
ABSTRACT

KENNEDY, EMESE AGNES. Swing-up and Stabilization of a Single Inverted Pendulum:
Real-Time Implementation. (Under the direction of Hien Tran.)

The single inverted pendulum (SIP) system is a classic example of a nonlinear under-

actuated system. Despite its simple structure, it is among the most di�cult systems to control

and is considered as one of the most popular benchmarks of nonlinear control theory. In the

past fifty years many nonlinear methods have been proposed for the swing-up and stabilization

of a self-erecting inverted pendulum, however, most of these techniques are too complex and

impractical for real-time implementation.

In the first part of this dissertation, the successful real-time implementation of a nonlinear

controller for the stabilization of the pendulum is discussed. The controller is based on the power

series approximation to the Hamilton Jacobi Bellman (HJB) equation. The derivation of the

controller is based on work that can be found in the literature, but the controller has not been

used for the stabilization of an inverted pendulum before. It performs similarly to the traditional

linear quadratic regulator (LQR), but has some important advantages. First, the method can

stabilize the pendulum for a wider range of initial starting angle. Additionally, it can also be

used with state dependent weighting matrices, Q and R, whereas the LQR problem can only

handle constant values for these matrices. The use of state-dependent weighting matrices for the

stabilization of an inverted pendulum in real-time has been discussed in the literature before,

but only with controls that use a State Dependent Riccati Equation (SDRE) approach. The

benefit of the control presented in this thesis over the SDRE controls is that it is computationally

less intense and does not require the solution of complicated matrix equations at every time

step. However, the control method presented cannot be used to swing-up the pendulum whereas

some of the controls using the online solution of the SDRE can.

The second part of the dissertation focuses on the swing-up of the inverted pendulum. The

most common and e�cient method for the swing-up of the pendulum uses an energy based

approach. This method was originally proposed by Astrom and Furuta in 1996, and it was first

implemented for the swing-up of a rotary pendulum in 1999. Later, the controller was modified

and implemented on a cart pendulum system taking the finite length of the track into account.

However, most of the existing swing-up controllers are based on a simplified model for the

SIP system, and the e↵ects of friction are frequently disregarded. In this thesis, we present a

new energy-based swing-up controller that was derived using a more complex dynamical model

for the SIP system. We also consider the e↵ects of viscous damping, and incorporate physical

restrictions like the maximum deliverable voltage by the amplifier, the capacity of the DC motor

that drives the cart, and the finite track length.
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Chapter 1

Introduction

At some point in our lives almost all of us have attempted to balance a broomstick on the palm

of our hand, or seen someone try to. The broomstick can be thought of as an inverted pendulum

with the di↵erence being that the broomstick is free to move in a three-dimensional space while

a pendulum, in this study, is mounted on a cart and can only move in a linear plane. Just like

the broomstick, an inverted pendulum is a highly unstable system. Force and proper control

must be appropriately applied to keep the pendulum balanced and upright.

In 1990 the International Federation of Automatic Control (IFAC) Theory Committee pub-

lished a set of real world control problems that can be used to compare the benefits of new

and existing control methods, called benchmark problems. One of these is the control of an

inverted pendulum [23]. Despite its simple structure, the inverted pendulum is among the most

di�cult systems to control. This di�culty arises because the equations of motion governing the

system are inherently nonlinear and because the upright position is an unstable equilibrium.

Furthermore, the system is under-actuated as it has two degrees of freedom, one for the cart’s

horizontal motion and one for the pendulum’s angular motion, but only the cart’s position is

actuated, while the pendulum’s angular motion is indirectly controlled.

In a laboratory setting, there are two main types of Single Inverted Pendulum (SIP) systems:

the rotary pendulum system, and the pendulum on a cart system. The controllers for these two

systems are similar, but they have di↵erent actuator dynamics. The largest di↵erence between

the two systems is that the pendulum on a cart system has a finite track length that needs to be

taken into account, especially during swing-up. This dissertation only focuses on the controllers

for a cart pendulum system.

The SIP control problem is composed of two tasks: the first task is to swing-up the pendulum

from its downward hanging position, and the second task is to stabilize the pendulum around

the vertical upright position. These two tasks are usually accomplished using two separate

controllers, however, there are a few existing control methodologies that can handle both tasks
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without having to switch controllers [15]. The control methods presented in this dissertation

accomplish the two tasks separately.

1.1 Applications

As its shape and dynamics resemble many di↵erent real world systems, the inverted pendulum

has numerous applications. One of the earliest uses of an inverted pendulum was in 1844 by

James Forbes in the design of a seismometer. Forbes used the fact that the upright equilibrium

of the pendulum is unstable and thus very sensitive to disturbances [24]. Some other applications

of the inverted pendulum include the stabilization of ships and rockets, the design of earthquake

resistant buildings, and robotic arms. The inverted pendulum is also considered as an adequate

model of a human standing still [76]. Figure 1.1 gives an illustration of some inverted pendulum

like systems.

inverted pendulum system

buildings during earthquake

humans standing

robotic arms

segways

rockets

ships

Figure 1.1: Inverted pendulum like systems.

1.2 Review of Existing Control Methods

Because of its popularity and numerous applications, there are many existing control methods

for the inverted pendulum. However, many of the published controllers have only been tested in

simulations and not in real-time experiments. Comparing experimental results with published

work of others, the simulation results are often di↵erent from the real-time results. This is

because almost all simulations use a simplified model to represent the dynamics of the inverted

pendulum. Furthermore, most of the simulations ignore the e↵ects of friction, and often fail to

incorporate some physical restrictions like the maximum deliverable voltage by the amplifier,

the capacity of the DC motor that drives the cart, and the finite track length.
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Below is a summary of the most popular control methods that have been implemented for an

inverted pendulum, and a short discussion of the advantages and disadvantages of each method.

Most of the cited references were compiled based on an extensive survey by Boubaker [15].

Fuzzy Logic and Neural Network Controllers are discussed in references [2, 78, 80]. These

controllers have a simple structure and don’t require lengthy computations. They are very

popular methods for both the swing-up and the stabilization of the pendulum, however,

the presentation of these methods often lack the specification of the stability conditions.

Proportional-Integral-Derivative (PID) Adaptive Control is discussed in references [10,

19, 56]. This method is good for stabilizing the pendulum, but requires frequent tuning.

Chang et al. discusses the implementation of a self-tuning PID controller using a Lya-

punov approach in [19], but only simulation results are presented without discussion of

real-time experiments.

Energy-Based Control is one of the most popular and e�cient methods for swinging-up

the pendulum. The global stability conditions of this approach are well proven using

Lyapunov techniques. An energy based method was originally proposed by Astrom and

Furuta in 1996 at the 13th IFAC World Congress [8]. Their revised paper that included

the implementation of their method on a rotary pendulum was published in 2000 [9].

Later, the method was adapted for a cart-pendulum system by Angeli in [3], but without

taking the finite length of the track into account. References [21, 49, 73, 83] also discuss

the use of energy based controllers for the pendulum on a cart system. Control methods

that consider the length of the track are presented in [20, 37].

Hybrid Control methods based on the energy approach that accomplish both the swing-

up and the stabilization of the pendulum without switching controllers are presented in

[4, 7, 6, 30, 74].

Sliding Mode Control is a powerful and robust control method that can be used for many

practical systems that are not under actuated. In [71] a modified Van der Pol oscillator

is implemented for both the swing-up and the stabilization of the pendulum, but with

some performance issues. Namely, the fast switching in the implemented controller causes

undesirable chattering. In [60] an aggressive sliding mode control law is presented for both

the swing-up and the stabilization along with results of numerical simulations for the cart

pendulum system, and real-time experimental results for the rotary pendulum system.

Linear Quadratic Regulator (LQR) is simple and easy to implement control method that

performs reasonably well for stabilizing the inverted pendulum. However, the performance

of the method greatly depends on the selection of the weighting matrices, Q and R, in
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the cost functional. In a recent publication, Trimpe et al. proposed a self-tuning LQR

approach using stochastic optimization, but the method has only been implemented in

simulations and not in real-time experiments [77].

Linear Quadratic Gaussian (LQG) is a controller that combines LQR with a Kalman Filter

to improve disturbance rejection. This method was implemented by Eide et al. in [25]

during the balance of an inverted pendulum mobile robot, however, they found that the

LQR produced better response when compared to the LQG approach.

Approximate Linearization is a method of finding a nonlinear change of coordinates for a

nonlinear system to construct a linear approximation of the plant dynamics accurate to

second or higher order. Starting with the work of Krener [41, 42, 43], many variants of this

approach have been suggested [38, 40]. The algorithm presented in [41] was implemented

for the stabilization of a rotary pendulum by Sugie and Fujimoto [75]. They showed

through experiments that the method enlarges the stability region. Using the ideas in [42]

and [40], Ohsumi and Izumikawa implemented in real-time a control method that can

be used for both the swing-up and stabilization of an inverted pendulum on a cart [57].

Based on Krener’s approach, Guzzella and Isodori developed a simpler and more direct

method to calculate the quantities involved [31]. This algorithm was implemented for the

stabilization of a cart-pendulum system by Renou and Saydy [69]. Their simulation and

experimental results show a sight improvement in the system’s transient response, but a

reduced region of stability when compared to the LQR control method. In [39], Ingram

et al. present the successful real-time implementation of a modified approach using an

algorithm designed for feedback linearizable systems. Their technique works for both the

swing-up and stabilization of an inverted pendulum on a cart. They consider both the

finite track length, and the restriction on the maximum voltage input, but they do not

take the e↵ects of friction into account.

State-Dependent Riccati Equation (SDRE) based controller has been used for the stabi-

lization of the pendulum in simulations in [37, 72]. In [22], Dang and Lewis present the

successful real-time implementation of a SDRE based controller for both the swing-up and

the stabilization. The drawback of this method is that it is computationally very intense

as it requires the solution of complicated state-dependent Riccati equations at every time

step.

Most of the control methods discussed above ignore the e↵ects of friction. There is a limited

number of publications that consider friction in the development of the model for the inverted

pendulum. Campbell et al. have studied the use of di↵erent friction models during real-time
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implementation for the stabilization of the pendulum [18, 17]. They have also showed that

disregarding friction produces oscillatory behavior during stabilization.

1.3 Dissertation Outline

In the past sixty years many nonlinear methods have been proposed for the swing-up and

stabilization of a single inverted pendulum, however, many of these techniques are too complex

and impractical for real-time implementation [15]. This dissertation focuses on the real-time

implementation of practical control methods for both the swing-up and the stabilization of an

inverted pendulum.

In Chapter 2, the dynamics of the inverted pendulum system are discussed, including mod-

eling conventions and the derivation of the nonlinear equations of motion.

Chapter 3 focuses on the adaptation of a power series approximation based control method

for the stabilization of the pendulum. This control method was first proposed by Garrard in

[26, 27, 28], but it has not been implemented for an inverted pendulum before. The controller

performs similarly to the traditional linear quadratic regulator, but has some important advan-

tages. One of the advantages is that the method can stabilize the pendulum for a wider range of

initial starting angle. It can also be used with state dependent weighting matrices whereas the

LQR problem can only handle constant values for Q and R. The use of a state-dependent ma-

trix, Q, is also discussed in this chapter. We present both simulation and real-time experimental

results implemented in MATLAB Simulink.

In Chapter 4, we use the technique originally proposed by Astrom and Furuta [8, 9] to derive

a modified energy based swing-up controller using Lyapunov functions. During the derivation,

all e↵ort has been made to use a more complex dynamical model for the SIP system than

the simplified model that is most commonly used. We consider the electrodynamics of the DC

motor that drives the cart, and incorporate viscous damping friction as seen at the motor pinion.

Furthermore, we use a new method to account for the limitation of having a cart-pendulum

system with a finite track length. Two modifications to the controller are also discussed to

make the method more appropriate for real-time implementation. One of the modifications

improves robustness using a modified Lyapunov function for the derivation, while the other one

incorporates viscous damping as seen at the pendulum axis. We present both simulation and

real-time experimental results implemented in MATLAB Simulink.

Finally, Chapter 5 provides some concluding remarks and ideas for future work.
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Chapter 2

System Dynamics

2.1 System Representation and Notations

Figure 2.1 shows a diagram of the Single Inverted Pendulum (SIP) mounted on a cart. The

nomenclature corresponding to the system is given in Appendix A.1. The positive sense of

rotation is defined to be counterclockwise, when facing the cart. The perfectly vertical upward

pointing position of the inverted pendulum corresponds to the zero angle. The positive direction

of the cart’s displacement is to the right when facing the cart, as indicated by the Cartesian

frame of coordinates presented in Figure 2.1.

0 x

y

Fc > 0M

x

yp
Mp

xp

`p

↵(t)

↵̇(t) > 0

Figure 2.1: Diagram of the SIP mounted on a cart.
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2.2 Equations of Motion

2.2.1 Lagrange’s Method

We will use Lagrange’s energy method to derive the dynamic model of the system. In this

approach, we consider the driving force, Fc, generated by the DC motor acting on the cart

through the motor pinion as the single input. To carry out Lagrange’s method, first we need to

determine the Lagrangian of the system through the calculation of the system’s total potential

and kinetic energies.

2.2.1.1 Potential Energy

The total potential energy, VT , in a system is given by the amount of energy that the system

has due to some kind of work being, or having been, done to it. It is usually caused by its

vertical displacement (gravitational potential energy) from normality or by a spring-related

sort of displacement (elastic potential energy). For the SIP system, the potential energy is only

due to gravity. Since the carts linear motion is horizontal with no vertical displacement, the

total potential energy is fully described by the pendulum’s gravitational potential energy,

VT = Mpgyp = Mpg`p cos(↵(t)). (2.1)

2.2.1.2 Kinetic Energy

Next, we will determine the system’s total kinetic energy, KT . The kinetic energy measures the

amount of energy in a system due to its motion. For the SIP system, the total kinetic energy

is given by the sum of the translational and rotational kinetic energies of both the cart and its

mounted inverted pendulum.

The translational kinetic energy of the motorized cart, Kct, is

Kct =
1

2
Mẋ(t)2. (2.2)

The cart’s rotational kinetic energy, Kcr, is due to the movement of the DC motor’s output

shaft, and is given by

Kcr =
1

2
Jm!

2

m. (2.3)

Using the DC motor and planetary gear head technical specification sheets provided in [63] we

can express the motor shaft angular velocity, !m, in terms of the angular velocity of the motor

pinion, !, as

!m = Kg!. (2.4)
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By considering the rack and pinion and the gearbox mechanism, we can rewrite (2.4) in terms

of the cart’s velocity as

Kg! =
Kgẋ(t)

rmp
. (2.5)

Substituting equations (2.4) and (2.5) into (2.3), we can express the rotational kinetic energy

of the cart as

Kcr =
JmK

2

g ẋ(t)
2

2r2mp

. (2.6)

The mass of the single inverted pendulum is assumed to be concentrated at its Center Of

Gravity (COG), and the pendulum’s COG’s velocity, vCOG is given by

vCOG =
q
ẋp(t)2 + ẏp(t)2. (2.7)

According to the reference frame definition presented in Figure 2.1, the absolute Cartesian

coordinates of the pendulum’s center of gravity are

xp(t) = x(t)� `p sin(↵(t)) and yp(t) = `p cos(↵(t)). (2.8)

After di↵erentiating (2.8), we can rewrite (2.7) as

vCOG =
q

ẋ(t)2 � 2`p cos(↵(t))ẋ(t)↵̇(t) + `

2

p↵̇(t)
2 (2.9)

Therefore, the pendulum’s transitional kinetic energy, Kpt, can be expressed as a function of its

center of gravity’s linear velocity,

Kpt =
1

2
Mpv

2

COG =
1

2
Mp

�
ẋ(t)2 � 2`p cos(↵(t))ẋ(t)↵̇(t) + `

2

p↵̇(t)
2

�
. (2.10)

Furthermore, the pendulum’s rotational kinetic energy, Kpr, at its COG is given by

Kpr =
1

2
Ip↵̇(t)

2

, (2.11)

where the pendulum’s moment of inertia at its COG, Ip is

Ip =

Z `p

�`p

r

2

Mp

2`p
dr =

1

3
Mp`

2

p. (2.12)

Therefore, the total kinetic energy, KT , of the system is the sum of the four individual kinetic

energies given by Equations (2.2), (2.6), (2.10), and (2.11). After rearranging and simplifying,
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the system’s total kinetic energy, can be written as

KT =
1

2

 
M +Mp +

JmK

2

g

r

2

mp

!
ẋ(t)2 �Mp`p cos(↵(t))ẋ(t)↵̇(t) +

2

3
Mp`

2

p↵̇(t)
2

. (2.13)

2.2.1.3 Lagrange’s Equations

The Lagrangian, L, is given by the di↵erence of the total kinetic energy and the total potential

energy,

L = KT � VT . (2.14)

Substituting (2.1) and (2.13) into (2.14) yields

L =
1

2

 
M +Mp +

JmK

2

g

r

2

mp

!
ẋ(t)2 �Mp`p cos(↵(t))ẋ(t)↵̇(t) +

2

3
Mp`

2

p↵̇(t)
2 �Mpg`p cos(↵(t)).

(2.15)

By definition, the two Lagrange’s equations for our system are

@

2

@t@ẋ

L� @

@x

L = Fc �Beqẋ(t) (2.16)

and
@

2

@t@↵̇

L� @

@↵

L = �Bp↵̇(t), (2.17)

where Beq is the equivalent viscous damping coe�cient as seen at the motor pinion, and Bp is

the equivalent viscous damping coe�cient as seen at the pendulum axis [67]. Thus, equations

(2.16) and (2.17) account for friction in the form of equivalent viscous damping, however, it

should be noted that in the development of the current model the (nonlinear) Coulomb friction

applied to the cart, and the force on the cart due to the pendulum’s action have been neglected.

Using (2.15), the left-hand side of (2.16) can be expressed as

@

2

@t@ẋ

L� @

@x

L =
@

@t

  
M +Mp +

JmK

2

g

r

2

mp

!
ẋ(t)�Mp`p cos(↵(t))↵̇(t)

!
(2.18)

=

 
M +Mp +

JmK

2

g

r

2

mp

!
ẍ(t) +Mp`p sin(↵(t))↵̇(t)

2 �Mp`p cos(↵(t))↵̈(t).

(2.19)
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Similarly, the left-hand side of (2.17) can be written as

@

2

@t@↵̇

L� @

@↵

L =
@

@t

✓
�Mp`p cos(↵(t))ẋ(t) +

4

3
Mp`

2

p↵̇(t)

◆
�Mp`pg sin(↵(t)) (2.20)

= �Mp`p cos(↵(t))ẍ(t) +
4

3
Mp`

2

p↵̈(t)�Mp`pg sin(↵(t)). (2.21)

Then, using (2.19) in equation (2.16) gives

 
M +Mp +

JmK

2

g

r

2

mp

!
ẍ(t) +Mp`p sin(↵(t))↵̇(t)

2 �Mp`p cos(↵(t))↵̈(t) = Fc �Beqẋ(t), (2.22)

and using (2.21) in equation (2.17) gives

�Mp`p cos(↵(t))ẍ(t) +
4

3
Mp`

2

p↵̈(t)�Mp`pg sin(↵(t)) = �Bp↵̇(t). (2.23)

Solving Equations (2.22) and (2.23) for the second-order time derivatives of x and ↵ results in

the two nonlinear equations

ẍ(t) =�
3r2mpBp cos(↵(t))↵̇(t)

`pD(↵)
�

4Mp`pr
2

mp sin(↵(t))↵̇(t)
2

D(↵)
�

4r2mpBeqẋ(t)

D(↵)

+
3Mpr

2

mpg cos(↵(t)) sin(↵(t))

D(↵)
+

4r2mpFc

D(↵)

(2.24)

and

↵̈(t) =�
3(Mr

2

mp +Mpr
2

mp + JmK

2

g )Bp↵̇(t)

Mp`
2

pD(↵)
�

3Mpr
2

mp cos(↵(t)) sin(↵(t))↵̇(t)
2

D(↵)

�
3r2mpBeq cos(↵(t))ẋ

`pD(↵)
+

3(Mr

2

mp +Mpr
2

mp + JmK

2

g )g sin(↵(t))

`pD(↵)
+

3r2mp cos(↵(t))Fc

`pD(↵)
,

(2.25)

where D(↵) = 4Mr

2

mp + Mpr
2

mp + 4JmK

2

g + 3Mpr
2

mp sin
2(↵(t)). Equations (2.24) and (2.25)

represent the Equations Of Motion (EOM) of the SIP system.

2.2.2 Converting to Voltage Input

In our real-time implementation the system’s input is equal to the cart’s DC motor voltage, Vm,

so we must convert the driving force generated by the DC motor acting on the cart through the

motor pinion to voltage input. To do this, we will use the electrical schematic of the armature
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circuit of a standard DC motor given in Figure 2.2. The driving force, Fc can be expressed as

Fc =
KgTm

rmp
. (2.26)

By Kirchho↵’s voltage law, the directed sum of the electrical potential di↵erences around any

M

Im

Vm

Rm Lm

Tm,!m

Eemf

Figure 2.2: DC Motor Electric Circuit

closed circuit is zero, which means that for our system

Vm �RmIm � Lm

✓
d

dt

Im

◆
� Eemf = 0. (2.27)

Since Lm << Rm, we can disregard the motor inductance and obtain

Im =
Vm � Eemf

Rm
. (2.28)

The back-electromotive-force (EMF) voltage created by the the motor is proportional to the

motor shaft velocity (i. e., Eemf = Km!m), so we can rewrite (2.28) as

Im =
Vm �Km!m

Rm
, (2.29)

where Km is the back-EMF constant. Furthermore, the torque, Tm, generated by the DC motor

can be expressed as

Tm = KtIm. (2.30)
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Substituting equations (2.29) and (2.30) into equation (2.26) leads to

Fc =
KgKt(Vm �Km!m)

Rmrmp
. (2.31)

Using equations (2.4) and (2.5) in (2.31), and rearranging leads to

Fc = �
K

2

gKtKmẋ(t)

Rmr

2

mp

+
KgKtVm

Rmrmp
. (2.32)

Utilizing (2.32) to convert the driving force to voltage input, we can rewrite the EOM given in

(2.24) and (2.25) as

ẍ(t) =�
3r2mpBp cos(↵(t))↵̇(t)

`pD(↵)
�

4Mp`pr
2

mp sin(↵(t))↵̇(t)
2

D(↵)
�

4(Rmr

2

mpBeq +K

2

gKtKm)ẋ(t)

RmD(↵)

+
3Mpr

2

mpg cos(↵(t)) sin(↵(t))

D(↵)
+

4rmpKgKtVm

RmD(↵)

(2.33)

and

↵̈(t) =�
3(Mr

2

mp +Mpr
2

mp + JmK

2

g )Bp↵̇(t)

Mp`
2

pD(↵)
�

3Mpr
2

mp cos(↵(t)) sin(↵(t))↵̇(t)
2

D(↵)

�
3(Rmr

2

mpBeq +K

2

gKtKm) cos(↵(t))ẋ

Rm`pD(↵)
+

3(Mr

2

mp +Mpr
2

mp + JmK

2

g )g sin(↵(t))

`pD(↵)

+
3rmpKgKt cos(↵(t))Vm

Rm`pD(↵)
.

(2.34)

2.3 Model Calibration

Using the Simulink diagrams in Appendix B.2, we compare the real-time states with the states

obtained by our model in response to the same voltage input. The parameter values used during

the simulation are given in Appendix A.2. We test the performance of our model both with and

without the viscous damping friction terms, Beq and Bp. The voltage input for the experiment is

given in Figure 2.3(e), while the states responses are given in Figures 2.3(a)-(d). The experiment

clearly indicates that the model with friction simulates state responses that are more similar to

the real-time experimental states responses than the state responses generated by the simple

model with no friction.
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(a) Cart Position (b) Pendulum Angle

(c) Cart Velocity (d) Pendulum’s Angular Velocity

(e) Input Voltage

Figure 2.3: Comparison of real-time data with simulated model response with and without friction.
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Chapter 3

Stabilization Control

3.1 Problem Statement

Based on the Equations of Motion, (2.33) and (2.34), the state-space representation of our

system has the form
d

dt

X(t) = f(X(t)) +B(X(t))u(t) (3.1)

where X, the system’s state vector is given by X

T (t) = [x(t),↵(t), ẋ(t), ↵̇(t)] = [x
1

, x

2

, x

3

, x

4

],

and the input u is set to equal the input voltage of the cart’s DC motor, i.e. u = Vm. The

nonlinear function f(X) can be expressed as

f(X) =

2

6666664

0 0 1 0

0 0 0 1

0 0 a

33

a

34

0 0 a

43

a

44

3

7777775

2

6666664

x

1

x

2

x

3

x

4

3

7777775
+

2

6666664

0

0
3Mpr2mpg cos(x2

) sin(x
2

)

D(x
2

)

3(Mr2mp+Mpr2mp+JmK2

g )g sin(x2

)

`pD(x
2

)

3

7777775
(3.2)

where

a

33

= �
4(Rmr

2

mpBeq +K

2

gKtKm)

RmD(x
2

)

a

43

= �
3(Rmr

2

mpBeq +K

2

gKtKm) cos(x
2

)

Rm`pD(x
2

)

a

34

= �
3r2mpBp cos(x2) + 4Mp`

2

pr
2

mp sin(x2)x4
`pD(x

2

)

a

44

= �
3(Mr

2

mp +Mpr
2

mp + JmK

2

g )Bp + 3M2

p `
2

pr
2

mp cos(x2) sin(x2)x4
Mp`

2

pD(x
2

)

and D(x
2

) = 4Mr

2

mp + Mpr
2

mp + 4JmK

2

g + 3r2mpMp sin2(x2). The state-dependent matrix,
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B(X(t)), in Equation (3.1) is given by

B(X(t)) =

2

6666664

0

0
4rmpKgKt

RmD(x
2

)

3rmpKgKt cos(x
2

)

`pRmD(x
2

)

3

7777775
. (3.3)

Now, consider the cost functional

J(X
0

, u) =

Z 1

0

�
X

T
QX +Ru

2

�
dt, (3.4)

where Q is a given constant-valued 4 ⇥ 4 symmetric positive-semidefinite matrix and R is a

positive scalar. In the case of starting and balancing the inverted pendulum in the upright

position, the optimal control problem is to find a state feedback control u⇤(X) which minimizes

the cost (3.4) for the initial condition X

T
0

= [0, 0, 0, 0].

The optimal feedback control for the system in (3.1) with cost (3.4) has the form

u

⇤(X) = �1

2
R

�1

B

T (X)SX(X), (3.5)

where the function S is the solution to the Hamilton-Jacobi-Bellman (HJB) equation

S

T
X(X)f(X)� 1

4
S

T
X(X)B(X)R�1

B

T (X)SX(X) +X

T
QX = 0, (3.6)

and SX represents the Jacobian of S with respect to the states.

3.2 Power Series Based Controller

It is well know that the HJB equation is very di�cult to solve analytically. Several e↵orts have

been made to numerically approximate the solution of the HJB equation in order to obtain a

usable feedback control. This section describes one of these methods that was adapted for the

SIP system based on [14].

15



3.2.1 Power Series Approximation

As has been done by Garrard and others in references [26, 28, 27], the solution of the HJB

equation can be numerically approximated using its power series expansion

S(X) =
1X

n=0

Sn(X), (3.7)

where each Sn is a scalar polynomial containing all possible combinations of products of the state

elements with a total order of n+2. Similarly, the nonlinear function f(X) can be approximated

by

f(X) = A

0

X +
1X

n=2

fn(X), (3.8)

where each fn is a function vector with a scalar polynomial containing all possible combinations

of products of the state elements with a total order of n in every row. In our implementation,

the power series of f was calculated using the MATLAB function taylor from the Symbolic

Math Toolbox. Here, A
0

represents the linearization of f(X) around the upright position (i.e.

X

T = [0; 0; 0; 0]) and is given by

A

0

=

2

6666664

0 0 1 0

0 0 0 1

0
3Mpr2mpg

D �4(Rmr2mpBeq+K2

gKtKm)

RmD �3r2mpBp

`pD

0
3(Mr2mp+Mpr2mp+JmK2

g )g

`pD
�3(Rmr2mpBeq+K2

gKtKm)

Rm`pD
�3(Mr2mp+Mpr2mp+JmK2

g )Bp

Mp`2pD

3

7777775

⇡

2

6666664

0 0 1 0

0 0 0 1

0 1.4967 �11.6073 �0.004821

0 25.6815 �26.3643 �0.08273

3

7777775
,

(3.9)

where D = 4Mr

2

mp +Mpr

2

mp + 4JmK

2

g . Furthermore, the state-dependent matrix, B(X), can

be approximated by

B(X) =
1X

n=0

Bn(X), (3.10)

where each Bn is a 4⇥ 1 vector with a scalar polynomial containing all possible combinations

of products of the state elements with a total order of n in every row. In our implementation,

the power series of B was calculated using the MATLAB function taylor from the Symbolic

Math Toolbox. Note that B
0

is the linearization of B around the zero angle (i.e. x
2

= 0), and
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is given by

B =

2

6666664

0

0
4rmpKgKt

Rm(4Mr2mp+Mpr2mp+4JmK2

g )

3rmpKgKt

`pRm(4Mr2mp+Mpr2mp+4JmK2

g )

3

7777775
⇡

2

6666664

0

0

1.52441

3.46248

3

7777775
. (3.11)

The matrices in (3.9) and (3.11) were evaluated using the parameter values from Appendix A.2.

The expansions (3.7), (3.8), and (3.10) can be substituted into the HJB equation (3.6) to

yield

" 1X

n=0

(Sn)
T
X

#"
A

0

X +
1X

n=2

fn

#
�1

4

" 1X

n=0

(Sn)
T
X

#" 1X

n=0

Bn

#
R

�1

" 1X

n=0

B

T
n

#" 1X

n=0

(Sn)X

#
+X

T
QX = 0.

(3.12)

We can separate out powers of the states to obtain a series of equations,

(S
0

)TXA

0

X � 1

4
(S

0

)TXB

0

R

�1

B

T
0

(S
0

)X +X

T
QX = 0, (3.13)

(S
1

)TXA

0

X � 1

4
(S

1

)TXB

0

R

�1

B

T
0

(S
0

)X � 1

4
(S

0

)TXB

0

R

�1

B

T
0

(S
1

)X � 1

4
(S

0

)TXB

1

R

�1

B

T
0

(S
0

)X

�1

4
(S

0

)TXB

0

R

�1

B

T
1

(S
0

)X + (S
0

)TXf

2

(X) = 0

(3.14)

(Sn)
T
XA

0

X � 1

4

nX

k=0

n�kX

j=0

n�k�jX

i=0

⇥
(Sk)

T
XBjR

�1

B

T
i (Sn�k�j�i)X

⇤
+

n�1X

k=0

⇥
(Sk)

T
Xfn+1�k(X)

⇤
= 0,

(3.15)

where n = 2, 3, 4, . . .. The solution of equation (3.13) is

S

0

(X) = X

T
PX, (3.16)

where the symmetric positive-definite matrix, P , solves the Algebraic Riccati Equation (ARE)

PA

0

+A

T
0

P � PB

0

R

�1

B

T
0

P +Q = 0. (3.17)

Note that using (3.16) in (3.5) results in the traditional (LQR) control. The theories for the

LQR problem have been well-established, and multiple stable and robust algorithms for solving

(3.17) have already been developed and are well documented in the literature and in textbooks

[13, 48]. It is possible to solve equations (3.14)-(3.15) for Sn, n = 1, 2, 3, . . ., however, this

method can get very complicated quickly. In [26], Garrard proposed a very easy method of
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finding (S
1

)X and obtaining a quadratic type control. Instead of the polynomial representation,

we may use the solution of (3.13) and make the substitution (S
0

)X = 2PX in equation (3.14)

to obtain

(S
1

)TXA

0

X � 1

4
(S

1

)TXB

0

R

�1

B

T
0

(2PX)� 1

4
(2XT

P )B
0

R

�1

B

T
0

(S
1

)X � 1

4
(2XT

P )B
1

R

�1

B

T
0

(2PX)

�1

4
(2XT

P )B
0

R

�1

B

T
1

(2PX) + (2XT
P )f

2

(X) = 0.

(3.18)

This can be rearranged to yield

X

T
⇥
A

T
0

(S
1

)X � PB

0

R

�1

B

T
0

(S
1

)X � PB

1

R

�1

B

T
0

PX � PB

0

R

�1

B

T
1

PX + 2Pf

2

(X)
⇤
= 0,

(3.19)

which is satisfied when

(S
1

)X =
�
A

T
0

� PB

0

R

�1

B

T
0

��1

�
PB

1

R

�1

B

T
0

PX + PB

0

R

�1

B

T
1

PX � 2Pf

2

(X)
�
. (3.20)

Equation (3.30) along with the (S
0

)X term give a quadratic feedback control law of the form

u

⇤(X) = �R

�1
B

T
0


PX +

�
A

T
0 � PB0R

�1
B

T
0

��1
✓
1

2
PB1R

�1
B

T
0 PX +

1

2
PB0R

�1
B

T
1 PX � Pf2(X)

◆�
.

(3.21)

The series expansion of f(X) in our case doesn’t contain any quadratic terms (i.e. f
2

(X) = 0),

and B

1

= 0, so (3.14) is trivially solved by S

1

= 0. In this case, by [14], equation (3.15) for

n = 2 will be of the form

(S
2

)TXA

0

X � 1

4
(S

2

)TXB

0

R

�1

B

T
0

(S
0

)X � 1

4
(S

0

)TXB

0

R

�1

B

T
0

(S
2

)X � 1

4
(S

0

)TXB

2

R

�1

B

T
0

(S
0

)X

�1

4
(S

0

)TXB

0

R

�1

B

T
2

(S
0

)X + (S
0

)TXf

3

(X) = 0

(3.22)

which is exactly the same form as (3.14) except that S

1

is replaced be S

2

, B
1

is replaced by

B

2

, and f

2

is replaced by f

3

. Thus, the solution is comparable to that of (3.14), with

(S
2

)X =
�
A

T
0

� PB

0

R

�1

B

T
0

��1

�
PB

2

R

�1

B

T
0

PX + PB

0

R

�1

B

T
2

PX � 2Pf

3

(X)
�
, (3.23)

resulting in a feedback control of the form

u

⇤(X) = �R

�1
B

T
0


PX +

�
A

T
0 � PB0R

�1
B

T
0

��1
✓
1

2
PB2R

�1
B

T
0 PX +

1

2
PB0R

�1
B

T
2 PX � Pf3(X)

◆�
.

(3.24)
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3.2.2 Constant Matrix B

The previously derived control law given by (3.24) can be simplified by replacing the state-

dependent matrix B(X) by its linearization, B
0

in the state-space representation of our system

given by (3.1). Doing this yields the state-space representation in the form

d

dt

X(t) = f(X(t)) +B

0

u(t) (3.25a)

X(0) = X

0

. (3.25b)

Then, equation (3.12) becomes

" 1X

n=0

(Sn)
T
X

#"
A

0

X +
1X

n=2

fn(X)

#
� 1

4

" 1X

n=0

(Sn)
T
X

#
B

0

R

�1

B

T
0

" 1X

n=0

(Sn)X

#
+X

T
QX = 0. (3.26)

Separating out powers of the states modifies the system of equations in (3.13)-(3.15) to

(S
0

)TXA

0

X � 1

4
(S

0

)TXB

0

R

�1

B

T
0

(S
0

)X +X

T
QX = 0, (3.27)

(S
1

)TXA

0

X � 1

4
(S

1

)TXB

0

R

�1

B

T
0

(S
0

)X � 1

4
(S

0

)TXB

0

R

�1

B

T
0

(S
1

)X + (S
0

)TXf

2

(X) = 0, (3.28)

(Sn)
T
XA

0

X � 1

4

nX

k=0

⇥
(Sk)

T
XB

0

R

�1

B

T
0

(Sn�k)X
⇤
+

n�1X

k=0

⇥
(Sk)

T
Xfn+1�k(X)

⇤
= 0, (3.29)

where n = 2, 3, 4, . . .. The solution to (3.28) is

(S
1

)X = �2(AT
0

� PB

0

R

�1

B

T
0

)�1

Pf

2

(X), (3.30)

which yields the quadratic feedback control law of the form

u

⇤(X) = �R

�1

B

T
0

⇥
PX � (AT

0

� PB

0

R

�1

B

T
0

)�1

Pf

2

(X)
⇤
. (3.31)

As before, since for our model f
2

(X) = 0, we replace S

1

by S

2

, and f

2

by f

3

to obtain the

control law

u

⇤(X) = �R

�1

B

T
0

⇥
PX � (AT

0

� PB

0

R

�1

B

T
0

)�1

Pf

3

(X)
⇤
. (3.32)

3.2.2.1 Simulation Results: Constant B vs. State-Dependent B

Using the Simulink diagram provided in Figure B.5, we compare the performance of the control

law given by (3.32) with the performance of the control law given by (3.24) in simulation.

We start the stabilization simulation with a starting angle ↵

0

= 5�, and after five seconds
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we introduce a 10� angular disturbance. The simulation results are given Figure 3.1. It can

be seen that the two controllers perform very similarly near the upright position, so in future

implementations we will use the simpler controller with constant B given by (3.32).

3.2.3 Incorporation of a State-Dependent Weighting Matrix

The performance of the controller greatly depends on the selection of the constant valued

weighting matrices, Q and R, in the cost function (3.4). Finding the right values that will lead

to the desired performance requires careful tuning that can be very time consuming. Changing

these matrices from constant to state-dependent can not only improve the performance of the

controller, but can also shorten the time required for tuning. The above derivation can be

adapted to incorporate a state-dependent matrix, Q(X), into the cost function. To do this, first

we need to expand Q(X) as a power series

Q(X) =
1X

n=0

Qn(X), (3.33)

where the entries in each Qn are scalar polynomials containing all possible combinations of

products of the state elements with a total order of n. Replacing Q by the power series of Q(X)

in equation (3.26) and separating out powers of the states modifies the system of equations in

(3.27)-(3.29) to

(S
0

)TXA

0

X � 1

4
(S

0

)TXB

0

R

�1

B

T
0

(S
0

)X +X

T
Q

0

X = 0, (3.34)
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)TXA

0

X � 1

4
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1

)TXB
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R

�1

B

T
0

(S
0

)X � 1

4
(S

0

)TXB

0

R

�1

B

T
0

(S
1

)X + (S
0

)TXf

2

(X) +X

T
Q

1

X = 0,

(3.35)

(Sn)
T
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0

X � 1

4

nX

k=0

⇥
(Sk)

T
XB

0

R

�1

B

T
0

(Sn�k)X
⇤
+

n�1X

k=0

⇥
(Sk)

T
Xfn+1�k(X)

⇤
+X

T
QnX = 0,

(3.36)

where n = 2, 3, 4, . . .. The solution to (3.35) is

(S
1

)X = �(AT
0

� PB

0

R

�1

B

T
0

)�1(2Pf

2

(X) +Q

1

X), (3.37)

which yields the feedback control law

u

⇤(X) = �R

�1

B

T
0


PX � (AT

0

� PB

0

R

�1

B

T
0

)�1

✓
Pf

2

(X) +
1

2
Q

1

X

◆�
. (3.38)
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(a) Cart Position (b) Pendulum Angle

(c) Cart Velocity (d) Pendulum’s Angular Velocity

(e) Input Voltage

Figure 3.1: Stabilization controller with state-dependent B given by (3.24) versus controller with
constant B given by (3.32)
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Since for our model f
2

(X) = 0, we will define Q so that Q
1

= 0 to make sure that (3.35) can

be solved trivially by S

1

= 0. As before, in this case we can replace Q

1

by Q

2

, S
1

by S

2

, and f

2

by f

3

to obtain the the control law

u

⇤(X) = �R

�1

B

T
0


PX � (AT

0

� PB

0

R

�1

B

T
0

)�1

✓
Pf

3

(X) +
1

2
Q

2

X

◆�
. (3.39)

3.3 Stability Analysis

Using the Simulink diagram provided in Figure B.6 with various initial states, we can estimate

the stability region for both the power series controller and the LQR controller. The parameters

in the Simulink diagrams are initialized using the Matlab code provided in Appendix B.1.

First, we only consider di↵erent initial pendulum angles and make the other initial states

zero. We repeat the simulation several times with di↵erent initial angles to find the first angle

where each of the controllers is able to stabilize the pendulum. This angle for the power series

based controller is ↵

0

= 30.85�, while for the LQR controller it is ↵

0

= 23.30�. Since we have

a finite track length, we continue repeating the simulation until we find the first initial angle

where each of the controllers is able to stabilize the pendulum and the position of the cart stays

within the track (i.e. |x| < 400 mm). The first such angle for the power series based controller

is ↵

0

= 21.08�, while for the LQR controller it is ↵

0

= 18.22�. The simulated state responses

and control e↵ort for these angles of interest are given in Figure 3.2 for the power series based

controller and Figure 3.3 for the LQR controller. The red dashed lines in Figures 3.2a and 3.3a

indicate the end of the track.

To get a better estimate of the stability region for the power series controller and the LQR

controller, we repeat the simulations with various initial conditions for two of the states while

keeping the initial condition for the other two states zero. The stability region estimates for

initial conditions �180�  ↵

0

 180�, �590�/s  ↵̇

0

 590�/s, x
0

= 0, and ẋ

0

= 0 are given

in Figure 3.4, for initial conditions �180�  ↵

0

 180�, �390 mm  x

0

 390 mm, ẋ
0

= 0,

and ↵̇

0

= 0 are given in Figure 3.5, and for initial conditions �390 mm  x

0

 390 mm,

�1000 mm/s  ẋ

0

 1000 mm/s, ↵
0

= 0, and ↵̇

0

= 0 are given in Figure 3.6. The range on

the velocities was selected based on the values possible by the apparatus we use for real-time

implementation, while the range on the cart’s position was selected to be within the length of

the track. For all three cases, the stability region of the power series controller is bigger than

the stability region of the LQR controller.

Finally, we repeat the simulations with various initial conditions for three of the states

while keeping the initial condition for the remaining state zero. The stability region estimate

for initial conditions �180�  ↵

0

 180�, �590�/s  ↵̇

0

 590�/s, �1000 mm/s  ẋ

0

 1000
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(a) Cart Position (b) Pendulum Angle

(c) Cart Velocity (d) Pendulum’s Angular Velocity

(e) Control E↵ort

Figure 3.2: Stabilization simulation results for the power series based controller with various initial
angles, and x0 = 0, ↵̇0 = 0, ẋ0 = 0.
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(a) Cart Position (b) Pendulum Angle

(c) Cart Velocity (d) Pendulum’s Angular Velocity

(e) Control E↵ort

Figure 3.3: Stabilization simulation results for the LQR controller with various initial angles, and
x0 = 0, ↵̇0 = 0, ẋ0 = 0.
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Figure 3.4: Stability region estimate for both the power series based controller and the LQR controller
for various initial pendulum angles and angular velocities with zero initial cart position and cart

velocity.

Figure 3.5: Stability region estimate for both the power series based controller and the LQR controller
for various initial pendulum angles and cart positions with zero initial cart velocity and angular

velocity.
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Figure 3.6: Stability region estimate for both the power series based controller and the LQR controller
for various initial cart positions and cart velocities with zero initial pendulum angle and angular

velocity.

mm/s, and x

0

= 0 is given in Figure 3.7 for the power series based controller and in Figure 3.8

for the LQR controller. The stability region estimate for initial conditions �180�  ↵

0

 180�,

�590�/s  ↵̇

0

 590�/s, �390 mm  x

0

 390 mm, and ẋ

0

= 0 is given in Figure 3.9 for the

power series based controller and in Figure 3.10 for the LQR controller. The stability region

of the power series controller is bigger than the stability region of the LQR controller for both

cases.

Figure 3.7: Stability region estimate for the power series based controller for various initial pendulum
angles, angular velocities, and cart velocities with zero initial cart position.

26



Figure 3.8: Stability region estimate for the LQR controller for various initial pendulum angles,
angular velocities, and cart velocities with zero initial cart position.

Figure 3.9: Stability region estimate for the power series based controller for various initial cart
positions, pendulum angles, and angular velocities with zero initial cart velocity.
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Figure 3.10: Stability region estimate for the LQR controller for various initial cart positions,
pendulum angles, and angular velocities with zero initial cart velocity.

3.4 Real-Time Implementation

3.4.1 Apparatus

For our real-time experiments we use apparatus designed and provided by Quanser Consulting

Inc. (119 Spy Court Markham, Ontario, L3R 5H6, Canada). This includes a single inverted

pendulum mounted on an IP02 servo plant (pictured in Figure 3.11), a VoltPAQ amplifier,

and a Q2-USB DAQ control board. The IP02 cart incorporates a Faulhaber Coreless DC Motor

(2338S006) coupled with a Faulhaber Planetary Gearhead Series 23/1. The cart is also equipped

with a US Digital S1 single-ended optical shaft encoder. The detailed technical specifications

can be found in reference [63]. A diagram of our experimental setup is included in Figure 3.12.

3.4.2 Design Specifications

The goal of our real-time experiment is to stabilize the inverted pendulum in the upright

position with minimal cart movement and control e↵ort. The weights Q � 0 and R > 0 in the

cost functional (3.4) must be chosen so that the system satisfies the following design performance

requirements specified:

1. Regulate the pendulum angle around its upright position and never exceed a ±1-degree-

deflection from it, i.e. |↵|  1.0�.

2. Minimize the control e↵ort produced, which is proportional to the motor input voltage

Vm. The power amplifier should not go into saturation in any case, i.e. |Vm|  10V .

28



Figure 3.11: Single inverted pendulum mounted on a Quanser IP02 servo plant.

IP02

Amplifier

DAQ Computer
Control Signal

Pendulum Angle & Cart PositionPendulum Encoder

Cart Encoder

Amplifier Command

Motor Connector

Figure 3.12: Diagram of experimental setup.

3.5 Experimental Results

Our Experimental results were obtained using Simulink in MATLAB and Quanser’s QuArc

real-time control software. Our Simulink diagrams are provided in Appendix B.4.

3.5.1 Constant Weighting Matrices

The choice of the weighting matrices has a great e↵ect on the performance of the controller.

In order to strongly penalize non-zero positions, the state weight Q must be chosen with large

weights on the positions and small weights on the velocities. The value of R needs to be suf-

ficiently large to ensure that the power amplifier doesn’t go into saturation and to prevent

excessive cart movement, however, if it is too large then the states might deviate from the zero

position too much.

We have tested several di↵erent pairs of possible weighting matrices. To find a good com-
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bination of values for Q and R, we use the following tuning procedure based on the procedure

described by Quanser in [67]:

1. Perform a simulation with a particular choice for Q and R using the Simulink diagrams

provided in B.3. Study the resulting state response and control e↵ort required. If the state

response and control e↵ort are within the desired ranges then move onto the next step.

Otherwise, adjust the values in Q and R, and run the simulation again. To adjust the

values consider the following:

• If the cart’s position deviates too much from the center, then try increasing Q

11

and/or decreasing Q

22

.

• If the pendulum’s angle deviates too much from the upright position, then try in-

creasing Q

22

, and/or decreasing Q

11

.

• If the motor input voltage goes into saturation, try increasing R and/or decreasing

Q

11

together with Q

22

.

2. If the simulation results are satisfactory, then test the Q and R matrices in real-time

using the Simulink diagrams provided in Appendix B.4. Adjust the values of Q and R

until the state responses and the required control e↵ort are satisfactory. While adjusting

the values, use the considerations from the previous step. If the cart is too “hyperactive”

and vibrates excessively, then try increasing R and/or decreasing Q

11

together with Q

22

.

Three particular pairs of Q and R matrices were selected using the above procedure, however,

within the given considerations these choices are somewhat arbitrary. The first of these choices

is Q = diag(0.75, 4, 0, 0) and R = 0.0003, which is the default choice for the LQR controller

provided by Quanser in [67]. Notice that for the states only the non-zero cart position and

pendulum angle are penalized, and there is no weight on the velocities. The resulting state

responses and required control e↵ort for both the power series controller and the LQR controller

are presented in Figures 3.13-3.17. Both controllers satisfy the design requirements provided

in Section 3.4.2, however, the power series based controller performs slightly better with lower

control e↵ort and state responses closer to zero. The second choice for these matrices, Q =

diag(5, 50, 0, 0) and R = 0.002, results in an improvement of the performance of both controllers.

The corresponding state responses and required control e↵ort are presented in Figures 3.18-

3.22. Again, the power series controller yields slightly better results. The third choice, Q =

diag(800, 150, 1, 1) and R = 0.1, also includes penalties on the velocities, however it results in

worse performance for both control methods. The corresponding state responses and required

control e↵ort are presented in Figures 3.23-3.27. Both methods still satisfy the design conditions,

but the LQR controller for this case slightly outperforms the power series controller. Tables 3.1
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and 3.2 provide a summary of the analysis of the state responses and the control e↵ort for these

three pairs of weighting matrices.

Table 3.1: Summary of stabilization state response with di↵erent weighting matrices.

Q R Method
|x|

max

|↵|
max

|ẋ|
max

|↵̇|
max

|x|
avg

|↵|
avg

|ẋ|
avg

|↵̇|
avg

diag(0.75, 4, 0, 0) 0.0003

2.25 mm 0.176� 47.43 mm/s 5.84 deg/s
Power Series

1.17 mm 5.82e-02� 4.97 mm/s 0.702 deg/s

LQR
4.71 mm 0.264� 44.97 mm/s 6.63 deg/s

1.26 mm 3.67e-02� 5.79 mm/s 0.931 deg/s

diag(5, 50, 0, 0) 0.002

1.68 mm 8.79e-02� 24.4 mm/s 3.46 deg/s
Power Series

0.44 mm 2.24e-02� 4.31 mm/s 0.71 deg/s

LQR
2.16 mm 0.176� 47.8 mm/s 5.43 deg/s

0.697 mm 3.62e-02� 5.62 mm/s 0.83 deg/s

diag(800, 150, 1, 1) 0.1

3.8 mm 0.35� 67.3 mm/s 10.73 deg/s
Power Series

0.775 mm 5.08e-02� 7.35 mm/s 1.1 deg/s

LQR
3.19 mm 0.264� 60.6 mm/s 9.19 deg/s

0.973 mm 6.68e-02� 6.82 mm/s 0.99 deg/s

Table 3.2: Summary of control e↵ort with di↵erent weighting matrices.

Q R Method V

max

|Vm|
avg

R
30

0

|Vm|dt
Power Series 1.9 Volts 0.328 Volts 9.85 Volts

diag(0.75, 4, 0, 0) 0.0003
LQR 2.23 Volts 0.38 11.26

Power Series 1.77 Volts 0.32 Volts 9.57 Volts
diag(5, 50, 0, 0) 0.002

LQR 2.11 Volts 0.37 11.2

Power Series 2.9 Volts 0.41 Volts 12.33 Volts
diag(800, 150, 1, 1) 0.002

LQR 2.59 Volts 0.392 11.77
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(a) Power Series Controller

|x| < 2.25 mm, |x|
avg

= 1.17 mm

(b) LQR

|x| < 4.71 mm, |x|
avg

= 1.26 mm

Figure 3.13: Cart position with power series based controller vs. LQR:
Q = diag(0.75, 4, 0, 0) and R = 0.0003.

(a) Power Series Controller

|↵| < 0.176

�
, |↵|

avg

= 5.87e-02

�
(b) LQR

|↵| < 0.264

�
, |↵|

avg

= 3.67e-02

�

Figure 3.14: Pendulum’s angle with power series based controller vs. LQR:
Q = diag(0.75, 4, 0, 0) and R = 0.0003.
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(a) Power Series Controller

|ẋ| < 47.43 mm/s, |ẋ|
avg

= 4.97 mm/s

(b) LQR

|ẋ| < 44.97 mm/s, |ẋ|
avg

= 5.79 mm/s

Figure 3.15: Cart velocity with power series based controller vs. LQR:
Q = diag(0.75, 4, 0, 0) and R = 0.0003.

(a) Power Series Controller

|↵̇| < 5.84 deg/s, |↵̇|
avg

= 0.702 deg/s

(b) LQR

|↵̇| < 6.63 deg/s, |↵̇|
avg

= 0.931 deg/s

Figure 3.16: Pendulum’s angular velocity with power series based controller vs. LQR:
Q = diag(0.75, 4, 0, 0) and R = 0.0003.
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(a) Power Series Controller

|Vm| < 1.9 Volts, |Vm|
avg

= 0.328 Volts,R
30

0

|Vm|dt = 9.85

(b) LQR

|Vm| < 2.23 Volts, |Vm|
avg

= 0.376 Volts,R
30

0

|Vm|dt = 11.26

Figure 3.17: Control e↵ort with power series based controller vs. LQR:
Q = diag(0.75, 4, 0, 0) and R = 0.0003.

(a) Power Series Controller

|x| < 1.68 mm, |x|
avg

= 0.44 mm

(b) LQR

|x| < 2.16 mm, |x|
avg

= 0.697 mm

Figure 3.18: Cart position with power series based controller vs. LQR:
Q = diag(5, 50, 0, 0) and R = 0.002.
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(a) Power Series Controller

|↵| < 8.79e-02

�
, |↵|

avg

= 2.24e-02

�
(b) LQR

|↵| < 0.176

�
, |↵|

avg

= 3.62e-02

�

Figure 3.19: Pendulum’s angle with power series based controller vs. LQR:
Q = diag(5, 50, 0, 0) and R = 0.002.

(a) Power Series Controller

|ẋ| < 24.4 mm/s, |ẋ|
avg

= 4.31 mm/s

(b) LQR

|ẋ| < 47.8 mm/s, |ẋ|
avg

= 5.62 mm/s

Figure 3.20: Cart velocity with power series based controller vs. LQR:
Q = diag(5, 50, 0, 0) and R = 0.002.
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(a) Power Series Controller

|↵̇| < 3.46 deg/s, |↵̇|
avg

= 0.71 deg/s

(b) LQR

|↵̇| < 5.43 deg/s, |↵̇|
avg

= 0.83 deg/s

Figure 3.21: Pendulum’s angular velocity with power series based controller vs. LQR:
Q = diag(5, 50, 0, 0) and R = 0.002.

(a) Power Series Controller

|Vm| < 1.77 Volts, |Vm|
avg

= 0.32 VoltsR
30

0

|Vm|dt = 9.57

(b) LQR

|Vm| < 2.11 Volts, |Vm|
avg

= 0.37 VoltsR
30

0

|Vm|dt = 11.2

Figure 3.22: Control e↵ort with power series based controller vs. LQR:
Q = diag(5, 50, 0, 0) and R = 0.002.
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(a) Power Series Controller

|x| < 3.8 mm, |x|
avg

= 0.775 mm

(b) LQR

|x| < 3.19 mm, |x|
avg

= 0.973 mm

Figure 3.23: Cart position with power series based controller vs. LQR:
Q = diag(800, 150, 1, 1) and R = 0.1.

(a) Power Series Controller

|↵| < 0.35

�
, |↵|

avg

= 5.08e-02

�
(b) LQR

|↵| < 0.264

�
, ↵

avg

= 6.68e-02

�

Figure 3.24: Pendulum’s angle with power series based controller vs. LQR:
Q = diag(800, 150, 1, 1) and R = 0.1.
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(a) Power Series Controller

|ẋ| < 67.3 mm/s, |ẋ|
avg

= 7.35 mm/s

(b) LQR

|ẋ| < 60.6 mm/s, |ẋ|
avg

= 6.82 mm/s

Figure 3.25: Cart velocity with power series based controller vs. LQR:
Q = diag(800, 150, 1, 1) and R = 0.1.

(a) Power Series Controller

|↵̇| < 10.73 deg/s, |↵|
avg

= 1.1 deg/s

(b) LQR

|↵̇| < 9.19 deg/s, |↵|
avg

= 0.99 deg/s

Figure 3.26: Pendulum’s angular velocity with power series based controller vs. LQR:
Q = diag(800, 150, 1, 1) and R = 0.1.
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(a) Power Series Controller

|Vm| < 2.9 Volts, |Vm|
avg

= 0.41 Volts,R
30

0

|Vm|dt = 12.33

(b) LQR

|Vm| < 2.59 Volts, |Vm|
avg

= 0.392 Volts,R
30

0

|Vm|dt = 11.77

Figure 3.27: Control e↵ort with power series based controller vs. LQR:
Q = diag(800, 150, 1, 1) and R = 0.1.

3.5.2 State-Dependent Weighting Matrix

The amount of time required for tuning the performance of the power series controller can be

significantly reduced by using a state-dependent values in the weighting matrix Q. The choice of

Q(X) = diag(800+5x2, 150+2↵2

, 1+ ẋ

2

, 1+ ↵̇

2) and R = 0.1 greatly improves the performance

of the controller when compared to the performance of the other two control methods that just

use the constant part of Q(X), namely Q = diag(800, 150, 1, 1). The corresponding control

e↵ort and state responses are provided in Figures 3.28 and 3.29. A summary of the analysis of

the state responses and the control e↵ort for the three methods is provided in Table 3.3.
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Table 3.3: Summary of stabilization state response and control e↵ort for the power series based
controller with state-dependent Q vs. controllers with Q = diag(800, 150, 1, 1).

Method
|x|

max

|↵|
max

|ẋ|
max

|↵̇|
max

V

max

|Vm|
avg

R
30

0

|Vm|dt
|x|

avg

|↵|
avg

|ẋ|
avg

|↵̇|
avg

3.05 mm 0.176� 28.64 mm/s 3.53 deg/sPower Series with
state-dependent Q 0.579 mm 2.67e-02� 4.53 mm/s 0.765 deg/s

1.82 V 0.358 V 10.73 V

3.8 mm 0.35� 67.3 mm/s 10.73 deg/sPower Series with
constant Q 0.775 mm 5.08e-02� 7.35 mm/s 1.1 deg/s

2.9 V 0.41 V 12.33 V

3.19 mm 0.264� 60.6 mm/s 9.19 deg/s
LQR

0.973 mm 6.68e-02� 6.82 mm/s 0.99 deg/s
2.59 V 0.392 V 11.77 V

Figure 3.28: Control E↵ort with power series based controller:
Q(X) = diag(800 + 5x2

, 150 + 2↵2
, 1 + ẋ

2
, 1 + ↵̇

2) and R = 0.1

|Vm| < 1.82 Volts, |Vm|avg = 0.358 Volts,
R 30
0 |Vm| = 10.73.
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(a) Cart Position

|x| < 3.05 mm, x

avg

= 0.579 mm

(b) Pendulum Angle

|↵| < 0.176

�
, ↵

avg

= 2.67e-02

�

(c) Cart Velocity

|ẋ| < 28.64 mm/s, |ẋ|
avg

= 4.53 mm/s

(d) Pendulum’s Angular Velocity

|↵̇| < 3.53 deg/s, |↵|
avg

= 0.765 deg/s

Figure 3.29: State response with power series based controller:
Q(X) = diag(800 + 5x2

, 150 + 2↵2
, 1 + ẋ

2
, 1 + ↵̇

2) and R = 0.1.
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3.5.3 Disturbance Rejection

The performance of the power series based controller with both constant and state-dependent

Q was compared to the performance of the LQR controller in response to a 1.5� angular pulse

disturbance. The three controllers performed very similarly, but the power series controller

with state-dependent Q required less voltage than the other two methods. Also notice, that for

the power series method with state dependent Q the maximum angular displacement was the

same as the introduced disturbance, while the disturbance for the other two methods caused

an overcompensated angular displacement in the opposite direction. The corresponding state

responses and control e↵ort are provided in Figures 3.30-3.34. A summary of the analysis of the

state responses and the control e↵ort in response to a 1.5� angular disturbance for the three

methods is provided in Table 3.4.

Table 3.4: Summary of stabilization state response and control e↵ort with 1.5� pulse disturbance.

Method |x|
max

|↵|
max

|ẋ|
max

|↵̇|
max

V

max

Power Series with state-dependent Q 12.1 mm 1.5� 183.7 mm/s 25.4 deg/s 7.65 Volts

Power Series with constant Q 11.24 mm 1.76� 197.4 mm/s 28 deg/s 8.81 Volts

LQR 11.43 mm 1.85� 181.3 mm/s 26.1 deg/s 8.82 Volts
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(a) Power Series with Constant Q, |x|
max

= 11.24 mm (b) LQR, |x|
max

= 11.43 mm

(c) Power Series with State-Dependent Q, |x|
max

= 12.1 mm

Figure 3.30: Cart position response to 1.5� disturbance.
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(a) Power Series with Constant Q, |↵|
max

= 1.76

�
(b) LQR, |↵|

max

= 1.85

�

(c) Power Series with State-Dependent Q, |↵|
max

= 1.5

�

Figure 3.31: Pendulum’s angle response to 1.5� disturbance.
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(a) Power Series with Constant Q, |ẋ|
max

= 197.4 mm/s (b) LQR, |ẋ|
max

= 181.3 mm/s

(c) Power Series with State-Dependent Q,

|ẋ|
max

= 183.7 mm/s

Figure 3.32: Cart velocity response to 1.5� disturbance.
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(a) Power Series with Constant Q, |↵̇|
max

= 28 deg/s (b) LQR, |↵̇|
max

= 26.1 deg/s

(c) Power Series with State-Dependent Q,

|↵̇|
max

= 25.4 deg/s

Figure 3.33: Pendulum angular velocity response to 1.5� disturbance.
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(a) Power Series with Constant Q, |Vm|
max

= 8.81 Volts (b) LQR, |Vm|
max

= 8.82 Volts

(c) Power Series Controller, |Vm|
max

= 7.65 Volts

Figure 3.34: Control e↵ort with 1.5� disturbance.
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Chapter 4

Swing-up Control

4.1 Energy-based Controller

4.1.1 Pendulum’s Energy

One of the most popular control methods for swinging up the pendulum is where the control law

is chosen such that the energy of the pendulum builds until reaching the upright equilibrium.

This technique was first proposed and implemented by Astrom and Furuta [8, 9]. Here, we

present a modified approach using a more complex dynamical model for the SIP system than

the simplified model that is most commonly used. We also consider the electrodynamics of the

DC motor that drives the cart, incorporate viscous damping friction as seen at the motor pinion,

and account for the limitation of having a cart-pendulum system with a finite track length.

The total energy, Ep, of the pendulum at it’s hinge is given by the sum of it’s rotational

kinetic energy and it’s potential energy, so

Ep =
1

2
Jp↵̇

2 +Mp`pg(cos(↵)� 1), (4.1)

where Jp, the pendulum’s moment of inertia at it’s hinge is defined as

Jp =

Z
2`p

0

r

2

Mp

2`p
dr =

4

3
Mp`

2

p. (4.2)

Note that equation (4.1) di↵ers from the energy derived in Section 2.2.1 where we expressed the

pendulum’s energy at it’s center of gravity and not at it’s hinge. Since our goal is to increase

the energy of the pendulum until the upright position is reach, we must design a controller so

that the condition
dEp
dt

� 0 (4.3)
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is guaranteed. By di↵erentiating (4.1) we have

dEp
dt

= Jp↵̇↵̈�Mp`pg sin(↵)↵̇ =
4

3
Mp`

2

p↵̇↵̈�Mp`pg sin(↵)↵̇. (4.4)

Then, using the Lagrange’s equation (2.23) we derived earlier, we can rewrite (4.4) as

dEp
dt

= Mp`p↵̇ cos(↵)ẍ. (4.5)

It should be noted, that as is commonly done in swing-up control derivation, the e↵ects of

viscous damping at the pendulum axis have been ignored (i.e. set Bp = 0). This is acceptable

because Bp is very small and its e↵ect is minor.

4.1.2 Converting to Voltage Input

In most swing-up derivations, the control input is taken to be the acceleration of the cart, ẍ,

but for our real-time implementation the control input is defined to be the voltage applied to

the cart Vm. Thus, we need to express ẍ in terms of Vm. We will do this by considering Newton’s

second law of motion together with D’Alembert’s principle1,

Mẍ+ Fai = Fc �Beqẋ, (4.6)

where Fai is the armature rotational inertial force acting on the cart [65]. As seen at the motor

pinion, Fai can be expressed as a function of the armature inertial torque, Tai, thus

Fai =
KgTai

rmp
. (4.7)

Now, applying Newton’s second law of motion to the shaft of the cart’s DC motor yields

Jm✓̈m = Tai, (4.8)

where ✓m is the rotational angle of the motor shaft. Using the mechanical configuration of the

cart’s rack-pinion system and the technical specifications from the Quanser IP02 User Manual

[63], as well as the study of the electrodynamics of a DC motor in [61] we have

✓m =
Kgx

rmp
. (4.9)

1

The sum of di↵erences between the forces acting on a system of mass particles and the time derivatives of the

moment of inertia of the system itself along any virtual displacement consistent with constraints of the system,

is zero.
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Then, we can substitute equations (4.9) and (4.8) into (4.7) to obtain

Fai =
K

2

gJmẍ

rmp
. (4.10)

With the use of equations (2.32) and (4.10), we can express (4.6) as

 
M +

K

2

gJm

r

2

mp

!
ẍ = �

 
Beq +

K

2

gKtKm

Rmr

2

mp

!
ẋ+

KgKtVm

Rmrmp
. (4.11)

Solving for ẍ results in

ẍ =
KgKtrmpVm � (K2

gKtKm +BeqRmr

2

mp)ẋ

Rm(Mr

2

mp +K

2

gJm)
. (4.12)

Therefore, by substituting (4.12) into (4.5) and imposing the condition in (4.3), we obtain that

our control input, Vm, must satisfy

dEp
dt

= Mp`p↵̇ cos(↵)

 
KgKtrmpVm � (K2

gKtKm +BeqRmr

2

mp)ẋ

Rm(Mr

2

mp +K

2

gJm)

!
� 0. (4.13)

4.1.3 Lyapunov Stability Condition

Consider the Lyapunov function

L(X) =
1

2
(Ep)2 , (4.14)

which is defined to be zero when the pendulum is in it’s upright position, and positive everywhere

else. Then, based on Lyapunov’s theorem, we must have

dL

dt

= Ep
dEp
dt

= EpMp`p↵̇ cos(↵)

 
KgKtrmpVm � (K2

gKtKm +BeqRmr

2

mp)ẋ

Rm(Mr

2

mp +K

2

gJm)

!
 0. (4.15)

Substituting the model parameter values provided in Appendix A.2 into (4.15) and simplifying

yields the condition

Ep↵̇ cos(↵)(Vm � 7.614ẋ)  0. (4.16)

Consider the control law of the form

Vm(X) = �|ẋ|(�sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|), (4.17)
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0.25-0.25 0

x < 0, ẋ > 0
sg(X) = 1

x > 0, ẋ > 0
sg(X) = 1

x < 0, ẋ > 0
sg(X) = 1

x > 0, ẋ > 0
sg(X) = �1

x < 0, ẋ < 0
sg(X) = �1

x > 0, ẋ < 0
sg(X) = �1

x < 0, ẋ < 0
sg(X) = 1

x > 0, ẋ < 0
sg(X) = �1

Figure 4.1: Diagram representing how sg(X) is defined. The arrows indicate the direction of the cart’s
displacement, while the number line indicates the cart’s position.

where � and ⌘ are positive constants, sign represents the signum function, and the function

sg(X) is defined as

sg(X) = 0.5(sign(ẋ)� sign(x)� sign(|x|� 0.25)(sign(ẋ) + sign(x))), (4.18)

which will output ±1 depending on the position of the cart and direction it is moving. Then,

the sign of Vm will be the same as the sign of sg(X) because of the exponential term in (4.17).

The total length of the track that the cart can travel is 0.814 m, indicating that the cart’s

horizontal displacement in either direction must be less than 0.407 m (i.e. |x| < 0.407 m). For

safety reasons, the cart should not get too close to the end of the track, thus sg(X) was defined

in such a way that it switches signs only when the cart’s displacement from the center is more

than 0.25 m and the direction of the cart’s displacement is towards either track end. Figure 4.1

represents how sg(X) is defined. Substituting (4.17) into (4.16) gives

Ep↵̇ cos(↵)
⇣
�|ẋ|

⇣
�sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|

⌘
� 7.614ẋ

⌘
 0, (4.19)

which can be rewritten as

�|ẋ|(sg(X)Ep↵̇ cos(↵)e⌘|x| � |Ep↵̇ cos(↵)|)  7.614ẋEp↵̇ cos(↵). (4.20)

Then, dividing by |ẋ||Ep↵̇ cos(↵)| yields

�

⇣
sign(Ep↵̇ cos(↵))sg(X)e⌘|x| � 1

⌘
 7.614sign(Ep↵̇ cos(↵))sign(ẋ). (4.21)

Physically for our system, a positive input voltage means positive cart displacement, therefore

Vm and ẋ have the same sign. Furthermore, since we defined sg(X) to have the same sign as

Vm, this also means that sg(X) and ẋ must also have the same sign. Now, consider the possible
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sign combinations for Ep↵̇ cos(↵) and sg:

• Case 1: Ep↵̇ cos(↵) > 0 and sg(X) = 1 (ẋ > 0)

�

⇣
e

⌘|x| � 1
⌘
 7.614 ) �  7.614

e

⌘|x| � 1
.

• Case 2: Ep↵̇ cos(↵) > 0 and sg(X) = �1 (ẋ < 0)

�

⇣
�e

⌘|x| � 1
⌘
 �7.614 ) � � 7.614

e

⌘|x| + 1
.

• Case 3: Ep↵̇ cos(↵) < 0 and sg(X) = 1 (ẋ > 0)

�

⇣
�e

⌘|x| � 1
⌘
 �7.614 ) � � 7.614

e

⌘|x| + 1
.

• Case 4: Ep↵̇ cos(↵) < 0 and sg(X) = �1 (ẋ < 0)

�

⇣
e

⌘|x| � 1
⌘
 7.614 ) �  7.614

e

⌘|x| � 1
.

Based on the above cases, we obtain that � and ⌘ must satisfy the condition

7.614

e

⌘|x| + 1
 �  7.614

e

⌘|x| � 1
. (4.22)

Moreover, we have to ensure that the commanded voltage does not make the power amplifier

go into saturation, so we must design our control in a way that |Vm| < 10 Volts. This means

that � and ⌘ also have to satisfy

������|ẋ|
⇣
�sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|

⌘ �����  10. (4.23)

We can easily find a bound for (4.23) only in terms of � and ⌘ since we can calculate that

maximum velocity of the cart based on technical specifications provided in [63]. The maximum

speed of the DC motor is !
max

= 628.3 rad/s. Substituting this value into equations (2.4) and

(2.5) we obtain that the maximum velocity of the cart is 1.075 m/s. One particular choice for

� and ⌘ that satisfies all of the above conditions is � = 4 and ⌘ = 0.9.

4.1.4 Simulation Results

The presented controller given by (4.17) was tested in simulation with � = 4 and ⌘ = 0.9

using the Simulink diagrams provided in B.5 with the IP02 + SESIP Actual Plant subsystem
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block replaced by the SIP EOM with Friction subsystem block from the diagram in Figure

B.6. The state responses and the corresponding control e↵ort are graphed in Figure 4.2. The

dashed blue lines in 4.2b indicate the region where the stabilization control can take over (i.e.

where |↵| < 15�). The simulation indicates that the controller swings the pendulum up into the

upright position in less than one minute. More importantly, all the values of the states and the

required control e↵ort stayed within the possible ranges deliverable by the apparatus we will

use for real time experiments.

4.1.5 Experimental Results

The swing-up controller given by (4.17) was successfully implemented in real-time � = 4 and

⌘ = 0.9 using the MATLAB Simulink model provided in Appendix B.5. Since the starting

downward position of the pendulum is a stable equilibrium we must input a small amount

of initial voltage to get the experiment started. The state responses and the corresponding

control e↵ort are graphed in Figure 4.3. Figure 4.3b indicates that the controller swung up the

pendulum in approximately 45 seconds. On one occasion the required control e↵ort reached the

upper limit of 10 Volts and had to be saturated. However, the average amount of voltage used

during the experiment was only about 1.35 Volts. Once the pendulum reached within 15� of

the upright position, the power series based stabilization controller successfully took over. The

switching was achieved by the Mode Switching Simulink block provided by Quanser.

Even though we have been able to achieve successful swing-up using the controller derived

in Section 4.1.3, this has not been the case for every experimental run. There have been some

instances when instead of swinging up to the upright position, the pendulum ended up swinging

back and forth at a constant rate without building up more energy. In the next section, we

discuss a possible reasons for this phenomena and propose a modifications to the presented

swing-up controller in (4.17).
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(a) Cart Position, |x| < 0.29 m (b) Pendulum Angle

(c) Cart Velocity, |ẋ| < 0.897 m/s (d) Pendulum’s Angular Velocity, |↵̇| < 583 deg/s

(e) Control E↵ort, |Vm| < 7.64, |Vm|
avg

= 0.83 Volts

Figure 4.2: Simulated state response and control e↵ort for the energy based swing up controller given
by equation (4.17) with � = 4 and ⌘ = 0.9.
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(a) Cart Position, |x| < 0.281 m (b) Pendulum Angle

(c) Cart Velocity, |ẋ| < 0.936 m/s (d) Pendulum’s Angular Velocity, |↵̇| < 554 deg/s

(e) Control E↵ort, |Vm|  10 Volts, |Vm|
avg

= 1.35 Volts

Figure 4.3: Experimental state response and control e↵ort for the energy based swing up controller
given in equation (4.17) with � = 4 and ⌘ = 0.9.
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4.2 More Robust Swing-up Controller

4.2.1 Modified Lyapunov Function

Even though most publications on energy-based control methods for the swing-up of the pen-

dulum use the same Lyapunov function we used in equation (4.14) for their derivation, in [50]

Maeba et al. point out that this function has several zeros aside from the upright position. In

fact, the pendulum’s energy (4.1), and thus the Lyapunov function in (4.14), is zero every time

the pendulum’s angle and angular velocity satisfy

↵̇ = ±

s
3g(1� cos(↵))

2`p
. (4.24)

This means that the presented controller is not guaranteed to swing the pendulum up since the

energy will stop building once the desired zero energy is achieved. To fix this problem, consider

the Lyapunov function

L

2

(X) =
1

2
E2

p + k(1� cos3(↵)), (4.25)

where k is a positive constant. Equation (4.25) only has one zero, namely the upright posi-

tion with zero angular velocity (i.e. ↵ = 0, ↵̇ = 0), and is strictly positive everywhere else.

Di↵erentiating (4.25) and utilizing (4.15) we obtain the new Lyapunov condition

dL

2

dt

= EpMp`p↵̇ cos(↵)

 
KgKtrmpVm � (K2

gKtKm +BeqRmr

2

mp)ẋ

Rm(Mr

2

mp +K

2

gJm)

!
+

3

2
k cos(↵) sin(2↵)↵̇  0.

(4.26)

Substituting the model parameter values provided in Appendix A.2 into (4.26) yields the new

condition

Ep↵̇ cos(↵)(Vm � 7.614ẋ) + 12.28k↵̇ cos(↵) sin(2↵)  0, (4.27)

that the control input, Vm must satisfy. Consider the control law of the form

Vm(X) = �

1

|ẋ|
⇣
��

2

sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|
⌘
� �

3

sign(↵̇ cos(↵))| sin(2↵)|
Ep

, (4.28)

where �

1

,�

3

, and ⌘ are positive constants, 1 > �

2

> 0, and sg is the same function defined in

(4.18). Note that equation (4.28) is a modification of the previously presented control law in
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(4.17). Substituting (4.28) into (4.27) gives

Ep↵̇ cos(↵)
⇣
�

1

|ẋ|
⇣
��

2

sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|
⌘
� 7.614ẋ

⌘

� �

3

|↵̇ cos(↵)|| sin(2↵)|+ 12.28k↵̇ cos(↵) sin(2↵)

 0.

(4.29)

The above inequality is satisfied when

Ep↵̇ cos(↵)
⇣
�

1

|ẋ|
⇣
��

2

sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|
⌘
� 7.614ẋ

⌘
 0, (4.30)

and

� �

3

|↵̇ cos(↵)|| sin(2↵)|+ 12.28k↵̇ cos(↵) sin(2↵)  0 (4.31)

are both satisfied. Based on our earlier conditions in (4.21) and (4.22), we can obtain that (4.30)

holds when
7.614

e

⌘|x| + �

2

 �

1

 7.614

e

⌘|x| � �

2

. (4.32)

Furthermore, inequality (4.31) is satisfied when

�

3

� 12.28k. (4.33)

In addition to the conditions (4.32) and (4.33), the sign of Vm should be given by the value of

sg(X) to make sure the cart avoids the edges of the track. Therefore, we must have

sign

✓
�

1

|ẋ|
⇣
��

2

sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|
⌘
� �

3

sign(↵̇ cos(↵))| sin(2↵)|
Ep

◆
= sg(X).

(4.34)

Now, consider the possible sign combinations for Ep↵̇ cos(↵) and sg:

• Case 1: Ep↵̇ cos(↵) > 0 and sg(X) = 1 (i.e. want Vm > 0, ẋ > 0)

�

1

|ẋ|
⇣
��

2

+ e

⌘|x|
⌘
� �

3

| sin(2↵)|
|Ep|

> 0 ) �

1

>

�

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| � �

2

)
.

• Case 2: Ep↵̇ cos(↵) > 0 and sg(X) = �1 (i.e. want Vm < 0, ẋ < 0)

�

1

|ẋ|
⇣
��

2

� e

⌘|x|
⌘
� �

3

| sin(2↵)
|Ep|

< 0 ) �

1

> � �

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| + �

2

)
.
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• Case 3: Ep↵̇ cos(↵) < 0 and sg(X) = 1 (i.e. want Vm > 0, ẋ > 0)

�

1

|ẋ|
⇣
�

2

+ e

⌘|x|
⌘
+

�

3

| sin(2↵)|
|Ep|

> 0 ) �

1

> � �

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| + �

2

)
.

• Case 4: Ep↵̇ cos(↵) < 0 and sg(X) = �1 (i.e. want Vm < 0, ẋ < 0)

�

1

|ẋ|
⇣
�

2

� e

⌘|x|
⌘
+

�

3

| sin(2↵)|
|Ep|

< 0 ) �

1

>

�

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| � �

2

)
.

The above cases all hold when the constants �
1

,�

2

,�

3

, and ⌘ satisfy

�

1

>

�

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| � �

2

)
. (4.35)

To avoid division by zero and bound the value of �
1

, we can saturate the signals of Ep and ẋ

so that |Ep| > �

1

and |ẋ| > �

2

for some small positive constants �
1

and �

2

. Then, the condition

(4.35) will be satisfied when

�

1

� �

3

�

1

�

2

(1� �

2

)
. (4.36)

Moreover, to avoid saturation of the power amplifier, the constants in (4.28) must be chosen so

that

|Vm| =

������1|ẋ|
⇣
��

2

sign(Ep↵̇cos(↵)) + sg(X)e⌘|x|
⌘
� �

3

sign(↵̇ cos(↵))| sin(2↵)|
Ep

�����  10, (4.37)

where the maximum possible value of ẋ, as previously calculated, is 1.075 m/s. The choice of

the constants in the control law that satisfy all the restrictions is somewhat arbitrary. One

possible choice that satisfies all conditions and yields satisfactory simulation results is �
1

= 5.1,

�

2

= 0.5, �
3

= 0.002, and ⌘ = 0.8. These constants were calculated using k = 10�4, �
1

= 0.001,

and �

2

= 0.1.

4.2.2 Simulation Results

The controller given by (4.28) was tested in simulation with �

1

= 5.1, �
2

= 0.5, �
3

= 0.002,

⌘ = 0.8, �
1

= 0.001, and �

2

= 0.1 using the Simulink diagrams given in Appendix B.5 with

the IP02 + SESIP Actual Plant subsystem block replaced by the SIP EOM with Friction

subsystem block from the diagram in Figure B.6. The state responses and the corresponding

control e↵ort are graphed in Figure 4.4. The dashed blue lines in 4.4b indicate the region where

the stabilization control can take over (i.e. where |↵| < 15�). The simulation indicates that

the controller swings the pendulum up into the upright position in approximately 40 seconds,
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which is about 10 seconds faster than the previous method. More importantly, all the values of

the states and the required control e↵ort stayed within the possible ranges deliverable by the

apparatus we use for real time experiments. Figure 4.4a also indicates that the cart did not go

past the end of the track.
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(a) Cart Position, |x| < 0.269 m (b) Pendulum Angle

(c) Cart Velocity, |ẋ| < 0.701 m/s (d) Pendulum’s Angular Velocity, |↵̇| < 570 deg/s

(e) Control E↵ort, |Vm| < 5.57

Volts, |Vm|
avg

= 0.978 Volts

Figure 4.4: Simulated state response and control e↵ort for the more robust swing up controller given
by equation (4.28).
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4.3 Incorporating Viscous Damping at the Pendulum Axis

The two swing-up methods presented so far in the previous sections have accounted for viscous

damping friction as seen at the cart’s motor pinion, but they have ignored the e↵ects of viscous

damping as seen at the pendulum axis. Though the e↵ect of the viscous damping term, Bp↵̇,

in equation (2.23) is small, it is desirable for real-time experiments and some applications to

use a more complete model. In this section, we present another modification for our previous

swing-up controllers to include viscous damping at the pendulum axis. If we include the Bp↵̇

from (2.23), then equation (4.5) becomes

dEp
dt

= Mp`p↵̇ cos(↵)ẍ�Bp↵̇
2

, (4.38)

which can be rewritten as

dEp
dt

= Mp`p↵̇ cos(↵)

 
KgKtrmpVm � (K2

gKtKm +BeqRmr

2

mp)ẋ

Rm(Mr

2

mp +K

2

gJm)

!
�Bp↵̇

2 (4.39)

using equation (4.12). Then, using the modified Lyapunov function given in (4.25), and adding

the viscous term into the derivate, we can modify (4.26) to obtain the new condition

dL

2

dt

= EpMp`p↵̇ cos(↵)

 
KgKtrmpVm � (K2

gKtKm +BeqRmr

2

mp)ẋ

Rm(Mr

2

mp +K

2

gJm)

!

+
3

2
k cos(↵) sin(2↵)↵̇� EpBp↵̇

2

 0.

(4.40)

Substituting the model parameter values provided in Appendix A.2 into (4.40), and simplifying

yields the condition

Ep↵̇ cos(↵)(Vm � 7.614ẋ) + 12.28k↵̇ cos(↵) sin(2↵)� 0.0197Ep↵̇2  0, (4.41)

that our modified controller must satisfy to guarantee Lyapunov stability. To account for the

e↵ect of the damping term, consider the control law of the form

Vm(X) = �

1

|ẋ|
⇣
��

2

sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|
⌘
� �

3

sign(↵̇ cos(↵))| sin(2↵)|
Ep

+ 0.0197sign(Ep)↵̇ cos↵,

(4.42)
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which is just a modification of (4.28) with positive constants, �
1

, �
3

, ⌘, and 0 < �

2

< 1.

Substituting (4.42) into (4.41), and simplifying results in

Ep↵̇ cos(↵)
⇣
�

1

|ẋ|
⇣
��

2

sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|
⌘
� 7.614ẋ

⌘

� �

3

|↵̇ cos(↵)|| sin(2↵)|+ 12.28k↵̇ cos(↵) sin(2↵)

� 0.0197 sin2(↵)|Ep|↵̇2

 0.

(4.43)

As before, the inequality in (4.43) is satisfied when both (4.32) and (4.33) hold for the constants.

Furthermore, to make sure that the sign of (4.42) is given by sg, we must have

sign

 
�

1

|ẋ|
⇣
��

2

sign(Ep↵̇ cos(↵)) + sg(X)e⌘|x|
⌘
� �

3

sign(↵̇ cos(↵))| sin(2↵)|
Ep

+ 0.0197sign(Ep)↵̇ cos↵

!
= sg(X).

(4.44)

Now, consider the possible sign combinations for Ep↵̇ cos(↵) and sg:

• Case 1: Ep↵̇ cos(↵) > 0 and sg(X) = 1 (i.e. want Vm > 0, ẋ > 0)

�

1

|ẋ|
⇣
��

2

+ e

⌘|x|
⌘
� �

3

| sin(2↵)|
|Ep|

+ 0.0197|↵̇ cos↵| > 0

) �

1

>

�

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| � �

2

)
� 0.0197|↵̇ cos(↵)|

|ẋ|(e⌘|x| � �

2

)

• Case 2: Ep↵̇ cos(↵) > 0 and sg(X) = �1 (i.e. want Vm < 0, ẋ < 0)

�

1

|ẋ|
⇣
��

2

� e

⌘|x|
⌘
� �

3

| sin(2↵)
|Ep|

+ 0.0197|↵̇ cos↵| < 0

) �

1

> � �

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| + �

2

)
+

0.0197|↵̇ cos(↵)|
|ẋ|(e⌘|x| + �

2

)
.

• Case 3: Ep↵̇ cos(↵) < 0 and sg(X) = 1 (i.e. want Vm > 0, ẋ > 0)

�

1

|ẋ|
⇣
�

2

+ e

⌘|x|
⌘
+

�

3

| sin(2↵)|
|Ep|

� 0.0197sign(Ep)↵̇ cos↵ > 0

) �

1

>

0.0197|↵̇ cos(↵)|
|ẋ|(�

2

+ e

⌘|x|)
� �

3

| sin(2↵)|
|ẋ||Ep|

�
�

2

+ e

⌘|x|
�
.
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• Case 4: Ep↵̇ cos(↵) < 0 and sg(X) = �1 (i.e. want Vm < 0, ẋ < 0)

�

1

|ẋ|
⇣
�

2

� e

⌘|x|
⌘
+

�

3

| sin(2↵)|
|Ep|

� 0.0197sign(Ep)↵̇ cos↵ < 0

) �

1

>

�

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| � �

2

)
� 0.0197|↵̇ cos(↵)|

|ẋ|(e⌘|x| � �

2

)
.

The above cases all hold when the constants �
1

,�

2

,�

3

, and ⌘ satisfy

�

1

>

�

3

| sin(2↵)|
|ẋ||Ep|(e⌘|x| � �

2

)
� 0.0197|↵̇ cos(↵)|

|ẋ|(e⌘|x| � �

2

)
and �

1

>

0.0197|↵̇ cos(↵)|
|ẋ|(�

2

+ e

⌘|x|)
� �

3

| sin(2↵)|
|ẋ||Ep|

�
�

2

+ e

⌘|x|
�
.

(4.45)

Just as before, we must again choose �

1

, �
2

, �
3

, and ⌘ in a way to ensure that the amplifier

doesn’t go into saturation (i.e. |Vm|  10). A particular choice of constants that will satisfy all

conditions for the new controller in (4.42) is �
1

= 4.8, �
2

= 0.6, �
3

= 0.0115, and ⌘ = 0.6.

4.4 Simulation Results

The controller given by (4.42) was tested in simulation with �

1

= 4.8, �
2

= 0.6, �
3

= 0.0115,

and ⌘ = 0.6, using the Simulink diagrams provided in Appendix B.5 with the IP02 + SESIP

Actual Plant subsystem block replaced by the SIP EOM with Friction subsystem block from

the diagram in Figure B.6. Since the starting downward position of the pendulum is a stable

equilibrium we must input some initial voltage to get the experiment started. The starting

voltage for our simulation was 8 Volts that was applied for 0.1 second. The state responses and

the corresponding control e↵ort are graphed in Figure 4.5. The dashed blue lines in 4.5b indicate

the region where the stabilization control can take over (i.e. where |↵| < 15�). The simulation

indicates that the controller swings the pendulum up into the upright position in approximately

30 seconds. Furthermore, all the values of the states and the required control e↵ort stayed within

the possible ranges deliverable by the apparatus we use for real time experiments. Figure 4.5a

also indicates that the cart did not go past the end of the track.

4.5 Experimental Results

The swing-up controller given by (4.42) was successfully implemented in real-time with �

1

= 4.8,

�

2

= 0.6, �
3

= 0.0115, and ⌘ = 0.6 using the MATLAB Simulink model provided in Appendix

B.5. The state responses and the corresponding control e↵ort are graphed in Figure 4.6. Figure

4.6b indicates that the controller swung up the pendulum in approximately 15 seconds. On one
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occasion the required control e↵ort reached the upper limit of 10 Volts and had to be saturated.

The average amount of voltage used during the experiment was about 2.89 Volts, which is more

than with the previous methods. Once the pendulum reached within 15� of the upright position,

the power series based stabilization controller successfully took over. The switching was achieved

by the Mode Switching Simulink block provided by Quanser.

The experiment was repeated several times with swing-up times ranging between 15 and

40 seconds. During the swing-up procedure the cart makes very fast big moves because of how

the function sg is defined. When the cart moves close to the end of the track, the controller

successfully makes the cart move away from the edge, but this action results in a jerk of the

cart. Unfortunately, sometimes when the pendulum is near the upright position, this fast jerk of

the cart overpowers the movement of the pendulum and makes the pendulum loose momentum.

When this happens, making up the loss of momentum increases the swing-up time.

4.6 Summary of Swing-up Controllers

We have presented and successfully implemented a new energy-based swing-up controller that

was derived using Lyapunov functions based on the method originally proposed by Astrom and

Furuta [8, 9]. We’ve also provided two modifications to make the swing-up method more appro-

priate for real-time implementation. Our controller is based on a more complex dynamical model

for the SIP system than the models that are most commonly used in the literature. In addition

to considering the electrodynamics of the DC motor that drives the cart, we’ve also considered

viscous damping friction as seen at the motor pinion, and our last modification also considered

the viscous damping as seen at the pendulum axis. Furthermore, we have accounted for the

limitation of having a cart-pendulum system with a finite track length. This was accomplished

using a method that is di↵erent from other previously published methods. Our final swing-up

controller, given in equation (4.42), was able to swing the pendulum up in approximately 15

seconds, which is comparable to the swing-up time of the proportional-velocity controller pro-

vided by Quanser with our apparatus [62]. However, the swing-up time of our controller is not

consistent.
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(a) Cart Position, |x| < 0.146 m (b) Pendulum Angle

(c) Cart Velocity, |ẋ| < 0.724 m/s (d) Pendulum’s Angular Velocity, |↵̇| < 564 deg/s

(e) Control E↵ort, |Vm|  8 Volts, |Vm|
avg

= 0.68 Volt

Figure 4.5: Simulated state response and control e↵ort for the more robust swing up controller
including viscous damping at the pendulum axis.
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(a) Cart Position, |x| < 0.335 m (b) Pendulum Angle

(c) Cart Velocity, |ẋ| < 1.36 m/s (d) Pendulum’s Angular Velocity, |↵̇| < 547 deg/s

(e) Control E↵ort, |Vm|  10 Volts, |Vm|
avg

= 2.89 Volts

Figure 4.6: Experimental state response and control e↵ort for the energy based swing up controller
given in equation (4.42) with �1 = 4.8, �2 = 0.6, �3 = 0.0115, and ⌘ = 0.6.
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Chapter 5

Closing Remarks

5.1 General Conclusion

In the first part of this dissertation, we presented the successful real-time implementation of

a power series based nonlinear control method for the stabilization of an inverted pendulum.

This method has not been implemented for a SIP system before. Experimental results indicated

that the controller performs slightly better than the traditional linear quadratic regulator that

is commonly used for stabilization. Furthermore, the presented method has a larger stability

region, and it can be used with state-dependent weighting matrices.

In the second part of this work, we modified the swing-up method of Astrom and Furuta

[8, 9] to create a new energy-based swing-up controller that was derived using a more complex

dynamical model for the SIP system than the simplified models that are commonly used. It

is often the case, that a controller based on a simplified model works well in simulation, but

not in real-time. For the purposes of real-time implementation and many applications, it is

desirable to consider the e↵ects of friction, and incorporate physical restrictions of the SIP

system like the maximum deliverable voltage by the amplifier, the capacity of the DC motor

that drives the cart, and the finite track length. The control method presented accounts for

viscous damping friction, and it also takes many of the physical restrictions of the actual SIP

system into account. Even though the controller can successfully swing-up the pendulum, the

amount of time it takes for the pendulum to reach the upright position is inconsistent.

5.2 Future Work

Future work involves investigating ways to make the swing-up time of our swing-up controller

more consistent. We would also like to complete further real-time testing and tuning of both

the stabilizing and the swing-up controllers presented. Furthermore, we would like to consider

67



further modifications like incorporating the e↵ects of both static friction and stick slip friction.

Some work has been done in this direction already by Campbell et al. for the stabilization

problem using a linear quadratic regulator [18, 17]. Our plan is to extend their work for both the

power series based nonlinear stabilizing controller, and for the energy based swing-up controller

that we presented. We would also like to implement our controls for a double inverted pendulum

in real-time.
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Appendix A

Model Parameters

A.1 Nomenclature

Symbol Description Matlab/Simulink Notation

↵ Pendulum Angle From the Upright Position alpha

↵̇ Pendulum Angular Velocity alpha dot

↵̈ Pendulum Angular Acceleration alpha ddot

A0, B0 Linearized State-Space Matrices of the SIP-

plus-IP02 System

A0, B

Bp Viscous Damping Coe�cient as Seen at the

Pendulum Axis

Bp

Beq Equivalent Viscous Damping Coe�cient as

seen at the Motor Pinion

Beq

Eemf Back-EMF Voltage Eemf

Ep Total Energy of the Pendulum Ep

Fai Armature Rotational Inertial Force acting on

the Cart

Fc Cart Driving Force generated by the DC Motor

g Gravitational Constant
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Symbol Description Matlab/Simulink Notation

Im Motor Armature Current Im

Ip Pendulum’s Moment of Inertia at its Center of

Gravity

Ip

Jp Pendulum’s Moment of Inertia at its Hinge Jp

Jm Rotational Moment of Inertia of the DC Mo-

tor’s Output Shaft

Jm

KT System’s Total Kinetic Energy

Kg Planetary Gearbox Gear Ratio Kg

Kct Translational Kinetic Energy of the Motorized

Cart

Kcr Rotational Kinetic Energy Due to the Cart’s

DC Motor

Kpt The Pendulum’s Translational Kinetic Energy

Kpr The Pendulum’s Rotational Kinetic Energy

Km Back-ElectroMotive-Force (EMF) Constant Km

Kt Motor Torque Constant Kt

K Optimal LQR Feedback Gain Vector K

L Lagrangian

L,L

2

Lyapunov Functions

Lm Motor Armature Inductance

`p Pendulum Length from Pivot to Center Of

Gravity

lp

Mp Pendulum Mass (with T-fitting) Mp

Mw Cart Weight Mass Mw

M Cart Mass with Extra Weight

P Positive-Definite Matrix Solution to the ARE P
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Symbol Description Matlab/Simulink Notation

Q Symmetric Positive-Semidefinite Weighting

Matrix

Q

R Positive Weighting Scalar R

Rm Motor Armature Resistance Rm

rmp Motor Pinion Radius r mp

S Solution to the HJB equation

Tai Armature Inertial Torque

Tm Torque Generated by the Motor

t Continuous Time

VT System’s Total Potential Energy

Vm Motor Armature Voltage Vm

vCOG Velocity of the Pendulum’s Center of Gravity

X State Vector X

x Cart Linear Position x

ẋ Cart Velocity x dot

ẍ Cart Acceleration x ddot

xp Absolute x-coordinate of the Pendulum Center

Of Gravity

yp Absolute y-coordinate of the Pendulum Center

Of Gravity

✓m Motor Shaft Rotational Angle

! Motor Pinion Angular Velocity

!m Motor Shaft Angular Velocity
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A.2 Model Parameter Values

Parameter Description Value

Bp Viscous Damping Coe�cient, as seen at the Pendulum

Axis

0.0024 N.m.s/rad

Beq Equivalent Viscous Damping Coe�cient as seen at the

Motor Pinion

5.4 N.m.s/rad

g Gravitational Constant 9.81 m/s2

Ip Pendulum Moment of Inertia, about its Center of Gravity 8.359E-003 kg.m2

Jp Pendulum’s Moment of Inertia at its Hinge 3.344E-002kg.m2

Jm Rotor Moment of Inertia 3.90E-007 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71

Kt Motor Torque Constant 0.00767 N.m/A

Km Back-ElectroMotive-Force (EMF) Constant 0.00767 V.s/rad

`p Pendulum Length from Pivot to Center Of Gravity 0.3302 m

Mw Cart Weight Mass 0.37 kg

M Cart Mass with Extra Weight 0.57 +Mw kg

Mp Pendulum Mass 0.230 kg

Rm Motor Armature Resistance 2.6 ⌦

rmp Motor Pinion Radius 6.35E-003 m
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Appendix B

MATLAB Code

B.1 Code to Setup Parameters for the Simulink Diagrams

% Code to se tup the SIP system ’ s model parameters .

% The below code i s a mod i f i ca t i on o f the se tup code prov ided by Quanser

clear a l l

global IC ALPHA0 %i n i t i a l ang l e ( used in s imu la t i on )

IC ALPHA0 = 0 ;

% convers ion to rad ians

IC ALPHA0 = IC ALPHA0 / 180 ∗ pi ;

%%%% Ca l cu l a t e u s e f u l convers ion cons tan t s %%%%

% from radians to degrees

K R2D = 180 / pi ;

% from degrees to rad ians

K D2R = 1 / K R2D;

% from Inch to Meter

K IN2M = 0 . 0254 ;

% from Meter to Inch

K M2IN = 1 / K IN2M ;

% from rad/ s to RPM

K RDPS2RPM = 60 / ( 2 ∗ pi ) ;

% from RPM to rad/ s
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K RPM2RDPS = 1 / K RDPS2RPM;

% from oz�f o r c e to N

K OZ2N = 0.2780139 ;

% from N to oz�f o r c e

K N2OZ = 1 / K OZ2N;

%%%%% Setup Model Parameters %%%%%

% Motor Armature Res i s tance (Ohm)

Rm = 2 . 6 ;

% Motor Armature Inductance (H)

Lm = 180e�6;

% Motor Torque Constant (N.m/A)

Kt = 1.088 ∗ K OZ2N ∗ K IN2M; % = .00767

% Motor Back�EMF Constant (V. s / rad )

Km = 0.804 e�3 ∗ K RDPS2RPM; % = .00767

% Rotor I n e r t i a ( kg .mˆ2)

Jm = 5.523 e�5 ∗ K OZ2N ∗ K IN2M; % = 3.9 e�7
% Cart Weight Mass ( kg )

Mw = 0 . 3 7 ;

% IP02 Cart Mass , wi th 3 cab l e connectors ( kg )

M = 0.57+Mw;

% Planetary Gearbox (a . k . a . I n t e rna l ) Gear Ratio

Kg = 3 . 7 1 ;

% Cart Motor Pinion number o f t e e t h

N mp = 24 ;

% Motor Pinion Radius (m)

r mp = 0 .5 / 2 ∗ K IN2M; % = 6.35 e�3
% Cart Pos i t i on Pinion number o f t e e t h

N pp = 56 ;

% Pos i t i on Pinion Radius (m)

r pp = 1.167 /2 ∗ K IN2M; % = 14.8 e�3
% Rack Pi tch (m/ t e e t h )

Pr = 1e�2 / 6 . 0 1 ; % = 0.0017

% Cart Trave l (m)

Tc = 0 . 8 1 4 ;
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% Equ iva l en t Viscous Damping Co e f f i c i e n t as seen at the Motor Pinion

Beq = 5 . 4 ;

% Gravi ty Constant

g = 9 . 8 1 ;

% Pendulum Mass ( wi th T� f i t t i n g )

Mp = 0 . 2 3 0 ;

% Distance from Pivot to Centre Of Gravi ty (COG)

lp = 13 ∗ K IN2M; % = 0.3302

% Pendulum Moment o f I n e r t i a ( kg .mˆ2) at COG

Ip = Mp ∗ lp ˆ2 / 3 ; % = 8.359 e�3
% Pendulum Moment o f I n e r t i a ( kg .mˆ2) at Hinge

Jp = 4∗ Ip ; % = 3.344 e�2
% Equ iva l en t Viscous Damping Co e f f i c i e n t a t the Pendulum Axis (N.m. s/rad )

Bp = 0 . 0024 ;

%%% I n i t i a l i z e the State�Space Representa t ion o f SIP System %%%

x1=sym( ’ x1 ’ ) ; x2=sym( ’ x2 ’ ) ; x3=sym( ’ x3 ’ ) ; x4=sym( ’ x4 ’ ) ;

x=[x1 ; x2 ; x3 ; x4 ] ;

d=4∗M∗r mpˆ2+Mp∗r mpˆ2+4∗Jm∗Kgˆ2 ; %used in denominator

f 31=((�4∗(Rm∗r mpˆ2∗Beq+Kgˆ2∗Kt∗Km) ) . . .

/(Rm∗(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ) ∗ x ( 3 ) . . .

+((�3∗Bp∗r mpˆ2∗cos ( x ( 2 ) ) ) . . .

/( lp ∗(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ) ∗ x ( 4 ) . . .

+((�4∗Mp∗ lp ∗r mpˆ2∗ sin ( x ( 2 ) ) ) . . .

/(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) )∗ x (4)ˆ2 . . .

+((3∗Mp∗g∗r mpˆ2∗cos ( x ( 2 ) )∗ sin ( x ( 2 ) ) ) . . .

/(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ;

f 41=((�3∗(Rm∗r mpˆ2∗Beq+Kgˆ2∗Kt∗Km)∗ cos ( x ( 2 ) ) ) . . .

/( lp ∗Rm∗(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ) ∗ x ( 3 ) . . .

+((�3∗(M∗r mpˆ2+Mp∗r mpˆ2+Jm∗Kgˆ2)∗Bp ) . . .

/(Mp∗ lp ˆ2∗(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ) ∗ x ( 4 ) . . .

+((�3∗Mp∗r mpˆ2∗ sin ( x ( 2 ) )∗ cos ( x ( 2 ) ) ) . . .

/(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) )∗ x (4)ˆ2 . . .

+((3∗(M∗r mpˆ2+Mp∗r mpˆ2+Jm∗Kgˆ2)∗ g∗ sin ( x ( 2 ) ) ) . . .
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/( lp ∗(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ) ;

F=[x ( 3 ) ; x ( 4 ) ; f31 ; f41 ] ;

A0=zeros ( 4 ) ;

A0(1 ,3)=1; A0(2 ,4)=1;

A0( : , 2 )= vpa ( subs ( t ay l o r (F , x , ’ Order ’ , 2 ) , x , [ 0 ; 1 ; 0 ; 0 ] ) ) ;

A0( : , 3 )= vpa ( subs ( t ay l o r (F , x , ’ Order ’ , 2 ) , x , [ 0 ; 0 ; 1 ; 0 ] ) ) ;

A0( : , 4 )= vpa ( subs ( t ay l o r (F , x , ’ Order ’ , 2 ) , x , [ 0 ; 0 ; 0 ; 1 ] ) ) ;

b3=(4∗r mp∗Kg∗Kt)/(Rm∗(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ;

b4=(3∗r mp∗Kg∗Kt∗cos ( x ( 2 ) ) ) / ( lp ∗Rm∗(d+3∗r mpˆ2∗Mp∗ sin ( x ( 2 ) ) ˆ 2 ) ) ;

B=zeros ( 4 , 1 ) ;

B(3 ,1)=vpa ( subs ( t ay l o r (b3 , x , ’ Order ’ , 1 ) , x , [ 0 ; 0 ; 1 ; 0 ] ) ) ;

B(4 ,1)=vpa ( subs ( t ay l o r (b4 , x , ’ Order ’ , 1 ) , x , [ 0 ; 0 ; 0 ; 1 ] ) ) ;

F3=tay l o r (F , x , ’ Order ’ ,4)� t ay l o r (F , x , ’ Order ’ , 2 ) ;

f 3=matlabFunction (F3 , ’ vars ’ , x ) ;

%%% Setup Weighting Matr ices f o r S t a b i l i z a t i o n

Q = diag ( [ 800 150 1 1 ] ) ;

R(1 , 1 ) = [ 0 . 1 ] ;

%Q = diag ( [ 5 50 0 0 ] ) ;

%R(1 ,1) = [ 0.002 ] ;

% So lve the A lgeb ra i c R i c ca t i Equation

P=care (A0 ,B,Q,R) ;

%%%%% Setup Parameters f o r SIP Plant b l o c k prov ided by Quanser %%%%%

% Turn on or o f f the s a f e t y watchdog on the car t p o s i t i o n :

% s e t i t to 1 , or 0

X LIM ENABLE = 1 ; % sa f e t y watchdog turned ON

%X LIM ENABLE = 0; % s a f e t y watchdog turned OFF

% Sa f e t y Limits on the car t d i sp lacement (m)
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XMAX = 0 . 3 5 ; % car t d i sp lacement maximum sa f e t y p o s i t i o n (m)

X MIN = � XMAX; % car t d i sp lacement minimum sa f e t y p o s i t i o n (m)

% Turn on or o f f the s a f e t y watchdog on the pendulum ang le :

% s e t i t to 1 , or 0

ALPHA LIM ENABLE = 1 ; % sa f e t y watchdog turned ON

%ALPHA LIM ENABLE = 0; % s a f e t y watchdog turned OFF

% Sa f e t y Limits on the pendulum ang le ( deg )

global ALPHAMAX ALPHA MIN

ALPHAMAX = 20 ; % pendulum ang le maximum sa f e t y p o s i t i o n ( deg )

ALPHA MIN = � ALPHAMAX; % pendulum ang le minimum sa f e t y p o s i t i o n ( deg )

% Dig i t a l�to�Analog Maximum Vol tage (V) ;

VMAXDAC = 10 ;

% Ampl i f i e r Gain : s e t VoltPAQ amp l i f i e r gain to 1

KAMP = 1 ;

% Set the Ampl i f i e r Maximum Output Vol tage (V) and Output Current (A)

% rm: f o r low va l u e s o f K CABLE, VMAXAMP i s l im i t e d by VMAXDAC

VMAXAMP = 24 ;

IMAXAMP = 4 ;

% Cart Encoder Reso lu t ion (m/count )

K EC = Pr ∗ N pp / ( 4 ∗ 1024 ) ; % = 22.7485 um/count

% Pendulum Encoder Reso lu t ion ( rad/count )

% K EP i s p o s i t i v e , s ince CCW i s the p o s i t i v e sense o f r o t a t i on

K EP = 2 ∗ pi / ( 4 ∗ 1024 ) ; % = 0.0015

% Sp e c i f i c a t i o n s o f a second�order low�pass f i l t e r

wcf = 2 ∗ pi ∗ 1 0 . 0 ; % f i l t e r c u t t i n g f requency

z e t a f = 0 . 9 ; % f i l t e r damping r a t i o
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B.2 Simulink Diagrams for Model Calibration

Figure B.1: Main Simulink diagram used for model calibration. The SIP + IP02: Actual Plant block
that communicates with the apparatus and captures the value of the states in real-time was provided
by Quanser. The SIP EOM with Friction subsystem computes the simulated state response based on
the nonlinear equations of motion with friction given by equations (2.33) and (2.34). The details of the
subsystem are given in Figures B.2-B.4. The SIP EOM with No Friction subsystem is the same as the
subsystem with friction, but the friction coe�cients are ignored (i.e. Beq = 0 and Bp = 0).

86



Figure B.2: SIP EOM Simulink subsystem used in the Simulink diagram given in B.1.
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Figure B.3: x ddot EOM subsystem used in the Simulink diagram given in B.2.
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Figure B.4: alpha ddot EOM subsystem used in the Simulink diagram given in B.3.
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B.3 Simulink Diagrams for Stabilization Simulation

Figure B.5: Main Simulink diagram used for stabilization simulation to compare the performance of
the control laws given by (3.24) and (3.32). The stabilizing control is computed inside a Matlab function
with the command �inv(R) ⇤BX(u(1), u(2), u(3), u(4))0 ⇤ (P ⇤u+ inv(A00�P ⇤B ⇤ inv(R) ⇤B0) ⇤ (0.5 ⇤
P ⇤B2(u(1), u(2), u(3), u(4)) ⇤ inv(R) ⇤B0 ⇤P ⇤ u+0.5 ⇤P ⇤B ⇤ inv(R) ⇤B2(u(1), u(2), u(3), u(4))0 ⇤P ⇤
u�P ⇤ f3(u(1), u(2), u(3), u(4)))) (state-dependent B) or �inv(R) ⇤B0 ⇤P ⇤u+ inv(R) ⇤B0 ⇤ inv(A00�
P ⇤B ⇤ inv(R) ⇤B0) ⇤ P ⇤ f3(u(1), u(2), u(3), u(4)) (constant B). The input, u, for the block is the state
vector, X. The SIP EOM with Friction subsystem computes the simulated state response based on the
nonlinear equations of motion with friction given by equations (2.33) and (2.34). The details of the
subsystem are given in Figures B.2-B.4

.
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Figure B.6: Main Simulink diagram used for stabilization simulation. The stabilizing control is computed
inside a Matlab function with the command�inv(R)⇤B0⇤P ⇤u+inv(R)⇤B0⇤inv(A00�P ⇤B⇤inv(R)⇤B0)⇤
P ⇤f3(u(1), u(2), u(3), u(4)) (constant Q) or �inv(R)⇤B00⇤P ⇤u+inv(R)⇤B0⇤inv(A00�P ⇤B⇤inv(R)⇤
B

0) ⇤ (P ⇤ f3(u(1), u(2), u(3), u(4)) + 0.5 ⇤ [5 ⇤ u(1)2, 0, 0, 0; 0, 2 ⇤ u(2)2, 0, 0; 0, 0, u(3)2, 0; 0, 0, 0, u(4)2] ⇤ u)
(state-dependent Q). The input, u, for the block is the state vector, X. The SIP EOM with Friction
subsystem computes the simulated state response based on the nonlinear equations of motion with
friction given by equations (2.33) and (2.34). The details of the subsystem are given in Figures B.2-B.4

.
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B.4 Simulink Diagrams and Code for Stabilizing Control

Figure B.7: Main Simulink diagram to run real-time stabilization. The SIP + IP02: Actual Plant block
that communicates with the apparatus was provided by Quanser. The stabilizing control is computed
inside an Embedded Matlab function block. The code inside the block is provided in Figures B.8 (constant
Q) and B.9 (state-dependent Q).

function u = fcn (x ,B,A0 ,P,R)
%#eml
Fn=zeros ( 4 , 1 ) ;

%Ser i e s Expansion Terms were computed ou t s i d e o f the program
Fn(3)=x (2)ˆ2∗(1 .7737256624360185237606321648345∗x (3 ) . . .

+ 0.0031463131798169911765783738170848∗x ( 4 ) ) ;
Fn(4)=x (2)ˆ2∗(17.231734651743796048251210107947∗x (3 ) . . .

+ 0.01262194848103311701018254482729∗x ( 4 ) ) ;

%Balancing Contro l wi th Constant Q
u=�inv (R)∗B’∗P∗x+inv (R)∗B’∗ inv (A0’�P∗B∗ inv (R)∗B’ ) ∗P∗Fn ;

Figure B.8: Code inside Embedded Matlab function block in the Simulink diagram to compute stabi-
lizing control with constant Q based on power series expansion.
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function u = fcn (x ,B,A0 ,P,R)
%#eml
Fn=zeros ( 4 , 1 ) ;

%Ser i e s Expansion Terms were computed ou t s i d e o f the program
Fn(3)=x (2)ˆ2∗(1 .7737256624360185237606321648345∗x (3 ) . . .

+ 0.0031463131798169911765783738170848∗x ( 4 ) ) ;
Fn(4)=x (2)ˆ2∗(17.231734651743796048251210107947∗x (3 ) . . .

+ 0.01262194848103311701018254482729∗x ( 4 ) ) ;

%Balancing Contro l wi th State�Dependent Q
u=�inv (R)∗B’∗P∗x+inv (R)∗B’∗ inv (A0’�P∗B∗ inv (R)∗B’ ) ∗ (P∗Fn+0 . 5 ∗ . . .

[ 5∗ x (1 )ˆ2 , 0 , 0 , 0 ; 0 , 2∗ x ( 2 ) ˆ2 , 0 , 0 ; 0 , 0 , x ( 3 ) ˆ2 , 0 ; 0 , 0 , 0 , x ( 4 ) ˆ2 ]∗ x ) ;

Figure B.9: Code inside Embedded Matlab function block in the Simulink diagram to compute stabi-
lizing control with state-dependent Q based on power series expansion.

Figure B.10: Scopes subsystem to record and plot states.
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B.5 Simulink Diagrams for Swing-up Control

Figure B.11: Main Simulink diagram to run real-time swing-up. The SIP + IP02: Actual Plant block
that communicates with the apparatus was provided by Quanser. The Mode Switching Strategy block
that checks the angle of the pendulum and switches from the swing-up controller to the stabilizing
controller, was also provided by Quanser. The details of the Swing-up Control subsystem block are given
in Figure B.12 for the controller in (4.17), Figure B.15 for the controller in (4.28), and Figure B.16 for
the controller in (4.42)

.
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Figure B.12: Simulink subsystem used to compute energy based swing-up controller in (4.17). The details of the Compute sg subsystem block
are given in Figure B.13, and the details of the Pendulum Energy subsystem block are given in Figure B.14.

95



Figure B.13: Simulink subsystem that computes sg.

Figure B.14: Simulink subsystem that computes the pendulum’s energy.
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Figure B.15: Simulink subsystem used to compute more robust swing-up controller in (4.28). The details of the Compute sg subsystem block
are given in Figure B.13, and the details of the Pendulum Energy subsystem block are given in Figure B.14.
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Figure B.16: Simulink subsystem used to compute swing-up controller with viscous damping term in (4.42). The details of the Compute sg
subsystem block are given in Figure B.13, and the details of the Pendulum Energy subsystem block are given in Figure B.14.
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