
ABSTRACT

CHEN, GUANYU. Accurate Gradient Computation for Elliptic Interface Problems with
Discontinuous and Variable Coefficients. (Under the direction of Dr. Zhilin Li.)

A new numerical method is proposed for interface problems with piecewise variable

coefficients. The main motivation is to get not only a second order accurate solution but

also a second order accurate gradient for some types of interface problems. The idea is

based on the fast IIM (Immersed Interface Method) developed for interface problems with

piecewise constant coefficients, in which, second order convergence of the solution and the

gradient is achieved. The key of the new method is to introduce the jump in the normal

derivative of the solution as the augmented variable and re-write the interface problem as

a Laplacian of the solution with lower order derivative terms near the interface. Thus we

can get jump relations for second order derivatives using the augmented variable and the

lower order derivative terms. The idea should be applicable for boundary value problems

as well. An upwind type discretization is used for the finite difference discretization near

or on the interface so that the negative of the discrete coefficient matrix is an M-matrix,

which is diagonally dominant and invertible. A multigrid solver is used to solve the linear

system of equations and a GMRES iterative method is used to solve for the augmented

variable. Numerical examples and convergence proof are also provided to show that the

new method maintains second order accuracy of both the solution and the gradient.
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Chapter 1

Introduction

1.1 Interface problems

1.1.1 Applications of interface problems

Interface problems have attracted lots of attentions from many mathematicians and

physicists, not only because it is typically challenging to solve them, either analytically

or numerically, but also because of their diverse range of real world applications. Inter-

face problems occur in many multi-physics or multi-phase applications in science and

engineering, for example, the heat propagating in materials with different conductivities

in thermodynamics, a shock wave traveling through materials with different viscosities

in fluid dynamics, thin film and crystal growth simulations in material science, or a

bubble formation and movement in biological science, and so on [6]. These real world

phenomenons can be modeled by different types of partial differential equations (PDEs)

with some specified interface conditions. The parameters in the governing PDE models

are typically nonsmooth and discontinuous across the interface separating two materials
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or two states, and the source terms are often singular. As a result, the solutions to the

differential equations are typically nonsmooth, or even discontinuous across the interface.

Therefore, many standard numerical methods based on the assumption of smoothness of

solutions do not work or work poorly for interface problems, due to the complications

arise from the presence of interfaces, discontinuities in the coefficients and the singular

source terms.

To develop numerical methods for interface problems, the main challenges lie in how

to obtain an approximate solution with certain order of accuracy near or on the interface

and how to efficiently solve the linear system of equations involved. Our work in this

dissertation is also centered around these two key questions.

1.1.2 Elliptic PDEs with interfaces

In this dissertation, we’re interested in elliptic interface problems. An elliptic interface

problem can be written in the following form,

∇ ·
(
β(x, y)∇u(x, y)

)
+ σ(x, y)u(x, y) = f(x, y), (x, y) ∈ Ω = Ω+ ∪ Ω−, (1.1)

together with the jump conditions across the interface Γ ,

[u]Γ = w, [βun]Γ = v, (1.2)

where Ω is a rectangular domain with a prescribed boundary condition on ∂ Ω and β ≥

βmin > 0. Within this domain, Γ is an interface between two subdomains Ω+ and Ω−,

across which, the diffusion coefficient β is discontinuous, see Figure 1.1 for an illustration.

un is the normal derivative on the interface, which is defined as un =
∂u

∂n
= ∇u ·n, where

2



n is the normal direction of the interface Γ pointing outward. Moreover, the coefficient

β(x, y) is variable in each subdomain,

β(x, y) =


β+(x, y) if (x, y) ∈ Ω+,

β−(x, y) if (x, y) ∈ Ω−.

(1.3)

The functions w and v are two jump conditions defined only along the interface Γ. σ

and f are piecewise continuous functions, i.e., σ±(x, y) ∈ C, f±(x, y) ∈ C, but may have

a finite jump discontinuity across the interface. The interface Γ is assumed to be twice

continuously differentiable along the interface, i.e., Γ ∈ C2. The solution is assumed to

be twice continuously differentiable in each subdomain, i.e., u±(x, y) ∈ C2. The diffusion

coefficient β(x, y) is assumed to be continuously differentiable in each subdomain, i.e.,

β±(x, y) ∈ C1.

Figure 1.1: A typical rectangular domain Ω = Ω+ ∪ Ω− with an interface Γ. The coeffi-
cients β(x) have a finite jump across the interface Γ.

3



The jump conditions across the interface Γ are defined as:

[u]Γ
def
= u+

(
X(s), Y (s)

)
− u−

(
X(s), Y (s)

)
= w(s), (1.4)

[βun]Γ
def
= β+

(
X(s), Y (s)

)
u+
n

(
X(s), Y (s)

)
−β−

(
X(s), Y (s)

)
u−n
(
X(s), Y (s)

)
= v(s),

(1.5)

where
(
X(s), Y (s)

)
is the arc-length parametrization of the interface Γ. The + and −

signs are assigned to be the limiting values of a function taken from the subdomain Ω+

and the subdomain Ω−.

Note that if the first jump condition [u] = w = 0, the solution to the interface problem

(1.1) is equivalent to the solution of the following equation in the entire domain including

the interface (Ω+ ∪ Ω− ∪ Γ), with a singular source on the right hand side,

∇ ·
(
β(x, y)∇u(x, y)

)
+ σ(x, y)u(x, y) = f(x, y) +

∫
Γ

v(s)δ(x−X(s)) ds . (1.6)

where δ is the two-dimensional Dirac-delta function. The second jump condition [βun] = v

can then be derived by integrating the above equation,

lim
Ω0→0

∫∫
Ω0

{
∇ ·
(
β(x)∇u(x)

)
+ σ(x)u(x)− f(x)−

∫
Γ

v(s)δ(x−X(s)) ds
}
dx = 0

=⇒
∫

Γ

{(
β+(x)∇u+(x) · n

)
−
(
β−(x)∇u−(x) · n

)
− v(s)

}
ds = 0

=⇒ [βun]Γ = v(s)

(1.7)

where Ω0 is a small integration domain that contains the entire interface Γ. The second

line in the derivation comes naturally from the divergence theorem and the properties

4



of delta function. Note that the normal derivative un is usually discontinuous across the

interface due to the discontinuity in the coefficient β. And if w 6= 0, the solution u itself

would also be discontinuous across the interface.

1.2 A review of numerical methods for elliptic inter-

face problems

There are many applications in solving elliptic equations with discontinuous coefficients,

for example, steady state heat diffusion, multi-phase flow, crystallization process, and

bubble simulation, and etc. Moreover, solving one or several elliptic interface problems

is also the most expensive step of several well-known efficient methods for Navier-Stokes

equations. There are two main concerns in solving (1.1)–(1.3). The first concern is about

how to discretize (1.1)–(1.3) accurately. It is difficult to study the consistency and the

stability of a numerical scheme because of the discontinuities across the interface. The

second concern is about how to solve the resulting linear systems efficiently and robustly.

Usually if the jump in the coefficient is large, the resulting linear system is ill-conditioned,

and the number of iterations needed in solving such a linear system is large. That’s

because the number of iterations usually is proportional to the jump in the coefficient.

Quite a few numerical methods in the literatures have addressed how to solve the ellip-

tic equations with discontinuous coefficients, for example, harmonic averaging, smoothing

method, and finite element approach, etc. Most of these methods are second order accu-

rate in the L1 or the L2 norm, but not in the L∞ norm, since they usually smooth out

the solution near the interface. So in the discussion below, we review a few popular finite

difference methods for the elliptic interface problems.

5



1. The smoothing method

The idea of the smoothing method is to replace the original discontinuous coefficient

β(x) with a smoothing function βε. We illustrate the idea through a one-dimensional

example. Assume the coefficient β(x) has a finite jump at x = α, i.e., [β]α =

lim
x→α+

β(x)− lim
x→α−

β(x) 6= 0.

We define a smoothing function βε as

βε(x) = β̄−(x) + (β̄+(x)− β̄−(x))Hε(x− a), (1.8)

where β̄+(x) and β̄−(x) are continuously differentiable functions given by

β̄−(x) =


β(x) if x ≤ α,

β(α−) + β′(α−)(x− α) if x > α,

(1.9a)

β̄+(x) =


β(α+) + β′(α+)(x− α) if x < α,

β(x) if x ≥ α.

(1.9b)

Hε(x) is the smoothed Heaviside function,

Hε(x) =


0 if x ≤ −ε,

1

2

(
1 +

x

ε
+

1

π
sin

πx

ε

)
if |x| ≤ ε,

1 if x > ε.

(1.10)

and ε > 0 is a small number depending on the mesh size of a numerical scheme [26].

The coefficient 1/π in front of the sine function is chosen to make Hε(x) twice

continuously differentiable at x = ±ε.
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It is easy to implement the smoothing method in 1D, 2D and 3D if the interface is

represented by the zero level set of a Lipschitz continuous function. The smoothing

method is not very accurate because it smoothens the coefficient β in the interface,

as as result, the solution is also smoothened in the interface.

2. The harmonic averaging method

The harmonic averaging method [3, 25, 28] is more accurate than the smoothing

method for discontinuous coefficients. Consider the one-dimensional model problem

(βux)x = f(x), which can be discretized as

1

h2

(
βi+ 1

2
(ui+1 − ui)− βi− 1

2
(ui − ui−1)

)
= f(xi), (1.11)

where h = xi−xi+1 is the uniform grid spacing in the x-direction. For smooth β in

(xi−1, xi+1), we can take βi+ 1
2

= β(xi+ 1
2
), where xi+ 1

2
= xi+

h

2
, and the discretization

is second-order accurate. But if β is discontinuous in (xi−1, xi+1), then the harmonic

average of β(x) is

βi+ 1
2

=
(1

h

∫ xi+1

xi

β−1(x) dx
)−1

. (1.12)

The finite difference scheme (1.11) using the harmonic averaging (1.12) is second

order accurate in the infinity norm L∞ for 1D elliptic interface problems with

[u]α = [βux]α = [f ]α = 0, mainly due to the cancellation of errors.

The harmonic averaging can also deal with 2D elliptic interface problems by inte-

grating over squares to get the harmonic average of β(x, y). However, the method

usually does not give second order accurate solutions, because the cancellations of

errors are unlikely to occur for arbitrary interfaces. Moreover, it is also nontrivial to

compute the integrals accurately near the interface in 2D when β is discontinuous.
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3. Peskin’s immersed boundary (IB) method

To simulate the blood flow pattern in human’s heart, Peskin first developed the im-

mersed boundary (IB) method [21, 22, 23, 20], which used numerical approximation

of the δ function for singular sources on the interface.

There are several discrete delta functions in the literatures. The commonly used

ones include the hat function

δε(x) =


(ε− |x|)

ε
if | x |< ε,

0 if | x |≥ ε.

(1.13)

and Peskin’s original discrete cosine delta function

δε(x) =


1

4ε

(
1 + cos

(πx
2ε

))
if | x |< 2ε,

0 if | x |≥ 2ε.

(1.14)

These two discrete delta function are both continuous. The second one, first in-

troduced by Peskin and most often used in the literature, is also continuously

differentiable.

It is easy to implement the IB method. In high dimensions, the discrete delta

function is the product of one-dimensional discrete delta functions, for example, in

2D, δε(x, y) = δε(x)δε(y). With Peskin’s discrete delta function approach, we can

discretize the right hand side of (1.6) at a grid point (xi, yj) as

Fij = fij +
m∑
k=1

v(sk)δh(xi −Xk)δh(yj − Yk)∆s, (1.15)

where Nb is the number of discrete control points {Xk, Yk} on the interface, and

8



h is the mesh spacing. Note that, from (1.13) and (1.14), we see that the singular

source is distributed to grid points near the interface Γ.

The IB method is difficult to achieve high order accuracy. It is still a smoothing

method that smears discontinuities. Using the IB method, we can achieve second

order accurate solution in an average norm such as the L1 norm or the L2 norm.

But it is unlikely to achieve a second-order accurate solution in the point-wise

L∞ norm. The reason is that the discrete right-hand size (1.15) is independent of

the derivative of v(s) and the curvature of the interface, which are crucial in the

immersed interface method (IIM) [7, 10] which we will discuss later in section 1.3.

4. Numerical methods based on integral equations

A. Mayo and A. Greenbaum [18, 19] have derived an integral equation for ellip-

tic interface problems with piecewise constant coefficients. By solving the integral

equation, they can obtain second-order accurate solutions in the L∞ norm using

the techniques developed by Mayo in [16, 18] for solving Poisson and biharmonic

equations on irregular domains. The total cost includes solving the integral equa-

tion and a regular Poisson equation. They also mentioned the possibility to extend

the method to variable coefficients in [18]. While this methods based on integral

equations are very effective for homogeneous source terms, they usually require

extra efforts for non-homogeneous source terms and different boundary conditions,

for which the implementations of these methods are not trial.

So far, most of our discussions focus on numerical methods that smears the discon-

tinuities in either the discontinuous coefficients or the singular source terms near the

interface. As a result, the solutions are also smoothened near the interface. So they usu-

ally give second order accuracy in an average norm such as the L1 and L2 norm, but not

9



in the point-wise L∞ norm. However, when dealing with interface problems, we are more

interested in errors in the point-wise L∞ norm instead of an average L1 or L2 norm. An

average norm cannot correctly reflect errors near the interface, while the point-wise L∞

norm usually reflects the accuracy of solutions near interfaces that are the main interest

for many interface problems.

In the section below, we will introduce the immersed interface method (IIM) [7,

10], in which the discontinuities and the jump conditions are enforced either exactly or

approximately. The IIM generally has a second-order accuracy globally, which means the

computed solution is second-order accurate in the point-wise L∞ norm.

1.3 The immersed interface method (IIM) and an

augmented strategy

The immersed interface method (IIM) [7, 10] is a different approach developed by R. J.

LeVeque and Z. Li for discretizing elliptic problems with irregular interfaces , which can

handle both discontinuous coefficients and singular sources. The main idea is to incorpo-

rate the jump conditions into the finite difference scheme near the interface using Taylor

expansion. This approach has also been applied to 3D elliptic equations [11], parabolic

equations [12, 15, 17], hyperbolic wave equations with discontinuous coefficients [9], and

the incompressible Stokes flow problems with moving interfaces [8].

1.3.1 The IIM for elliptic interface problems

In the IIM, the standard finite difference scheme is modified only when its finite differ-

ence stencil is cut by the interface. In other words, away from the interface, the IIM uses

10



the standard finite difference methods. while near or on the interface, the IIM modifies

the finite different schemes to treat the irregularities. Since the dimension of the inter-

faces is one dimension lower than that of the solution domain, the modifications do not

significantly increase the computational costs.

Here we illustrate the main idea of IIM through a one-dimensional model problem

(βux)x = f, x ∈ (0, α) ∪ (α, 1), (1.16a)

[u]x=α = 0, [βux]x=α = v, (1.16b)

with specified boundary conditions of u(x) at x = 0 and x = 1. The function β(x) is

discontinuous at x = α. While this model problem is quite simple, it illustrates the main

ideas of the IIM.

For simplicity, we assume that f(x) is a continuous function and β is piecewise con-

stant with a finite jump at the interface x = α. From the jump conditions (1.16b) and

the equation (1.16a), we first obtain the following interface relations, which express the

limiting values from the ”+” side ( x > α) in terms of those from the ”−” side ( x < α),

u+ = u−, u+
x =

β−

β+
u−x +

v

β+
, u+

xx =
β−u−xx
β+

(1.17)

The algorithm of IIM for (1.16a)–(1.16b) is then outlined below.

1. We first generate a uniform Cartesian grid for the finite difference method,

xi = ih, i = 0, 1, 2, . . . , N (1.18)

where h = 1/N . The interface α is usually between grid points, for example, xj ≤

11



α ≤ xj+1. Then, the grid points xj and xj+1 are called irregular grid points, while

the other grid points are called regular grid points.

2. We then determine the finite difference scheme for regular grid points.

At a grid point xi, xi 6= j, j+1, we use the standard 3-point central finite difference

approximation

1

h2

(
βi+ 1

2
(Ui+1 − Ui)− βi− 1

2
(Ui − Ui−1)

)
= fi (1.19)

with βi+ 1
2

= β(xi+ 1
2
), fi = f(xi).

3. Next, we determine the finite difference scheme for the irregular grid points xj and

xj+1.

We determine the finite difference coefficients using the method of undetermined

coefficients,

γj,1Uj−1 + γj,2Uj + γj,3Uj+1 = fj + Cj,

γj+1,1Uj + γj+1,2Uj+1 + γj+1,3Uj+2 = fj+1 + Cj+1.

(1.20)

We now illustrate the idea of the IIM about how to determine the finite difference

coefficients γj,1, γj,2 and γj,3 in (1.20).

We want to minimize the magnitude of the local truncation error

Tj = γj,1u(xj−1) + γj,2u(xj) + γj,3u(xj+1)− f(xj)− Cj . (1.21)

The main idea is to use Taylor expansion to expand the solution u(xj−1), u(xj),

u(xj+1) and f(xj) at the interface α from each side of the interface.
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The Taylor expansion for u(xj+1) at α is given by

u(xj+1) = u+(α) + (xj+1 − α)u+
x (α) +

1

2
(xj+1 − α)2u+

xx(α) +O(h3) .

and the Taylor expansions of u(xj−1) and u(xj) at α can be written as

u(xl) = u−(x) + (xl − α)u−x (α) +
1

2
(xl − α)2u−xx(α) +O(h3), l = j − 1, j.

Then we use the interface relations (1.17) and choose to wirte u+(α), u+
x (α), u+

xx(α)

in terms of u−(α), u−x (α), u−xx(α). So we have a new expression for the Taylor

expansion of u(xj+1):

u(xj+1) = u−(α) + (xj+1 − α)
(β−
β+

u−x (α) +
v

β+

)
+

1

2
(x2

j+1 − α)2β
−

β+
u−xx(α) +O(h3) .

Thus, we now put all these expansions back to the local truncation error (1.21) at

x = xj, and collect terms for u−(α), u−x (α), u−xx(α) to get

Tj = γj,1u(xj−1) + γj,2u(xj) + γj,3u(xj+1)− f(xj)− Cj

= (γj,1 + γj,2 + γj,3)u−(α) + γj,3(xj+1 − α)
v

β+

+
(

(xj−1 − α)γj,1 + (xj − α)γj,2 +
β−

β+
(xj+1 − α)γj,3

)
u−x (α)

+
1

2

(
(xj−1 − α)2γj,1 + (xj − α)2γj,2 +

β−

β+
(xj+1 − α)2γj,3

)
u−xx(α)

− f(α)−O(h)− Cj +O
(

max
1≤l≤3

|γj,l|h3
)
.

(1.22)

Finally, by minimizing the magnitude of Tj and using the differential equation at
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α from the “−” side, we obtain a system of equations for the coefficients {γj,k}:



γj,1 + γj,2 + γj,3 = 0 ,

(xj−1 − α)γj,1 + (xj − α)γj,2 +
β−

β+
(xj+1 − α)γj,3 = 0 ,

1

2
(xj−1 − α)2γj,1 +

1

2
(xj − α)2γj,2 +

1

2

β−

β+
(xj+1 − α)2γj,3 = β− .

(1.23)

Once those {γj,k}’s have been computed, the correction term is set to

Cj = γj,3(xj+1 − α)
v

β+
, (1.24)

which matches the remaining leading terms in the local truncation error Tj above.

Similarly, we can get the {γj+1,k}’s by considering the local truncation error Tj+1

at x = xj+1 and following the same procedure above.

4. We can solve the linear system of equations (1.19)–(1.20) for all grid points, which

is a tridiagonal matrix, to get an approximate solution of u(x) at all grid points.

For 2D and 3D elliptic interface problems, we can use the same IIM algorithm to

derive the finite difference scheme for the irregular points on or near the interface.

Since the IIM incorporates the discontinuities and the jump conditions on the inter-

face, it can achieve second-order accuracy in the point-wise L∞ norm. The second order

accuracy of the IIM has been confirmed by many numerical examples and theoretical

analysis. Note that, while the solutions have second order accuracy globally at all grid

points, the local truncation errors at grid points near the interface are usually O(h) (see

(1.22) for example), which is one order lower than that at regular grid points (O(h2)).

The finite difference coefficient matrix is usually a block tridiagonal sparse matrix
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for 2D and 3D interface problems. So we can use standard iterative methods such as an

SOR or the multigrid method [2, 4] to solve the linear system of equations efficiently. But

in some numerical examples with large jumps in the coefficients β, the resulting linear

system is usually ill-conditioned. So it takes many number of iterations in solving such a

system. The immersed interface method may converge very slowly or fail to give accurate

answers.

In the next section, we explain an augmented strategy which can be used to solve

some interface problems with large jumps in the diffusion coefficient β(x, y).

1.3.2 An augmented iterative algorithm for the IIM

The idea of the augmented strategy for interface problems was originally proposed by Z.

Li [13] for elliptic interface problems with piecewise constant coefficients.

The augmented strategies have at least two advantages. The first is that the aug-

mented strategies allow us to utilize the existing fast solvers to get a faster algorithm

compared to direct discretization. The second is that, for certain types of interface prob-

lems, an augmented approach may be the only way to obtain an accurate algorithm. For

instance, in the incompressible Stokes equations, the jump conditions for the pressure

and the velocity are usually coupled together. The augmented approach enables us to

separate the jump conditions so that the idea of the IIM can be applied.

In augmented strategies, some augmented variable g defined only on the interface is

introduced. If the augmented variable is known, it is relatively easy to solve the original

problem.

There are many ways to introduce an augmented variable. In Z. Li’s original paper,

he considered the elliptic PDEs with σ(x, y) = 0. The coefficient β(x, y) is assumed to
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be constant in each subdomain,

β(x, y) =


β+ if (x, y) ∈ Ω+,

β− if (x, y) ∈ Ω−.

(1.25)

With this piecewise constant coefficient, the original PDE in (1.1) with σ(x, y) = 0 can

be preconditioned to a Poisson equation in each subdomain by dividing the constant β+

in the Ω+ subdomain and dividing β− in the Ω− subdomain from the original problem.

So it is natural to introduce the jump in the normal derivative [un] as the augmented

variable. Thus, we have an equivalent problem:


∇2u(x, y) =

f(x, y)

β+
, if (x, y) ∈ Ω+ ,

∇2u(x, y) =
f(x, y)

β−
, if (x, y) ∈ Ω− ,

(1.26a)

[u]Γ = w, [un]Γ = g, (1.26b)

with the same boundary condition on ∂Ω as in the original problem (1.1). The regularity

of the new problem is the same as previously mentioned in Section 1.1.2, i.e., f is piece-

wise continuous, f±(x, y) ∈ C; the interface Γ is twice continuously differentiable along

the interface, Γ ∈ C2; and the solution u is piecewise twice continuously differentiable,

u±(x, y) ∈ C2.

Then we can discretize the corresponding Poisson equation using the standard five-

point stencil with some modifications in the right hand side. The discrete form of (1.26a)

obtained from the IIM can be written as

∇2
hUij =

fij
βij

+ Cij , (1.27)
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where Cij is a correction term, which is zero at a regular grid points, and is non-zero at

irregular grid points, and the ∇2
h is the discrete Laplacian operator

∇2
hUij =

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j
h2

. (1.28)

The correction term Cij at an irregular grid point (xi, yj) can be derived from the IIM

and is given as

Cij = a2w + a12g
′ + (a6 + a12χ

′′)w′ + a10w
′′

+
{
a4 + (a8 − a10)χ′′

}
g + a8

{[f
β

]
− w′′

}
,

(1.29)

where w, w′, w′′, g, and g′ are evaluated at a set of control points X1,X2, . . . ,XNb
on the

interface. These control points are usually the orthogonal projections of the irregular grid

points onto the interface. The {ai}’s are given by (3.4) in Chapter 3, which depends on

the finite difference coefficients of the 9-point stencil centered at (i, j) and the positions

of the 9-point stencil relative to the interface. We will explain this in detail when we

generalize the augmented strategies to PDEs with piecewise variable coefficients.

Let W = [W1,W2, . . . ,WNb
]T and G = [G1, G2, . . . , GNb

]T be the discrete values of

the jump conditions (1.26b) at the control points X1,X2, . . . ,XNb
on the interface. Let

B(W,G) be a mapping from W = [W1,W2, . . . ,WNb
]T and G = [G1, G2, . . . , GNb

]T to

Cij in (1.29). In discrete form, all the surface derivatives of the jump conditions can

be obtained from a linear combination of the values of W and G at {Xk}. Therefore,

B(W,G) can be written as a linear function of W and G

B(W,G) = BG−B1W (1.30)
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where B and B1 are two matrices with real entries.

Therefore, (1.27) can be re-written as a matrix vector equation, which combines the

approximate solution (denoted by U) to the original problem and the augmented variable

G (discrete form of g) together

AU +BG = F +B1W
def
= F1 . (1.31)

where A is the matrix form of the discrete Laplacian operator and F is the vector formed

by { fij
βij
}. In (1.31), for a given augmented variable G, we can solve for the approximate

solution U. In Z. Li’s original paper, fast Poisson solvers are utilized in solving for U to

give a fast algorithm.

Equation (1.31) has two unknowns, U and G. So we need another constraint to form

the second equation. We use the flux jump condition [βun] = v as the constraint. Define

the residual vector of the flux jump condition at {Xk} as

R(G) = [βUn](G)−V = β+U+
n − β−U−n −V . (1.32)

We want to find a G∗ such that R(G∗) = 0, where the vectors U+
n and U−n are the discrete

approximations of the normal derivatives u±n at {Xk} from each side of the interface.

For an approximate G, we can obtain the solution U by solving (1.31). Then, we can

interpolate {Uij} in a linear manner to get U±n (Xk) at the control points {Xk}, 1 ≤ k ≤

Nb. The interpolation scheme is crucial to the success of the augmented algorithm, and

the weighted least squares interpolation is used, which we will explain more in depth in

Chapter 3 when we generalize the augmented algorithm to PDEs with piecewise variable
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coefficient β. Since the interpolation is linear, we can write

∂U±(G)

∂n
= E±U + T±G + P±V +Q±W, (1.33)

where E+, E−, T+, T−, P+, P−, Q+, Q− are some sparse matrices determined from the

interpolation scheme. These matrices are used only for theoretical purposes but are not

actually constructed in implementation. We need to choose a vector G such that the flux

jump condition β+U+
n −β−U−n = V is satisfied along the interface Γ. Therefore, we have

a second matrix-vector equation

EU + TG− PV −QW = 0 . (1.34)

If we eliminate U from the matrix vector equations (1.31) and (1.34), we get the

Schur complement system for the augmented variable,

(T − EA−1B)G = PV +QW − EA−1F1
def
= F2 . (1.35)

This is an Nb × Nb system for G, a much smaller linear system compared to the one

for U. Therefore, we can use the GMRES [24] iterative methods to solve the Schur

complement system for the augmented variable. The matrix vector multiplication in

GMRES iteration includes two main steps: (1) solving the original problem (1.31) for a

given augmented variable G; (2) finding the residual of the constraint (1.32) using the

computed approximate solution from the given augmented variable.

The augmented IIM, also called the fast IIM, has been demonstrated to be second or-

der accurate in solutions in the L∞ norm by numerous numerical experiments. Moreover,

this augmented algorithm has shown to be very efficient, because the number of GMRES
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iterations is reasonably small and is independent of both the jumps in the coefficients

and the mesh size.

1.4 Motivation to generalize the augmented strategy

to variable coefficients

Despite of the great success of the augmented IIM for piecewise constant coefficients, this

method has never been applied to solve the elliptic interface equations with piecewise

variable coefficients.

Generally speaking, to develop an augmented algorithm for variable coefficients, we

need to solve four major problems. Firstly, we need to develop a new finite difference

scheme at the irregular points since the discrete laplacian operator no long works for

variable coefficients. Secondly, as a result of the first problem, we cannot take advantage

of the fast Poisson solver [27]. Instead, we need to utilize a multigrid solver [5, 1], which is

comparable to a fast Poisson solver using an FFT. Thirdly, the interpolation scheme in Z.

Li’s original paper only works for piecewise constant coefficients. So we need to develop

a generalized weighted least squares interpolation scheme for variable coefficients β to

compute the normal derivatives on the interface from a grid function Uij. The accuracy

of this interpolation scheme is crucial for the success of the augmented algorithm. Last

but not least, we need to propose an efficient new preconditioner to solve the Schur

complement system since the original one proposed in Z. Li’s paper [13] converges very

slowly for interface problems with piecewise variable coefficients.

In this dissertation, we develop a new numerical method for interface problems with

piecewise variable and discontinuous coefficients. The main motivation is to get not only

20



a second order accurate solution, but also a second order accurate gradient for some types

of interface problems.

The idea is based on the augmented IIM, also called the fast IIM developed for inter-

face problems with piecewise constant coefficients, in which, second order convergence of

the solution and the gradient is achieved. The key of the new method is to introduce the

jump in the normal derivative of the solution as the augmented variable and re-write the

interface problem as a Laplacian of the solution with lower order derivative terms near

the interface. Thus we can get jump relations for second order derivatives using the aug-

mented variable and the lower order derivative terms. The idea should be applicable for

boundary value problems with irregular domains as well. An upwind type discretization

is used for the finite difference discretization near or on the interface so that the negative

of the discrete coefficient matrix is an M-matrix. A multigrid solver DMGD9V [5] is used

to solve the linear system of equations and a GMRES iterative method is used to solve for

the augmented variable. Numerical experiments and convergence proof are also provided

to show that the new method archives second order accuracy not only in the solution,

but also in its gradient in the point-wise L∞ norm.

This dissertation is organized as follows.

Chapter 2 describes how to use the augmented IIM strategy to construct all the

components of the linear systems. In Chapter 2, we first precondition the original elliptic

interface equation to get an equivalent problem, which we can develop an augmented

iterative algorithm to solve. Next we derive for the interface relations from the jump

conditions and the PDE. Then we use the augmented IIM idea to discretize the equivalent

problem and derive the Schur complement system.

Chapter 3 describes how to utilize iterative algorithms to solve the linear system

of equations. In Chapter 3, we first develope a second order least squares interpolation
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scheme to approximate the discrete normal derivatives U±n from the grid function Uij.

Next, we use the multigrid solver DMGD9V to solve the linear system of equations

for U and a GMRES iterative method to solve for the augmented variable G. The we

propose an efficient preconditioner for the Schur complement system, which accelerates

the convergence of the GMRES iterations.

Chapter 4 shows some numerical experiments and analysis to demonstrate that this

new method can achieve the second order accuracy not only in the solution itself, but

also in its gradient. Moreover, we also demonstrate the efficiency and robustness of the

new method by showing that the number of iterations is almost independent of the mesh

size and the ratio of the jump in the coefficients β(x, y). At the end of this chapter,

we also generalize our new method for elliptic interface problems with non-zero σ(x, y)

and demonstrate that it can achieve second order accuracy in both the solution and the

gradient for these more general cases.

Finally, in Chapter 5, we summarize the main ideas of our new method and address

the highlights of the new method. We also provide potential extension of this work in the

end.
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Chapter 2

Elliptic Interface Problems with

Variable Coefficients

Consider the elliptic interface problem,

∇ ·
(
β(x, y)∇u(x, y)

)
= f(x, y), (x, y) ∈ Ω+ ∪ Ω−,

[u]Γ = w, [βun]Γ = v,

(2.1)

in a rectangular domain Ω with a prescribed boundary condition on ∂Ω and β ≥ βmin > 0.

Within this domain, Γ is an interface, across which the coefficient β is discontinuous, as

illustrated in Figure 1.1. Moreover, the coefficient β(x, y) is variable in each subdomain,

β(x, y) =


β+(x, y) if (x, y) ∈ Ω+,

β−(x, y) if (x, y) ∈ Ω−.

(2.2)

The functions w and v are two jump conditions that are defined only along the interface

Γ. f is piecewise continuous but may have a finite jump discontinuity across the interface
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Γ. The interface Γ may or may not align with an underlining Cartesian grid.

The regularity of this problem is the same as mentioned in Chapter 1, i.e., the interface

Γ is assumed to be twice continuously differentiable, Γ ∈ C2; the right hand side f is

assumed to be piecewise continuous in each subdomain, f±(x, y) ∈ C; the solution u is

assumed to be piecewise twice continuously differentiable in each subdomain, u±(x, y) ∈

C2; and the coefficient β is assumed to be piecewise continuously differentiable in each

subdomain, β±(x, y) ∈ C1.

In this chapter, we first precondition (2.1) and (2.2) to get an equivalent problem and

derive necessary interface relations from the equivalent problem. Then we use the IIM

idea to discretize the equivalent problem and derive the Schur complement system.

2.1 The equivalent problem

The original elliptic interface problem is stated in Problem I,

Problem (I).

∇ ·
(
β(x, y)∇u(x, y)

)
= f(x, y), x ∈ Ω = Ω+ ∪ Ω−, (2.3a)

Give BC on ∂Ω, (2.3b)

with jump conditions along the interface Γ specified as

[u]Γ = w(s), (2.4a)

[βun]Γ = v(s). (2.4b)

By introducing the normal derivative on the interface [un] as the augmented variable,
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we are interested in solving a new problem as stated in Problem II.

Consider the solution set ug(x, y) of the following problem as a functional of g(s).

Problem (II).

∇2u+
∇β+(x, y)

β+(x, y)
· ∇u =

f(x, y)

β+(x, y)
, if x ∈ Ω+, (2.5a)

∇2u+
∇β−(x, y)

β−(x, y)
· ∇u =

f(x, y)

β−(x, y)
, if x ∈ Ω−, (2.5b)

Give BC on ∂Ω, (2.5c)

with specified jump conditions along the interface Γ

[u]Γ = w(s), (2.6a)

[un]Γ = g(s). (2.6b)

Take the exact solution of Problem (I) as u∗(x, y), and we define its corresponding

normal derivative along the interface as

g∗(s) = [u∗n](s) . (2.7)

Then u∗(x, y) satisfies Problem (II) with g(s) ≡ g∗. In other words, if we specify g(s) ≡ g∗

in (2.6b) and solve Problem (II), the solution ug∗(x, y) we obtained will be exactly the

same as the solution to Problem (I), i.e., ug∗(x, y) ≡ u∗(x, y). So ug∗(x, y) automatically

satisfies the second flux jump condition in Problem (I),

[
β
∂ug∗

∂n

]
= v(s). (2.8)
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Therefore, solving Problem (I) is equivalent to finding the corresponding g∗ and then

ug∗(x, y) in Problem (II). Notice that g∗ is only defined along the interface, so it is one

dimensional lower than u(x, y). Problem (II) is an elliptic interface problem which is

much easier to solve because the jump condition [un] is given instead of [βun]. We can

use the IIM idea to construct a second order scheme which also satisfies the maximum

principle. The maximum principle guarantees the negative of the coefficient matrix of the

finite difference scheme is an M-matrix that is diagonally dominant and invertible. Most

iterative methods are guaranteed to converge for M-matrices.

We can write the finite difference scheme for Problem (II) in a general form at any

grid point (xi, yj),
ns∑
k

γkUi+ik,j+jk =
fij
βij

+ Cij . (2.9)

ns is the number of grid points involved in the finite difference stencil and Uij is a discrete

approximation to the exact solution. The sum over k involves several grid points near

(xi, yj). So ik, jk takes value in the set {0,±1,±2, . . .}.

To enforce the negative of the finite difference coefficient matrix to be an M-matrix,

we impose the restrictions on the finite difference coefficients {γk} in (2.9),


γk ≥ 0 if (ik, jk) 6= (0, 0)

γk < 0 if (ik, jk) = (0, 0)

(2.10)

In this dissertation, we focus on the case when β is variable and discontinuous as

in (2.2). We develop a new finite difference scheme using five-point stencil to discretize

the PDE in (2.5a)–(2.5c). Then we use the multigrid solver DMGD9V to solve for the

solution u in Problem (II). We aim to develop a new numerical method with which we

can obtain not only a second order accurate solution, but also a second order accurate
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gradient. The key to success is to compute the augmented variable g∗ accurately and

efficiently. We describe our method to determine g∗ in Chapter 3. Once g∗ is found, we

just need to apply the multigrid solver one more time to get the solution u∗(x, y). Before

we explain our method, we first provide some theoretical preparations by deriving the

interface relations for Problem (II).

2.2 The interface relations

Note that the second jump condition (2.6b) in Problem (II) is different from that in (2.4b)

of the original Problem (I). The interface relations from the original jump conditions

(2.4a)–(2.4b) in Problem (I) has been derived in the book of Z. Li and K. Ito [14]. Here,

we want to derive the interface relations from the new jump conditions (2.6a)–(2.6b).

Figure 2.1: A diagram of the local coordinates in the normal and tangential directions,
where θ is the angle between the x-axis and the normal direction.

Since the jump condition is given in the normal direction n, it is more convenient to
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use the local coordinates in the normal and tangential directions. Given a point (X, Y )

on the interface, the local coordinate system in the normal and tangential directions is

defined as (see Figure 2.1 for illustrations),


ξ = (x−X) cos θ + (y − Y ) sin θ

η = −(x−X) sin θ + (y − Y ) cos θ

(2.11)

where θ is the angle between the x-axis and the normal direction (ξ̂ = n̂), pointing to the

Ω+ subdomain. Under such new coordinates system, the interface can be parameterized

by

ξ = χ(η) with χ(0) = 0, χ′(0) = 0. (2.12)

where we assume that the interface is twice continuously differentiable, and hence χ′(0) =

0. The curvature of the interface at (X, Y ) is χ′′(0).

Consider the jumps across Γ at a fixed point (X, Y ) that corresponds to the local

coordinates ξ = η = 0. At this point, the solution of Problem (II) will satisfy the following

interface relations that represent the limiting values from one side of the interface in terms

of the other using the local coordinates (2.11).

Theorem 1. Let (X, Y ) be a point on the interface Γ ∈ C2. Then, from the jump condi-
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tions (2.6a)–(2.6b) and the PDE (2.5a)–(2.5b), we have the following interface relations:

[u] = w,

[uξ] = g,

[uη] = w′,

[uηη] = −gχ′′ + w′′,

[uξη] = w′χ′′ + g′,

[uξξ] = g

(
χ′′ −

β+
ξ

β+

)
− w′′ −

[
βξ
β

]
u−ξ −

[
βη
β

]
u−η −

β+
η

β+
w′ +

[
f

β

]
,

= g

(
χ′′ −

β−ξ
β−

)
− w′′ −

[
βξ
β

]
u+
ξ −

[
βη
β

]
u+
η −

β−η
β−

w′ +

[
f

β

]
,

(2.13)

where w′, g′ and w′′ are the first- and second-order surface derivatives of w and g on the

interface, which are all evaluated at (ξ, η) = (0, 0).

Proof: In a neighborhood of (X, Y ), the interface can be expressed as ξ = χ(η) with

χ(0) = 0 and χ′(0) = 0. Then the jump conditions w and g can be written as functions

of only η. For simplicity, we still use the notation [u] = w(η) and [un] = g(η) in the local

coordinate system. Setting η = 0 in (2.6a) and (2.6b), we get the first two equalities in

(2.13),

[u] = w(η) =⇒ [u] = w(0) = w, (2.14)

[un] = g(η) =⇒ [uξ] = g(0) = g. (2.15)

Differentiating the first jump condition of Problem I in (2.6a) with respect to η along the

interface, we get

[uξ]χ
′ + [uη] = w′(η). (2.16)

Setting η = 0, we get the third equation in (2.13). Differentiating the equation above
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again with respect to η, we obtain

[uξ]χ
′′ + χ′

d

dη
[uξ] + [uξη]χ

′ + [uηη] = w′′(η). (2.17)

Setting η = 0, we get the fourth equality in (2.13). Notice that in the local coordinates,

the second jump condition of Problem II in (2.6b) can be written as

(u+
ξ − u

+
η χ
′) = (u−ξ − u

−
η χ
′) + g

√
1 + χ′2. (2.18)

Differentiating (2.18) with respect to η along the interface, we have

u+
ξξχ
′ + u+

ξη −
d

dη
(u+

η )χ′ − u+
η χ
′′ = u−ξξχ

′ + u−ξη −
d

dη
(u−η )χ′ − u−η χ′′

+ g′(s)
√

1 + x′2 + g(s)
1

2

2χ′χ′′√
1 + χ′2

.
(2.19)

Setting η = 0, we get the fifth equality in (2.13). Since the PDE in (2.5a)–(2.5b) are

invariant under the transformation of the coordinates system in (2.11), we have

[
uξξ + uηη +

βξ
β
uξ +

βη
β
uη

]
=

[
f

β

]
=⇒ [uξξ] = − (−gχ′′ + w′′)−

(
β+
ξ

β+
u+
ξ −

β−ξ
β−

u−ξ

)
−
(
β+
η

β+
u+
ξ −

β−η
β−

u−ξ

)
−
[
f

β

]
.

(2.20)

Substituting u+
ξ = u−ξ + g and u+

η = u−η + w′ in the above equation, we get the first line

of the last equality in (2.13). Similarly, if we substitute u−ξ = u+
ξ − g and u−η = u+

η − w′

in the above equation, we obtain the second line of the last equation in (2.13).

These interface relations derived here will be used to derive the finite difference

method in the next section.
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2.3 The augmented IIM

In Section 2.1, we introduced the jump in the normal derivative of the solution as the

augmented variable and re-wrote the original interface problem as a Laplacian of the

solution with lower order derivative terms. In Section 2.2, we derived jump relations for

the solution, and its first order and second order derivatives in the local coordinates

system. In this section, we use the IIM idea to discretize Problem (II) and derive the

Schur complement system.

We first generate a uniform grid on the rectangular domain [a, b] × [c, d] where the

elliptic interface problem is defined:

xi = a+ ihx, yj = c+ jhy, 0 ≤ i ≤ N, 0 ≤ j ≤M (2.21)

where hx = (b− a)/N and hy = (d− c)/M . We assume that hx = hy = h for simplicity.

We use the zero level set of a Liptschiz continuous function φ(x) defined on the entire

domain (Ω+ ∪Ω− ∪Γ) to represent the interface. For example, if the interface is the unit

circle in two dimension, then the choice of a level set function is φ(x, y) =
√
x2 + y2− 1.

The entire domain is then divided into two disjoint parts Ω− = {(x, y), φ(x, y) < 0} and

Ω+ = {(x, y), φ(x, y) > 0} by the interface Γ = {(x, y), φ(x, y) = 0} .

To distinguish the discrete solution from the continuous solution, we use uppercase

letters to indicate the solution of the discrete problem and lowercase letters for the

continuous solutions. We also use bold letters for vectors.

We say (xi, yj) is a regular grid point if the interface does not come between any grid

points in the standard five-point stencil centered at (i, j). At these points, we can obtain
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an O(h2) local truncation error using the standard 5-point formula

1

hx

(
βi+ 1

2
,j

(
Ui+1,j − Ui,j

)
hx

− βi− 1
2
,j

(
Ui,j − Ui−1,j

)
hx

)

+
1

hy

(
βi,j+ 1

2

(
Ui,j+1 − Ui,j

)
hy

− βi,j− 1
2

(
Ui,j − Ui,j−1

)
hy

)
= fi,j ,

=⇒ 1

βsum

(
βi+ 1

2
,j

Ui+1,j

h2
+ βi− 1

2
,j

Ui−1,j

h2

+ βi,j+ 1
2

Ui,j+1

h2
+ βi,j− 1

2

Ui,j−1

h2

)
− Ui,j

h2
=

fi,j
βsum

,

(2.22)

where we have used the assumption hx = hy = h and βsum = βi+1/2,j +βi−1/2,j +βi,j+1/2 +

βi,j−1/2. Since β(x, y) ≥ βmin > 0, the finite difference coefficients in (2.22) satisfy the

sign restrictions in (2.10).

We say (xi, yj) is an irregular grid point if the grid points in the standard five-point

stencil centered at (i, j) are from both sides of the interface, as illustrated in Figure 2.2.

We also wish to determine formula of the form (2.22) for the irregular points. Since these

irregular points are adjacent to the interface Γ and form a lower dimensional set, it turns

out to be sufficient to require an O(h) local truncation error at these points. To derive the

finite difference scheme for the irregular points, we first write the PDE at the irregular

point (xi, yj) as follows

uxx(xi, yj) + uyy(xi, yj) +
βx(xi, yj)

β(xi, yj)
ux(xi, yj) +

βy(xi, yj)

β(xi, yj)
uy(xi, yj) =

f(xi, yj)

β(xi, yj)
(2.23)

Note that if (xi, yj) happens to be on the interface, then β(xi, yj), βx(xi, yj), βy(xi, yj)

and f(xi, yj) are defined as the limiting value from a pre-chosen side of the interface.,

say the “−” side. The discrete forms for the operators uxx(xi, yj), uyy(xi, yj), ux(xi, yj)
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Figure 2.2: The geometry at an irregular grid point (xi, yj). The red diamonds are the
control points, which are the orthogonal projections of the grid points (xi, yj+1) and
(xi+1, yj) on the interface. The blue triangles are the intersection points, where the in-
terface intersects with the grid lines involved in the 5-point stencil.

and uy(xi, yj) are discussed in detail below.

2.3.1 Discretization of uxx and uyy at the irregular grid points

Consider the irregular grid point (i, j), which could belong to either the Ω− domain

(Figure 2.3) or the Ω+ domain (Figure 2.4). Here, we first discuss the case when (i, j) is

in the Ω− subdomain. In this case, at least one of its four nearest neighboring grid points

( (i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1) ) must belong to the other subdomain Ω+.

To discretize uxx(xi, yj), we need the two nearest neighboring points from the left side

(i− 1, j) and the right side (i+ 1, j). Their positions with respect to the interface could

have three possibilities as listed below.
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Figure 2.3: The irregular grid point (xi, yj) in the Ω− subdomain. At least one of its four
nearest neighbor grid points must belong to the other subdomain Ω+. The intersections
are labeled by the little blue triangles, with their coordinates listed inside the parentheses.

• When (i, j), (i− 1, j) ∈ Ω−, while (i+ 1, j) ∈ Ω+ (see the left graph in Figure 2.3):

Define an auxiliary function in the range x ∈ [xi−1, xi+1], y = yj

ũ(x) =


0 xi−1 ≤ x ≤ x∗i+1,

[u]R + [ux]R(x− x∗i+1) + [uxx]R
(x− x∗i+1)2

2
x∗i+1 ≤ x ≤ xi+1,

where x∗i+1 is x-coordinate of the intersection point (Figure 2.3) and [u]R, [ux]R

and [uxx]R are the jumps at the intersection point (x∗i+1, yj) on the right hand side

of (i, j). Then, we define another function q(x) = u(x, yj) − ũ(x), which satisfies

[q] = [qx] = [qxx] = 0. That says q(x) is twice continuously differentiable. Since
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Figure 2.4: The irregular grid point (xi, yj) in Ω+ subdomain. At least one of its four
nearest neighbor grid points must belong to the other subdomain Ω−. The intersections
are labeled by the little blue triangles, with their coordinates listed inside the parentheses.

u(x, yj) = q(x) in the neighborhood of xi, we have

uxx(xi, yj) = qxx(xi) =
Qi+1 − 2Qi +Qi−1

h2
x

+O(h2
x)

=
Ui+1,j − 2Ui,j + Ui−1,j

h2
x

−
[u]R + [ux]RdR + [uxx]R

d2
R

2
h2
x

+O(h2
x) ,

(2.24)

where dR = xi+1 − x∗i+1.

• When (i, j), (i+1, j) ∈ Ω−, while (i−1, j) ∈ Ω+ (see the right graph in Figure 2.3):

Define an auxiliary function in the range x ∈ [xi−1, xi+1], y = yj

ũ(x) =


[u]L + [ux]L(x− x∗i−1) + [uxx]L

(x− x∗i−1)2

2
xi−1 ≤ x ≤ x∗i−1,

0 x∗i−1 ≤ x ≤ xi+1,

where x∗i−1 is x-coordinate of the intersection point (Figure 2.3) and [u]L, [ux]L and
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[uxx]L are the jump relations at the intersection point (x∗i−1, yj) on the left hand side

of (i, j). Then, we define another function q(x) = u(x, yj) − ũ(x), which satisfies

[q] = [qx] = [qxx] = 0. That says q(x) is twice continuously differentiable. Since

u(x, yj) = q(x) in the neighborhood of xi, we have

uxx(xi, yj) = qxx(xi) =
Qi+1 − 2Qi +Qi−1

h2
x

+O(h2
x)

=
Ui+1,j − 2Ui,j + Ui−1,j

h2
x

−
[u]L + [ux]LdL + [uxx]L

d2
L

2
h2
x

+O(h2
x) ,

(2.25)

where dL = xi−1 − x∗i−1.

• When (i, j) ∈ Ω−, while (i− 1, j), (i+ 1, j) ∈ Ω+:

Define an auxiliary function in the range x ∈ [xi−1, xi+1], y = yj

ũ(x) =


[u]L + [ux]L(x− x∗i−1) + [uxx]L

(x− x∗i−1)2

2
xi−1 ≤ x ≤ x∗i−1,

0 x∗i−1 ≤ x ≤ x∗i+1,

[u]R + [ux]R(x− x∗i+1) + [uxx]R
(x− x∗i+1)2

2
x∗i+1 ≤ x ≤ xi+1,

where x∗i−1 and x∗i+1 are x-coordinates of the intersection points (Figure 2.3) and

[u]L/R, [ux]L/R and [uxx]L/R are the jumps at the intersection point (x∗i−1, yj)/(x∗i+1, yj)

on the left/right hand side of (i, j). Then, we define another function q(x) =

u(x, yj) − ũ(x), which satisfies [q] = [qx] = [qxx] = 0. That says q(x) is twice

continuously differentiable. Since u(x, yj) = q(x) in the neighborhood of xi, we
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have

uxx(xi, yj) = qxx(xi) =
Qi+1 − 2Qi +Qi−1

h2
x

+O(h2
x)

=
Ui+1,j − 2Ui,j + Ui−1,j

h2
x

−
[u]L + [ux]LdL + [uxx]L

d2
L

2
h2
x

−
[u]R + [ux]RdR + [uxx]R

d2
R

2
h2
x

+O(h2
x) ,

(2.26)

where dL = xi−1 − x∗i−1 and dR = xi+1 − x∗i+1.

Similarly, to discretize uyy(xi, yj), we need the two nearest neighbor points from the

up side (i, j+1) and the down side (i, j−1). Their positions with respect to the interface

could also have three possibilities as listed below.

• When (i, j), (i, j − 1) ∈ Ω−, while (i, j + 1) ∈ Ω+ (see the left graph in Figure 2.3):

Define an auxiliary function in the range y ∈ [yj−1, yj+1], x = xi

ũ(y) =


0 yj−1 ≤ x ≤ y∗j+1,

[u]U + [uy]U(y − y∗j+1) + [uyy]U
(y − y∗j+1)2

2
y∗j+1 ≤ y ≤ yj+1,

where y∗j+1 is y-coordinate of the intersection point (Figure 2.3) and [u]U , [uy]U

and [uyy]U are the jump relations at the intersection point (xi, y
∗
j+1) on the up side

of (i, j). Then, we define another function q(y) = u(xi, y) − ũ(y), which satisfies

[q] = [qy] = [qyy] = 0. That says q(y) is twice continuously differentiable. Since
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u(xi, y) = q(y) in the neighborhood of yj, we have

uyy(xi, yj) = qyy(yj) =
Qj+1 − 2Qj +Qj−1

h2
y

+O(h2
y)

=
Ui,j+1 − 2Ui,j + Ui,j−1

h2
y

−
[u]U + [uy]UdU + [uyy]U

d2
U

2
h2
y

+O(h2
y) ,

(2.27)

where dU = yj+1 − y∗j+1.

• When (i, j), (i, j+1) ∈ Ω−, while (i, j−1) ∈ Ω+ (see the right graph in Figure 2.3):

Define an auxiliary function in the range y ∈ [yj−1, yj+1], x = xi

ũ(y) =


[u]D + [uy]D(y − y∗j−1) + [uyy]D

(y − y∗j−1)2

2
yj−1 ≤ y ≤ y∗j−1,

0 y∗j−1 ≤ y ≤ yj+1,

where y∗j−1 is y-coordinate of the intersection point (Figure 2.3) and [u]D, [uy]D and

[uyy]D are the jump relations at the intersection point (xi, y
∗
j−1) on the down side

of (i, j). Then, we define another function q(y) = u(xi, y) − ũ(y), which satisfies

[q] = [qy] = [qyy] = 0. That says q(y) is twice continuously differentiable. Since

u(xi, y) = q(y) in the neighborhood of yj, we have

uyy(xi, yj) = qyy(yj) =
Qj+1 − 2Qj +Qj−1

h2
y

+O(h2
y)

=
Ui,j+1 − 2Ui,j + Ui,j−1

h2
y

−
[u]D + [uy]DdD + [uyy]D

d2
D

2
h2
y

+O(h2
y) ,

(2.28)
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where dD = yj−1 − y∗j−1.

• When (i, j) ∈ Ω−, while (i, j − 1), (i, j + 1) ∈ Ω+:

Define an auxiliary function in the range y ∈ [yj−1, yj+1], x = xi

ũ(y) =


[u]D + [uy]D(y − y∗j−1) + [uyy]D

(y − y∗j−1)2

2
yj−1 ≤ y ≤ y∗j−1,

0 y∗j−1 ≤ y ≤ y∗j+1,

[u]U + [uy]U(y − y∗j+1) + [uyy]U
(y − y∗j+1)2

2
y∗j+1 ≤ y ≤ yj+1,

where y∗j−1 and y∗j+1 are y-coordinates of the intersection points (Figure 2.3) and

[u]D/U , [uy]D/U and [uyy]D/U are the jumps at the intersection point (xi, y
∗
j−1)/(xi, y

∗
j+1)

on the down/up side of (i, j). Then, we define another function q(y) = u(xi, y) −

ũ(y), which satisfies [q] = [qy] = [qyy] = 0. That says q(y) is twice continuously

differentiable. Since u(xi, y) = q(y) in the neighborhood of yj, we have

uyy(xi, yj) = qyy(yj) =
Qj+1 − 2Qj +Qj−1

h2
y

+O(h2
y)

=
Ui,j+1 − 2Ui,j + Ui,j−1

h2
y

−
[u]D + [uy]DdD + [uyy]D

d2
D

2
h2
y

−
[u]U + [uy]UdU + [uyy]U

d2
U

2
h2
y

+O(h2
y) ,

(2.29)

where dD = yj−1 − y∗j−1 and dU = yj+1 − y∗j+1.

So far, we have obtained the discretization scheme for the differential operators

uxx(xi, yj) and uyy(xi, yj) at an irregular point in the Ω− domain. If the irregular point
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(xi, yj) lies in the Ω+ domain, we can follow exactly the same procedures above to de-

rive the corresponding discrete forms. Here, for the case when the irregular grid point

(i, j) ∈ Ω+ (see Figure 2.4), the only difference we need to make is to define q = u+ ũ ,

instead of q = u− ũ as used in the above analysis for (i, j) ∈ Ω−. This thus will change

the “−” before the correction terms in (2.24)–(2.29) to the “+” sign in the discrete forms.

We summarize the results in the following two equations. The discretization of uxx(xi, yj)

for (i, j) ∈ Ω+ is

uxx(xi, yj) =



∇2
hx

+
[u]R + [ux]RdR + [uxx]R

d2
R

2
h2
x

+O(h2
x) only (i+ 1, j) ∈ Ω−,

∇2
hx

+
[u]L + [ux]LdL + [uxx]L

d2
L

2
h2
x

+O(h2
x) only (i− 1, j) ∈ Ω−,

∇2
hx +

[u]R + [ux]RdR + [uxx]R
d2
R

2
h2
x

+
[u]L + [ux]LdL + [uxx]L

d2
L

2
h2
x

+O(h2
x)

both (i± 1, j) ∈ Ω−,

(2.30)

where ∇2
hx

=
Ui+1,j − 2Ui,j + Ui−1,j

h2
x

and [u]L/R, [ux]L/R, [uxx]L/R, dL/R are previously
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defined in (2.24)–(2.26). The discretization of uyy(xi, yj) for (i, j) ∈ Ω+ is

uyy(xi, yj) =



∇2
hy

+
[u]U + [uy]UdU + [uyy]U

d2
U

2
h2
y

+O(h2
y) only (i, j + 1) ∈ Ω−,

∇2
hy

+
[u]D + [uy]DdD + [uyy]D

d2
D

2
h2
y

+O(h2
y) only (i, j − 1) ∈ Ω−,

∇2
hy +

[u]U + [uy]UdU + [uyy]U
d2
U

2
h2
y

+
[u]D + [uy]DdD + [uyy]D

d2
D

2
h2
y

+O(h2
y)

both (i, j ± 1) ∈ Ω−,

(2.31)

where ∇2
hy

=
Ui,j+1 − 2Ui,j + Ui,j−1

h2
y

and [u]U/D, [ux]U/D, [uxx]U/D, dU/D are previously

defined in (2.27)–(2.29).

2.3.2 Jumps at the intersections

In the discrete forms of uxx(xi, yj) and uyy(xi, yj) in (2.24)–(2.31), we need to evaluate the

jumps [u], [ux], [uxx], [uy] and [uyy] at the intersection grid points. From the transforma-

tion of coordinates system in (2.11), we can derive the relations between the differential
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operators in the local coordinate system and Cartesian coordinate system, which satisfies

 ∂
∂x

∂
∂y

 =

cos θ − sin θ

sin θ cos θ


 ∂

∂ξ

∂
∂η

 ,

 ∂
∂ξ

∂
∂η

 =

 cos θ sin θ

− sin θ cos θ


 ∂

∂x

∂
∂y

 ,

 ∂2

∂x2

∂2

∂y2

 =

cos2 θ −2 sin θ cos θ sin2 θ

sin2 θ 2 sin θ cos θ cos2 θ




∂2

∂ξ2

∂2

∂ξ∂η

∂2

∂η2

 ,

(2.32)

where the differential operators could act on any functions, for example, the solution

u(x, y).

Here we first consider the case where the center grid point (i, j) ∈ Ω−. At a specified

intersection point (XI , YJ), from the interface relations in (2.13) and the differential
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operator relations in (2.32), we have

[u] = w,

[ux] = cos θ[uξ]− sin θ[uη] = g cos θ − w′ sin θ ,

[uy] = sin θ[uξ] + cos θ[uη] = g sin θ + w′ cos θ ,

[uxx] = cos2 θ[uξξ]− 2 sin θ cos θ[uξη] + sin2 θ[uηη]

= −2 sin θ cos θ(w′χ′′ + g′) + sin2 θ(−gχ′′ + w′′)

+ cos2 θ
{(
g(χ′′ −

β+
ξ

β+
)− w′′ −

β+
η

β+
w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu−x + sin θu−y )−

[
βη
β

]
(− sin θu−x + cos θu−y )

}
,

[uyy] = sin2 θ[uξξ] + 2 sin θ cos θ[uξη] + cos2 θ[uηη]

= 2 sin θ cos θ(w′χ′′ + g′) + cos2 θ(−gχ′′ + w′′)

+ sin2 θ
{(
g(χ′′ −

β+
ξ

β+
)− w′′ −

β+
η

β+
w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu−x + sin θu−y )−

[
βη
β

]
(− sin θu−x + cos θu−y )

}
,

(2.33)

where u−x and u−y can be further approximated by ux(xi, yj) and uy(xi, yj) at the center

grid point (i, j) using Taylor expansion. That says, since the distance between the inter-

section point and the center point (i, j) is less than or equal to hx or hy (see Figure 2.3),

we can write

u−x |intersection = ux(xi, yj) +O(hx),

u−y |intersection = uy(xi, yj) +O(hy) .

(2.34)

Similarly, in the case (i, j) ∈ Ω+, we need to choose the alternative formula for the

jump [uξξ], see the second line of the last equality in (2.13). So the jumps [uxx], [uyy]
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become

[uxx] = cos2 θ[uξξ]− 2 sin θ cos θ[uξη] + sin2 θ[uηη]

= −2 sin θ cos θ(w′χ′′ + g′) + sin2 θ(−gχ′′ + w′′)

+ cos2 θ
{(
g(χ′′ −

β−ξ
β−

)− w′′ −
β−η
β−

w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu+

x + sin θu+
y )−

[
βη
β

]
(− sin θu+

x + cos θu+
y )
}
,

[uyy] = sin2 θ[uξξ] + 2 sin θ cos θ[uξη] + cos2 θ[uηη]

= 2 sin θ cos θ(w′χ′′ + g′) + cos2 θ(−gχ′′ + w′′)

+ sin2 θ
{(
g(χ′′ −

β−ξ
β−

)− w′′ −
β−η
β−

w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu+

x + sin θu+
y )−

[
βη
β

]
(− sin θu+

x + cos θu+
y )
}
,

(2.35)

where u+
x and u+

y can be further approximated by ux(xi, yj) and uy(xi, yj) at the center

grid point (i, j) using Taylor expansion. Since the distance between the intersection point

and the center point (i, j) is less than or equal to hx or hy (see Figure 2.4), we can write

u+
x |intersection = ux(xi, yj) +O(hx),

u+
y |intersection = uy(xi, yj) +O(hy) .

(2.36)

Substituting (2.33) and (2.35) to the discrete forms of uxx and uyy in (2.24)–(2.29),

and collecting terms ux(xi, yj) and uy(xi, yj), we have

uxx(xi, yj) + uyy(xi, yj) = ∇2
hu(xi, yj) + k1ux(xi, yj) + k2uy(xi, yj)

+ C1 +O(max{hx, hy}) ,
(2.37)
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where ∇2
hu(xi, yj) =

Ui+1,j + Ui−1,j − 2Ui,j
h2
x

+
Ui,j+1 + Ui,j−1 − 2Ui,j

h2
y

and k1, k2, C1 are

constant correction terms. Notice that k1 and k2 are independent of the jump conditions

g, w and their surface derivatives g′, w′ and w′′ at the intersections ( see (2.33) and (2.35)

for details), while the constant C1 is a function of g, w and their surface derivatives at

the intersection points. Therefore, the PDE at the irregular grid point (xi, yj) in (2.23)

becomes

∇2
hu(xi, yj) +

(βx(xi, yj)
β(xi, yj)

+ k1

)
ux(xi, yj)

+
(βy(xi, yj)
β(xi, yj)

+ k2

)
uy(xi, yj) =

f(xi, yj)

β(xi, yj)
− C1 +O(max{hx, hy}) ,

(2.38)

where ∇2
hu(xi, yj) =

Ui+1,j + Ui−1,j − 2Ui,j
h2
x

+
Ui,j+1 + Ui,j−1 − 2Ui,j

h2
y

is the discrete Lapla-

cian operator. We still need to derive the discrete forms for ux(xi, yj) and uy(xi, yj).

2.3.3 Discretization of ux and uy at the irregular grid points

We use the two point stencil for the first order derivatives ux(xi, yj) and uy(xi, yj). We

first consider the discretization of ux(xi, yj). If the coefficient (βx
β

+ k1) before ux(xi, yj)

in (2.38) is positive , we use (i, j) and the grid point on the right (i+1, j) to approximate

ux(xi, yj). Otherwise, we use (i, j) and the grid point on the left (i−1, j) to approximate

ux(xi, yj). The stencil points are chosen in this way to satisfy the sign restrictions of the

finite difference coefficients in (2.10). So, we have

ux(xi, yj) =


Ui+1,j−Ui,j

hx
+ CR +O(hx) if (βx

β
+ k1) > 0 ,

Ui,j−Ui−1,j

hx
+ CL +O(hx) if (βx

β
+ k1) ≤ 0 ,

(2.39)
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where both CR and CL are constants that are determined by the positions of the two

point stencil relative to the interface Γ . CR = 0 when (i, j) and (i + 1, j) are from the

same side of the interface. Similar, CL = 0 if (i, j) and (i− 1, j) are from the same side

of the interface.

However, when the two grid points of the stencil are on different sides of the interface,

we need to derive the nonzero constants CR and CL.

For CR, the two grid points involved are (i, j) and (i+ 1, j), and their positions with

respect to the interface could have two possibilities as listed below.

• When (i, j) ∈ Ω−, while (i+1, j) ∈ Ω+ ( see the left graph in Figure 2.3): We define

an auxiliary function in the range x ∈ [xi−1, xi+1], y = yj

ũ(x) =


0 xi−1 ≤ x ≤ x∗i+1,

[u]R + [ux]R(x− x∗i+1) x∗i+1 ≤ x ≤ xi+1,

(2.40)

where x∗i+1 is x-coordinate of the intersection point (Figure 2.3) and [u]R and [ux]R

are the jumps at the intersection point (x∗i+1, yj) on the right hand side of (i, j).

Then, we define another function q(x) = u(x, yj) − ũ(x), which satisfies [q] =

[qx] = 0. That says q(x) is continuously differentiable. Since u(x, yj) = q(x) in the

neighborhood of xi, we have

ux(xi, yj) = qx(xi) =
Qi+1 −Qi

hx
+O(hx)

=
Ui+1,j − Ui,j

hx
− [u]R + [ux]RdR

hx
+O(hx)

=⇒ CR = − [u]R + [ux]RdR
hx

(2.41)

where dR = xi+1 − x∗i+1.
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• When (i, j) ∈ Ω+, while (i + 1, j) ∈ Ω− ( see the left graph in Figure 2.4): We

define the same auxiliary function ũ(x) in (2.40). Then, we define another function

q(x) = u(x, yj)+ ũ(x). Notice here we use “+” instead of “−” sign between u(x, yj)

and ũ(x) since (i, j) is in the Ω+ domain now. The q(x) function satisfies [q] =

[qx] = 0. That says q(x) is continuously differentiable. Since u(x, yj) = q(x) in the

neighborhood of xi, we have

ux(xi, yj) = qx(xi) =
Qi+1 −Qi

hx
+O(hx)

=
Ui+1,j − Ui,j

hx
+

[u]R + [ux]RdR
hx

+O(hx)

=⇒ CR =
[u]R + [ux]RdR

hx

(2.42)

where dR = xi+1 − x∗i+1.

For CL, the two grid points involved are (i, j) and (i− 1, j), and their positions with

respect to the interface could also have two possibilities as listed below.

• When (i, j) ∈ Ω−, while (i − 1, j) ∈ Ω+ ( see the right graph in Figure 2.3): We

define an auxiliary function in the range x ∈ [xi−1, xi+1], y = yj

ũ(x) =


[u]L + [ux]L(x− x∗i−1) xi−1 ≤ x ≤ x∗i−1,

0 x∗i−1 ≤ x ≤ xi+1,

(2.43)

where x∗i−1 is x-coordinate of the intersection point (Figure 2.3) and [u]L and [ux]L

are the jump relations at the intersection point (x∗i−1, yj) on the left hand side

of (i, j). Then, we define another function q(x) = u(x, yj) − ũ(x), which satisfies

[q] = [qx] = 0. That says q(x) is continuously differentiable. Since u(x, yj) = q(x)
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in the neighborhood of xi, we have

ux(xi, yj) = qx(xi) =
Qi −Qi−1

hx
+O(hx)

=
Ui,j − Ui−1,j

hx
− [u]L + [ux]LdL

hx
+O(hx)

=⇒ CL = − [u]L + [ux]LdL
hx

(2.44)

where dL = xi−1 − x∗i−1.

• When (i, j) ∈ Ω+, while (i − 1, j) ∈ Ω− ( see the right graph in Figure 2.4):

We define the same auxiliary function ũ(x) in (2.43). Then, we define another

function q(x) = u(x, yj)+ũ(x). Notice here we use “+” instead of “−” sign between

u(x, yj) and ũ(x) since (i, j) is in the Ω+ domain now. The q(x) function satisfies

[q] = [qx] = 0. That says q(x) is continuously differentiable. Since u(x, yj) = q(x)

in the neighborhood of xi, we have

ux(xi, yj) = qx(xi) =
Qi −Qi−1

hx
+O(hx)

=
Ui,j − Ui−1,j

hx
+

[u]L + [ux]LdL
hx

+O(hx)

=⇒ CL =
[u]L + [ux]LdL

hx

(2.45)

where dL = xi−1 − x∗i+1.

Next, to derive the discrete form for uy(xi, yj), we use (i, j) and the grid point on the

up side (i, j + 1) to approximate uy(xi, yj) if the coefficient (
βy
β

+ k2) before uy(xi, yj) in

(2.38) is positive. Otherwise, we use (i, j) and the grid point on the down side (i, j − 1)

to approximate uy(xi, yj). Note that, the stencil points are chosen in this way to satisfy
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the sign restrictions of the finite difference coefficients in (2.10). So, we have

uy(xi, yj) =


Ui,j+1 − Ui,j

hy
+ CU +O(hy) if (

βy
β

+ k2) > 0 ,

Ui,j − Ui,j−1

hy
+ CD +O(hy) if (

βy
β

+ k2) ≤ 0 ,

(2.46)

where both CU and CD are constants that are determined by the positions of the two

point stencil relative to the interface Γ . CU = 0 when (i, j) and (i, j + 1) are from the

same side of the interface. Similar, CD = 0 if (i, j) and (i, j − 1) are from the same side

of the interface.

However, when the two grid points of the stencil are on different sides of the interface,

we need to derive the nonzero constants CU and CD. For CU , the two grid points involved

are (i, j) and (i, j + 1), and their positions with respect to the interface could have two

possibilities. We then follow the previous procedure in deriving CL and CR to obtain

CU and CD. The idea is to find a function q that is continuously differentiable and

equals u(xi, yj) in the neighborhood of the irregular grid point (i, j). Here, we skip the

derivations and summarize the results below

CU =


− [u]U + [uy]UdU

hy
if (i, j) ∈ Ω−, (i, j + 1) ∈ Ω+ ,

[u]U + [uy]UdU
hy

if (i, j) ∈ Ω+, (i, j + 1) ∈ Ω− ,

(2.47)

where dU = yj+1 − y∗j+1 and [u]U , [uy]U are jumps at the intersection point (xi, y
∗
j+1).

CD =


− [u]D + [uy]DdD

hy
if (i, j) ∈ Ω−, (i, j − 1) ∈ Ω+ ,

[u]D + [uy]DdD
hy

if (i, j) ∈ Ω+, (i, j − 1) ∈ Ω− ,

(2.48)
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where dD = yj−1 − y∗j−1 and [u]D, [uy]D are jumps at the intersection point (xi, y
∗
j−1).

Now, if we substitute the discrete forms of ux(xi, yj) and uy(xi, yj) in (2.39) and (2.46)

to the PDE in (2.38), we get a discretization scheme of the PDE at the irregular grid

(xi, yj). Combining with the discretized form at the regular points in (2.22), we can write

a general matrix vector form of the PDE for all grid points as

AU + B(W,G) = F (2.49)

where U is the vector formed by {Uij} and F is the vector formed by { fij
βsum
} at regular

grid points and { fij
βij
} at irregular grid points.

W = [W1,W2, . . . ,WNb
]T

and

G = [G1, G2, . . . , GNb
]T

are the discrete values of the jump conditions (2.6a) and (2.6b) at a set of control points

X1,X2, . . . ,XNb
on the interface. These control points are the orthogonal projections of

the irregular grid points onto the interface Γ, see Figure 2.2 for an illustration. B(W,G)

is a mapping from W = [W1,W2, . . . ,WNb
]T and G = [G1, G2, . . . , GNb

]T to the constant

correction terms C1 in (2.38) and CL/R/U/D in (2.39) and (2.46). We know that B(W,G)

depends on w(s) and g(s) at the intersection points, which can be interpolated from the

values of w(s) and g(s) at the control points. Moreover, B(W,G) also depends on the

first and second derivatives of w(s), and the first derivative of g(s) at the intersection

points, where the differentiation is carried along the interface. At this stage we do not

know whether such an interpolation and differentiation are linear or not. However, in
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the discrete case, all the interpolations are linear combinations of the values on those

control points. Moreover, all the derivatives at the intersections are also obtained by

linear combinations of the values at these intersection points. Therefore, B(W,G) is

indeed a linear function of W and G, and can be written as

B(W,G) = BG−B1W, (2.50)

where B and B1 are two matrices with real entries. Thus, (2.49) becomes

AU +BG = F +B1W

def
= F̄ .

(2.51)

Note that A is the coefficient matrix resulting from the finite difference equations

for all grid points, which strictly satisfies the sign restriction in (2.10). Thus −A is an

M-matrix, and is diagonally dominant and invertible. So for any given G, there exists a

unique solution U from (2.51).

2.3.4 The Schur complement system

The solution U of the equation above certainly depends on G and we are interested in

finding G∗ which satisfies the discrete form of the second jump condition of Problem I

in (2.4b)

[β �Un](G∗)−V = β+ �U+
n (G∗)− β− �U−n (G∗)−V ≡ 0 , (2.52)

where the components of the vectors U+
n and U−n are discrete approximations of the

normal derivative at control points from each side of the interface. Note the � notation
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means element-wise multiplication of the two vectors. We use element-wise multiplication

since β± may differ among the control points. In the next chapter, we will discuss how

to use the known jump G, to interpolate Uij to get U+
n and U−n in detail. As we will see

in the next chapter, U+
n and U−n depend on U, G and V linearly, so we have

β+ �U+
n − β− �U−n −V = EU +DG + P̄V −V

= EU +DG− PV ,

(2.53)

where E, D and P̄ are some matrices and P = I − P̄ . Combining (2.51) and (2.53) to

obtain the linear system of equations for U and G:

A B

E D


U

G

 =

 F̄

PV

 (2.54)

The solution U and G are the discrete forms of ug∗(x, y) and g∗, which are the

solutions of Problem (II). They also satisfy the flux jump condition in (2.8).

The next question is how to solve (2.54) efficiently. The multigrid approach and the

GMRES method are two attractive choices. We have decided to solve for G in (2.54)

first, and then to find the solution U by using the multigrid solver. Eliminating U from

(2.54) gives a linear system for G

(D − EA−1B)G = PV − EA−1F̄

def
= V̄ .

(2.55)

This is an Nb × Nb system for G, a much smaller linear system compared to the one

for U. Since we cannot guarantee the coefficient matrix of this Schur complement to be

symmetric positive definite, the GMRES iterative method is preferred. In practice, the
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matrices A, B, E, D, P , and the vectors V̄, F̄ are used only for theoretical purpose, and

are not constructed explicitly in practice. Thus the iterative method such as GMRES

is preferred, since it requires only matrix-vector multiplication. The way we compute

the left-hand side of (2.53) will give different E and D, and would affect the condition

number of (2.55) substantially. We will address these aspects in the next Chapter.
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Chapter 3

Development of the Fast Algorithm

3.1 Generalized weighted least squares interpolation

scheme

When we apply the GMRES method to solve the Schur complement system of (2.55)

for the augmented variable G∗, we need to compute the matrix-vector multiplication on

the left hand side, which is equivalent to computing U+
n and U−n with the knowledge of

Uij. This turns out to be a crucial step that could affect the accuracy and efficiency of

the augmented method significantly. Our approach is based on a weighted least squares

formulation. The idea described here can also be, and has been, applied to the case

where we want to approximate some quantities on the interface from a grid function. For

example, interpolating Uij to the interface to get U+(X, Y ) or U−(X, Y ), where (X, Y )

are the control points on the interface.

Previously, Z. Li has developed a weighted least square interpolation scheme for inter-

face problems with piecewise constant coefficients. Here, we want to derive an interpola-
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tion scheme that works for the more generalized case where the coefficients β is piecewise

variable.

Our interpolation scheme for approximating U−n can be written as

∂U−

∂n
(X) =

ks−1∑
k=0

γkUi+ik,j+jk −Q , (3.1)

where ks is the number of grid points involved in the interpolation scheme, (xi, yj) is the

irregular grid point whose orthogonal projection onto the interface generates the control

point X = (X, Y ), and Q is a correction term. Below we discuss how to determine the

interpolation coefficients {γk} and the correction term Q using the information from both

sides of the interface. Note that {γk} and Q depend on the position of the control point

X, but for simplicity of notation, we omit the dependency.

The interpolation coefficients {γk} are determined by minimizing the interpolation

error of (3.1) when Ui+ik,j+jk is substituted with the exact solution u(xi+ik , yj+jk). Using

the local coordinates system (2.11) centered at the control point X, and denoting the

local coordinates of (xi+ik , yj+jk) as (ξk, ηk), we have the following form from the Taylor

expansion at X = (X, Y ) or (0, 0) in the local coordinates:

u(xi+ik , yj+jk) = u(ξk, ηk) = u± + ξku
±
ξ + ηu±η

+
1

2
ξ2
ku
±
ξξ + ξkηku

±
ξη +

1

2
η2
ku
±
ηη +O(h3)

(3.2)

where the “+” or “−” sign is chosen depending on whether (ξk, ηk) lies on the Ω+ sub-

domain or the Ω− subdomain, and u±, u±ξ , . . . , u
±
ηη are evaluated at the local coordinates

(0, 0) or X = (X, Y ) in the original Cartesian coordinates system. Note that we should

have used something like u(X, Y ) = ū(0, 0) to distinguish the two coordinate systems;
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however, we omit the bars and use the same notation u(X, Y ) = u(0, 0) for simplicity.

We carry out this expansion for all the grid points involved in the interpolation scheme

and plug (3.2) into (3.1). After collecting and arranging terms, we can write

∂u−

∂n
(X) ≈ a1u

− + a2u
+ + a3u

−
ξ + a4u

+
ξ + a5u

−
η + a6u

+
η

+ a7u
−
ξξ + a8u

+
ξξ + a9u

−
ηη + a10u

+
ηη + a11u

−
ξη + a12u

+
ξη

−Q+O(h3 max |γij|) ,

(3.3)

where the {ai}’s are given by

a1 =
∑
k∈Ω−

γk, a2 =
∑
k∈Ω+

γk,

a3 =
∑
k∈Ω−

ξkγk, a4 =
∑
k∈Ω+

ξkγk,

a5 =
∑
k∈Ω−

ηkγk, a6 =
∑
k∈Ω+

ηkγk,

a7 = 1
2

∑
k∈Ω−

ξ2
kγk, a8 = 1

2

∑
k∈Ω+

ξ2
kγk,

a9 = 1
2

∑
k∈Ω−

η2
kγk, a10 = 1

2

∑
k∈Ω+

η2
kγk,

a11 =
∑
k∈Ω−

ηkξkγk, a12 =
∑
k∈Ω+

ξkηkγk.

(3.4)

From Theorem 1, we have the interface relations in (2.13). Therefore, we can express

all the quantities from the “+” side in (3.3) in terms of those from the “−” side. Thus,
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we have

∂u−

∂n
(X) ≈ (a1 + a2)u− +

(
a3 + a4 − a8

[
βξ
β

])
u−ξ

+
(
a5 + a6 − a8

[
βη
β

])
u−η + (a7 + a8)u−ξξ + (a9 + a10)u−ηη

+ (a11 + a12)u−ξη +
{
a2w + a4g + a6w

′

+ a8

(
g(χ′′ −

β+
ξ

β+
)−

β+
η

β+
w′ − w′′ +

[
f

β

])
+ a10(−gχ′′ + w′′)

+ a12(w′χ′′ + g′)
}

−Q+O(h3 max |γij|) .

(3.5)

To minimize the interpolation error, we should set the following linear system of equations

for the coefficients {γk} by matching the terms of u−, u−ξ , . . . , u
−
ξη. Since u−n = u−ξ , we have

a1 + a2 = 0,

a3 + a4 − a8

[
βξ
β

]
= 1,

a5 + a6 − a8

[
βη
β

]
= 0,

a7 + a8 = 0,

a9 + a10 = 0,

a11 + a12 = 0.

(3.6)

If the linear system (3.6) has a solution {γ∗k}, since each γ∗k has roughly the same mag-

nitude O( 1
h
), then we can obtain a second-order interpolation scheme for the normal

derivative u−n by choosing an appropriate correction term Q. From (3.4) and (3.6), we

can see that the system of equations for the {γk}’s is independent of the augmented

variable [un] which means that we can calculate {γk} outside of the GMRES iteration.
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If more than six different grid points (ks > 6) in a neighborhood of X are used in the

interpolation, we will have an underdetermined system of linear equations that has an

infinite number of solutions. Usually 9− 16 closest grid point to X = (X, Y ) are chosen

as the interpolation stencil. In our work, we use 12 closest grid points to interpolate the

normal derivatives U±n (X). For stability, we solve (3.6) using SVD. Given a system of

Mx = b, let the singular value decomposition of M be M = UΣV H , where U and V are

two unitary matrices, Σ = diag(D,0) with D being invertible. Then the SVD solution of

Mx = b is x∗ = V Σ+UHb, where Σ+ = diag(D−1,0). The SVD solution has the smallest

2-norm among all possible solutions,

ks−1∑
k=0

(γ∗k)
2 = min

ks−1∑
k=1

γ2
k subject to (3.6).

For such a solution, the magnitude of γ∗k is well under control, which is crucial to the

stability of the entire algorithm.

Once the {γk}’s are computed, we will have the {ai}’s, and the correction term Q is

then determined from the following:

Q =
{
a2w + a4g + a6w

′ + a8

(
g(χ′′ −

β+
ξ

β+
)−

β+
η

β+
w′ − w′′ +

[
f

β

])
+ a10(−gχ′′ + w′′) + a12(w′χ′′ + g′)

}
.

(3.7)

Since we represent the interface by the zero level set of a Liptschiz continuous function

φ(x), we can use the least squares interpolation to approximate the surface derivatives

g′, w′ and w′′ using the values of g and w at the control points. The control points we

use are the orthogonal projections of irregular grid points.

Thus, we are able to compute U−n (X) to second-order accuracy. We can derive a
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formula for U+
n (X) in exactly the same way. However, with the relation U+

n (X) =

U−n (X) + g(X), we can write down a second-order interpolation scheme for U+
n (X) im-

mediately

U+
n (X) ≈

ks−1∑
k=0

γkUi+ik,j+jk −Q+ g, (3.8)

where {γk}’s are the coefficients of the interpolation scheme for U−n (X).

3.2 The iterative procedures

A key process in our algorithm is to solve the Schur complement system (2.55) using the

GMRES method, with an initial guess

G(0) =
{
G

(0)
1 , G

(0)
2 , . . . , G

(0)
Nb

}
. (3.9)

We need to derive the right-hand side of the Schur complement system, and explain how

to compute the matrix-vector multiplication of the system without explicitly forming the

coefficient matrix. The right-hand side needs to be computed just once, which is described

below.

3.2.1 Right-hand side of the Schur complement system

If we take G = 0, and apply one step of the immersed interface method to solve Problem

II to get U(0), then

U(0) = A−1F̄. (3.10)

With the knowledge of U(0) and G = 0, we can compute the normal derivatives on each

side of the interface to get U±n (0) using the approach described in the previous section.
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Thus the right-hand side of the Schur complex is

V̄ = PV − EA−1F̄

= PV − EU(0)

= −
(
β+ �U+

n (0)− β− �U−n (0)−V
) (3.11)

where the last equality is obtained from (2.53) with G = 0. The � notation means

element-wise multiplication of two vectors since β± may not be the same for all the

control points. Now we are able to compute the right-hand side of the Schur complement

system.

3.2.2 Matrix-vector multiplication of the Schur complement sys-

tem

Consider the matrix-vector multiplication

(D − EA−1B)Q (3.12)

on the left hand side of the Schur complement system, where Q is an arbitrary vector of

dimension Nb. This involves essentially two steps:

1. A multigrid solver for computing

U(Q) = A−1(F̄−BQ) (3.13)

which is the solution to Problem II with G = Q (see (2.51));

2. The weighted least squares interpolation to compute U+
n (Q) and U−n (Q). The resid-
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ual vector in the flux jump condition is

R(Q) = V −
(
β+ �U+

n (Q)− β− �U−n (Q)
)
, (3.14)

which is the same residual vector of the second equation in (2.54) from our definition

(see also (2.53)). In other words

PV − (DQ + EU(Q)) = R(Q) (3.15)

The matrix-vector multiplication (3.12) can then be computed as

(D − EA−1B)Q = DQ− EA−1BQ

= DQ + EU(Q)− EA−1F̄ from (3.13)

= DQ + EU(Q)− PV + V̄ from (2.55)

= −R(Q) + V̄ from (3.15).

(3.16)

It is worth to point out that once our algorithm is successfully terminated, which means

the residual vector is close to the zero vector, we not only have an approximation Q to

the solution G∗, an approximation U(Q) to the solution U∗, but also approximations

U±n (Q) to the normal derivatives from each side of the interface. Moreover, we can achieve

a second order accuracy in the L∞ norm for both the solution U and its normal derivatves

U±n .

61



3.2.3 The multigrid solver

For a given G, we want to solve for U in (2.51). In this dissertation, we choose to use the

multigrid solver DMGD9V developed by De Zeeuw to solve the linear equation in (2.51).

Since the negative of the resulting finite difference coefficient matrix is an M-matrix, the

multigrid solver is guaranteed to converge.

3.3 A new preconditioner for the Schur complement

system

With the procedures described in the previous sections, we are able to solve Problem

I to second order accuracy. In each iteration, we need to use the multigrid method to

solve for an updated U , which is equivalent to compute A−1 in the Schur complement

system. Note we never compute the inverse of the matrix A, instead we do a multigrid

solve. The number of iterations of the GMRES method depends on the condition number

of the Schur complement. If we make use of both (3.1) and (3.8) to compute U±n , the

condition number is proportional to 1/h. Therefore, the number of iterations will grow

as we increase the number of grid points.

Previously, Z. Li has proposed an efficient preconditioner for the Schur complement

system, which works very well for piecewise constant coefficients. But that preconditioner

gives slow convergence for our current problems with variable coefficients. Below we

propose a new preconditioner which will improve the condition number of the Schur

complement system.
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We first write the augmented equation in (2.52) for each control point explicitly,

β+(Xi)U
+
n (Xi)− β−(Xi)U

−
n (Xi) = V(Xi), i = 1, . . . , Nb. (3.17)

In the GMRES iterations, we also write the corresponding residual equation in (3.14) for

each control point explicitly,

R(Xi) = V(Xi)−
(
β+(Xi)U

+
n (Xi)− β−(Xi)U

−
n (Xi)

)
, i = 1, . . . , Nb. (3.18)

The new idea of preconditioning the Schur complement system is to rescale the aug-

mented equation to the following

β+(Xi)U
+
n (Xi)− β−(Xi)U

−
n (Xi)

β(Xi)
=

V(Xi)

β(Xi)
, i = 1, . . . , Nb, (3.19)

where β(Xi) = β+(Xi)+β
−(Xi)

2
. Then the resulting residual in the GMRES iterations is

also rescaled as

Rrescale(Xi) =
V(Xi)−

(
β+(Xi)U

+
n (Xi)− β−(Xi)U

−
n (Xi)

)
β(Xi)

,

i = 1, . . . , Nb.

(3.20)

With this rescaling, the number of iterations for solving the Schur complement system

is independent of the mesh size h, and almost independent of the jump [β] in the coefficient

as well. Although we have not been able to prove this claim analytically, the algorithm

works very successfully in our numerical experiments, see the next Chapter for more

analysis.
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Chapter 4

Numerical Experiments and

Analysis

We have performed a number of numerical experiments to confirm that the second order

accuracy of both the solution and and its gradient can be obtained by our new method.

Here we show several examples with numerical results and convergence analysis. We also

include the CPU time for each computation to show how fast will our new method run.

4.1 Accuracy study from two typical experiments

Example 4.1.1. In this example, the interface is the circle x2 + y2 = 1
4

within the

rectangular domain [−1, 1]× [−1, 1]. The coefficient is given by

β(x, y) =


e10x if (x, y) ∈ Ω−,

sin(x+ y) + 2 if (x, y) ∈ Ω+.

(4.1)
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The jump conditions [u] and [βun], as well as the source term f are determined from the

exact solution

u(x, y) =


sin(x+ y) if (x, y) ∈ Ω−,

log(x2 + y2) if (x, y) ∈ Ω+.

(4.2)

We present a grid refinement analysis in Table 4.1. For all the examples, we use the

pointwise L∞ norm to measure the errors in the computed solution Uij and their normal

derivatives U±n on the interface. The L∞ norm captures the maximum error over all grid

points.

The relative error of the computed solution Ui,j is defined as

E(U)N =
max
i,j
|u(xi, yj)− Uij|

max
i,j
|u(xi, yj)|

. (4.3)

The order of convergence is defined as

order =

∣∣∣∣ log(E(U)N1/E(U)N2)

log(N1/N2)

∣∣∣∣ . (4.4)

Similarly, the relative error of the computed normal derivatives U±n are defined as

E(U+
n )N =

max
1≤p≤Nb

|u+
n (Xp)− U+

n p|

max
1≤p≤Nb

|u+
n (Xp)|

, (4.5)

E(U−n )N =
max

1≤p≤Nb

|u−n (Xp)− U−n p|

max
1≤p≤Nb

|u−n (Xp)|
, (4.6)

where Xp, 1 ≤ p ≤ Nb is the control points on the interface.

In all tables of this chapter, Nb is the number of control points that are used to
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represent the interface; Ncoarse and Nfinest are the number of the coarsest and finest grid

lines for the multigrid solver DMGD9V. For all the numerical examples in this chapter, we

use a GMRES convergence tolerance of 10−6. The convergence tolerance of the multigrid

solver may differ from problems, so we will list it specifically for each example.

Table 4.1: Numerical results and convergence analysis for Example 4.1.1, Ncoarse = 5.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
66 96 0.28805E-01 0.88682E-01 0.12769E-01 8 0.160
130 184 0.98473E-02 1.58 0.32375E-01 1.49 0.46012E-02 1.51 8 0.533
258 368 0.25642E-02 1.96 0.88674E-02 1.89 0.13434E-02 1.80 8 2.272
514 728 0.66291E-03 1.96 0.23339E-02 1.94 0.35159E-03 1.94 8 11.284
1026 1452 0.16604E-03 2.00 0.58702E-03 2.00 0.88848E-04 1.99 8 38.851
2050 2900 0.42837E-04 1.96 0.15218E-03 1.95 0.22854E-04 1.96 8 174.056

We can see from Table 4.1 that second order convergence is achieved for both the

solution and its normal derivatives. The convergence tolerance of the multigrid solver is

set to 10−6. The number of GMRES iterations is 8 for all grid sizes, which indicates that

it is independent of grid sizes. Figure 4.1 shows the plot of the computed solution and

the distribution of the relative error.

Example 4.1.2. In this example, the interface is the circle x2 + y2 = 1
4

within the

rectangular domain [−1, 1]× [−1, 1]. The coefficient is given by

β(x, y) =


cos(x+ y) + 2 if (x, y) ∈ Ω−,

sin(x+ y) + 2 if (x, y) ∈ Ω+.

(4.7)

The jump conditions [u] and [βun], as well as the source term f are determined from the
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Figure 4.1: The computed solution and the distribution of the relative error for Exam-
ple 4.1.1.

exact solution

u(x, y) =


sin(x+ y) if (x, y) ∈ Ω−,

log(x2 + y2) if (x, y) ∈ Ω+.

(4.8)

This example only differs from Example 4.1.1 in the coefficient β(x, y) when (x, y) ∈

Ω−. But this will change the jump conditions [u] and [βun], as well as the source term f .

Table 4.2 shows a grid refinement analysis for Example 4.1.2. Again, we confirm second

order accuracy for both the computed solution Uij and their normal derivatives U±n on

the interface. Figure 4.2 shows the plot of the computed solution Uij on the left, which

is the same as the one in Figure 4.1 since the exact solutions of both examples are

identical. The plot on the right of Figure 4.2 shows the distribution of the relative error

for Example 4.1.2, which is quite different from the one in Figure 4.1 since the jump

conditions and the source term are different.
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Table 4.2: Numerical results and convergence analysis for Example 4.1.2, Ncoarse = 5.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
66 96 0.51511E-03 0.30699E-02 0.11532E-02 4 0.095
130 188 0.95949E-04 2.48 0.92539E-03 1.77 0.31292E-03 1.92 4 0.305
258 368 0.24926E-04 1.97 0.23168E-03 2.02 0.85169E-04 1.90 4 1.266
514 732 0.58605E-05 2.10 0.59349E-04 1.98 0.23245E-04 1.88 4 5.442
1026 1456 0.22833E-05 1.36 0.17030E-04 1.81 0.60299E-05 1.95 4 25.246
2050 2908 0.35940E-06 2.67 0.38769E-05 2.14 0.15288E-05 1.98 4 232.066

Figure 4.2: The computed solution and the distribution of the relative error of Exam-
ple 4.1.2.

4.2 The number of GMRES iterations versus the

mesh size h

Example 4.2.1. In this example, the interface is the circle x2 + y2 = 1
4

within the

rectangular domain [−1, 1]× [−1, 1]. The differential equations are

(βux)x + (βuy)y = f(x) + C

∫
Γ

δ(x−X(s)) ds, (4.9)
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with f(x) = 8(x2 + y2) + 4 and

β(x, y) =


x2 + y2 + 1 if (x, y) ∈ Ω−,

b if (x, y) ∈ Ω+.

(4.10)

The exact solution is in the following form

u(x, y) =


r2 if (x, y) ∈ Ω−,

1− 1

8b
− 1

b
4

+

r4

2
+ r2

b
+
C log(2r)

b
if (x, y) ∈ Ω+,

where r =
√
x2 + y2 and b, C are constants.

The convergence analysis of Example 4.2.1 is listed in Table 4.3 and Table 4.4 for two

different setups. We can see that second order accuracy is achieved for both the solution

and the normal derivatives in both the large ratio case (b = 0.05, β−/β+ = 25) and the

small ratio case (b = 3.5, β−/β+ = 0.36). Figure 4.3 shows the plots of the computed

solution and the corresponding error distribution for the small ratio case, while Figure 4.4

shows that for the large ratio case.

Table 4.3: Numerical results and convergence analysis for Example 4.2.1, Ncoarse = 5,
C = 0.1, b = 0.05.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
66 96 0.11806E-02 0.10858E-01 0.93667E-02 6 0.103
130 188 0.29244E-03 2.06 0.29057E-02 1.94 0.25065E-02 1.94 6 0.342
258 368 0.71380E-04 2.06 0.70487E-03 2.07 0.60806E-03 2.07 5 1.258
514 732 0.16640E-04 2.11 0.17465E-03 2.02 0.15052E-03 2.03 5 5.540
1026 1456 0.41334E-05 2.01 0.44847E-04 1.97 0.38020E-04 1.99 4 20.863
2050 2908 0.10796E-05 1.94 0.11771E-04 1.93 0.98363E-05 1.95 4 201.511
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Table 4.4: Numerical results and convergence analysis for Example 4.2.1, Ncoarse = 5,
C = 0.1, b = 3.5.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
66 96 0.32171E-03 0.76023E-03 0.65468E-03 3 0.065
130 184 0.82564E-04 2.01 0.21392E-03 1.87 0.18403E-03 1.87 3 0.237
258 368 0.20135E-04 2.06 0.57280E-04 1.92 0.49334E-04 1.92 3 1.027
514 728 0.50484E-05 2.01 0.14198E-04 2.02 0.13109E-04 1.92 2 4.271
1026 1452 0.12626E-05 2.01 0.34733E-05 2.04 0.33715E-05 1.96 2 13.788
2050 2900 0.31725E-06 2.00 0.93660E-06 1.89 0.10136E-05 1.74 2 64.238

Figure 4.3: The computed solution and the distribution of the relative error of Exam-
ple 4.2.1, with C = 0.1, b = 3.5.

Note that for all the examples we have studied so far, the number of GMRES iterations

is almost independent of the mesh size. Figure 4.5 shows the number of GMRES iterations

versus the number of grid lines N in the x-direction (N = M) for all the examples we

have discussed so far.
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Figure 4.4: The computed solution and the distribution of the relative error of Exam-
ple 4.2.1, with C = 0.1, b = 0.05.

4.3 The number of GMRES iterations versus the

jump ratio ρ = β−/β+

Figure 4.6 shows the number of GMRES iterations versus the jump ratio ρ = β−/β+

in the log-log scale for Example 4.2.1 with fixed mesh size M = N = 130. ρ = 1

corresponds to the case with continuous coefficient β. When ρ deviates from the 1, we

have a larger jump in the coefficient β. As ρ deviates from 1, the number of iterations

increase proportionally to | log(ρ)| when ρ is near the unity. When ρ is far away from the

unity, the number of iterations reaches a saturation point and remains constant.
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Figure 4.5: The number of GMRES iterations versus the number of grid lines N in the
x-direction.

4.4 Applicable to problems with piecewise constant

coefficient

In this dissertation, we have developed a new numerical method using the augmented

IIM approach and utilizing iterative solvers such as the multigrid solver and the GMRES

method. It is designed to work for interface problems with piecewise variable coefficients.

But it is also applicable to interface problems with piecewise constant coefficients. So

the new method we proposed is essentially a generalization from the fast algorithm de-

veloped by Z. Li for interface problems with piecewise constant coefficients. Hence our

new method should also work for piecewise constant coefficients. Remember that we have

also developed a new preconditioner for the Schur complement in Chapter 3, which is

quite different from the original one proposed by Z. Li. Therefore, it is helpful to perform

some numerical experiments to interface problems with piecewise constant coefficients

and study the convergences. Here we present one example to show that our new method
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Figure 4.6: The number of GMRES iterations versus the ratio of jumps β−/β+ in the
log-log scale for Example 4.2.1 with a fixed mesh size M = 130 and N = 130.

indeed works well in the cases where the coefficients are piecewise constant.

Example 4.4.1. The interface is given by


X =

(
r0 + λ sin(wθ)

)
cos θ

Y =
(
r0 + λ sin(wθ)

)
sin θ

0 ≤ θ ≤ 2π (4.11)

in the rectangular domain [−1, 1]×[−1, 1]. In this example, we use r0 = 0.5, λ = 0.2, w = 5

so that the interface is a five-pointed star centered at the origin.

The coefficient is piecewise constant

β(x, y) =


β− if (x, y) ∈ Ω−,

β+ if (x, y) ∈ Ω+,

(4.12)
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where we set β− = 1.0 and β+ = 3.0. The exact solution is in the following form

u(x, y) =


r2

β−
if (x, y) ∈ Ω−,

r4 + C0 log(2r)

β+
if (x, y) ∈ Ω+,

where r =
√
x2 + y2 and C0 is a constant. We set C0 = −0.1 in this example.

Table 4.5: Numerical results and convergence analysis for Example 4.4.1, Ncoarse = 5.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
130 312 0.36754E-02 0.23305E+00 0.26544E+00 7 0.576
258 618 0.10946E-02 1.77 0.55982E-01 2.08 0.63760E-01 2.08 7 2.175
514 1230 0.17091E-03 2.69 0.15400E-01 1.87 0.17541E-01 1.87 7 13.775
1026 2452 0.30145E-04 2.51 0.42371E-02 1.87 0.48265E-02 1.87 7 41.462
2050 4898 0.92522E-05 1.71 0.10589E-02 2.00 0.12065E-02 2.00 7 276.882

Figure 4.7: The computed solution and the distribution of the relative error for Exam-
ple 4.4.1.
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The convergence analysis of Example 4.4.1 is listed in Table 4.5. The convergence

tolerance of the multigrid solver is set to 10−6 in this example. We can see that second

order convergence is achieved for both the solution and its normal derivatives.

The number of GMRES iterations is reasonably small and almost independent of the

mesh grid size. Figure 4.7 shows the plots of the computed solution and the corresponding

error distribution, where we can see the interface is a five-pointed star centered at the

origin. From this example, we can see that our new method also works well for interface

problems with piecewise constant coefficients.

4.5 Generalization of the new method to problems

with non-zero σ(x, y)

So far, we have demonstrated the idea of our new numerical method for elliptic interface

problems with σ(x, y) = 0. Here, we would like to modify this new numerical method a

little bit to solve the generalized interface problem with non-zero σ(x, y) in the following

form

∇ ·
(
β(x, y)∇u(x, y)

)
− σ(x, y)u(x, y) = f(x, y), (x, y) ∈ Ω = Ω+ ∪ Ω−, (4.13)

together with the jump conditions across the interface Γ ,

[u]Γ = w, [βun]Γ = v, (4.14)

where σ(x, y) 6= 0 and σ(x, y) is piecewise continuous function, but may have a finite

discontinuity across the interface, i.e., σ±(x, y) ∈ C. The regulations of other terms
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are the same as previously described. Here, we assume that σ(x, y) ≥ 0 to make the

negative of the finite difference coefficient matrix an M-matrix. But our numerical method

described below should also work for σ(x, y) < 0 with modest magnitude. However,

different approach may be needed to solve problems with large negative σ.

4.5.1 Modifications in the numerical method

Here, we briefly illustrate how to modify our current numerical method to solve elliptic

interface PDEs with non-zero σ(x, y).

Since the last equality of the interface relations in Theorem 1 is derived from the PDE

itself, we need to add two extra terms to the last equality in (2.13) when σ(x, y) 6= 0. So

we have a new interface relation for uξξ,

[uξξ] = g

(
χ′′ −

β+
ξ

β+

)
− w′′ −

[
βξ
β

]
u−ξ −

[
βη
β

]
u−η −

β+
η

β+
w′ +

[
f

β

]
+

[
σ

β

]
u− +

σ+

β+
w,

= g

(
χ′′ −

β−ξ
β−

)
− w′′ −

[
βξ
β

]
u+
ξ −

[
βη
β

]
u+
η −

β−η
β−

w′ +

[
f

β

]
+

[
σ

β

]
u+ +

σ−

β−
w,

where two σ-related terms are added. Note that we have two expressions for the jump of

uξξ. The first one will be used when the irregular grid point is inside Ω− domain, while

the second one will be used when the irregular point is inside the Ω+ domain.

As a result of the new form of [uξξ], the jumps [uxx] and [uyy] at the intersections

points should also be modified. When the centered irregular grid point (i, j) is in the Ω−

domain, we need to add two extra σ-related terms to [uxx] and [uyy] in (2.33). So the new
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forms become

[uxx] = cos2 θ[uξξ]− 2 sin θ cos θ[uξη] + sin2 θ[uηη]

= −2 sin θ cos θ(w′χ′′ + g′) + sin2 θ(−gχ′′ + w′′)

+ cos2 θ
{(
g(χ′′ −

β+
ξ

β+
)− w′′ −

β+
η

β+
w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu−x + sin θu−y )−

[
βη
β

]
(− sin θu−x + cos θu−y )

+

[
σ

β

]
u− +

σ+

β+
w
}
,

[uyy] = sin2 θ[uξξ] + 2 sin θ cos θ[uξη] + cos2 θ[uηη]

= 2 sin θ cos θ(w′χ′′ + g′) + cos2 θ(−gχ′′ + w′′)

+ sin2 θ
{(
g(χ′′ −

β+
ξ

β+
)− w′′ −

β+
η

β+
w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu−x + sin θu−y )−

[
βη
β

]
(− sin θu−x + cos θu−y )

+

[
σ

β

]
u− +

σ+

β+
w
}
,

(4.15)

where u− at the intersections can be approximated by u(xi, yj) at the center grid point

(i, j) using Taylor expansion. Since the distance between the intersection point and the

center point (i, j) is less than or equal to hx or hy, we have

u−|intersection = u(xi, yj) +O(max{hx, hy}) . (4.16)

However, when the centered grid point (i, j) is in the Ω+ domain, we add two extra

σ-related terms to the alternative expressions of [uxx] and [uyy] in (2.35). So the new
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forms become

[uxx] = cos2 θ[uξξ]− 2 sin θ cos θ[uξη] + sin2 θ[uηη]

= −2 sin θ cos θ(w′χ′′ + g′) + sin2 θ(−gχ′′ + w′′)

+ cos2 θ
{(
g(χ′′ −

β−ξ
β−

)− w′′ −
β−η
β−

w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu+

x + sin θu+
y )−

[
βη
β

]
(− sin θu+

x + cos θu+
y )

+

[
σ

β

]
u+ +

σ−

β−
w
}
,

[uyy] = sin2 θ[uξξ] + 2 sin θ cos θ[uξη] + cos2 θ[uηη]

= 2 sin θ cos θ(w′χ′′ + g′) + cos2 θ(−gχ′′ + w′′)

+ sin2 θ
{(
g(χ′′ −

β−ξ
β−

)− w′′ −
β−η
β−

w′ +

[
f

β

])
−
[
βξ
β

]
(cos θu+

x + sin θu+
y )−

[
βη
β

]
(− sin θu+

x + cos θu+
y )

+

[
σ

β

]
u+ +

σ−

β−
w
}
,

(4.17)

where u+ at the intersections can be approximated by u(xi, yj) at the center grid point

(i, j) using Taylor expansion,

u+|intersection = u(xi, yj) +O(max{hx, hy}) . (4.18)

Another place affected by the new form of [uξξ] is the least squares interpolation

scheme for the normal derivatives U±n . We also need to add two extra σ-related terms to
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the expression of u−n in (3.5), so it becomes

∂u−

∂n
(X) ≈

(
a1 + a2 + a8

[
σ

β

])
u− +

(
a3 + a4 − a8

[
βξ
β

])
u−ξ

+
(
a5 + a6 − a8

[
βη
β

])
u−η + (a7 + a8)u−ξξ + (a9 + a10)u−ηη

+ (a11 + a12)u−ξη +
{
a2w + a4g + a6w

′

+ a8

(
g(χ′′ −

β+
ξ

β+
)−

β+
η

β+
w′ − w′′ +

[
f

β

]
+
σ+

β+
w
)

+ a10(−gχ′′ + w′′)

+ a12(w′χ′′ + g′)
}

−Q+O(h3 max |γij|) .

(4.19)

Consequently, to minimize the interpolation error, we need to add one extra σ-related

term to the linear systems of equations for the coefficients {γk} in (3.6). So we have

a1 + a2 + a8

[
σ

β

]
= 0,

a3 + a4 − a8

[
βξ
β

]
= 1,

a5 + a6 − a8

[
βη
β

]
= 0,

a7 + a8 = 0,

a9 + a10 = 0,

a11 + a12 = 0.

(4.20)

We also need to add one extra σ-related term to the correction term Q in (3.7), so its
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new form looks as

Q =
{
a2w + a4g + a6w

′ + a8

(
g(χ′′ −

β+
ξ

β+
)−

β+
η

β+
w′ − w′′ +

[
f

β

]
+
σ+

β+
w
)

+ a10(−gχ′′ + w′′) + a12(w′χ′′ + g′)
}
.

(4.21)

Basically, these are all the modifications we need to make to solve problems with non-

zero σ(x, y). In the following subsection, we demonstrate through three typical numerical

experiments that for problems with non-zero discontinuous σ(x, y), we can also achieve

second order accuracy not only in the solution itself, but also in its gradient.

4.5.2 Three numerical examples with σ(x, y) 6= 0

Example 4.5.1. In this example, the interface is the circle x2 + y2 = 1
4

within the

rectangular domain [−1, 1]× [−1, 1]. The differential equations are

(βux)x + (βuy)y − σu = f(x), (x, y) ∈ Ω+ ∪ Ω−, (4.22)

with

σ(x, y) =


√
x2 + 4y2 if (x, y) ∈ Ω−,

log(x2 + y2 + 1) if (x, y) ∈ Ω+.

(4.23)

and

β(x, y) =


ex if (x, y) ∈ Ω−,

x2 + y2 + 1 if (x, y) ∈ Ω+.

(4.24)
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The jump conditions [u] and [βun], as well as the source term f are determined from the

exact solution

u(x, y) =


x2 − y2 if (x, y) ∈ Ω−,

sin(x) cos(y) if (x, y) ∈ Ω+.

We present a grid refinement analysis in Table 4.6. We see that for this case with

σ(x, y) 6= 0, we can also achieve second order accuracy not only in the solution itself, but

also in its normal derivatives. The convergence tolerance of the multigrid solver is set to

10−6. The number of GMRES iterations is 4 for all grid sizes in Table 4.6, which indicates

it is independent of grid sizes. Figure 4.8 shows the plot of the computed solution and

the distribution of the relative error.

Table 4.6: Numerical results and convergence analysis for Example 4.5.1, Ncoarse = 5.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
66 96 0.85969E-03 0.95542E-02 0.59623E-02 4 0.077
130 184 0.18786E-03 2.24 0.25599E-02 1.94 0.15968E-02 1.94 4 0.318
258 368 0.55591E-04 1.78 0.74684E-03 1.80 0.49691E-03 1.70 4 1.272
514 728 0.12783E-04 2.13 0.18721E-03 2.01 0.12500E-03 2.00 4 6.473
1026 1452 0.26051E-05 2.30 0.46393E-04 2.02 0.31318E-04 2.00 4 23.586
2050 2900 0.74611E-06 1.81 0.11647E-04 2.00 0.81641E-05 1.94 4 107.544

Example 4.5.2. In this example, the interface is the circle x2 + y2 = 1
4

within the

rectangular domain [−1, 1]× [−1, 1]. The differential equations are

(βux)x + (βuy)y − σu = f(x), (x, y) ∈ Ω+ ∪ Ω−, (4.25)

81



Figure 4.8: The computed solution and the distribution of the relative error for Exam-
ple 4.5.1.

with

σ(x, y) =


cos(xy) + 2 if (x, y) ∈ Ω−,

x2 + y2 + 1 if (x, y) ∈ Ω+.

(4.26)

and

β(x, y) =


sin(2x− y) + 3 if (x, y) ∈ Ω−,

ex+2y if (x, y) ∈ Ω+.

(4.27)

The jump conditions [u] and [βun], as well as the source term f are determined from the

exact solution

u(x, y) =


−x3 + 2y3 if (x, y) ∈ Ω−,

y2 − 2x2 if (x, y) ∈ Ω+.

We present a grid refinement analysis in Table 4.7. We see that for this case with

σ(x, y) 6= 0, we can also achieve second order accuracy not only in the solution itself, but
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also in its normal derivatives. The convergence tolerance of the multigrid solver is set to

10−6. The number of GMRES iterations is 5 for all grid sizes in Table 4.7, which indicates

it is independent of grid sizes. Figure 4.9 shows the plot of the computed solution and

the distribution of the relative error.

Table 4.7: Numerical results and convergence analysis for Example 4.5.2, Ncoarse = 5.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
66 96 0.43204E-03 0.19545E-01 0.40125E-02 5 0.083
130 184 0.85013E-04 2.40 0.54798E-02 1.88 0.11234E-02 1.88 5 0.341
258 368 0.25923E-04 1.73 0.15025E-02 1.89 0.28031E-03 2.03 5 1.548
514 728 0.57062E-05 2.12 0.37870E-03 2.00 0.74210E-04 1.93 5 7.114
1026 1452 0.11383E-05 2.33 0.93660E-04 2.02 0.17908E-04 2.06 5 25.655
2050 2900 0.33716E-06 1.76 0.25189E-04 1.90 0.47339E-05 1.92 5 122.564

Figure 4.9: The computed solution and the distribution of the relative error for Exam-
ple 4.5.2.
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Example 4.5.3. The differential equations are

(βux)x + (βuy)y − σu = f(x), (x, y) ∈ Ω+ ∪ Ω−, (4.28)

where σ(x, y), β(x, y) and the exact solution u(x, y) are the same as in Example 4.5.2.

The only difference from Example 4.5.2 is the interface, which is given by


X =

(
r0 + λ sin(wθ)

)
cos θ

Y =
(
r0 + λ sin(wθ)

)
sin θ

0 ≤ θ ≤ 2π (4.29)

in the rectangular domain [−1, 1] × [−1, 1]. We use r0 = 0.5, λ = 0.1, w = 5 in this

example, and the interface is a five-pointed star centered at the origin.

We present a grid refinement analysis in Table 4.8. We see that for this case with

discontinuous σ(x, y) across a five-pointed star interface, we can also achieve second

order accuracy not only in the solution itself, but also in its normal derivatives. The

convergence tolerance of the multigrid solver is set to 10−6. The number of GMRES

iterations is 8 for all grid sizes in Table 4.8, which indicates it is independent of grid

sizes. Figure 4.10 shows the plot of the computed solution and the distribution of the

relative error, where we can see the interface is a five-pointed star centered at the origin.

The computed solution in each subdomain looks as that in Figure 4.9 since the exact

solutions of the two examples are the same. However, the distribution of the relative error

is different from that in Figure 4.9 since the interfaces have different shapes in the two

examples.
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Table 4.8: Numerical results and convergence analysis for Example 4.5.3, Ncoarse = 5.

Nfinest Nb E(U) order E(U+
n ) order E(U−

n ) order Iter CPU(s)
130 226 0.45456E-03 0.46124E-01 0.79684E-02 8 0.570
258 446 0.13159E-03 1.81 0.12016E-01 1.96 0.23219E-02 1.80 8 2.900
514 888 0.29301E-04 2.18 0.29090E-02 2.06 0.52542E-03 2.16 8 9.580
1026 1768 0.61645E-05 2.26 0.80398E-03 1.86 0.14383E-03 1.87 8 38.344
2050 3530 0.18536E-05 1.74 0.22244E-03 1.86 0.34908E-04 2.05 8 328.153

Figure 4.10: The computed solution and the distribution of the relative error for Exam-
ple 4.5.3.
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Chapter 5

Conclusion and Future Work

This dissertation presents a new numerical method for interface problems with piecewise

variable coefficients. The new method gives second order accuracy not only for the solu-

tion itself, but also for its gradient. The key of this new method lies in introducing the

jump of the normal derivative of the solution as an augmented variable, and rewriting

the interface problem as a Laplacian of solution with lower order derivative terms near

the interface. Thus we can get jump relations for second order derivatives using the aug-

mented variable and the lower order derivative terms. An upwind type discretization is

used for the finite difference discretization near or on the interface so that the negative of

the discrete coefficient matrix is a M-matrix. A multigrid solver is used to solve the linear

system of equations and a GMRES iterative method is used to solve for the augmented

variable. Numerical examples and convergence proof are also provided to demonstrate

that this new method maintains the second order accuracy of both the solution and the

gradient.

Three important highlights of this novel numerical method are summarized below.

First, we can achieve second order accuracy in both the the solution and its gradient
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on the interface at the same time. For general interface problems, a second order accu-

rate solution does not necessarily guarantee second order accuracy in its gradient. In fact,

people usually get first order accurate gradient on the interface even though the solution

itself is second order accurate. The success of this new numerical method lies in the least

squares interpolation scheme from a Cartesian grid to an interface, which is second order

accurate and has a smooth error distribution. This scheme is a two-sided interpolation

that utilizes grid points from both sides of the interface. So it is also very efficient for

the GMRES method because the number of GMRES iterations using a two-sided inter-

polation is often much smaller than using a one-sided interpolation. Using such a least

squares interpolation idea, Z. Li has demonstrated the second order accuracy in both

solution and its gradient for interface problems with piecewise constant coefficients. In

this dissertation, we generalize the discussion to problems with piecewise variable coeffi-

cients, and demonstrate for the first time that we can achieve the second order accuracy

for both the solution and its gradient.

Second, this new numerical method is fast, efficient and robust. To solve the linear

system of equations resulting from discretization, we use a multigrid solver. For all of

our numerical experiments, the multigrid solver is highly competitive and about twenty

times faster than the other candidate iterative solvers such as Krylov subspace methods.

To solve for the augmented variable, we use a GMRES iterative method with a new

efficient preconditioner. The original preconditioner in Z. Li’s paper works very well for

interface problems with piecewise constant coefficients, but it gives slow convergence in

all our numerical experiments of interface problems with piecewise variable coefficients.

So we propose a new efficient preconditioner that rescales the diagonal element of the

Schur complement system. This new preconditioner was tested to be very successful

and the number of GMRES iterations is less than 10 for all our examples. Our new
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numerical method is also very robust in the sense that the number of GMRES iterations

is independent of the size of the grid points. Also, the number of GMRES iterations is

reasonably small even for very large ratio of jumps β−/β+.

Last but not least, the idea described in this dissertation can be conveniently applied

to other related problems. For example, the boundary value problems on an irregular

domain. For Dirichlet or Neumann boundary value problems on irregular domains, many

challenges exist in direct discretization at the intersections between the boundary and the

mesh lines. However, if we embed the irregular domain Ω into a rectangle R ⊃ Ω and treat

the irregular boundary as the interface, we get an interface problem that could be easily

solved using our new method. Furthermore, even though we focus our discussions on

elliptic interface problems in this thesis, our new numerical method is readily applicable

to hyperbolic and parabolic interface problems. The key of the new method is to introduce

the jump in the normal derivative of the solution as the augmented variable and rewrite

the interface problem as a Laplacian of the solution with lower order derivative terms near

the interface. The same idea would directly work for hyperbolic and parabolic cases. The

only difference we need to make is to rewrite the interface problem as another operator

of the solution depending on the specific problem, rather than a Laplacian operator of

the solution, plus lower order derivative terms on the interface.

In the end, we provide some potential extensions of this work.

First, by performing a series of numerical experiments, we have proved that our new

numerical method gives second order accuracy in both the solution itself and its gradient

at the same time. The next potential project following this dissertation is to provide a

theoretical proof of the convergence and stability of this new method.

Another possible direction is to extend the current method to three dimensional cases.

3D interface problems are usually more challenging to tackle since they require highly
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efficient and fast algorithms due to their large size of mesh points. We believe that our

new method could be more advantageous in solving 3D interface problems.
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