Abstract

RAHMOELLER, MARGARET LYNN . On Demazure Crystals for the Quantum Affine Algebra U, (si(n)).
(Under the direction of Dr. Kailash Misra.)

Lie algebras and their representations have been an important area of mathematical research due
to their relevance in several areas of mathematics and physics. It is known that the representation
of a Lie algebra can be studied by considering the representations of its universal enveloping al-
gebra, which is an associative algebra. In 1968, Victor Kac and Robert Moody defined a class of
infinite dimensional Lie algebras called affine Lie algebras. An affine Lie algebra can be viewed
as the universal central extension of the Lie algebra of polynomial maps from the unity circle to
a finite dimensional simple Lie algebra. In this thesis, we consider the affine Lie algebra si(n)
associated with the finite dimensional simple Lie algebra s!(n) of n x n trace zero matrices over the
field of complex numbers. We consider certain representations of the quantum affine Lie algebra
Uq(sAl(n)), which is a g-deformation of the universal enveloping algebra U(sl(n)) of sl(n) intro-
duced by Michio Jimbo and Vladimir Drinfeld in 1985. In 1988, it was shown by George Lusztig that

the g-deformation of a representation of U, (sl(n)) parallels the representation of sl(n)for generic g.

It is known that for any dominant integral weight A there is a unique (up to isomorphism) irreducible
Uq(sAl(n))- module V(A). It was shown by Kashiwara that this irreducible module V(1) admits a
crystal base (L(A), B(A)). The set B(A) is called a crystal, and it provides a nice combinatorial tool to
study the combinatorial properties of the representation space V(A).

Let VW be the Weyl group of the affine Lie algebra sl (n). For w € VW we consider the subspace V,,(A)
generated by the extremal weight vector v,,, and the positive half U, q+(sAl (n)) of the quantum affine
algebra Uq(sAl (n)). We note that UweW V,(A)=V(A). These subspaces V,,(A) are called Demazure
modules and are used for inductive arguments. In 1993, Kashiwara showed that V,,(1) admits a
crystal base and that a certain subset B,,(A) of the crystal B(A) is the crystal for V,,(1). Kang, Kashi-
wara, Misra, Miwa, Nakashima and Nakayashiki gave the path realizations of affine crystals as a

semi-infinite tensor product of some finite crystals called perfect crystals in 1991.

In this thesis, we use this path realization and study the combinatorial properties of certain De-
mazure crystals B,,(A) for the quantum affine algebra Uq(sAl (n)). In particular, it is shown that the
intersection and union of a certain family of Demazure crystals for Uq(sAl (n)) can be realized as
tensor products of finitely many perfect crystals.
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Chapter

1

Introduction

In the late 1800’s, Sophus Lie was studying contact transformations in geometry and differential
equations. This led to his discovery of continuous transformation groups and infinitesimal groups,
which today are what we call Lie groups and Lie algebras, respectively. Wilhelm Killing also discov-
ered Lie algebras, independently of Lie. His main contribution in the late 1880’s was the classification
of the complex finite-dimensional simple Lie algebras. Along the way, he made several important
conjectures and introduced the concepts behind Cartan subalgebras, the Cartan matrix, and root
systems. He also discovered the exceptional Lie algebras, though he tried hard to get rid of them.
Elie Cartan continued the work of Lie and Killing, rewriting a lot of Killing’s work on the classification
of semisimple Lie algebras and proving the existence of the exceptional Lie algebras (cf. [7]). He
also introduced representations of semisimple Lie algebras, tying together geometry, differential
geometry, and topology. In differential geometry, he developed a theory of moving frames, leading
to the idea of a fibre bundle [3]. The Cartan matrix A = (a; ;) associated with a finite dimensional
semisimple Lie algebra g is a n x n positive definite integral matrix with a;; =2,a;; <0 and a;; =0 if
and only if a;; =0. The algebraist Jean-Pierre Serre [29] gave the construction of any finite dimen-

sional semisimple Lie algebra with Cartan matrix A via generators and relations.

An n x n integral matrix A is a generalized Cartan matrix (GCM) if a;; =2,a;; <0 and a;; =0 if and
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onlyifa;; =0. A GCM A is said to be an affine GCM if it has corank 1 and if it has a positive null
vector. An affine GCM is indecomposable if it is not equivalent to a matrix in block form. If we delete
the first row and column of an indecomposable GCM A the remaining matrix is a Cartan matrix for a
finite dimensional simple Lie algebra. Motivated by Serre’s result, Victor Kac [10] and Robert Moody
[28] defined Lie algebras associated with any GCM A via generators and relations that we now call
Kac-Moody Lie algebras. When the GCM A is not positive definite the associated Kac-Moody Lie
algebra is infinite dimensional. The Kac-Moody Lie algebra associated with an affine GCM is called
an affine Lie algebra.

Consider the finite-dimensional simple special linear Lie algebra s/(7n,C), consisting of the set of all
n x n trace zero matrices with entries in the field of complex numbers C. In this thesis, we focus on
the corresponding affine Kac-Moody Lie algebra sAl(n, C)=sl(n,C)®C[t,t '|®Cc ®Cd, where c is
a central element and d is a derivation. In Chapter 2 of this thesis, we review some basic definitions
about the structure and representation theory of Lie algebras from ([7], [12]).

In 1985, Michio Jimbo [8] and Vladimir Drinfeld [4] introduced the notion of the quantum group
U,(g), as a g-deformation of the universal enveloping algebra of a symmetrizable Kac-Moody Lie
algebra g. It is known [23] that for generic g, the integrable representation of U, (g) parallels that of g.
The quantum group associated with an affine Lie algebra is called a quantum affine algebra. In this
thesis we focus on the quantum affine algebra Uq(sAl (n)). In Chapter 3, we recall some necessary
definitions and properties about the representation theory of quantum groups from [6].

For each dominant integral weight A, there exists a unique (up to isomorphism) irreducible inte-
grable highest weight U, (g)-module V7(A). Let W denote the Weyl group of g. For each w € W, the
w A weight space of V7(A) is one-dimensional and spanned by the extremal weight vector v,,,. Let
Uq+(g) be the upper half of the quantum group U,(g). The subspace V(1) = Uq+(g)vw ;5 is called a
Demazure module.

The work by Jimbo and Drinfeld led to the development of crystal base theory by Masaki Kashiwara
[16] and Lusztig [23], independently. Crystal base theory provides a combinatorial tool to study Lie
algebra representation theory. Each irreducible integrable highest weight U, (g)-module V9(A) has
an associated crystal basis [16]. In Chapter 3 we recall some basic definitions and properties about
crystal bases from [6]. We also recall the path realization of affine crystals as semi-infinite tensor

products of certain finite crystals called "perfect crystals" [14].
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In 1993, Kashiwara proved the existence of crystal bases for Demazure modules [18] and showed that
the associated crystals are subsets of the crystal for V(). He showed that the Demazure crystals
have certain a recursive property. Later, Kuniba, Misra, Okada, and Uchiyama gave path realizations
of Demazure crystals and showed that under certain criterion the Demazure crystals have tensor
product-like structures [21].

In Chapter 4, we define Demazure modules and their crystals. For certain Weyl group elements
w(L, 1), we give explicit descriptions for Demazure crystals B,z ;)(¢A ;) for Uq(sAl(n)). We then prove
that the union (respectively, the intersection) over i of these Demazure crystals can be realized as the
tensor product of L (respectively, L—1) copies of the associated perfect crystal. In Chapter 5, we give
explicit realizations of Demazure crystals B,z ;)(A) for Uq(sAl (3)), where A is any dominant integrable
weight. In Chapter 6, we use our algorithms to generalize the previous results, giving realizations of
Demazure crystals B, ;)(A) for Uq(sAl(n)) and showing that the union and the intersection over i of

these crystals are tensor products of finitely many perfect crystals.
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2

Lie Algebra Representations

In this chapter, we recall the basic definitions and properties of Lie algebras and their representations
from [7], [11], and [25]. We use the Lie algebra sl(n,C) and its associated affine Lie algebra sl(n,C)

as the running example.

2.1 Lie Algebras

We begin this section with the definition of a Lie algebra, and then recall background information
about Lie algebra representation theory.

Definition 2.1.1. [25] A vector space g over the field C is a Lie algebra if there is a product, which is
called the bracket, [-,-]: g x g — g, such that

1. [ax+by,z]=alx,z]+bly,z]and [x,ay + bz]=alx, y]+ b[x, z] (bilinearity),
2. [x,x]=0,
3. [x,[y,zll=Ilx,y] z]+[y,[x, z]] Jacobi identity),

forall x,y,zeganda, b €C.
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Note that the first two axioms in Definition 2.1.1 imply that [x, y] =—[y, x] for all x,y € g. A Lie
algebra g is abelianif[x,y]=0forall x,y € g.

Any associative algebra g is a Lie algebra under the commutator bracket, defined by [x, y]=xy—yx

for all x, y € g. One of the simplest Lie algebra is the vector space of all 2 x 2, trace-zero matrices
with the commutator bracket.

a b
Example 2.1.2. Letg= { ( )
c —a

Then the set
1 0 0 1 00
H= JE = JF =

is a basis for g. Using the commutator bracket, [A, B]= AB— BA for all A, B € g, we have

a,b,ce C} be the vector space of all 2 x 2, trace-zero matrices.

[H,E]=2E, [H,F]=-2F, [E,F]=H.

Then g is a Lie algebra, which we denote by both A; and s!(2,C).

Example 2.1.3. [25] The Lie algebra s/(2,C) from the above example can be extended to the Lie
algebra si(n+1,C) of (n + 1) x (n + 1) trace-zero matrices, called the special linear Lie algebra. We
can also denote this Lie algebra by A,,. The set {H,- =E;i—Ei11,i+1, Ejk| 1<ig<n1<j#k<n+ 1},
where E; ; denotes the (n + 1) x (n + 1) matrix with a one in the (i, j)-entry and zeros elsewhere, is a
basis for the Lie algebra s/(n + 1, C). Note that, under the commutator bracket,

1, ifi=j,
(Eij, Exi]=0 i Eiy— 06 Eyj, where §;; =
0, ifi#j.
A subspace s of a Lie algebra g is a subalgebraif [x, y] € s for all x, y €s. Under the bracketin g, a
subalgebra s is a Lie algebra.

Example 2.1.4. [7] Letg=sl(n+1,C). Then theseth= span{Hi =E;i—Ei11i1]11<i< n} isa
subalgebra of g. We call this subalgebra the Cartan subalgebra.

Let g be a Lie algebra. Then a subspace s of g is an ideal of g if [x, y]esforall x egand y €s. Ifgis
nonabelian, i.e. [g, g] # {0}, and if {0} and g are the only ideals of g, then g is simple. For example,
sl(n+1,C)is asimple Lie algebra. A Lie algebra g is solvable if g™ = {0} for some m € Z.,, where

0 =g,
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for m € Z.,. The g™ are ideals of g, and the series
g 29(1) 29(2) 29(3) D...

is called the derived series of g. If g contains no nonzero proper solvable ideals, then we say g is
semisimple. In other words, if we can write g as a direct sum of simple ideals, then g is semisimple.
Note that a simple Lie algebra is also a semisimple Lie algebra, but the converse is not necessarily
true.

2.2 Lie Algebra Representation Theory

Let(A,+,+,0,1) be aring over C, where A is a vector space over C with the same addition rule and
zero element. Suppose a(x-y)=(ax)-y =x-(ay)foralla € C and x, y € A. Then we say that A
is an associative algebra. Under the commutator bracket, with an associative product, A is a Lie
algebra.

Example 2.2.1. [25] Let V be a vector space over C, and let gl/(V) denote the set of all linear
transformations from V to V. Then gl(V) is an associative algebra, where the associative product
is the composition of maps. Hence, g/(V) is a Lie algebra under the commutator bracket.

Not every Lie algebra is an associative algebra. But, if we are given a Lie algebra, we can construct
an associative algebra called a universal enveloping algebra. Let g be a Lie algebra over C. Suppose
we have an associative algebra U(g) over C and a linear map j : g — U(g) such that j([x, y]) =
Jj(x)j(y)—j(y)j(x)forall x, y € g. Then the pair (U(g), j) is called a universal enveloping algebra of
g if it satisfies the following universal property [6]:
For any pair (4, ¢), where A is an associative algebra and ¢ : g — A is a linear map satisfying
o([x,y]) =@ (x)p(y)—@(y)p(x) for all x, y € g, there exists a unique homomorphism of
associative algebras ¢ : U(g) = Asuch that ¢ =y o j.

The following commutative diagram depicts the universal property of U(g) [6]:
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g Ul(g)

/
/
Ay
/
/

A

Figure 2.1 Universal Property for the Universal Enveloping Algebra

Let T(g) be the tensor algebra of g so that

T(@)=PT1"s,
k>0
and let I be the two-sided ideal generated by elements of the form x® y—y ® x —[x, y], for x,y €
g. Then the universal enveloping algebra can be constructed as U(g) = T(g)/I. The linear map
j : g — U(g) is constructed by composing the natural maps g — T(g) and 7 : T(g) — U(g). The
Poincaré-Birkhoff-Witt Theorem, which is known as the PBW Theorem, proves that j is injective
and gives a basis for U(g) [7].

Theorem 2.2.2. [7][Poincaré-Birkhoff-Witt]
1. Themap j:g— U(g) is injective.

2. Let{x;|i € I} be an ordered basis for g, where I is an index set. Then the set {x; x;,-+- x; |i; <
ip <--- <y, k >0}, along with 1, forms a basis for U(g).

The PBW Theorem allows us to identify the Lie algebra g with the image j(g).

We now discuss special maps on Lie algebras called homomorphisms. Suppose we have two Lie
algebras g; and g,. We say that a linear transformation ¢ : g; — g, is a Lie algebra homomorphism if
o([x,y]) =[¢(x), p(y)] forall x, y € g;. A Lie algebra homomorphism ¢ : g; — g, is an epimorphism
if ¢ is onto and is a monomorphism if ¢ is one-to-one. If ¢ is both one-to-one and onto, we say that

@ is a Lie algebra isomorphism.

Let V be a vector space over C. Recall that gI(V), the set of all linear operators on V/, is a Lie algebra
under the commutator bracket. A representation of the Lie algebra g on the vector space V is a
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homorphism ¢ : g — gl(V). We say that V is a g-module if there is an operation g x V — g, given by

(x,v)— x- v, such that
1. x-(au+bv)=a(x-u)+b(x-v),
2. (ax+by)-v=a(x-v)+b(y-v),
3. [x,ylv=x-(y-v)—y-(x-v)

forall x,yeg, u,veV,and a,b eC|[7].

Suppose V is a g-module. Then the map ¢ : g — g/(V)definedby p(x)v =x-vforall xegandv eV
is a representation. Conversely, if ¢ : g — gl(V) is a representation, then by defining x - v = p(x)v
forall x egand v € V, we see that V is a g-module. Thus, representations and g-modules can be

used interchangeably.

Example 2.2.3. [25] Letg=sl(2,C)and V =C?. Define the map ¢ : s1(2,C)— gl(C?) by (x)v =
x v (matrix multiplication) for x € sI(2,C) and v € C?. The map ¢ is arepresentation, and hence,

C?isan sl(2,C)-module by x- v = xv.

Example 2.2.4. [25] Let g be a Lie algebra. Define the map ad:g — gl(g)byad(x)y =ad,y =[x, y]

for x, y € g. This map is a representation of g on itself and is called the adjoint representation [7].

Let V be a g-module, and let S be a subspace of V. We say that S is a submoduleof Vifx-ueS
forall x e gand u €S [7]. Suppose that V # {0} and that V has no proper submodules. Then V is
irreducible.

Example 2.2.5. [25] Letg=sl(n+1,C)and V =C". Under the action x - v = x v (matrix multipli-

cation), V is an irreducible g-module.

Now let g be a Lie algebra, and let V and W be two g-modules. Suppose we have a linear transforma-
tionp:V-oW.Ifp(x-v)=x-p(v)forall x egand v € V, then ¢ is a g-module homomorphism. As
with Lie algebra homomorphisms, if ¢ is one-to-one and onto, then the g-module homomorphism

¢ is an isomorphism, ie. V=W,

In [6], we see that the representation theory of a Lie algebra g parallels the representation theory of
its universal enveloping algebra U(g). Hence we can extend all of the aforementioned definitions
for the Lie algebra g to U(g).
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2.3 Kac-Moody Lie algebras

In this section, we define a class of infinite-dimensional Lie algebras called Kac-Moody Lie algebras.
These algebras can be constructed from a special matrix, called a generalized Cartan matrix, and
are a generalization of finite-dimensional semisimple Lie algebras.

But first, we will define the special affine Lie algebra, denoted A(,,l) or sl(n +1,C), by construction,
starting from the finite-dimensional simple Lie algebra s/(7n +1, C). This affine Lie algebra is infinite-
dimensional and is the base of our main focus in this thesis. First recall that a linear transformation

0 :g—gisaderivationof gif 0([x,y])=1[0(x), y]+[x,0(y)]forall x,y €g.
The special affine Lie algebra can be constructed as follows [12]. Let
D_ -1
AV =5I(n+1,C)=sl(n+1,C)®C[t,t '|oCcaCd,

where C[#, 1] is the Laurent polynomial ring, ¢ is central, and d is the derivation 1® ¢ %, with the
following bracket structure:

[x®t,yet/|=[x,yl®t"™ +tr(x,y)id; jc,
[d,x®t'|=i(x® 1)),
[d,c]=0,

forallx,yesl(n+1,C)and i, j€Z.

The following elements generate this algebra:

eOZE)®t, e,-ZEl-®1,
fo=E®t™, fi=F®l,
hoZ—H0®1+C, I/li:Hi®1,

and ¢ = hg+ h; +---+ h;, and the E;, F;, and H; generate sl(n+1,C).

An n x n integer matrix A = (a;;) is called a generalized Cartan matrix (GCM) if the following
conditions hold:

1. a;;=2foralli=1,...,n,
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2. a;;<0ifi # 7,
3. a;;=0ifand onlyifa;; =0.

A matrix A is a Cartan matrix if it satisfies the above conditions and is positive-definite. If there
exists an n x n diagonal matrix D = diag(s;), such that s; € Z., and DA is symmetric, then A is
symmetrizable. The GCM A is indecomposable if for every pair of nonempty subsets I;, I, C I with
LUl =1, there exists some i € I, and j € I, such that a;; #0.

Theorem 2.3.1. [12] Let A=(a; ;) be an indecomposable n x n GCM, and let u,v € R". We say that
u>0ifu;>0andthatu>0ifu; >0 foralli=1,2,...,n. Then one and only one of the following
three possibilities hold for both A and A :

(Finite) detA+#0; there exists u > 0 such that Au > 0; Av >0 implies v >0 or v =0.
(Affine) corankA = 1; there exists u > 0 such that Au=0; Av >0 implies Av =0.
(Indefinite) There exists u >0 such that Au<0; Av>0and v >0 imply v =0.
We say that the GCM A is of finite, affine, or indefinite type if A satisfies the corresponding condition.

Let A = (a;;) be an n x n GCM. Then there exists an oriented graph, which we call the Dynkin
diagram, which has n vertices. The directed edges are defined by the following [12]:

* Ifa;jaj; <4and|a;;|>|aj;|, then the vertices i and j are connected with |a; ;| edges, with the
arrow pointing toward i if [a; ;[> 1.

* Ifa;jaj; >4, then the vertices i and j are connected with a bold edge, labeled with the ordered

pair (|a; |, |a;;l).

Hence, given a GCM we can create a Dynkin diagram, and we can recover the GCM if given the
Dynkin diagram, up to the order of indices.

Example 2.3.2. Here is one example of a GCM and its corresponding Dynkin diagram:

2 -1 o—o
A=( ) 1 2

Figure 2.2 Generalized Cartan matrix and Dynkin diagram

10
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Let A = (a;;) be an n x n symmetrizable GCM. The Cartan datum [12] of A is the quintuple
(A 11,11V, P, PV), where I, I1V, P, and PV are defined as follows:

(dual-weight lattice) PV is a free abelian group of rank 2n —rankA with Z-basis

{h;li=1,...,n}u{d|s =1,2,...,n—rankA}.

(Cartan subalgebra) h=C®y P".
(weight lattice) P ={Ae€b*|A(PY)CZ}.
(simple coroots) IV ={h;|li =1,...,n}.

(simple roots) 1={a;|i =1,...,n} C h* alinearly independent subset satisfying
aj(hy)=a;; and a;(ds)=0y;.
The fundamental weights A; € h* are linear functionals on § and defined as follows:
Ai(hj)=0;; and Ai(dg)=0
fori,jelands=1,2,...,|I|-rankA.

Definition 2.3.3. [12] The Kac-Moody Lie algebra g associated with a Cartan datum (A, IT,11V, P, PV)
is the Lie algebra generated by the elements e;, f; (i € I) and h € PV such that the following relations
hold:

1. [h,h']=0for h,h' € PV,

2. e, fil=0ih,

3. [h,e;]=a;(h)e; for he PV,
4. [h, fil=—ay(h)f, for h e PV,
5. (ade;)"“ie;=0fori# j,

6. (adf;)' i f;=0fori#j.

Example 2.3.4. [12] The special linear Lie algebra A,, = sl(n + 1,C) is a Kac-Moody Lie algebra
and has the following GCM and corresponding Dynkin diagram:

11
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(2 -1 0 o0 0)
-1 2 -1 0 0
o -1 2 -1 0 ® ® ® ®
A= 1 2 n-l n
0 0 -1 2
: . -1
\0 0 0 - -1 2

Figure 2.3 Generalized Cartan matrix and Dynkin diagram for A, =sl(n+1,C)

If A is a GCM of affine type, then we call the quintuple (A, I1, 11V, P, PV) an affine Cartan datum and
to each we can associate the affine Kac-Moody Lie algebra g.

Example 2.3.5. [12] The special affine Lie algebra A(nl) = sl(n+1,C)is also a Kac-Moody Lie algebra,
with GCM and Dynkin diagram as follows:

2 -1 0 0 -1
1 2 -1 0 0
0 -1 2 -1
A=
0 0 -1 2
.
\-1 0 o0 -1 2

Figure 2.4 Generalized Cartan matrix and Dynkin diagram for A" = s/(n +1,C)

The affine Kac-Moody Lie algebra A(,}) hasrootbasisIl = {ag, a,...,a,}, corootbasisI1V = {hy, hy,..., h,} C

b, and the imaginary roots of g are nonzero integral multiples of the null root 6 = ag+a; +---+a,.

The free abelian group A=&p; Za;, fori =1,..., n, is called the root lattice, which can be separated

into two parts: the positive root lattice Q, = ZZZO(Z,- and the negative root lattice Q_ =—Q, [12].
iel

For each ¢ € Q, let
9o ={x €gllh, x]=a(h)x for all h € h}.

12
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If a # 0 and g, # {0}, then a is a root of g and g,, is called the root space. The dimension of g, is
called the root multiplicity of a. Let A represent the set of all roots, A, = AN Q, be the set of all
positive roots, and A_ = AN Q_ be the set of all negative roots.

Proposition 2.3.6. [12] The Kac-Moody Lie algebra g has the following triangular decomposition:
g=(@ ga)®h®(@ ga)=g_€9h®g+,
aeA_ acA,
wheredim g, < o0 foralla € A.

We also have the Chevalley involution, which leads to special properties of the triangular decompo-
sition.

Proposition 2.3.7. [12] There exists an involution w : g — g, called the Chevalley involution, such
thate; ——f;, f; ——e;, and h — —h.

The triangular decomposition given in Proposition 2.3.6 implies that if a is a positive root, then we

have g, € g,, and if a is negative, then g, € g_. Proposition 2.3.7 implies that mult(@) = mult(—a)[12].

Now we introduce the Weyl group, which plays a key role in this paper. The simple reflection r;,
i=1,...,n, on h* is the linear functional given by r;(A) = A—A(h;)a; [7]. The simple reflections generate
a subgroup W of End(h*), which we call the Weyl group. Let w € WW. Then w can be written in terms
of the simple reflections, w = r; r;,---r;,. If ¢ is minimal, then we say that w is reduced and t is
called the length of w, denoted I(w).

Example 2.3.8. [25] The Weyl group for A,, = sl(n+ 1,C) is isomorphic to the symmetric group

Sn+1.- The Weyl group for A(nl) isW=(ry, n,..., I,). In particular, the Weyl group W = (ry, 1) for A(ll)

is the infinite Dihedral group {(ryr)™, ri(ror)™|m € Z}.

Let g be a Kac-Moody Lie algebra. We can construct an associative algebra for g using the following

proposition.

Proposition 2.3.9. [6] The universal enveloping algebra U(g) of g is the associative algebra over C

with unity generated by e;, f; (i € I) and satisfying the following relations:
1. hh/=h'h forh,h’ €b,
2. eifj—fjei =5l~jhl~,f0ri,j el,

3. he;—e;h=a;(h)e; forheh,icl,

13
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4. hfi— fh=—a;(h)f forheb,iel,

1—a;
5 J 1— al] l—tlij—k k_ . .
E e; eje; =0fori#j,

1-a;;

6. Z( 1) ( “”)f‘ Wk k=0 fori#].

Let U™ (respectively, U and U ™) be the subalgebra of U(g) generated by the elements e; (respectively,
hand f;), for i =1,..., n. We define the root spaces of U(g) by the following equations:

Us={uecU(g)lhu—uh=p(h)uforall heh}forp €Q,
Uﬁ*:{ue U*|hu—uh=p(h)u forall h b} for p € Q..

Proposition 2.3.10. [6] Let g be a Kac-Moody Lie algebra and let U(g) be the associated universal
enveloping algebra. Then we have the following:

1. U@=U-oUU™.

2. Ulg)=EP Up.
peQ

+ +

3. U*=Pu;.
peQs

2.4 Representation Theory

For this section, let g be a symmetrizable Kac-Moody Lie algebra, and let V be a g-module. Recall
that, by the PBW Theorem, the representation theory of g parallels the representation theory of
its universal enveloping algebra U(g). Hence, the definitions and properties in this section can be
extended for U(g).

For any u € h*, the u-weight space is defined as
={veV|hv=u(h)v forall h €h}.

f V, #0, then u is called a weight and vectors v € V,, are called weight vectors of weight u. The
dimension of V, is called the weight multiplicity of u [25]. A g-module V is called a weight module if

14
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it admits a weight space decomposition

v=FPv,.

pehr

Recall the positive root lattice Q, = ZZzoa ;- Define a partial ordering on h* by

iel

A>uifandonlyif A—ueQ,

for A, u € bh*. For A € h*, let D(A) = {u € h*|u < A}, which is called the A-cone [25]. The category O
[25] is the set of weight modules V over g with finite-dimensional weight spaces for which there
exists a finite number of elements A1, A,,..., A € h* such that

wt(V)c D(A)U---UD(Ay).

A weight module V is a highest weight module of highest weight A € b* if there exists a nonzero

vector v, € V, called a highest weight vector, such that

e;v;=0foralliel,
hv, =A(h)v, for all h €b,
V=U(g)vy.

For example, if we fix A € h* and let J(A) be the ideal of U(g) generated by all e; and h — A(h)1, for
i=1,...,nand h € b, then M(A)=U(g)/J(A) is called the Verma module if it has a U(g)-module
structure by left multiplication [25].

Proposition 2.4.1. [12]
1. M(A) is a highest weight g-module with highest weight A and highest weight vector v, =1+ J(A).
2. Every highest weight g-module with highest weight A is a homomorphic image of M(A).
3. Asa U~ -module, M(A) is free of rank 1, generated by the highest weight vector vy =1+ J(A).
4. M(A) has a unique maximal submodule.

Let N(A) be the unique maximal submodule of M(A). Then V(A1) = M(A)/N(A) is the irreducible
highest weight module [25].

15
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Proposition 2.4.2. [12] Every irreducible g-module in the category O is isomorphic to V(A) for some
AEb*.

Suppose we have a Kac-Moody algebra g and a g-module V. If for any v € V, there exists a positive
integer N such that x"V - v =0, then x € g is locally nilpotent on V. We say that a weight module
V over a Kac-Moody Lie algebra g is integrableif all e; and f;, i € I, are locally nilpotent on V [25].
We call the elements in the weight lattice P = {A e h*|A(h;) € Z forall i =1,..., n} integral weights,
and if we restrict this set to the positive part P* ={A € P|A(h;) € Zso forall i =1,...,n}, we call the
resulting set the dominant integral weights.

We define category O, to be the category containing all integrable g-modules in the category O
such that wt(V) c P. Any g-module in category O;,,; is completely reducible, with weight space
decomposition V = @ V,, where V; ={v € V|h;v =A(h;)v for all i € I} [25].

AEP
We have the following results:

Proposition 2.4.3. [12] Let V(A) be the irreducible highest weight g-module with highest weight
Ae€b*. Then V(A) is in category O;,,. Namely, V(A) is integrable if and only if A € P*.

Theorem 2.4.4. [12] Let g be a symmetrizable Kac-Moody Lie algebra associated with the Cartan
datum (A1, 11V, P, PV). Then every irreducible g-module in the category O;,,, is isomorphic to V(A),
where A€ P™.
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Chapter

3

Quantum Groups and Crystal Bases

In this chapter, we recall the definitions of quantum groups, their representation theory, and the
associated crystal bases from [6]. We'll start with the definition of the quantum group U, (g) asso-
ciated with a symmetrizable Kac-Moody Lie algebra g, focusing on the special case g = A(,}). Then
we'll discuss the integrable representations of U, (g) and their crystal bases.

3.1 Quantum Groups

In this section, we introduce some definitions and facts about quantum groups and their represen-
tations.

n__ ,—n
Let m,n € Z and let g be any indeterminate. A g-integer is defined as [n],; = % We also
define g-factorials by the following equations:

[0];!=1 and [n],!=[n]y[n—1],---[1]4,

17
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for n> 0. Let m > n > 0. Then we define the g-binomial coefficient by the equation [6]:

m| [m],!
nl, [nlyllm—n],!

Let (A, IL 11V, P, PY) be a Cartan datum associated with n x n symmetrizable GCM A = (a; j)- Let
D =diag(s; € Z-¢li =1,..., n) be the symmetrizing matrix for A. The quantum group or the quan-
tized universal enveloping algebra U,(g) associated with the Cartan datum (A,II,IIV, P, PV) is the
associative algebra over C(g) with unity generated by the elements e;, f;, and g, where i =1,...,n
and g € PV, with the following relations [6]:

1. q() — 1, qhqh/ — qh-H’l/ for h’ h/e PV,
2. q"e;q7" = q%MWe; for he PV,
3. q"fig" =g %W f forhepP,

qSihi_q—Sihi
4. eifj—fjeiz(?ijm for L] EI,

l—aij

[1—a;;] 1—a;—k
k L] i k _ . .
5. kgo(—l) f e, ' “eje; =0fori#j,
- lge

l—dij

-l_a"- 1— i'_k . .
6. > (-F| YU TR =0fori# ).
k=0 L k dgsi

As g — 1, notice that U,(g) — U(g).

Example 3.1.1. [25] Letg=s!(2,C). Then the quantum group U,(s1(2,C))is the associative algebra
generated by {e, f, "} satisfying the following relations:

1. g"eq™" = qg?e,

2. q"fq"=q7f,
h_ —h
3.ef—fe=——m—.
q—q7!
As with U(g), the quantum group U, (g) has the following triangular decomposition [6]:

U, (9) = Uy(g)* ® Uy(9)° ® Uylg) ™,

18
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where U, (g)* (respectively, U, (g)~ and Uq(g)o) is the subalgebra generated by the elements e; (re-
spectively, f; and g" for h € PY).

Now let V9 be a U;(g)-module. The following definitions are recalled from [6]. For any u € P, the
u-weight space is
Vi={ve Vg"v=g"My forall hePV.

If V,f’ #0, then u is called a weight, and all vectors v € V,f’ are weight vectors of weight u. The weight
multiplicity of u is defined as the dimension of Vlf. If a U,(g)-module V9 admits a weight space

va :@VMII,

uepP

decomposition

then V7 is a weight module. And V1Y is a highest weight module with highest weight A € P if there
exists 0 # v; € V4 such that

e;v;=0foralliel,
q" v, =q" My, forall he P,

Vi = Uq(g) Uy.
As with U(g), we can define the Verma module associated with U, (g) by
M(A)=U,(9)/T(2),

where A € P is fixed and J9(4) is the left ideal of U, (g) generated by e; and qg"—q*M1,fori=1,...,n
and h € PV [6]. The Verma module M9(A) is a U,(g)-module if we use left multiplication. By [6],
M49(A)is a highest weight module with highest weight A and highest weight vector v, =1+ J9(A),
and M 7(A) has a unique maximal submodule, denoted N9(A). The module V9(A)=M9(A)/N9(A)
is the irreducible highest weight module with highest weight A [6]. V9(A) is integrableif all e; and
f; are locally nilpotent on V9. We also recall the definition of the category O4, which consists of
weight modules V7 with finite-dimensional weight spaces such that

wt(V9) € D(A)UD(Ay)U---UD(A,),

where wt(V 7) is the set of weights of V7, s < 0o, and D(A)={u € P|u < A} is the A-cone [6]. If we
restrict category / to integrable U, (g)-modules, then we have the category /?n ;» in which all modules

are completely reducible and have weight space decompositions.
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Proposition 3.1.2. [6] Let V9(A) be the irreducible highest weight U,(g)-module with highest weight

A€ P. Then V4(A) is in category Omt Namely, V9(A) is integrable if and only if A € P™.

3.2 Crystal Base Theory

We recall necessary definitions and properties of crystal base theory from [6]. We begin by recalling

the definitions of Kashiwara operators upon which we will rely heavily.

Lemma3.2.1. [6]Let V9= @ V be a U;(g)-module in the category (’)mt and let A be a weight of
AepP
V4 such that Vf #0. Foreach i € I, every weight vector v € qu may be written in the form

v:v0+fl-v1+---+fi(")

k
where n € Zxg, vy € V;\ ka1 kere;, and f [I]:] Each vy in the above expression is uniquely
7!

determined by v, and vy # 0 only if A(h;)+ k > 0.

We can now define the Kashiwara operators &;, f;: V9 — V4, for i € I, which are endomorphisms
on V4 such that for v e V9,

n n
- k—1 = k+1
év= E fl.( )vk and fiv= E fl.( Dy
k=1 k=1

q 5 q F q
Note that for v € V), &;v € Vita: and five Ve, Let

_ { 8(q)

h(q)‘ (q), h(q) € Clq], h(0) #0}

which is a principal ideal domain with C(q) as its field of quotients. And let V9 € O?m. A free
A-submodule £ of VY is a crystal lattice if

1. £ generates V7 as a vector space over C(g), or equivalently, VJ’ =C(gq)®x L, for each u €
wt(V9),

2. L=EPL;, where £; =LV, forall A€ P,
AP

3. L L, fiLcLforaliel.

Let J = (g) be the unique maximal ideal of A. Then there exists an isomorphism of fields A/J — C
given by f(q)+J — f(0). Hence, C®, L= L/qL. Since the operators &; and f; preserve the lattice
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L, we can also define the Kashiwara operators &; and f; on £/qL [6].

Recall from [6] that a crystal base for V9 is a pair (£, B) such that
1. Lisa crystal lattice of V¥,
2. BisaC-basisof L/qL=C®, L,

3. B= |_| B, where B, =BnN(L,/qL;),
AeP

4. ;BcBU{0}, iBcBuU{o}foralliel,
5. forany b, b’ € Band i €I, we have f;b = b’ ifand only if b = &;b’.

Each crystal base (£, B) for V7 € O7

ine Das an associated crystal graph, which is a directed graph.

The vertex set consists of all elements of B, and the edge set consists of i-colored arrows. Two nodes
b, b’ € B are joined by an i-colored arrow, b — b’, if and only if f;b = b for i € I. We denote the
crystal graph of V9 by B. We define the maps ¢;, ¢; : B— Z fori €I by

ei(b)=max{k >0/¢;*b e B},
pi(b)=max{k>0f;"b e B}.
Hence, ¢; denotes the number of i-colored arrows coming into the vertex b, and ¢; denotes the

number of i-colored arrows coming out of the vertex b. Therefore, ¢;(b)+ €;(b) is the length of the
i-string through b and ¢;(b)—¢€;(b) = A(h;) [6].

Theorem 3.2.2. (cf. [6]) Let A€ P" be adominant integral weight, and let V() be the irreducible
highest weight U, (g)-module with highest weight A and highest weight vector v,. Let

LO= D AffyFovn

r>0,iel

and
B(A)= {filﬂz f;r v+qL(A)e E(A)/qﬁ()t)| r>0,i; € I} \{0}.

Then the pair (L(A), B(A)) is a crystal base of V9(A).

We have the following result for crystal bases:
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Theorem 3.2.3. [6] Let qu be a U,(g)-module in the category (’)?n »and let(L ;,B;) be a crystal base
oijq,forj =1,2. Set L=L,®4 Ly and B=1B; xB,. Then (L, B) is a crystal base ofqu ®c(q) qu where

the Kashiwara operators &; and f; on B are defined as follows:

éiby® by, ifpi(b)=e;(b),
by®eé;b,, ifpi(b)<ei(b),

éi(b;® by)=

fibi® by, ifgi(by)>&;(by),

i eny)={"" "
by ® fiby, ifpi(by) <e&;(b,).

Hence, we have the following:

wt(bl ® bz) = wt(b1)+ wt(bz),
¢i(by ® by) = max (¢;(by), &;(b2) — (h;, wt (by))),
@i(br ® by) = max (¢;(b2), ¢i(b1) + (h;, wt (b2))).

Note that b; ® 0=0® b, =0, and that we write b, ® b, instead of (b,, b,) € B x ;. Also, we denote the
crystal graph ofqu ® qu as B, ® B,.

Let A= (a;;) be an n x n GCM with Cartan datum (A,II,IIV, P, P¥). Define the maps wt: B — P,
&, f;i: B— BU{0},and ¢;,, : B— ZU{—o0}, for i € I, a finite index set, such that the following

conditions hold:
1. i(b)=¢€(b)+ (h;,wt(b))foralliel,
2. wt(é;b)=wt(b)+a;ifé;beB,
3. wt(fib)=wt(b)—aq;if ibeB,
4. gi(e;b)=¢;(b)—1, pi(e;b)=y;(b)+1ife;b b,
5. ei(fib)=e(b)+1, pi(fib)=pi(b)~1if fib €5,
6. fib=>b’ifandonlyif b=¢;b’ for b,b’€B,icl,
7. if p;(b)=—oc0 for b € B, then &b = f;b =0.

A set B, along with the above maps and conditions, is called a crystal that is associated with the
Cartan datum and hence, with U,(g) [6]. Recall from [6] that Theorem 3.2.3 also holds for these
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crystals. Now suppose we have two crystals B;, B, associated with the same Cartan datum. A crystal
morphism ¥ : 3, — B, isamap ¥: B, U{0} — B, U{0} such that

1. U(0)=0,

2. if b e By and ¥(b) € B,, then wt (¥(b)) =wt (b), £;(¥(b)) = €;(b), and ¢;(¥(h)) = ¢;(b) for all
iel,

3. if b, b’ € By, ¥(b),¥(b’) € B,, and f;b = b’, then f;¥(b)=W¥(b’) and ¥(b)=&;¥(b’) foralliec .

A crystal morphism ¥ : B; — B, is an isomorphism if it is both one-to-one and onto from B; U{0} to
B, u{0} [6].

3.3 Perfect Crystals

In this section, we introduce the notion of a perfect crystal for a quantum affine algebra. Again, let
A=(a;;)bean (n+1)x(n+1) affine GCM, with indices i, j =0,1,..., n. Let (A,IL 11", P, P¥) be the

Cartan datum for the quantum affine algebra U, (g).

Let U q’(g) be the subalgebra of U, (g) generated by {e;, f;, q*$"i|i € I'}. This subalgebra is also called
the quantum affine algebra[6). Let

PV=ZhyoZh ®---®Zh, and H=CezP".
If we consider a; and A; as linear functionals on b, we can define the classical weights as elements of
P=7ZAy®ZA, ®---®ZA,,.

We call the quintuple (A,I1,11Y, P, PV) a classical Cartan datum. Hence, the quantum affine algebra
U 6; (g) is the quantum group associated with the classical Cartan datum [6]. The crystal associated
with (A, 11,11V, P, PV) is called a classical crystal, or a Ué(g)-crysml [6].

Example 3.3.1. [25] Letg= A(ll) and consider U,(g) and V9 = C(q)vy @ C(q)v,. Then V7 is a
U&; (g)-module where

e1 =0, e v =1,

fll)()=l/1, f1U1=0,
ssA(h _ siA(h _ -1
ql(l)vo_qvo, 5]1(1)1/1—6] v,
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and the affine action is given by:

eV =1, eol/1=0,
Jovo=0, fovr=w,
oMM e | SoA —
CIO(O)VO—CI Vo, GIO(hO)Vl—CIVL

Hence, defining £ = Ay, @ Av; and B = {v,, 11}, we have that (£, B) is a crystal base for V7 as a
UL; (g)-module. The following diagram depicts the crystal graph for V4:

) 1 U

Figure 3.1 Crystal graph for Uﬂ;(g)-module v

Now, let B be a classical crystal. For b € 3, define

e(b)=> ei(b)A; and  p(b)=> @i(bA;.

iel iel

Note that wt (b) = ¢(b)— €(b). For a positive integer £ > 0, set
Br={AeP*|(c,2)=t}.

Definition 3.3.2. [6] For a positive integer £ > 0, we say that a finite classical crystal 5, is a perfect

crystal of level ¢ if it satisfies the following conditions:

1. There exists a finite-dimensional U L; (g)-module with a crystal basis whose crystal graph is

isomorphic to B;.
2. B, ® B, is connected.

3. There exists a classical weight A, € P such that

wt(B)c)LO+ZZSOai, #B),)=1.
i#0
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4. For any b € B, we have (c, &(b)) > (.
5. Foreach A € P[L, there exist unique vectors b*, by € B such that (b*)= 2 and ¢(b;) = A.

For A € P;", we say that b, is A-minimal if

A=p(b)=> ¢i(byA;.

iel

Example 3.3.3. [6] Letg= A(zl) and let / = 2. Define

B, = {(ml’ my, my) € Zio

Define the following for b € B,:

eo(b) = (my —1,my, my+1), é(b)=(my+1,my,—1,my), &(b)=(m;,my+1,my—1),
B(b):(ml+1’m2’m0_1)’ ﬁ(b):(ml_lvm2+1rm0)’ f;(b):(mlrm2_1!m0+1)r
@o(b) = my, v1(b)=my, wa(b)=my,
g(b)=my, £1(b)=my, £,(b)=my,
and

= (pilb)—e:(b)A;,

i=0

p(b)=>_pi(b)A;,
i=0

By the axioms listed in Definition 3.3.2, B, is a perfect crystal of level 2 for U, (A(zl)), and is depicted
in Figure 3.2. In this figure, the labels on the edges represent the Kashiwara operator action used.

Notice that for A =2A,, the A-minimal element is b,5, = (0,0,2), since ¢(0,0,2)= A.
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Figure 3.2 Perfect crystal of level 2 for U, (A(ZU)

We end this section with a result that is essential for understanding path realization, which we

discuss in the next section.

Theorem 3.3.4. [6] The following map
U:B(A)— B(e(by))® By

given by uy — Uy, ® by, where u,_is the highest weight vector of B(A) and u,y,) is the highest weight
vector of B(e(b,)), is a strict isomorphism of crystals.

3.4 Path Realizations

At the end of the previous section, we gave Theorem 3.3.4. This theorem contributed to the develop-

ment of path realizations of crystal graphs, which we recall from [6].

Let

A=A, A1 =€(by,),

by = by, bii1=b;,,,-
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These definitions give us a crystal isomorphism
W B(A))— B(Aj1)® By,

which is defined by u AU, ®© b;. We can then construct a sequence of crystal isomorphisms

j41
B(2) = B(A2)® By — B(A3)® By @ By — -+ = B(A1) @ BYF — -+,
which is defined by
Up— Uy, ®by—u) ®b,®by—-+—uy ®b® - ®b,®b;—+-.

Now we have two infinite sequences, which we denote by

W) = (Ak)Zil =(cvos Akt Akr oo A2y Ay) e(p;)oo’

Pr=(b)2 = @b 1 @b ®--- @b, ® b € B5.
Hence, for each k > 1, we have the crystal isomorphism
Wy s BA) - B(Ag,) ® B

defined by
Uy — u;tk+l®bk®---®b2®b1.

Because P[ and in B, each have a finite number of elements, there exist N > 0 and k > 1 such that
Aren = Ak, and hence, by, = by since g is bijective. Since ¢ is also bijective, we have the following

equations:

bi=¢ "' (AM)=¢ " (An+1)= by,
Ar=€(by)=€(bns1)=An+2,
by =9 (A2)= ¢ (An+2) = by+2,

Aj = E(bj—l) = S(bN+j—1)= AN-&—jy

bj= So_l(lj): 90_1(}»N+j)= by+j
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An = &(by—1) = &(bon—1) = Aon,

by =9 (An)= ¢ (Aan) = ban.

Thus, w; and p, are periodic sequences, each with period N > 0. We call p; = (b)32, =+ ® b ®
by ®---® b, ® b, the ground-state path of weight A, and p = (p;);2; =" P11 ®Pr ® - ®P, ®P; a
A-path, where p,. € By such that p, = by for all k> 1. We use P(A) to denote the set of all A-paths in
B, [6].

Example 3.4.1. We refer back to Example 3.3.3, in which g = A(;), level £ =2, and A = 2A,. We
construct the ground-state path for this example- see Figure 3.2 for a visual of the perfect crystal B,.
From Example 3.3.3, we know that the A-minimal element is (0, 0, 2); hence, we set b,, = b; =(0,0,2)
and A, = 2A( = A. We compute £(b;) = 2A,, and set A, = 2A, and b,, = (0, 2,0). Next we compute
&(b,)=2A,, and set A3 =2A; and b3 =(2,0,0). If we compute £(bs), we obtain 2A, which is equiva-
lent to A;.

Hence, the ground-state path is

P,=..9D030b0, 80, ®b3® b, ® by
=...9(2,0,0)®(0,2,0)®(0,0,2)®(2,0,0)®(0,2,0)®(0,0,2).

An example of a A-path is
p=...8(2,0,0©(0,2,0)®(0,0,2)®(2,0,0)®(1,1,0)®(0,1,1).

Theorem 3.4.2. [6] Letp=(p;);2, beaA-path in By and let N > 0 be the smallest positive integer

such that p,. = by forallk> N. Foreach i € I, define

N-1

wip=IAy+ > wip;,
k=1

eip=--®py, ®&(py®--®p)),
fip=-®py. ®filpy®---®p)
ei(p) = max (e;(p')— pi(by),0),
0:i(p)= 9i(p)+ max (p;(by)—&(p),0),

wherep = py_; ® -+ ® p; ® p; and wt denotes the classical weights. Then the maps wt: P(A) — P,
&, fi 1 P(A)—P(A)U{0}, and g;, p; : P(A) — Z define a Ué(g)-crysml structure on P(A).
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Theorem 3.4.3. [14] There exists an isomorphism of U(; (g)-crystals
U:B(A)—PA)

given by

7%} '—)p}L

The previous theorem defines the path realization of the classical crystal B(A). Now we are ready to

provide the reader with the definitions of Demazure modules and crystals.
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Chapter

4

Demazure Modules and Crystals

A Demazure module is a certain finite-dimensional subspace of an integrable module for a Kac-
Moody algebra parameterized by elements in the Weyl group and dominant integral weights. Kashi-
wara showed that the crystal for a Demazure module is a subset of the crystal for the corresponding
integrable highest weight module. Subsequently, path realizations of these Demazure crystals were
given in [21]. They also showed that these path realizations have tensor product-like structures. We
focus on Demazure crystals for U, (A(nl)). We recall definitions and main results from ([20], [21], [14]).

4.1 Demazure Modules and Crystals

Let V9(A) be the irreducible highest weight U, (g)-module in Ofm. Then V49(A) has highest weight A
and highest weight vector u;, [6]. We recall that dimV 9(1), =dimV (1), = 1 for any w € W, where
W is the Weyl group [12]. We call the basis vector u,,; of V9(A),,, the extremal vector.

Definition 4.1.1. Fix w € W and A€ P*. Then V(1) = Uq(g)Jr U, is called the Demazure module

associated with w.

Demazure modules are finite-dimensional subspaces of V7(A) such that

L vIi=J v,
wew
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2. For w, w’ € W with w < w’ (the Bruhat order), V,,(1) c V,,,(A).

Now let B(A) and £(A) be the crystal and crystal lattice for V49(A), respectively. Kashiwara [18] showed
that for each w € W, there exists a subset B,,(A) of B(A) such that

v, ()N L)
—wls b.
V()N GLR) b;@ R

The subset B,, (1) of B(A) defined above is the crystal for the Demazure module V,,(A4), and it is called
the Demazure crystal [18]. Kashiwara also proved that the Demazure crystal B,,(A) has the following
recursive property:

If r;w > w, then By, ,(A) = f" B,(M\{0}. 4.1)

n>0
Let B, be a perfect crystal of level £ for U,(g), where A(c)={ > 1. Recall that by Theorem 3.3.4, there
exists an isomorphism between the crystal B(A) and the set of A-paths P ="P(A, B;), in which the
highest weight vector u, € B(A) identifies with the ground-state path p, =---® b3 ® b, ® b;. The path

realizations for the Demazure crystals B,,(A) are defined in the following way [21]:

First, choose d,Kk € Z,. For a sequence of elements {i;j)lj >1,1<a<d}c{0,1,...,n}, define the
subsets {B |] >1,0<a <d} asfollows:

={b;}, = 7B\,

k>0

Now define B,(lj+l'j) forj>1,0<a<d,by

(j+1)) (j+1) () j+1,7) — Flk +1
B()] J — B()] ®Bd] , Bc(l]-'_l J) — f.j ] J) \{O}

Continue in this way, until we define:

L.
]+K 1., Uf et J+K J)\{O}
k>0
Let
w®=1, w®) = ), (k=1

define a sequence of Weyl group elements {w®|w¥) € W, k > 0}, where j and a are fixed by
k=(j—1)d+a,for j>1,1<a <d. Also, define the subsets P¥)(2, B;) of P(A, B;), for k >0, by the
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following:

IP(O)(A) Bl) = {pk}r
..e B/ @B e B/ if j <x,

POQ,By) =

@B/ P eB/MeB) T epeli if j>x.

We end this section with a theorem that describes the combinatorial structure of Demazure crystals
Byw(A).

Theorem 4.1.2. [21] Let A € P+ with A(c) =/, and let B, be a perfect crystal of level{ for the quantum
affine algebra U,(g). For fixed d, k € Z, suppose we have a sequence of integers {ié”lj >1,1<a<
d} c{0,1,..., n} satisfying the following conditions:

1. foranyj>1, B(Elj+1<—1,...,j) _ B;j+K_1""’j+l) ® B,

2. forany j=z1landl<a<d,(Aj,h.)<e (D) be B;jjl, and

3. thesequence of elements {w®} ., is an increasing sequence of Weyl group elements with respect

to the Bruhat order.

Then we have that B, (1) = PK)(A, By).

42 A= EA]- Case

In this section, we give explicit descriptions corresponding to Demazure crystals B,,(A) of U, (A(nl)),
for which A =/A ;. For the rest of this thesis, assume that g = A(,}).

First, we define the set

+1
By = {(ml, My,..., My, My) € L

and give the actions of &; and f; as follows:

e(my, my,...,m,, my)=(m;—1,my,...,m,, my+1),

e;(my, my,...,my, mg)=(my,...,m;+1,m; 1 —1,Mj,s,..., My, Ny),

fo(ml,mz,...,mn,mo) (my+1,my,...,m,, my—1),
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filmy,my,....m,, mg)=(my,...,m; =1, m 1 +1,mj,,...,my, Ny),

for 1 <i<n. Forany b € By, if &(b) or fi(b) ¢ B,, e.g. if m; becomes negative, then we understand
it to be 0. We also define

for0<i<n,wheren+1=0.

By [15], 5, is a perfect crystal of level ¢ for Uq(A(nl)). We note that B;, with ¢;, ¢;, &, f;, and wt(b)
defined as above for 1 < i < n, is the crystal for the irreducible s/(n + 1)-module V(¢A;). By [7], we

then have
Ha>0(€A1 +0,a)

Ha>0(5’a)

|By| =

Note that

5=%Za

a>0

Z% Z (ei—¢;)

1<i<j<n+1
n+1

= % ’;(n—z(m— 1)e,,.

Hence, the numerator

n+1
l_[(EAl +0,0)= l_[ (fel + % Z(n—z(m—l))sm,si—ej)
m=1

a>0 1<i<j<n+l1

n+1

= ]_I (% (2£+n)31+Z(n—2(m—1))sml,£1—£j)
2<j<n+1 m=2
1 n+1

. l_[ (5l(zf-l—n)sl-l—Z(n—z(m—l))sm],ei—sj)
2<i<j<n+1 m=2

- T1 %(2£+n—(n—2(]'—1))) |1 %(n—z(i—l)—(n—z(f—”))»

2<j<n+1 2<i<j<n+1
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and the denominator

n+l
[oa= T1 (33m-2m-venee)
m=1

a>0 1<i<j<n+l1
1 . .
— 1‘[ (E[n—Z(z—l)—(n—Z(]—l))])
1<i<j<n+l1
= ]I u-»
1<i<j<n+1

Thus,

3y = e DUk +2)- (k4 m(1)' )2 (n =2 (n—1) (n +£)
[ - - .

() 1(@)72 - (n—2P(n—17(n)! ¢

Now we construct the sequence of integers
{iVj=1,1<a<d}c{0,1,...,n}.

In this thesis, we study A(nl)-perfect crystals B, = B!, So, as in [20], set d =n, r =a—1—ng, and
g=|%2| where 1 <a < n. Hence, g =0 for all a and n. Then we define

iV=1—j—g+r=1—j+(a—1)=a—j.

Thus, we have the sequence of integers {iéj =a— jlj=1,1<a < n}. Using this sequence of integers,
we can define
w®=1 and w® =7 wkD,

la

where j and a are fixedby k=(j—1)d+a=(j—1)n+a.

We define

w(") =r.onr.q ---r.anr.u
157 ln—l 12 l1

=TIy—1Tp—2""T1To

(2n) _

w I‘l(z) rl(zll rl.éz) rlgz) I’lu) I’lsll I’l(l) rl(l)
=(rp—z101p)(rp—y -1 10),

w =(rwrw - ror r.or r.or rar rar
= tff) i;le i;L) ;0 i@ if,) l£2) i@ i l(lll iél) lil)
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=(rp—r " Tn—r43Tn—r42) " (Fp—p =+ TT) (Fp—1 -+ 11 1)
We denote w(L,0)= wL™). Note that w(L,0) has length Ln.

Remark 1. Each sequence of simple reflections r; ---r;,r;, for i; € {0,1,..., n}, corresponds to a
sequence of Kashiwara operators f,-s e ﬁz fil, in which each Kashiwara operator is applied as many

times as possible to elements in B;.

We have the automorphism o such that o(r;) = r;4; for 0 < i < n, where r; is a simple reflection in
W and o(r,,) = r,. We define the notation

w(L, j) =0 (W)= (rjsn_r - Tjsamr Tjerer) - (Fjen—z - 1T jan) (T Tjaa ).

Let A=/(A;. Then the A-minimal element is (0,...,0,¢,0,...,0), where the £ is in the (j)!" coordinate,
and the ground-state path is:

p}L:®b1®bn+1®bn®®b2®b1
=...9(0,...,0,4,0,...,0)®...®(0,...,£,0)02(0,...,0,{)®(£,0,...,0)R...
..®(0,...,¢,0,0,...,0)%(0,...,0,¢,0,...,0),

where the ¢ in the rightmost component of the tensor product is in the (j)*" component, and as we
move left along the tensor product, the ¢ shifts left in the (n + 1)-tuple.

We wish to construct the Demazure crystals Bz, j(¢A ;). Recall Equation 4.1, which gives a recur-
sive property of these Demazure crystals. In order to use this definition, we need to define the
(i)-signature of a path [21].

Let p € P(A, B) correspond to u;, ® p(k)®---® p(1). For each p(r), we associate the following:

E(t) = (E(lt)) e(zt)y ceey e(nt’L)) )
m=¢;(p(t))+¢;(p(t)),

o_ ] if1<a<e(p(r))
ea

+, ifei(p(t))<a<m.

For the highest weight vector u;_ , we have elk+1) = (4,...,+4), where there are (A4, ;) pluses. Then

we append the €/s, forming € = (e*1), e®), ... eV)). We call this the (i)-signature of p truncated
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at the k' position. We can also form a sequence of signatures, € =19, 11, ..., Jmax Where 1,1 is

obtained from 1), by removing the leftmost adjacent (+,—) pair of n, and 1,4y is of the form:

Nmax = (= --,—+ .0, +)

for n_ > 0 minuses and 7, > 0 pluses. We call ), the reduced (i)-signature and denote it by €.

We can use these (i)-signatures to determine on which component of the path p &; or f; acts. If
n_ =0 (respectively, n, = 0), then we set & p = 0 (respectively, f; p = 0). Otherwise, take the rightmost
— (respectively, leftmost +) and find the component €() to which it belongs. Then

egp=--0¢p(t)®---ep2)ep(l),

or respectively,
fip=--@fip(t)e--®p)ep(l).

Note that if k is large enough, then ¢t doesn’t depend on the choice of k.

Example 4.2.1. Referring back to Example 3.4.1, we have g = A(zl), level ¢ =2, and A = 2Ay. Our
example of a A-path was

p=..-9(2,0,0)®(0,2,0)®(0,0,2)®(2,0,0)®(1,1,0)®(0,1,1).

The (2)-signature for the above A-pathis(...,e,+,,—,,+,—+), where we place o’s as placeholders
for components in the tensor product that don’t have any +’s or —’s in the (2)-signature. The
corresponding reduced (2)-signature is (+), since the sequence (e,+,,—,) is repeated infinitely many
times and all (+,—) pairs cancel. The (0)-signature for the above A-path is (...,—,®,+5,—,—,+),

which reduces to (—,+), and the (1)-signature is (..., +,,—>,®,+,,—+,—), which reduces to (+, e, ).

In general, for b =(my, my, ..., m,, my) € 3, the (i)-signature is (_mi+1+mi)-

We write the ground-state path as

u)L:...®bn+2®bn+1®...®b3®b2®b1

:...®b(gA]. ®b€/\j+1 ®"'®b£/\j+n—1 ®b€Aj+n®b£Aj’
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and we denote

L
Uen; ®B€ = Ugp; ®B;®...08;
————
L

={wn, , ®by, ®by,®..0by, | by, B for1<r<L}.

Remark 2. The (i)-signature for any path in the set 1, Ay ® b,® B;_l is of the form

(_f’.)*,u,*lr---,*L—l)y lfl:]_L_l,
(+or ko k1, k), ifi=j—L,
(ks k1o k1) ifi#j—L—1,j—L,

where s, is a sequence of the form (—,,+;,), a;, s; € Z, for each 1 <t < L —1. Hence, the (L +1)**

component from the right for any path in the set uy A ® b,® BEL_I is only affected if i = j — L.
Lemma 4.2.2. LetA=(A;. Then B,z j(A)C Urn;_, ® BZL.

Proof. Let L =1. Then we have w(1, j)=(rjyy—1--Tj417;)- By Remark 2, the second component
from the right in 1, A; can only be affected if r;_, is in the sequence w(1, j). Hence, the only compo-
nent affected in uy A; 1s the first component from the right. Thus, B, j(€A;) € uy Ay © By.

Now, suppose By, ;—1,j)((Aj) C Uin; g ® B~ We want to prove the claim for L. Note that

w(L, j)=(jsn—r " Tjso—rTjr1-L) " (Fjan—2 T jen)Tjan—1"Tj417})

=(Fjrn—r Tjr2-LTjr1—-L)W(L—1, j).

®B/ . By definition, Bz, j)(¢A;)
is formed by applying each f;, for j+2—L < t < j+n— L, in the given order as many times as

By our induction hypothesis, we know that B,,(; 1, (€A ;) C ug Aira

possible to every path in B (.—1,j)((A ). By Remark 2, we need to apply fj_ 1 to paths in the

T—1Tjp1—L W

set ugn;_, ® by ® B[L_l in order to affect the (L + 1)*’ component from the right. But the Weyl

j-L+1
group sequence w(L, j) does not contain the simple reflection r;_; in the last n simple reflections.
Hence, only the first L components in the tensor product u, A ® by Ajrn ® BzL_l can be affected.

Thus, Bw(L,j)(kAj) C UkA; ® BL. O

We now give explicit descriptions for the Demazure crystals Bz, j)(¢A ).
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Theorem 4.2.3. We have the following:

Bw(L,j+1)(€Aj) = UeAj 4 ® Bl{‘_l’
Bw(L,j-!—s)(EAj) = {quj—L ® b,us—l ® B;_l} ’

B, j(UA))= gy, , ® BE,
where

b

e :(ml,mz,...,mj+s_L,0,...,0, mj+1_L,mj+2_L,...,mn,mO)EBg, §=2,3,...,n.

Proof. Let L =1. Then we have the sequence of Weyl group elements w(1, j)=rjyp—1 - Tj417j- By
definition and by Remark 2, the only Kashiwara operator that will affect u, A; s f] Hence, we apply

fj exactly (mj,,) times to v, A; tO produce the paths 1, A ® by,, where
b,ul :(0,...,0, m]', m]'+1,0,...,0)€Bg.

Then these paths have (j + 1)-signature (+mj+1). Hence, we can apply f}-ﬂ a total of (m,,) times to
these new paths to produce the following paths u,,_, ® by, where
b :(0,...,0, mj,mj+1,mj+2,0,...,0)€l3@.

U2

The (j + 2)-signature for these paths is (+m,-+2), and hence, we can apply f}-+3 a sufficient number of
times to produce the paths Upp,;_, ® by,, where b, =(0,...,0,m;,mj,y,Mj3,Mj,3,0,...,0) € By. If

we continue this pattern, we form the paths u, A © by, where
by, =(my,...,mj,0,...,0,mj;,mjy,..., my,, my) € By,
with (j + s)-signature (+mj+3), fors=1,2,...,n—1.
If s = n—1, then we can apply fj+n_1 a total of (m, ,) times to produce the paths u, Ajy ® by, where
by, :(ml,...,mj+n_1,mj+n,mj,...,mo) ebB,.

Note that the set
{er,, @by, } = win, , ® By =By, j(LA,))
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by construction. Also, notice that

w(,j+1)= (rj+n Fitn—1"""Tjt2 r]-+1), which doesn’t contain r;, and
w(l, j+ s)= (rj+s+n—1 o Tigs4 rj+s)

= (rj+s+n—1 ol Tis+ rj+s)'
Since only r; affects uy Ajy WE have

By, j+1)(lA ;) = ugn,;,
BW(I,]+S)(€A]) = B(rj+x+n71...rj+1 r])(eA])

= {u“\j—l ® b.usq } ’

where b, =(my,...,Mj151,0,...,0,mj;,mjq,...,m,, my) €Byand s =2,..., n.
Now, let L =2. Then we have the sequence of Weyl group elements

w2, j)=(Fjen—2 TiTjen) (Fjeno -+ Tjaa 1)

:(rj+n—2"’ rjrj+n) w(l, j).

By Lemma 4.2.2, we know that By, ((A;) € uy,_, ® B;. We want to show that u,, ® 5] C
By 2, /(LA ). Note that by applying the Kashiwara operators corresponding to the Weyl group se-
quence w(l, j), we obtain all paths in the set 1, , ® 5,. Suppose we want to obtain all paths of the
form

Urn;_, ® by, ® By,

where Iay1 =(0,...,0, m;_y,m;,0,.. .,0) € By. Note that the (j —1)-signature for paths of the form
up,;_,®b,, where b, € By, is of the form (+¢, %, ). Suppose %; contains no more than ({—m;) negatives.
Then we can apply f;_; exactly m; times to form the paths 1, A, ® b,, ® b,. 1f %, contains more
than ({ —m;) negatives, then we can form all other paths of the form u,, , ® by, ® b, by letting f;_,

act a total of (m; + v; — (£ —m;)) times on the paths
Uen;, ®(vl,..., Viqa+vi—(l—mj)l—m;,vjy,..., Uy, UO),

which have (j —1)-signatures (+mj , +Vj_l+,,j_(g_mj)). By only using the Weyl reflections r;_, w(1, j),
we have produced all paths of the form 1, Ao ® by, ®By.
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Now suppose we want to obtain all paths of the form
Upn; ® bH2 ® By,

where by, =(0,...,0,m;_y,mj,m;;,0,...,0) € B;. Note that the (j)-signature for paths Ugh;_, ® b,, ®
b,, where b, € 3, is of the form (+m]_ ) *1). Suppose x; contains no more than (m;—mj,) negatives.
Then we can apply f; exactly m;,, times to form the paths 1, Ao ® b, ® b,. 1f %, contains more
than (m; —m;,,) negatives, then we can construct all other paths of the form A ® b,, ® b, by

letting f] act on the paths
Un,_, ® by, ®(vl,..., Vit Vi —(mj—mjy),mj—mjy,Vji,..., Up, vo),

which have (j)-signatures (+mj+1,+,,j+l,j+1_(mj_mj+l)). Hence, applying f; a total number of

(mj+1 +vjp—(mj— ij)) times will produce the desired paths.

Suppose we now have paths of the form u, Ao ® b, ® By, where

b

s =(ml,...,mj_1+s,0,...,0,mjm,...,mn,mO)EBg,

and that we constructed these paths using the Weyl reflections (rj_2+ so T j—l) w(l, j). We want to
construct all paths of the form

Un;, ® b.us+1

® By,

where b, = = (ml,...,ij,O,...,O, M1y, My, mo) € By. Note that the (j — 1 + s)-signature for

Us+1
paths Urn; , ® b, ® b,, where b, € By, is of the form (+mj71+x’ *1). Suppose %; has no more than
(mj_i+s—mj, ) negatives. Then we can apply f]~_1+s exactly m, ; times to form the paths v, A ®
by,,, ® b,. If x; contains more than (m;_,,;—mj, ;) negatives, then we can construct these paths

by letting fj—1+s act on the paths
uEAj_Z ® bus ®(l)1, <o Vjlgs + Vjts _(mj—1+s - mj+s)r Mj_14s—Mjis Vjtst1s--+r Uny VO):

which have (j—1+s)-signatures (+m,-+5 ) +Uj+s_(mj—1+s_mj+s))’ atotalnumber of (m, s+ v s—(mj_14—

mi,)) times.

Note that using the Weyl reflections w(2, j) will thus produce all paths of the form u, Ajn ® b,, ® By,
where

b, —(ml,...,mj_g,mj_l,...,mn,mo)eBg,

n
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and hence B, (€A ;) = u, Ajp ® Bl?. We also have that

Bu(z,j+1)(A ) = Buq, jyu, j+nEA ;)

= By, j)(lA;)

=un;_, ® By,
Bue, j+ A= B roryiaryeen)wr, s ()
(A;)

(Fjssan—zrj rjfl)w(l)j)(

_ { win, , ® by, ®b,| by < Bg},

where bus_1 =(m1,...,mj+s_2,0,...,0, mj_l,mj,...,mn,mo) and s =2,3,...,n.

Now suppose the claim holds for L —1. Mainly, suppose that By, ;1 j(¢A;) = Urhj, , ® Bfl. We
want to prove the the L case. The sequence of Weyl group elements

w(L, j)=(jsn-r - Tjwo—rTjr1-L) - (Fjan—z = T Tjsn) (Fjano1 - Tjs175)

=(rjen—r - Tjso—r Tjs—r) w(L—1, j).

By Lemma 4.2.2, we know that By, j(¢A;) C Upp,_, ® B‘ZL. We want to show that Upp,_, ® BKL C
By 1, j(lA}). Note that by applying the Kashiwara operators corresponding to the Weyl group
sequence w(L—1, j), we obtain all paths in the set 1, A ® BgL_l. Suppose we want to obtain all
paths of the form

gy, , ® by, ® B,

where b, = (0, e 0,mjp, My g, 0,.. .,0) € B,. Note that the (j + 1 — L)-signature for paths of
the form
Uihj, ® bp1 ® bpz ®:® bp

L-1’

where by, = (p,-,l, Pi2s- --,Pi,n»Pi,o) € By, is of the form (+,,%,%3,...,%;—1). Problems arise when
there are negatives in the rightmost (L —1) components of this signature that cancel too many pluses

in the (L)' component from the right, leaving fewer than m j+2—1 pluses.

Suppose a; is the smallest positive integer such that

ay ay
E Pi,j+o—-1 > Z Pi-1,j+1-L»
i=1 i=1
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where we define py ;11— =0. In other words, Iapa1 is the first b, component of the tensor product
from the left in which the total number of negatives in the (j + 1 — L)-signature is more than the

total number of positives. Let

a) a)
= E Pi,j+2—L — E Pi—1,j+1-L
i=1 i=1

represent how many more negatives there are than positives in these components of the (j +1—L)-

signature. If { — ¢, < mj,,_p, let k; = a,. However, if { — ¢, > mj,,_p, then let a, be the smallest

a ap
Z Pi,j+o—1 > z Pi—1,j+1-L»

positive integer such that

i=a;+1 i=a;+1
and define
a az
G = E Pi,jyo—L— E Pi-1,j+1-L-
i:d1+1 i:a1+1

If £ —cy—cy < mjyp g, then let ky = a,. Otherwise, continue this process until we have a,, the

smallest positive integer such that

a, a,
Z Pi,j+2-L > Z Pi-1,j+1-L»

i:a[,ﬁ—l i:at,ﬁ—l

and define

a; a;
Cr = E Pi,jyo—L— E Pi-1,j+1-L»

l.:(l[,1+1 i:ﬂ[,1+1
where /¢ —Z;zl ¢s <mjy 1. Ifno such a, exists, then there are no problem spots. Let k; = a,.

Case 4.2.1. Suppose that

4 Z

Z Pij+o-L < Z Pi-1,j+1-L 4.2)

i:k1+1 i:k1+1

t
forallz=4k;+1,...,L—1. Letd; = (Z cs)—(é—mj+2_L). Define

s=1
bpzl = (pkl,l» Pry,20 -+ Piy,j—L> Phy, j+1-L + dy, Py, j+2—L — dy, Pky,j+3—Lr+++» Pky,n> Pkl,o) €.

The path
Ugn; 1 ®bp, @+ Bpy 8Dy, @ @by, |

Ply+1
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has (j + 1— L)-signature
(+€» (_c1+cz+~--+c[,1+c,—d1 +pk1,j+1,L+d1) ) (*)) )
which reduces to
(T ) N ) ) N oA N ) §
By applying fjH,L to these paths (m;,,_; + d;) times, we produce the paths
tgp, , ®(0,...,0,mj 11, Mjip1,0,...,0)@ by, ®-- @by,

which were the desired paths.

Case 4.2.2. Now suppose that Equation 4.2 were not true. Then, suppose k; is the smallest positive

integer such that

k'z k2
Z Pi,j+2—L > Z Pi-1,j+1-L-

i=k;+1 i=k;+1
If
4 Z
Z Pi,j+2—L < Z Pi-1,j+1-L
l:k2+1 i:k2+1

forallz=4k;+1,...,L—1, then we define

ko ko—1
dy = Z Pi,j+2—L — Z Pi-1,j+1-L € Zxo.
i:k1+1 i:k1+1

Also, define the element
bpzz = (sz,l» Piyy2s -+ Phy, j—L> Phy, j+1-L T dy, Piy,j+2—L — dy, Pky,j+3—Lr+++» Ply,n> sz,o) €.
Since the path

Uen; ;. ®bp, ®---® bpil ®Db

Ply+1 ®® bPL—l

has (j — L+ 1)-signature

(+mj+2—L ’ (+Pk1 Jj+1-Ltd ), (_sz,jﬂfL ' ® +Pk2,j+H—dz ), (_sz,ﬁH—dz +pk2,j+1—L+d2 ), (*))

43



4.2. A=LA; Case Chapter 4. Demazure Modules and Crystals

= (o (Fa ) Grpyy o1 prar) (36,

we can apply fj+1—L to this path (m;,,_; + d, + d,) times to produce the desired path
Un; , ®by, ®bp ®bp,®-+®by, .

Note that the —py, ;11— is part of the signature because py, ;.1 is included in the definition of dy;
so, we know those pluses must cancel with minuses. Also, note that with the original paths, there
should be an extra d, negatives; hence the iy 21— would have canceled with most of Phy 1’
leaving behind d, negatives.

If k, is not the last time there are more negatives than positives, then we continue with this process.

Suppose we have a solution for the k,, case, i.e. let

bpzs = (pks,lr [ERS) pks,j—Lr pks,j+1—L + ds’ pks,j+2—L - ds’ pks,j+3—L! [ERN) pks,n’ ka,O) ’

r
d, Zch—(e—mj+2—L),

s=1
ks ks—1
ds = Z Pi,j+2-L— Z Pi-1,j+1-L € Lo,
l'=kS,1+1 l.=k571+1
fors=1,2,..., p. Then applying fj+1—L the correct number of times to the path Uinj,,, ® b[’)l ®®

bp/L N where

’/ bpt’ ift:ks,S:Lz,___,p,

Pt b

0,7 else,

produces the desired path Ugp; , ® b, ®b, ®...9b, .

We want to show this is true for the k., case. Define d,,,, in the same way. Then the path v, Ay ©
/
bp1 ®---® bPi_l’ where
b

/. P
bp[—
bp[, else,

T ift=k;, s=1,2,...,p+1,

has (j +1— L)-signature

(+le+2—L ’ (+d1+'"+dp—1+l9kp,j+1—L+dp ), (_pkp,j+l—L ’ +I7kp+1 J+2—L—Adpn1 ), (_Pkp+] J+2—L—Ap11 +Pkp+1 J-Ltdpn ), (*))
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= (+mj+2_u (+d1+~-~+d,,)r (+pkp+lyj+1_L+d,,+l)» (*)) .

Hence, we can apply f]-+1_L to this path (m;,,_; +d; +---+d,,) times to obtain the desired path
U, , ®by, ®bp ®®Dby, .

Now, suppose we have all paths of the form 1, A ® b, ® BgL_l, where

b

s =(ml,...,ijH_L,O,...,O,ij_L,...,mn,mo)EBg,

and that we constructed these paths using the Weyl reflections (rj+ s=L " Tjso—LTjt1— L) w(L—1,7j).
We want to construct all paths of the form

-1
®B, 7,

Uen;g, ® blls+1

where b, | =(m1,...,m]-+s+2_L,0,...,0, M1y My, mo)eBg.
The paths
U, ® by, ®by ®---®by,

where b, € By, have (j + s + 1 — L)-signatures of the form ( cotm kDK *L_l). So, again,
problems arise when there are negatives in the last (L — 1) components of the signature that cancel
with the (m4,4,—) pluses in the L’ " component from the right. Using the same approach as when

forming the paths 1, A ® b, ®b, ®---®b,, , we can obtain the desired paths. So, if we define a;,

-1’

Ct» dy, k¢, and b+ as before, applying fj+s+1_ . a certain number of times to the path

uy,_, ® by, ®b, ®--®b)

Pr-1’
where
o= bpf’ iftr=k;, s=1,2,...,p,
Pr b 1
o, €lse,

will produce the desired paths.

Now, suppose that s = n. In other words, using the Weyl reflections (14,1 - Tjyo—p Tjy1-)W(L—

1, j), we constructed all paths of the form

Ugn,, ® by, ® by ®--® b,

-1’
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where b, =(my,...,m,,my), b, €B,. Thus, by definition, we formed all paths in the set Uph,_, ®B£L.

In conclusion, we have the following:

Bu(r, j(tA))= e, , ® B,
Bu(r, j+1)(€Aj) = By, j(tA ;)
=Ugn gy, ®BI !,
B, j+) (A )= Biry, oo wii—1,) (€A )

= { U, ®by,_ ®bp ®...0by, |

by, €Bi},
for s =2,3,..., n, which is what we wanted to show. O

Corollary 4.2.4. We have the following:

1. U Bw(L,s)(EAj) =Ugp; ®B€L

20
2. ﬂ Bw(L,s)(gAj) =Ungy, ® Bl{‘_l.
20

Proof. First, note that w(L,s)=w(L, s+ n+1). Hence,

n

U By r,s)(lA;)= U Byr,5)(tA ),

$>0 s=0

n
ﬂ Biyr,s)(tA;) = m Buy(r,5)(EA ).
>0 s=0

By Theorem 4.2.3, we have that
ngA].H_L ® BeL_l = Bw(L,j+1)(€Aj) C Bw(L,j+2)(£Aj) c---C Bw(L,j)(EAj) = ngAj_L ® BKL (4.3)

The statement of the corollary follows directly from Equation 4.3. O

Example 4.2.5. We explicitly describe the Demazure crystals for U, (A(zl)) for which A =2A,. We
have depicted the perfect crystal 13, in Figure 3.2. Notice that there are

[")-(e)-

elements in B,.
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Let L =1. Then we have the following:

w(1,0)=(rr),
w(1,1)=(ryn),
w(l,2)=(ryr).

(Bw(,0)(2Az)-case): The (0)-signature on uyy, is(...,®,+2,—, ) =(e). Hence, we cannot apply fo to
uyp,- The (1)-signature on uyy, is (...,,+2,—2) = (). So, we cannot apply the f action either. Thus,
Bu,0)2A2) = {ugn, }-

(Bw(,1)(2Az)-case): The f, operator produces no paths. The (2)-signature on Uop, iS(...,®,+2,—,@,+2) =

(+,). Hence, we can apply f, to u, A, twice. We have

fZ(UZAZ) = Ugp, ®f;(0’ 2, 0) = Ugp, ® (0) L, 1)»
FF(uan,) = ugp, ® f2(0,1,1)= uyy, ®(0,0,2).

Thus Bw(l,l)(ZAZ) = {u2A2r Ugp, ® (0’ 1, 1)) Ugp, ® (O) 0)2)}

(Bw(,2)(2Az)-case): Applying f> produces the paths uyp, ®(0,1,1)and uyp, ®(0,0,2). Now we apply the
fy operator to all paths obtained thusfar. Again, f; acting on u, A, Produces no new paths. However,
the (0)-signature on uy,, ®(0,1,1)is (..., ®,++,—,+) =(+). So, we can apply f; once:

Joluzp, ®(0,1,1)) = uzy, ® f5(0,0,1)= uzy, ®(1,1,0).
The (0)-signature on uy,, ®(0,0,2)is (..., ++,—,++) = (+2). Thus, we can apply ﬁ) twice:

Joluza, ®(0,0,2))= usp, ® /5(0,0,2) = sy, ®(1,0,1),
[P (uzn, ®(0,0,2)) = ugy, ® fo(1,0,1)= uyy, ®(0,2,0).

Hence, Bw(1,2)()t) = Ugp, ® Bz.
Now let L =2. Then we have the following:

w(2,0)=(ryr,)(r o),

w(2,1)=(rr)(ran),
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(Bw(Z,

w(2,2)=(ryn)(rpr).

0)(A)-case): Notice that Byy2,0)(2A2) = By, r,)w(1,0)(2A2) = Biw(1,2)(2A2) = ugp, ® By.

(Bu(2,1)(A)-case): Note that By 2,1)(2A2) = B, r)(1,)(2A2) = Br, w(1,2)(2A2). So, we need only apply fito
the paths u,,, ® B,. Let b, € By. Then the (1)-signature on uyy, ® by, is (..., ®,+2,—,9,+2,%) = (+2, %)

We have the following cases:

1.

2.

If b, =(0,2,0), then sk = (—,). Hence, we produce no new paths.

If b, =(0,1,1), then % = (—), and we can produce one new path:

filuga, ® by) = uzp, ® f1(2,0,0)8(0,1,1) = upy, ®(1,1,0)® (0,1, 1).

If b, =(0,0,2), then 5 = (o), and we can produce two new paths:

Aluzn, ® by) = uzp, ® f1(2,0,0)8(0,0,2) = uzy, ®(1,1,0)®(0,0,2),
Fi(uan, ® By) = tpn, ® £1(1,1,0)8(0,0,2) = uzy, ®(0,2,0)9(0,0,2).

. It b, =(1,1,0), then %k = (—+) and we can apply fi twice:

filton, ® by) = uzp, ® f1(2,0,0)®(1,1,0) = uzy, ®(1,1,0)® b(1,1,0),
F(uan, ® by) = upp, ®(1,1,0)8 f1(1,1,0)= upy, ®(1,1,0)®(0,2,0).

. If b, =(1,0,1), then sk = (+), and so we can apply f; three times:

fluzn, ® by) = uzp, ® f1(2,0,008(1,0,1) = uzy, ®(1,1,0)®(1,0,1),
F(uan, ® by) = upp, ® f1(1,1,008(1,0,1) = upy, ®(0,2,0)®(1,0,1),
Fuzp, ® by) = 10, ©(0,2,0)® f1(1,0,1) = uzy, ©(0,2,0)8(0,1,1).

If b, =(2,0,0), then % = (+,), and so we can produce four new paths:

Aluzn, ® by) = uzp, ® f1(2,0,008(2,0,0) = uzy, ®(1,1,0)®(2,0,0),
[ (uan, ® by) = upp, ® f1(1,1,0)8(2,0,0) = uzy, ®(0,2,0)®(2,0,0),
[ (uan, ® by) = upp, ®(0,2,0)® £1(2,0,0) = uzy, ®(0,2,0)®(1,1,0),
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[ (uzp, ® by) = up, ®(0,2,0)® fi(1,1,0) = s, ®(0,2,0)®(0,2,0).
Hencey Bw(Z,l)(ZAZ) = {uZAl ®B[) u2/\0 ®(1) 1, 0)®Bf) u2A0 ®(0»2; 0)®B[}

(Buw(2,2)(2Az)-case): Notice that By, 2)(2A2) = B\, w(,2))(2A2). So, we need only apply £ to all paths
in Byy(2,1)(2A2). Let by, € By. Then the (2)-signature on uyx, ® by, is(...,,+2,—,®,%) = (). Hence, we
will not produce any new paths. The (2)-signature on uyy, ®(1,1,0)® by, is (..., ®,+2,—2, +,%) = (+,%).

We have the following cases:

1. If b, =(0,0,2), (1,0,1), or (0,1, 1), then % has at least one negative, resulting in the reduced

(2)-signature (k). Thus, no new paths are produced.

2. If b, =(1,1,0), then % = (+), and so, two new paths are produced:

f;(UZAO ®(1’ ]-!0)@ b/,l,): uZAO ®f;(1) 170)®(1) 170): MZAQ ®(170r1)®(17 1r0))
fi(uan, ®(1,1,0)8 by) = uzp, ®(1,0,1)® fo(1,1,0) = s, ®(1,0,1)®(1,0,1).

3. If b, =(0,2,0), then % = (+). Thus, three new paths are produced:

foluan, ®(1,1,0)® by) = tzp, ® f>(1,1,0)®(0,2,0) = upp, ®(1,0,1)®(0,2,0),
Fi(uzp, ©(1,1,0)® by) = uzp, ®(1,0,1)® /3(0,2,0) = upp, ®(1,0,1)®(0,1,1),
f;S(u2A0 ®(]-, ]-10)@ b‘u): uZAO ®(170: ]-)®f;(01 1, 1): uZAO ®(170»1)®(070»2)

4. If b, =(2,0,0), then x = (e). So, one new path is produced:
foluan, ®(1,1,0)® by) = uzp, ® />(1,1,0)®(2,0,0) = uzp, ®(1,0,1)®(2,0,0)
Finally, the (2)-signature on uy,, ®(0,2,0)® by is (..., ®,+2,—,+2,%). We have the following cases:

1. If b, =(0,0,2), then x =(—3). So, no new paths are produced.

2. Ifu=(0,1,1), then sk = (—+). Thus, we can apply f, twice:

foluzn, ®(0,2,0)® by) = uzp, ® />(0,2,0)®(0,1,1) = upy, ®(0,1,1)®(0,1,1),
[ (uan, ® bop, ® By) = tipy, ®(0,1,1)® £5(0,1,1) = 15, ®(0,1,1)@(0,0,2).
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3. Ifp, = (1,0,1), then sk =

Folu, ®(0,2,0)® by,) = uzp,, ® f5(0,2,0)®(1,0,1) =

4, If bu =(2,0,0), then % =

foluzn, ®(0,2,0)® b,) =
[ (uzn, ©(0,2,0)® by,) =

Uz, ® />(0,2,0)®(2,0,0) = sy,
tizn, ® 5(0,1,1)®(2,0,0) = tzy,

5. If b, =(1,1,0), then % = (+). So, we can apply f, three times:

faluzn, ®(0,2,0)® b,) =
fH(uzp, ®(0,2,0)® by,) =
f(uzp, ®(0,2,0)® by,) =

Uz, ® £3(0,2,0)®(1,1,0) = uyy,
Uuzp, ® £>(0,1,1)®(1,1,0) = uyy,

Uuzp, ®(0,0,2)® f5(1,1,0) = uyy,

6. If b, =(0,2,0), then =

foluzn, ®(0,2,0)® by) = uzp, ® £>(0,2,0)®(0,2,0) = upp, ®(0,1,1)
f (20, ®(0,2,0)® by) = a0, ® />(0,1,1)®(0,2,0) = upy, ®(0,0,2)
f(uzn, ©(0,2,0)® by) = uzp, ®(0,0,2)® f>(0,2,0) = uzp, ®(0,0,2)

( ) ( ( )

Hence, Byy(2,2)(A) = Uzp, ® B,?.
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(—), and so one new path can be produced:

(o). Thus two new paths can be produced:

(+5). So, we can produce four new paths:

®(0,0,2)® f5(0,1,1)= uy, ®

®(0,1,1)®
®(0,0,2)®

®(0,1,1)®
®(0,0,2)®
®(0,0,2)®

0,0,2

®®®®

Uy, ®(0,1,1)®(1,0,1).

(2,0,0),
(2,0,0).

(1,1,0),
(1,1,0),
(1,0, 1).

0,2,0),
0,2,0),
1,1),

(
(
0,
(0,0,2).



Chapter

5

Ug (s1(3,C))-Demazure Crystals

In this chapter, we give explicit descriptions corresponding to Demazure crystals B,,(4) of U, (A(zl)),
for A e P*.

We first give an identity for |5,|:

Lemma 5.1. We have the following identity:

Proof. Let n=2. Then

€(€+1))+(£—0+1)
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=w+1{%£+1)
_(L+1)+2)

Now let n = 3. Then

¢
Z]Z JAHl+1

1 1
={l+1l+1)+ EEZ(E +1)— EK(Z +1)(2¢0+1)
1 1 1
=+ 1)(e+ 1+ —62——(262)——6)
2 6 6
1 5
:(€+1)(—€2+—£+1)
6 6
1
= 6(8 + 1)l +2)¢+3)
_[3+¢
=17, ]
Now, suppose we have the following identity for n:
é(j+1)(n—2+€—j)_(n+€)
= (—j l

We want to show this is true for n + 1, i.e. that

(n+1 —2+0—j (n+U+€
_] ! :

MN

.
Il
o
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We will use the following recursive identity:

("2 s ()
:22(p+U(n_;jf_j)+§3j+1(n23;fzj)

L n—2+0—j & n—2+{—j
Z(’“)( (—j-1 )‘. ““)( t—j-1 )

j=0 j=0
-1 .
(n+1)—24+({—-1)—]j
= U+U( : )
= (—=1)—j
_[((n+1)+(£-1)
B (t—1)

again using the inductive hypothesis. Hence, we have that

¢ .
. (n+1)=2+0—j\ (n+{ n+l) ((n+1)+4
("))

O

In general, if A € P* such that A(c) =¢, where c is the central element, we can write A= " m;A;,
where Z?:o m; ={ and m; > 0 for all i. Recall that my = m,,,; and that by = (m;, m,,..., m,, my),

since

(p(bl) = 80(’711, nmy,..., Ny, mO)
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n

:Zwi(mlrer---’mn’mO)Ai

I
3
>

I
o

Hence, b(u)=b, € By forall u € P*.Thus, uy =...® by2(3)® by()® by, where o(A) = &(b;). Note, for

example, that by () = (my, mg, ..., my,, my, m,). This leads to the following lemma.

Lemma 5.2. Given b, =(my, my,..., m,, M), we have
borpy=(mpi1, Mpyo,...,Mpyn, my),

where my, = Mymod(n+1)-

Proof. We have by =(m;, m,,...,m,, my). Let L=1. Then

o(A)=e(by)

=¢e(my, my,...,my,, mgp)

n
= E gi(my, my,...,m,, mg)A;
i=0

n
= E miA;,
i=0

where m,,,, = my. Hence, b(0(A)) = by = (my, ms, ..., my,, my, m;). Suppose that b(c1(A) =

bgL—l(;L) = (mL, mriy,...y mL+n). Then

o)=0o(c"()
=¢ (bUL—l(;L))

=e(mp, Mpqy,...,Mpip)

n
= E eilmp, mpyy,...,mpy)A;
i=0

n
= E mipA;.
i20

Thus, bUL(l):(mL+1,mL+2,...,mL+n,mL). O
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The following statement is an immediate consequence of Lemma 5.2.
Corollary 5.3. Forany A€ P*, we have uy1(3)= Ugr1(3) ® byi(p)-
Corollary 5.4. Given the set of A-paths usi(3)® BgL, where A € P™, we have

L L
UgL(p) ®B‘€ = uo-LH(A)@(mL_‘_l, Myrioy..., My, mL)®B£ .

Proof. By Corollary 5.3, we know that us1(3) = Ugrap @M1, M4, ..., M, my). Hence, we have

L _ L
UgL(p) ®B€ = uUL+1()L)®(mL+1, Mmrio,..., M4y, mL)®B[ . ]

Now let n=2. Then we have u; =...® b, ® ba-z(;t) ® ba(,'\) ® b;, where

by, = (my, my, my),

b2y = b(e(by)) = b(myAy + moAy + myAg) = (my, my, my),
by2p) = b(e(bg(n) = b(moAy + my Ay + myAy) = (my, my, my),
bysn) = b(e(bg2n))) = b(my Ay + myAy + moAg) = (my, my, my) = by,
Hence, we have uy =...®(my, my, my) ® (mg, my, my) @ (m,, mg, m;)(my, my, my). This implies that
Ugt()® Bl =...® (Mpy1, Mpip, M) ®(Mp, Mpiy, M)

®(Mpi2, mp, Myi1)® (M1, My, mL)®BgL~
Recall that the sequence w(L, j) of simple reflections is defined by
WL, j)=(Fjan—r - Tjo—r Tjir1r)(Fjan—z - T Tjxn) (Tjeno1 - Tiaa7s), (5.1)
and so for n =2, we have w(L, j)=(rjso—r, Tjy1-1) - (rjrjs2)(rjs17})-
Also, in general, we have the ground state path for A = mgAy+ my Ay + -+ m,A,;:
Uy =...0(msz, my,...,my, M) ®(My, ms,..., My, M) (my, my,...,my,, Mpy), (5.2)
which has (i)-signature

(' o Tmps T mi Tmin Tmg Tmi, +mi) = (+mi) : (5.3)
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The (i)-signature for the A-path u, ;) ® b, where b, =(vy, v,..., Uy, 1) is
(' o Tmps T mi Tmip Tmig T +Vi) = (+mi+1 ’_Ui+1+mi) ) (5.4)

and the set of A-paths ugi-13)® B! = Ugi(2)® (Mg, Mpiy,..., mpi,)® B has (i)-signature of the
form
(' o Tmppa Tmi Tmg T o ¥ ke *L—l) = (+mi+L—l K k2,e 0 *L—l) : (5.5)

The set of A-paths g2 ® b, ® B/~ where b, = (v, 1y, ..., vy, ) has (i)-signature

(+mi+L’_Vi+L+Vi+L—1’*1’""*L_l)' (5.6)

We use these equations in the proof of the following lemma.
Lemma 5.5. Foreach0<i < n, choose s sufficiently large so that the reduced (i)-signature of
U,®b, ®b,, ®...0b,
is(—g+,), where the r pluses correspond to b, ® by, ®...® b, . Starting with the set of A-paths
u,®by ®b,, ®...0b, ®B,
whereB[L ={q1®a,®...Qa;|a, By, t =1,2,...,L}, we can obtain
Up®by i®by, [ ®...0b, ®a1®a4;®...0a;
forall{a,®a,®...9a;} e B‘KL and 1< j<r, by applying f; a sufficient number of times, where
by, ®by, i®...®b, i=f!(b, ®b, ®...8D, ).

Proof. First, note that by Equation 5.6, such an s exists. We will prove this lemma by induction on L

and by induction on r. Fix i €{0,1,..., n}.
Case 5.1 (L=1). Given u,® b, ®b,, ®...® b, ® B, with (i)-signature of the form ((—g-l—,),*).

Subcase 5.1.1. If r =0, then there’s nothing to prove. So, let r = 1. Then we have the (i)-signature of
the form ((—g+), *)
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If x =+, then the A-path is u, ® b, ® b,, ®...® b, ® by, where
b‘u:(ml’mZ)‘nymi ze»mi-‘rl’w-ymn»mO);

with m, =0 for t # i and reduced (i)-signature ((—g+), +g). Hence, we will obtain ¢ + 1 new A-paths
of the form u, ® bpll ® bp21 ®...® bp} ® b,, where b, =(v;, 5,..., v, 1p) such that v, =0for t #i,i +1
and v; + v; =4.

If k = ;+¢_;, then the A-pathis u, ® b, ® b,,®...® b, ® b, where
by=(my,my,...,m;=0—1,m;;; =0,...,my,, mpy),

with Zt#,iﬂ m; =1 and reduced (i)-signature ((—g+), +/3_1). Hence, we will obtain £ new A-paths
of the form u, ® bp; ® bp% ®...® b,1 ® by, for each b, = (vy, v,..., Uy, 1) such that z#ml v, =1
and v; + v;;; =¢—1. So, in total we have ¢(n — 1) new A-paths of the above form, since the number
of solutions to 3, ; ;. v, = 1 is equal to the number of ways to distribute (—1) 1's among (n —1)
coordinates in an (n + 1)-tuple, i.e. the "balls in bins" combinatorics problem. Hence, there are

e((n—l)j(l)—l

) ={(n—1)
new A-paths.

In general, if % = o _j+j for j =1,2,...,¢, then the A-path is up® bp1 ® bp2 ®...0® bps ® by, where
b, = (ml, My,...,m; =j,m;1=0,...,my,, mo), with Zt#i_iﬂ m,; ={ — j and reduced (i)-signature
((—g+),+j). Hence, we will obtain j + 1 new A-paths of the form up® bp% ® bp% ®...0 bpsl ® b,, for
each b, =(vy, »,..., V,, 1) such that Zt#iﬂ v, ={—jand v; + v;;; = j. Again, this is the "balls in

(e
aen("TE)

bins" problem, so there are

new A-paths for j =1,2,...,¢.
Now, suppose x = e;. Then the A-pathis u,®b, ®b,,®...®b, ®b,, where b, =(m,, my,..., m,, m)

such that Zt#iﬂ m; ={ and m; = 0= m;,, with (i)-signature is ((—g+),04). Then there is one new
A-path of the form u, ® bp; ® bp; ®...®b,1 ® by, where by, =(vy, 1,..., Uy, Yp) such that v; = 0= v; 1,
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for each solution of >, 4iiv1 Ve = {. Again, by the same combinatorial problem, there are

((n—1)+(£)—1)
14

solutions to this equation.

Note that if % contains any negatives, then no new A-paths are produced. So, by Lemma 5.1,
altogether there are

£ n—1+0—j—1 n—1+0—1\ < . n—2+0—7j\ (n+¢
(S ) S ()

unique elements b, € B, in the A-paths of the form u, ® b, 1® b, 1.0 b,1® Dby, i.e. we've obtained
the set of A-paths u, ® bpll ® bp% ®...8 b, 5.

Subcase 5.1.2. Now, suppose that if we have the set of A-paths u, ® b, ® b,, ®...® b, ® B, with
(i)-signature of the form ((—,+,),%), we can apply f; a sufficient number of times and produce the
paths up® bp{ ® bpé- ®...0® bpg ® B, for j=1,2,...,r. We want to show that this is true for r + 1. So,
suppose we have the A-paths u,®b, ®b,,®...®b, ®B5, with (i)-signature of the form ((—g+r+1) , >|<)

If 7 +1 > ¢, then s won't affect at least the first r +1—¢ pluses in the (i)-signature. For each %, let f; act
on the component with the leftmost plus in the (i)-signature; then we have u,®b,, 1®D,1®... b, B,
with (i)-signature of the form ((—g+ ,),*). Hence, by the inductive hypothesis, we can apply f;
a sufficient number of times to certain A-paths in the above set to produce the set of A-paths
u,,@bpj ®bpj ®...®bp; @By, for j=1,2,...,r+1—¢.
1 2 N

If r +1 < £ and % has less than r + 1 negatives, then we have the A-paths u, ® u, ® b,, ®...®
b, ® by, where b, =(my, my, ..., m,, my) such that m;,, <r+1and Zl;:o m; ={, with (i)-signature
((_g+r+1)’_mi+1+mi)- Then we can apply f; at least once to these A-paths to produce the A-paths
Uy ® Up1 ® bp; ®...® bpg ® by. If r +1 < ( and % has at least r + 1 negatives, then we have the
A-paths u, ® u, ® by, ®...® b, ® b, where b, =(my, my,..., m,, my) such that m;; > r+1and
Z?:O m; = {, with (i)-signature ((_g+r+1)’_m,-+1+m;)- Then how do we obtain the A-paths of the
form u, ® Up ® bp% ®...®b,1®b,? We have A-paths of the form u, ® u, ®b,,®...® b, ®b,, where
b,=(vy, v5,...,v,, y) such that v, =1, v, =m; + m;; —r, and Z?:o v, ={. The (i)-signature for
these A-paths is ((_g+r+1)’_r+mi+mi+1—r) = ((—g+), +mi+mi+1—r)- By applying f; a sufficient number
of times, we obtain the A-paths u, ® Upl ® bp% ®...® b,1 ® by, for b, = (yl, Yoreeor Vs yo) such that
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Yin=nTr+1, .. ,mi+m;; ¥i+ Vi =m;+m;,; and Z?:o ¥¢ =, which contains the (n +1)-tuples
b, that we wanted. Hence, altogether we have obtained the set of A-paths u, ® Upr ® bp21 ®...®
b,1 ® By, with (i)-signature of the form ((—g+r),>|<). Thus, by the inductive hypothesis, we have
up®up{ ®bp£ ®...®bp£®8@ for j=2,3,...,r+1.

Case 5.2 (Induction). Now suppose the lemma is true for L and for any r, i.e. given u, ® u, ® b,, ®
...®b, ® BZL with (i)-signature of the form ((—g+,),>[<1, e >|<L), we can obtain the set of A-paths
up® Wi ® bpé’ ®...® bpg ®B[L for j=1,2,...,r by applying f; a sufficient number of times. We want
to show that the lemma is true for L+ 1. Suppose we are given the set of A-paths u, ® u, ® b,, ®
...® b, ® B/ *! with (i)-signature of the form ((—g+,), K1y-erKL41)-

Subcase 5.2.1. If r = 0, then there’s nothing to prove. So, suppose r = 1. Then we have the (i)-
signature of the form ((—g+), *1)---) *L+1).

If %; =+, then we have the set of A-paths
u,®u, ®b,, ®...0b, ®b,®B/,

where by, = (my, my,..., m,, my) such that m; = £ and m; = 0 for ¢t # i. And this set of A-paths
has (i)-signature of the form ((—g+),+g,>k2, . .,>1<L+1) = ((—g+g+1),>k2, . .,>|<L+1). By the inductive
hypothesis on L, if we let f; act a sufficient number of times on certain A-paths in this set, then we
obtain all A-paths in the set u, ® Upr ® bp% ®...8b,1® bV®B€L, where b, = (v, »,..., U, Iy) such

that v; + v;;; =¢ and v, =0 for t #i,i + 1. Hence, we have obtained £ + 1 new b,,.

In general, if x=e,_;+; for j=1,2,...,¢, then we have the set of A-paths u, ® u, ®b,,®...® b, ®
b, ®B€L where b, =(my, my,..., my, mg) such that m; = j, m;,; =0, and Zt#’iﬂ m; ={— j and with
(i)-signature of the form ((—g+), +jr%2, . »*L+1)- If we apply f; to these paths a sufficient number of
times, then by the inductive hypothesis, we obtain all A-paths in the set u, ® u,, 1® b, 1®...8 b,1®
b,,®BZL where b, =(vy, s,..., Uy, Up) such that v; + v;,; = j and Z#MH v, ={—j. So, by the "balls
in bins" combinatorial problem, we obtain

L (n=1+t—j—1
(")

j=1

new b, in the (L + 1)’ component from the right.

Ifx = oy, then we have the set of A-paths u,®u, ®b,,®.. .®bps®bu®B£L where b, = (my, my, ..., my,, my)
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such that m; = 0 = m;,; and Zt#’iﬂ m; = {. This set of A-paths has (i)-signature of the form
((—g+), ®,%o,..., *L+1) = ((—g+), %o, .ees >|<L+1). Hence, by the inductive hypothesis on L, we obtain
the set of A-paths u, ® Upr ® bp% ®...8b,1®by, ®B[L, of which there are

n—1+¢—1
14

b, in the (L +1)** component from the right in the tensor product. Thus, we have

()

j=1
unique b, in the set u, ® Up! ®bp% ®...8b,: ®bﬁ®B€L, and hence, have u, ® Up! ®bp; ®...89b,1 ®BEL+1.

Subcase 5.2.2. Now, suppose that if we have the set of A-paths u, ® b, ® b,,®...® b, ® BZL“ with
(i)-signature of the form ((—g+,) vk >1<L+1), we can apply f; a sufficient number of times and
produce the set of A-paths u, ® bp{ ® bpg ®...® bpg ®B£L+1 for j=1,2,...,r. We want to show it’s
true for r + 1. Suppose we have the A-path u, ® u, ®b,,®...® b, ® BKL“ with (i)-signature of the
form ((_g+r+l)’ L SERRRY *L+1)-

If r + 1> ¢, then %; won't affect the leftmost plus in the (i)-signature. If we fix %; =—, +j ¢, then

for each such x,, we have the set of A-paths u, ® u, ®b,,®...9 b, ®b,® BZL, with (i)-signature of

the form ((—g+ ral—atb )y K2y K L+1). By the inductive hypothesis on L, we can apply f; a sufficient

number of times to get the set u, ® Up ® bpé ®...8b,1®D,® B[L, with (7)-signature of the form

((—g+,_a+b),>|<2, . .,>|<L+1) = ((—g+r), *1,%2,..., >|<L+1). Then, by the inductive hypothesis on r, we
: , , o RLH1 ;L

obtain u, ® W] ®bp£ ®...® bpg ®B, " forj=2,3,...,r+1.

Now suppose that r +1 < /¢. If %; has less than r + 1 negatives, then we have the set of A-paths
U,®u,y ®b,, ®...0b, ®b,®B/, (5.7)

where b, = (my, my, ..., m,, my) such that m;; <r+1and Z?:o m; = {. Then the leftmost plus
in the associated (i)-signature of the form ((_g+r+1)'_mi+1+mi v Koy ens >|<L+1) won't be affected. So,
we can apply f; a sufficient number of times by the inductive hypothesis on L to obtain the set
of A-paths u, ® Uy ® bpé ®...09 bp§ ®b,® BEL, with (i)-signature of the form ((—g+,), *1,.- .,>|<L+1),
where by, is such that m;,; < r+1. On the other hand, if %, has at least r + 1 negatives, then we
have u, ® u, ®b,,®...® b, ®b, ®B€L where b, = (my, my,...,m,, my) such that m;;, > r+1
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and Z?:o m; ={. This set of A-paths has (i)-signature of the form ((_g+r+1)’_mi+1+mi yKoy . ,>|<L+1).
Then how do we obtain A-paths of the form u, ® Upr ® bp21 ®...8Db,1® bH®BZL? From Equation 5.7, we
have A-paths of the form u,®u, ®b,,®...®b, ® bV®B£L where b, =(vy, 1s,..., v, Vp) such that v; =
mig +m;—r, v, =T, andZ'ZzO m; ={ and with (i)-signature (...,(+r+1),—,+mi+l+mi,,,>|<2, ...,>|<L) =
(. o () Fomp gt m—rr Koy o0 L). By the inductive hypothesis on L, a certain number of applications
of f; produces A-paths of the form

L
up®up11®bp§®...®bp}_®b7®3 , (5.8)

where b, = (yl,yz,...,yn,yo) such that y; .y = r,r+1,...,m; + my,y; ¥ + Yir1 = m; + m;q; and

Z?:o ¥; =¢, which contains the (n + 1)-tuples b, that we wanted. Hence, combining Equations 5.7

and 5.8, we have obtained u, ® Up! ®bp% ®...® bp% ®BZL+1, with (i)-signature (..., (+;),%1,%2, ...,k 41)-

Thus, by the inductive hypothesis on r, we have u, ® i, ® bpj ®...8 bpj ®B[* for j=2,3,...,r+1.
1 2 s

O

Suppose that we have the set of A-paths 1) ® BE = g3 ® byi(2) ® BE, where f; (by12)) # 0.
Equation 5.6 and Lemma 5.5 tell us that if we apply f; a sufficient number of times to certain A-paths
in the set u,1(3)® B}, that we will obtain the set of A-paths uy 1) ® f; (bo1(2)) ® BE.

Similarly, suppose that fij (bg-L( ,1)) # 0 for a positive integer j. Then Lemma 5.5 implies that we can
obtain the set of A-paths u;1+103)® f;] (b,,L( A)) ® BgL by applying f; a sufficient number of times to
certain A-paths in the set uy,1(3) ® BgL.

We can also extend this result to sequences containing more than one Kashiwara operator. In other
words, suppose that we have the set of A-paths 1,13 ®B£L. Also, suppose that f;{’ - f;ff;fl (uG-L(A)) #
0. Then, by applying each fip a sufficient number of times to certain A-paths in the set us1(3) ® BZL,
we can obtain the set £/ --- f;* £ (ug1()) ® B} .

Now, we'll work through an example to help understand Lemma 5.5.

Example 5.6. Suppose that L =2, n =3, and £ = 1. Then we have that

)
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Suppose that b; =(1,0,0,0) and that we have the set of A-paths
Ugs()®(0,0,0,1)®(0,0,1,0)®(1,0,0,0)® B2. (5.9)
The (0)-signature for the set of A-paths in Equation 5.9 is of the form
(ot — 0, 0,4, +,0,— %1, %) = (), %1, %k2)
where the (+) corresponds to
bys(2)®(0,0,0,1)®(0,0,1,0)®(1,0,0,0)= by, ® by, ® b, ® by,
Note that r =1 and

fo(bes(2)©(0,0,0,1)®(0,0,1,0)®(1,0,0,0))
(110)0’0)®(0’0’ 0) 1)®(0’ 0) 1)0)®(1)OY 0!0)

= bpl’l ®bﬂ2’1®bpsv1®bp4;1'

We want to produce the set of A-paths uge()® by, 1®bp, 1®b,. 1®b,, 1 ®B% by applying fy asufficient
number of times to specific A-paths in the set ugs2)® by, ® by, ® by, ® by, ® Bf. We'll denote these
specific A-paths by tg6(2)® by, ® by, ® by, ® b, ® a; ® a,.

Case 5.3. Suppose that %; = +. Then this implies that a; = (0,0,0,1), and that we have the (0)-
signature of the form ((+), +, %)

Subcase 5.3.1. Suppose that %, =+. Then a, =(0,0,0, 1) and the (0)-signature becomes ((+), +, +).
Hence, we can produce three new A-paths:

Ugs()) ® bp1,1 ® bpz,l ® bps,l ® bp4,1 ® (0, 0,0, 1) ® (0,0,0, 1),
uO'G(A) ® bp1,1 ® bp2,1 ® bp3,l ® bp4,1 ® (]-) 07 07 0) ® (07 0) 0, 1))
Ugs(2)® bp,1® by, 1® by, 1 ® by, 1©(1,0,0,0)®(1,0,0,0).

Subcase 5.3.2. Suppose that x, =e. Then a, =(0,1,0,0) or (0,0, 1,0), and the (0)-signature becomes
((+),+, ). Hence, we can produce four new A-paths:

Ugo(n)® by 1® by, 1® by, 1 ® by, 1©(0,0,0,1)©(0,1,0,0),
Ugs(n) ® bp1,1 ® bpz,l ® bps,l ® bp4,1 ®(1,0,0,0)®(0,1,0,0),
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Ugs(n) ® bp1,1 ® bpz.l ® bps,l ® bp4,1 ®(0,0,0,1)®(0,0,1,0),
Ugs(n) ® bp1,1 ® bp2_1 ® bps,l ® bp4,1 ®(1,0,0,0)®(0,0,1,0).

Subcase 5.3.3. Suppose that %, =—. Then a, =(1,0,0,0), and the (0)-signature becomes ((+), +,—) =
((+)). Hence, we can only produce one new A-path:

Ugs(n) ® bp1.1 ® bp2,1 ® bp3,1 ® bp4'1 ®(0,0,0,1)®(1,0,0,0).

Notice that so far, applying f; a sufficient number of times to these specific A-paths has produced
the sets

Ugo(n) ® bp1,1 ® bpz,l ® bp3,1 ® bp4,1 ® (0, 0,0, 1) ® Bl’

uge()t) ® bp1,1 ® bpz,l ® bp3,1 ® bp4y1 ® (1, 0, 0, 0) ® Bl'
Case 5.4. Suppose that ; =e. Then a; =(0,1,0,0) or (0,0, 1,0), and we have the following set
Ugs(2)® by, ® by, ® by, ® b, ® a; ® By

with (0)-signature of the form ((+), , %,).

Subcase 5.4.1. Suppose that %, =+. Then a, =(0,0,0, 1), and the (0)-signature becomes ((+), o, +).
Hence, we can produce four new A-paths:

Uge)® by, 1 ® by, 1® by, 1 ® by, 1®(0,1,0,0)8(0,0,0,1),
Uge)® By, 1 ® by, 1® by, 1 ® by, 1®(0,1,0,0)8(1,0,0,0),
Uge)® By, 1 ® by, 1® b, 1 ® by, 1©(0,0,1,0)8(0,0,0,1),
Ugs(2)® bp,1® by, 1® Dby, 1 ® Dby, 1©(0,0,1,0)®(1,0,0,0).

Subcase 5.4.2. Suppose that x, =e. Then a, =(0,1,0,0) or (0,0, 1,0), and the (0)-signature becomes

((+),,). Hence, we can produce four new A-paths:

Ugs()) ® bp1.1 ® bp2,1 ® bp3,1 ®b 1 ®(0, 1,0,0)@(0, 1,0,0),
Ugs()) ® bpl.l ® bp2,1 ® bps,l ® bp4,1 ® (0, 1, 0,0) ® (0,0, 1, 0),
Ugs(n) ® bp1,1 ® bpz.l ® bps,l ® bp4 1®(0,0,1,0)®(0,1,0,0),
Ugs(n) ® bpl,l ® bpg.l ® bps,l ® bp4 1®(0,0,1,0)®(0,0,1,0).
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Subcase 5.4.3. Suppose that %, =—. Then a, =(1,0,0,0), and the (0)-signature becomes ((+),®,—) =
(»). So, we cannot produce any new A-paths.

Notice that by applying f; a sufficient number of times to these specific A-paths we have produced
the sets

uUG(A) ® bp1,1 ® bpz,l ® bp3,1 ® bp4,1 ® (0, O, 0, 1) ® Bl’
Ugs(n) ® bp1,1 ® bpz,l ® bp3,1 ® bp4y1 ®(1,0, 0, 0)®Bl,
LLUG()L) ® bp1,1 ® bpz,l ® bp3,1 ® bp4y1 ®(0, 1,0, 0)®Bl,

Ugs(n) ® bp1,1 ® bpz,l ® bps,l ® bp4,1 ® (0, 0,1, 0) ® Bl!

and thus we have produced the set of paths

2
Ugsp)® bp, 1® by, 1®Dbp, 1 ® by, @B

. . . . . 1
Now we give an explicit description of the Demazure crystal B,z o)(A) for Uq(A(2 )).

Lemma5.7. Let A = myAg+m A, +myA, € PT, where A(c)={. Then the Demazure crystal Buy(,0)(A)
forU, (A(zl)) can be explicitly defined by one of the following three descriptions:

1. If L=1mod 3, then

By ={u,®B;7",
Ug () ® (My + ko, M, mo— ko) @ B,
Ug(2)® (My — ky, My + by, mg) @ B,
Ug(n)® (ml + ko — ¢1,0, Mo + €10, My — ko) ® BZL_I |

ki=1,2,...,m;, t=0,1, c;0=1,2,...,m; +k}.
2. If L=2mod 3, then

B0 ={ugm®B;7",
Uor2(2) ® (Mg, Mo — ko, 11 + ko) ® B ™,
Ug2(2) ® (My + Ky, Mg, my — Ky )@ By ™,
Ug2(2) ® (Mo + €10, Mo — ko, My + kg—10) ® B, " |

ki=1,2,...,m;, t=0,1, c;0=1,2,...,m;+ko}.
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3. If L=0mod 3, then

Bur,0)(A) = { Ug2())® BZL_I,
Uz ® (mo— ko, my + ko, my) @ B,
Uy ® (mo, my—ky, my+ k)@ B,
u; ® (mo— ko, my + ko— 1,0, My + €10 ®B€L—1 |

k;=1,2,...,m;, t=0,1, ¢c;0=1,2,...,m; +k}.

Proof. Let L =1. We can construct B,,(; o)(A) by applying the sequence w(1,0)= r; r;, to the ground-
state path u; = ... ® (my, my, my) ® (my, my, my) ® (my, my, my)  (my, my, my). The (0)-signature
on u; is (+m0). Hence, we can apply f; a total of m, times, and thus we obtain the set of paths
{ug(l) ® (my + ko, my, mg— ko) lkg=1,2,..., mo}. Similarly, the (1)-signature on u; is (+m1). So we
can apply f; a total of m, times, and thus we obtain the set of paths

{uo'()t)®(m1_k1»m2+k1;m0)|k1 = 1,2,...,m1}.

Now we need to apply the f; operator to the paths we obtained by applying the f; operator to u;.
The (1)-signature on these paths is (+m1+k0). Hence we obtain the set of paths

{ug(l)®(ml+k0—cl'0, m2+C1,0, mO—ko)lk(): 1,2,..., my, Cly0:1,2,...,m1+k0}.

Therefore we have

Buy,0(A)={uy,
Ug () ® (M + ko, My, my— ko),
Ug () ® (M —ky, my + ky, my),
Ug(3)® (ml +ko— 1,0, Mo + €19, My — Ico) |

k;=1,2,...,my;, t=0,1, c;0=1,2,...,m; +ko}.
Notice that we now have

My
3 1
1+m0+m1+ (m1+k0):1+—m0+m1+m0m1+—m2
2 20

ko=1

b, € B, in the form u4(3) ® by,. In order to form the set u,(3) ® B;, we'll need to obtain a total of (2#)

65



Chapter 5. U, (sAl (3, C))—Demazure Crystals

unique b, in the form u;(;) ® by,.

Next let L =2. Then we have w(2,0) = (ry12)(r119) = (ro12)w(1,0). So, we need only apply fZ and f?) to
all paths in the set B, g)(A). First, well apply £, to the path u,. The (2)-signature on u, is (+ my)-

Hence, we obtain the following set of paths:
{MU()L) ®(m1, nmy — kz, my + kg) |l€2 = 1,2, ceey mg} . (510)

We've already applied f; to the path u;, so we don’t need to repeat this step. Next we'll apply f; to
the set of paths {ug(,u ® (my + kg, my, my— ko)}. The (2)-signature on these paths is (+k0,+m2). Thus,

we obtain the following set of paths:

{”02(/1) ® (mg; my— k(/)r my + ké) ® (my + ko, my, my— ko),
Ug2(y) ® (Mg, my— ko, my + ko) ® (my + ko, my — kp, my—ky + k2)|
ky=1,2,...,my, k;j=1,2,...,k}. (5.11)

If we were to apply f; to the same set of paths, we wouldn’t produce any new paths. So, let’s apply f;
to the paths uy(y)® (1, — ky, My + ky, my). We have the following (2)-signature: (+,,,+, ). This action
produces the set of paths

{topy®(my—ki, my+ky— o1, mo+ 2,1}, (5.12)

where ¢, =1,2,...,my + k.

Next let’s apply f; to this same set of paths. We have the (0)-signature (Jrk1 , +m0). Hence, we produce
the following set of paths:

{UUZ(A) ®(m2 + k{, my, Ny _k{)®(m1 —ky, my + ky, my),
Ugz(n) ® (Mg + ky, my, my — k) ® (my — ky + ko, my + ky, mo—k0)|
ki=1,2,...,ko}. (5.13)

Now, let’s apply fz to the set {ugm ® (ml + ko — ¢1,0, My + €10, My — ko)}. The (2)-signature is

(+ko’+mz+01,0)'
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This results in the following set of paths:

/ /
{uazm ® (mg, my— kg, my + ko) ® (m1 + ko —¢1,0, My + €19, My — ko),
/ /
uo-z(/l) ® (ng, my— IC(), ny + ko) ® (ml + ICO — CLO’ ny + CI,O — 62;1,0’ my— ICO + 62;1,0)|

62/;1,0=1,2,...,m2+61,0}. (5.14)

Next, let’s apply f; to the same paths. The (0)-signature is ( .. ,—m2+m1r—m1+k0—c1,0+m0—k0), which

can be rewritten as:

Let’s break this section into cases:

Case 5.1. Suppose that c, o> kj and let k; = ¢, o — k;. Then we obtain the paths

{MUZ(A) ® (m2 + k{, mgy, Ny — k{) ® (m1 + k() — CL(), my + Cl,O’ mgy— ko) ’
MUZ()L) ® (mz + klr mgy, nmy — kl) ® (ml + ko — CI,U + CO,—O’ nmy + Cl,O’ mgy— ko — CO,—O)}

co—0=12,...,my—ko}. (5.15)
Case 5.2. Suppose that ¢ 5 < ky. Then we obtain the paths
{uam ® (ml + ko — ¢1,0 + Co,—0, Mp + €10, My — ko — Co,—o)} .
Note that we will have some repeated paths here. We have that
o K2 fo (Ba) = A7 () (5.16)

ifty <tyand 1+ 13 < o, 1, b, 13 € Zsg, b = oo + 1A + UsA». This follows logically from the
definition of f; (b, ). Hence, all paths from Case 5.2 have already been obtained; i.e. the only new

paths produced are from Case 5.1.

Next we'll let f act on the paths {ug(k) ®(my, my—kyo,my+ky)|kr=1,2,..., mz}. We have the (0)-
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signature (+, 1, )- Thus, we have the paths
{ua(/l)®(m1+Co,2»m2—k2,mo+kz—Co,z)}» (5.17)

where ¢y, =1,2,...,my+ k.

Now let f; act on the set:

{uaz()\) ® (mz; my— k(/)r my + k(;) ® (m + ko, my, my— k),
Ug2(y) ® (Mg, my— ko, my + ko) ® (my + ko, my — kp, my— ko + k2)|

ky=1,2,...,my, k;j=1,2,...,k}.
Rewriting these paths, we have:

Ugz(p) ® (Mg, My — ko, my + ko) ® (my + ko, my, my— k) (1]

Ugz () ® (Mg, My — ko, My + ko) ® (my + ko, my — ky, mo— ko + k) (2]

Ugz(p) ® (Mg, My — ko, My + ko) ® (ml + ko + Co,—0, My, Mo — ko — Co,—o) (3]
where k, =1,2,...,my, ¢y =1,2,...,my—kp for each ky = 1,2,...,m,. Let’s break this into three
sections:

Case 5.3. Looking at paths [1] displayed above, we have the (0)-signature (+m0_k0)' This gives the
following paths: {ugzm ® (my, my— ko, m; + k) ® (m1 + ko + ¢o—o, My, My — ko — Co,—o)}- But these

are exactly the same as paths [3] above.

Case 5.4. Now let’s look at the paths [2]. We have the (0)-signature (+m0_k0+k2). Thus, we obtain the
following set of paths:

{MUZ(A)®(W12, mo— ko, my + ko) ® (my + ko + 1, my—ky, mg— ko + k — 1),

uo-Z(A)@(mz, mo—ko, ny +k0)®(m1 +k0+2, mz—kz, mo—k0+ ICZ—Z),...,

uo-z()t) ® (mz, mgy— ko, m; + k()) ® (ml + mgy+ kz, ny — kz, 0)} . (5.18)
Case 5.5. Finally, let’s look at the paths [3]. We have the (0)-signature (+ Mo— ko—Co,fo)‘ Again, this will
only produce paths like [3].

Next, let f; act on the set {ugm ®(m1 —ky, my+ky—cpp,mp+ Cz,l)}, where ¢, =1,2,...,my + k.
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This gives the (0)-signature (+ ki gt ) Hence we obtain the following paths:

/ /
{ugzm ®(m2 + ky, mo, my —k1)®(m1 —ky,my+ky—co,mp+ 02,1),
/ /
ugzm®(m2 + kl» my, Ny —k1)®(m1 _kl + 60;2,1’ my + kl — 1, My + 1 _00;2,1)}

ki=12,....k, Cppy=1,2,...,mg+ o1} (5.19)
Finally, let f; act on the following set of paths:

{uaz(l) ® (mz, mgy— k(/), nmy + k(,]) ® (ml + ko — CI,O’ nmy + CI,O’ mgy— ko),
MO-Z(A) ® (mz, my— k(), my + ko) ® (ml + ko — C1,0) M2 + Cl0— 62/;1,0’ mgy— ko + C2/;1’0)|

/
Coy 0= 1,2,...,my+ Cl,o}»
which we rewrite as:

Ug2(y) ® (Mg, mo— ko, my + k0)®(cl"0,£— i,i—cl’yo) [1]

uo-z()t) ® (m2, mgy— ko, nmy + ko) ® (E —my— CO,*O’ my +1, CO,*O — l) [2]

where ¢];=0,1,...,m;+ko—1,i=c]g¢c{+1,....0, co0=1,2,...,my— ko, and t =1,2,..., ¢y .

Again, let’s break this into cases:

Case 5.6. The (0)-signature on the paths[1]is ( . »—m2+m1+ko»—c{0+i—c{0)» which reduces to

(+m1+k0!_cl"o+i—cl’y0) = (+C1,o’ +i_01/,0) = (+C1,0’ +Z)’
where z =0,1,...,{— cl’ o- Hence, we have obtained the following set of paths:

/

{ugo(ny® (my+ ¢f o Mo — ko, my + ko — 01/,0) ® by, |C1,,o =1,2,...,c10} (5.20)

for specific b, € B;.

Case 5.7. The (0)-signature on the paths [2] is

(' L] +m1+k0 ) _E—mz—coy_o"'_coy_o—t) = (+m1+k0 4 _E_mZ_CO,—O—i—CO,—O_t)

= (+m1+k0 » T my+my—co,—o +Co,—0—[)

(+Co,—0—f) :

Hence, this application of f; produces no new paths, since we already have all paths of the form
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Ug2(n) ® (Mg, Mo — ko, my + ko) ® by, which we'll show below.

The following is a summary of all the new elements we have found. From Equation 5.10, we have m,
new by, in the form u; ;) ® b,. From Equation 5.11, we have (my — (ko — 1)) + m, new b, in the form
Ug2(n) ® (M, my— ko, my + ko) ® by,. Equation 5.12 produces ZZ‘ZI my+k; = mymy + %ml(ml +1)
unique by, in the form u,(;)® b,. Equation 5.13 gives (m; — (k; — 1))+ my new by, in the form u,2(1)®
(mg + ky, my, my — k) ® by,. Equation 5.14 produces Zm1+k° 1+ my+i)+ D0
the form ug2(5) ® (my, my— ko, my + ko) ® by,. Equation 5.15 gives

imko+1 (my + i) new by in

D11+ mg— ko) + (my + ko — (o + Ky +1) +1)]
ko=1

new by, of the form uy2(3) ® (my + ky, moy, my — ki) ® by,. Equation 5.17 has ka22=1 (mo + k) new by,
in the form u, ;) ® b,. Equation 5.18 produces kaz L (my—ko + k) new by, in the form us2() ®
(my, mg— ko, my + k) ® by,. Equation 5.19 has 2m2+k1 (1+mg+cyy )+
form w23y ® (my + ky, my, my — ky) ® by,. Finally, Equation 5.20 gives

imky+1 (my + i) new b, in the

(— C1() my+ko—t— 10— C1()
Z (t+1)+ Z Z
ClO_O 1=

new b, in the form w23y ® (my + ¢, mo— ko, my + kg — ) ® by,.

From this summary, we see that we have:

* Total b, in the form uy () ® by:

3 3 1, 1, 1 240
1+§m0+§m1+m0m1+§m0+m2+m1m2+§ml+m2m0+5m2(m2+1): 0 )

* Total b, in the form ug2(3) ® (my + ky, mg, my — k) ® by:

my m2+k1 my 2+e
—k1+l+m0+z(1+m0+m1—k0—k1)+ Z (1+m0+C2'1)+ Z (m2+l)=( )

ko=1 cy1=1 i=k+1 £
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* Total b, in the form uq2(3) ® (my, my— ko, My + ko) ® by

m1+k0 mg my 2+€
my—(ko—1)+my + ; (1+m2+l)+i:k§rl(m1+l)+kzZ:1(mo—k0+k2)=( ¢ )

* Total b, in the form ug2(3) ® (my + i, my— ko, my + ko —1)® by:

/7

l=c)y my+ko—i—1 Z—C{,o 240
D+ D Z(l):( ) )

t=0 ¢; o=0 t=0
Therefore, we see that

Bu2,0)(A) ={ o) ® By,
Ugz(n) ® (M, Mo — ko, my + ko) ® By,
Ugz(p) ® (Mg + ky, mo, my — k) ® By,
Ug2(p) ® (m2 + ¢1,0, Mg — ko, my + ko — Cl,O) B |

ki=1,2,....,my, t=0,1, c;0=1,2,...,m;+ko}.

Next let L = 3. Then we have w(3,0) = (r,11)(1o72)(11 75) = (r211)w(2,0). So, we need only apply f;
and f; to all paths in the set Byy(2,0)(A). First, let’s apply fi to certain paths in the set Ugn) ® By. The
(1)-signature is of the form (+ o) *1), where 3, is the (1)-signature for any b, € B,. Hence, by Lemma
5.5, we have the following set of paths:

{u02(1)®(m2—k2, m0+ kz, m1)®Bg|k2 = 1,2,..., mz}. (521)

Note that we don’t need to apply f, to the paths in the set us(n) ® By because the paths that
would be produced are already paths in B,,(»0)(4). Next, let’s apply fi to paths in the set Ug2(p) ®

(my + ki, mg, my — k;) ® B;. The (1)-signature is of the form (+mg+k1 , *1). By Lemma 5.5, we have the
set

{u02(1)®(m2+k1—02,1, m0+02,1, ml—k1)®64 |Cz'1 = 1,2,..., m2+ kl} (522)

Now we can apply f; to the same set of paths. The (2)-signature is of the form (+,Cl »Fmg» >|<1). Again,
by Lemma 5.5, we have the following paths

{ug3(k)®(m0,m1—k{, my + k{)@(mz-f- kl,moyml—k1)®B[,
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ugs(,x)®(m0,m1—k1,mz+k1)®(m2+k1,m0—k0,m1—k1+k0)®B/g|
ki=1,2,....my, kl=1,2,....k}. (5.23)

Then we can apply f; to paths in the set Ug2(p) ® (Mg, My — ko, my + ko) ® B,. The (1)-signature is of
the form (+ kor +m2,>|<1). Hence, by Lemma 5.5, we have the following paths:

{MUS(A)®(mO—k6, my + k'(,), m2)®(m2, mo—ko, my + k0)®B[,

Ugs(p) ® (Mg — ko, My + ko, M) ® (my — ky, my— ko + kp, my + k0)®813|
kp=1,2,...,my, kj=1,2,...,k}. (5.24)

But if we apply f, to the same paths, we won't produce any new paths. So, let’s apply f; to the
paths in the set u;2(3) ® (m2 + ¢1,0, My — ko, my + ko — CLO) ® B;. The (1)-signature is of the form
(+k0, +Mz+cl,o’*l)' By Lemma 5.5, we obtain the set

{u0'3(7t) ® (mO — k(/), my + ké, mz) ® (mz + CI,O! mgy— ko, ny + ko — Cl,O) ® Bg,

u0-3()L) ® (mo — ko, ny + ko, mz) ® (mZ + CI,O — CZ/;I,O’ my— k() + 62/;1,0’ ny + k(] — Cl,O) ® Bg|

/ f—
Co10= 1,2,....,my+ 01,0}.
Note that we can rewrite these paths as

u0-3(1) ®(mo—k0, my+ ko, m2)®(€— i, i— 01/'0, CI/,O)®B€ (5.25)
uo-s(l) ®(m0—k0, ny + ko, m2)®(m2+ t, CO,—O_ t,ﬁ—mz— C()y_o)@Bg

/ /

1,0’ C1’0+1,...,€, Co,—0 = 1,2,...,m0—k0, and l':l,z,...,Coy_O.

where cl’y0:0,1,...,m1+k0—1, i=c

Next we will apply f; to the certain paths from the same sets. The (2)-signature is of the form

(‘ . ’_mo+m2r_m2+m1 r_m1+k0—01,0+m0—k0) *1) ’

which reduces to the following:

(+c1,0—k0, +mg—ky» *1) if ¢ 0> ky

(+m0—k0, *1) if ¢19 < ko
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(4, Fmg—ior k1) if €10> Ko

(+mg—tor 1) if €10 < ko-

Let’s break this section into cases:

Case 5.8. Suppose that ¢; o> kg andlet ky = ¢ g—ky €{1,2,..., m; }. Then, by Lemma 5.5, we obtain
the paths

{MO-S(A) ® (mo, m;— k{, my + k{)@(mz + C1,00 My — ko, my + k() — CI,O) ®B€ ,
Ugs() ® (Mo, My — ki, My + k) ® (M + ¢1,0, Mo — ko — Co—g, M1 + kg — €19+ o) ® Be{

co—0=12,...,my—ko}. (5.26)
Case 5.9. Suppose that ¢ o < k. Then, by Lemma 5.5, we obtain the paths
{UO-Z(A) ® (mz + CI,OY my— ko — CO,—O’ ny + ko — Cl,O + CO,—O) ® B[} .

But by a variation of Equation 5.16, these paths are a repeat of the paths we started with in this case.

Hence, the only new paths produced are from Case 5.8.

Next, let’s apply f; to the paths in Equation 5.21. The (2)-signature is of the form (+ ki Fmgtes >|<1).

Hence, by Lemma 5.5, we produce the new paths
{MO-Z(A) ® (mz - kz, mgy+ k2 — Cp,2, My + C(),z) ® B[} (5.27)

where ¢y, =1,2,...,my+ k,.

Applying f, to the paths in Equation 5.22, we have the (2)-signature of the form (+ ki Fmgtesr *1).
By Lemma 5.5, this application produces the new paths

{MUS(A)®(m0, nmy —k{, my + k{)@(m2+ kl —02,1, m0+ 02’1, ny —k1)®Bg,
ua-3(l) ®(m0, ml—kl, my + k1)®(m0+ Cr1— C(;;Z,l’ ny _kl + C(;;Z,l’ my + kl —C2'1)®Bg|

ki=1,2,....k1, Copy=1,2,...,mg+ o1} (5.28)
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Now, let’s apply f; to the paths in Equation 5.24. If we rewrite Equation 5.24 as

Ugs(n) ®(m0—k0, m; + ko, m2,)®(m1, mo—ko, my+ ko)@Bg [1]
Ugs) ® (Mo — ko, my + ko, 1, ) ® (my — ky, Mo — ko + ka, my + ko) ® By (2]

Ugs(p) ® (Mg — ko, my + ko, my,) ® (mz, moy—ko— co—o, My + ko + Co,—o) ®B, [3]

then we can break this application of f, into three cases.

Case 5.10. First, note that the (2)-signature on [1]is of the form (+ Mg—ke» *1). This action will produce
the same paths as in [3]; hence, no new paths are produced.

Case 5.11. The (2)-signature on [2] is (+ My—ko+ky» >|<1). So, by Lemma 5.5, we have the paths

u03(1)®(m0—k0, ny +k0, m2)®(m2—k2, mo—k0+k2—l, nmy +k0+ 1)®Bg

u03(1)®(m0—k0, ny + k(), m2)®(m2—k2, mo—ko + k2—2, my + k0+2)®Bg ( 29)
4 5.

Ugs(p) ® (Mg — ko, my + ko, M) ® (my — ky,0,my + my+ k) ® By

Case 5.12. Finally, the (2)-signature on [3] is (+m0—k0—c0,_0,*1)- Hence, by Lemma 5.5, this action
produces the same paths as in [3].

Next, let’s apply f to the paths in Equation 5.25, which are of the form

Ugs(a) ® (Mg — ko, My + ko, my) ® (€ —i,i— €1 o0 Cl,,()) By (1]

uUS(A) ® (mo — ko, my + ko, mz) ® (mz +1, Co,—0— t,é —my— CO,—O) ® B[ [2]

where ¢];=0,1,...,m;+ko—1,i=c]gc{+1,....0, co0=1,2,...,my— ko, and t =1,2,..., ¢y .
Let’s also break this into cases:

Case 5.13. For [1], we have the (2)-signature of the form (...,—m0+m2,—m2+ml+k0,—C{0+,-_leo,*1),
which reduces to
(+m1+k0; _Cl/,0+ifcll,0, *1) = (+Cl,0r +i7€1/,0’ *1) = (+Cl,0’ +z *1),
where z =0,1,...,{— cl’ o- Hence, by Lemma 5.5, we have the paths
Ugs() ® (Mo — ko, my + ko — Cl/,O’ my + 61/,0) ®b,®B (5.30)
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for specific b, € B.

Case 5.14. For [2], we have the (2)-signature of the form

(' o TmoFmyr Tmy t kg Tl=my—co_o oo o—t> *1) )

which reduces to

(+m1+ko’_[—mz—co,fo-i_co,fo—t’ *1) = (+m1+ko’_m1+m0—00,70+00,70—t’ *1) = (+Co,7o—t’ *1)’

since my— ¢y_o > ky. Thus, no new paths are produced in this case, because we already have all
paths of the form w433y ® (m — ko, my + ko, m,) ® b, ® By, which we’ll show below.

Let’s summarize the paths that the operators f; and f;, have produced. From Equation 5.21, we
have an additional m, new b, in the form u;,;) ® b, ® B;. We see from Equation 5.24 that we
have an additional (my— (ko —1)) + m, new b, in the form uys3) ® (my— ko, m; + ko, my)® b, ® B,.
Equation 5.22 produced an additional Z k=1 M2 + ki=mymy,+ %ml(ml +1) unique by, in the form
Ug2(3) ® by, ® By. From Equation 5.23, we have an additional (m; —(k; — 1))+ my new b, in the form
Ug3(2)® (Mg, My — ki, my + k)®b,®B,. We see from Equation 5.25 that we added Zm1+k° 1+my+i)+
Z:"Ok +1 (my + i)new by, in the form w33 ®(my — ko, my + ko, m,)® b, ®5,. In Equation 5.26, we have

k 0 [(1+ mg— ko) + (my + ko — (ko + ky + 1)+ 1) new b, of the form ugs)®(mg, 1y — ki, my + ki )®
b, ® B;. From Equation 5.27, we produced Z Ky (mg + k) new by, in the form ug2()® b, ® B,. Equa-
tion 5.28 produced Zk >, (mg— ko + k) new by, in the form uqs(y) ® (mg, my — ki, my + k) ® b, ® By.
"R (L mg o)+

From Equation 5.29, we have Z L (my+i) new b, in the form Ugs(p) ®

i=k)+

(mo — ko, my + ko, my) ® by, ® By. Flnall , we see from Equation 5.30 that we have (t+1)+
Y = 0

Zmﬁko_t lztzol‘o (1) new by, in the form wuys(3) ® (mg — ko, my + ko — ¢1,0, M2 + €19)® b, ® By

[
CLO—O

From the above list, we see that we have:

* Total b, in the form uy2(3) ® by, ® By:

3 3 1, 1, 1 2+¢
1+§m0+§m1+m0m1+5m0+m2+m1m2+5m1+m2m0+5m2(m2+1): 0 )

* Total b, in the form uqs(3) ® (Mo — ko, my + ko, m,) ® by, ® By:

m1+k0
24/
—(kp—1)+my+ Z (1+my+i)+ Z (my+1i) +Z:(m0 ko + k) = ( )

i=1 i=ko+1 k=1 ¢
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* Total b, in the form uys(3) ® (Mg, my —ky, my + k) ® b, ® By:

my mo+ky my 244
—(k1—1)+m0+z(1+m0+m1—k0—k1)+ Z (1+m0+CZY1)+'Z (m2+l):( i )
k():l 62,1—1 l:k1+1

* Total b, in the form uys(y) ® (mo — ko, my +ko—c1,0, My + 01,0) ® b, ®By:

— Cll() m1+k0 i—14— Clo
24/
Soene > Sw=(*)
=0 c 0—0 t=
Therefore, we see that
Bw(30 {ng-z ®Bg,

Ugs(n) ® (Mo — ko, my + ko, m3) ® By,
Ugs(p) ® (Mg, My — k1, My + k1) ® By,
ua-S()L) ® (mo - IC(), my + k() —C1,0 My + Cl,O) ®B[ |

k;=1,2,....,my, t=0,1, c;0=1,2,...,m;+ko}.

Now, suppose we have explicit descriptions of By, )(A), for L = 1mod 3, L =2mod3, or L =
0 mod 3. We want to show that our explicit descriptions hold for By, (1. +1,0)(A).

First, let’s suppose L =1 mod 3. Then L +1 =2 mod 3. Note that
w(L+1,0)=(r—gr—) w(L,0)=(ryr2) w(L,0).
Hence we only need to apply f, and f; to certain paths in the set

By ={u;® BgL_l,
Ug(2) ® (Mg + ko, My, mo— ko) @ B,
Ug () ® (M) — ky, My + ey, mg) @ B,
Ug(n) ® (m1 + ko— 1,0, My + €19, My — ko) ® Bf_l}

The only difference between this case and the case when L =2 is the rightmost L —1 components,

BZL*I, in the tensor product. So, by the same process as in the case when L =2 and by Lemma 5.5,
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we have

Byr+1,0N) ={uopmy® B/,
Ug2(2) ® (M, Mg — ko, My + ko) ® B,
Ug2(2) ® (M + ky, Mg, my — k1)®BgL,

MO-Z(A) ® (mz + 01’0, mgy— ko, nmy + ]C() — CI,O) ®B;J}
Next, let’s suppose that L =2 mod 3. Then L+ 1 =0 mod 3. Note that
w(L+1,0)=(r—rr—)w(L,0)=(r2r) w(L,0).

Thus, we only need to apply f; and f, to certain paths in the set Byy(1,0)(A). But this case is exactly
the same as when L =3, except for the rightmost L —1 components, BgL_l, in the tensor product. So,

by Lemma 5.5 and by using the same process as in the case when L =3, we have

Bw(L+1,0) A= { Ug2()) ® BL,
uy ® (my— ko, my + ko, m2)®BZL,
u; ® (my, my —ky, my + k1)®B;,

U ® my— ko, ny + ko— Cl,O’ nmy + CI,O’)®B;}
Finally, let’s suppose that L =0 mod 3. Then L+ 1 =1 mod 3. Note that
w(L+1,0)=(r—rr—r)w(L,0)=(r1ro) w(L,0).

and hence we need only apply f; and f; to certain paths in the set Byy(1,0)(A). Let’s apply fp to certain
paths in each of these sets:

Case 5.15. Let f, act on certain paths in the set Ug2(n) ® B[L_l. The (0)-signature is of the form
(+m2,>|<1, . ~»*L—1)- By Lemma 5.5, this produces the set {u;t Q(mg+ ky, my, my— k) ® BZL_I}.

Case 5.16. Now let f; act on certain paths in the set u; ® (mg — ko, m; + ko, m,) ® BZL_I. We have the
(0)-signature of the form (+ ko» Ty K150 L—l)- By Lemma 5.5, this produces the paths

{MU(A) ®(m1 + k(/), my, mo—k(,])®(m0—k0, my + ko, m2)®8;_1,

Ugn) ® (Mg + ko, my, my— ko) ® (Mg — ko + ko, my + ko, my— k) ® BgL_I,}

where k[ =1,2,..., k.
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Case 5.17. Next, let fj act on certain paths in the set uy ® (m9, m; —k;, my +k;) ® B[L*I. The (0)-

signature is of the form (+m2+k1 ST L—l)- Lemma 5.5 implies that we have the set
-1
u,1®(m0+ngl,ml—kl,m2+k1—62,1)®35 ,

where ¢, =1,2,...,my + k.
Case 5.18. Finally, let f; act on certain paths in the set 1, ® (mo — ko, my +ky—cy 9, my+ Cl,o) ®B€L_1.
The (0)-signature is of the form (+k0’+m2+cl,0’ Kireees >|<L_1). By Lemma 5.5, we have

{ugpy® (my + k), my, mo— k) ® (mo— ko, my + ko— c1,0, M+ ¢10) ® Bf ™,

/ / L—-1
Ug () ® (M + ko, My, my— ko) ® (mo —ko+¢yq oMy + ko— €10, M2+ C10— 62;1,0) ®B, } ,

where 02/;1,0 =1,2,...,my+cyp.
Currently, we have the following:

* Total number of b, in the form u, ® b, ® B} ™"

Lot 1o
my + z (m2+k1)+1+m0+m1 +Z(l+m1)
k=1 i=1

¢ Total number of b, in the form u ) ® (my + ko, my, my— ko) ® b, ® Bf_l:

m1+lc0 my
(mo—(kg—1)+my+ > (L+my+i)+ D (my+i).
i=1 i=ky+1

Next, let’s apply f; to certain paths in Byy(1,0)(A):

Case 5.19. Let f; act on certain paths in the set Ug2(2) ® BfL_l. We have the (1)-signature of the form
(+m0,>|<1, .. .,*L,l). By Lemma 5.5, this action produces the set u; ® (my— kg, my + ko, m,) ® BZL_I,

which we already have.

Case 5.20. Letting f; act on any path in the set u; ® (my— ko, m; + ko, 1) ® BEL_1 produces no new

paths.

Case 5.21. Let f; act on certain paths in the set u; ® (mg, m; — ky, m, + k;)® BlL_l. The (1)-signature
is of the form (+k1 R NE ST *L_l). By Lemma 5.5, we have the following paths:

{MU(A)®(m1_k{’m2+k{’m0)®(m0rml_klym2+kl)®BgL_1»
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UM@(ml+k1,m2+kl,m0)®(m0—k0,m1—k1+k0,m2+k1)®BeL_l}.

Case 5.22. Let f; act on certain paths in the set u; ® (mo — ko, my +ko—cy,0, My + Cl,O) ® BZL_l. The
(1)-signature is of the form

(' .. r_m0+m2’_m2+m1 ’_m1+k0—()1y0+m0—k0’ *17 LR *L—l) ’
which reduces to
+CIO k'()’ mofko’*IY""*Lfl) if Cl,0> kO
Fimg—kgr K15 -+ »*L—l) ifci9<ko

(
(
(+k1r+m0 koK1, k1) if €1 0> ko
|«

Fimg—ky» K1 - - »*L—l) if ¢ < k.

Subcase 5.22.1. Suppose ¢ o > ky and let k; = ¢; o — ky. Then, by Lemma 5.5, this action produces
the following paths:

-1
{ua-()t) ®(m1 — k{, my + k{, m0)®(m0— k(), ny + ko — Cl,O’ my + Cl,O) ®B€ y
-1
Ug(n)® (My —ky, my + ki, my) ® (mo — ko — Co,—0, My + kg — C1,0+ Co,—0, M2 + CI,O) ® B, },
where ¢y _¢=1,2,...,my—ko.

Subcase 5.22.2. Suppose c; o < ky. Then the (1)-signature is (+m0_k0). Hence, by Lemma 5.5, we
have the paths u); ® (mo —ko— co—g, my + ko— 1,0+ Co—o, My + 61,0) ® B[L_l, which are the same as
uz, ® (mo— ko, my + ko — ¢1,9, my + ¢19) ® BF . But we've already obtained this paths.

Now, we currently have the following paths:

* Total number of b, in the form u; ® b, ® BgL_lz

m2+z m2+k1)+1+m0+m1+z i+m).
kll i=1

¢ Total number of b, in the form u; ) ® (my + ko, my, my— ko) ® b, ® B[L_lz

m1+k0
(mo—(kg— 1)+ my+ > (1+my+i)+ Z (my +1).
i=1 i=kp+1
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* Total number of b, in the form uy(z) ® (my —ky, my + ky, mg)® b, ® B/ '

My
(my—(ky = 1)+ mo+ > (14 mo—ko+m; — k).
ko=1

Finally, let’s apply f; to certain paths produced when applying f; to Buy(r,0)(A):

Case 5.23. Let f; act on certain paths in the set u; ® (mg + k, my, my — k) ® B[L_l. The (1)-signature
is of the form

(+m0+k2) L SERRE *L—l) .
By Lemma 5.5, we have u; ® (mg+ ky — ¢o 2, my + 0, My — k) ® BEL.

Case 5.24. Let fj act on certain paths in the following sets:

Uy ® (M + ko, My, Mg — ko) ® (Mg — ko, My + ko, M) @ BF ™ (1]
Ug() ® (M + ko, M, Mg — ko) ® (Mg — ko + Kz, my + ko, My — k) ® B2 [2]

Ug () ® (M + ko, My, Mo — ko) ® (Mg — ko — o0, Mg + ko + Co—9, M) @ B 2. [3]
Subcase 5.24.1. Let f; act on certain paths in [1]. The (1)-signature is of the form
(+mg—kegr 10+ k11 -
By Lemma 5.5, we have
Ug ) ® (M + ko, My, my— ko) ® (mo —ko— co—o, my + ko + oo, mz) ® B(f_l,

which is the same set of paths as in [3].

Subcase 5.24.2. Nextlet f; act on certain paths in [2]. The (1)-signature is of the form
(+m0—k0+k2’ *1’ ce) *L—l) .
By Lemma 5.5, we have

{MU(A)®(WZ1+1€0,mg,mo—k0)®(m0—k0+k2—1,m1 +k0+1,m2—k2)®l3f_1,
MU(}L)®(m1+ko,mz,mo—k0)®(mo—k0+k2—2,ml+k0+2,m2—]€2)®B;‘_1,...,

Ug () ® (M + ko, my, my— ko) ® (0, my + my+ ky, my — k) ® BgL_l}-
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Subcase 5.24.3. Finally let f; act on certain paths in [3]. The (1)-signature is of the form

(+m0_k0_00,70’ *1) ey *L_l) .

But by Lemma 5.5, this action will also produce the same paths as in [3].

Case 5.25. Next let f; act on certain paths in the set u; ® (mo +Co,1, My —ky, my+ky — cz,l) ® BZL_I.
The (1)-signature is of the form (Jrk1 yFmgresr K- >|<L_1). By Lemma 5.5, this action produces the
following paths:

{ua(l)®(m1—k{; my + k{y m0)®(m0+ C21» ml—kl, m2+k1—cz,l)®BZL_l,

/ / L—-1
Ug(n)® (my —ky, my + ky, m0)®(m0+ €21~ Cpp 1 M1 — K1+ o 1, M2+ Ky —02,1)®B€ },

where 06;2,1 =1,2,...,mp+cy;.

Case 5.26. Finally, let f; act on certain paths in the following sets:

th (2 ® (1 + Ko, iz, mo — ko) @ (i — e i)eB/~! [1]

u ) ®(m1 + ko, My, my— ko)@(C(),_o— t,e—mz— CO,—O’ my + t)@BeL_z [2]

where ¢/ ;=0,1,...,my+ko—1,i=c{, ¢/ o+1,....,0, ¢ 0=1,2,...,my—ko,and £ =1,2,..., ¢y .

Subcase 5.26.1. Let f; act on certain paths in [1]. The (1)-signature is of the form

( +i—cl’,0’ *b---»*L—l)
(+m1+k0’ 1 +i- 010’ L SERR ’*L—l)
(
(

+m2’ m2+m1+k0» 10

+ClO’ i— clo’*ly ;*L—l)

+ClO’+Z’*1’ I*L—l))

where z=0,1,...,{ — CI/,O' By Lemma 5.5, we have the set of paths
Ug() ® (M) + ko — CI/YO, m, + CI/YO, my—ko)® b, ® BKL_l

for specific b, € B.

Subcase 5.26.2. Letting f; act on certain paths in [2], we have (1)-signature of the form

(' b ’_m0+Tn2’ _m2+m1+k0’_Z—mz—col,0+co_,0—t’ *1’ e *L—l)
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= (+m] +ky» _Z—mz—CQV_Q-"_CO'_O—t’ *1 IR *L—l)
= (+m1+k0’ _m1+m0—00'70’ +CO,7()_t *1 yeeoy *L—l)

(+c0‘,0—t, Kireeos *L—l) .

Hence, no new paths are produced in this case.

Thus, we have obtained the following paths:

* Total number of b, in the form u; ® b, ® B/ ™"

my my my 2+£
mz+Z(m2+k1)+1+m0+m1+2(i+m1)+Z(mo+k2):( . )
k=1 i=1 k=1

* Total number of b, in the form uy(z) ® (my + ko, ma, my—ko)® b, ® B/ "

my+k My 1112 244
(mo— (ko — 1))+ my + Z (1+m2+i)+.z (m1+i)+2(m0—k0+k2)=( ) )
i=1 i=ky+1 k=1
¢ Total number of b, in the form u; ) ® (my — ki, my + ki, my) ® b, ®B[L_1:
my my+k m; 240
(ml—(kl—l))+m0+1;(l+m0—k0+m1—k1)+C;1 (1+m0+(:2'1)+i:l;r1(m2+i):( ) )

¢ Total number of b, in the form u; ;) ® (m1 +ko— 1,0, My + €19, My — ko) ®b,® BZL_I:

l—c], ko—t—1¢—¢],
S S (1)

t=0 Cll 0:0 =0

The next Corollary follows directly from Lemma 5.7.

Corollary 5.8. Let A = myAg + mA; + myA, € PF, where A(c) = (. Then the Demazure crystal
By1,j(A) for Uq(A(zl)), where j =0,1,2, can be explicitly defined by one of the following descriptions:

1. If L=1mod 3, then

Byr,0(A) = { U, ® BgL_ly
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-1
Ug(n)® (My + ko, my, my—ko)® B, ",
-1
Ug(n)® (Mg —ky, my+ ki, my) @B,
-1
Ua(/l)®(m1+ko—01,0rmz+Cl,()ymo—ko)@Bg |

ki=1,2,...,m;, t=0,1, c;0=1,2,...,m, +ko},

By ={uae B/,
Ug(n)® (my —ky, my + ky, m0)®BZL_1,
Ug(n) ® (Mg, My —ky, My + k) ® BZL*I,
Ug(2) ®(m1 —ky,my+ky—cyp,my+ cz,l)®B[L_l |

ki=1,2,...,my, t=1,2, ¢, =1,2,...,my+ki},

BuwyM)={w, ®B/7",
Ug(n) ® (Mg, My —ky, Mo+ k) ® BZL_I,
o) ® (M + Ko, ma, mo— ko) ® By ™,
Ug(n) ® (ml + Co,2, My —kp, Mo+ kp — C(),z) ®B[L_1 |

ki=1,2,....,m;, t=0,2, c2=1,2,...,my+ks}.

2. If L=2mod 3, then

BuoM)={usmy® B/,
Uor2(2) ® (Mg, Mg — ko, 11 + ko) ® B ™,
Ugz(2) ® (M + Ky, mg, my — ky)® B},
23 ® (M + €10, Mg — o, 11 + Ko — €1,0) @ By 7 |

k,=1,2,...,m;, t=0,1, ¢;0=1,2,...,m, +ko},

Byi,n(A)= { Ug() ® B[L_l,
Ug2()) ® (my+ky, my, my —kp)® BEL_I,
U2 ® (M — Ky, g + gy 1) ® By,

L—-1
MUZ()L)®(m2+kl—Czyl,m0+02’1,ml—k1)®86 |
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kt:1,2,...,mt, t:1,2, C2'1:1,2,...,m2+k1},

BN ={usmy® B/,
23 ® (M — Ky, g + gy 1) ® By,
Uer2(3) ® (Mg, Mg — Ko, 11 + ko) ® By,
g2(2) ® (g — kp, Mg + kp — Co 2, 11 + o 2) @ By ™ |

kt:1,2,...,mt, t:0,2, C0'2:1,2,...,m0+k2}.

3. If L=0mod 3, then

Bur0) (M) ={ug22)® By,
uz ® (my— ko, my + ko, my) @ B,
u; ® (mg, my — ki, my + k1)®B£L_1,
Uu;® (mo— ko, my + ko —cy 0, my + CLO) ®BZL_1 |

k,=1,2,...,m;, t=0,1, ¢;0=1,2,...,m; +ko},

Bu,n (W) ={us2®B; ™,
uy; ® (mg, my —ky, my,+ k1)®BeL_1,
u; ®(mo+ky, my, mz—k2)®BéL_1,
u ®(m0+ Co,1, My —ky, my+ k) — 02,1)®84L_1 |

k,=1,2,...,m;, t=1,2, ¢;,;=1,2,....,my+ki},

Bur2) (M) ={ug22)® By,
u; ®(mo+ky, my, my— k2)®B£L_1,
u; ® (mo— ko, my + ky, m2)®B€L_1,
U);® (mo +ky— o2, my + Co2, My — kz) ®BEL_1 |

k;=1,2,...,m;, t=0,2, coo=1,2,...,my+k,}.

Corollary 5.9. For A= myAy+ m;A; +myA, € PT, where A(c) = {, we have the following property for
the Demazure crystals By, jy(A) for U, (A(Zl)):
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1. U Bw(L,j) A)= Ug(2) ®B€L
>0

2. ﬂ Bw(L,j) (A)=uy ®BZL_1.
720

Proof. Asinthe A=/(A; case, we note that w(L, j)= w(L, j + n+1). Hence, we have:

n
U Buw.y = Buw. (),
j=0 j=0

n
m By, j(A) = ﬂ Buyr, j(A)
j=0 j=0

The proof follows precisely from Corollary 5.8. Suppose L =1 mod 3. Then
2
() Buotz.y (M) = Buu(z,0) (M) N Buyr,1)(A) N Bz, (A).
Jj=0

But the only sets of paths that By, ¢)(A) and B,(;,1)(A) have in common are
L1
{ua(l) ® (my —ky, my+ ki, my) ® B, }
and
U)® BEL_I .
Since By, (1 2)(A) only contains u; ® B[L_l out of these two sets, the intersection

2
By, jyM)=u @B}
j=0

for L=1mod3.

For the union, we have

2
Bz, j)(A) = Buy(1,0)(A)U Byy(1,1) (A)U Bz, 2)(A).
=0

J
From By,(; o) (A), we have

my
1
1+m0+m1+2(m1+k0)=1+m0+m1+m0m1+§m0(m0+1)
k()=l
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unique by, in the form uy(;) ® b, ® B{~'. From B,(;,1)(A), we add
ny 1
my + Z (m2+k1): m2+m1m2+—m1(m1+1)
2
k1:1
new b, in the form u,(;) ® b, ® B{~'. From By,(;5)(A), we add

my

1
Z (mo + kz) =mymy+ zmz(mz + 1)
ko=1

new b, in the form v, ® b, ® BeL_l. So, altogether we have a total of

1 1 1
:1+m0+m1+m0m1+zmo(m0+l)+m2+m1m2+Eml(m1+1)+m2m0+§m2(m2+1)

3 3 3 1 , 1 , 1,
:1+§m0+§m1+§m2+m0m1+m1m2+m2m0+Emo+—m1+—m2

2 2
(24!
S\
unique by, in the form 1, ® b, ® B/ . Thus,

2
U Buw.y (V) = o2 ® B}
j=0

for L =1 mod 3. Note that for the other two cases of L, we have a similar argument. O

86



Chapter

6

Ug (sl(n+1,C))-Demazure Crystals

In this chapter, we describe a specific property for Demazure crystals B,,(A) of Uq(A(nl)), and give al-
gorithms that help us find a sufficient Weyl group sequence for obtaining certain paths in this crystal.

Letg =A(,p, let A= myAg+ myAy +---+m,A, € PT, where my+ m; +---+ m, ={, and let B, be the
perfect crystal of level £ for U, (A(nl)). Also recall that my = m,,,;, and recall Equations 5.1-5.6 from
Chapter 5.

Our goal is to build an algorithm that will provide a sequence of Kashiwara operators such that when
applied to the ground-state path u, it produces u,,) ® b,, for some b, € I3,. We use the following

two lemmas to help build such an algorithm.

Lemma 6.1. We can obtain any A-path of the form us.1()® b, ® b, ® p;, where

by=(mpi1, Mpy2,..., Mptioy, Vi Vig1, Mpyit, ..., M)
such that v; < my;, b, is some element in 3;, and p; € lS’eL_l, by applying fik"fi’i"fl to a path in
Ugi-1(2)® B for sufficiently large k; and ki, .
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Proof. According to Equation 5.5, the set uy1-1(3) ® BeLfl has (i)-signature of the form

(+m,-+L,1’*1»*2y--~,>l<L_1).

Hence, by Lemma 5.5, letting f; act on certain A-paths in the set UgL1(3) ® BZL_I a sufficient number
of times will produce the set ;1.3 ® f; (bgHm) ® BZL_l. However, we want f; to act on the (L +1)°!
component from the right, not the L'" component. If we look at the form of the (i)-signature for

Ugi-1(2)® Bf ' more carefully, we see that we have

(' o T Tmiep Tmgy Tmg o KK *L—l) .

Now, in order to keep pluses in the (L +1)%’ component of this (i)-signature, we need there to be
fewer than (m;, ;) minuses in the L'" component. The only way to do this is to let f;,; act on certain

A-paths in the set Uy 110, ® Bf ™" a sufficient number of times to produce the set of A-paths
-1
UgL(p) ® bﬂ ® Bg . (6.1)
By Lemma 5.5, this is possible, since the (i + 1)-signature on u;z-1(;) ® BZL_l is of the form

(+mi+L’*1,*2»---;*L—l)-

Now, suppose that b, = f5'7"!

P (bgH( ,1)). Then the (i)-signature on the set in Equation 6.1 is of the

form

(' o T T Tmien Tmg o Tmi—zin Tm o K- *L—l)

:(+Zi+1’+mi+L—l’*1’ e ’*L—l)'

Hence, by Lemma 5.5, we can apply f; a sufficient number of times to certain A-paths in the
set in Equation 6.1 to obtain the desired set of A-paths ugs1n(3) ® b, ® b, ® BZL_I, where b, =

(Mpi1, Mpga, o, Mpyi1, Uiy Vigl, Mpgiga, .- M), U <My g O

Lemma 6.2. Choose b, = (M1, Miio,..., Miyi_1, Vi, Vig1, Miqito,..., M) E By, where v; < m; 1
for somei =0,1,...,n. We can obtain the A-path us.® b,®b,, ®b, ,®...®Db,, for bup =

L-1

ZitL—p Zi+L—1

fivi—p (Bor1(2)) € By, forp =1,2,..., L—1, byapplying f; [ -+ f741, forsomez;, ziy1, ..., Zis1-1 €
Zsq such that z; < z;,, to the ground-state path u; = uqs() ® (my, my, ..., my).
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Proof. We'll prove the lemma using induction on L. Let L =2. By Lemma 6.1, we know that

FE P (u) = ugey @ by® by,

where b, = (mg, my,..., M1, Vi, Vit1, Misg, ..., M), V; < Miip, and z; < z;4,. Hence, we've proved

the base case.
Note that fz’*1 (Up) = ugn)®(my, My, ..., Miy1—2i41, Mis2+Zis2, Miys, ..., M), which has (i)-signature

(e Ty T Tmin Tmio Tmin—zin +mi) - (+Zi+1 v tm )-

And so, applying f;* to the A-path f; Z’”(u 2) will only affect the second component from the right,
which implies that b, = f(b;) and by, . = f;;+' (by())-

Hr—1 i+1
Now, let z; < z;,, for p=1,2,..., L—2. And suppose that
FEf e fE 2 (up) = Ugray® by® by, ,® by, . ®...8 Db,

where b, = fii ;(bap-l(,l)) € By, forp=1,2,...,L—2. We want to show that

FZi 7z FZiil— _
FOR o (up) = ugry®b,®by,  ®by, ,®...0by,,

where by, fli’zL; (bor1(3)) € By, for p=1,2,..., L— 1. By the inductive hypothesis, we have

F2i+1 £2i+2 F2i+L—1 —
fi+1— i+£r “'fi+2—1 (ul)_ uU"‘](/U®b.UL 1®b,UL 2®bML 3® ®b.ul’

WheI'Eb lilzL;;(bg.p—l(/l))EBg,fOI‘p:l,z,...,L—l.

Note that

~Zi4L—
by, = fii1oy (Bor)

= (mp’ Mpitsee s My 1~ ZigL—py Myt Lt ZigL—py My 141541, mp+n) .

Hence, the (i)-signature for bup is (_mmﬁmpfm)’ unless p+i=i+L—1or p+i=i+ L. Note that
ifp+i=i+L—1,then p=L—1. Inthis case, we have the element b,, , which has (i)-signature

(_mp+i_zi+1+mpfl+i)' Ifp+i=i+L,then p=Land bup is not defined.

L-1’
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Thus, the A-path w12 ® by, , ® by, ,®...® by, has (i)-signature

Ur—
(' om0 Tmi =z Tmi— Tmie o Tmi s T s im0 Tmn Ty )

= (+z[+1"L—1’ - 2)-.-,92 +m,~) .

So, we can apply fiz" to the A-path us1® by, , ®b,, ,®...® b, to produce the A-path

UgL(p) ®f;z,- (bUL—l(;L)) ® bukl ® b,usz ®...8 bul

= uUL(M®b,,® bu ®b

L-1 Ur—

®...8by,.

Therefore, £ f;5" -+ f5) () = gL ® by® by,  ® by, , ®...® by, which is what we wanted to

show. O

Given the ground-state path uy = ugs) ® by = ugp) ® (Mg, my,...,my,, my), we want to obtain
Ug(p)® by = Ug) ® (U1, U, ..., Uy, 1p). The following algorithm provides a sequence of Kashiwara
operators such that when applied to u, it produces u;() ® b,,.

Algorithm 1: To construct the necessary sequence of Kashiwara operators, do the following:

1. Find all v; such that v; > m;, i =0,1,2,...,n. Label them (in order of appearance in the
(n+1)-tuple) as vy, vg,, ..., Vs, where 1 <r <n+1. Define z;, =0.

2. If s; =1, then skip this step.
Otherwise, we know that v; < m, forall t =1,2,...,s; —1. So, recursively define z; = m; — 1
and z, =z, ,+m,;—v, for t =2,3,...,5,—1. Hence, we'll need f;ﬂ[l - [ fi7 as part of the
sequence.

3. Compute d; = v5, —m, — z5_;. Define
(dy)y = max{vsl — Mg —Z5-1» 0}

and

(—dy), = max{ms1 +2z51— vsl,O} .
Let z;, =(—d;);. The sequence becomes

Fedy), FEo-tHd)s  zziHdy)s Fdy)
fs(l n 31_111 1*,._]0121 l+ﬁ) U+
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4. Do the following forg=2,...,r.
Letz;, =z, 1+my—v, fort =5, 1 +1,5,1+2,...,5—1. Compute dg = Vs, — M, — Zs,—1.

However, if s, =0, then set d, =0 and z, = 0. Define
(dg)y =max{vsg —ms, —zsg_l,O} (6.2)
and
(—dg)s :max{msg +25,1— vsg,O}. (6.3)
Let z;, = (—dg).
Note that after repeating step 4 for all g, the sequence becomes
f"(—dr)+ FZs,—1+(dr )+ . f“zsr_1+1+(dr)+ f(_dr—l)++(dr)+ 725,y —1+H(dp ) Hd 1)+

Sr sr=1 Spa+l Sr—1 Spa1—1

. o A s o) Hdr)i ),
Sr—2+1 Sr—2

._f”zsl+l+zl(=2(di)+f\’(_dl)++2;:2(di)+f“zslfl+zg=1(di)+

s+l $1 51—1
BRI CANE) YIRCAN
h fo :
) . ~Z;y ~Z;y*1 "’Z{ "‘Z(/)
Let’s rewrite the sequence as f;, " f 7y - fi f*-
5. Next,letz;, =z, 1+m;—v,fort=s,+1,s,+2,...,n.
Then we also need the following in the sequence:
Fz, Fan—l sl
fnnfn—l '”fsr+1 :
Then the entire sequence becomes
£z, F2n—1 Flsp+1 ~'Z:‘r ~Z;r71 ~Zi ~z(/)
fn fn—l s+ fsr fs,—l 1 Jo oo
which we'll rewrite as
20 7Zn_ ) 7Z] 7%,
N/ SR (R
where
z,=2, fort=s,+1,s,+2,...,1, (6.4)
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.
zZ,=2z,+ Z (d;)s for t = 54, whereg=1,2,...,r, (6.5)
i=g+1
r
z;:zt +Z(di)+ fort=s, 1+1,8,1+2,...,5,—1, whereg=2,3,...,r, (6.6)
i=g
.
z,=2z, +Z(di)+ fort=0,1,...,5—1and z,=0. (6.7)
im1

6. Finally, we want to rearrange the current sequence so that no f; occurs after fi,;.

First, note that there exists some *€{0,1,..., n} such that z;* =0. How do we know this? Let’s
prove this by contradiction. Suppose that z; #0 for all i, i.e. z; >0 forall i € {0,1,..., n}. Then
since

/ — P
zg, = (—dg)y = max{msg + 25,1~ vsg,O}

we have that ms, + 25,1 — Vs, >0, which implies that (dg), = 0 for all g. This implies that

r r
20 = Z0+Z(di)+ =0+Zo= 0,
i=1 i=1

which is a contradiction. Hence, there exists a t* such that z;* =0.

Then, the sequence becomes
~z' ~z! ~z/ ~z! 7! =z
n n—1 t*41 t*—1 1 0
T fn—l "'ft*+1 fz*—l U1 Jo
which we’ll rearrange to

/ ’ / ’ ’ /
g 521 FZy FZ, R it
F' — t*—1 1 0 n n—1 t¥+1
t* =1 T J1 0 f;’t f;1—1 B P (6.8)

where zJ, .| #0. When we apply this sequence of Kashiwara operators to u,, we will obtain

Ugn) ® b,.

Example6.3. Suppose by =(5,7,2,1,3,2)and b, =(2,8,1,2,1,6). We'll use the algorithm to construct

a sequence that when acting on u,, produces u;(3) ® b,,.

1. We first find all v; such that v; > m;. Hence, we have

Vs, =l =8>7=my,

Us, = Uy =2> 1=,

92



Chapter 6. U, (sAl (n+1, C))—Demazure Crystals

Vs, = Vg =6>2=my.

Also, let zy =0.

2. Since s; # 1, we will complete this step. We have
leml—l)1=5—2:3.

Hence, we currently need f;° £ in the sequence.

3. Next we compute

dy=vg—mg—2z3_1=1,—my—2z;=—2<0.

This tells us that (d;), = 0 and (—d;); = 2. Thus, z, = (—d;); = 2 and our current sequence

becomes f2f3 0.
4. For g =2, we compute

Z3:Z2+m3—1/3:3

d2: USZ—mSZ—ZSZ_IZ U4—m4—23:—2<0.

Since d, < 0, we have (d,), =0 and (—d,), =2, which implies that z, = (—d,), = 2. The current

For g =3, we have

Z5:Z4+m5—V5:4,
d; =0 since s3 =0,

Z0=0.

5. We can ignore step 5 because z;, =0.

6. We just need to remove the f;o in our sequence to have it be in the correct order. Thus, the
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= [ 273 (1o ©(2,8,4,1,3,2)
= 2 (o ®(2,8,1,4,3,2))

= i (uo()®(2,8,1,2,5,2))

= Uy ®(2,8,1,2,1,6)

=Ugn)® b,,.

Example 6.4. Suppose b, =(3,4,5,1,7,6,4) and b, =(6,2,2,3,8,7,2).
1. We first find all v; such that v; > m;. Hence, we have
Vg, =11 =6>3=my,
Vs, = Uy =3> 1=y,

Vs, = U5 =8>7=ms,

Vs, = U =7>6=mg.
Also, let zy =0.

2. Since s; =1, we will skip this step.

3. Next we compute

dy=vy,—mg =v;—m; =3>0.
This tells us that (d;), =3 and (—d;); = 0. Thus, z; =0 and our current sequence becomes
AR
4. For g =2, we compute

Z2:Z1+m2—l}2:2,
Z3:Z2+m3—1/3:5,
dzzUSZ—mSZ—ZSZ_IZU4—m4—Z3:—3<0.

Since d, < 0, we have (d,), =0 and (—d,), = 3, which implies that z, = (—d,), = 3. The current

For g =3, we have
d3=vs,—Mg — 251 =Us—M5—24=—2<0,
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For g =4, we have

d4: US4—m54—ZS4_1: Vﬁ—mG—Z5:—1<O.

This means that (d), =0 and (—d,), =1, and so zg = 1.

Now the needed sequence is f f5 N r R fo

5. We can ignore step 5 because s, =6 = n.

6. We have the sequence f; £2f 2 £, f)f;}, which is not in the needed order. We need to rear-
range it to

since z; =0.

7. Let’s check the sequence:

—fofaf5f4(ug 3226764))
= 2 fs 2 (uo2y®(3,2,2,3,10,6,4))
= 2 fi (1o ®(3,2,2,3,8,8,4))

= 2 (up®(3,2,2,3,8,7,5))
=(uy(2)®(6,2,2,3,8,7,2))

= Ug(n) ® bv-
Example 6.5. Suppose b, =(3,3,3,3,0) and b, =(4,4,2,1,1).
1. We first find all v; such that v; > m;. Hence, we have

U51=U1=4>3=m1,

Vs, =l =4>3=my,

Vs, =Up=1>0=m,.

Also, let z5 =0.
2. Since s, = 1, we will skip this step.

3. Next we compute

dy=vs,—mg =v,—m;=1>0.
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This tells us that (d;), =1 and (—d; ). = 0. Thus, z; = 0 and our current sequence becomes
-
4. For g =2, we compute

dy=vy,— Mgy, — 25, 1 =1p—My—2;=1>0.

Since d, > 0, we have (d,), = 1 and (—d,), = 0, which implies that z, = 0 and the current
sequence is ;) fi 2.
For g =3, we have

Z3=Z2+m3—l/3= 1,

Z4=23+Mmy—1v,=3,

ds; =0 since s3 =0.

Hence, the sequence becomes [ 3 £ fi f2.

5. We can ignore step 5 because s, =0.

6. We have the sequence jis f fzo fi f;z, which is not in the needed order. We need to rearrange it
to

A 1 h
since z, = 0.
7. Let’s check the sequence:
AR Bw) = AR (uop) ©(3,3,2,4,0)
= (17 (us2)®(3,3,2,1,3))
= fi(up®(5,3,2,1,1))
= Ugn) ®(4,4,2,1,1)

=Ug)® b,,.

Example 6.6. Suppose by, =(4,1,3,2,4) and b, =(1,5,5,3,0).
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1. We have

Z():O,
Vs, = =5>1=my,
Vs, =13 =5>3=mg,

US3=V4=3>2=m4.

2. Now, z; = m; —v; =4—1=3. Hence, we have f3f?.

3. Next, d) = vs, —my —2; | = ,—My—2z; =5—1-3=1>0. Hence, (d,), =1and z, =(—d,), =0.

The current sequence is £, f;|.

4. For g =2, we compute
d2: USg_mSZ_ZSZ—IZ Vg—mg—Z2:5—3—0:2>0.

Thus, (d5); =2, z3 =(—d,); =0, and the sequence becomes f f2 f¥ /3.

For g =3, we have

dgz US3—m53—Z33,1: U4—m4—Z3:3—2—0:1>0.

5. We can ignore this step because s, =4 = n.

6. We need only remove the last Kashiwara operator from the sequence to obtain f;' /3 f fi!, the

needed sequence.

7. Let’s check the sequence:

R w) = £ 27 (o ©(8,1,3,2,0)
= 1 (uo®(1,8,3,2,0))
= i (1o ®(1,5,6,2,0))
= Uy ®(1,5,5,3,0)

=Ug(n)® b,.
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Lemma 6.7. Suppose we have the ground-state path u, = us()® b; and the A-path us;)® b,, for
some b, € By. Then the sequence F,. of Kashiwara operators obtained using Algorithm 1 is such that
Fi(up) = ugp)® b,.

Proof. Supposewe are given u; = g (3)®(my, My, ..., My, My)and Ug)®by, = Ug1)®(V1, Vs, ..., Up, V).
And suppose we construct the sequence F;. using Algorithm 1. In order to prove that F.(u)) =

2)® b, we need to make sure that the exponent of each Kashiwara operator f; does not exceed
the corresponding m; in the (n + 1)-tuple b,; otherwise, f;(b,l) =0 and our algorithm fails. So, we
only need to show that z;, | <m,.,; and that z; ; <m + 2z, fort = t*+2,1*+3,...,t*— 1.

We recall the following notation from Algorithm 1:

0 ift=0,

zt:{(_dt)Jr’ ift:sg,gZI,Z,...,r, (69)
Zi1+m,—v, else,

zi+ 20 (d)y, ft=0,1,...,5—1,

7= z+ 2 (di)y ifr=spq,50+1.,5-1,j=23,..,r,ort=s, (6.10)

Zs else.

Now, we also recall that z/, = 0, by definition.
Remark 1. By Equation 6.10, if t =¢t*=0,1,...,s,, then (d;), =0 for corresponding values of i.

We first want to show that z/, | < m.,,. For t*+1#0, this follows directly from Equations 6.9 and

t*+1
6.10 and Remark 1. So, suppose t*+1=0. Then z/, = z/, = z, = 0. Now, shift both the ground state

path and the desired path by applying o, i.e. we have

Ug2()) @ ba(l) = Ug2(n) Q®(my, ms,...,my),

uo-z(;t)® bg(v) = Ug2(p) ®(l/2, Usyeuny Ul).

Let 3 = t*. If we use the algorithm on these paths, we'll have the sequence

/ / /

Zt* ol V+2 v‘*‘l ~Zt,, Ztv+2 "’Ztv+1
ft* T ft* =J ft (o2 ft()+1

a'( v)—z
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/

Hence, t;( 1 =T which implies by definition that z r+1

<my = Myz41, 1€, 25 < My, since
g

(V)+1)+1

filmy,mg,...,my)=(my,...,mig —1,mip+1,...,my)

(see Example 6.8).

), /
Now let’s show that z;

Then z;_ |, = 2,41 = 2, + M4 — V4. Since 2] > z,, we have that z

<my+z) fort = t*42,t*43,..., t*~1. Suppose that t+1 = s, +1,5,+2,..., 1.

/

/ /
t+1 S Zl’ + mt+1 - Ul’+1 S Zl’ + mt_'_l.

Now suppose that £ +1=s, forg=1,2,...,r. Then

=zt D (i) =(=dg)+ D (d);.

i=g+1 i=g+1

We want to show that m,,, +z; > z;

: / /
4 e thatmg +2z,—2z; , >0. So,

r r
/ /
My + 2 =2, =| My + 2+ D (di)y |—| (—dg+ D (d)y
i=g

i=g+1

=My, + Zsg—1 + (dg)+ _(_dg)+-

If (dg), #0, then (—dg), =0. Hence, m41 +2; — 2, = Mg, + 25,1 +(dg)y. > 0.
If (dg); =0 and (—dg), =0, then m;, + 2z, —z; |
If(dg); =0and (—dg), = mg, + 25,1 — Vs, >0, then

=Mms, + 25, >0.

/ / _ —
My +2, =2 = Mg, + 2 +0—(msg + 251 vsg) =V, 2 0.

/

Hence, 2,

/
<z,+my.

Next suppose that t +1 =5, +1,8,_1 +2,...,5,—1,forg=2,...,r. Then
r
2 =2+ D (di);
i=g

.
=(z;+mpy— Vt+1)+Z(di)+-
i=g
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Ift+1=s,;+1,then

r
/
Zt+l = ng—l + msg—ﬁ'l - Usg_1+1 + E (di)+

i=g
.
=(z;+ My — V1) +Z(di)+-
i=g
Since
r r
/ /
2=z =z + ) (di) =2+ ) (di)s,

i=g i=g

we have z; | = z;gil + Mg, 01— Vs, 41 S zggil +mg, 1= z,+m;y. Ifinstead, £ +1# s,_; +1, then

.
/
2y 1 =&t M — Ve +Z(di)+
i=g

.
=2Z; +Z(di)+ + M1 — Vg
i=g

=2, My — Vi

Now suppose t +1=1,2,...,5;—1. Then
-
2 =2+ ) (d)
i=1

.
=Zpt My — Uy +Z(di)+
i=1

.
=2z + Z(di)+ +T M1 — Ul
i=1

Finally, suppose that ¢ +1 = 0. Then we want to show that z; < z/, + m,. Well, by a similar argument

/

to when we proved that z;,

< Myayq for t*+1=0, if we shift by and b, by o and use the algorithm
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to find a sequence that will take us from b3 to by(,), we will obtain the sequence

/7 /

/7
fv’zt;ﬁ—l "‘fzr;ﬂf 541
t5—2 5+l e :

.
v
Thus, we have z; < z/, 4+ my, since

ﬁ(mz, ms,..., m1)= (mz, ms,...,mM; 1 — 1, miio+ 1, mMiig,..., ml).

/

Hence, z; +1

/
S Zl' + mt+1.
O

Remark 2. Algorithm 1 constructs a sequence F;., such that F.(1,) = ug(n) ® F«(by) = tg(3)® b, for
achosen b, € B5,. Since

/ / / /
_ FRr F20 £% FZrxt1
Ft*(bl)_ t+—1 """ Jo fnn 41 (mlrmZ’---)mnymO)
/
t*_l’
/ _ /
4l T By

/

/ / /
=(m1+z0—z0,...,mt*_1+zt*_2—z 1

M+ 2

/ /
,mt*+2+z ..,m0+Zn—ZO),

/
Mipxy1— zt*+1

we have the following equations:

/

Vps = Myx + 'Zl’*—l’
/

l}[*+1 = m[*+1 _Z[*+1’ (6.11)

/

vi=m;+z,,, —z;foralli #t* t*+1.

fer1 S Mypyy for t*+1=0in Lemma 6.7, let’s
return to Example 6.6. We had that b, = (4,1,3,2,4) and b, = (1,5,5,3,0). Using the algorithm,
we produced the sequence F;; = £ fz3 f~17 ﬁ)4- If instead we had produced the sequence that when
acting on by = (1,3,2,4,4) would give b,(,) =(5,5,3,0,1), we would have f, f2 /7 f;¥. Notice that

/
ty+1

Example 6.8. For further clarification on proving z

— ! — —
z —z0—4Smt;(v =my.

)42

In order to apply the sequence F;. of Kashiwara operators obtained from Algorithm 1 to the ground-
state path u;, we need the following sequence of simple reflections:

Tpe1-T1T0 T Texy1

Lemma 6.9. The sequence

Tpee1 o 1Ty Teegl
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is a subsequence of w(2, j), forall j=0,1,..., n.

Proof. Recall that w(2, j)=(rjsn—2*TjTj+n)(Tj4n-1-"-Tj417;). Notice that each simple reflection r;
appears within the first n + 1 components from the right in w(2, j). If we start at any of those r;,
we can form a sequence of simple reflections (7;,,_1 - r;417;) of length n that is a subsequence of
w(2,j). Leti =t*+1. Then we have that rn._y---r1y7y, -+ 71«41 is @ subsequence of w(2, j), for all
j=0,1,...,n. O

Corollary 6.10. We have that us,)® By C By, j)(A) forall j=0,1,...,n.

Proof. For each A-path u,(,) ® b,, Algorithm 1 produces a sequence F;; that is associated with a
sequence of simple reflections ry._1--- 11191y, - - 14«41 of length n. By Lemma 6.9, we know each of
these sequences of simple reflections is a subsequence of w(2, j) forall j =0,1,...,n. Hence, by the
definition of By, j)(A), it follows that us(1)® By C By, j)(A) for all j. O

Lemma6.11. We have that ;
U Bu, M) = gy ® By
j=0

Proof. By Lemma 6.7, we proved that there exists a sequence F;: such that F:(u3) = us(y) ® b, for
b, € B,. Each sequence F;: is associated with a sequence of simple reflections w;; = rp_y - rysya '
oflength n. Note that w;; = w(1, t} +1). Hence, uy(1)® b, € Byy1,1:4+1)(A) for each b, € By. Thus,

n
Bw(l,j)(k) 2 Ug(n) ® Bg.
=0

(-

Now we just need to show that

n
U Bw(l,j)(k) € Ug(n) ® By.
=0

In other words, we need to show that u,2(2)® b, ® By € B,,(1,jy(A) forall j =0,1,..., n. Well, by Lemma
6.1, we have that

FEF ) = 7 73 (to20) @ by @ b))

= Ug2(3)® bpl ® bpz'

This last equation implies that if any of our sequences contain f;,, first and then f;, that the second
component from the right in the tensor product will be affected. But w(1, j)=(rj4,—1 - 1j411;) for

j=0,1,...,n, which means this situation never occurs. Hence, the second component from the
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right in the tensor product will never be affected and so

n
Bw(l,j)(k) C Ugn® B,.
j=0

n
Therefore, U By, j(A) = Ug(n)® By. O
j=0
We want to extend this result to the L‘” case.
Algorithm 2: Algorithm 1 can be rewritten for the general case.

Suppose we are given
®Bf = ®( )® B}
UgL(p) ¢ = UgLa() QUM L1, M40, Mpyn, My, 0

We want to obtain

UgL+()) ® bV®B£L = ua-L+1(A)®(U1, Voy.ouy Uy, V0)®B€L.

This algorithm provides a sequence of Kashiwara operators such that when applied to specific
A-paths in the set uy.(3) ® Bf, we produce the set tgr+1(3)® b, ® By

Recall that by Lemma 5.5, we can apply f; a sufficient number of times to specific A-paths in the set
UgL(p) ®B[L to produce the set U113 ® fi(bUL( ;L))®B[L. Hence with a few notation changes, Algorithm

2 is the same as the Algorithm 1. Note that m; = m, y,od41)-

1. Find all v; such that v; > m;,;, i =0,1,2,...,n. Label them (in order of appearance in the
(n+1)-tuple) as vy, v,,..., Vs, where 1 < r < n+ 1. Define z, =0.

2. If sy =1, then skip this step.

Otherwise, we knowthat v; < my,forallt =1,2,...,s;,—1. So, recursively define z; = m; . ;—1;

and z; =z, +my,,—v, for t =2,3,...,5,—1. Hence, we'll need f;ﬂ{l ---fzzz ;Z‘ as part of the

sequence.

3. Compute d; = vy, —my 5 —2z5. Define
(di)y = max{ Usy =Mpys, —Zs—1» 0}

and

(—d)y = max{mL-rsl tZg-1— VSI’O} .
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Let z; =(—d;);. The sequence becomes

Z(—d). F%s-11(d1) Fz1+H(dy)y F(dy)
f;(l 1+ sl—lll 1+“'f121 1+ﬁ) 1+

. Do the following for g =2,...,r
Letz; =z, +mp —vfort=s, 1 +1,8,1+2,...,5,— L.
Compute dg = Vs, = Mpis, — Zs,—1. However, if s, =0, then set d, =0 and z,, = 0. Define

(dy), =max{v, —mp, —z,,1,0} (6.12)

and
(—dg)y = max{mL+sg +Zs,—1— Us,» 0} . (6.13)

Let Zs, = (—dg)s.

Note that after repeating step 4 for all g, the sequence becomes

Fl—d,), fes—Hdr)e  zasgatdn)s zod, ), Hd,), FEsa—1Hdn)etHde)s
]‘:S‘r Sr—l f?r 1+1 fSr 1 Sr—1— 1
R 1 Hdr)iHdra): * Fledy ) Hdr) o+ )
Sy 2+1 Sr—2

3 f"zsl+l+2;:2(di)+ ﬁ(—d1)++z§:2(d,-)+ fzsl_ﬁZ{:l(d)
1

s+1 s1—1

._le+21 1 f‘:_) i= 1

Let’s rewrite the sequence as

z, ~z! zz!
f?rsrfs‘il 11foo~

. Next,letz; =z, 1+my.,—v,fort=s,+1,5,+2,...,n
Then we also need the following in the sequence:

Fz, F2n—1 htd
fnznfnfl ...f‘sr:tfl.
Then the entire sequence becomes
£FZn £%n FZsp+1 Sr gr ~Z{ ~26
fn fn f fsr fs—l "'1fo’

which we’ll rewrite as
/ /
F21 £%0

~z! ~z'
fnnfnff“' 1 Jo
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where
z; =12z, fort=s,+1,5,+2,...,n (6.14)
r
Z, =2z, + Z (d;)y  fort=s,, whereg=1,2,...,1, (6.15)
i=g+1
r
z;=z,+2(di)+ fort=s, 1+1,8,1+2,...,5,—1, whereg=2,3,..., 1, (6.16)
i=g
-
z;=zt+2(d,~)+ fort=0,1,...,5y—1and z, =0. (6.17)
i=1

6. Finally, we want to rearrange the current sequence so that no f; occurs after f;,;.
First, note that there exists some t*€{0,1,..., n} such that z;* =0. How do we know this? Let’s
prove this by contradiction. So, suppose that zlf #0forall i, i.e. zlf >0foralli €{0,1,...,n}.
Then since

/
ng = (_dg )+ = max{mLJrsg + Zsg—1 " Usgs 0}

we have that m s¢ T 25,—1— Vs, >0, which implies that (dg), =0 for all g. This implies that

T r
20 = Z0+Z(di)+ =0+Zo= 0,
i=1 i=1

which is a contradiction. Hence, there exists a t* such that z;, = 0.

Then, the sequence becomes

~z! =z’ z! ~z' ~z! =z
n n—1 t¥+1 t*—1 1 0
R SRR PRI PRSI M Y
which we’ll rearrange to
/ / / / / ’
_ FEpe F21 F2 F%n FZn—1 F %41
Fo=f00 R " f2 - fla' (6.18)

Hence, if we apply each of the following Kashiwara operators

ft*+lrft*+2»---’fn—lrfn».fbrﬁ’---’ft*—l

a sufficient number of times in the given order to specific A-paths in the set uy1(y) ® BKL, we
will obtain
UgrL+i(p) @ F. (bo-L()L)) ® BZL =Ugrr() ® b,® BEL
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We also can adjust Equation 6.11 to the following:

/

Vs =Mpipe+ Zp_qy

/
U[*+1 = mL+t*+1 _Zt*+1’ (6.19)

vi=mp+z;, ,—z, foralli#t* *+1.
Example 6.12. To demonstrate Algorithm 2, suppose we are given uys(;) ® 55, where
b,=(2,1,0,4,2,3)=(my, my,..., mgy).
Hence, bys(n)=(3,2,1,0,4,2) =(my, my, ..., ms); so L=>5. Suppose we want to obtain the paths
Ugs()®(5,3,0,0,4,0)® B2, = tiy62)® b, ® B2,

1. Let zo=0. Find all v; such that v; > m;; = ms;:
Usl = U1=5>3=m5+1=m0,
Vs, = U =3>2=m5,p=my.
2. We'll skip this step because s; = 1.

3. Compute
dy =V, —Msy5 — 251 =5—3—-0=2>0.

Hence, (d1); =2, z; = (—d;); =0, and we need the sequence f,° f2.
4. Let g=2. Then
dz = USZ —m5+32 _Zsz—l =UVh—m—2z; =3—-2—-0=1>0.
So, (dy); =1, 2, =(—dy); =0, and the current sequence is f; fy f°.

5. Now compute

Z3:Z2+M5+3—V3:0+m2—0:1,
Z4:Z3+n’l5+4—l}4:1+m3—0:1+0—O:].,

Z5:Z4+m5+5—1/5:1+m4—4:1+4—4:1.
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7. Let’s check the sequence. Recall that by Lemma 5.5, we can apply the Kashiwara operators

f» fur fo» for f1, in that order, a sufficient number of times to certain A-paths in the set Ugs()®B3,

to produce the set

= Ups)® N1 f5/2(3,2,0,1,4,2)0 83,
= Ups® [ f5(3,2,0,0,52)08,
= Uyo)®[17(3,2,0,04,3)9 853,

= Uge® £1(6,2,0,0,4,0)0 B2,

= Uyo2)®(5,3,0,0,4,0)8 B3,

= Ugs(p)® b,® B?Z

Example 6.13. Suppose we are given u,10(3) ® 515, where
b, =(3,1,3,0,1,2,4) = (my, my, ..., my),
and so L =10, n =6, and b,1()=(0,1,2,4,3,1,3). And suppose we want to obtain the paths
Usn(1®(0,3,5,1,1,2,2)® B)Y = uyu () ® b, ® B}

1. Let zo=0. Find all v; such that v; > m;,; = mjo.;:

Usy =V =3>1=myp4p = ms,
Us, = U3 =5>2=Myp43 = Mg,

v33=v6=2>1=m10+6=m2‘

2. Compute

Z1=m10+1—l)1=m4—l)1=0—0:0.

Hence the sequence is f° f.
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. Now compute
dy = Vs —Mygys, — 251 = —M5—2;=3—1-0=2>0.

So, (dy); =2, z, =(—d,); =0, and the sequence becomes f f2 f2.

. Letg=2. Then
d2: vsz_ml(H»Sz_ZSz*l = Ug—mG—Z2:5—2—023>0.

Hence, (d,); =3 and z3 = (—dy); =0, changing the sequence to £ ;> > 0.
Next let g =3. Then

Z4=Z3+m10+4—l)4=0+m0—1=4—1=3,
Z5=Z4+m10+5—l/5=3+m1—1=3+3—1=5,

d3: l)ss—m10+33—Z53_1 = Uﬁ—mz—Z5:2—1—5:—4<0.

. Let’s check the sequence. Recall that by Lemma 5.5, we can apply the Kashiwara operators
fur for for for fi> f2, in that order, a sufficient number of times to certain A-paths in the set

Ugio(2) ® Bl to produce the set

= ugn® R £0,1,2,1,1,6,3) 08"
= ugnn® 5 0£2(0,1,2,1,1,2,7)0 B])
= Upnm®f5£(51,2,1,1,2,2)0B]9

= Upnn®f;(0,6,2,1,1,2,2)® B4

= Uyn®(0,3,51,1,2,2)0 B]0

= Ugnp)® bV®B}2.
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Lemma 6.14. Suppose we have the ground state path u,. Choose b, =(vy, vs,..., Uy, Vy) € By. Then
/
Ft*Ft*+1Ft*+2 ’ Ft*+L—1 (up)= UgL(2)® b,® b.UL 1 ® bHL ,®...® b.ul’
forsomeb, ,by,,...,b,, | €B,, where the sequence
o1 FEra FZpe41
Ft*—ft*_1 fz* S|
is constructed using Algorithm 2, and we define
t*+p ft*[*l-li—pft*iz-zi—p o ft*g—f-li—p’
forp=1,2,...,L—1.

Proof. Suppose L=2. Let
Uy =...0(ms, my,...,my)®(mMy, ms,...,m)®(my, my, ..., My).
Then we want to show that
FiF, (U3) = Ugza) ® (V1 Vo, ..., 1)) ® (M, My, ..., my).

We first find F,. using Algorithm 2 and then form F, This gives us the sequence

z*+1
~z! ~z’
t*¥—1 t*—Z t*¥+1 t¥—1 t* 2 t¥+1
(ft* ft* D )(ft* ft* U2 )
Then we have

(ft*t* 1ft*t* e t*ifl)(ft*t* lft*z* e t*igl)(ul)

=(fr*’* e t*ffl)(uom@(’”{’mé»-'-»mé’mé))

where
m:+2z._,, fort=t*+1
/ ! 4%
m.=y m;—z._,, fort=t*+2
m.+z._,—z._,, otherwise.
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Now, the (¢* + 1)-signature on this A-path is

(~ c T Mgy +m,*+3’_m,*+g+m[*+2’_m[*ﬂ—z;*ﬂ+m,*+1+z;*_1)
= (+Z;*+1’+mt*+l+z;*—1)'
Hence, we can apply the next Kashiwara operator in the sequence to this A-path:
FZ) FZpx_ 721 / /
(f[*t_llf[*t_zz e [*3_52) (MUZ(M ® (mz, e My — 2y ) My + Ly Mprgsy ooy ml)
®(mj,my,...,m,,my)).

The (¢* + 2)-signature on this A-path is

(‘ c _mt*+5+mz*+4’ _mr*+4+mz*+3+22*+1 ’ _mt*+3+22*+1—22*+2+mt*+z—Z;*+1)
= (+Z;*+2 ’ +mt*+2_Z;*+1 ) '
Thus, we can apply the next Kashiwara operator in the sequence to this A-path:
’ ’
FZpx_1 FZrxy3 / / / /
( 1 cee t+43 ) (uUZ(A) ® (mz, cesy m[*+2 _Zt*+1’ mt*+3 + zt*+l - Zt*+2, mt*+4 + Zl’*+2’ mt*+5, ceey ml)
/ / / /
®(m1, Mmy,...,m,, mo)).

We can continue with this process, since the (i)-signature for each new A-path will be

cey . . - . / - / /
(' ’ mz+3+mz+2’ ml+2+mi+1+zi71’ mi+1+mi)

/ / / /
(+mi+1+Zi—1_(mi+1+zi—1_zi)’ +mi)

= (et

fori=1t*+3,t*+4,...,t*—1. The key factor here is that each of the last n Kashiwara operators in

the sequence F,. F/, , will only affect the second component from the right in our tensor product.

t*+1
Hence,

F,.F/

o1 (U3) = Fr(uopy ® (my, my, ..., m), mg))

= Ugo(3) ® Epu (Do) ® (M), ms, ..., m., m))

/ / / /
= Ugo2)® by ® (M), m},...,m/,my).
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Now let’s suppose that
/ / / _
Fg*Fg*_'_ng*_'_z cee Fg*+L—1 (uy)= UgL(p) ® b,® b.ULfl ® b.Usz ®...8 bul»
where

E,. (uUH(M) ® BZL_I =Ugr(p)® bV®B;_1,

_ / / /
b.ur - (m'r’ mr+1""’mf+n)’

and each Foeyp) forp =0,1,...,L—1, only affects the (L — p)”’ component from the right in the
tensor product.

We want to show that there exists such a sequence such that when acting on u; it produces the
A-path

ugulm)@by@bm@bﬂ ®~~'®bu1-

L-1

By Algorithm 2, we have the sequence F;. where we can apply each of the Kashiwara operators in

this sequence a sufficient number of times to certain A-paths in the set u,.2)® B} to obtain the set

L %y Fe_ =20 L
F(ugrn)® B = f. 7 fiu55 frlii (o) © By

= UgL+i(p) ® by ® BZL
If we choose bu , to be the element such that

/ L—1 _ Fere1 Feres FZix -1
Floy (uorap)® Byt = 7 0 5 (ugray) @ By
L—1
=Ugi(p)® b,uL ®B€ ,

F

. . . PR
then by our inductive hypothesis the sequence F, et "

el -+ F,., 1 acting on u;, produces the A-path

UgrL() ® b.UL ® b.UL—l ®...09 bul , Where

= F’

by, = F/. 1 (bor12)

UL
=2l | FZ ~z!
R R ] t*+1
= [ T I fll (m,mp g, myp,my )
/ /
= (mL + ZVL —ZO, ey mt*+L_1 + Zpx—p — Zgx_1, mt*+L + Zpx_1)

/ / / / /
mt*+L+1 - Zl’*+l’ ml»*+L+2 + Zt*+1 - Zt*+2, ceey mL_l + z}’l—l - Zn) .
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Hence, the (¢* + 1)-signature on the A-path g3 ® by, ® b1 ®...® by, is of the form

(' o _mt*+L+2+mt*+L+1 P My L4121 +mt*+L+Zt*—1 yRi-1,KL—2)- 1) *1)

= (+Zt*+1 yFmpsrtze K1 KL-2) -+ *1) ’

where the % ; represent sequences of minuses then pluses that don't affect the leftmost z;.,, pluses,

/
t¥*+1

by the inductive hypothesis. So, we can apply fti ‘1" and it will only affect the (L 4+ 1)°* component
from the right in the tensor product.

We thus obtain the A-path:
UgL+()) @ b;@ b,uL ® b,uLfl ®...8 b,uly
’_ / /
Whel'e bV —_ (ML+1, mL+2, ceey mt*+L+1 - Zl’*+1’ ml»*+L+2 + Zt*+1, mt*+L+3, ceey mL).

Now we want to apply f;zi. If we look at the (i)-signature for each of the A-paths obtained after
. . =z , . .

applying up to the Kashiwara operator f,';', we'll notice that the only component in the tensor

product that is affected is the one in the (L +1)%’ component, for i = t*+2, t*+3,..., t*:

—_ _ / _ / / /
("" Mpviva T mL+i+1+mL+i+Zi_1’ mL+i+Zi_1_Zi+mL+i—l_Zi_1’*L_l’*L_Z""’*1)

= (+zl{’ +mL+i—z;71r *r-1,%Kr—25--4) *1) .

Hence,

E. (MUL()L)® b.UL ® b.UL—l ®...® bul) = UgL+i(y) ® Fp. (bO-L()L))® b.UL ®...® bul

=Ugtri() ® b},® b.UL ®...8 blll’

which is what we wanted to show. O

Given the ground-state path
Uy = Ugz(y) ® (My, mg,...,mp)®(my, my,..., mp)
and elements b,, b,, € By, we want to produce a sequence G such that

G(ul) = Ug2(p) ® bv® ba)
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= Ug2() ® (U1, U2y ..., Vo) ® (W, Wy, ..., Wp).
We'll start with an example, and then generalize the process for any A-path.
Example 6.15. Suppose the ground-state path is given as

u,=...8(4,7,3,1,0,2)®(2,4,7,3,1,0)

=...9(my, mg,...,m;)®(my, my,..., my)
and we want to find a sequence that produces the A-path
Uy2(2)®(2,1,0,9,2,3)®(5,0,7,1,0,4).

Hence, b,=(2,1,0,9,2,3) and b,, =(5,0,7,1,0,4). By Algorithm 2, we construct the sequence
7! ~z! gl gzl ~7!
Fe=K"1' LR
7 73 F11 78 72
=Ll R
where Fix (ua( ,1)) ® Bi7 = Ug2(2)® b, ® By7. Hence 1 = 0 for this example. We will work backwards on

the A-path
u02(1)®(2, 1,0, 9,2,3)@(5, 0,7, 1,0,4)

to determine whether we need to alter the exponents in the sequence F;;. The A-path

/ /
Ug2(n) ® (U1, Vo, U3, Uy, Us + Zg, Uy — Z5) ® (W, W, W3, Wy, W5, W)

= Ugz(p) ®(2, 1,0,9,3,2)@(5,0,7, 1,0,4)

has (5)-signature
(--os—at2,—2+3,—4t0) = (+3,—4+0)

which means f; acting on this A-path won’t produce our desired path Ug2(2)® b, ® b,,. We need there
to be at least 1 plus in the second component from right in order to change the second component.

Hence, we need the —; to be a —, instead. Make the following definitions and changes:

LU5—>LU5+05:2,
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r ~1+Il5 _ ~3
L= =f-
Then we have

Ug2(2) ® (U1, Vo, U3, Uy, Us + Zé» my) ® (wy, Wy, Wi, Wy, Ws + as, Cp)
= ugzu)@(z,1,0,9,3,2)@(5,0,7,1,2,2)
f;3
— ug-z(g)®bv®bw.

Now, let’s determine if we need to change the exponent of the Kashiwara operator ﬁf. The A-path

/ / /
Ug2(p) ® (U1, Vo, U3, Uy + 2y, Us + 25— 2, M) ® (W, Wo, W3, Wy, W5+ s, Cp)

= Uy ®(2,1,0,12,0,2)9(5,0,7,1,2,2)

has (4)-signature
(-, —2F0,—0t+12,—2+1) = (+10, 1)

which means f:f‘ acting on this A-path will produce our desired A-path
Uy2(2)®(2,1,0,9,3,2)®(5,0,7,1,2,2).
Make the following definitions:

ay =0,

Cs5:= W5+ as=2.
Then we have

uo'z(l) ®(U1r Uy, U3, Uy + zzi! my, m1)®(W1, Wy, W3, Wy, Cs, CO)
= Ugz()) ®(2,1,0,12,0,2)®(5,0,7,1,2,2)
F3

4

— Ugy2®(2,1,0,9,3,2)®(5,0,7,1,2,2).
Now, let’s determine if we need to change the exponent of the Kashiwara operator fS”. The A-path

/ / /
Ug2(3) ® (V1) Vo, U3 + Zg, Uy + 24 — Z3, My, My) ® (W), W, W, Wy, Cs, Cp)

= Up2»®(2,1,11,1,0,2)®(5,0,7,1,2,2)
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has (3)-signature
(-0 =0t —1H1,—1+7) = (410, +7)

which means f!! acting on this A-path won't produce our desired A-path
g2 ®(2,1,0,12,0,2)®(5,0,7,1,2,2).
Make the following definitions and changes:

as = W4—V3:].—0:].,
Cy = U3:0,
w3 — w3 + as,

~11 Fll+a 12
L= =5

Then we have

/
Ug2(p) ®(Vly Uy, U3+ Zg» ms, My, m1)®(w1) Wy, W3 + as, Cy, Cs, CO)

= uaza)@(z, 1,11, 1,0,2)@(5,0,8,0,2,2)

F12
3

o Uy ®(2,1,0,12,0,2)®(5,0,7,1,2,2).
Now, let’s determine if we need to change the exponent of the Kashiwara operator fzs. The A-path

/ / /
Ug2(2) ® (U1, 1o + 2y, U + 23 — 25, M5, My, M) @ (W, Wy, W3 + a3, Cy, Cs, Co)

= u02(1)®(2,9,3, 1,0,2)®(5,0,8,0,2,2)

has (2)-signature
(. .. ,—1+3,—3+9;_8+0) = (+1! +0)

which means fzg acting on this A-path won't produce our desired A-path
Uy2(2)®(2,1,11,1,0,2)®(5,0,8,0,2,2).
Make the following definitions and changes:

ay = W3+a3—l/2:7+1—1:7,
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C3 = U2:1,
W2—)WZ+a2:0+7:7,

8 ~8+(12_ 15
L—=h =/l -

Then we have

uO'Z(?L) ® (Ul’ U + Zé! my, ms, my, ml) ® (wlr 2% + ay, C3, Cy, Cs, CO)
= U ®(2,9,3,1,0,2)8(5,7,1,0,2,2)
£15

2

o Uy ®(2,1,11,1,0,2)®(5,0,8,0,2,2).
Now, let’s determine if we need to change the exponent of the Kashiwara operator flz. The A-path

/ / /
Ugz(3) ® (V) + 27, Vs + 2, — 2, My, M5, My, 11) ® (W, Wy + dy, C3, Cy, Cs, Cp)

= Ugen)® (4,7,3,1,0,2)®(5,7,1,0,2,2)
has (1)-signature
(c.oy—3t7,—7t4,—7+s5) = (+4,—7+5)

which means flz acting on this A-path won’t produce our desired A-path
Uy2(2)®(2,9,3,1,0,2)®(5,7,1,0,2,2).
Make the following definitions and changes:

a:=wy+a,—v=0+7—-2=5,
Ci=1=2,

¢ :=un+a,

w,— w;+a;=5+5=10,

ﬂz — ’“12+(11 =f~i7.

Then we have

uaz(l) ® (Ul + 21, M3, My, Ms, My, ml) ® (Cl, Cy, C3, Cy, Cs, CO)
= Ugey) ®(my, ms,...,m;)@c

Upz() ®(4,7,3,1,0,2)®(10,2,1,0,2,2)
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= Ugn) ®(10,2, 1,0,2,2)

£15
2

— Uy ®(2,9,3,1,0,2)®(5,7,1,0,2,2).

To summarize, we have that

f'753f;3 ;12 ;15]217 (ua(l) ® C) = Ug(y) ® bv

Now we need to construct a sequence of the form

A1 Fo 795 75
Foo=Jfo Js "

®b,,.

such that Ft’* +1(u2) = ug)® c. Note that if we use Algorithm 1, we obtain the sequence

5/ _ £8 F£10 £11 £8 72
Ft,’i+l _fO 5 J4 fé f2 '

This is the sequence we want; however, in Algorithm 3, we'll use a different method to construct this

sequence. We need to make sure that we don’t need to apply f; at all, and this new method will do
just that. Thus, we have (£2 £2 12515 f7) (£2 £ 1 £2 £2) (ua) = g2y ® by ® b,

Now we generalize the process explained in Example 6.15.
Algorithm 3: Given the A-path

Uy = Ug2(p) ® (My, my,...,m)®(my, my,...

we want to produce a sequence G of length at most 2n such that

G(uy)= Ug2(p) ® b,® b,

= Ug2(n) ® (U1, U2y ..., Up) ® (W, Wy,
By Algorithm 2, we know that there exists a sequence
z! z’ z’
_ ful g FU
Ey= ft’;—l ft’;—z ft’,§+1

such that

Fg (uU(M) By = Ug2(p) ® b,®B,.

,mo)

ceny LUO).

So, by Lemma 6.14, we know we're going to need to produce a sequence of Kashiwara operators of
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the form
Zix ) P, e 51 t* 2 Zx iy
F t‘V7 r Ve ~ vV a o r v
(ft’;—l ft,’j—z ft s+l )(ft* ft ft,’5+2 )

with possibly different exponents, such that when acting on u, it produces the A-path u,2(,)®b,®b,,.

Define, as in Algorithm 1, the notation
(p); = max{p,0}.
Just as in Example 6.15, we'll start by working backwards. The A-path
/ /
Ug2(2)® (U1, Vo, .oy Vg + Zps 10 Vi = 2 Vgl oo Vo) ® (wy, wy,..., wp)
N .
has (3 —1)-signature
( Mg +2 Myx1? _szj_Z;;_l +V[$71+Z:$_1 ’ _wt’;—i_wt;ﬁ—l)
= ( Mg +2 My Myt +Vz$71+22$_1 VW +wt§—1)
(+Vt* 1+Z 1 Twg +Wt,*j—1)

(+u,;_1+z;*_l—wt* ’ +w,;5—1) , if Vg1t 21 > Wy,
= Vv

tw ) , else.
v

If zt* 1

corresponding Kashiwara operator. If this were true, we'd set a,;_; = 0. However, if Z;:—1 #0, then

= 0, then we don’t care what the (¢} — 1)-signature is, because we won't be applying the

we need to ensure that we have at least z;. | pluses in the second component from right in the
(#3—1)-signature. This will only happen if w,: < v;;. If, however, this situation is not true, then we

need to change the ¢ —1 and ¢} components to enforce this inequality.
Define the following:

) (wt*v_ Vt:—1)+» if 245 4 #0
Apx1 =
0, else

Vti—l’ if at:_l >0

3

wy,  else
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and make the following changes:

wt."j i Ct;‘;,

W1 = W1 + Az,

/ z

/7
fzrt,—l o f 1T
i1 i1

Also, recall that by Equation 6.19, we know the following:

_ /
UI:H-I - mt;+2_ztt+1!
_ /
Vtv — mt;_'_l + Ztifl’

vi=mig +2z,_—z, fori# e}, th+1,
which can be rewritten as

/
mt:+2 = Vt§+1 + Z[:-ﬁ-l’
_ /
M1 = Vg — 25y,

Mg =vi—z._ +z;, fori# e}, t+1.
Then we have

/
u02(1)®(v1» Upyenny vtﬁ—l +Zl»"§_1) m[§+lr v[§+lr---r UO)
® (W, Wo, ..., Wx_1 +Arz_1, Cpxy Wity -+ -, W)

/
z +a x
~ tt_l ty—1

"
-1

— Uy ® b,®b,,.

Z/

Now, let’s determine if we need to change the exponent of the Kashiwara operator ft*f;
The A-path

/ / /
Ug2(p) (v, 1., Uyt Zpx o Vg1t Zpx 17 2 Mpzi1s Vgitls - V)
® (Wi, Wy, ..., Wrs_1 + Az, C, Wig1, - .-, W)
/
= Uy ® (U1, 1., Vig—2+ Zps_o0 Mgy M1y Vgl oo V)

® (W, Wo,..., Wiz + Az, Cxy Wizg1y ..., Wo).

119



Chapter 6. U, (sAl (n+1, C))—Demazure Crystals

has (£} —2)-signature

ey + —m.xt ’ — +
( YoMk My Mgk Vz;*,fz"'z,t_z’ Wepqtags ) T Wik

+ 1o, +
( Vg2t 2, W tag T Wepp

: /
(+v[*72+z Wk =A%’ +wtt—2) , if Vgg—2 + Zt§—2 W1~ A1 > 0,

+ wt*_z) else.

Similarly to the £ —1 case, if z;:_z =0, then we don’t care what the (t: —2)-signature is, because we
won't be applying the corresponding Kashiwara operator. If this were true, we'd set a,;_, = 0. How-
ever, if Z;;_z # 0, then we need to ensure that we have at least z;$_2 pluses in the second component
from right in the (¢} —2)-signature. This will only happen if w;s_; + @+, < v;_. If, however, this sit-
uation is not true, then we need to change the ¢5—2 and ¢—1 components to enforce this inequality.

Define the following:

(wt*v—l tag—1— Vt$—2)+ , ifzp 5, #0

Apxp =
0, else

c ) Uti_z, if am_z >0
-1 =
Wy +agp_, else

and make the following changes:

We1 + Az = Cri,y
W = Wzt arzo,
/
"’th,—2 t*—z
FuZe = Fy>

+at*72

Then we have

/
Ug2(2)® (U1, Uy, Upz—p + Zps_ oy Mgy M1, Vgl oo V)
® (W, Wy, ..., Wiz + Aps_p, Crr1, Cpty Wizl -+, W)
/
~z[* PR
f
u(fz(l) ®(vlr Uo,.. Ut*—l + Z —1 mt +1» Ut Ea ERRES] UO)
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@ (W, Wy, ..., Wix_1 + gz, Coxy Weig1, -+ p Wo).

In general, if we define

(Wip1 +ai —vy),, ifzj#0
0, else
V;, ifa; >0

Cit1:= ’
w;y +ai, else

then we have the following

/
u02(1)®(m2, m3,..., mt;_,_l, Ulﬁt-i-l""’ Vl +Zi, mi+2,...,m1)
®(Cl, Coyeeny Cpxy Wekg1y-en w;+a;, Ci+1""’CO)
~z{+ul~

5! ,
— MG-Z()L) ®(m2, ms,..., mt$+1, Vt$+1’*"’ Vit +Zi+l’ mi,s,..., ml)

®(C1, Coy..ny Ct;, wl»;H_l,..., Wi +ﬂi+1, Cl'+2,...,C0).

Thus, we end with

Ug2() ® (mz, M3, .., Myzy1, Vg + z;;H, Myzi3,-.e ml)
® (Cl, Coyevey Cpty Wiz 1 T Qg1 Crig2r e v ey Co)
= Ugen)®(my, mg,..., M)
®(cy,C2,5...,Cp)
= Ug®C
~z;;+1+“tt+l
r5+1

/
_— ugg(,l)®(m2, M3y ..o, Mgy, Vgig1 Vgt +Zl’,’§+2’ Mexigy..y ml)

®(Cl, Cz,..., Ctﬁ, LU,;;_H, LU[:+2 +(l[;+2, Ct:+3""’ Co).

To summarize, we have that

/7 / /
2 _fzz$—1+ut$—1fzt;—2+“f’6—2 ffzz;‘ﬂﬂlf%l (6.20)
t— 1 52 41 :
where

pt,’j (ug(,l) ® C) =Ug2(3)® b,® b,.
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And we define:
at: =
e/
(Wi +aiy1—vi)s, lle' #0
a; ‘=
0, else
Crz1 *= Wrpy1 T Az
Vi, ifa; >0
Cit1:=
Wi +a;;,, else
7 *
fori# 3.

Now we need to show that there exists a sequence

A/ 7% zrx—1 %42
F * - * vf* Vo 'f * ¢
41 tr Jpr—1 42

such that

F't/;-kl (uy)= Uz ®C.

If we let this sequence act on u,, we have

s 7951 Fr5+3
ftj; ft;‘j—l o ft3+3 (uo'(?L) ® (mlr e My =i, Mpg3 t Grivo, Mezgas ..oy mO))

A% %4
Jer " fiada (ua(l)®(m1r---rmt$+2_qt1’j+2rmt,*j+3+qtiﬁ+2_qt;‘§+3’mt§§+4+qt;‘§+3»---rm0))

*
4

= ua(x)®(m1 T qo—quy-- My +qei1—qpz, Mpzy1 H 45,y

Mo — ez, Mpxi3 t Griio —qeiy3s -, Mo+ Gy — CIO)-

Setting this equal to the right-hand side u, ;) ® ¢, we obtain the following equations:
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qi=my+qp—Cy, qri+2 = Mz — Crito,
Go=my+q,—C, qri+3 = M3+ qiio — Criys,

qri+a = Mpzpat G — Crita

Gri—1=Mp—1t qp—2— Crz—1,
ey = Mg+ qpz—1 — Cr3) Go =My + gp— Cp.

= Wegl T el — Mgt

If we start with the equation

ey = Weig1 + Gzl — Mgy,

then we can find a formula for g;;_,:

Gri—1 = qe;— Mypx + Cpx

= W1t Qg — Mpgp1 — My + Cye
Next we can solve for q;_,:

Grz—2=(qpz—1— Mp_1+ C)
=(wys1 + A1 — (Mg + Myzy) + () — Myzy + €

= Wi + Qg — (Mg + Mg+ My )+ (61 + C)-
In general, for i # £+ 1, we have
Gi =Wrr1+ A — Mg+ M+ + Mg+ Mg )+ (G + G+ + Cp1 + C3)
Note that we'll have two equations for g;;:
qriv2 =Mz — Criqn

and

Ao =We + Ay — (M3 + Mg+ + M)+ (Cpyz + Cppa+ 0+ C2)-
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Are these equivalent?

Arivr = Werpr + Qo —(Mppgz+ Mpgg o+ M)+ (Cppz + Cpqa+ o+ C12)
= We1 T Ap1 — (f - mt$+2) + (E —Cp42— Ct’;+1)
= Weil T A1 T Mypxio— Cpi — Criyl

= Mypxyo — Crxyo,

Since Csx41 = Wyzq1 + a4x4 by our definition. So, yes, they are equivalent.

Note that by construction, g4, < mx,, and q; < m;+q;_;, so we can apply each Kashiwara operator

the necessary number of times. Hence, the sequence
74

YA 751 52
Ft’;+1 —J ft;—l "'ft;+2 (6.21)

is such that

Ft/;+l (uy)= Uz ®C.

Therefore, we have produced the sequence G such that

G(uz) = Eiy B,y (up) (6.22)

= Ug2(2)® by ® Dy,
for any b,, b, € B;.
Back to Example 6.15: We were given the ground-state path
u,=...8(4,7,3,1,0,2)®(2,4,7,3,1,0)
where by =(my, my,...,my)=(2,4,7,3,1,0). And we wanted to produce the A-path
Up2()®(2,1,0,9,2,3)®(5,0,7,1,0,4)

where b,=(2,1,0,9,2,3)and b, =(5,0,7,1,0,4). In order to compute the sequence needed to obtain
this A-path, we need to do the following:
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1. Use Algorithm 2 to find the sequence
Fy=fif3flpefe
where ¢} =0.

2. Compute the a;’s:

a,=0,

as=(wo+ap—1v5); =(4+0-2), =2,
ay=(Ws+as—1v,); =(0+2-9), =0,
az=(ws+as—v3); =(1+0-0), =1,
a,=(ws+az—v,), =(7+1-1), =7,
a;=(w,+a,— 1)y =(0+7-2),=5.

3. Then compute the ¢;4;’s:

C1:w1+a1:5+5:10,
C0:U5:2,

C5:LU5+G5:0+2:2,

C4:U3:0,
ngl/z:l,
C2:U1:2.

4. Form

A 73 73 F12 F15 77
Fa=KL LR

¢=(10,2,1,0,2,2).

5. Compute the g;’s:

6]120,
G, = wy +ay —(mz+ my + ms+ mg+my)+(c3+ ¢4+ c5+ ¢p)

=54+5—(74+3+14+0+2)+(1+0+2+2)=2,
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qs = wl+d1—(m4+M5+m0+ml)+(04+05+C0)
=54+5—3+14+0+2)+(0+2+2)=38,

qs = wy + a; —(ms + mo+ my) +(cs5 + ¢)
=5+5—(1+0+2)+(2+2)=11,

qs = w1+a1—(m0+m1)+(co)=5+5—(0+2)+(2)=10,

qdo = w1+a1—(m1)+(0)=5+5—(2)+0=8

6. Form F’ICHI = LU fE 2.
Hence, the sequence (f5 /2 ;11 2 f2) (f2 f10 filt £8 £7) is such that
(ARG RERBEC AN B2 ) (ua) = uszn ©(2,1,0,9,2,3)®(5,0,7,1,0,4).

The sequence G = ﬁfgﬁf; 4+ corresponds to the sequence of Weyl group simple reflections

S= (rt;—l L rt;+1)(rt$ L rt,’j+2)-

Lemma 6.16. The sequence S = (rt;_l Tes—pt rt;H) (rt; ey rt;+2) is a subsequence of w(3, j) for
allj=0,1,...,n.

Proof. Recall that
w(3, ]) = (rj+n—3 e rj+n rj+n—1)(rj+n—2 e rj rj+n)(rj+n—1 e rj+1 rj)-

Notice that each simple reflection r; appears within the first # + 1 components from the right in
w(3, j). If we start at any of those r;, we can form a sequence of simple reflections

(Fign—2 TiTisn) Tign—1-Tiza 1)
of length 2n that is a subsequence of w(3, j). Let i = t*+ 2. Then we have that
S= (rt,’j—l Terp - rt,’j+l) (’"r; L rt;+2)

is a subsequence of w(3, j) forall j=0,1,...,n. O

Corollary 6.17. We have that uq23)® By C By, jy(A) forall j=0,1,...,n.
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Proof. For each A-path u,(;) ® b, ® b,,, Algorithm 3 produces a sequence Ft;Ft’; 4, thatis associ-
ated with a sequence of simple reflections S = (rt;s_l Ferp+- "t;s+1) (rt; Feeope rt;+2) of length 2n. By
Lemma 6.16, we know each of these sequences S of simple reflections is a subsequence of w(3, j)
for all j. Hence, by the definition of B3 j)(4), it follows that u;2() ® Bf C By, j)(A) for all j. O

Lemma 6.18. We have that ;
U Bw(Z,j) = Uge(n) ® Bf
j=0

A

Proof. By Algorithm 3, we proved that there exists a sequence G = F,»;Ft’: 1

such that
G(up)=ug)® b, ® b,
for all b,, b,, € B;. Each sequence G is associated with a sequence of simple reflections
S= (rt,’i—l Tg—2" rt,’i+1) (rt’; Teg—1"- rt,’j+2)
of length 2n. Well, note that S = w(2, ¢ + 1). Hence,
Ug2(2)® by ® by, € By(1,1241)(A)
for each b,, b, € B;. Thus,

Bw(z,j) 2 Ug2(2) ®B§

n
=0

(-

Now we just need to show that

Bw(gyj) C Ug2(2) ®B§

=

0

~.
Il

In other words, we need to show that u;3;)® by ® B‘? Z By, j)(A) forall j=0,1,...,n. Well, recall
that

R ) = F7 L Fs (Uos) ® Doy ® ben) ® by)
=Ugs(p)® bp3 ® bpz ® bpl .

This last equation implies that if any sequence of simple reflections contains f;,,, then f;,;, and
then f;, then the third component from the right in the tensor product will be affected. And such a
sequence is needed in order for the third component to be affected, by Lemma 6.2. But w(2, j)=
(Fjxn—TjTjzn)Tjyn_1 - Tj17;) for j =0,1,..., n, which means that this situation never occurs.
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Hence, the third component from the right in the tensor product will never be affected, and so
n
U w(2,)) )€ Ug2()® B?

Therefore,

O

Remark 3. Recall that with some notation changes, Algorithm 2 was a generalization of Algorithm
1. In a similar manner, with some notation changes, Algorithm 3 generalizes to produce a sequence
G of Kashiwara operators such that G(uy1-1(2) ® Bf ' = g1+12)® b, ® b, ® B} .

Lemma 6.19. Choose b, , b

1> Dy, ooy by, € By. Then, given the ground-state path

Uy =...Q9(my, ms,...,my)®(my, my,..., My)

there exists a sequence
G= (Ft )(Ft +1) ) (pt/’,‘j+L—1)

of at most Ln Kashiwara operators such that
G(up)=ugLy®by, ®by,...®@ by, .

Proof. Let L =1. By Algorithm 1, we have the sequence G = F;. of Kashiwara operators of length at
most n such that G(u,) = uy () ® by, where F. is defined as in Equation 6.8.

Let L =2. By Algorithm 3, we have the sequence G = Ft* of Kashiwara operators of length at

t* +1
most 2n such that G(uy) = uy2(s) ® by, ® by,, where Ft* is deﬁned as in Equation 6.20 and F, t* 1

defined as in Equation 6.21. Notlce that except for possibly different exponents, the sequence Ft*1

is

of Kashiwara operators is the same as the sequence F of Kashiwara operators, which is obtained
using Algorithm 2, where
P‘t;fl (ugm) By = Ug2()) ® bYl ® By.

Now, suppose that there exists a sequence G of Kashiwara operators of length at most (L —1)n such
that

(A}(u,l): Ugr-13)® b?’z ® st ®... bTL
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=UgL(p)® ba-Lfl()L) ® b.,,2 ® b}’s ®... b?’L'

for b, B,, and suppose that, except for possibly different exponents, the last n Kashiwara opera-
tors in the sequence G form the same sequence of Kashiwara operators as Fy which is obtained
using Algorithm 2 for the element b,,.

We want to show that we can find a sequence G for the L case so that when acting on the ground-state
path u, it will produce the A-path

UgsL)® by, ® by, ®...0 by,
for by, € By.
Using Algorithm 2, we can construct a sequence F (defined in Equation 6.18) such that
F (Ugra) @B/~ = tgrpy® by @ B
Then, by Remark 3, we can construct a sequence F,;l (defined in Equation 6.20) such that

ptr*l (ua-L—l()L) ® C) ® Bé"_l =UgL())® 19],1 ® 197,2 ® B;_l,

and the sequence Ft’; 4+ (defined in Equation 6.21) such that
1
Ftit1+1 (uO'L_z(Z)) ® BZL_Z = UgL-1()) RC® BZL_Z,
so that
ﬁf?‘l ﬁt:’,‘l+1 (uUL*Z(A)) ® BgL_Z = UgL(p)® by, ® by, ® BEL_I.

Then, by our induction hypothesis, there exists a sequence G such that
G(u,‘\) =UgL1()®C® b7,3 ® b7’4 ®...8 bTL’

where, except for possibly different exponents, the last n Kashiwara operators in G form the same

sequence of Kashiwara operators as Ft’* +1- If we define the sequence Ft’* to have the same sequence
v 1

of Kashiwara operators as B but possibly different exponents, and we define G’ to have the same

sequence of Kashiwara operators as G but possibly different exponents, then we can form the
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sequence
G=F.G,

5
where
G(up)=ugLp)=UgL)® by, ® by, ®...0 by, .

The sequence G corresponds to the sequence of Weyl group reflections

S= (rt’;—l [ R rt’;+1) (rt: L7 rt;‘+2) o '(rt;+L—2 Ferep—3°° rt$+L)-

Lemma 6.20. The sequence

S= (rt:—l 5 R rt:+1)(rt$ 5 rt;+2)"'(rt$+L—2 Tgrpp—3° rt$+L)
is a subsequence of w(L+1, j) forall j =0,1,...,n.
Proof. Recall that
w(L+Y,j)=(rjen—r-1Tjr1-LTj-L) " (Fjrn—2 " TjTjen)(Tjrn—1-"" Tj4177).

Notice that each simple reflection r; appears within the first 7 + 1 components from the right in

w(L+1, j). If we start at any of those r;, we can form a sequence of simple reflections

(Fivpn—2 - TiepTiei—1) " (Fign— - TiTign)Tign—1 -+ Ti173)

oflength Ln that is a subsequence of w(L +1, j) forall j. Let i = ¢} + L. Then, we have that

S= (’3;—1 L R rtt+1) (rtz L rt;+2) e (rt$+L—2 Teppp—3°°- rt$+L)
is a subsequence of w(L+1, j)forall j=0,1,...,n. O

Corollary 6.21. We have that us.) ® BZL C By(r+1,j(A) forall j=0,1,...,n.

Proof. For each A-path
UsL()® b, ® b, ® by ® Dy, ®...® b,

L2’

by Lemma 6.19 there exists a sequence of Kashiwara operators

G= (ﬁri)(ﬁ;zﬂ) - (Ft/zﬂ—l)
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such that G(u;)= uy.(2)® b,® b, ® by, ®...® by, ,. This sequence G is associated with a sequence

-2

of simple reflections

S= (rt:—l L rt;‘j+1)(rt$ 7 R rt:+2)"'(rt$+L—2rt:+L—3"‘ rt;¢+L)

of length Ln. By Lemma 6.20, we know each of these sequences of simple reflections W is a
subsequence of w(L +1, j) for all j. Hence, by the definition of B,,(; 41, j)(4), it follows that

Ugi(2)® By C By(r11, (A

forall j. O

Corollary 6.22. Choose b,, b, by,,..., by, | € By such that b, # by1-1(). Then, for some j,
UoL()® b, ® by, ® by, ®...® by, | & By, j)(A).
Proof. By Lemma 6.19, we know there exists a sequence G of Kashiwara operators such that
G(u))=ugLy®b,®by, ®by,®...0 by, .
This sequence G, is associated with a sequence of simple reflections
S= (rt;—l L A rt:+1) ("t; LS rt:+2) . (rt:+L—2 Terpr—3°° rt$+L)

of length Ln. Note that S is not a subsequence of w(L, t}+ L + 1). Hence, by the definition of

By(r, e+ 1+1)(A),
UgLip) @ b,® b?’l ® b7’2 ®...Q b}’L—l ¢ Bw(L,t§+L+1)()L)~

Theorem 6.23. (Main Theorem) We have that

1. U Bw(Lyj)(QL) =Ugr(p)® BL,
j=0

2. ﬂ Bw(L,j)()L) =uUy1(A)® B(L_l .
j>0

Proof. First, note that w(L, j)= w(L, j + n+1). Hence,

n
U Buw.yM) = Buw. ),
—

jz0 J
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We'll first prove the union. By Lemma 6.19, we proved that there exists a sequence G such that

G(uz)=ug®b,®by, ® by, ®...8 by, |

for b,, by, € B,. Each sequence G is associated with a sequence of simple reflections
S= (rt:—l S R rt:+1) (’33 5 rt;+2) e (rt$+L—2 Tprpp—3° rt$+L)
of length Ln. Note that S = w(L, £} + L). Hence, by the definition of B,,(1, ;141)(A),
UgL()®by,® Dby, ®...0 by, | € Byp,341)(A)

for by, b,, € B,. Thus,

n
Bw(L,j)(A) 2 UgL(p) ® BKL
=0

~.

Now we just need to show that

w(L,j) (l C ugL(/U BL

||C:

In other words, we need to show that u;1+1(3) ® by ® BZL Z By(z,j(A)forall j=0,1,..., n. Well, recall
that by Lemma 6.2

S e o o (ua) =2 F5 - 2 (Uorny ® bor(a)® Do) ®...® by)
=Ugin)®by,, ®by, ®...0 D).

PrL+1

This last equation implies that if any sequence contains the simple reflections in that order, then
the (L +1)%' component from the right in the tensor product will be affected. And such a sequence
is needed in order for the third component to be affected. This sequence would be associated with

a sequence of simple reflections:

(r)(Fign = TigaTiv1)  (Tign—osr ** TivL Tivn+1) Fign—141°** Tis14LTi+L)

oflength Ln+1. But

wW(L, j)=(rjsn—r " Tjso—rTjr1-1) " (Fjyn—2  TjTjxn)Tjrn-1-"Tjs17})
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for j=0,1,...,n, is of length Ln, which means that this situation never occurs. Hence, the (L +1)*
component from the right in the tensor product will never be affected, and so
n
U BW(L']')(A) - UgL()) ® BKL
=0

~.

Therefore,

Bw(L,j)(A) = UgL()® B;

s

0

~.
I

Now, let’s prove the intersection. By Corollary 6.21, we know that
-1
UgL-1(}) ®b C BW(L']')()L)
forall j=0,1,..., n. Hence,
n
By, M) 2 ugia(A)@ B/
=0

J
By Corollary 6.22, each A-path

Us()® b, ® by, ® by, ®...® by, | & By, j)(A)

for some j, which implies that

n
By, j(A) € ugLa neB/ .
i=0

J

Therefore,

n
m By r, j)(A) = ugr(A) ®Bf_1.
j=0
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