives, then we can construct all other paths of the form u`Λ j−2
⊗ bµ2

⊗ bν by

letting f̃ j act on the paths

u`Λ j−2
⊗ bµ1

⊗
�

v1, . . . , v j + v j+1− (m j −m j+1), m j −m j+1, v j+2, . . . , vn , v0

�

,

which have ( j )-signatures
�

+m j+1
,+v j+v j+1−(m j−m j+1)

�

. Hence, applying f̃ j a total number of
�

m j+1+ v j+1− (m j −m j+1)
�

times will produce the desired paths.

Suppose we now have paths of the form u`Λ j−2
⊗ bµs

⊗B`, where

bµs
=
�

m1, . . . , m j−1+s , 0, . . . , 0, m j 01, . . . , mn , m0

�

∈B`,

and that we constructed these paths using the Weyl reflections
�

r j−2+s · · · r j r j−1

�

w (1, j ). We want to

construct all paths of the form

u`Λ j−2
⊗ bµs+1

⊗B`,

where bµs+1
=
�

m1, . . . , m j+s , 0, . . . , 0, m j−1, . . . , mn , m0

�

∈ B`. Note that the ( j − 1+ s )-signature for

paths u`Λ j−2
⊗ bµs

⊗ bν, where bν ∈ B`, is of the form
�

+m j−1+s
,∗1

�

. Suppose ∗1 has no more than

(m j−1+s −m j+s ) negatives. Then we can apply f̃ j−1+s exactly m j+s times to form the paths u`Λ j−2
⊗

bµs+1
⊗ bν. If ∗1 contains more than (m j−1+s −m j+s ) negatives, then we can construct these paths

by letting f̃ j−1+s act on the paths

u`Λ j−2
⊗ bµs

⊗
�

v1, . . . , v j−1+s + v j+s − (m j−1+s −m j+s ), m j−1+s −m j+s , v j+s+1, . . . , vn , v0

�

,

which have ( j−1+s )-signatures
�

+m j+s
,+v j+s−(m j−1+s−m j+s )

�

, a total number of (m j+s+v j+s−(m j−1+s−
m j+s )) times.

Note that using the Weyl reflections w (2, j ) will thus produce all paths of the form u`Λ j−2
⊗ bµn

⊗B`,
where

bµn
=
�

m1, . . . , m j−2, m j−1, . . . , mn , m0

�

∈B`,
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and hence Bw (2, j )(`Λ j ) = u`Λ j−2
⊗B2

` . We also have that

Bw (2, j+1)(`Λ j ) = Bw (1, j )w (1, j+1)(`Λ j )

= Bw (1, j )(`Λ j )

= u`Λ j−1
⊗B`,

Bw (2, j+s )(`Λ j ) = B(r j+s+n−2···r j+s r j+s+n )w (1, j+s )(`Λ j )

= B(r j+s+n−2···r j r j−1)w (1, j )(`Λ j )

=
n

u`Λ j−2
⊗ bµs−1

⊗ bν

�

�

�bν ∈B`
o

,

where bµs−1
=
�

m1, . . . , m j+s−2, 0, . . . , 0, m j−1, m j , . . . , mn , m0

�

and s = 2, 3, . . . , n .

Now suppose the claim holds for L −1. Mainly, suppose that Bw (L−1, j )(`Λ j ) = u`Λ j+1−L
⊗BL−1

` . We

want to prove the the L case. The sequence of Weyl group elements

w (L , j ) =
�

r j+n−L · · · r j+2−L r j+1−L

�

· · ·
�

r j+n−2 · · · r j r j+n

� �

r j+n−1 · · · r j+1r j

�

=
�

r j+n−L · · · r j+2−L r j+1−L

�

w (L −1, j ).

By Lemma 4.2.2, we know that Bw (L , j )(`Λ j ) ⊂ u`Λ j−L
⊗ BL

` . We want to show that u`Λ j−L
⊗ BL

` ⊂
Bw (L , j )(`Λ j ). Note that by applying the Kashiwara operators corresponding to the Weyl group

sequence w (L −1, j ), we obtain all paths in the set u`Λ j+1−L
⊗BL−1

` . Suppose we want to obtain all

paths of the form

u`Λ j−L
⊗ bµ1

⊗BL−1
` ,

where bµ1
=
�

0, . . . , 0, m j+1−L , m j+2−L , 0, . . . , 0
�

∈ B`. Note that the ( j + 1− L )-signature for paths of

the form

u`Λ j+1−L
⊗ bρ1

⊗ bρ2
⊗ · · ·⊗ bρL−1

,

where bρi
=
�

pi ,1, pi ,2, . . . , pi ,n , pi ,0

�

∈ B`, is of the form (+`,∗1,∗2, . . . ,∗L−1). Problems arise when

there are negatives in the rightmost (L−1) components of this signature that cancel too many pluses

in the (L )t h component from the right, leaving fewer than m j+2−L pluses.

Suppose a1 is the smallest positive integer such that

a1
∑

i=1

pi , j+2−L >
a1
∑

i=1

pi−1, j+1−L ,
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where we define p0, j+1−L = 0. In other words, bρa1
is the first bρt

component of the tensor product

from the left in which the total number of negatives in the ( j + 1− L )-signature is more than the

total number of positives. Let

c1 =
a1
∑

i=1

pi , j+2−L −
a1
∑

i=1

pi−1, j+1−L

represent how many more negatives there are than positives in these components of the ( j +1− L )-

signature. If `− c1 <m j+2−L , let k1 = a1. However, if `− c1 ≥m j+2−L , then let a2 be the smallest

positive integer such that
a2
∑

i=a1+1

pi , j+2−L >
a2
∑

i=a1+1

pi−1, j+1−L ,

and define

c2 =
a2
∑

i=a1+1

pi , j+2−L −
a2
∑

i=a1+1

pi−1, j+1−L .

If `− c1 − c2 < m j+2−L , then let k1 = a2. Otherwise, continue this process until we have at , the

smallest positive integer such that

at
∑

i=at−1+1

pi , j+2−L >
at
∑

i=at−1+1

pi−1, j+1−L ,

and define

ct =
at
∑

i=at−1+1

pi , j+2−L −
at
∑

i=at−1+1

pi−1, j+1−L ,

where `−
∑t

s=1 cs <m j+2−L . If no such at exists, then there are no problem spots. Let k1 = at .

Case 4.2.1. Suppose that
z
∑

i=k1+1

pi , j+2−L ≤
z
∑

i=k1+1

pi−1, j+1−L (4.2)

for all z = k1+1, . . . , L −1. Let d1 =

�

t
∑

s=1

cs

�

−
�

`−m j+2−L

�

. Define

bρ∗k1
=
�

pk1,1, pk1,2, . . . , pk1, j−L , pk1, j+1−L +d1, pk1, j+2−L −d1, pk1, j+3−L , . . . , pk1,n , pk1,0

�

∈B`.

The path

u`Λ j−L+1
⊗ bρ1

⊗ · · ·bρ∗k1
⊗ bρk1+1

⊗ · · ·⊗ bρL−1
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has ( j +1− L )-signature

�

+`,
�

−c1+c2+···+ct−1+ct−d1
+pk1, j+1−L+d1

�

, (∗)
�

,

which reduces to

�

+`,
�

−`−m j+2−L
+pk1, j+1−L+d1

�

, (∗)
�

=
�

+m j+2−L
, (+pk1, j+1−L+d1

), (∗)
�

.

By applying f̃ j+1−L to these paths (m j+2−L +d1) times, we produce the paths

u`Λ j−L
⊗
�

0, . . . , 0, m j+1−L , m j+2−L , 0, . . . , 0
�

⊗ bρ1
⊗ · · ·⊗ bρL−1

,

which were the desired paths.

Case 4.2.2. Now suppose that Equation 4.2 were not true. Then, suppose k2 is the smallest positive

integer such that
k2
∑

i=k1+1

pi , j+2−L >
k2
∑

i=k1+1

pi−1, j+1−L .

If
z
∑

i=k2+1

pi , j+2−L ≤
z
∑

i=k2+1

pi−1, j+1−L

for all z = k1+1, . . . , L −1, then we define

d2 =
k2
∑

i=k1+1

pi , j+2−L −
k2−1
∑

i=k1+1

pi−1, j+1−L ∈Z≥0.

Also, define the element

bρ∗k2
=
�

pk2,1, pk2,2, . . . , pk2, j−L , pk2, j+1−L +d2, pk2, j+2−L −d2, pk2, j+3−L , . . . , pk2,n , pk2,0

�

∈B`.

Since the path

u`Λ j−L+1
⊗ bρ1

⊗ · · ·⊗ bρ∗k1
⊗ bρk1+1

⊗ · · ·⊗ bρ∗k2
⊗ bρk2+1

⊗ · · ·⊗ bρL−1

has ( j − L +1)-signature

�

+m j+2−L
, (+pk1, j+1−L+d1

), (−pk2, j+1−L
,•,+pk2, j+2−L−d2

), (−pk2, j+2−L−d2
+pk2, j+1−L+d2

), (∗)
�
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=
�

+m j+2−L
, (+d1

), (+pk2, j+1−L+d2
), (∗)

�

,

we can apply f̃ j+1−L to this path (m j+2−L +d1+d2) times to produce the desired path

u`Λ j−L
⊗ bµ1

⊗ bρ1
⊗ bρ2

⊗ · · ·⊗ bρL−1
.

Note that the −pk2, j+1−L is part of the signature because pk2, j+1−L is included in the definition of d2;

so, we know those pluses must cancel with minuses. Also, note that with the original paths, there

should be an extra d2 negatives; hence the +pk2, j+2−L−d2
would have canceled with most of −pk2, j+2−L

,

leaving behind d2 negatives.

If k2 is not the last time there are more negatives than positives, then we continue with this process.

Suppose we have a solution for the kp case, i.e. let

bρ∗ks
=
�

pks ,1, . . . , pks , j−L , pks , j+1−L +ds , pks , j+2−L −ds , pks , j+3−L , . . . , pks ,n , pks ,0

�

,

d1 =
t
∑

s=1

cs −
�

`−m j+2−L

�

,

ds =
ks
∑

i=ks−1+1

pi , j+2−L −
ks−1
∑

i=ks−1+1

pi−1, j+1−L ∈Z≥0,

for s = 1, 2, . . . , p . Then applying f̃ j+1−L the correct number of times to the path u`Λ j+1−L
⊗ b ′ρ1

⊗ · · ·⊗
bρ′L−1

, where

b ′ρt
=







bρ∗t , if t = ks , s = 1, 2, . . . , p ,

bρt
, else,

produces the desired path u`Λ j−L
⊗ bµ1

⊗ bρ1
⊗ . . .⊗ bρL−1

.

We want to show this is true for the kp+1 case. Define dp+1 in the same way. Then the path u`Λ j+1−L
⊗

b ′ρ1
⊗ · · ·⊗ bρ′L−1

, where

b ′ρt
=







bρ∗t , if t = ks , s = 1, 2, . . . , p +1,

bρt
, else,

has ( j +1− L )-signature

�

+m j+2−L
, (+d1+···+dp−1+pkp , j+1−L+dp

), (−pkp , j+1−L
,+pkp+1, j+2−L−dp+1

), (−pkp+1, j+2−L−dp+1
+pkp+1, j+1−L+dp+1

), (∗)
�
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=
�

+m j+2−L
, (+d1+···+dp

), (+pkp+1, j+1−L+dp+1
), (∗)

�

.

Hence, we can apply f̃ j+1−L to this path (m j+2−L +d1+ · · ·+dp+1) times to obtain the desired path

u`Λ j−L
⊗ bµ1

⊗ bρ1
⊗ · · ·⊗ bρL−1

.

Now, suppose we have all paths of the form u`Λ j−L
⊗ bµs

⊗BL−1
` , where

bµs
=
�

m1, . . . , m j+1+s−L , 0, . . . , 0, m j+1−L , . . . , mn , m0

�

∈B`,

and that we constructed these paths using the Weyl reflections
�

r j+s−L · · · r j+2−L r j+1−L

�

w (L −1, j ).

We want to construct all paths of the form

u`Λ j−L
⊗ bµs+1

⊗BL−1
` ,

where bµs+1
=
�

m1, . . . , m j+s+2−L , 0, . . . , 0, m j+1−L , . . . , mn , m0

�

∈B`.

The paths

u`Λ j−L
⊗ bµs

⊗ bρ1
⊗ · · ·⊗ bρL−1

,

where bρt
∈B`, have ( j + s +1− L )-signatures of the form

�

. . . ,+m j+1+s−L
,∗1,∗2, . . . ,∗L−1

�

. So, again,

problems arise when there are negatives in the last (L −1) components of the signature that cancel

with the (m j+1+s−L ) pluses in the L t h component from the right. Using the same approach as when

forming the paths u`Λ j−L
⊗bµ1

⊗bρ1
⊗· · ·⊗bρL−1

, we can obtain the desired paths. So, if we define at ,

ct , dt , kt , and bρ∗t as before, applying f̃ j+s+1−L a certain number of times to the path

u`Λ j−L
⊗ bµs

⊗ b ′ρ1
⊗ · · ·⊗ b ′ρL−1

,

where

b ′ρt
=







bρ∗t , if t = ks , s = 1, 2, . . . , p ,

bρt
, else,

will produce the desired paths.

Now, suppose that s = n . In other words, using the Weyl reflections (r j+n−L · · · r j+2−L r j+1−L )w (L −
1, j ), we constructed all paths of the form

u`Λ j−L
⊗ bµn

⊗ bρ1
⊗ · · ·⊗ bρL−1

,
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where bµn
= (m1, . . . , mn , m0) , bρt

∈B`. Thus, by definition, we formed all paths in the set u`Λ j−L
⊗BL

` .

In conclusion, we have the following:

Bw (L , j )(`Λ j ) = u`Λ j−L
⊗BL

` ,

Bw (L , j+1)(`Λ j ) = Bw (L−1, j )(`Λ j )

= u`Λ j+1−L
⊗BL−1

` ,

Bw (L , j+s )(`Λ j ) = B(r j+s+n−L ···r j+2−L r j+1−L )w (L−1, j )(`Λ j )

=
n

u`Λ j−L
⊗ bµs−1

⊗ bρ1
⊗ . . .⊗ bρL−1

�

�

�bρt
∈B`

o

,

for s = 2, 3, . . . , n , which is what we wanted to show.

Corollary 4.2.4. We have the following:

1.
⋃

s≥0

Bw (L ,s )(`Λ j ) = u`Λ j−L
⊗BL

` .

2.
⋂

s≥0

Bw (L ,s )(`Λ j ) = u`Λ j+1−L
⊗BL−1

` .

Proof. First, note that w (L , s ) =w (L , s +n +1). Hence,

⋃

s≥0

Bw (L ,s )(`Λ j ) =
n
⋃

s=0

Bw (L ,s )(`Λ j ),

⋂

s≥0

Bw (L ,s )(`Λ j ) =
n
⋂

s=0

Bw (L ,s )(`Λ j ).

By Theorem 4.2.3, we have that

u`Λ j+1−L
⊗BL−1

` = Bw (L , j+1)(`Λ j )⊂ Bw (L , j+2)(`Λ j )⊂ · · · ⊂ Bw (L , j )(`Λ j ) = u`Λ j−L
⊗BL

` . (4.3)

The statement of the corollary follows directly from Equation 4.3.

Example 4.2.5. We explicitly describe the Demazure crystals for Uq

�

A(1)2

�

for which λ = 2Λ2. We

have depicted the perfect crystal B2 in Figure 3.2. Notice that there are

�

n + `
`

�

=

�

4

2

�

= 6

elements in B2.
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Let L = 1. Then we have the following:

w (1, 0) = (r1r0),

w (1, 1) = (r2r1),

w (1, 2) = (r0r2).

(Bw (1,0)(2Λ2)-case): The (0)-signature on u2Λ2
is (. . . ,•,+2,−2,•) = (•). Hence, we cannot apply f̃0 to

u2Λ2
. The (1)-signature on u2Λ2

is (. . . ,•,+2,−2) = (•). So, we cannot apply the f̃1 action either. Thus,

Bw (1,0)(2Λ2) = {u2Λ2
}.

(Bw (1,1)(2Λ2)-case): The f̃1 operator produces no paths. The (2)-signature on u2Λ2
is (. . . ,•,+2,−2,•,+2) =

(+2). Hence, we can apply f̃2 to u2Λ2
twice. We have

f̃2(u2Λ2
) = u2Λ1

⊗ f̃2(0, 2, 0) = u2Λ1
⊗ (0, 1, 1),

f̃ 2
2 (u2Λ2

) = u2Λ1
⊗ f̃2(0, 1, 1) = u2Λ1

⊗ (0, 0, 2).

Thus Bw (1,1)(2Λ2) =
�

u2Λ2
, u2Λ1

⊗ (0, 1, 1), u2Λ1
⊗ (0, 0, 2)

	

.

(Bw (1,2)(2Λ2)-case): Applying f̃2 produces the paths u2Λ1
⊗(0, 1, 1) and u2Λ1

⊗(0, 0, 2). Now we apply the

f̃0 operator to all paths obtained thusfar. Again, f̃0 acting on u2Λ2
produces no new paths. However,

the (0)-signature on u2Λ1
⊗ (0, 1, 1) is (. . . ,•,++,−−,+) = (+). So, we can apply f̃0 once:

f̃0(u2Λ1
⊗ (0, 1, 1)) = u2Λ1

⊗ f̃0(0, 0, 1) = u2Λ1
⊗ (1, 1, 0).

The (0)-signature on u2Λ1
⊗ (0, 0, 2) is (. . . ,•,++,−−,++) = (+2). Thus, we can apply f̃0 twice:

f̃0(u2Λ1
⊗ (0, 0, 2)) = u2Λ1

⊗ f̃0(0, 0, 2) = u2Λ1
⊗ (1, 0, 1),

f̃ 2
0 (u2Λ1

⊗ (0, 0, 2)) = u2Λ1
⊗ f̃0(1, 0, 1) = u2Λ1

⊗ (0, 2, 0).

Hence, Bw (1,2)(λ) = u2Λ1
⊗B2.

Now let L = 2. Then we have the following:

w (2, 0) = (r0r2)(r1r0),

w (2, 1) = (r1r0)(r2r1),
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w (2, 2) = (r2r1)(r0r2).

(Bw (2,0)(λ)-case): Notice that Bw (2,0)(2Λ2) = B(r0r2)w (1,0)(2Λ2) = Bw (1,2)(2Λ2) = u2Λ1
⊗B`.

(Bw (2,1)(λ)-case): Note that Bw (2,1)(2Λ2) = B(r1r0)(r2)(2Λ2) = Br1w (1,2)(2Λ2). So, we need only apply f̃1 to

the paths u2Λ1
⊗B`. Let bµ ∈B`. Then the (1)-signature on u2Λ1

⊗bµ is (. . . ,•,+2,−2,•,+2,∗) = (+2,∗).
We have the following cases:

1. If bµ = (0, 2, 0), then ∗= (−2). Hence, we produce no new paths.

2. If bµ = (0, 1, 1), then ∗= (−), and we can produce one new path:

f̃1(u2Λ1
⊗ bµ) = u2Λ0

⊗ f̃1(2, 0, 0)⊗ (0, 1, 1) = u2Λ0
⊗ (1, 1, 0)⊗ (0, 1, 1).

3. If bµ = (0, 0, 2), then ∗= (•), and we can produce two new paths:

f̃1(u2Λ1
⊗ bµ) = u2Λ0

⊗ f̃1(2, 0, 0)⊗ (0, 0, 2) = u2Λ0
⊗ (1, 1, 0)⊗ (0, 0, 2),

f̃ 2
1 (u2Λ1

⊗ bµ) = u2Λ0
⊗ f̃1(1, 1, 0)⊗ (0, 0, 2) = u2Λ0

⊗ (0, 2, 0)⊗ (0, 0, 2).

4. If bµ = (1, 1, 0), then ∗= (−+) and we can apply f̃1 twice:

f̃1(u2Λ1
⊗ bµ) = u2Λ0

⊗ f̃1(2, 0, 0)⊗ (1, 1, 0) = u2Λ0
⊗ (1, 1, 0)⊗ b (1, 1, 0),

f̃ 2
1 (u2Λ1

⊗ bµ) = u2Λ0
⊗ (1, 1, 0)⊗ f̃1(1, 1, 0) = u2Λ0

⊗ (1, 1, 0)⊗ (0, 2, 0).

5. If bµ = (1, 0, 1), then ∗= (+), and so we can apply f̃1 three times:

f̃1(u2Λ1
⊗ bµ) = u2Λ0

⊗ f̃1(2, 0, 0)⊗ (1, 0, 1) = u2Λ0
⊗ (1, 1, 0)⊗ (1, 0, 1),

f̃ 2
1 (u2Λ1

⊗ bµ) = u2Λ0
⊗ f̃1(1, 1, 0)⊗ (1, 0, 1) = u2Λ0

⊗ (0, 2, 0)⊗ (1, 0, 1),

f̃ 3
1 (u2Λ1

⊗ bµ) = u2Λ0
⊗ (0, 2, 0)⊗ f̃1(1, 0, 1) = u2Λ0

⊗ (0, 2, 0)⊗ (0, 1, 1).

6. If bµ = (2, 0, 0), then ∗= (+2), and so we can produce four new paths:

f̃1(u2Λ1
⊗ bµ) = u2Λ0

⊗ f̃1(2, 0, 0)⊗ (2, 0, 0) = u2Λ0
⊗ (1, 1, 0)⊗ (2, 0, 0),

f̃ 2
1 (u2Λ1

⊗ bµ) = u2Λ0
⊗ f̃1(1, 1, 0)⊗ (2, 0, 0) = u2Λ0

⊗ (0, 2, 0)⊗ (2, 0, 0),

f̃ 3
1 (u2Λ1

⊗ bµ) = u2Λ0
⊗ (0, 2, 0)⊗ f̃1(2, 0, 0) = u2Λ0

⊗ (0, 2, 0)⊗ (1, 1, 0),
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f̃ 4
1 (u2Λ1

⊗ bµ) = u2Λ0
⊗ (0, 2, 0)⊗ f̃1(1, 1, 0) = u2Λ0

⊗ (0, 2, 0)⊗ (0, 2, 0).

Hence, Bw (2,1)(2Λ2) =
�

u2Λ1
⊗B`, u2Λ0

⊗ (1, 1, 0)⊗B`, u2Λ0
⊗ (0, 2, 0)⊗B`

	

.

(Bw (2,2)(2Λ2)-case): Notice that Bw (2,2)(2Λ2) = B(r2)(r1w (1,2))(2Λ2). So, we need only apply f̃2 to all paths

in Bw (2,1)(2Λ2). Let bµ ∈B`. Then the (2)-signature on u2Λ1
⊗ bµ is (. . . ,•,+2,−2,•,∗) = (∗). Hence, we

will not produce any new paths. The (2)-signature on u2Λ0
⊗ (1, 1, 0)⊗bµ is (. . . ,•,+2,−2,+,∗) = (+,∗).

We have the following cases:

1. If bµ = (0,0,2), (1,0,1), or (0,1,1), then ∗ has at least one negative, resulting in the reduced

(2)-signature (∗). Thus, no new paths are produced.

2. If bµ = (1, 1, 0), then ∗= (+), and so, two new paths are produced:

f̃2(u2Λ0
⊗ (1, 1, 0)⊗ bµ) = u2Λ0

⊗ f̃2(1, 1, 0)⊗ (1, 1, 0) = u2Λ0
⊗ (1, 0, 1)⊗ (1, 1, 0),

f̃ 2
2 (u2Λ0

⊗ (1, 1, 0)⊗ bµ) = u2Λ0
⊗ (1, 0, 1)⊗ f̃2(1, 1, 0) = u2Λ0

⊗ (1, 0, 1)⊗ (1, 0, 1).

3. If bµ = (0, 2, 0), then ∗= (+2). Thus, three new paths are produced:

f̃2(u2Λ0
⊗ (1, 1, 0)⊗ bµ) = u2Λ0

⊗ f̃2(1, 1, 0)⊗ (0, 2, 0) = u2Λ0
⊗ (1, 0, 1)⊗ (0, 2, 0),

f̃ 2
2 (u2Λ0

⊗ (1, 1, 0)⊗ bµ) = u2Λ0
⊗ (1, 0, 1)⊗ f̃2(0, 2, 0) = u2Λ0

⊗ (1, 0, 1)⊗ (0, 1, 1),

f̃ 3
2 (u2Λ0

⊗ (1, 1, 0)⊗ bµ) = u2Λ0
⊗ (1, 0, 1)⊗ f̃2(0, 1, 1) = u2Λ0

⊗ (1, 0, 1)⊗ (0, 0, 2).

4. If bµ = (2, 0, 0), then ∗= (•). So, one new path is produced:

f̃2(u2Λ0
⊗ (1, 1, 0)⊗ bµ) = u2Λ0

⊗ f̃2(1, 1, 0)⊗ (2, 0, 0) = u2Λ0
⊗ (1, 0, 1)⊗ (2, 0, 0)

Finally, the (2)-signature on u2Λ0
⊗ (0, 2, 0)⊗ bµ is (. . . ,•,+2,−2,+2,∗). We have the following cases:

1. If bµ = (0, 0, 2), then ∗= (−2). So, no new paths are produced.

2. If µ= (0, 1, 1), then ∗= (−+). Thus, we can apply f̃2 twice:

f̃2(u2Λ0
⊗ (0, 2, 0)⊗ bµ) = u2Λ0

⊗ f̃2(0, 2, 0)⊗ (0, 1, 1) = u2Λ0
⊗ (0, 1, 1)⊗ (0, 1, 1),

f̃ 2
2 (u2Λ0

⊗ b2Λ2
⊗ bµ) = u2Λ0

⊗ (0, 1, 1)⊗ f̃2(0, 1, 1) = u2Λ0
⊗ (0, 1, 1)⊗ (0, 0, 2).
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3. If bµ = (1, 0, 1), then ∗= (−), and so one new path can be produced:

f̃2(u2Λ0
⊗ (0, 2, 0)⊗ bµ) = u2Λ0

⊗ f̃2(0, 2, 0)⊗ (1, 0, 1) = u2Λ0
⊗ (0, 1, 1)⊗ (1, 0, 1).

4. If bµ = (2, 0, 0), then ∗= (•). Thus two new paths can be produced:

f̃2(u2Λ0
⊗ (0, 2, 0)⊗ bµ) = u2Λ0

⊗ f̃2(0, 2, 0)⊗ (2, 0, 0) = u2Λ0
⊗ (0, 1, 1)⊗ (2, 0, 0),

f̃ 2
2 (u2Λ0

⊗ (0, 2, 0)⊗ bµ) = u2Λ0
⊗ f̃2(0, 1, 1)⊗ (2, 0, 0) = u2Λ0

⊗ (0, 0, 2)⊗ (2, 0, 0).

5. If bµ = (1, 1, 0), then ∗= (+). So, we can apply f̃2 three times:

f̃2(u2Λ0
⊗ (0, 2, 0)⊗ bµ) = u2Λ0

⊗ f̃2(0, 2, 0)⊗ (1, 1, 0) = u2Λ0
⊗ (0, 1, 1)⊗ (1, 1, 0),

f̃ 2
2 (u2Λ0

⊗ (0, 2, 0)⊗ bµ) = u2Λ0
⊗ f̃2(0, 1, 1)⊗ (1, 1, 0) = u2Λ0

⊗ (0, 0, 2)⊗ (1, 1, 0),

f̃ 3
2 (u2Λ0

⊗ (0, 2, 0)⊗ bµ) = u2Λ0
⊗ (0, 0, 2)⊗ f̃2(1, 1, 0) = u2Λ0

⊗ (0, 0, 2)⊗ (1, 0, 1).

6. If bµ = (0, 2, 0), then ∗= (+2). So, we can produce four new paths:

f̃2(u2Λ0
⊗ (0, 2, 0)⊗ bµ) = u2Λ0

⊗ f̃2(0, 2, 0)⊗ (0, 2, 0) = u2Λ0
⊗ (0, 1, 1)⊗ (0, 2, 0),

f̃ 2
2 (u2Λ0

⊗ (0, 2, 0)⊗ bµ) = u2Λ0
⊗ f̃2(0, 1, 1)⊗ (0, 2, 0) = u2Λ0

⊗ (0, 0, 2)⊗ (0, 2, 0),

f̃ 3
2 (u2Λ0

⊗ (0, 2, 0)⊗ bµ) = u2Λ0
⊗ (0, 0, 2)⊗ f̃2(0, 2, 0) = u2Λ0

⊗ (0, 0, 2)⊗ (0, 1, 1),

f̃ 4
2 (u2Λ0

⊗ (0, 2, 0)⊗ bµ) = u2Λ0
⊗ (0, 0, 2)⊗ f̃2(0, 1, 1) = u2Λ0

⊗ (0, 0, 2)⊗ (0, 0, 2).

Hence, Bw (2,2)(λ) = u2Λ0
⊗B2

` .
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�

-Demazure Crystals

In this chapter, we give explicit descriptions corresponding to Demazure crystals Bw (λ) of Uq (A
(1)
2 ),

for λ ∈ P̄ +.

We first give an identity for |B`|:

Lemma 5.1. We have the following identity:

∑̀

j=0

�

j +1
�

�

n −2+ `− j

`− j

�

=

�

n + `
`

�

.

Proof. Let n = 2. Then

∑̀

j=0

�

j +1
�

�

n −2+ `− j

`− j

�

=
∑̀

j=0

�

j +1
�

�

`− j

`− j

�

=
∑̀

j=0

�

j +1
�

=
�

1

2
`(`+1)

�

+ (`−0+1)
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= (`+1)
�

1

2
`+1

�

=
(`+1)(`+2)

2

=

�

2+ `
`

�

.

Now let n = 3. Then

∑̀

j=0

�

j +1
�

�

n −2+ `− j

`− j

�

=
∑̀

j=0

�

j +1
�

�

1+ `− j

`− j

�

=
∑̀

j=0

�

j +1
�

(1+ `− j )

=
∑̀

j=0

j `− j 2+ `+1

= (`+1)(`+1) +
1

2
`2(`+1)−

1

6
`(`+1)(2`+1)

= (`+1)
�

`+1+
1

2
`2−

1

6
(2`2)−

1

6
`

�

= (`+1)
�

1

6
`2+

5

6
`+1

�

=
1

6
(`+1)(`+2)(`+3)

=

�

3+ `
`

�

.

Now, suppose we have the following identity for n :

∑̀

j=0

�

j +1
�

�

n −2+ `− j

`− j

�

=

�

n + `
`

�

.

We want to show this is true for n +1, i.e. that

∑̀

j=0

�

j +1
�

�

(n +1)−2+ `− j

`− j

�

=

�

(n +1) + `
`

�

.
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We will use the following recursive identity:

�

n

r

�

=

�

n −1

r

�

+

�

n −1

r −1

�

.

We have:

∑̀

j=0

�

j +1
�

�

(n +1)−2+ `− j

`− j

�

=
∑̀

j=0

�

j +1
�

��

n −2+ `− j

`− j

�

+

�

n −2+ `− j

`− j −1

��

=
∑̀

j=0

�

j +1
�

�

n −2+ `− j

`− j

�

+
∑̀

j=0

( j +1)

�

n −2+ `− j

`− j −1

�

=

�

n + `
`

�

+
∑̀

j=0

( j +1)

�

n −2+ `− j

`− j −1

�

,

where the last step uses the inductive hypothesis. If we look at the second term, we have:

∑̀

j=0

( j +1)

�

n −2+ `− j

`− j −1

�

=
`−1
∑

j=0

( j +1)

�

n −2+ `− j

`− j −1

�

=
`−1
∑

j=0

( j +1)

�

(n +1)−2+ (`−1)− j

(`−1)− j

�

=

�

(n +1) + (`−1)
(`−1)

�

=

�

n + `
`−1

�

,

again using the inductive hypothesis. Hence, we have that

∑̀

j=0

�

j +1
�

�

(n +1)−2+ `− j

k − j

�

=

�

n + `
`

�

+

�

n + `
`−1

�

=

�

(n +1) + `
`

�

.

In general, if λ ∈ P̄ + such that λ(c ) = `, where c is the central element, we can write λ=
∑n

i=0 miΛi ,

where
∑n

i=0 mi = ` and mi ≥ 0 for all i . Recall that m0 =mn+1 and that bλ = (m1, m2, . . . , mn , m0),

since

ϕ(bλ) =ϕ(m1, m2, ..., mn , m0)
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=
n
∑

i=0

ϕi (m1, m2, . . . , mn , m0)Λi

=
n
∑

i=0

miΛi

=λ.

Hence, b (µ) = bµ ∈B` for all µ ∈ P̄ +. Thus, uλ = . . .⊗bσ2(λ)⊗bσ(λ)⊗bλ, whereσ(λ) = ε(bλ). Note, for

example, that bσ(λ) = (m2, m3, . . . , mn , m0, m1). This leads to the following lemma.

Lemma 5.2. Given bλ = (m1, m2, . . . , mn , m0), we have

bσL (λ) = (mL+1, mL+2, . . . , mL+n , mL ) ,

where mp =mp mod(n+1).

Proof. We have bλ = (m1, m2, . . . , mn , m0). Let L = 1. Then

σ(λ) = ε(bλ)

= ε(m1, m2, . . . , mn , m0)

=
n
∑

i=0

εi (m1, m2, . . . , mn , m0)Λi

=
n
∑

i=0

mi+1Λi ,

where mn+1 =m0. Hence, b (σ(λ)) = bσ(λ) = (m2, m3, . . . , mn , m0, m1). Suppose that b (σL−1(λ)) =

bσL−1(λ) = (mL , mL+1, . . . , mL+n ). Then

σL (λ) =σ(σL−1(λ))

= ε
�

bσL−1(λ)
�

= ε(mL , mL+1, . . . , mL+n )

=
n
∑

i=0

εi (mL , mL+1, . . . , mL+n )Λi

=
n
∑

i=0

mi+LΛi .

Thus, bσL (λ) = (mL+1, mL+2, . . . , mL+n , mL ).
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The following statement is an immediate consequence of Lemma 5.2.

Corollary 5.3. For any λ ∈ P̄ +, we have uσL (λ) = uσL+1(λ)⊗ bσL (λ).

Corollary 5.4. Given the set of λ-paths uσL (λ)⊗BL
` , where λ ∈ P̄ +, we have

uσL (λ)⊗B L
` = uσL+1(λ)⊗ (mL+1, mL+2, . . . , mL+n , mL )⊗BL

` .

Proof. By Corollary 5.3, we know that uσL (λ) = uσL+1(λ)⊗(mL+1, mL+2, . . . , mL+n , mL ). Hence, we have

uσL (λ)⊗BL
` = uσL+1(λ)⊗ (mL+1, mL+2, . . . , mL+n , mL )⊗BL

` .

Now let n = 2. Then we have uλ = . . .⊗ bλ⊗ bσ2(λ)⊗ bσ(λ)⊗ bλ, where

bλ = (m1, m2, m0),

bσ(λ) = b (ε(bλ)) = b (m2Λ1+m0Λ2+m1Λ0) = (m2, m0, m1),

bσ2(λ) = b (ε(bσ(λ))) = b (m0Λ1+m1Λ2+m2Λ0) = (m0, m1, m2),

bσ3(λ) = b (ε(bσ2(λ))) = b (m1Λ1+m2Λ2+m0Λ0) = (m1, m2, m0) = bλ.

Hence, we have uλ = . . .⊗ (m1, m2, m0)⊗ (m0, m1, m2)⊗ (m2, m0, m1)⊗ (m1, m2, m0). This implies that

uσL (λ)⊗BL
` = . . .⊗ (mL+1, mL+2, mL )⊗ (mL , mL+1, mL+2)

⊗ (mL+2, mL , mL+1)⊗ (mL+1, mL+2, mL )⊗BL
` .

Recall that the sequence w (L , j ) of simple reflections is defined by

w (L , j ) =
�

r j+n−L · · · r j+2−L r j+1−L

�

· · ·
�

r j+n−2 · · · r j r j+n

� �

r j+n−1 · · · r j+1r j

�

, (5.1)

and so for n = 2, we have w (L , j ) = (r j+2−L , r j+1−L ) · · · (r j r j+2)(r j+1r j ).

Also, in general, we have the ground state path for λ=m0Λ0+m1Λ1+ · · ·+mnΛn :

uλ = . . .⊗ (m3, m4, . . . , m1, m2)⊗ (m2, m3, . . . , m0, m1)⊗ (m1, m2, . . . , mn , m0), (5.2)

which has (i )-signature

�

. . . ,−mi+3
+mi+2

,−mi+2
+mi+1

,−mi+1
+mi

�

=
�

+mi

�

. (5.3)
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The (i )-signature for the λ-path uσ(λ)⊗ bν where bν = (v1, v2, . . . , vn , v0) is

�

. . . ,−mi+3
+mi+2

,−mi+2
+mi+1

,−vi+1
+vi

�

=
�

+mi+1
,−vi+1

+mi

�

, (5.4)

and the set of λ-paths uσL−1(λ)⊗BL−1
` = uσL (λ)⊗ (mL , mL+1, . . . , mL+n )⊗BL−1

` has (i )-signature of the

form
�

. . . ,−mi+L+1
+mi+L

,−mi+L
+mi+L−1

,∗1,∗2, . . . ,∗L−1

�

=
�

+mi+L−1
,∗1,∗2, . . . ,∗L−1

�

. (5.5)

The set of λ-paths uσL (λ)⊗ bν⊗BL−1
` where bν = (v1, v2, . . . , vn , v0) has (i )-signature

�

+mi+L
,−vi+L

+vi+L−1
,∗1, . . . ,∗L−1

�

. (5.6)

We use these equations in the proof of the following lemma.

Lemma 5.5. For each 0≤ i ≤ n, choose s sufficiently large so that the reduced (i )-signature of

up ⊗ bρ1
⊗ bρ2

⊗ . . .⊗ bρs

is (−g+r ), where the r pluses correspond to bρ1
⊗ bρ2

⊗ . . .⊗ bρs
. Starting with the set of λ-paths

up ⊗ bρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗BL

` ,

where BL
` = {a1⊗a2⊗ . . .⊗aL |at ∈B`, t = 1, 2, . . . , L}, we can obtain

up ⊗ bρ1, j ⊗ bρ2, j ⊗ . . .⊗ bρs , j ⊗a1⊗a2⊗ . . .⊗aL

for all {a1⊗a2⊗ . . .⊗aL} ∈BL
` and 1≤ j ≤ r , by applying f̃i a sufficient number of times, where

bρ1, j ⊗ bρ2, j ⊗ . . .⊗ bρs , j = f̃
j

i

�

bρ1
⊗ bρ2

⊗ . . .⊗ bρs

�

.

Proof. First, note that by Equation 5.6, such an s exists. We will prove this lemma by induction on L

and by induction on r . Fix i ∈ {0, 1, . . . , n}.

Case 5.1 (L=1). Given up ⊗ bρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗B` with (i )-signature of the form

��

−g+r

�

,∗�.
Subcase 5.1.1. If r = 0, then there’s nothing to prove. So, let r = 1. Then we have the (i )-signature of

the form
�

(−g+),∗
�

.
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If ∗=+`, then the λ-path is up ⊗ bρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗ bµ, where

bµ = (m1, m2, . . . , mi = `, mi+1, . . . , mn , m0) ,

with mt = 0 for t 6= i and reduced (i )-signature
�

(−g+),+`
�

. Hence, we will obtain `+1 new λ-paths

of the form up ⊗bρ1
1
⊗bρ1

2
⊗ . . .⊗bρ1

s
⊗bν, where bν = (v1, v2, . . . , vn , v0) such that vt = 0 for t 6= i , i +1

and vi + vi+1 = `.

If ∗= •1+`−1, then the λ-path is up ⊗ bρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗ bµ, where

bµ = (m1, m2, . . . , mi = `−1, mi+1 = 0, . . . , mn , m0) ,

with
∑

t 6=i ,i+1 mt = 1 and reduced (i )-signature
�

(−g+),+`−1

�

. Hence, we will obtain ` new λ-paths

of the form up ⊗ bρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bν, for each bν = (v1, v2, . . . , vn , v0) such that

∑

t 6=i ,i+1 vt = 1

and vi + vi+1 = `−1. So, in total we have `(n −1) new λ-paths of the above form, since the number

of solutions to
∑

t 6=i ,i+1 vt = 1 is equal to the number of ways to distribute (`−1) 1’s among (n −1)

coordinates in an (n +1)-tuple, i.e. the "balls in bins" combinatorics problem. Hence, there are

`

�

(n −1) + (1)−1

1

�

= `(n −1)

new λ-paths.

In general, if ∗ = •`− j+ j for j = 1,2, . . . ,`, then the λ-path is up ⊗ bρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗ bµ, where

bµ =
�

m1, m2, . . . , mi = j , mi+1 = 0, . . . , mn , m0

�

, with
∑

t 6=i ,i+1 mt = `− j and reduced (i )-signature
�

(−g+),+ j

�

. Hence, we will obtain j +1 new λ-paths of the form up ⊗ bρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bν, for

each bν = (v1, v2, . . . , vn , v0) such that
∑

t 6=i ,i+1 vt = `− j and vi + vi+1 = j . Again, this is the "balls in

bins" problem, so there are

( j +1)

�

(n −1) + (`− j )−1

`− j

�

new λ-paths for j = 1, 2, . . . ,`.

Now, suppose∗= •`. Then theλ-path is up⊗bρ1
⊗bρ2

⊗. . .⊗bρs
⊗bµ, where bµ = (m1, m2, . . . , mn , m0)

such that
∑

t 6=i ,i+1 mt = ` and mi = 0=mi+1, with (i )-signature is
�

(−g+),•`
�

. Then there is one new

λ-path of the form up ⊗bρ1
1
⊗bρ1

2
⊗ . . .⊗bρ1

s
⊗bν, where bν = (v1, v2, . . . , vn , v0) such that vi = 0= vi+1
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for each solution of
∑

t 6=i ,i+1 vt = `. Again, by the same combinatorial problem, there are

�

(n −1) + (`)−1

`

�

solutions to this equation.

Note that if ∗ contains any negatives, then no new λ-paths are produced. So, by Lemma 5.1,

altogether there are

 

∑̀

j=1

( j +1)

�

n −1+ `− j −1

`− j

�

!

+

�

n −1+ `−1

`

�

=
∑̀

j=0

( j +1)

�

n −2+ `− j

`− j

�

=

�

n + `
`

�

unique elements bµ ∈B` in the λ-paths of the form up ⊗bρ1
1
⊗bρ1

2
⊗ . . .⊗bρ1

s
⊗bµ, i.e. we’ve obtained

the set of λ-paths up ⊗ bρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗B`.

Subcase 5.1.2. Now, suppose that if we have the set of λ-paths up ⊗ bρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗B` with

(i )-signature of the form
��

−g+r

�

,∗� , we can apply f̃i a sufficient number of times and produce the

paths up ⊗ b
ρ

j
1
⊗ b

ρ
j
2
⊗ . . .⊗ b

ρ
j
s
⊗B` for j = 1, 2, . . . , r . We want to show that this is true for r +1. So,

suppose we have theλ-paths up⊗bρ1
⊗bρ2

⊗. . .⊗bρs
⊗B` with (i )-signature of the form

��

−g+r+1

�

,∗�.

If r +1> `, then∗won’t affect at least the first r +1−` pluses in the (i )-signature. For each∗, let f̃i act

on the component with the leftmost plus in the (i )-signature; then we have up⊗bρ1
1
⊗bρ1

2
⊗. . . bρ1

s
⊗B`

with (i )-signature of the form
��

−g+r

�

,∗�. Hence, by the inductive hypothesis, we can apply f̃i

a sufficient number of times to certain λ-paths in the above set to produce the set of λ-paths

up ⊗ b
ρ

j
1
⊗ b

ρ
j
2
⊗ . . .⊗ b

ρ
j
s
⊗B`, for j = 1, 2, . . . , r +1− `.

If r + 1 ≤ ` and ∗ has less than r + 1 negatives, then we have the λ-paths up ⊗ uρ1
⊗ bρ2

⊗ . . .⊗
bρs
⊗ bµ, where bµ = (m1, m2, . . . , mn , m0) such that mi+1 < r +1 and

∑n
t=0 mt = `, with (i )-signature

�

(−g+r+1),−mi+1
+mi

�

. Then we can apply f̃i at least once to these λ-paths to produce the λ-paths

up ⊗ uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bµ. If r + 1 ≤ ` and ∗ has at least r + 1 negatives, then we have the

λ-paths up ⊗uρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗ bµ, where bµ = (m1, m2, . . . , mn , m0) such that mi+1 ≥ r +1 and

∑n
t=0 mt = `, with (i )-signature

�

(−g+r+1),−mi+1
+mi

�

. Then how do we obtain the λ-paths of the

form up ⊗uρ1
1
⊗bρ1

2
⊗ . . .⊗bρ1

s
⊗bµ? We have λ-paths of the form up ⊗uρ1

⊗bρ2
⊗ . . .⊗bρs

⊗bν, where

bν = (v1, v2, . . . , vn , v0) such that vi+1 = r , vi =mi +mi+1− r , and
∑n

t=0 vt = `. The (i )-signature for

these λ-paths is
��

−g+r+1

�

,−r+mi+mi+1−r

�

=
�

(−g+),+mi+mi+1−r

�

. By applying f̃i a sufficient number

of times, we obtain the λ-paths up ⊗ uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bγ, for bγ =

�

y1, y2, . . . , yn , y0

�

such that
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yi+1 = r, r +1, . . . , mi +mi+1; yi + yi+1 =mi +mi+1; and
∑n

t=0 yt = `, which contains the (n+1)-tuples

bν that we wanted. Hence, altogether we have obtained the set of λ-paths up ⊗ uρ1
1
⊗ bρ1

2
⊗ . . .⊗

bρ1
s
⊗B`, with (i )-signature of the form

�

(−g+r ),∗
�

. Thus, by the inductive hypothesis, we have

up ⊗u
ρ

j
1
⊗ b

ρ
j
2
⊗ . . .⊗ b

ρ
j
s
⊗B` for j = 2, 3, . . . , r +1.

Case 5.2 (Induction). Now suppose the lemma is true for L and for any r , i.e. given up ⊗uρ1
⊗bρ2

⊗
. . .⊗ bρs

⊗BL
` with (i )-signature of the form

��

−g+r

�

,∗1, . . . ,∗L

�

, we can obtain the set of λ-paths

up ⊗u
ρ

j
1
⊗b

ρ
j
2
⊗ . . .⊗b

ρ
j
s
⊗BL

` for j = 1, 2, . . . , r by applying f̃i a sufficient number of times. We want

to show that the lemma is true for L +1. Suppose we are given the set of λ-paths up ⊗uρ1
⊗ bρ2

⊗
. . .⊗ bρs

⊗BL+1
` with (i )-signature of the form

�

(−g+r ),∗1, . . . ,∗L+1

�

.

Subcase 5.2.1. If r = 0, then there’s nothing to prove. So, suppose r = 1. Then we have the (i )-

signature of the form
�

(−g+),∗1, . . . ,∗L+1

�

.

If ∗1 =+`, then we have the set of λ-paths

up ⊗uρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗ bµ⊗BL

` ,

where bµ = (m1, m2, . . . , mn , m0) such that mi = ` and mt = 0 for t 6= i . And this set of λ-paths

has (i )-signature of the form
�

(−g+),+`,∗2, . . . ,∗L+1

�

=
��

−g+`+1

�

,∗2, . . . ,∗L+1

�

. By the inductive

hypothesis on L , if we let f̃i act a sufficient number of times on certain λ-paths in this set, then we

obtain all λ-paths in the set up ⊗ uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bν⊗BL

` , where bν = (v1, v2, . . . , vn , v0) such

that vi + vi+1 = ` and vt = 0 for t 6= i , i +1. Hence, we have obtained `+1 new bν.

In general, if ∗= •`− j+ j for j = 1, 2, . . . ,`, then we have the set of λ-paths up ⊗uρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗

bµ⊗BL
` where bµ = (m1, m2, . . . , mn , m0) such that mi = j , mi+1 = 0, and

∑

t 6=i ,i+1 mt = `− j and with

(i )-signature of the form
�

(−g+),+ j ,∗2, . . . ,∗L+1

�

. If we apply f̃i to these paths a sufficient number of

times, then by the inductive hypothesis, we obtain all λ-paths in the set up ⊗uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗

bν⊗BL
` where bν = (v1, v2, . . . , vn , v0) such that vi + vi+1 = j and

∑

t 6=i ,i+1 vt = `− j . So, by the "balls

in bins" combinatorial problem, we obtain

∑̀

j=1

( j +1)

�

n −1+ `− j −1

`− j

�

new bν in the (L +1)s t component from the right.

If∗= •`, then we have the set ofλ-paths up⊗uρ1
⊗bρ2

⊗. . .⊗bρs
⊗bµ⊗BL

` where bµ = (m1, m2, . . . , mn , m0)
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such that mi = 0 = mi+1 and
∑

t 6=i ,i+1 mt = `. This set of λ-paths has (i )-signature of the form
�

(−g+),•,∗2, . . . ,∗L+1

�

=
�

(−g+),∗2, . . . ,∗L+1

�

. Hence, by the inductive hypothesis on L , we obtain

the set of λ-paths up ⊗uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bµ⊗BL

` , of which there are

�

n −1+ `−1

`

�

bµ in the (L +1)s t component from the right in the tensor product. Thus, we have

 

∑̀

j=1

( j +1)

�

n −1+ `− j −1

`− j

�

!

+

�

n −1+ `−1

`

�

=

�

n + `
`

�

unique bµ in the set up⊗uρ1
1
⊗bρ1

2
⊗. . .⊗bρ1

s
⊗bµ⊗BL

` , and hence, have up⊗uρ1
1
⊗bρ1

2
⊗. . .⊗bρ1

s
⊗BL+1

` .

Subcase 5.2.2. Now, suppose that if we have the set of λ-paths up ⊗bρ1
⊗bρ2

⊗ . . .⊗bρs
⊗BL+1

` with

(i )-signature of the form
��

−g+r

�

,∗1, . . . ,∗L+1

�

, we can apply f̃i a sufficient number of times and

produce the set of λ-paths up ⊗ b
ρ

j
1
⊗ b

ρ
j
2
⊗ . . .⊗ b

ρ
j
s
⊗BL+1

` for j = 1,2, . . . , r . We want to show it’s

true for r +1. Suppose we have the λ-path up ⊗uρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗BL+1

` with (i )-signature of the

form
�

(−g+r+1),∗1, . . . ,∗L+1

�

.

If r +1> `, then ∗1 won’t affect the leftmost plus in the (i )-signature. If we fix ∗1 =−a +b •c , then

for each such ∗1, we have the set of λ-paths up ⊗uρ1
⊗bρ2

⊗ . . .⊗bρs
⊗bµ⊗BL

` , with (i )-signature of

the form
�

(−g+r+1−a+b ),∗2, . . . ,∗L+1

�

. By the inductive hypothesis on L , we can apply f̃i a sufficient

number of times to get the set up ⊗ uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bµ ⊗BL

` , with (i )-signature of the form
�

(−g+r−a+b ),∗2, . . . ,∗L+1

�

=
�

(−g+r ),∗1,∗2, . . . ,∗L+1

�

. Then, by the inductive hypothesis on r , we

obtain up ⊗u
ρ

j
1
⊗ b

ρ
j
2
⊗ . . .⊗ b

ρ
j
s
⊗BL+1

` for j = 2, 3, . . . , r +1.

Now suppose that r +1≤ `. If ∗1 has less than r +1 negatives, then we have the set of λ-paths

up ⊗uρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗ bµ⊗BL

` , (5.7)

where bµ = (m1, m2, . . . , mn , m0) such that mi+1 < r + 1 and
∑n

t=0 mt = `. Then the leftmost plus

in the associated (i )-signature of the form
�

(−g+r+1),−mi+1
+mi

,∗2, . . . ,∗L+1

�

won’t be affected. So,

we can apply f̃i a sufficient number of times by the inductive hypothesis on L to obtain the set

of λ-paths up ⊗uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bµ⊗BL

` , with (i )-signature of the form
�

(−g+r ),∗1, . . . ,∗L+1

�

,

where bµ is such that mi+1 < r + 1. On the other hand, if ∗1 has at least r + 1 negatives, then we

have up ⊗ uρ1
⊗ bρ2

⊗ . . .⊗ bρs
⊗ bµ ⊗BL

` where bµ = (m1, m2, . . . , mn , m0) such that mi+1 ≥ r + 1
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ŝ l (3,C)
�

-Demazure Crystals

and
∑n

t=0 mt = `. This set of λ-paths has (i )-signature of the form
�

(−g+r+1),−mi+1
+mi

,∗2, . . . ,∗L+1

�

.

Then how do we obtainλ-paths of the form up⊗uρ1
1
⊗bρ1

2
⊗. . .⊗bρ1

s
⊗bµ⊗BL

` ? From Equation 5.7, we

haveλ-paths of the form up⊗uρ1
⊗bρ2

⊗. . .⊗bρs
⊗bν⊗BL

` where bν = (v1, v2, . . . , vn , v0) such that vi =

mi+1+mi−r , vi+1 = r , and
∑n

t=0 mt = ` and with (i )-signature
�

. . . , (+r+1),−r+mi+1+mi−r ,∗2, . . . ,∗L

�

=
�

. . . , (+),+mi+1+mi−r ,∗2, . . . ,∗L

�

. By the inductive hypothesis on L , a certain number of applications

of f̃i produces λ-paths of the form

up ⊗uρ1
1
⊗ bρ1

2
⊗ . . .⊗ bρ1

s
⊗ bγ⊗BL

` , (5.8)

where bγ =
�

y1, y2, . . . , yn , y0

�

such that yi+1 = r, r + 1, . . . , mi +mi+1; yi + yi+1 = mi +mi+1; and
∑n

t=0 yt = `, which contains the (n +1)-tuples bν that we wanted. Hence, combining Equations 5.7

and 5.8, we have obtained up⊗uρ1
1
⊗bρ1

2
⊗. . .⊗bρ1

s
⊗BL+1

` , with (i )-signature (. . . , (+r ),∗1,∗2, . . . ,∗L+1).

Thus, by the inductive hypothesis on r , we have up ⊗u
ρ

j
1
⊗b

ρ
j
2
⊗ . . .⊗b

ρ
j
s
⊗BL+1

` for j = 2, 3, . . . , r +1.

Suppose that we have the set of λ-paths uσL (λ) ⊗BL
` = uσL+1(λ) ⊗ bσL (λ) ⊗BL

` , where f̃i

�

bσL (λ)
�

6= 0.

Equation 5.6 and Lemma 5.5 tell us that if we apply f̃i a sufficient number of times to certain λ-paths

in the set uσL (λ)⊗B L
` , that we will obtain the set of λ-paths uσL+1(λ)⊗ f̃i

�

bσL (λ)
�

⊗BL
` .

Similarly, suppose that f̃
j

i

�

bσL (λ)
�

6= 0 for a positive integer j . Then Lemma 5.5 implies that we can

obtain the set of λ-paths uσL+1(λ)⊗ f̃
j

i

�

bσL (λ)
�

⊗BL
` by applying f̃i a sufficient number of times to

certain λ-paths in the set uσL (λ)⊗BL
` .

We can also extend this result to sequences containing more than one Kashiwara operator. In other

words, suppose that we have the set ofλ-paths uσL (λ)⊗BL
` . Also, suppose that f̃

jt
it
· · · f̃ j2

i2
f̃

j1
i1

�

uσL (λ)
�

6=
0. Then, by applying each f̃ip

a sufficient number of times to certain λ-paths in the set uσL (λ)⊗BL
` ,

we can obtain the set f̃
jt

it
· · · f̃ j2

i2
f̃

j1
i1

�

uσL (λ)
�

⊗BL
` .

Now, we’ll work through an example to help understand Lemma 5.5.

Example 5.6. Suppose that L = 2, n = 3, and `= 1. Then we have that

|B`|=
�

n + `
`

�

=

�

3+1

1

�

= 4.
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Suppose that bλ = (1, 0, 0, 0) and that we have the set of λ-paths

uσ5(λ)⊗ (0, 0, 0, 1)⊗ (0, 0, 1, 0)⊗ (1, 0, 0, 0)⊗B2
1 . (5.9)

The (0)-signature for the set of λ-paths in Equation 5.9 is of the form

(. . . ,+,−,•,•,+,+,•,−,∗1,∗2) = ((+),∗1,∗2)

where the (+) corresponds to

bσ5(λ)⊗ (0, 0, 0, 1)⊗ (0, 0, 1, 0)⊗ (1, 0, 0, 0) = bρ1
⊗ bρ2

⊗ bρ3
⊗ bρ4

.

Note that r = 1 and

f̃0

�

bσ5(λ)⊗ (0, 0, 0, 1)⊗ (0, 0, 1, 0)⊗ (1, 0, 0, 0)
�

= (1, 0, 0, 0)⊗ (0, 0, 0, 1)⊗ (0, 0, 1, 0)⊗ (1, 0, 0, 0)

= bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1.

We want to produce the set ofλ-paths uσ6(λ)⊗bρ1,1⊗bρ2,1⊗bρ3,1⊗bρ4,1⊗B2
1 by applying f̃0 a sufficient

number of times to specific λ-paths in the set uσ6(λ)⊗ bρ1
⊗ bρ2

⊗ bρ3
⊗ bρ4

⊗B2
1 . We’ll denote these

specific λ-paths by uσ6(λ)⊗ bρ1
⊗ bρ2

⊗ bρ3
⊗ bρ4

⊗a1⊗a2.

Case 5.3. Suppose that ∗1 = +. Then this implies that a1 = (0,0,0,1), and that we have the (0)-

signature of the form ((+),+,∗2).

Subcase 5.3.1. Suppose that ∗2 =+. Then a2 = (0,0,0,1) and the (0)-signature becomes ((+),+,+).

Hence, we can produce three new λ-paths:

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 0, 1)⊗ (0, 0, 0, 1),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (1, 0, 0, 0)⊗ (0, 0, 0, 1),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (1, 0, 0, 0)⊗ (1, 0, 0, 0).

Subcase 5.3.2. Suppose that ∗2 = •. Then a2 = (0, 1, 0, 0) or (0, 0, 1, 0), and the (0)-signature becomes

((+),+,•). Hence, we can produce four new λ-paths:

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 0, 1)⊗ (0, 1, 0, 0),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (1, 0, 0, 0)⊗ (0, 1, 0, 0),
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uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 0, 1)⊗ (0, 0, 1, 0),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (1, 0, 0, 0)⊗ (0, 0, 1, 0).

Subcase 5.3.3. Suppose that∗2 =−. Then a2 = (1, 0, 0, 0), and the (0)-signature becomes ((+),+,−) =
((+)). Hence, we can only produce one new λ-path:

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 0, 1)⊗ (1, 0, 0, 0).

Notice that so far, applying f̃0 a sufficient number of times to these specific λ-paths has produced

the sets

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 0, 1)⊗B1,

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (1, 0, 0, 0)⊗B1.

Case 5.4. Suppose that ∗1 = •. Then a1 = (0, 1, 0, 0) or (0, 0, 1, 0), and we have the following set

uσ6(λ)⊗ bρ1
⊗ bρ2

⊗ bρ3
⊗ bρ4

⊗a1⊗B1

with (0)-signature of the form ((+),•,∗2).

Subcase 5.4.1. Suppose that ∗2 =+. Then a2 = (0,0,0,1), and the (0)-signature becomes ((+),•,+).
Hence, we can produce four new λ-paths:

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 1, 0, 0)⊗ (0, 0, 0, 1),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 1, 0, 0)⊗ (1, 0, 0, 0),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 1, 0)⊗ (0, 0, 0, 1),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 1, 0)⊗ (1, 0, 0, 0).

Subcase 5.4.2. Suppose that ∗2 = •. Then a2 = (0, 1, 0, 0) or (0, 0, 1, 0), and the (0)-signature becomes

((+),•,•). Hence, we can produce four new λ-paths:

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 1, 0, 0)⊗ (0, 1, 0, 0),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 1, 0, 0)⊗ (0, 0, 1, 0),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 1, 0)⊗ (0, 1, 0, 0),

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 1, 0)⊗ (0, 0, 1, 0).
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Subcase 5.4.3. Suppose that ∗2 =−. Then a2 = (1, 0, 0, 0), and the (0)-signature becomes ((+),•,−) =
(•). So, we cannot produce any new λ-paths.

Notice that by applying f̃0 a sufficient number of times to these specific λ-paths we have produced

the sets

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 0, 1)⊗B1,

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (1, 0, 0, 0)⊗B1,

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 1, 0, 0)⊗B1,

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗ (0, 0, 1, 0)⊗B1,

and thus we have produced the set of paths

uσ6(λ)⊗ bρ1,1⊗ bρ2,1⊗ bρ3,1⊗ bρ4,1⊗B2
1 .

Now we give an explicit description of the Demazure crystal Bw (L ,0)(λ) for Uq (A
(1)
2 ).

Lemma 5.7. Let λ=m0Λ0+m1Λ1+m2Λ2 ∈ P̄ +, where λ(c ) = `. Then the Demazure crystal Bw (L ,0) (λ)

for Uq (A
(1)
2 ) can be explicitly defined by one of the following three descriptions:

1. If L ≡ 1 mod 3, then

Bw (L ,0) (λ) =
�

uλ⊗BL−1
` ,

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗BL−1
` ,

uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗BL−1
` ,

uσ(λ)⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

.

2. If L ≡ 2 mod 3, then

Bw (L ,0) (λ) =
�

uσ(λ)⊗BL−1
` ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗BL−1
` ,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗BL−1
` ,

uσ2(λ)⊗
�

m2+ c1,0, m0−k0, m1+k0− c1,0

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

.
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3. If L ≡ 0 mod 3, then

Bw (L ,0) (λ) =
�

uσ2(λ)⊗BL−1
` ,

uλ⊗ (m0−k0, m1+k0, m2)⊗BL−1
` ,

uλ⊗ (m0, m1−k1, m2+k1)⊗BL−1
` ,

uλ⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

.

Proof. Let L = 1. We can construct Bw (1,0)(λ) by applying the sequence w (1, 0) = r1r0 to the ground-

state path uλ = . . . ⊗ (m1, m2, m0) ⊗ (m0, m1, m2) ⊗ (m2, m0, m1) ⊗ (m1, m2, m0). The (0)-signature

on uλ is
�

+m0

�

. Hence, we can apply f̃0 a total of m0 times, and thus we obtain the set of paths
�

uσ(λ)⊗ (m1+k0, m2, m0−k0) |k0 = 1, 2, . . . , m0

	

. Similarly, the (1)-signature on uλ is
�

+m1

�

. So we

can apply f̃1 a total of m1 times, and thus we obtain the set of paths

�

uσ(λ)⊗ (m1−k1, m2+k1, m0) |k1 = 1, 2, . . . , m1

	

.

Now we need to apply the f̃1 operator to the paths we obtained by applying the f̃0 operator to uλ.

The (1)-signature on these paths is
�

+m1+k0

�

. Hence we obtain the set of paths

�

uσ(λ)⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

|k0 = 1, 2, . . . , m0, c1,0 = 1, 2, . . . , m1+k0

	

.

Therefore we have

Bw (1,0) (λ) ={uλ,

uσ(λ)⊗ (m1+k0, m2, m0−k0) ,

uσ(λ)⊗ (m1−k1, m2+k1, m0) ,

uσ(λ)⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

|

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

.

Notice that we now have

1+m0+m1+
m0
∑

k0=1

(m1+k0) = 1+
3

2
m0+m1+m0m1+

1

2
m 2

0

bµ ∈B` in the form uσ(λ)⊗ bµ. In order to form the set uσ(λ)⊗B`, we’ll need to obtain a total of
�2+`
`

�
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unique bµ in the form uσ(λ)⊗ bµ.

Next let L = 2. Then we have w (2, 0) = (r0r2)(r1r0) = (r0r2)w (1, 0). So, we need only apply f̃2 and f̃0 to

all paths in the set Bw (1,0)(λ). First, we’ll apply f̃2 to the path uλ. The (2)-signature on uλ is (+m2
).

Hence, we obtain the following set of paths:

�

uσ(λ)⊗ (m1, m2−k2, m0+k2) |k2 = 1, 2, . . . , m2

	

. (5.10)

We’ve already applied f̃0 to the path uλ, so we don’t need to repeat this step. Next we’ll apply f̃2 to

the set of paths
�

uσ(λ)⊗ (m1+k0, m2, m0−k0)
	

. The (2)-signature on these paths is
�

+k0
,+m2

�

. Thus,

we obtain the following set of paths:

�

uσ2(λ)⊗
�

m2, m0−k ′0, m1+k ′0
�

⊗ (m1+k0, m2, m0−k0) ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ (m1+k0, m2−k2, m0−k0+k2)
�

�

k2 = 1, 2, . . . , m2, k ′0 = 1, 2, . . . , k0

	

. (5.11)

If we were to apply f̃0 to the same set of paths, we wouldn’t produce any new paths. So, let’s apply f̃2

to the paths uσ(λ)⊗ (m1−k1, m2+k1, m0). We have the following (2)-signature:
�

+m2+k1

�

. This action

produces the set of paths

�

uσ(λ)⊗
�

m1−k1, m2+k1− c2,1, m0+ c2,1

�	

, (5.12)

where c2,1 = 1, 2, . . . , m2+k1.

Next let’s apply f̃0 to this same set of paths. We have the (0)-signature
�

+k1
,+m0

�

. Hence, we produce

the following set of paths:

�

uσ2(λ)⊗
�

m2+k ′1, m0, m1−k ′1
�

⊗ (m1−k1, m2+k1, m0) ,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗ (m1−k1+k0, m2+k1, m0−k0)
�

�

k ′0 = 1, 2, . . . , k0

	

. (5.13)

Now, let’s apply f̃2 to the set
�

uσ(λ)⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�	

. The (2)-signature is

�

+k0
,+m2+c1,0

�

.
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This results in the following set of paths:

�

uσ2(λ)⊗
�

m2, m0−k ′0, m1+k ′0
�

⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗
�

m1+k0− c1,0, m2+ c1,0− c ′2;1,0, m0−k0+ c ′2;1,0

��

�

c ′2;1,0 = 1, 2, . . . , m2+ c1,0

	

. (5.14)

Next, let’s apply f̃0 to the same paths. The (0)-signature is
�

. . . ,−m2
+m1

,−m1+k0−c1,0
+m0−k0

�

, which

can be rewritten as:







�

+c1,0−k0
,+m0−k0

�

if c1,0 > k0
�

+m0−k0

�

if c1,0 ≤ k0

=







�

+k1
,+m0−k0

�

if c1,0 > k0
�

+m0−k0

�

if c1,0 ≤ k0.

Let’s break this section into cases:

Case 5.1. Suppose that c1,0 > k0 and let k1 = c1,0−k0. Then we obtain the paths

�

uσ2(λ)⊗
�

m2+k ′1, m0, m1−k ′1
�

⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗
�

m1+k0− c1,0+ c0,−0, m2+ c1,0, m0−k0− c0,−0

��

�

c0,−0 = 1, 2, . . . , m0−k0

	

. (5.15)

Case 5.2. Suppose that c1,0 ≤ k0. Then we obtain the paths

�

uσ(λ)⊗
�

m1+k0− c1,0+ c0,−0, m2+ c1,0, m0−k0− c0,−0

�	

.

Note that we will have some repeated paths here. We have that

f̃ t3
0 f̃ t2

1 f̃ t1
0

�

bµ
�

= f̃ t2
1 f̃ t1+t3

0

�

bµ
�

(5.16)

if t2 ≤ t1 and t1 + t3 ≤ µ0, t1, t2, t3 ∈ Z≥0,µ = µ0Λ0 +µ1Λ1 +µ2Λ2. This follows logically from the

definition of f̃i

�

bµ
�

. Hence, all paths from Case 5.2 have already been obtained; i.e. the only new

paths produced are from Case 5.1.

Next we’ll let f̃0 act on the paths
�

uσ(λ)⊗ (m1, m2−k2, m0+k2) |k2 = 1, 2, . . . , m2

	

. We have the (0)-
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signature
�

+m0+k2

�

. Thus, we have the paths

�

uσ(λ)⊗
�

m1+ c0,2, m2−k2, m0+k2− c0,2

�	

, (5.17)

where c0,2 = 1, 2, . . . , m0+k2.

Now let f̃0 act on the set:

�

uσ2(λ)⊗
�

m2, m0−k ′0, m1+k ′0
�

⊗ (m1+k0, m2, m0−k0) ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ (m1+k0, m2−k2, m0−k0+k2)
�

�

k2 = 1, 2, . . . , m2, k ′0 = 1, 2, . . . , k0

	

.

Rewriting these paths, we have:















uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ (m1+k0, m2, m0−k0) [1]

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ (m1+k0, m2−k2, m0−k0+k2) [2]

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗
�

m1+k0+ c0,−0, m2, m0−k0− c0,−0

�

[3]

where k2 = 1,2, . . . , m2, c0,−0 = 1,2, . . . , m0 − k0 for each k0 = 1,2, . . . , m0. Let’s break this into three

sections:

Case 5.3. Looking at paths [1] displayed above, we have the (0)-signature
�

+m0−k0

�

. This gives the

following paths:
�

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗
�

m1+k0+ c0,−0, m2, m0−k0− c0,−0

�	

. But these

are exactly the same as paths [3] above.

Case 5.4. Now let’s look at the paths [2]. We have the (0)-signature
�

+m0−k0+k2

�

. Thus, we obtain the

following set of paths:

�

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ (m1+k0+1, m2−k2, m0−k0+k2−1) ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ (m1+k0+2, m2−k2, m0−k0+k2−2) , . . . ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ (m1+m0+k2, m2−k2, 0)
	

. (5.18)

Case 5.5. Finally, let’s look at the paths [3]. We have the (0)-signature
�

+m0−k0−c0,−0

�

. Again, this will

only produce paths like [3].

Next, let f̃0 act on the set
�

uσ(λ)⊗
�

m1−k1, m2+k1− c2,1, m0+ c2,1

�	

, where c2,1 = 1,2, . . . , m2 + k1.
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This gives the (0)-signature
�

+k1
,+m0+c2,1

�

. Hence we obtain the following paths:

�

uσ2(λ)⊗
�

m2+k ′1, m0, m1−k ′1
�

⊗
�

m1−k1, m2+k1− c2,1, m0+ c2,1

�

,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗
�

m1−k1+ c ′0;2,1, m2+k1− c2,1, m0+ c2,1− c ′0;2,1

��

�

k ′1 = 1, 2, . . . , k1, c ′0;2,1 = 1, 2, . . . , m0+ c2,1

	

. (5.19)

Finally, let f̃0 act on the following set of paths:

�

uσ2(λ)⊗
�

m2, m0−k ′0, m1+k ′0
�

⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗
�

m1+k0− c1,0, m2+ c1,0− c ′2;1,0, m0−k0+ c ′2;1,0

��

�

c ′2;1,0 = 1, 2, . . . , m2+ c1,0

	

,

which we rewrite as:







uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗
�

c ′1,0,`− i , i − c ′1,0

�

[1]

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗
�

`−m2− c0,−0, m2+ t , c0,−0− t
�

[2]

where c ′1,0 = 0,1, . . . , m1 + k0 − 1, i = c ′1,0, c ′1,0 + 1, . . . ,`, c0,−0 = 1,2, . . . , m0 − k0, and t = 1,2, . . . , c0,−0.

Again, let’s break this into cases:

Case 5.6. The (0)-signature on the paths [1] is
�

. . . ,−m2
+m1+k0

,−c ′1,0
+i−c ′1,0

�

, which reduces to

�

+m1+k0
,−c ′1,0

+i−c ′1,0

�

=
�

+c1,0
,+i−c ′1,0

�

=
�

+c1,0
,+z

�

,

where z = 0, 1, . . . ,`− c ′1,0. Hence, we have obtained the following set of paths:

�

uσ2(λ)⊗
�

m2+ c ′1,0, m0−k0, m1+k0− c ′1,0

�

⊗ bµ
�

�c ′1,0 = 1, 2, . . . , c1,0

	

(5.20)

for specific bµ ∈B`.

Case 5.7. The (0)-signature on the paths [2] is

�

. . . ,+m1+k0
,−`−m2−c0,−0

+c0,−0−t

�

=
�

+m1+k0
,−`−m2−c0,−0

+c0,−0−t

�

=
�

+m1+k0
,−m1+m0−c0,−0

+c0,−0−t

�

=
�

+c0,−0−t

�

.

Hence, this application of f̃0 produces no new paths, since we already have all paths of the form
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uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ bµ, which we’ll show below.

The following is a summary of all the new elements we have found. From Equation 5.10, we have m2

new bµ in the form uσ(λ)⊗ bµ. From Equation 5.11, we have (m0− (k0−1)) +m2 new bµ in the form

uσ2(λ) ⊗ (m2, m0−k0, m1+k0)⊗ bµ. Equation 5.12 produces
∑m1

k1=1 m2 + k1 =m1m2 +
1
2 m1(m1 + 1)

unique bµ in the form uσ(λ)⊗bµ. Equation 5.13 gives (m1− (k1−1))+m0 new bµ in the form uσ2(λ)⊗
(m2+k1, m0, m1−k1)⊗ bµ. Equation 5.14 produces

∑m1+k0
i=1 (1+m2+ i )+

∑m0
i=k0+1 (m1+ i ) new bµ in

the form uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ bµ. Equation 5.15 gives

m0
∑

k0=1

[(1+m0−k0) + (m1+k0− (k0+k1+1)+1)]

new bµ of the form uσ2(λ) ⊗ (m2+k1, m0, m1−k1)⊗ bµ. Equation 5.17 has
∑m2

k2=1 (m0+k2) new bµ
in the form uσ(λ) ⊗ bµ. Equation 5.18 produces

∑m2
k2=1 (m0−k0+k2) new bµ in the form uσ2(λ) ⊗

(m2, m0−k0, m1+k0)⊗bµ. Equation 5.19 has
∑m2+k1

c2,1=1

�

1+m0+ c2,1

�

+
∑m1

i=k1+1 (m2+ i ) new bµ in the

form uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗ bµ. Finally, Equation 5.20 gives

`−c ′1,0
∑

t=0

(t +1)+
m1+k0−t−1

∑

c ′1,0=0

`−c ′1,0
∑

t=0

(1)

new bµ in the form uσ2(λ)⊗ (m2+ t , m0−k0, m1+k0− t )⊗ bµ.

From this summary, we see that we have:

• Total bµ in the form uσ(λ)⊗ bµ:

1+
3

2
m0+

3

2
m1+m0m1+

1

2
m 2

0 +m2+m1m2+
1

2
m 2

1 +m2m0+
1

2
m2 (m2+1) =

�

2+ `
`

�

.

• Total bµ in the form uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗ bµ:

m1−k1+1+m0+
m0
∑

k0=1

(1+m0+m1−k0−k1)+
m2+k1
∑

c2,1=1

�

1+m0+ c2,1

�

+
m1
∑

i=k1+1

(m2+ i ) =

�

2+ `
`

�

.
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• Total bµ in the form uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗ bµ:

m0− (k0−1)+m2+
m1+k0
∑

i=1

(1+m2+ i )+
m0
∑

i=k0+1

(m1+ i )+
m2
∑

k2=1

(m0−k0+k2) =

�

2+ `
`

�

.

• Total bµ in the form uσ2(λ)⊗ (m2+ i , m0−k0, m1+k0− i )⊗ bµ:

`−c ′1,0
∑

t=0

(t +1)+
m1+k0−i−1

∑

c ′1,0=0

`−c ′1,0
∑

t=0

(1) =

�

2+ `
`

�

.

Therefore, we see that

Bw (2,0) (λ) =
�

uσ(λ)⊗B`,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗B`,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗B`,

uσ2(λ)⊗
�

m2+ c1,0, m0−k0, m1+k0− c1,0

�

⊗B` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

.

Next let L = 3. Then we have w (3,0) = (r2r1)(r0r2)(r1r0) = (r2r1)w (2,0). So, we need only apply f̃1

and f̃2 to all paths in the set Bw (2,0)(λ). First, let’s apply f̃1 to certain paths in the set uσ(λ)⊗B`. The

(1)-signature is of the form
�

+m2
,∗1

�

, where∗1 is the (1)-signature for any bµ ∈B`. Hence, by Lemma

5.5, we have the following set of paths:

�

uσ2(λ)⊗ (m2−k2, m0+k2, m1)⊗B`|k2 = 1, 2, . . . , m2

	

. (5.21)

Note that we don’t need to apply f̃2 to the paths in the set uσ(λ) ⊗ B` because the paths that

would be produced are already paths in Bw (2,0)(λ). Next, let’s apply f̃1 to paths in the set uσ2(λ) ⊗
(m2+k1, m0, m1−k1)⊗B`. The (1)-signature is of the form

�

+m2+k1
,∗1

�

. By Lemma 5.5, we have the

set
�

uσ2(λ)⊗
�

m2+k1− c2,1, m0+ c2,1, m1−k1

�

⊗B` | c2,1 = 1, 2, . . . , m2+k1

	

. (5.22)

Now we can apply f̃2 to the same set of paths. The (2)-signature is of the form
�

+k1
,+m0

,∗1

�

. Again,

by Lemma 5.5, we have the following paths

�

uσ3(λ)⊗
�

m0, m1−k ′1, m2+k ′1
�

⊗ (m2+k1, m0, m1−k1)⊗B`,
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uσ3(λ)⊗ (m0, m1−k1, m2+k1)⊗ (m2+k1, m0−k0, m1−k1+k0)⊗B`
�

�

k1 = 1, 2, . . . , m1, k ′1 = 1, 2, . . . , k1

	

. (5.23)

Then we can apply f̃1 to paths in the set uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗B`. The (1)-signature is of

the form
�

+k0
,+m2

,∗1

�

. Hence, by Lemma 5.5, we have the following paths:

�

uσ3(λ)⊗
�

m0−k ′0, m1+k ′0, m2

�

⊗ (m2, m0−k0, m1+k0)⊗B`,

uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗ (m2−k2, m0−k0+k2, m1+k0)⊗B`
�

�

k2 = 1, 2, . . . , m2, k ′0 = 1, 2, . . . , k0

	

. (5.24)

But if we apply f̃2 to the same paths, we won’t produce any new paths. So, let’s apply f̃1 to the

paths in the set uσ2(λ) ⊗
�

m2+ c1,0, m0−k0, m1+k0− c1,0

�

⊗ B`. The (1)-signature is of the form
�

+k0
,+m2+c1,0

,∗1

�

. By Lemma 5.5, we obtain the set

�

uσ3(λ)⊗
�

m0−k ′0, m1+k ′0, m2

�

⊗
�

m2+ c1,0, m0−k0, m1+k0− c1,0

�

⊗B`,

uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗
�

m2+ c1,0− c ′2;1,0, m0−k0+ c ′2;1,0, m1+k0− c1,0

�

⊗B`
�

�

c ′2;1,0 = 1, 2, . . . , m2+ c1, 0
	

.

Note that we can rewrite these paths as







uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗
�

`− i , i − c ′1,0, c ′1,0

�

⊗B`
uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗

�

m2+ t , c0,−0− t ,`−m2− c0,−0

�

⊗B`
(5.25)

where c ′1,0 = 0, 1, . . . , m1+k0−1, i = c ′1,0, c ′1,0+1, . . . ,`, c0,−0 = 1, 2, . . . , m0−k0, and t = 1, 2, . . . , c0,−0.

Next we will apply f̃2 to the certain paths from the same sets. The (2)-signature is of the form

�

. . . ,−m0
+m2

,−m2
+m1

,−m1+k0−c1,0
+m0−k0

,∗1

�

,

which reduces to the following:







�

+c1,0−k0
,+m0−k0

,∗1

�

if c1,0 > k0
�

+m0−k0
,∗1

�

if c1,0 ≤ k0
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=







�

+k1
,+m0−k0

,∗1

�

if c1,0 > k0
�

+m0−k0
,∗1

�

if c1,0 ≤ k0.

Let’s break this section into cases:

Case 5.8. Suppose that c1,0 > k0 and let k1 = c1,0−k0 ∈ {1, 2, . . . , m1}. Then, by Lemma 5.5, we obtain

the paths

�

uσ3(λ)⊗
�

m0, m1−k ′1, m2+k ′1
�

⊗
�

m2+ c1,0, m0−k0, m1+k0− c1,0

�

⊗B` ,

uσ3(λ)⊗ (m0, m1−k1, m2+k1)⊗
�

m2+ c1,0, m0−k0− c0,−0, m1+k0− c1,0+ c0,−0

�

⊗B`
�

�

c0,−0 = 1, 2, . . . , m0−k0

	

. (5.26)

Case 5.9. Suppose that c1,0 ≤ k0. Then, by Lemma 5.5, we obtain the paths

�

uσ2(λ)⊗
�

m2+ c1,0, m0−k0− c0,−0, m1+k0− c1,0+ c0,−0

�

⊗B`
	

.

But by a variation of Equation 5.16, these paths are a repeat of the paths we started with in this case.

Hence, the only new paths produced are from Case 5.8.

Next, let’s apply f̃2 to the paths in Equation 5.21. The (2)-signature is of the form
�

+k1
,+m0+c2,1

,∗1

�

.

Hence, by Lemma 5.5, we produce the new paths

�

uσ2(λ)⊗
�

m2−k2, m0+k2− c0,2, m1+ c0,2

�

⊗B`
	

(5.27)

where c0,2 = 1, 2, . . . , m0+k2.

Applying f̃2 to the paths in Equation 5.22, we have the (2)-signature of the form
�

+k1
,+m0+c2,1

,∗1

�

.

By Lemma 5.5, this application produces the new paths

�

uσ3(λ)⊗
�

m0, m1−k ′1, m2+k ′1
�

⊗
�

m2+k1− c2,1, m0+ c2,1, m1−k1

�

⊗B`,

uσ3(λ)⊗ (m0, m1−k1, m2+k1)⊗
�

m0+ c2,1− c ′0;2,1, m1−k1+ c ′0;2,1, m2+k1− c2,1

�

⊗B`
�

�

k ′1 = 1, 2, . . . , k1, c ′0;2,1 = 1, 2, . . . , m0+ c2,1

	

. (5.28)
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Now, let’s apply f̃2 to the paths in Equation 5.24. If we rewrite Equation 5.24 as















uσ3(λ)⊗ (m0−k0, m1+k0, m2, )⊗ (m1, m0−k0, m1+k0)⊗B` [1]

uσ3(λ)⊗ (m0−k0, m1+k0, m2, )⊗ (m2−k2, m0−k0+k2, m1+k0)⊗B` [2]

uσ3(λ)⊗ (m0−k0, m1+k0, m2, )⊗
�

m2, m0−k0− c0,−0, m1+k0+ c0,−0

�

⊗B` [3]

then we can break this application of f̃2 into three cases.

Case 5.10. First, note that the (2)-signature on [1] is of the form
�

+m0−k0
,∗1

�

. This action will produce

the same paths as in [3]; hence, no new paths are produced.

Case 5.11. The (2)-signature on [2] is
�

+m0−k0+k2
,∗1

�

. So, by Lemma 5.5, we have the paths



























uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗ (m2−k2, m0−k0+k2−1, m1+k0+1)⊗B`
uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗ (m2−k2, m0−k0+k2−2, m1+k0+2)⊗B`

...

uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗ (m2−k2, 0, m1+m0+k2)⊗B`.

(5.29)

Case 5.12. Finally, the (2)-signature on [3] is
�

+m0−k0−c0,−0
,∗1

�

. Hence, by Lemma 5.5, this action

produces the same paths as in [3].

Next, let’s apply f̃2 to the paths in Equation 5.25, which are of the form







uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗
�

`− i , i − c ′1,0, c ′1,0

�

⊗B` [1]

uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗
�

m2+ t , c0,−0− t ,`−m2− c0,−0

�

⊗B` [2]

where c ′1,0 = 0,1, . . . , m1 + k0 − 1, i = c ′1,0, c ′1,0 + 1, . . . ,`, c0,−0 = 1,2, . . . , m0 − k0, and t = 1,2, . . . , c0,−0.

Let’s also break this into cases:

Case 5.13. For [1], we have the (2)-signature of the form
�

. . . ,−m0
+m2

,−m2
+m1+k0

,−c ′1,0
+i−c ′1,0

,∗1

�

,

which reduces to

�

+m1+k0
,−c ′1,0

+i−c ′1,0
,∗1

�

=
�

+c1,0
,+i−c ′1,0

,∗1

�

=
�

+c1,0
,+z ,∗1

�

,

where z = 0, 1, . . . ,`− c ′1,0. Hence, by Lemma 5.5, we have the paths

uσ3(λ)⊗
�

m0−k0, m1+k0− c ′1,0, m2+ c ′1,0

�

⊗ bµ⊗B` (5.30)
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for specific bµ ∈B`.

Case 5.14. For [2], we have the (2)-signature of the form

�

. . . ,−m0
+m2

,−m2
+m1+k0

,−`−m2−c0,−0
+c0,−0−t ,∗1

�

,

which reduces to

�

+m1+k0
,−`−m2−c0,−0

+c0,−0−t ,∗1

�

=
�

+m1+k0
,−m1+m0−c0,−0

+c0,−0−t ,∗1

�

=
�

+c0,−0−t ,∗1

�

,

since m0 − c0,−0 ≥ k0. Thus, no new paths are produced in this case, because we already have all

paths of the form uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗ bµ⊗B`, which we’ll show below.

Let’s summarize the paths that the operators f̃1 and f̃2 have produced. From Equation 5.21, we

have an additional m2 new bµ in the form uσ2(λ) ⊗ bµ ⊗B`. We see from Equation 5.24 that we

have an additional (m0− (k0−1)) +m2 new bµ in the form uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗ bµ⊗B`.
Equation 5.22 produced an additional

∑m1
k1=1 m2+k1 =m1m2+

1
2 m1(m1+1) unique bµ in the form

uσ2(λ)⊗ bµ⊗B`. From Equation 5.23, we have an additional (m1− (k1−1)) +m0 new bµ in the form

uσ3(λ)⊗(m0, m1−k1, m2+k1)⊗bµ⊗B`. We see from Equation 5.25 that we added
∑m1+k0

i=1 (1+m2+ i )+
∑m0

i=k0+1 (m1+ i )new bµ in the form uσ3(λ)⊗(m0−k0, m1+k0, m2)⊗bµ⊗B`. In Equation 5.26, we have
∑m0

k0=1 [(1+m0−k0)+ (m1+k0− (k0+k1+1)+1)] new bµ of the form uσ3(λ)⊗(m0, m1−k1, m2+k1)⊗
bµ⊗B`. From Equation 5.27, we produced

∑m2
k2=1 (m0+k2) new bµ in the form uσ2(λ)⊗bµ⊗B`. Equa-

tion 5.28 produced
∑m2

k2=1 (m0−k0+k2) new bµ in the form uσ3(λ)⊗ (m0, m1−k1, m2+k1)⊗ bµ⊗B`.
From Equation 5.29, we have

∑m2+k1
c2,1=1

�

1+m0+ c2,1

�

+
∑m1

i=k1+1 (m2+ i ) new bµ in the form uσ3(λ)⊗

(m0−k0, m1+k0, m2)⊗ bµ ⊗B`. Finally, we see from Equation 5.30 that we have
∑`−c ′1,0

t=0 (t +1) +
∑m1+k0−t−1

c ′1,0=0

∑`−c ′1,0

t=0 (1) new bµ in the form uσ3(λ)⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗ bµ⊗B`.

From the above list, we see that we have:

• Total bµ in the form uσ2(λ)⊗ bµ⊗B`:

1+
3

2
m0+

3

2
m1+m0m1+

1

2
m 2

0 +m2+m1m2+
1

2
m 2

1 +m2m0+
1

2
m2 (m2+1) =

�

2+ `
`

�

.

• Total bµ in the form uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗ bµ⊗B`:

m0− (k0−1)+m2+
m1+k0
∑

i=1

(1+m2+ i )+
m0
∑

i=k0+1

(m1+ i )+
m2
∑

k2=1

(m0−k0+k2) =

�

2+ `
`

�

.

75



Chapter 5. Uq

�
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• Total bµ in the form uσ3(λ)⊗ (m0, m1−k1, m2+k1)⊗ bµ⊗B`:

m1− (k1−1)+m0+
m0
∑

k0=1

(1+m0+m1−k0−k1)+
m2+k1
∑

c2,1=1

�

1+m0+ c2,1

�

+
m1
∑

i=k1+1

(m2+ i ) =

�

2+ `
`

�

.

• Total bµ in the form uσ3(λ)⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗ bµ⊗B`:

`−c ′1,0
∑

t=0

(t +1)+
m1+k0−i−1

∑

c ′1,0=0

`−c ′1,0
∑

t=0

(1) =

�

2+ `
`

�

.

Therefore, we see that

Bw (3,0) (λ) =
�

uσ2(λ)⊗B`,

uσ3(λ)⊗ (m0−k0, m1+k0, m2)⊗B`,

uσ3(λ)⊗ (m0, m1−k1, m2+k1)⊗B`,

uσ3(λ)⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗B` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

.

Now, suppose we have explicit descriptions of Bw (L ,0)(λ), for L ≡ 1 mod 3, L ≡ 2 mod 3, or L ≡
0 mod 3. We want to show that our explicit descriptions hold for Bw (L+1,0)(λ).

First, let’s suppose L ≡ 1 mod 3. Then L +1= 2 mod 3. Note that

w (L +1, 0) = (r1−L r−L )w (L , 0) = (r0r2)w (L , 0).

Hence we only need to apply f̃2 and f̃0 to certain paths in the set

Bw (L ,0) (λ) =
�

uλ⊗BL−1
` ,

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗BL−1
` ,

uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗BL−1
` ,

uσ(λ)⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

⊗BL−1
`

	

The only difference between this case and the case when L = 2 is the rightmost L −1 components,

BL−1
` , in the tensor product. So, by the same process as in the case when L = 2 and by Lemma 5.5,
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we have

Bw (L+1,0) (λ) =
�

uσ(λ)⊗BL
` ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗BL
` ,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗BL
` ,

uσ2(λ)⊗
�

m2+ c1,0, m0−k0, m1+k0− c1,0

�

⊗BL
`

	

Next, let’s suppose that L = 2 mod 3. Then L +1= 0 mod 3. Note that

w (L +1, 0) = (r1−L r−L )w (L , 0) = (r2r1)w (L , 0).

Thus, we only need to apply f̃1 and f̃2 to certain paths in the set Bw (L ,0) (λ). But this case is exactly

the same as when L = 3, except for the rightmost L −1 components, BL−1
` , in the tensor product. So,

by Lemma 5.5 and by using the same process as in the case when L = 3, we have

Bw (L+1,0) (λ) =
�

uσ2(λ)⊗BL
` ,

uλ⊗ (m0−k0, m1+k0, m2)⊗BL
` ,

uλ⊗ (m0, m1−k1, m2+k1)⊗BL
` ,

uλ⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0,
�

⊗BL
`

	

Finally, let’s suppose that L = 0 mod 3. Then L +1= 1 mod 3. Note that

w (L +1, 0) = (r1−L r−L )w (L , 0) = (r1r0)w (L , 0).

and hence we need only apply f̃0 and f̃1 to certain paths in the set Bw (L ,0) (λ). Let’s apply f̃0 to certain

paths in each of these sets:

Case 5.15. Let f̃0 act on certain paths in the set uσ2(λ) ⊗BL−1
` . The (0)-signature is of the form

�

+m2
,∗1, . . . ,∗L−1

�

. By Lemma 5.5, this produces the set
�

uλ⊗ (m0+k2, m1, m2−k2)⊗BL−1
`

	

.

Case 5.16. Now let f̃0 act on certain paths in the set uλ⊗ (m0−k0, m1+k0, m2)⊗BL−1
` . We have the

(0)-signature of the form
�

+k0
,+m2

,∗1, . . . ,∗L−1

�

. By Lemma 5.5, this produces the paths

�

uσ(λ)⊗
�

m1+k ′0, m2, m0−k ′0
�

⊗ (m0−k0, m1+k0, m2)⊗BL−1
` ,

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ (m0−k0+k2, m1+k0, m2−k2)⊗BL−1
` ,

	

where k ′0 = 1, 2, . . . , k0.
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Case 5.17. Next, let f̃0 act on certain paths in the set uλ ⊗ (m0, m1−k1, m2+k1)⊗BL−1
` . The (0)-

signature is of the form
�

+m2+k1
,∗1, . . . ,∗L−1

�

. Lemma 5.5 implies that we have the set

uλ⊗
�

m0+ c2,1, m1−k1, m2+k1− c2,1

�

⊗BL−1
` ,

where c2,1 = 1, 2, . . . , m2+k1.

Case 5.18. Finally, let f̃0 act on certain paths in the set uλ⊗
�

m0−k0, m1+k1− c1,0, m2+ c1,0

�

⊗BL−1
` .

The (0)-signature is of the form
�

+k0
,+m2+c1,0

,∗1, . . . ,∗L−1

�

. By Lemma 5.5, we have

�

uσ(λ)⊗
�

m1+k ′0, m2, m0−k ′0
�

⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗BL−1
` ,

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗
�

m0−k0+ c ′2;1,0, m1+k0− c1,0, m2+ c1,0− c ′2;1,0

�

⊗BL−1
`

	

,

where c ′2;1,0 = 1, 2, . . . , m2+ c1,0.

Currently, we have the following:

• Total number of bµ in the form uλ⊗ bµ⊗BL−1
` :

m2+
m1
∑

k1=1

(m2+k1)+1+m0+m1+
m0
∑

i=1

(i +m1) .

• Total number of bµ in the form uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ bµ⊗BL−1
` :

(m0− (k0−1))+m2+
m1+k0
∑

i=1

(1+m2+ i )+
m0
∑

i=k0+1

(m1+ i ) .

Next, let’s apply f̃1 to certain paths in Bw (L ,0) (λ):

Case 5.19. Let f̃1 act on certain paths in the set uσ2(λ)⊗BL−1
` . We have the (1)-signature of the form

�

+m0
,∗1, . . . ,∗L−1

�

. By Lemma 5.5, this action produces the set uλ ⊗ (m0−k0, m1+k0, m2)⊗BL−1
` ,

which we already have.

Case 5.20. Letting f̃1 act on any path in the set uλ⊗ (m0−k0, m1+k0, m2)⊗BL−1
` produces no new

paths.

Case 5.21. Let f̃1 act on certain paths in the set uλ⊗ (m0, m1−k1, m2+k1)⊗BL−1
` . The (1)-signature

is of the form
�

+k1
,+m0

,∗1, . . . ,∗L−1

�

. By Lemma 5.5, we have the following paths:

�

uσ(λ)⊗
�

m1−k ′1, m2+k ′1, m0

�

⊗ (m0, m1−k1, m2+k1)⊗BL−1
` ,
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uσ(λ)⊗ (m1+k1, m2+k1, m0)⊗ (m0−k0, m1−k1+k0, m2+k1)⊗BL−1
`

	

.

Case 5.22. Let f̃1 act on certain paths in the set uλ⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗BL−1
` . The

(1)-signature is of the form

�

. . . ,−m0
+m2

,−m2
+m1

,−m1+k0−c1,0
+m0−k0

,∗1, . . . ,∗L−1

�

,

which reduces to







�

+c1,0−k0
,+m0−k0

,∗1, . . . ,∗L−1

�

if c1,0 > k0
�

+m0−k0
,∗1, . . . ,∗L−1

�

if c1,0 ≤ k0

=







�

+k1
,+m0−k0

,∗1, . . . ,∗L−1

�

if c1,0 > k0
�

+m0−k0
,∗1, . . . ,∗L−1

�

if c1,0 ≤ k0.

Subcase 5.22.1. Suppose c1,0 > k0 and let k1 = c1,0−k0. Then, by Lemma 5.5, this action produces

the following paths:

�

uσ(λ)⊗
�

m1−k ′1, m2+k ′1, m0

�

⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗BL−1
` ,

uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗
�

m0−k0− c0,−0, m1+k0− c1,0+ c0,−0, m2+ c1,0

�

⊗BL−1
`

	

,

where c0,−0 = 1, 2, . . . , m0−k0.

Subcase 5.22.2. Suppose c1,0 ≤ k0. Then the (1)-signature is
�

+m0−k0

�

. Hence, by Lemma 5.5, we

have the paths uλ ⊗
�

m0−k0− c0,−0, m1+k0− c1,0+ c0,−0, m2+ c1,0

�

⊗BL−1
` , which are the same as

uλ⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗BL−1
` . But we’ve already obtained this paths.

Now, we currently have the following paths:

• Total number of bµ in the form uλ⊗ bµ⊗BL−1
` :

m2+
m1
∑

k1=1

(m2+k1)+1+m0+m1+
m0
∑

i=1

(i +m1) .

• Total number of bµ in the form uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ bµ⊗BL−1
` :

(m0− (k0−1))+m2+
m1+k0
∑

i=1

(1+m2+ i ) +
m0
∑

i=k0+1

(m1+ i ) .
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• Total number of bµ in the form uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗ bµ⊗BL−1
` :

(m1− (k1−1))+m0+
m0
∑

k0=1

(1+m0−k0+m1−k1) .

Finally, let’s apply f̃1 to certain paths produced when applying f̃0 to Bw (L ,0) (λ):

Case 5.23. Let f̃1 act on certain paths in the set uλ⊗ (m0+k2, m1, m2−k2)⊗BL−1
` . The (1)-signature

is of the form
�

+m0+k2
,∗1, . . . ,∗L−1

�

.

By Lemma 5.5, we have uλ⊗
�

m0+k2− c0,2, m1+ c0,2, m2−k2

�

⊗BL−1
` .

Case 5.24. Let f̃1 act on certain paths in the following sets:















uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ (m0−k0, m1+k0, m2)⊗BL−1
` [1]

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ (m0−k0+k2, m1+k0, m2−k2)⊗BL−2
` [2]

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗
�

m0−k0− c0,−0, m0+k0+ c0,−0, m2

�

⊗BL−2
` . [3]

Subcase 5.24.1. Let f̃1 act on certain paths in [1]. The (1)-signature is of the form

�

+m0−k0
,∗1, . . . ,∗L−1

�

.

By Lemma 5.5, we have

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗
�

m0−k0− c0,−0, m1+k0+ c0,−0, m2

�

⊗BL−1
` ,

which is the same set of paths as in [3].

Subcase 5.24.2. Next let f̃1 act on certain paths in [2]. The (1)-signature is of the form

�

+m0−k0+k2
,∗1, . . . ,∗L−1

�

.

By Lemma 5.5, we have

�

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ (m0−k0+k2−1, m1+k0+1, m2−k2)⊗BL−1
` ,

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ (m0−k0+k2−2, m1+k0+2, m2−k2)⊗BL−1
` , . . . ,

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ (0, m1+m0+k2, m2−k2)⊗BL−1
`

	

.
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Subcase 5.24.3. Finally let f̃1 act on certain paths in [3]. The (1)-signature is of the form

�

+m0−k0−c0,−0
,∗1, . . . ,∗L−1

�

.

But by Lemma 5.5, this action will also produce the same paths as in [3].

Case 5.25. Next let f̃1 act on certain paths in the set uλ⊗
�

m0+ c2,1, m1−k1, m2+k1− c2,1

�

⊗BL−1
` .

The (1)-signature is of the form
�

+k1
,+m0+c2,1

,∗1, . . . ,∗L−1

�

. By Lemma 5.5, this action produces the

following paths:

�

uσ(λ)⊗
�

m1−k ′1, m2+k ′1, m0

�

⊗
�

m0+ c2,1, m1−k1, m2+k1− c2,1

�

⊗BL−1
` ,

uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗
�

m0+ c2,1− c ′0;2,1, m1−k1+ c ′0;2,1, m2+k1− c2,1

�

⊗BL−1
`

	

,

where c ′0;2,1 = 1, 2, . . . , m0+ c2,1.

Case 5.26. Finally, let f̃1 act on certain paths in the following sets:







uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗
�

i − c ′1,0, c ′1,0,`− i
�

⊗BL−1
` [1]

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗
�

c0,−0− t ,`−m2− c0,−0, m2+ t
�

⊗BL−2
` [2]

where c ′1,0 = 0, 1, . . . , m1+k0−1, i = c ′1,0, c ′1,0+1, . . . ,`, c0,−0 = 1, 2, . . . , m0−k0, and t = 1, 2, . . . , c0,−0.

Subcase 5.26.1. Let f̃1 act on certain paths in [1]. The (1)-signature is of the form

�

. . . ,−m0
+m2

,−m2
+m1+k0

,−c ′1,0
+i−c ′1,0

,∗1, . . . ,∗L−1

�

=
�

+m1+k0
,−c ′1,0

+i−c ′1,0
,∗1, . . . ,∗L−1

�

=
�

+c1,0
,+i−c ′1,0

,∗1, . . . ,∗L−1

�

=
�

+c1,0
,+z ,∗1, . . . ,∗L−1

�

,

where z = 0, 1, . . . ,`− c ′1,0. By Lemma 5.5, we have the set of paths

uσ(λ)⊗
�

m1+k0− c ′1,0, m2+ c ′1,0, m0−k0

�

⊗ bµ⊗BL−1
`

for specific bµ ∈B`.

Subcase 5.26.2. Letting f̃1 act on certain paths in [2], we have (1)-signature of the form

�

. . . ,−m0
+m2

,−m2
+m1+k0

,−`−m2−c0,−0
+c0,−0−t ,∗1, . . . ,∗L−1

�
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=
�

+m1+k0
,−`−m2−c0,−0

+c0,−0−t ,∗1, . . . ,∗L−1

�

=
�

+m1+k0
,−m1+m0−c0,−0

,+c0,−0−t∗1, . . . ,∗L−1

�

=
�

+c0,−0−t ,∗1, . . . ,∗L−1

�

.

Hence, no new paths are produced in this case.

Thus, we have obtained the following paths:

• Total number of bµ in the form uλ⊗ bµ⊗BL−1
` :

m2+
m1
∑

k1=1

(m2+k1)+1+m0+m1+
m0
∑

i=1

(i +m1)+
m2
∑

k2=1

(m0+k2) =

�

2+ `
`

�

.

• Total number of bµ in the form uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗ bµ⊗BL−1
` :

(m0− (k0−1))+m2+
m1+k0
∑

i=1

(1+m2+ i )+
m0
∑

i=k0+1

(m1+ i )+
m2
∑

k2=1

(m0−k0+k2) =

�

2+ `
`

�

.

• Total number of bµ in the form uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗ bµ⊗BL−1
` :

(m1− (k1−1))+m0+
m0
∑

k0=1

(1+m0−k0+m1−k1)+
m2+k1
∑

c2,1=1

�

1+m0+ c2,1

�

+
m1
∑

i=k1+1

(m2+ i ) =

�

2+ `
`

�

.

• Total number of bµ in the form uσ(λ)⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

⊗ bµ⊗BL−1
` :

`−c ′1,0
∑

t=0

(t +1)+
m1+k0−t−1

∑

c ′1,0=0

`−c ′1,0
∑

t=0

1=

�

2+ `
`

�

.

The next Corollary follows directly from Lemma 5.7.

Corollary 5.8. Let λ = m0Λ0 +m1Λ1 +m2Λ2 ∈ P̄ +, where λ(c ) = `. Then the Demazure crystal

Bw (L , j ) (λ) for Uq (A
(1)
2 ), where j = 0, 1, 2, can be explicitly defined by one of the following descriptions:

1. If L ≡ 1 mod 3, then

Bw (L ,0) (λ) =
�

uλ⊗BL−1
` ,
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uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗BL−1
` ,

uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗BL−1
` ,

uσ(λ)⊗
�

m1+k0− c1,0, m2+ c1,0, m0−k0

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

,

Bw (L ,1) (λ) =
�

uλ⊗BL−1
` ,

uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗BL−1
` ,

uσ(λ)⊗ (m1, m2−k2, m0+k2)⊗BL−1
` ,

uσ(λ)⊗
�

m1−k1, m2+k1− c2,1, m0+ c2,1

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 1, 2, c2,1 = 1, 2, . . . , m2+k1

	

,

Bw (L ,2) (λ) =
�

uλ⊗BL−1
` ,

uσ(λ)⊗ (m1, m2−k2, m0+k2)⊗BL−1
` ,

uσ(λ)⊗ (m1+k0, m2, m0−k0)⊗BL−1
` ,

uσ(λ)⊗
�

m1+ c0,2, m2−k2, m0+k2− c0,2

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 2, c0,2 = 1, 2, . . . , m0+k2

	

.

2. If L ≡ 2 mod 3, then

Bw (L ,0) (λ) =
�

uσ(λ)⊗BL−1
` ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗BL−1
` ,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗BL−1
` ,

uσ2(λ)⊗
�

m2+ c1,0, m0−k0, m1+k0− c1,0

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

,

Bw (L ,1) (λ) =
�

uσ(λ)⊗BL−1
` ,

uσ2(λ)⊗ (m2+k1, m0, m1−k1)⊗BL−1
` ,

uσ2(λ)⊗ (m2−k2, m0+k2, m1)⊗BL−1
` ,

uσ2(λ)⊗
�

m2+k1− c2,1, m0+ c2,1, m1−k1

�

⊗BL−1
` |
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kt = 1, 2, . . . , mt , t = 1, 2, c2,1 = 1, 2, . . . , m2+k1

	

,

Bw (L ,2) (λ) =
�

uσ(λ)⊗BL−1
` ,

uσ2(λ)⊗ (m2−k2, m0+k2, m1)⊗BL−1
` ,

uσ2(λ)⊗ (m2, m0−k0, m1+k0)⊗BL−1
` ,

uσ2(λ)⊗
�

m2−k2, m0+k2− c0,2, m1+ c0,2

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 2, c0,2 = 1, 2, . . . , m0+k2

	

.

3. If L ≡ 0 mod 3, then

Bw (L ,0) (λ) =
�

uσ2(λ)⊗BL−1
` ,

uλ⊗ (m0−k0, m1+k0, m2)⊗BL−1
` ,

uλ⊗ (m0, m1−k1, m2+k1)⊗BL−1
` ,

uλ⊗
�

m0−k0, m1+k0− c1,0, m2+ c1,0

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 1, c1,0 = 1, 2, . . . , m1+k0

	

,

Bw (L ,1) (λ) =
�

uσ2(λ)⊗BL−1
` ,

uλ⊗ (m0, m1−k1, m2+k1)⊗BL−1
` ,

uλ⊗ (m0+k2, m1, m2−k2)⊗BL−1
` ,

uλ⊗
�

m0+ c2,1, m1−k1, m2+k1− c2,1

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 1, 2, c2,1 = 1, 2, . . . , m2+k1

	

,

Bw (L ,2) (λ) =
�

uσ2(λ)⊗BL−1
` ,

uλ⊗ (m0+k2, m1, m2−k2)⊗BL−1
` ,

uλ⊗ (m0−k0, m1+k0, m2)⊗BL−1
` ,

uλ⊗
�

m0+k2− c0,2, m1+ c0,2, m2−k2

�

⊗BL−1
` |

kt = 1, 2, . . . , mt , t = 0, 2, c0,2 = 1, 2, . . . , m0+k2

	

.

Corollary 5.9. For λ=m0Λ0+m1Λ1+m2Λ2 ∈ P̄ +, where λ(c ) = `, we have the following property for

the Demazure crystals Bw (L , j )(λ) for Uq (A
(1)
2 ):
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1.
⋃

j≥0

Bw (L , j ) (λ) = uσ(λ)⊗BL
` .

2.
⋂

j≥0

Bw (L , j ) (λ) = uλ⊗BL−1
` .

Proof. As in the λ= `Λ j case, we note that w (L , j ) =w (L , j +n +1). Hence, we have:

⋃

j≥0

Bw (L , j )(λ) =
n
⋃

j=0

Bw (L , j )(λ),

⋂

j≥0

Bw (L , j )(λ) =
n
⋂

j=0

Bw (L , j )(λ).

The proof follows precisely from Corollary 5.8. Suppose L ≡ 1 mod 3. Then

2
⋂

j=0

Bw (L , j ) (λ) = Bw (L ,0) (λ)∩Bw (L ,1) (λ)∩Bw (L ,2) (λ) .

But the only sets of paths that Bw (L ,0) (λ) and Bw (L ,1) (λ) have in common are

�

uσ(λ)⊗ (m1−k1, m2+k1, m0)⊗BL−1
`

	

and

uλ⊗BL−1
` .

Since Bw (L ,2) (λ) only contains uλ⊗BL−1
` out of these two sets, the intersection

2
⋂

j=0

Bw (L , j ) (λ) = uλ⊗BL−1
`

for L ≡ 1 mod 3.

For the union, we have

2
⋃

j=0

Bw (L , j ) (λ) = Bw (L ,0) (λ)∪Bw (L ,1) (λ)∪Bw (L ,2) (λ) .

From Bw (L ,0) (λ), we have

1+m0+m1+
m0
∑

k0=1

(m1+k0) = 1+m0+m1+m0m1+
1

2
m0 (m0+1)
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unique bµ in the form uσ(λ)⊗ bµ⊗BL−1
` . From Bw (L ,1) (λ), we add

m2+
m1
∑

k1=1

(m2+k1) =m2+m1m2+
1

2
m1 (m1+1)

new bµ in the form uσ(λ)⊗ bµ⊗BL−1
` . From Bw (L ,2) (λ), we add

m2
∑

k2=1

(m0+k2) =m2m0+
1

2
m2 (m2+1)

new bµ in the form uσ(λ)⊗ bµ⊗BL−1
` . So, altogether we have a total of

= 1+m0+m1+m0m1+
1

2
m0 (m0+1) +m2+m1m2+

1

2
m1 (m1+1)+m2m0+

1

2
m2 (m2+1)

= 1+
3

2
m0+

3

2
m1+

3

2
m2+m0m1+m1m2+m2m0+

1

2
m 2

0 +
1

2
m 2

1 +
1

2
m 2

2

=

�

2+ `
`

�

unique bµ in the form uσ(λ)⊗ bµ⊗BL−1
` . Thus,

2
⋃

j=0

Bw (L , j ) (λ) = uσ(λ)⊗BL
`

for L ≡ 1 mod 3. Note that for the other two cases of L , we have a similar argument.
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In this chapter, we describe a specific property for Demazure crystals Bw (λ) of Uq (A
(1)
n ), and give al-

gorithms that help us find a sufficient Weyl group sequence for obtaining certain paths in this crystal.

Let g= A(1)n , let λ=m0Λ0+m1Λ1+ · · ·+mnΛn ∈ P̄ +, where m0+m1+ · · ·+mn = `, and let B` be the

perfect crystal of level ` for Uq (A
(1)
n ). Also recall that m0 =mn+1, and recall Equations 5.1-5.6 from

Chapter 5.

Our goal is to build an algorithm that will provide a sequence of Kashiwara operators such that when

applied to the ground-state path uλ it produces uσ(λ)⊗ bν, for some bν ∈B`. We use the following

two lemmas to help build such an algorithm.

Lemma 6.1. We can obtain any λ-path of the form uσL+1(λ)⊗ bν⊗ bµ⊗p`, where

bν = (mL+1, mL+2, . . . , mL+i−1, vi , vi+1, mL+i+2, . . . , mL )

such that vi < mL+i , bµ is some element in B`, and p` ∈ BL−1
` , by applying f̃ ki

i f̃ ki+1
i+1 to a path in

uσL−1(λ)⊗BL−1
` for sufficiently large ki and ki+1.
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Proof. According to Equation 5.5, the set uσL−1(λ)⊗BL−1
` has (i )-signature of the form

�

+mi+L−1
,∗1,∗2, . . . ,∗L−1

�

.

Hence, by Lemma 5.5, letting f̃i act on certain λ-paths in the set uσL−1(λ)⊗BL−1
` a sufficient number

of times will produce the set uσL (λ)⊗ f̃i

�

bσL−1(λ)
�

⊗BL−1
` . However, we want f̃i to act on the (L +1)s t

component from the right, not the L t h component. If we look at the form of the (i )-signature for

uσL−1(λ)⊗BL−1
` more carefully, we see that we have

�

. . . ,−mi+L+1
+mi+L

,−mi+L
+mi+L−1

,∗1,∗2, . . . ,∗L−1

�

.

Now, in order to keep pluses in the (L +1)s t component of this (i )-signature, we need there to be

fewer than (mi+L )minuses in the L t h component. The only way to do this is to let f̃i+1 act on certain

λ-paths in the set uσL−1(λ)⊗BL−1
` a sufficient number of times to produce the set of λ-paths

uσL (λ)⊗ bµ⊗BL−1
` . (6.1)

By Lemma 5.5, this is possible, since the (i +1)-signature on uσL−1(λ)⊗BL−1
` is of the form

�

+mi+L
,∗1,∗2, . . . ,∗L−1

�

.

Now, suppose that bµ = f̃ zi+1
i+1

�

bσL−1(λ)
�

. Then the (i )-signature on the set in Equation 6.1 is of the

form

�

. . . ,−mi+L+2
+mi+L+1

,−mi+L+1
+mi+L

,−mi+L−zi+1
+mi+L−1

,∗1, . . . ,∗L−1

�

=
�

+zi+1
,+mi+L−1

,∗1, . . . ,∗L−1

�

.

Hence, by Lemma 5.5, we can apply f̃i a sufficient number of times to certain λ-paths in the

set in Equation 6.1 to obtain the desired set of λ-paths uσL+1(λ) ⊗ bν ⊗ bµ ⊗ BL−1
` , where bν =

(mL+1, mL+2, . . . , mL+i−1, vi , vi+1, mL+i+2, . . . , mL ), vi <mi+L .

Lemma 6.2. Choose bν = (mL+1, mL+2, . . . , mL+i−1, vi , vi+1, mL+i+2, . . . , mL ) ∈ B`, where vi <mi+L−1

for some i = 0,1, . . . , n. We can obtain the λ-path uσL (λ) ⊗ bν ⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1
, for bµp

=

f̃
zi+L−p

i+L−p

�

bσp−1(λ)
�

∈B`, for p = 1, 2, . . . , L−1, by applying f̃ zi
i f̃ zi+1

i+1 · · · f̃
zi+L−1

i+L−1 , for some zi , zi+1, . . . , zi+L−1 ∈
Z>0 such that zi ≤ zi+p , to the ground-state path uλ = uσ(λ)⊗ (m1, m2, . . . , m0).
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Proof. We’ll prove the lemma using induction on L. Let L = 2. By Lemma 6.1, we know that

f̃ zi
i f̃ zi+1

i+1 (uλ) = uσ2(λ)⊗ bν⊗ bµL−1
,

where bν = (m3, m4, . . . , mi+1, vi , vi+1, mi+4, . . . , m2), vi <mi+2, and zi ≤ zi+1. Hence, we’ve proved

the base case.

Note that f̃ zi+1
i+1 (uλ) = uσ(λ)⊗(m1, m2, . . . , mi+1−zi+1, mi+2+zi+2, mi+3, . . . , m0), which has (i )-signature

(. . . ,−mi+3
+mi+2

,−mi+2
+mi+1

,−mi+1−zi+1
+mi
) = (+zi+1

,+mi
).

And so, applying f̃ zi
i to the λ-path f̃ zi+1

i+1 (uλ)will only affect the second component from the right,

which implies that bν = f̃ zi
i (bλ) and bµL−1

= f̃ zi+1
i+1 (bσ(λ)).

Now, let zi ≤ zi+p , for p = 1, 2, . . . , L −2. And suppose that

f̃ zi
i f̃ zi+1

i+1 · · · f̃
zi+L−2

i+L−2 (uλ) = uσL−1(λ)⊗ bν⊗ bµL−2
⊗ bµL−3

⊗ . . .⊗ bµ1
,

where bµp
= f̃

zi+L−1−p

i+L−1−p

�

bσp−1(λ)
�

∈B`, for p = 1, 2, . . . , L −2. We want to show that

f̃ zi
i f̃ zi+1

i+1 · · · f̃
zi+L−1

i+L−1 (uλ) = uσL (λ)⊗ bν⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1
,

where bµp
= f̃

zi+L−p

i+L−p

�

bσp−1(λ)
�

∈B`, for p = 1, 2, . . . , L −1. By the inductive hypothesis, we have

f̃ zi+1
i+1 f̃ zi+2

i+2 · · · f̃
zi+L−1

i+L−1 (uλ) = uσL−1(λ)⊗ bµL−1
⊗ bµL−2

⊗ bµL−3
⊗ . . .⊗ bµ1

,

where bµp
= f̃

zi+L−p

i+L−p

�

bσp−1(λ)
�

∈B`, for p = 1, 2, . . . , L −1.

Note that

bµp
= f̃

zi+L−p

i+L−p

�

bσp−1(λ)
�

=
�

mp , mp+1, . . . , mi+L−1− zi+L−p , mi+L + zi+L−p , mi+L+1, . . . , mp+n

�

.

Hence, the (i )-signature for bµp
is
�

−mp+i
+mp−1+i

�

, unless p + i = i + L −1 or p + i = i + L . Note that

if p + i = i + L −1, then p = L −1. In this case, we have the element bµL−1
, which has (i )-signature

�

−mp+i−zi+1
+mp−1+i

�

. If p + i = i + L , then p = L and bµp
is not defined.
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Thus, the λ-path uσL−1(λ)⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1
has (i )-signature

�

. . . ,−mi+L
+mi+L−1

,−mi+L−1−zi+1
+mi+L−2

,−mi+L−2
+mi+L−3

,−mi+L−3
+mi+L−4

, . . . ,−mi+1
+mi

�

=
�

+zi+1
,•L−1,•L−2, . . . ,•2,+mi

�

.

So, we can apply f̃ zi
i to the λ-path uσL−1(λ)⊗ bµL−1

⊗ bµL−2
⊗ . . .⊗ bµ1

to produce the λ-path

uσL (λ)⊗ f̃ zi
i

�

bσL−1(λ)
�

⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1

= uσL (λ)⊗ bν⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1
.

Therefore, f̃ zi
i f̃ zi+1

i+1 · · · f̃
zi+L−1

i+L−1 (uλ) = uσL (λ)⊗ bν⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1
, which is what we wanted to

show.

Given the ground-state path uλ = uσ(λ) ⊗ bλ = uσ(λ) ⊗ (m1, m2, . . . , mn , m0), we want to obtain

uσ(λ) ⊗ bν = uσ(λ) ⊗ (v1, v2, . . . , vn , v0). The following algorithm provides a sequence of Kashiwara

operators such that when applied to uλ it produces uσ(λ)⊗ bν.

Algorithm 1: To construct the necessary sequence of Kashiwara operators, do the following:

1. Find all vi such that vi > mi , i = 0,1,2, . . . , n . Label them (in order of appearance in the

(n +1)-tuple) as vs1
, vs2

, . . . , vsr
, where 1< r < n +1. Define z0 = 0.

2. If s1 = 1, then skip this step.

Otherwise, we know that vt <mt for all t = 1,2, . . . , s1−1. So, recursively define z1 =m1− v1

and zt = zt−1+mt − vt for t = 2,3, . . . , s1−1. Hence, we’ll need f̃
zs1−1

s1−1 · · · f̃
z2

2 f̃ z1
1 as part of the

sequence.

3. Compute d1 = vs1
−ms1

− zs1−1. Define

(d1)+ =max
�

vs1
−ms1

− zs1−1, 0
	

and

(−d1)+ =max
�

ms1
+ zs1−1− vs1

, 0
	

.

Let zs1
= (−d1)+. The sequence becomes

f̃ (−d1)+
s1

f̃
zs1−1+(d1)+

s1−1 · · · f̃ z1+(d1)+
1 f̃ (d1)+

0 .
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4. Do the following for g = 2, . . . , r .

Let zt = zt−1 +mt − vt for t = sg−1 + 1, sg−1 + 2, . . . , sg − 1. Compute dg = vsg
−msg

− zsg−1.

However, if sr = 0, then set dr = 0 and zsr
= 0. Define

(dg )+ =max
¦

vsg
−msg

− zsg−1, 0
©

(6.2)

and

(−dg )+ =max
¦

msg
+ zsg−1− vsg

, 0
©

. (6.3)

Let zsg
= (−dg )+.

Note that after repeating step 4 for all g , the sequence becomes

f̃ (−dr )+
sr

f̃
zsr −1+(dr )+

sr−1 · · · f̃
zsr−1+1+(dr )+

sr−1+1 f̃ (−dr−1)++(dr )+
sr−1

f̃
zsr−1−1+(dr )++(dr−1)+

sr−1−1

· · · f̃
zsr−2+1+(dr )++(dr−1)+

sr−2+1 f̃ (−dr−2)++(dr−1)++(dr )+
sr−2

· · ·

· · · f̃
zs1+1+

∑r
i=2(di )+

s1+1 f̃
(−d1)++

∑r
i=2(di )+

s1
f̃

zs1−1+
∑r

i=1(di )+
s1−1

· · · f̃ z1+
∑r

i=1(di )+
1 f̃

∑r
i=1(di )+

0 .

Let’s rewrite the sequence as f̃
z ′sr

sr
f̃

z ′sr −1

sr−1 · · · f̃
z ′1

1 f̃
z ′0

0 .

5. Next, let zt = zt−1+mt − vt for t = sr +1, sr +2, . . . , n .

Then we also need the following in the sequence:

f̃ zn
n f̃ zn−1

n−1 · · · f̃
zsr +1

sr+1 .

Then the entire sequence becomes

f̃ zn
n f̃ zn−1

n−1 · · · f̃
zsr +1

sr+1 f̃
z ′sr

sr
f̃

z ′sr −1

sr−1 · · · f̃
z ′1

1 f̃
z ′0

0 ,

which we’ll rewrite as

f̃
z ′n

n f̃
z ′n−1

n−1 · · · f̃
z ′1

1 f̃
z ′0

0 ,

where

z ′t = zt for t = sr +1, sr +2, . . . , n , (6.4)
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z ′t = zt +
r
∑

i=g+1

(di )+ for t = sg , where g = 1, 2, . . . , r, (6.5)

z ′t = zt +
r
∑

i=g

(di )+ for t = sg−1+1, sg−1+2, . . . , sg −1, where g = 2, 3, . . . , r, (6.6)

z ′t = zt +
r
∑

i=1

(di )+ for t = 0, 1, . . . , s1−1 and z0 = 0. (6.7)

6. Finally, we want to rearrange the current sequence so that no f̃i occurs after f̃i+1.

First, note that there exists some t ∗ ∈ {0, 1, . . . , n} such that z ′t ∗ = 0. How do we know this? Let’s

prove this by contradiction. Suppose that z ′i 6= 0 for all i , i.e. z ′i > 0 for all i ∈ {0, 1, . . . , n}. Then

since

z ′sg
= (−dg )+ =max

¦

msg
+ zsg−1− vsg

, 0
©

we have that msg
+ zsg−1− vsg

> 0, which implies that (dg )+ = 0 for all g . This implies that

z ′0 = z0+
r
∑

i=1

(di )+ = 0+
r
∑

i=1

0= 0,

which is a contradiction. Hence, there exists a t ∗ such that z ′t ∗ = 0.

Then, the sequence becomes

f̃
z ′n

n f̃
z ′n−1

n−1 · · · f̃
z ′t ∗+1

t ∗+1 f̃
z ′t ∗−1

t ∗−1 · · · f̃
z ′1

1 f̃
z ′0

0

which we’ll rearrange to

Ft ∗ = f̃
z ′t ∗−1

t ∗−1 · · · f̃
z ′1

1 f̃
z ′0

0 f̃
z ′n

n f̃
z ′n−1

n−1 · · · f̃
z ′t ∗+1

t ∗+1 , (6.8)

where z ′t ∗+1 6= 0. When we apply this sequence of Kashiwara operators to uλ, we will obtain

uσ(λ)⊗ bν.

Example 6.3. Suppose bλ = (5, 7, 2, 1, 3, 2) and bν = (2, 8, 1, 2, 1, 6). We’ll use the algorithm to construct

a sequence that when acting on uλ, produces uσ(λ)⊗ bν.

1. We first find all vi such that vi >mi . Hence, we have

vs1
= v2 = 8> 7=m2,

vs2
= v4 = 2> 1=m4,
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vs3
= v0 = 6> 2=m0.

Also, let z0 = 0.

2. Since s1 6= 1, we will complete this step. We have

z1 =m1− v1 = 5−2= 3.

Hence, we currently need f̃ 3
1 f̃ 0

0 in the sequence.

3. Next we compute

d1 = vs1
−ms1

− zs1−1 = v2−m2− z1 =−2< 0.

This tells us that (d1)+ = 0 and (−d1)+ = 2. Thus, z2 = (−d1)+ = 2 and our current sequence

becomes f̃ 2
2 f̃ 3

1 f̃ 0
0 .

4. For g = 2, we compute

z3 = z2+m3− v3 = 3

d2 = vs2
−ms2

− zs2−1 = v4−m4− z3 =−2< 0.

Since d2 < 0, we have (d2)+ = 0 and (−d2)+ = 2, which implies that z4 = (−d2)+ = 2. The current

sequence is now f̃ 2
4 f̃ 3

3 f̃ 2
2 f̃ 3

1 f̃ 0
0 .

For g = 3, we have

z5 = z4+m5− v5 = 4,

d3 = 0 since s3 = 0,

z0 = 0.

Now the needed sequence is f̃ 4
5 f̃ 2

4 f̃ 3
3 f̃ 2

2 f̃ 3
1 f̃ 0

0 .

5. We can ignore step 5 because zsr
= 0.

6. We just need to remove the f̃ 0
0 in our sequence to have it be in the correct order. Thus, the

needed sequence is f̃ 4
5 f̃ 2

4 f̃ 3
3 f̃ 2

2 f̃ 3
1 .

7. Let’s check the sequence:

f̃ 4
5 f̃ 2

4 f̃ 3
3 f̃ 2

2 f̃ 3
1 (uλ) = f̃ 4

5 f̃ 2
4 f̃ 3

3 f̃ 2
2

�

uσ(λ)⊗ (2, 10, 2, 1, 3, 2)
�
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= f̃ 4
5 f̃ 2

4 f̃ 3
3

�

uσ(λ)⊗ (2, 8, 4, 1, 3, 2)
�

= f̃ 4
5 f̃ 2

4

�

uσ(λ)⊗ (2, 8, 1, 4, 3, 2)
�

= f̃ 4
5

�

uσ(λ)⊗ (2, 8, 1, 2, 5, 2)
�

= uσ(λ)⊗ (2, 8, 1, 2, 1, 6)

= uσ(λ)⊗ bν.

Example 6.4. Suppose bλ = (3, 4, 5, 1, 7, 6, 4) and bν = (6, 2, 2, 3, 8, 7, 2).

1. We first find all vi such that vi >mi . Hence, we have

vs1
= v1 = 6> 3=m1,

vs2
= v4 = 3> 1=m4,

vs3
= v5 = 8> 7=m5,

vs4
= v6 = 7> 6=m6.

Also, let z0 = 0.

2. Since s1 = 1, we will skip this step.

3. Next we compute

d1 = vs1
−ms1

= v1−m1 = 3> 0.

This tells us that (d1)+ = 3 and (−d1)+ = 0. Thus, z1 = 0 and our current sequence becomes

f̃ 0
1 f̃ 3

0 .

4. For g = 2, we compute

z2 = z1+m2− v2 = 2,

z3 = z2+m3− v3 = 5,

d2 = vs2
−ms2

− zs2−1 = v4−m4− z3 =−3< 0.

Since d2 < 0, we have (d2)+ = 0 and (−d2)+ = 3, which implies that z4 = (−d2)+ = 3. The current

sequence is f̃ 3
4 f̃ 5

3 f̃ 2
2 f̃ 0

1 f̃ 3
0 .

For g = 3, we have

d3 = vs3
−ms3

− zs3−1 = v5−m5− z4 =−2< 0,

telling us that (d3)+ = 0 and (−d3)+ = 2. Thus, z5 = 2 and the sequence becomes f̃ 2
5 f̃ 3

4 f̃ 5
3 f̃ 2

2 f̃ 0
1 f̃ 3

0 .
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For g = 4, we have

d4 = vs4
−ms4

− zs4−1 = v6−m6− z5 =−1< 0.

This means that (d4)+ = 0 and (−d4)+ = 1, and so z6 = 1.

Now the needed sequence is f̃6 f̃ 2
5 f̃ 3

4 f̃ 5
3 f̃ 2

2 f̃ 0
1 f̃ 3

0 .

5. We can ignore step 5 because sr = 6= n .

6. We have the sequence f̃6 f̃ 2
5 f̃ 3

4 f̃ 5
3 f̃ 2

2 f̃ 0
1 f̃ 3

0 , which is not in the needed order. We need to rear-

range it to

f̃ 3
0 f̃6 f̃ 2

5 f̃ 3
4 f̃ 5

3 f̃ 2
2 ,

since z ′1 = 0.

7. Let’s check the sequence:

f̃ 3
0 f̃6 f̃ 2

5 f̃ 3
4 f̃ 5

3 f̃ 2
2 (uλ) = f̃ 3

0 f̃6 f̃ 2
5 f̃ 3

4 f̃ 5
3

�

uσ(λ)⊗ (3, 2, 7, 1, 7, 6, 4)
�

= f̃ 3
0 f̃6 f̃ 2

5 f̃ 3
4

�

uσ(λ)⊗ (3, 2, 2, 6, 7, 6, 4)
�

= f̃ 3
0 f̃6 f̃ 2

5

�

uσ(λ)⊗ (3, 2, 2, 3, 10, 6, 4)
�

= f̃ 3
0 f̃6

�

uσ(λ)⊗ (3, 2, 2, 3, 8, 8, 4)
�

= f̃ 3
0

�

uσ(λ)⊗ (3, 2, 2, 3, 8, 7, 5)
�

=
�

uσ(λ)⊗ (6, 2, 2, 3, 8, 7, 2)
�

= uσ(λ)⊗ bν.

Example 6.5. Suppose bλ = (3, 3, 3, 3, 0) and bν = (4, 4, 2, 1, 1).

1. We first find all vi such that vi >mi . Hence, we have

vs1
= v1 = 4> 3=m1,

vs2
= v2 = 4> 3=m2,

vs3
= v0 = 1> 0=m0.

Also, let z0 = 0.

2. Since s1 = 1, we will skip this step.

3. Next we compute

d1 = vs1
−ms1

= v1−m1 = 1> 0.
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This tells us that (d1)+ = 1 and (−d1)+ = 0. Thus, z1 = 0 and our current sequence becomes

f̃ 0
1 f̃0.

4. For g = 2, we compute

d2 = vs2
−ms2

− zs2−1 = v2−m2− z1 = 1> 0.

Since d2 > 0, we have (d2)+ = 1 and (−d2)+ = 0, which implies that z2 = 0 and the current

sequence is f̃ 0
2 f̃1 f̃ 2

0 .

For g = 3, we have

z3 = z2+m3− v3 = 1,

z4 = z3+m4− v4 = 3,

d3 = 0 since s3 = 0.

Hence, the sequence becomes f̃ 3
4 f̃3 f̃ 0

2 f̃1 f̃ 2
0 .

5. We can ignore step 5 because sr = 0.

6. We have the sequence f̃ 3
4 f̃3 f̃ 0

2 f̃1 f̃ 2
0 , which is not in the needed order. We need to rearrange it

to

f̃1 f̃ 2
0 f̃ 3

4 f̃3,

since z ′2 = 0.

7. Let’s check the sequence:

f̃1 f̃ 2
0 f̃ 3

4 f̃3(uλ) = f̃1 f̃ 2
0 f̃ 3

4

�

uσ(λ)⊗ (3, 3, 2, 4, 0)
�

= f̃1 f̃ 2
0

�

uσ(λ)⊗ (3, 3, 2, 1, 3)
�

= f̃1

�

uσ(λ)⊗ (5, 3, 2, 1, 1)
�

= uσ(λ)⊗ (4, 4, 2, 1, 1)

= uσ(λ)⊗ bν.

Example 6.6. Suppose bλ = (4, 1, 3, 2, 4) and bν = (1, 5, 5, 3, 0).
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1. We have

z0 = 0,

vs1
= v2 = 5> 1=m2,

vs2
= v3 = 5> 3=m3,

vs3
= v4 = 3> 2=m4.

2. Now, z1 =m1− v1 = 4−1= 3. Hence, we have f̃ 3
1 f̃ 0

0 .

3. Next, d1 = vs1
−ms1

−zs1−1 = v2−m2−z1 = 5−1−3= 1> 0. Hence, (d1)+ = 1 and z2 = (−d1)+ = 0.

The current sequence is f̃ 0
2 f̃ 4

1 f̃ 1
0 .

4. For g = 2, we compute

d2 = vs2
−ms2

− zs2−1 = v3−m3− z2 = 5−3−0= 2> 0.

Thus, (d2)+ = 2, z3 = (−d2)+ = 0, and the sequence becomes f̃ 0
3 f̃ 2

2 f̃ 6
1 f̃ 3

0 .

For g = 3, we have

d3 = vs3
−ms3

− zs3−1 = v4−m4− z3 = 3−2−0= 1> 0.

Thus, (d3)+ = 1, z4 = (−d3)+ = 0, and the sequence changes to f̃ 0
4 f̃ 1

3 f̃ 3
2 f̃ 7

1 f̃ 4
0 .

5. We can ignore this step because sr = 4= n .

6. We need only remove the last Kashiwara operator from the sequence to obtain f̃ 1
3 f̃ 3

2 f̃ 7
1 f̃ 4

0 , the

needed sequence.

7. Let’s check the sequence:

f̃ 1
3 f̃ 3

2 f̃ 7
1 f̃ 4

0 (uλ) = f̃ 1
3 f̃ 3

2 f̃ 7
1

�

uσ(λ)⊗ (8, 1, 3, 2, 0)
�

= f̃ 1
3 f̃ 3

2

�

uσ(λ)⊗ (1, 8, 3, 2, 0)
�

= f̃ 1
3

�

uσ(λ)⊗ (1, 5, 6, 2, 0)
�

= uσ(λ)⊗ (1, 5, 5, 3, 0)

= uσ(λ)⊗ bν.
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Lemma 6.7. Suppose we have the ground-state path uλ = uσ(λ)⊗ bλ and the λ-path uσ(λ)⊗ bν, for

some bν ∈B`. Then the sequence Ft ∗ of Kashiwara operators obtained using Algorithm 1 is such that

Ft ∗ (uλ) = uσ(λ)⊗ bν.

Proof. Suppose we are given uλ = uσ(λ)⊗(m1, m2, . . . , mn , m0)and uσ(λ)⊗bν = uσ(λ)⊗(v1, v2, . . . , vn , v0).

And suppose we construct the sequence Ft ∗ using Algorithm 1. In order to prove that Ft ∗ (uλ) =

uσ(λ)⊗ bν, we need to make sure that the exponent of each Kashiwara operator f̃i does not exceed

the corresponding mi in the (n +1)-tuple bλ; otherwise, f̃i (bλ) = 0 and our algorithm fails. So, we

only need to show that z ′t ∗+1 ≤mt ∗+1 and that z ′t+1 ≤mt+1+ z ′t for t = t ∗+2, t ∗+3, . . . , t ∗−1.

We recall the following notation from Algorithm 1:

zt =















0 if t = 0,

(−dt )+, if t = sg , g = 1, 2, . . . , r,

zt−1+mt − vt , else,

(6.9)

z ′t =















zt +
∑r

i=1(di )+, if t = 0, 1, . . . , s1−1,

zt +
∑r

i= j (di )+ if t = s j−1, s j−1+1, . . . , s j −1, j = 2, 3, . . . , r, or t = sr ,

zt , else.

(6.10)

Now, we also recall that z ′t ∗ = 0, by definition.

Remark 1. By Equation 6.10, if t = t ∗ = 0, 1, . . . , sr , then (di )+ = 0 for corresponding values of i .

We first want to show that z ′t ∗+1 ≤mt ∗+1. For t ∗+1 6= 0, this follows directly from Equations 6.9 and

6.10 and Remark 1. So, suppose t ∗+1= 0. Then z ′t ∗ = z ′n = zn = 0. Now, shift both the ground state

path and the desired path by applyingσ, i.e. we have

uσ2(λ)⊗ bσ(λ) = uσ2(λ)⊗ (m2, m3, . . . , m1),

uσ2(λ)⊗ bσ(ν) = uσ2(λ)⊗ (v2, v3, . . . , v1).

Let t ∗ν = t ∗. If we use the algorithm on these paths, we’ll have the sequence

f̃
z ′

t ∗ν−1

t ∗ν−2 · · · f̃
z ′

t ∗ν+2

t ∗ν+1 f̃
z ′

t ∗ν+1

t ∗ν
= f̃

z ′
t ∗ν−1

t ∗σ(ν)−2
· · · f̃

z ′
t ∗ν+2

t ∗σ(ν)+2
f̃

z ′
t ∗ν+1

t ∗σ(ν)+1
.
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Hence, t ∗σ(ν)+1 = n , which implies by definition that z ′t ∗ν+1 ≤mt ∗(σ(ν)+1)+1
=mt ∗ν+1, i.e. z ′0 ≤m0, since

f̃i (m2, m3, . . . , m1) = (m2, . . . , mi+1−1, mi+2+1, . . . , m1)

(see Example 6.8).

Now let’s show that z ′t+1 ≤mt+1+z ′t for t = t ∗+2, t ∗+3, . . . , t ∗−1. Suppose that t+1= sr+1, sr+2, . . . , n .

Then z ′t+1 = zt+1 = zt +mt+1− vt+1. Since z ′t ≥ zt , we have that z ′t+1 ≤ z ′t +mt+1− vt+1 ≤ z ′t +mt+1.

Now suppose that t +1= sg for g = 1, 2, . . . , r . Then

z ′t+1 = zt+1+
r
∑

i=g+1

(di )+ = (−dg )++
r
∑

i=g+1

(di )+.

We want to show that mt+1+ z ′t ≥ z ′t+1, i.e. that mt+1+ z ′t − z ′t+1 ≥ 0. So,

mt+1+ z ′t − z ′t+1 =

 

msg
+ zsg−1+

r
∑

i=g

(di )+

!

−

 

(−dg )++
r
∑

i=g+1

(di )+

!

=msg
+ zsg−1+ (dg )+− (−dg )+.

If (dg )+ 6= 0, then (−dg )+ = 0. Hence, mt+1+ z ′t − z ′t+1 =msg
+ zsg−1+ (dg )+ ≥ 0.

If (dg )+ = 0 and (−dg )+ = 0, then mt+1+ z ′t − z ′t+1 =msg
+ zsg−1 ≥ 0.

If (dg )+ = 0 and (−dg )+ =msg
+ zsg−1− vsg

> 0, then

mt+1+ z ′t − z ′t+1 =msg
+ zsg−1+0−

�

msg
+ zsg−1− vsg

�

= vsg
≥ 0.

Hence, z ′t+1 ≤ z ′t +mt+1.

Next suppose that t +1= sg−1+1, sg−1+2, . . . , sg −1, for g = 2, . . . , r . Then

z ′t+1 = zt+1+
r
∑

i=g

(di )+

= (zt +mt+1− vt+1)+
r
∑

i=g

(di )+.
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If t +1= sg−1+1, then

z ′t+1 = zsg−1
+msg−1+1− vsg−1+1+

r
∑

i=g

(di )+

= (zt +mt+1− vt+1)+
r
∑

i=g

(di )+.

Since

z ′t = z ′sg−1
= zsg−1

+
r
∑

i=g

(di )+ = zt +
r
∑

i=g

(di )+,

we have z ′t+1 = z ′sg−1
+msg−1+1− vsg−1+1 ≤ z ′sg−1

+msg−1+1 = z ′t +mt+1. If instead, t +1 6= sg−1+1, then

z ′t+1 = zt +mt+1− vt+1+
r
∑

i=g

(di )+

= zt +
r
∑

i=g

(di )++mt+1− vt+1

= z ′t +mt+1− vt+1

≤ z ′t +mt+1.

Now suppose t +1= 1, 2, . . . , s1−1. Then

z ′t+1 = zt+1+
r
∑

i=1

(di )+

= zt +mt+1− vt+1+
r
∑

i=1

(di )+

= zt +
r
∑

i=1

(di )++mt+1− vt+1

= z ′t +mt+1− vt+1

≤ z ′t +mt+1.

Finally, suppose that t +1= 0. Then we want to show that z ′0 ≤ z ′n +m0. Well, by a similar argument

to when we proved that z ′t ∗+1 ≤mt ∗+1 for t ∗+1= 0, if we shift bλ and bν byσ and use the algorithm
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to find a sequence that will take us from bσ(λ) to bσ(ν), we will obtain the sequence

f̃
z ′

t ∗ν−1

t ∗ν−2 · · · f̃
z ′

t ∗ν+2

t ∗ν+1 f̃
z ′

t ∗ν+1

t ∗ν
.

Thus, we have z ′0 ≤ z ′n +m0, since

f̃i (m2, m3, . . . , m1) = (m2, m3, . . . , mi+1−1, mi+2+1, mi+3, . . . , m1).

Hence, z ′t+1 ≤ z ′t +mt+1.

Remark 2. Algorithm 1 constructs a sequence Ft ∗ , such that Ft ∗ (uλ) = uσ(λ)⊗Ft ∗ (bλ) = uσ(λ)⊗bν for

a chosen bν ∈B`. Since

Ft ∗ (bλ) = f̃
z ′t ∗−1

t ∗−1 · · · f̃
z ′0

0 f̃
z ′n

n · · · f̃
z ′t ∗+1

t ∗+1 (m1, m2, . . . , mn , m0)

=
�

m1+ z ′0− z ′0, . . . , mt ∗−1+ z ′t ∗−2− z ′t ∗−1, mt ∗ + z ′t ∗−1,

mt ∗+1− z ′t ∗+1, mt ∗+2+ z ′t ∗+1− z ′t ∗+2, . . . , m0+ z ′n − z ′0
�

,

we have the following equations:

vt ∗ =mt ∗ + z ′t ∗−1,

vt ∗+1 =mt ∗+1− z ′t ∗+1, (6.11)

vi =mi + z ′i+1− z ′i , for all i 6= t ∗, t ∗+1.

Example 6.8. For further clarification on proving z ′t ∗+1 ≤mt ∗+1 for t ∗ + 1 = 0 in Lemma 6.7, let’s

return to Example 6.6. We had that bλ = (4,1,3,2,4) and bν = (1,5,5,3,0). Using the algorithm,

we produced the sequence Ft ∗ν = f̃3 f̃ 3
2 f̃ 7

1 f̃ 4
0 . If instead we had produced the sequence that when

acting on bσ(λ) = (1,3,2,4,4) would give bσ(ν) = (5,5,3,0,1), we would have f̃2 f̃ 3
1 f̃ 7

0 f̃ 4
4 . Notice that

z ′t ∗ν+1 = z ′0 = 4≤mt ∗σ(ν)+2
=m0.

In order to apply the sequence Ft ∗ of Kashiwara operators obtained from Algorithm 1 to the ground-

state path uλ, we need the following sequence of simple reflections:

rt ∗−1 · · · r1r0rn · · · rt ∗+1.

Lemma 6.9. The sequence

rt ∗−1 · · · r1r0rn · · · rt ∗+1
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is a subsequence of w (2, j ), for all j = 0, 1, . . . , n.

Proof. Recall that w (2, j ) = (r j+n−2 · · · r j r j+n )(r j+n−1 · · · r j+1r j ). Notice that each simple reflection ri

appears within the first n + 1 components from the right in w (2, j ). If we start at any of those ri ,

we can form a sequence of simple reflections (ri+n−1 · · · ri+1ri ) of length n that is a subsequence of

w (2, j ). Let i = t ∗+ 1. Then we have that rt ∗−1 · · · r1r0rn · · · rt ∗+1 is a subsequence of w (2, j ), for all

j = 0, 1, . . . , n .

Corollary 6.10. We have that uσ(λ)⊗B` ⊂ Bw (2, j )(λ) for all j = 0, 1, . . . , n.

Proof. For each λ-path uσ(λ) ⊗ bν, Algorithm 1 produces a sequence Ft ∗ν that is associated with a

sequence of simple reflections rt ∗−1 · · · r1r0rn · · · rt ∗+1 of length n . By Lemma 6.9, we know each of

these sequences of simple reflections is a subsequence of w (2, j ) for all j = 0, 1, . . . , n . Hence, by the

definition of Bw (2, j )(λ), it follows that uσ(λ)⊗B` ⊂ Bw (2, j )(λ) for all j .

Lemma 6.11. We have that
n
⋃

j=0

Bw (1, j )(λ) = uσ(λ)⊗B`.

Proof. By Lemma 6.7, we proved that there exists a sequence Ft ∗ν such that Ft ∗ν (uλ) = uσ(λ)⊗ bν for

bν ∈B`. Each sequence Ft ∗ν is associated with a sequence of simple reflections wt ∗ν = rt ∗ν−1 · · · rt ∗ν+2rt ∗ν+1

of length n . Note that wt ∗ν =w (1, t ∗ν +1). Hence, uσ(λ)⊗ bν ∈ Bw (1,t ∗ν+1)(λ) for each bν ∈B`. Thus,

n
⋃

j=0

Bw (1, j )(λ)⊇ uσ(λ)⊗B`.

Now we just need to show that
n
⋃

j=0

Bw (1, j )(λ)⊆ uσ(λ)⊗B`.

In other words, we need to show that uσ2(λ)⊗bν⊗B` 6⊆ Bw (1, j )(λ) for all j = 0, 1, . . . , n . Well, by Lemma

6.1, we have that

f̃ zi
i f̃ zi+1

i+1 (uλ) = f̃ zi
i f̃ zi+1

i+1

�

uσ2(λ)⊗ bσ(λ)⊗ bλ
�

= uσ2(λ)⊗ bρ1
⊗ bρ2

.

This last equation implies that if any of our sequences contain f̃i+1 first and then f̃i , that the second

component from the right in the tensor product will be affected. But w (1, j ) = (r j+n−1 · · · r j+1r j ) for

j = 0,1, . . . , n , which means this situation never occurs. Hence, the second component from the
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right in the tensor product will never be affected and so

n
⋃

j=0

Bw (1, j )(λ)⊆ uσ(λ)⊗B`.

Therefore,
n
⋃

j=0

Bw (1, j )(λ) = uσ(λ)⊗B`.

We want to extend this result to the L t h case.

Algorithm 2: Algorithm 1 can be rewritten for the general case.

Suppose we are given

uσL (λ)⊗BL
` = uσL+1(λ)⊗ (mL+1, mL+2, . . . , mL+n , mL )⊗BL

` .

We want to obtain

uσL+1(λ)⊗ bν⊗BL
` = uσL+1(λ)⊗ (v1, v2, . . . , vn , v0)⊗BL

` .

This algorithm provides a sequence of Kashiwara operators such that when applied to specific

λ-paths in the set uσL (λ)⊗BL
` , we produce the set uσL+1(λ)⊗ bν⊗BL

` .

Recall that by Lemma 5.5, we can apply f̃i a sufficient number of times to specific λ-paths in the set

uσL (λ)⊗BL
` to produce the set uσL+1(λ)⊗ f̃i (bσL (λ))⊗BL

` . Hence with a few notation changes, Algorithm

2 is the same as the Algorithm 1. Note that mt =mt mod(L+1).

1. Find all vi such that vi >mL+i , i = 0,1,2, . . . , n . Label them (in order of appearance in the

(n +1)-tuple) as vs1
, vs2

, . . . , vsr
, where 1< r < n +1. Define z0 = 0.

2. If s1 = 1, then skip this step.

Otherwise, we know that vt <mL+t for all t = 1, 2, . . . , s1−1. So, recursively define z1 =mL+1−v1

and zt = zt−1+mL+t − vt for t = 2, 3, . . . , s1−1. Hence, we’ll need f̃
zs1−1

s1−1 · · · f̃
z2

2 f̃ z1
1 as part of the

sequence.

3. Compute d1 = vs1
−mL+s1

− zs1−1. Define

(d1)+ =max
�

vs1
−mL+s1

− zs1−1, 0
	

and

(−d1)+ =max
�

mL+s1
+ zs1−1− vs1

, 0
	

.
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Let zs1
= (−d1)+. The sequence becomes

f̃ (−d1)+
s1

f̃
zs1−1+(d1)+

s1−1 · · · f̃ z1+(d1)+
1 f̃ (d1)+

0 .

4. Do the following for g = 2, . . . , r .

Let zt = zt−1+mL+t − vt for t = sg−1+1, sg−1+2, . . . , sg −1.

Compute dg = vsg
−mL+sg

− zsg−1. However, if sr = 0, then set dr = 0 and zsr
= 0. Define

(dg )+ =max
¦

vsg
−mL+sg

− zsg−1, 0
©

(6.12)

and

(−dg )+ =max
¦

mL+sg
+ zsg−1− vsg

, 0
©

. (6.13)

Let zsg
= (−dg )+.

Note that after repeating step 4 for all g , the sequence becomes

f̃ (−dr )+
sr

f̃
zsr −1+(dr )+

sr−1 · · · f̃
zsr−1+1+(dr )+

sr−1+1 f̃ (−dr−1)++(dr )+
sr−1

f̃
zsr−1−1+(dr )++(dr−1)+

sr−1−1

· · · f̃
zsr−2+1+(dr )++(dr−1)+

sr−2+1 f̃ (−dr−2)++(dr−1)++(dr )+
sr−2

· · ·

· · · f̃
zs1+1+

∑r
i=2(di )+

s1+1 f̃
(−d1)++

∑r
i=2(di )+

s1
f̃

zs1−1+
∑r

i=1(di )+
s1−1

· · · f̃ z1+
∑r

i=1(di )+
1 f̃

∑r
i=1(di )+

0 .

Let’s rewrite the sequence as

f̃
z ′sr

sr
f̃

z ′sr −1

sr−1 · · · f̃
z ′1

1 f̃
z ′0

0 .

5. Next, let zt = zt−1+mL+t − vt for t = sr +1, sr +2, . . . , n .

Then we also need the following in the sequence:

f̃ zn
n f̃ zn−1

n−1 · · · f̃
zsr +1

sr+1 .

Then the entire sequence becomes

f̃ zn
n f̃ zn−1

n−1 · · · f̃
zsr +1

sr+1 f̃
z ′sr

sr
f̃

z ′sr −1

sr−1 · · · f̃
z ′1

1 f̃
z ′0

0 ,

which we’ll rewrite as

f̃
z ′n

n f̃
z ′n−1

n−1 · · · f̃
z ′1

1 f̃
z ′0

0 ,
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where

z ′t = zt for t = sr +1, sr +2, . . . , n , (6.14)

z ′t = zt +
r
∑

i=g+1

(di )+ for t = sg , where g = 1, 2, . . . , r, (6.15)

z ′t = zt +
r
∑

i=g

(di )+ for t = sg−1+1, sg−1+2, . . . , sg −1, where g = 2, 3, . . . , r, (6.16)

z ′t = zt +
r
∑

i=1

(di )+ for t = 0, 1, . . . , s1−1 and z0 = 0. (6.17)

6. Finally, we want to rearrange the current sequence so that no f̃i occurs after f̃i+1.

First, note that there exists some t ∗ ∈ {0, 1, . . . , n} such that z ′t ∗ = 0. How do we know this? Let’s

prove this by contradiction. So, suppose that z ′i 6= 0 for all i , i.e. z ′i > 0 for all i ∈ {0,1, . . . , n}.
Then since

z ′sg
= (−dg )+ =max

¦

mL+sg
+ zsg−1− vsg

, 0
©

we have that mL+sg
+ zsg−1− vsg

> 0, which implies that (dg )+ = 0 for all g . This implies that

z ′0 = z0+
r
∑

i=1

(di )+ = 0+
r
∑

i=1

0= 0,

which is a contradiction. Hence, there exists a t ∗ such that z ′t ∗ = 0.

Then, the sequence becomes

f̃
z ′n

n f̃
z ′n−1

n−1 · · · f̃
z ′t ∗+1

t ∗+1 f̃
z ′t ∗−1

t ∗−1 · · · f̃
z ′1

1 f̃
z ′0

0

which we’ll rearrange to

Ft ∗ = f̃
z ′t ∗−1

t ∗−1 · · · f̃
z ′1

1 f̃
z ′0

0 f̃
z ′n

n f̃
z ′n−1

n−1 · · · f̃
z ′t ∗+1

t ∗+1 . (6.18)

Hence, if we apply each of the following Kashiwara operators

f̃t ∗+1, f̃t ∗+2, . . . , f̃n−1, f̃n , f̃0, f̃1, . . . , f̃t ∗−1

a sufficient number of times in the given order to specific λ-paths in the set uσL (λ)⊗BL
` , we

will obtain

uσL+1(λ)⊗ Ft ∗
�

bσL (λ)
�

⊗BL
` = uσL+1(λ)⊗ bν⊗BL

` .
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We also can adjust Equation 6.11 to the following:

vt ∗ =mL+t ∗ + z ′t ∗−1,

vt ∗+1 =mL+t ∗+1− z ′t ∗+1, (6.19)

vi =mL+i + z ′i−1− z ′i , for all i 6= t ∗, t ∗+1.

Example 6.12. To demonstrate Algorithm 2, suppose we are given uσ5(λ)⊗B5
12, where

bλ = (2, 1, 0, 4, 2, 3) = (m1, m2, . . . , m0).

Hence, bσ5(λ) = (3, 2, 1, 0, 4, 2) = (m0, m1, . . . , m5); so L = 5. Suppose we want to obtain the paths

uσ6(λ)⊗ (5, 3, 0, 0, 4, 0)⊗B5
12 = uσ6(λ)⊗ bν⊗B5

12.

1. Let z0 = 0. Find all vi such that vi >mL+i =m5+i :

vs1
= v1 = 5> 3=m5+1 =m0,

vs2
= v2 = 3> 2=m5+2 =m1.

2. We’ll skip this step because s1 = 1.

3. Compute

d1 = vs1
−m5+s1

− zs1−1 = 5−3−0= 2> 0.

Hence, (d1)+ = 2, z1 = (−d1)+ = 0, and we need the sequence f̃ 0
1 f̃ 2

0 .

4. Let g = 2. Then

d2 = vs2
−m5+s2

− zs2−1 = v2−m1− z1 = 3−2−0= 1> 0.

So, (d2)+ = 1, z2 = (−d2)+ = 0, and the current sequence is f̃ 0
2 f̃1 f̃ 3

0 .

5. Now compute

z3 = z2+m5+3− v3 = 0+m2−0= 1,

z4 = z3+m5+4− v4 = 1+m3−0= 1+0−0= 1,

z5 = z4+m5+5− v5 = 1+m4−4= 1+4−4= 1.
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The sequence becomes f̃5 f̃4 f̃3 f̃ 0
2 f̃1 f̃ 3

0 .

6. So, rearrange the sequence to f̃1 f̃ 3
0 f̃5 f̃4 f̃3.

7. Let’s check the sequence. Recall that by Lemma 5.5, we can apply the Kashiwara operators

f̃3, f̃4, f̃5, f̃0, f̃1, in that order, a sufficient number of times to certainλ-paths in the set uσ5(λ)⊗B5
12

to produce the set

uσ6(λ)⊗ f̃1 f̃ 3
0 f̃5 f̃4 f̃3 (3, 2, 1, 0, 4, 2)⊗B5

12

= uσ6(λ)⊗ f̃1 f̃ 3
0 f̃5 f̃4 (3, 2, 0, 1, 4, 2)⊗B5

12

= uσ6(λ)⊗ f̃1 f̃ 3
0 f̃5 (3, 2, 0, 0, 5, 2)⊗B5

12

= uσ6(λ)⊗ f̃1 f̃ 3
0 (3, 2, 0, 0, 4, 3)⊗B5

12

= uσ6(λ)⊗ f̃1 (6, 2, 0, 0, 4, 0)⊗B5
12

= uσ6(λ)⊗ (5, 3, 0, 0, 4, 0)⊗B5
12

= uσ6(λ)⊗ bν⊗B5
12.

Example 6.13. Suppose we are given uσ10(λ)⊗B10
14 , where

bλ = (3, 1, 3, 0, 1, 2, 4) = (m1, m2, . . . , m0),

and so L = 10, n = 6, and bσ10(λ) = (0, 1, 2, 4, 3, 1, 3). And suppose we want to obtain the paths

uσ11(λ)⊗ (0, 3, 5, 1, 1, 2, 2)⊗B10
14 = uσ11(λ)⊗ bν⊗B10

14 .

1. Let z0 = 0. Find all vi such that vi >mL+i =m10+i :

vs1
= v2 = 3> 1=m10+2 =m5,

vs2
= v3 = 5> 2=m10+3 =m6,

vs3
= v6 = 2> 1=m10+6 =m2.

2. Compute

z1 =m10+1− v1 =m4− v1 = 0−0= 0.

Hence the sequence is f̃ 0
1 f̃ 0

0 .
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3. Now compute

d1 = vs1
−m10+s1

− zs1−1 = v2−m5− z1 = 3−1−0= 2> 0.

So, (d1)+ = 2, z2 = (−d1)+ = 0, and the sequence becomes f̃ 0
2 f̃ 2

1 f̃ 2
0 .

4. Let g = 2. Then

d2 = vs2
−m10+s2

− zs2−1 = v3−m6− z2 = 5−2−0= 3> 0.

Hence, (d2)+ = 3 and z3 = (−d2)+ = 0, changing the sequence to f̃ 0
3 f̃ 3

2 f̃ 5
1 f̃ 5

0 .

Next let g = 3. Then

z4 = z3+m10+4− v4 = 0+m0−1= 4−1= 3,

z5 = z4+m10+5− v5 = 3+m1−1= 3+3−1= 5,

d3 = vs3
−m10+s3

− zs3−1 = v6−m2− z5 = 2−1−5=−4< 0.

So, (d3)+ = 0 and z6 = (−d3)+ = 4, which makes the sequence f̃ 4
6 f̃ 5

5 f̃ 3
4 f̃ 0

3 f̃ 3
2 f̃ 5

1 f̃ 5
0 .

5. We don’t need this step because sr = 6= n .

6. Rearrange the sequence to f̃ 3
2 f̃ 5

1 f̃ 5
0 f̃ 4

6 f̃ 5
5 f̃ 3

4 .

7. Let’s check the sequence. Recall that by Lemma 5.5, we can apply the Kashiwara operators

f̃4, f̃5, f̃6, f̃0, f̃1, f̃2, in that order, a sufficient number of times to certain λ-paths in the set

uσ10(λ)⊗B10
14 to produce the set

uσ11(λ)⊗ f̃ 3
2 f̃ 5

1 f̃ 5
0 f̃ 4

6 f̃ 5
5 f̃ 3

4

�

bσ10(λ)
�

⊗B10
14

= uσ11(λ)⊗ f̃ 3
2 f̃ 5

1 f̃ 5
0 f̃ 4

6 f̃ 5
5 f̃ 3

4 (0, 1, 2, 4, 3, 1, 3)⊗B10
14

= uσ11(λ)⊗ f̃ 3
2 f̃ 5

1 f̃ 5
0 f̃ 4

6 f̃ 5
5 (0, 1, 2, 1, 6, 1, 3)⊗B10

14

= uσ11(λ)⊗ f̃ 3
2 f̃ 5

1 f̃ 5
0 f̃ 4

6 (0, 1, 2, 1, 1, 6, 3)⊗B10
14

= uσ11(λ)⊗ f̃ 3
2 f̃ 5

1 f̃ 5
0 (0, 1, 2, 1, 1, 2, 7)⊗B10

14

= uσ11(λ)⊗ f̃ 3
2 f̃ 5

1 (5, 1, 2, 1, 1, 2, 2)⊗B10
14

= uσ11(λ)⊗ f̃ 3
2 (0, 6, 2, 1, 1, 2, 2)⊗B10

14

= uσ11(λ)⊗ (0, 3, 5, 1, 1, 2, 2)⊗B10
14

= uσ11(λ)⊗ bν⊗B10
14 .
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Lemma 6.14. Suppose we have the ground state path uλ. Choose bν = (v1, v2, . . . , vn , v0) ∈B`. Then

Ft ∗F
′

t ∗+1F ′t ∗+2 · · ·F
′

t ∗+L−1 (uλ) = uσL (λ)⊗ bν⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1
,

for some bµ1
, bµ2

, . . . , bµL−1
∈B`, where the sequence

Ft ∗ = f̃
z ′t ∗−1

t ∗−1 f̃
z ′t ∗−2

t ∗−2 · · · f̃
z ′t ∗+1

t ∗+1

is constructed using Algorithm 2, and we define

F ′t ∗+p = f̃
z ′t ∗−1

t ∗−1+p f̃
z ′t ∗−2

t ∗−2+p · · · f̃
z ′t ∗+1

t ∗+1+p ,

for p = 1, 2, . . . , L −1.

Proof. Suppose L = 2. Let

uλ = . . .⊗ (m3, m4, . . . , m2)⊗ (m2, m3, . . . , m1)⊗ (m1, m2, . . . , m0).

Then we want to show that

Ft ∗F
′

t ∗+1(uλ) = uσ2(λ)⊗ (v1, v2, . . . , v0)⊗ (m ′
1, m ′

2, . . . , m ′
0).

We first find Ft ∗ using Algorithm 2 and then form F ′t ∗+1. This gives us the sequence

�

f̃
z ′t ∗−1

t ∗−1 f̃
z ′t ∗−2

t ∗−2 · · · f̃
z ′t ∗+1

t ∗+1

��

f̃
z ′t ∗−1

t ∗ f̃
z ′t ∗−2

t ∗−1 · · · f̃
z ′t ∗+1

t ∗+2

�

.

Then we have

�

f̃
z ′t ∗−1

t ∗−1 f̃
z ′t ∗−2

t ∗−2 · · · f̃
z ′t ∗+1

t ∗+1

��

f̃
z ′t ∗−1

t ∗ f̃
z ′t ∗−2

t ∗−1 · · · f̃
z ′t ∗+1

t ∗+2

�

(uλ)

=
�

f̃
z ′t ∗−1

t ∗−1 f̃
z ′t ∗−2

t ∗−2 · · · f̃
z ′t ∗+1

t ∗+1

�

�

uσ(λ)⊗
�

m ′
1, m ′

2, . . . , m ′
n , m ′

0

��

where

m ′
τ =











mτ+ z ′τ−2, for τ= t ∗+1

mτ− z ′τ−1, for τ= t ∗+2

mτ+ z ′τ−2− z ′τ−1, otherwise.
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Now, the (t ∗+1)-signature on this λ-path is

�

. . . ,−mt ∗+4
+mt ∗+3

,−mt ∗+3
+mt ∗+2

,−mt ∗+2−z ′t ∗+1
+mt ∗+1+z ′t ∗−1

�

=
�

+z ′t ∗+1
,+mt ∗+1+z ′t ∗−1

�

.

Hence, we can apply the next Kashiwara operator in the sequence to this λ-path:

�

f̃
z ′t ∗−1

t ∗−1 f̃
z ′t ∗−2

t ∗−2 · · · f̃
z ′t ∗+2

t ∗+2

�

�

uσ2(λ) ⊗
�

m2, . . . , mt ∗+2− z ′t ∗+1, mt ∗+3+ z ′t ∗+1, mt ∗+4, . . . , m1

�

⊗
�

m ′
1, m ′

2, . . . , m ′
n , m ′

0

��

.

The (t ∗+2)-signature on this λ-path is

�

. . . ,−mt ∗+5
+mt ∗+4

,−mt ∗+4
+mt ∗+3+z ′t ∗+1

,−mt ∗+3+z ′t ∗+1−z ′t ∗+2
+mt ∗+2−z ′t ∗+1

�

=
�

+z ′t ∗+2
,+mt ∗+2−z ′t ∗+1

�

.

Thus, we can apply the next Kashiwara operator in the sequence to this λ-path:

�

f̃
z ′t ∗−1

t ∗−1 · · · f̃
z ′t ∗+3

t ∗+3

�

�

uσ2(λ) ⊗
�

m2, . . . , mt ∗+2− z ′t ∗+1, mt ∗+3+ z ′t ∗+1− z ′t ∗+2, mt ∗+4+ z ′t ∗+2, mt ∗+5, . . . , m1

�

⊗
�

m ′
1, m ′

2, . . . , m ′
n , m ′

0

��

.

We can continue with this process, since the (i )-signature for each new λ-path will be

�

. . . ,−mi+3
+mi+2

,−mi+2
+mi+1+z ′i−1

,−m ′
i+1
+m ′

i

�

=
�

+mi+1+z ′i−1−(mi+1+z ′i−1−z ′i ),+m ′
i

�

=
�

+z ′i
,+m ′

i

�

for i = t ∗+3, t ∗+4, . . . , t ∗−1. The key factor here is that each of the last n Kashiwara operators in

the sequence Ft ∗F
′

t ∗+1 will only affect the second component from the right in our tensor product.

Hence,

Ft ∗F
′

t ∗+1 (uλ) = Ft ∗
�

uσ(λ)⊗
�

m ′
1, m ′

2, . . . , m ′
n , m ′

0

��

= uσ2(λ)⊗ Ft ∗
�

bσ(λ)
�

⊗
�

m ′
1, m ′

2, . . . , m ′
n , m ′

0

�

= uσ2(λ)⊗ bν⊗
�

m ′
1, m ′

2, . . . , m ′
n , m ′

0

�

.
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Now let’s suppose that

Fg ∗F
′

g ∗+1F ′g ∗+2 · · ·F
′

g ∗+L−1 (uλ) = uσL (λ)⊗ bν⊗ bµL−1
⊗ bµL−2

⊗ . . .⊗ bµ1
,

where

Fg ∗
�

uσL−1(λ)
�

⊗BL−1
` = uσL (λ)⊗ bν⊗BL−1

` ,

bµτ =
�

m ′
τ, m ′

τ+1, . . . , m ′
τ+n

�

,

and each Fg ∗+p , for p = 0,1, . . . , L − 1, only affects the (L − p )t h component from the right in the

tensor product.

We want to show that there exists such a sequence such that when acting on uλ it produces the

λ-path

uσL+1(λ)⊗ bγ⊗ bµL
⊗ bµL−1

⊗ . . .⊗ bµ1
.

By Algorithm 2, we have the sequence Ft ∗ where we can apply each of the Kashiwara operators in

this sequence a sufficient number of times to certain λ-paths in the set uσL (λ)⊗BL
` to obtain the set

Ft ∗
�

uσL (λ)
�

⊗BL
` = f̃

z ′t ∗−1
t ∗−1 f̃

z ′t ∗−2
t ∗−2 · · · f̃

z ′t ∗+1
t ∗+1

�

uσL (λ)
�

⊗BL
`

= uσL+1(λ)⊗ bγ⊗BL
` .

If we choose bµL
to be the element such that

F ′t ∗+1

�

uσL−1(λ)
�

⊗BL−1
` = f̃

z ′t ∗−1
t ∗ f̃

z ′t ∗−2
t ∗−1 · · · f̃

z ′t ∗+1
t ∗+2

�

uσL−1(λ)
�

⊗BL−1
`

= uσL (λ)⊗ bµL
⊗BL−1

` ,

then by our inductive hypothesis the sequence F ′t ∗+1F ′t ∗+2 · · ·Ft ∗+L acting on uλ produces the λ-path

uσL (λ)⊗ bµL
⊗ bµL−1

⊗ . . .⊗ bµ1
, where

bµL
= F ′t ∗+1

�

bσL−1(λ)
�

= f̃
z ′t ∗−1

t ∗ f̃
z ′t ∗−2

t ∗−1 · · · f̃
z ′t ∗+1

t ∗+2 (mL , mL+1, . . . , mL−2, mL−1)

=
�

mL + z ′n − z ′0, . . . , mt ∗+L−1+ zt ∗−2− zt ∗−1, mt ∗+L + zt ∗−1,

mt ∗+L+1− z ′t ∗+1, mt ∗+L+2+ z ′t ∗+1− z ′t ∗+2, . . . , mL−1+ z ′n−1− z ′n
�

.
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Hence, the (t ∗+1)-signature on the λ-path uσL (λ)⊗ bµL
⊗ bµL−1⊗ . . .⊗ bµ1

is of the form

�

. . . ,−mt ∗+L+2
+mt ∗+L+1

,−mt ∗+L+1−zt ∗+1
+mt ∗+L+zt ∗−1

,∗L−1,∗L−2, . . . ,∗1

�

=
�

+zt ∗+1
,+mt ∗+L+zt ∗−1

,∗L−1,∗L−2, . . . ,∗1

�

,

where the ∗ j represent sequences of minuses then pluses that don’t affect the leftmost zt ∗+1 pluses,

by the inductive hypothesis. So, we can apply f̃
z ′t ∗+1

t ∗+1 and it will only affect the (L +1)s t component

from the right in the tensor product.

We thus obtain the λ-path:

uσL+1(λ)⊗ b ′ν⊗ bµL
⊗ bµL−1

⊗ . . .⊗ bµ1
,

where b ′ν =
�

mL+1, mL+2, . . . , mt ∗+L+1− z ′t ∗+1, mt ∗+L+2+ z ′t ∗+1, mt ∗+L+3, . . . , mL

�

.

Now we want to apply f̃
z ′i

i . If we look at the (i )-signature for each of the λ-paths obtained after

applying up to the Kashiwara operator f̃
z ′i−1

i−1 , we’ll notice that the only component in the tensor

product that is affected is the one in the (L +1)s t component, for i = t ∗+2, t ∗+3, . . . , t ∗:

�

. . . ,−mL+i+2
+mL+i+1

,−mL+i+1
+mL+i+z ′i−1

,−mL+i+z ′i−1−z ′i
+mL+i−1−z ′i−1

,∗L−1,∗L−2, . . . ,∗1

�

=
�

+z ′i
,+mL+i−z ′i−1

,∗L−1,∗L−2, . . . ,∗1

�

.

Hence,

Ft ∗
�

uσL (λ)⊗ bµL
⊗ bµL−1

⊗ . . .⊗ bµ1

�

= uσL+1(λ)⊗ Ft ∗
�

bσL (λ)
�

⊗ bµL
⊗ . . .⊗ bµ1

= uσL+1(λ)⊗ bγ⊗ bµL
⊗ . . .⊗ bµ1

,

which is what we wanted to show.

Given the ground-state path

uλ = uσ2(λ)⊗ (m2, m3, . . . , m1)⊗ (m1, m2, . . . , m0)

and elements bν, bω ∈B`, we want to produce a sequence G such that

G (uλ) = uσ2(λ)⊗ bν⊗ bω
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= uσ2(λ)⊗ (v1, v2, . . . , v0)⊗ (w1, w2, . . . , w0).

We’ll start with an example, and then generalize the process for any λ-path.

Example 6.15. Suppose the ground-state path is given as

uλ = . . .⊗ (4, 7, 3, 1, 0, 2)⊗ (2, 4, 7, 3, 1, 0)

= . . .⊗ (m2, m3, . . . , m1)⊗ (m1, m2, . . . , m0)

and we want to find a sequence that produces the λ-path

uσ2(λ)⊗ (2, 1, 0, 9, 2, 3)⊗ (5, 0, 7, 1, 0, 4).

Hence, bν = (2, 1, 0, 9, 2, 3) and bω = (5, 0, 7, 1, 0, 4). By Algorithm 2, we construct the sequence

Ft ∗ν = f̃
z ′5

5 f̃
z ′4

4 f̃
z ′3

3 f̃
z ′2

2 f̃
z ′1

1

= f̃5 f̃ 3
4 f̃ 11

3 f̃ 8
2 f̃ 2

1

where Ft ∗ν

�

uσ(λ)
�

⊗B17 = uσ2(λ)⊗bν⊗B17. Hence t ∗ν = 0 for this example. We will work backwards on

the λ-path

uσ2(λ)⊗ (2, 1, 0, 9, 2, 3)⊗ (5, 0, 7, 1, 0, 4)

to determine whether we need to alter the exponents in the sequence Ft ∗ν . The λ-path

uσ2(λ)⊗ (v1, v2, v3, v4, v5+ z ′5, v0− z ′5)⊗ (w1, w2, w3, w4, w5, w0)

= uσ2(λ)⊗ (2, 1, 0, 9, 3, 2)⊗ (5, 0, 7, 1, 0, 4)

has (5)-signature

(. . . ,−4+2,−2+3,−4+0) = (+3,−4+0)

which means f̃5 acting on this λ-path won’t produce our desired path uσ2(λ)⊗bν⊗bω. We need there

to be at least 1 plus in the second component from right in order to change the second component.

Hence, we need the −4 to be a −2 instead. Make the following definitions and changes:

a5 :=w0− v5 = 4−2= 2,

c0 := v5 = 2,

w5→w5+a5 = 2,
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f̃5→ f̃ 1+a5
5 = f̃ 3

5 .

Then we have

uσ2(λ)⊗ (v1, v2, v3, v4, v5+ z ′5, m1)⊗ (w1, w2, w3, w4, w5+a5, c0)

= uσ2(λ)⊗ (2, 1, 0, 9, 3, 2)⊗ (5, 0, 7, 1, 2, 2)

f̃ 3
5−→ uσ2(λ)⊗ bν⊗ bω.

Now, let’s determine if we need to change the exponent of the Kashiwara operator f̃ 3
4 . The λ-path

uσ2(λ)⊗ (v1, v2, v3, v4+ z ′4, v5+ z ′5− z ′4, m1)⊗ (w1, w2, w3, w4, w5+a5, c0)

= uσ2(λ)⊗ (2, 1, 0, 12, 0, 2)⊗ (5, 0, 7, 1, 2, 2)

has (4)-signature

(. . . ,−2+0,−0+12,−2+1) = (+10,+1)

which means f̃ 3
4 acting on this λ-path will produce our desired λ-path

uσ2(λ)⊗ (2, 1, 0, 9, 3, 2)⊗ (5, 0, 7, 1, 2, 2).

Make the following definitions:

a4 := 0,

c5 :=w5+a5 = 2.

Then we have

uσ2(λ)⊗ (v1, v2, v3, v4+ z ′4, m0, m1)⊗ (w1, w2, w3, w4, c5, c0)

= uσ2(λ)⊗ (2, 1, 0, 12, 0, 2)⊗ (5, 0, 7, 1, 2, 2)

f̃ 3
4−→ uσ2(λ)⊗ (2, 1, 0, 9, 3, 2)⊗ (5, 0, 7, 1, 2, 2).

Now, let’s determine if we need to change the exponent of the Kashiwara operator f̃ 11
3 . The λ-path

uσ2(λ)⊗ (v1, v2, v3+ z ′3, v4+ z ′4− z ′3, m0, m1)⊗ (w1, w2, w3, w4, c5, c0)

= uσ2(λ)⊗ (2, 1, 11, 1, 0, 2)⊗ (5, 0, 7, 1, 2, 2)
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has (3)-signature

(. . . ,−0+1,−1+11,−1+7) = (+10,+7)

which means f̃ 11
3 acting on this λ-path won’t produce our desired λ-path

uσ2(λ)⊗ (2, 1, 0, 12, 0, 2)⊗ (5, 0, 7, 1, 2, 2).

Make the following definitions and changes:

a3 :=w4− v3 = 1−0= 1,

c4 := v3 = 0,

w3→w3+a3,

f̃ 11
3 → f̃ 11+a3

3 = f̃ 12
3 .

Then we have

uσ2(λ)⊗ (v1, v2, v3+ z ′3, m5, m0, m1)⊗ (w1, w2, w3+a3, c4, c5, c0)

= uσ2(λ)⊗ (2, 1, 11, 1, 0, 2)⊗ (5, 0, 8, 0, 2, 2)

f̃ 12
3−→ uσ2(λ)⊗ (2, 1, 0, 12, 0, 2)⊗ (5, 0, 7, 1, 2, 2).

Now, let’s determine if we need to change the exponent of the Kashiwara operator f̃ 8
2 . The λ-path

uσ2(λ)⊗ (v1, v2+ z ′2, v3+ z ′3− z ′2, m5, m0, m1)⊗ (w1, w2, w3+a3, c4, c5, c0)

= uσ2(λ)⊗ (2, 9, 3, 1, 0, 2)⊗ (5, 0, 8, 0, 2, 2)

has (2)-signature

(. . . ,−1+3,−3+9,−8+0) = (+1,+0)

which means f̃ 8
2 acting on this λ-path won’t produce our desired λ-path

uσ2(λ)⊗ (2, 1, 11, 1, 0, 2)⊗ (5, 0, 8, 0, 2, 2).

Make the following definitions and changes:

a2 :=w3+a3− v2 = 7+1−1= 7,
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c3 := v2 = 1,

w2→w2+a2 = 0+7= 7,

f̃ 8
2 → f̃ 8+a2

2 = f̃ 15
2 .

Then we have

uσ2(λ)⊗ (v1, v2+ z ′2, m4, m5, m0, m1)⊗ (w1, w2+a2, c3, c4, c5, c0)

= uσ2(λ)⊗ (2, 9, 3, 1, 0, 2)⊗ (5, 7, 1, 0, 2, 2)

f̃ 15
2−→ uσ2(λ)⊗ (2, 1, 11, 1, 0, 2)⊗ (5, 0, 8, 0, 2, 2).

Now, let’s determine if we need to change the exponent of the Kashiwara operator f̃ 2
1 . The λ-path

uσ2(λ)⊗ (v1+ z ′1, v2+ z ′2− z ′1, m4, m5, m0, m1)⊗ (w1, w2+a2, c3, c4, c5, c0)

= uσ2(λ)⊗ (4, 7, 3, 1, 0, 2)⊗ (5, 7, 1, 0, 2, 2)

has (1)-signature

(. . . ,−3+7,−7+4,−7+5) = (+4,−7+5)

which means f̃ 2
1 acting on this λ-path won’t produce our desired λ-path

uσ2(λ)⊗ (2, 9, 3, 1, 0, 2)⊗ (5, 7, 1, 0, 2, 2).

Make the following definitions and changes:

a1 :=w2+a2− v1 = 0+7−2= 5,

c2 := v1 = 2,

c1 :=w1+a1,

w1→w1+a1 = 5+5= 10,

f̃ 2
1 → f̃ 2+a1

1 = f̃ 7
1 .

Then we have

uσ2(λ)⊗ (v1+ z1, m3, m4, m5, m0, m1)⊗ (c1, c2, c3, c4, c5, c0)

= uσ2(λ)⊗ (m2, m3, . . . , m1)⊗ c

= uσ2(λ)⊗ (4, 7, 3, 1, 0, 2)⊗ (10, 2, 1, 0, 2, 2)
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= uσ(λ)⊗ (10, 2, 1, 0, 2, 2)

f̃ 15
2−→ uσ2(λ)⊗ (2, 9, 3, 1, 0, 2)⊗ (5, 7, 1, 0, 2, 2).

To summarize, we have that

f̃ 3
5 f̃ 3

4 f̃ 12
3 f̃ 15

2 f̃ 7
1

�

uσ(λ)⊗ c
�

= uσ2(λ)⊗ bν⊗ bω.

Now we need to construct a sequence of the form

F̂ ′t ∗ν+1 = f̃
q0

0 f̃
q5

5 · · · f̃
q2

2

such that F̂ ′t ∗ν+1(uλ) = uσ(λ)⊗ c . Note that if we use Algorithm 1, we obtain the sequence

F̂ ′t ∗ν+1 = f̃ 8
0 f̃ 10

5 f̃ 11
4 f̃ 8

3 f̃ 2
2 .

This is the sequence we want; however, in Algorithm 3, we’ll use a different method to construct this

sequence. We need to make sure that we don’t need to apply f̃0 at all, and this new method will do

just that. Thus, we have
�

f̃ 3
5 f̃ 3

4 f̃ 12
3 f̃ 15

2 f̃ 7
1

� �

f̃ 8
0 f̃ 10

5 f̃ 11
4 f̃ 8

3 f̃ 2
2

�

(uλ) = uσ2(λ)⊗ bν⊗ bω.

Now we generalize the process explained in Example 6.15.

Algorithm 3: Given the λ-path

uλ = uσ2(λ)⊗ (m2, m1, . . . , m1)⊗ (m1, m2, . . . , m0)

we want to produce a sequence G of length at most 2n such that

G (uλ) = uσ2(λ)⊗ bν⊗ bω

= uσ2(λ)⊗ (v1, v2, . . . , v0)⊗ (w1, w2, . . . , w0).

By Algorithm 2, we know that there exists a sequence

Ft ∗ν = f̃
z ′

t ∗ν−1

t ∗ν−1 f̃
z ′

t ∗ν−2

t ∗ν−2 · · · f̃
z ′

t ∗ν+1

t ∗ν+1

such that

Ft ∗ν

�

uσ(λ)
�

⊗B` = uσ2(λ)⊗ bν⊗B`.

So, by Lemma 6.14, we know we’re going to need to produce a sequence of Kashiwara operators of
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the form
�

f̃
z ′

t ∗ν−1

t ∗ν−1 f̃
z ′

t ∗ν−2

t ∗ν−2 · · · f̃
z ′

t ∗ν+1

t ∗ν+1

��

f̃
z ′

t ∗ν−1

t ∗ν
f̃

z ′
t ∗ν−2

t ∗ν−1 · · · f̃
z ′

t ∗ν+1

t ∗ν+2

�

with possibly different exponents, such that when acting on uλ it produces theλ-path uσ2(λ)⊗bν⊗bω.

Define, as in Algorithm 1, the notation

(ρ)+ = max
�

ρ, 0
	

.

Just as in Example 6.15, we’ll start by working backwards. The λ-path

uσ2(λ)⊗ (v1, v2, . . . , vt ∗ν−1+ z ′t ∗ν−1, vt ∗ν − z ′t ∗ν , vt ∗ν+1, . . . , v0)⊗ (w1, w2, . . . , w0)

has (t ∗ν −1)-signature

�

. . . ,−mt ∗ν+2
+mt ∗ν+1

,−vt ∗ν−z ′
t ∗ν−1
+vt ∗ν−1+z ′

t ∗ν−1
,−wt ∗ν

+wt ∗ν−1

�

=
�

. . . ,−mt ∗ν+2
+mt ∗ν+1

,−mt ∗ν+1
+vt ∗ν−1+z ′

t ∗ν−1
,−wt ∗ν

+wt ∗ν−1

�

=
�

+vt ∗ν−1+z ′
t ∗ν−1

,−wt ∗ν
+wt ∗ν−1

�

=







�

+vt ∗ν−1+z ′
t ∗ν−1
−wt ∗ ,+wt ∗ν−1

�

, if vt ∗ν−1+ zt ∗ν−1 >wt ∗ν ,
�

+wt ∗ν−1

�

, else.

If z ′t ∗ν−1 = 0, then we don’t care what the (t ∗ν − 1)-signature is, because we won’t be applying the

corresponding Kashiwara operator. If this were true, we’d set at ∗ν−1 = 0. However, if z ′t ∗ν−1 6= 0, then

we need to ensure that we have at least z ′t ∗ν−1 pluses in the second component from right in the

(t ∗ν −1)-signature. This will only happen if wt ∗ν ≤ vt ∗ν . If, however, this situation is not true, then we

need to change the t ∗ν −1 and t ∗ν components to enforce this inequality.

Define the following:

at ∗ν−1 :=







�

wt ∗ν− vt ∗ν−1

�

+ , if zt ∗ν−1 6= 0

0, else

ct ∗ν :=







vt ∗ν−1, if at ∗ν−1 > 0

wt ∗ν , else
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and make the following changes:

wt ∗ν → ct ∗ν ,

wt ∗ν−1→wt ∗ν−1+at ∗ν−1,

f̃
z ′

t ∗ν−1

t ∗ν−1 → f̃
z ′

t ∗ν−1
+at ∗ν−1

t ∗ν−1 .

Also, recall that by Equation 6.19, we know the following:

vt ∗ν+1 =mt ∗ν+2− z ′t ∗ν+1,

vt ∗ν =mt ∗ν+1+ z ′t ∗ν−1,

vi =mi+1+ z ′i−1− z ′i , for i 6= t ∗ν , t ∗ν +1,

which can be rewritten as

mt ∗ν+2 = vt ∗ν+1+ z ′t ∗ν+1,

mt ∗ν+1 = vt ∗ν − z ′t ∗ν−1,

mi+1 = vi − z ′i−1+ z ′i , for i 6= t ∗ν , t ∗ν +1.

Then we have

uσ2(λ)⊗ (v1, v2, . . . , vt ∗ν−1+ z ′t ∗ν−1, mt ∗ν+1, vt ∗ν+1, . . . , v0)

⊗ (w1, w2, . . . , wt ∗ν−1+at ∗ν−1, ct ∗ν , wt ∗ν+1, . . . , w0)

f̃
z ′

t ∗ν−1
+at ∗ν−1

t ∗ν−1
−−−−−−−→ uσ2(λ)⊗ bν⊗ bω.

Now, let’s determine if we need to change the exponent of the Kashiwara operator f̃
z ′

t ∗ν−2

t ∗ν−2 .

The λ-path

uσ2(λ)⊗ (v1, v2, . . . , vt ∗ν−2+ z ′t ∗ν−2, vt ∗ν−1+ z ′t ∗ν−1− z ′t ∗ν−2, mt ∗ν+1, vt ∗ν+1, . . . , v0)

⊗ (w1, w2, . . . , wt ∗ν−1+at ∗ν−1, ct ∗ν , wt ∗ν+1, . . . , w0)

= uσ2(λ)⊗ (v1, v2, . . . , vt ∗ν−2+ z ′t ∗ν−2, mt ∗ν , mt ∗ν+1, vt ∗ν+1, . . . , v0)

⊗ (w1, w2, . . . , wt ∗ν−1+at ∗ν−1, ct ∗ν , wt ∗ν+1, . . . , w0).
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has (t ∗ν −2)-signature

�

. . . ,−mt ∗ν+1
+mt ∗ν

,−mt ∗ν
+vt ∗ν−2+z ′

t ∗ν−2
,−wt ∗ν−1+at ∗ν−1

+wt ∗ν−2

�

=
�

+vt ∗ν−2+z ′
t ∗ν−2

,−wt ∗ν−1+at ∗ν−1
+wt ∗ν−2

�

=







�

+vt ∗ν−2+z ′
t ∗ν−2
−wt ∗ν−1−at ∗ν−1

,+wt ∗ν−2

�

, if vt ∗ν−2+ z ′t ∗ν−2−wt ∗ν−1−at ∗ν−1 > 0,
�

+wt ∗ν−2

�

, else.

Similarly to the t ∗ν −1 case, if z ′t ∗ν−2 = 0, then we don’t care what the (t ∗ν −2)-signature is, because we

won’t be applying the corresponding Kashiwara operator. If this were true, we’d set at ∗ν−2 = 0. How-

ever, if z ′t ∗ν−2 6= 0, then we need to ensure that we have at least z ′t ∗ν−2 pluses in the second component

from right in the (t ∗ν −2)-signature. This will only happen if wt ∗ν−1+at ∗ν ≤ vt ∗ν−2. If, however, this sit-

uation is not true, then we need to change the t ∗ν−2 and t ∗ν−1 components to enforce this inequality.

Define the following:

at ∗ν−2 :=







�

wt ∗ν−1+at ∗ν−1− vt ∗ν−2

�

+ , if zt ∗ν−2 6= 0

0, else

ct ∗ν−1 :=







vt ∗ν−2, if at ∗ν−2 > 0

wt ∗ν−1+at ∗ν−1, else

and make the following changes:

wt ∗ν−1+at ∗ν−1→ ct ∗ν−1,

wt ∗ν−2→wt ∗ν−2+at ∗ν−2,

f̃
z ′

t ∗ν−2

t ∗ν−2 → f̃
z ′

t ∗ν−2
+at ∗ν−2

t ∗ν−2 .

Then we have

uσ2(λ)⊗ (v1, v2, . . . , vt ∗ν−2+ z ′t ∗ν−2, mt ∗ν , mt ∗ν+1, vt ∗ν+1, . . . , v0)

⊗ (w1, w2, . . . , wt ∗ν−2+at ∗ν−2, ct ∗ν−1, ct ∗ν , wt ∗ν+1, . . . , w0)

f̃
z ′

t ∗ν−2
+at ∗ν−2

t ∗ν−2
−−−−−−−→ uσ2(λ)⊗ (v1, v2, . . . , vt ∗ν−1+ z ′t ∗ν−1, mt ∗ν+1, vt ∗ν+1, . . . , v0)
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⊗ (w1, w2, . . . , wt ∗ν−1+at ∗ν−1, ct ∗ν , wt ∗ν+1, . . . , w0).

In general, if we define

ai :=







(wi+1+ai+1− vi )+ , if z ′i 6= 0

0, else

ci+1 :=







vi , if ai > 0

wi+1+ai+1, else
,

then we have the following

uσ2(λ)⊗
�

m2, m3, . . . , mt ∗ν+1, vt ∗ν+1, . . . , vi + z ′i , mi+2, . . . , m1

�

⊗
�

c1, c2, . . . , ct ∗ν , wt ∗ν+1, . . . , wi +ai , ci+1, . . . , c0

�

f̃
z ′i +ai

i−−−→ uσ2(λ)⊗
�

m2, m3, . . . , mt ∗ν+1, vt ∗ν+1, . . . , vi+1+ z ′i+1, mi+3, . . . , m1

�

⊗
�

c1, c2, . . . , ct ∗ν , wt ∗ν+1, . . . , wi+1+ai+1, ci+2, . . . , c0

�

.

Thus, we end with

uσ2(λ)⊗
�

m2, m3, . . . , mt ∗ν+1, vt ∗ν+1+ z ′t ∗ν+1, mt ∗ν+3, . . . , m1

�

⊗
�

c1, c2, . . . , ct ∗ν , wt ∗ν+1+at ∗ν+1, ct ∗ν+2, . . . , c0

�

= uσ2(λ)⊗ (m2, m3, . . . , m1)

⊗ (c1, c2, . . . , c0)

= uσ(λ)⊗ c

f̃
z ′

t ∗ν+1
+at ∗ν+1

t ∗ν+1
−−−−−−−→ uσ2(λ)⊗

�

m2, m3, . . . , mt ∗ν+1, vt ∗ν+1, vt ∗ν+1+ z ′t ∗ν+2, mt ∗ν+4, . . . , m1

�

⊗
�

c1, c2, . . . , ct ∗ν , wt ∗ν+1, wt ∗ν+2+at ∗ν+2, ct ∗ν+3, . . . , c0

�

.

To summarize, we have that

F̂t ∗ν = f̃
z ′

t ∗ν−1
+at ∗ν−1

t ∗ν−1 f̃
z ′

t ∗ν−2
+at ∗ν−2

t ∗ν−2 · · · f̃
z ′

t ∗ν+1
+at ∗ν+1

t ∗ν+1 (6.20)

where

F̂t ∗ν

�

uσ(λ)⊗ c
�

= uσ2(λ)⊗ bν⊗ bω.
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And we define:

at ∗ν := 0

ai :=







(wi+1+ai+1− vi )+ , if z ′i 6= 0

0, else

ct ∗ν+1 :=wt ∗ν+1+at ∗ν+1

ci+1 :=







vi , if ai > 0

wi+1+ai+1, else

for i 6= t ∗ν .

Now we need to show that there exists a sequence

F̂ ′t ∗ν+1 = f̃
qt ∗ν

t ∗ν
f̃

qt ∗ν−1

t ∗ν−1 · · · f̃
qt ∗ν+2

t ∗ν+2

such that

F̂ ′t ∗ν+1 (uλ) = uσ(λ)⊗ c .

If we let this sequence act on uλ, we have

f̃
qt ∗ν

t ∗ν
f̃

qt ∗ν−1

t ∗ν−1 · · · f̃
qt ∗ν+3

t ∗ν+3

�

uσ(λ)⊗
�

m1, . . . , mt ∗ν+2−qt ∗ν+2, mt ∗ν+3+qt ∗ν+2, mt ∗ν+4, . . . , m0

��

= f̃
qt ∗ν

t ∗ν
· · · f̃

qt ∗ν+4

t ∗ν+4

�

uσ(λ)⊗
�

m1, . . . , mt ∗ν+2−qt ∗ν+2, mt ∗ν+3+qt ∗ν+2−qt ∗ν+3, mt ∗ν+4+qt ∗ν+3, . . . , m0

��

= . . .

= uσ(λ)⊗
�

m1+q0−q1, . . . , mt ∗ν +qt ∗ν−1−qt ∗ν , mt ∗ν+1+qt ∗ν ,

mt ∗ν+2−qt ∗ν+2, mt ∗ν+3+qt ∗ν+2−qt ∗ν+3, . . . , m0+qn −q0

�

.

Setting this equal to the right-hand side uσ(λ)⊗ c , we obtain the following equations:
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q1 =m1+q0− c1,

q2 =m2+q1− c2,

...

qt ∗ν−1 =mt ∗ν−1+qt ∗ν−2− ct ∗ν−1,

qt ∗ν =mt ∗ν +qt ∗ν−1− ct ∗ν ,

=wt ∗ν+1+at ∗ν+1−mt ∗ν+1,

qt ∗ν+2 =mt ∗ν+2− ct ∗ν+2,

qt ∗ν+3 =mt ∗ν+3+qt ∗ν+2− ct ∗ν+3,

qt ∗ν+4 =mt ∗ν+4+qt ∗ν+3− ct ∗ν+4,

...

q0 =m0+qn − c0.

If we start with the equation

qt ∗ν =wt ∗ν+1+at ∗ν+1−mt ∗ν+1,

then we can find a formula for qt ∗ν−1:

qt ∗ν−1 = qt ∗ν −mt ∗ν + ct ∗ν

=wt ∗ν+1+at ∗ν+1−mt ∗ν+1−mt ∗ν + ct ∗ν .

Next we can solve for qt ∗ν−2:

qt ∗ν−2 = qt ∗ν−1−mt ∗ν−1+ ct ∗ν−1

=
�

wt ∗ν+1+at ∗ν+1− (mt ∗ν +mt ∗ν+1) + (ct ∗ν )
�

−mt ∗ν−1+ ct ∗ν−1

=wt ∗ν+1+at ∗ν+1− (mt ∗ν−1+mt ∗ν +mt ∗ν+1) + (ct ∗ν−1+ ct ∗ν ).

In general, for i 6= t ∗ν +1, we have

qi =wt ∗ν+1+at ∗ν+1− (mi+1+mi+2+ · · ·+mt ∗ν +mt ∗ν+1) + (ci+1+ ci+2+ · · ·+ ct ∗ν−1+ ct ∗ν ).

Note that we’ll have two equations for qt ∗ν+2:

qt ∗ν+2 =mt ∗ν+2− ct ∗ν+2

and

qt ∗ν+2 =wt ∗ν+1+at ∗ν+1− (mt ∗ν+3+mt ∗ν+4+ · · ·+mt ∗ν+1) + (ct ∗ν+3+ ct ∗ν+4+ · · ·+ ct ∗ν ).
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Are these equivalent?

qt ∗ν+2 =wt ∗ν+1+at ∗ν+1− (mt ∗ν+3+mt ∗ν+4+ · · ·+mt ∗ν+1) + (ct ∗ν+3+ ct ∗ν+4+ · · ·+ ct ∗ν )

=wt ∗ν+1+at ∗ν+1−
�

`−mt ∗ν+2

�

+
�

`− ct ∗ν+2− ct ∗ν+1

�

=wt ∗ν+1+at ∗ν+1+mt ∗ν+2− ct ∗ν+2− ct ∗ν+1

=mt ∗ν+2− ct ∗ν+2,

since ct ∗ν+1 =wt ∗ν+1+at ∗ν+1 by our definition. So, yes, they are equivalent.

Note that by construction, qt ∗ν+2 ≤mt ∗ν+2 and qi ≤mi+qi−1, so we can apply each Kashiwara operator

the necessary number of times. Hence, the sequence

F̂ ′t ∗ν+1 = f̃
qt ∗ν

t ∗ν
f̃

qt ∗ν−1

t ∗ν−1 · · · f̃
qt ∗ν+2

t ∗ν+2 (6.21)

is such that

F̂ ′t ∗ν+1 (uλ) = uσ(λ)⊗ c .

Therefore, we have produced the sequence G such that

G (uλ) = F̂t ∗ν F̂ ′t ∗ν+1 (uλ) (6.22)

= uσ2(λ)⊗ bν⊗ bω,

for any bν, bω ∈B`.

Back to Example 6.15: We were given the ground-state path

uλ = . . .⊗ (4, 7, 3, 1, 0, 2)⊗ (2, 4, 7, 3, 1, 0)

where bλ = (m1, m2, . . . , m0) = (2, 4, 7, 3, 1, 0). And we wanted to produce the λ-path

uσ2(λ)⊗ (2, 1, 0, 9, 2, 3)⊗ (5, 0, 7, 1, 0, 4)

where bν = (2, 1, 0, 9, 2, 3) and bω = (5, 0, 7, 1, 0, 4). In order to compute the sequence needed to obtain

this λ-path, we need to do the following:
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1. Use Algorithm 2 to find the sequence

Ft ∗ν = f̃5 f̃ 3
4 f̃ 11

3 f̃ 8
2 f̃ 2

1

where t ∗ν = 0.

2. Compute the ai ’s:

a0 = 0,

a5 = (w0+a0− v5)+ = (4+0−2)+ = 2,

a4 = (w5+a5− v4)+ = (0+2−9)+ = 0,

a3 = (w4+a4− v3)+ = (1+0−0)+ = 1,

a2 = (w3+a3− v2)+ = (7+1−1)+ = 7,

a1 = (w2+a2− v1)+ = (0+7−2)+ = 5.

3. Then compute the ci+1’s:

c1 =w1+a1 = 5+5= 10,

c0 = v5 = 2,

c5 =w5+a5 = 0+2= 2,

c4 = v3 = 0,

c3 = v2 = 1,

c2 = v1 = 2.

4. Form

F̂t ∗ν = f̃ 3
5 f̃ 3

4 f̃ 12
3 f̃ 15

2 f̃ 7
1 ,

c = (10, 2, 1, 0, 2, 2).

5. Compute the qi ’s:

q1 = 0,

q2 =w1+a1− (m3+m4+m5+m0+m1) + (c3+ c4+ c5+ c0)

= 5+5− (7+3+1+0+2) + (1+0+2+2) = 2,
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q3 =w1+a1− (m4+m5+m0+m1) + (c4+ c5+ c0)

= 5+5− (3+1+0+2) + (0+2+2) = 8,

q4 =w1+a1− (m5+m0+m1) + (c5+ c0)

= 5+5− (1+0+2) + (2+2) = 11,

q5 =w1+a1− (m0+m1) + (c0) = 5+5− (0+2) + (2) = 10,

q0 =w1+a1− (m1) + (0) = 5+5− (2) +0= 8.

6. Form F̂ ′t ∗ν+1 = f̃ 8
0 f̃ 10

5 f̃ 11
4 f̃ 8

3 f̃ 2
2 .

Hence, the sequence
�

f̃5 f̃ 3
4 f̃ 11

3 f̃ 8
2 f̃ 2

1

� �

f̃ 8
0 f̃ 10

5 f̃ 11
4 f̃ 8

3 f̃ 2
2

�

is such that

�

f̃5 f̃ 3
4 f̃ 11

3 f̃ 8
2 f̃ 2

1

� �

f̃ 8
0 f̃ 10

5 f̃ 11
4 f̃ 8

3 f̃ 2
2

�

(uλ) = uσ2(λ)⊗ (2, 1, 0, 9, 2, 3)⊗ (5, 0, 7, 1, 0, 4).

The sequence G = F̂t ∗ν F̂ ′t ∗ν+1 corresponds to the sequence of Weyl group simple reflections

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

.

Lemma 6.16. The sequence S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

is a subsequence of w (3, j ) for

all j = 0, 1, . . . , n.

Proof. Recall that

w (3, j ) = (r j+n−3 · · · r j+n r j+n−1)(r j+n−2 · · · r j r j+n )(r j+n−1 · · · r j+1r j ).

Notice that each simple reflection ri appears within the first n +1 components from the right in

w (3, j ). If we start at any of those ri , we can form a sequence of simple reflections

(ri+n−2 · · · ri ri+n ) (ri+n−1 · · · ri+1ri )

of length 2n that is a subsequence of w (3, j ). Let i = t ∗+2. Then we have that

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

is a subsequence of w (3, j ) for all j = 0, 1, . . . , n .

Corollary 6.17. We have that uσ2(λ)⊗B2
` ⊂ Bw (3, j )(λ) for all j = 0, 1, . . . , n.
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Proof. For each λ-path uσ(λ) ⊗ bν ⊗ bω, Algorithm 3 produces a sequence F̂t ∗ν F̂ ′t ∗ν+1 that is associ-

ated with a sequence of simple reflections S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

of length 2n . By

Lemma 6.16, we know each of these sequences S of simple reflections is a subsequence of w (3, j )

for all j . Hence, by the definition of Bw (3, j )(λ), it follows that uσ2(λ)⊗B2
` ⊂ Bw (3, j )(λ) for all j .

Lemma 6.18. We have that
n
⋃

j=0

Bw (2, j ) = uσ2(λ)⊗B2
` .

Proof. By Algorithm 3, we proved that there exists a sequence G = F̂t ∗ν F̂ ′t ∗ν+1 such that

G (uλ) = uσ(λ)⊗ bν⊗ bω

for all bν, bω ∈B`. Each sequence G is associated with a sequence of simple reflections

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

of length 2n . Well, note that S =w (2, t ∗ν +1). Hence,

uσ2(λ)⊗ bν⊗ bω ∈ Bw (1,t ∗ν+1)(λ)

for each bν, bω ∈B`. Thus,
n
⋃

j=0

Bw (2, j ) ⊇ uσ2(λ)⊗B2
` .

Now we just need to show that
n
⋃

j=0

Bw (2, j ) ⊆ uσ2(λ)⊗B2
` .

In other words, we need to show that uσ3(λ)⊗ bγ⊗B2
` 6⊆ Bw (2, j )(λ) for all j = 0,1, . . . , n . Well, recall

that

f̃ zi
i f̃ zi

i+1 f̃ zi
i+2 (uλ) = f̃ zi

i f̃ zi
i+1 f̃ zi

i+2

�

uσ3(λ)⊗ bσ2(λ)⊗ bσ(λ)⊗ bλ
�

= uσ3(λ)⊗ bρ3
⊗ bρ2

⊗ bρ1
.

This last equation implies that if any sequence of simple reflections contains f̃i+2, then f̃i+1, and

then f̃i , then the third component from the right in the tensor product will be affected. And such a

sequence is needed in order for the third component to be affected, by Lemma 6.2. But w (2, j ) =

(r j+n−2 · · · r j r j+n )(r j+n−1 · · · r j+1r j ) for j = 0,1, . . . , n , which means that this situation never occurs.
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Hence, the third component from the right in the tensor product will never be affected, and so

n
⋃

j=0

Bw (2, j ) ⊆ uσ2(λ)⊗B2
` .

Therefore,
n
⋃

j=0

Bw (2, j ) = uσ2(λ)⊗B2
` .

Remark 3. Recall that with some notation changes, Algorithm 2 was a generalization of Algorithm

1. In a similar manner, with some notation changes, Algorithm 3 generalizes to produce a sequence

G of Kashiwara operators such that G (uσL−1(λ))⊗BL−1
` = uσL+1(λ)⊗ bν⊗ bω⊗BL−1

` .

Lemma 6.19. Choose bγ1
, bγ2

, . . . , bγL
∈B`. Then, given the ground-state path

uλ = . . .⊗ (m2, m3, . . . , m1)⊗ (m1, m2, . . . , m0)

there exists a sequence

G =
�

F̂t ∗ν

�

�

F̂ ′t ∗ν+1

�

· · ·
�

F̂ ′t ∗ν+L−1

�

of at most Ln Kashiwara operators such that

G (uλ) = uσL (λ)⊗ bγ1
⊗ bγ2

. . .⊗ bγL
.

Proof. Let L = 1. By Algorithm 1, we have the sequence G = Ft ∗ of Kashiwara operators of length at

most n such that G (uλ) = uσ(λ)⊗ bγ1
, where Ft ∗ is defined as in Equation 6.8.

Let L = 2. By Algorithm 3, we have the sequence G = F̂t ∗γ1
F̂ ′t ∗γ1+1 of Kashiwara operators of length at

most 2n such that G (uλ) = uσ2(λ)⊗ bγ1
⊗ bγ2

, where F̂t ∗γ1
is defined as in Equation 6.20 and F̂ ′t ∗γ1+1 is

defined as in Equation 6.21. Notice that except for possibly different exponents, the sequence F̂t ∗γ1

of Kashiwara operators is the same as the sequence Ft ∗γ1
of Kashiwara operators, which is obtained

using Algorithm 2, where

Ft ∗γ1

�

uσ(λ)
�

⊗B` = uσ2(λ)⊗ bγ1
⊗B`.

Now, suppose that there exists a sequence Ĝ of Kashiwara operators of length at most (L −1)n such

that

Ĝ (uλ) = uσL−1(λ)⊗ bγ2
⊗ bγ3

⊗ . . . bγL
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= uσL (λ)⊗ bσL−1(λ)⊗ bγ2
⊗ bγ3

⊗ . . . bγL
.

for bγ j
∈B`, and suppose that, except for possibly different exponents, the last n Kashiwara opera-

tors in the sequence Ĝ form the same sequence of Kashiwara operators as Ft ∗γ2
, which is obtained

using Algorithm 2 for the element bγ2
.

We want to show that we can find a sequence G for the L case so that when acting on the ground-state

path uλ it will produce the λ-path

uσL (λ)⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL
,

for bγ j
∈B`.

Using Algorithm 2, we can construct a sequence Ft ∗γ1
(defined in Equation 6.18) such that

Ft ∗γ1

�

uσL−1(λ)
�

⊗BL−1
` = uσL (λ)⊗ bγ1

⊗BL−1
` .

Then, by Remark 3, we can construct a sequence F̂t ∗γ1
(defined in Equation 6.20) such that

F̂t ∗γ1

�

uσL−1(λ)⊗ c
�

⊗BL−1
` = uσL (λ)⊗ bγ1

⊗ bγ2
⊗BL−1

` ,

and the sequence F̂ ′t ∗γ1+1 (defined in Equation 6.21) such that

F̂t ∗γ1+1

�

uσL−2(λ)
�

⊗BL−2
` = uσL−1(λ)⊗ c ⊗BL−2

` ,

so that

F̂t ∗γ1
F̂ ′t ∗γ1+1

�

uσL−2(λ)
�

⊗BL−2
` = uσL (λ)⊗ bγ1

⊗ bγ2
⊗BL−1

` .

Then, by our induction hypothesis, there exists a sequence Ĝ such that

Ĝ (uλ) = uσL−1(λ)⊗ c ⊗ bγ3
⊗ bγ4

⊗ . . .⊗ bγL
,

where, except for possibly different exponents, the last n Kashiwara operators in Ĝ form the same

sequence of Kashiwara operators as F̂ ′t ∗ν+1. If we define the sequence F̂ ′t ∗γ1
to have the same sequence

of Kashiwara operators as F̂t ∗γ1
but possibly different exponents, and we define Ĝ ′ to have the same

sequence of Kashiwara operators as Ĝ but possibly different exponents, then we can form the
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sequence

G = F̂ ′t ∗νĜ ′,

where

G (uλ) = uσL (λ) = uσL (λ)⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL
.

The sequence G corresponds to the sequence of Weyl group reflections

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

· · ·
�

rt ∗ν+L−2rt ∗ν+L−3 · · · rt ∗ν+L

�

.

Lemma 6.20. The sequence

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

· · ·
�

rt ∗ν+L−2rt ∗ν+L−3 · · · rt ∗ν+L

�

is a subsequence of w (L +1, j ) for all j = 0, 1, . . . , n.

Proof. Recall that

w (L +1, j ) = (r j+n−L−1 · · · r j+1−L r j−L ) · · · (r j+n−2 · · · r j r j+n )(r j+n−1 · · · r j+1r j ).

Notice that each simple reflection ri appears within the first n +1 components from the right in

w (L +1, j ). If we start at any of those ri , we can form a sequence of simple reflections

(ri+L+n−2 · · · ri−L ri−L−1) · · · (ri+n−2 · · · ri ri+n )(ri+n−1 · · · ri+1ri )

of length Ln that is a subsequence of w (L +1, j ) for all j . Let i = t ∗ν + L . Then, we have that

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

· · ·
�

rt ∗ν+L−2rt ∗ν+L−3 · · · rt ∗ν+L

�

is a subsequence of w (L +1, j ) for all j = 0, 1, . . . , n .

Corollary 6.21. We have that uσL (λ)⊗BL
` ⊂ Bw (L+1, j )(λ) for all j = 0, 1, . . . , n.

Proof. For each λ-path

uσL (λ)⊗ bν⊗ bω⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL−2
,

by Lemma 6.19 there exists a sequence of Kashiwara operators

G =
�

F̂t ∗ν

�

�

F̂ ′t ∗ν+1

�

· · ·
�

F̂ ′t ∗ν+L−1

�
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ŝ l (n +1,C)
�

-Demazure Crystals

such that G (uλ) = uσL (λ)⊗ bν⊗ bω⊗ bγ1
⊗ . . .⊗ bγL−2

. This sequence G is associated with a sequence

of simple reflections

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

· · ·
�

rt ∗ν+L−2rt ∗ν+L−3 · · · rt ∗ν+L

�

of length Ln . By Lemma 6.20, we know each of these sequences of simple reflections W is a

subsequence of w (L +1, j ) for all j . Hence, by the definition of Bw (L+1, j )(λ), it follows that

uσL (λ)⊗BL
` ⊂ Bw (L+1, j )(λ)

for all j .

Corollary 6.22. Choose bν, bγ1
, bγ2

, . . . , bγL−1
∈B` such that bν 6= bσL−1(λ). Then, for some j ,

uσL (λ)⊗ bν⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL−1
6∈ Bw (L , j )(λ).

Proof. By Lemma 6.19, we know there exists a sequence G of Kashiwara operators such that

G (uλ) = uσL (λ)⊗ bν⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL−1
.

This sequence Gν is associated with a sequence of simple reflections

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

· · ·
�

rt ∗ν+L−2rt ∗ν+L−3 · · · rt ∗ν+L

�

of length Ln . Note that S is not a subsequence of w (L , t ∗ν + L + 1). Hence, by the definition of

Bw (L ,t ∗ν+L+1)(λ),

uσL (λ)⊗ bν⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL−1
6∈ Bw (L ,t ∗ν+L+1)(λ).

Theorem 6.23. (Main Theorem) We have that

1.
⋃

j≥0

Bw (L , j )(λ) = uσL (λ)⊗BL
` ,

2.
⋂

j≥0

Bw (L , j )(λ) = uσL−1 (λ)⊗BL−1
` .

Proof. First, note that w (L , j ) =w (L , j +n +1). Hence,

⋃

j≥0

Bw (L , j )(λ) =
n
⋃

j=0

Bw (L , j )(λ),
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⋂

j≥0

Bw (L , j )(λ) =
n
⋂

j=0

Bw (L , j )(λ).

We’ll first prove the union. By Lemma 6.19, we proved that there exists a sequence G such that

G (uλ) = uσ(λ)⊗ bν⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL−1

for bν, bγi
∈B`. Each sequence G is associated with a sequence of simple reflections

S =
�

rt ∗ν−1rt ∗ν−2 · · · rt ∗ν+1

� �

rt ∗ν rt ∗ν−1 · · · rt ∗ν+2

�

· · ·
�

rt ∗ν+L−2rt ∗ν+L−3 · · · rt ∗ν+L

�

of length Ln . Note that S =w (L , t ∗ν + L ). Hence, by the definition of Bw (L ,t ∗ν+L )(λ),

uσL (λ)⊗ bν⊗ bγ1
⊗ . . .⊗ bγL−1

∈ Bw (L ,t ∗ν+L )(λ)

for bν, bγi
∈B`. Thus,

n
⋃

j=0

Bw (L , j )(λ)⊇ uσL (λ)⊗BL
` .

Now we just need to show that
n
⋃

j=0

Bw (L , j )(λ)⊆ uσL (λ)⊗BL
` .

In other words, we need to show that uσL+1(λ)⊗ bζ⊗BL
` 6⊆ Bw (L , j )(λ) for all j = 0, 1, . . . , n . Well, recall

that by Lemma 6.2

f̃ zi
i f̃ zi

i+1 · · · f̃
zi

i+L+n f̃ zi
i+L (uλ) = f̃ zi

i f̃ zi
i+1 · · · f̃

zi
i+L

�

uσL+1(λ)⊗ bσL (λ)⊗ bσL−1(λ)⊗ . . .⊗ bλ
�

= uσL+1(λ)⊗ bρL+1
⊗ bρL

⊗ . . .⊗ bρ1
.

This last equation implies that if any sequence contains the simple reflections in that order, then

the (L +1)s t component from the right in the tensor product will be affected. And such a sequence

is needed in order for the third component to be affected. This sequence would be associated with

a sequence of simple reflections:

(ri ) (ri+n · · · ri+2ri+1) · · · (ri+n−2+L · · · ri+L ri+n+L ) (ri+n−1+L · · · ri+1+L ri+L )

of length Ln +1. But

w (L , j ) = (r j+n−L · · · r j+2−L r j+1−L ) · · · (r j+n−2 · · · r j r j+n )(r j+n−1 · · · r j+1r j )
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for j = 0, 1, . . . , n , is of length Ln , which means that this situation never occurs. Hence, the (L +1)s t

component from the right in the tensor product will never be affected, and so

n
⋃

j=0

Bw (L , j )(λ)⊆ uσL (λ)⊗BL
` .

Therefore,
n
⋃

j=0

Bw (L , j )(λ) = uσL (λ)⊗BL
` .

Now, let’s prove the intersection. By Corollary 6.21, we know that

uσL−1(λ)⊗ b L−1 ⊂ Bw (L , j )(λ)

for all j = 0, 1, . . . , n . Hence,
n
⋂

j=0

Bw (L , j )(λ)⊇ uσL−1 (λ)⊗BL−1
` .

By Corollary 6.22, each λ-path

uσL (λ)⊗ bν⊗ bγ1
⊗ bγ2

⊗ . . .⊗ bγL−1
6∈ Bw (L , j )(λ)

for some j , which implies that

n
⋂

j=0

Bw (L , j )(λ)⊆ uσL−1 (λ)⊗BL−1
` .

Therefore,
n
⋂

j=0

Bw (L , j )(λ) = uσL−1 (λ)⊗BL−1
` .
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