ABSTRACT

ARMSTRONG, ALYSSA MARIE. Demazure Crystals for the Quantum Affine Algebra Uq(DiS)).
(Under the direction of Dr. Kailash Misra.)

Kac-Moody algebras, independently discovered in 1968 by Victor Kac and Robert Moody,
are an infinite dimensional analog of finite dimensional semisimple Lie algebras. An impor-
tant class of Kac-Moody algebras are the affine Lie algebras due to their many applications in
physics and mathematics. One area of study involves determining the structure of irreducible
integrable highest weight modules of affine Kac-Moody algebras. After Vladimir Drinfeld and
Michio Jimbo developed quantum group theory in 1985, George Lusztig showed that the repre-
sentation theory of a Kac-Moody algebra is parallel to its quantum group in the generic case. In
1990, Masaki Kashiwara introduced the crystal basis as a nice combinatorial tool to study the
irreducible highest weight modules over a quantum group. Demazure modules are certain finite
dimensional subspaces of integrable highest weight modules of quantum affine algebras. Crystal
base theory is used in studying the structure of a Demazure module and its corresponding
crystal.

In this thesis, we study the Demazure crystals for a particular affine Lie algebra, Df’).
In 1993, Kashiwara showed that the Demazure crystals have a recursive definition. In 1998,
Kuniba, Misra, Okado, and Uchiyama gave a criterion for the Demazure crystals to have tensor
product-like structures. In this study, a certain parameter, x, called the mixing index enters the
picture. For the quantum affine algebra Uq(Df’)), we show x = 1 when A = ¢As and conjecture
that k = 2 for A = /A1 and A\ = ¢(Ag + A1). We prove our conjecture for £ =1 and 2.
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Chapter 1

Introduction

In the nineteenth century, Sophus Lie developed the notion of a Lie group and a Lie algebra
while studying the geometric symmetries of differential equations. Shortly after Lie defined the
Lie group and Lie algebra, Wilhelm Killing and Elie Cartan showed the necessity to classify
all finite dimensional simple Lie algebras. By the end of the nineteenth century, Cartan had
completed this classification of finite dimensional simple Lie algebras over the complex numbers,
C (cf. [3]). Then in 1968, Victor Kac [8] and Robert Moody [23] independently discovered Kac-
Moody algebras, an infinite dimensional analog of the finite dimensional semisimple Lie algebras.
An important class of Kac-Moody algebras are called affine Lie algebras, and they have been
widely studied due to their numerous applications in physics, including conformal field theory
and statistical physics, as well as in various fields of mathematics, including number theory,
combinatorics, and algebraic geometry.

Each Kac-Moody algebra is constructed from an n X n integer matrix, called a generalized
Cartan matrix, and a corresponding diagram, called a Dynkin diagram. Using the generalized
Cartan matrix and Dynkin diagram, the Kac-Moody algebra can be realized in terms of gener-
ators and relations. Indecomposable, symmetrizable generalized Cartan matrices are classified
into one of three types: finite, affine, or indefinite, and the corresponding Kac-Moody algebras
are classified in the same way. In this thesis, we will focus on the affine Kac-Moody algebra

Df’), which has the generalized Cartan matrix,

2 -1 0
-1 2 -3
0 -1 2

The representation theory of affine Kac-Moody algebras has been developed in the past
forty years, when Kac introduced the concept of an integrable highest weight module [7]. Tt
has been shown that for each dominant integral weight A\ and Kac-Moody algebra, g, there is



a unique, up to isomorphism, irreducible integrable highest weight module, denoted by V'(\)
[2]. In Chapter 2, we review some of the fundamental definitions and theorems of Kac-Moody
algebras and their representation theory.

In 1985, Drinfeld [1] and Jimbo [5] introduced the quantum group U,(g) in their study
of the quantum Yang-Baxter equation arising from two-dimensional solvable lattice models.
They discovered the quantum group as a deformation of the universal enveloping algebra of
a Kac-Moody algebra, U(g). Then in 1988, Lusztig showed that the representation theory of
a Kac-Moody algebra, g, is parallel to the representation theory of the quantum group, U,(g)
for generic ¢. In particular, we can consider the unique irreducible integrable highest weight
module over Uy(g), VI(A). Then, for each element w in the Weyl group, we can construct a
module from V9(A) called the Demazure module associated with w. For each w, it is known
that the extremal weight space, V9(A), of V(X) is one-dimensional. If we denote U, (g) to be
the positive part of U,(g), then the Demazure module, V;,(X), is the U (g)-module generated
by V4(A)ya. We are particularly interested in the structure of the Demazure module and their
corresponding crystals in this thesis.

Associated with each irreducible integrable highest weight U,(g)-module, V¢()), is a basis
at ¢ = 0 called a crystal basis, developed by Kashiwara in 1990 [12]. Crystal bases provide
a nice combinatorial tool to study the structure of irreducible highest weight modules over
Uq(g). In particular, a crystal base for a quantum affine algebra can be constructed using
perfect crystals [10], whose crystal graphs are useful in determining the structure of Demazure
modules. While studying Demazure modules, Kashiwara showed the existence of a crystal for
the Demazure module in 1993 [15], which is a subset of the crystal for V(). He also showed
that the Demazure crystals have a certain recursive property. Using this property, Kuniba,
Misra, Okado and Uchiyama [16] gave a criterion for the Demazure crystal to have a tenor
product-like structure. In this realization, a parameter x, called the mixing index, is defined. It
has been shown that for A = /A, where A is a dominant integral weight of level one, the mixing
index x = 1 for the affine Kac-Moody algebras, g = Ag), BT(LI), C’,(Il), DS), A;i)—p D7(12421> Agl)
[17], Df) [21], and Ggl) [4]. Also, its was shown in [16] that for any classical dominant integral
weight, the mixing index k = 2 for g = Ag). From these results, it is conjectured that x < 2 for
all quantum affine algebras. While the mixing index has been determined in some cases, there
is still much work left in proving this conjecture in general.

In this thesis, we consider the particular affine Kac-Moody algebra, g = Df). In 2007,
Kashiwara, Misra, Okado, and Yamada [13] gave an explicit description of a perfect crystal for
the quantum affine algebra Uq(Df’)). Using this description along with Kashiwara’s recursive
property and path realizations of affine crystals [9], we construct Uq(Df’))-Demazure crystals
for A = 0A1, A = ¢Ag, and X\ = £(Ag + A1) in this thesis. We first provide the details of crystal

base theory and perfect crystals in Chapter 3, and give the main theorem proved in [16] to show



path realizations of the Demazure crystals have tensor product-like structures. In Chapter 4,
we give the necessary details regarding the quantum affine algebra Uq(Df’)) as well as the
construction of the Uq(Dflg))—perfect crystal as described in [13]. Then in Chapter 5, we prove
that the main theorem holds with x = 1 in the case when A = /A5, and conjecture that the
main theorem holds with k = 2 when A = ¢A; and A = ¢(Ag + A1). We prove our conjecture
when ¢ = 1 and 2 in both cases. Along with the previous work in showing x = 1 for A = fAj as
shown in [21], this work provides evidence that the mixing index k < 2 for dominant integral
weights A = /A where the level of A < 3 for Uq(Df’)). These results continue to support the

main conjecture in [16] that x < 2 for all quantum affine algebras.



Chapter 2

Kac-Moody Algebras and Quantum
Groups

We begin by providing an introduction to Lie algebras and a particular class of Lie algebras
called Kac-Moody algebras. We will also introduce the representation theory and quantum
groups associated with Kac-Moody algebras. Unless otherwise noted, we assume the underlying
field to be C, the field of complex numbers.

2.1 Lie Algebras and Representations

Definition 2.1.1. A Lie algebra g is a vector space over the field C together with a product
(called the bracket), [-,-] : g X g — g such that for all z,y,z € g and a,b € C,

(1) [az + by, 2] = alz, 2] + bly, 2] and [z, ay + bz] = a[z,y] + b[z, 2],
(2) [z,2] =0,
(3) [z, [y, 2]l + [y, [z, z]] + [2, [z, y]] = 0. (Jacobi identity)

Remark 2.1.2. By axioms (1) and (2) in the definition of a Lie algebra, the following property
also holds: [z,y] = —[y, z] for all z,y € g.

Definition 2.1.3. A Lie algebra g is abelian if [z,y] = 0 for all z,y € g.

Vector spaces are oftentimes constructed by a basis, so we have an equivalent definition of

a Lie algebra based on the basis elements of the vector space:

Theorem 2.1.4. Let {z; | i € I} be a basis of a Lie algebra g and [, |: gx g — g be a bilinear
map. Then g is a Lie algebra if and only if



(1) [xi,zi] =0 for allie I,
(2) |zi,xj] = —[xj,2;]) for alli#j €I,
(3) s, (@, xi)] + @), [Tk, xi]] + [Tk, [25,25]) = O for all district triples i,j,k € I.

Many examples of Lie algebras involve matrices, in which we define the bracket, called the
commutator bracket, [A, Bl = AB — BA for A, B € g. An example of such a Lie algebra is the

set of 2x2 traceless matrices.

Example 2.1.5. Consider the set of 2x2 traceless matrices, whose basis is as follows:

1 0 0 1 0 0
h = y €= ) f =
0 -1 00 10
With the bracket defined as [A, B] = AB — BA for all A, B € g, we have

[h.e] =2e, [h, f]==2f, e f]=nh.

Then g is a Lie algebra, denoted s¢(2,C).

Example 2.1.6. We can extend the example above to nxn traceless matrices, denoted sf(n, C).
A basis for SE(H,C) is {hl = E” - Ei-i-l,i-i-l’ Ejk ‘ 1 < ) <n-— 1, 1 < j 75 k < n}, where Eij
denote the n x n matrix with a one in the (i, j)-entry and zeros elsewhere. Note that, under the

commutator bracket,

1ifi=j

[Eij, Er) = 6 Eqy — 6iEyj, where §;; = { 0ifi#j

Definition 2.1.7. An associative algebra A over C is a ring A which can also be viewed as a
vector space over C, such that the underlying addition and the zero element 0 are the the same

in the ring and vector space, and a(z -y) = (azx) -y = x - (ay) for all z,y € A, a € C.

For any associative algebra A, we can define [-,-] : AX A — A by [z,y] =x-y—y -z, where
- denotes the associative product and x,y € A. With this bracket structure, A becomes a Lie

algebra.
Definition 2.1.8. A subspace g’ of a Lie algebra g is a subalgebra if [z,y] € ¢ for all z,y € ¢'.

Example 2.1.9. For s/(n,C), the set h = span{h; = Ej — Eij11,41} is a subalgebra. This

subalgebra is very important and called the Cartan subalgebra.

Definition 2.1.10. A subspace g’ of a Lie algebra g is an ideal if [x,y] € ¢’ for all z € g and

y € ¢’. Then a Lie algebra is simple if it is nonabelian and its only ideals are {0} and itself.



Simple Lie algebras give rise to a special class of Lie algebras, called semisimple Lie algebras.

Definition 2.1.11. For a Lie algebra, g, define the derived series of g as

gogWog?Pog® ...

where g™ = [g(m=1) g(m=D] Then, g is solvable if g™ = {0} for some m.

Definition 2.1.12. A Lie algebra, g, is semisimple if it contains no nonzero solvable ideals.

Equivalently, g is semisimple if it can be written as a direct sum of simple ideals.

Not every Lie algebra is an associative algebra. However, we can construct an associative

algebra from a Lie algebra, called a universal enveloping algebra.

Definition 2.1.13. Let g be a Lie algebra. A universal enveloping algebra of g is a pair (U(g),¢)
such that U(g) is an associative algebra over C and ¢ : g — U(g) is a linear map such that
L[z, y]) = t(x)(y) — t(y)e(x) for all z,y € g and satisfying the universal property:

For any associative algebra A and any linear map j : g — A satisfying j([z,y]) = j(z)j(y) —
Jj(y)j(z) for all z,y € g, there exists a unique homomorphism of associate algebras ¢ : U(g) — A
such that j = ¢ o ¢. The universal property of U(g) can be shown in the commutative diagram

below:

Figure 2.1: Universal property for the universal enveloping algebra

The universal enveloping algebra can be constructed as U(g) = T'(g)/I where T'(g) = GB gk

k>0
is the tensor algebra of g and I is the two-sided ideal generated by elements of the form

TRy —y®x—[r,y], x,y € g. The linear map ¢ : g — U(g) is constructed by composing the
natural maps g < 7'(g) and 7 : T'(g) — U(g). From this construction, the map ¢ may not be
injective. However, the Poincaré-Birkhoff-Witt Theorem, known as the PBW Theorem, shows

that ¢ is injective and gives a basis for U(g).

Theorem 2.1.14. [2] [Poincaré-Birkhoff- Witt]



(1) The map ¢ : g — U(g) is injective.

(2) Let {z; | © € I} be an ordered basis for g, where I is an index set. Then, the set
{Zi @iy a4y, |11 <dp < -+ <y, k> 0} forms a basis for U(g).

In the study of abstract objects, we consider homomorphisms and their impact on the
structure of the objects. An important homomorphism of Lie algebras is called a representation

and leads to a field of study called representation theory.

Definition 2.1.15. Let g; and go be two Lie algebras. A linear transformation ¢ : g1 — go is
a Lie algebra homomorphism if ¢([x,y]) = [p(x), ¢(y)] for all x,y € g;.

Definition 2.1.16. Let g be a Lie algebra and V be a vector space over C. A Lie algebra
homomorphism ¢ : g — g¢(V) is a Lie algebra representation, where gf(V') denotes the set of
all linear transformations from V to V. gf(V) is an associative algebra, hence a Lie algebra

under the commutator bracket.

Definition 2.1.17. Let g be a Lie algebra and V be a vector space over C. Then V is an
g-module if there is a binary operation - : g X V' — V such that for all z,y € g, u,v € V, and
a,beC,

(1) z- (au+bv) = a(x - u) + b(z - v),
(2) (az+by)-v=a(z-v)+bly-v),
@) [zyl-v=2-(y-v)—y-(z-v)

Remark 2.1.18. Representations and g modules are equivalent: If V' is a g-module, then we
can define the representation ¢ : L — ¢g¢(V') by ¢(x)v = x-v. Conversely, given a representation,
p: L — gl(V),Visag-module given by z-v = ¢(x)v. We will use the terms “representations”
and “modules” interchangeably due to this equivalence, noting that the representation is the

homomorphism and the module is the vector space.

Example 2.1.19. Let g = s/(2,C) and V = C?. Define the map ¢ : sf(2,C) — g¢(C?) by
¢(z)v = av for x € s£(2,C) and v € C2. This map is a representation, and thus V = C? is an
sf(2,C)-module by z - v = zv.

Example 2.1.20. Let g be a Lie algebra. Define the map ad : g — ¢f(g) by ad(z)y = [z, y]
for x,y € g. This map is a representation, called the adjoint representation. We usually denote
ad(z) = ad,.

Definition 2.1.21. Let V be a g-module. A subspace W of V is a submodule if - w € W for
allz e gand w e W.



Definition 2.1.22. A g-module V is irreducible if V' # 0 and V' has no proper submodules.

Definition 2.1.23. Let g be a Lie algebra and V' and W be two g-modules. A linear transfor-
mation ¢ : V. — W is a g-module homomorphism if p(x-v) = x - @(v) for all z € g, v € V. If
 is one-to-one and onto, then it is an isomorphism, and we say that V and W are isomorphic
as g-modules, denoted by V = W.

Let g be a Lie algebra and V' be a g-module. By the universal property of U(g), the g-module
structure on V' extends naturally to the U(g)-module structure on V: Since U(g) is generated

by g, we define the module action of U(g) on V' by

(xil o xlk) U= Ty (332'2 (x'lk U))

Because modules and representations are equivalent, we can extend representations of g to
representations of U(g). Conversely, the PBW Theorem states that g is a subspace of U(g), so
a representation of U(g) is also a representation of g. Therefore, the representation theory of a

Lie algebra is parallel to that of its universal enveloping algebra. [2]

2.2 Kac-Moody Algebras

We restrict our study of Lie algebras to a class of infinite-dimensional Lie algebras called
Kac-Moody algebras. These algebras are a generalization of finite-dimensional semisimple Lie

algebras, and are constructed from a special matrix, called a generalized Cartan matrix.

Definition 2.2.1. Let I be a finite index set. A square matrix, A = (a;;);jer, with integer

entries is a generalized Cartan matriz (GCM) if it satisfies the following:
(1) a; =2 for alli € I,
(2) ay <0if i # 4,
(3) a;; =0 if and only if aj; = 0.

If A is also positive-definite, then A is called a Cartan matriz.

Definition 2.2.2. A GCM A is symmetrizable if there exists a diagonal matrix, S = diag(s; |
i € 1, s; € Z~p) such that SA is a symmetric matrix. Also, A is indecomposable if for every
pair of nonempty subsets I, Is C I with Iy U Iy = I, there exists some ¢ € I; and j € I» such
that a;; # 0.

We will consider only indecomposable symmetrizable GCM’s.



Theorem 2.2.3. [6/ Let A = (a;j) be an indecomposable GCM. Then one and only one of the
following three possibilities hold for both A and A'.

(Finite) det A # 0; there exists w > 0 such that Au > 0; Av > 0 implies v >0 or v =0.
(Affine) corank A = 1; there exists u > 0 such that Au = 0; Av > 0 implies Av = 0.
(Indefinite) There exists u > 0 such that Au < 0; Av >0 and v > 0 imply v = 0.

Here, u,v are column vectors in R™ and we say that u > 0 if u; > 0 for all i =1,...,n. Also,

A is said to be of finite, affine, or indefinite type if A satisfies the corresponding condition.

Definition 2.2.4. [6] For each GCM, A, we can associate an oriented graph called a Dynkin

diagram. This diagram consists of vertices indexed by I and edges with arrows such that

o If a;jaj; <4 and |a;j| > |aji|, then the vertices ¢ and j are connected with |a;;| edges and

has an arrow pointing toward i if |a;;| > 1.

o If a;jaj; > 4, then the vertices ¢ and j are connected with a bold edge labeled with

(|aij’a |aji|)'

We can also recover the corresponding GCM from a Dynkin diagram, up to the order of

indices.

Example 2.2.5. The following GCM and its corresponding Dynkin diagram are given below:

2 -1 0
A= -1 2 =2 1 9 : 3
0 -1 2

Figure 2.2: Generalized Cartan matrix and Dynkin diagram

Definition 2.2.6. Let A = (a;5);,jer be a symmetrizable GCM. The Cartan datum of A is the
quintuple (A, I1, 11V, P, PV), where II, II, P, and PV are defined as follows:

PV is a free abelian group of rank 2|I| — rank A with Z-basis {h; | i € I} U {ds | s =
1,...,|I| —rank A}, called the dual weight lattice.

Define h = C ®7 PV to the be Cartan subalgebra.

P={Xeb* | \(PY) C Z} is called the weight lattice.



IV = {h; | i € I} is called the set of simple coroots.

II = {o; | i € I} C b* is a linearly independent subset satisfying «;(h;) = a;; and

a;j(ds) = dsj, called the set of simple roots.

Definition 2.2.7. The fundamental weights A; € h* are linear functionals on b given by,
Ai(hj):éij, )\i(ds)zo for i,jEI,SEl,...,|I|—I‘ankA

With the Cartan datum, we can construct a Kac-Moody algebra as follows.

Definition 2.2.8. The Kac-Moody algebra g associated with the Cartan datum (A, I, 11V, P, PV)
is the Lie algebra generated by the elements e;, f; (i € I) and h € P subject to the following

relations:

(1) [h,h'] =0 for h,h € PV,

(2) les, f5] = 045l
(3) [h,e;] = ai(h)e; for h € PV,
(4) [h, fi] = —ai(h)f; for h € PV,
(5) (ad €;)!"%ie; = 0 for i # j,

(6) (ad ;)= f; = 0 for i # j.

The generators e; and f; (i € I) the Chevalley generators. Also, relations (1)-(4) are called the

Weyl relations, while relations (5) and (6) are called the Serre relations.

Example 2.2.9. Consider the following GCM and corresponding Dynkin diagram.

2 -1 0 0 0
-1 2 -1 0 0
A=l 0o -1 2 4 0 oo o —o o
1 2 3 n—2n-1
0 0 0 —1 2

Figure 2.3: Generalized Cartan matrix and Dynkin diagram for sf(n,C)

This GCM is associated with the Kac-Moody algebra g = sf(n, C). The Chevalley generators
are {€e; = Ej;11, fi = Eit15 | 1 < i < n— 1} and the Cartan subalgebra is h = span{h; =
Ei‘ - Ei+1,i+1 | 1 S ) S n — 1}
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Definition 2.2.10. For each ¢ € I, the simple reflection r; on bh* is the linear functional given
by 7;(A) = A= A(h;)a;. The subgroup W of End(h*) generated by all simple reflections is called
the Weyl group. Any element w € W can be written as a product of simple reflections, ie.
W = TjTiy -+ - T3,. If t is minimal among all such expressions, then w is a reduced expression and

the minimal number ¢ is called the length, denoted I(w).
Recall, for a Kac-Moody algebra g, we have the set of simple roots, IT = {a; | i € I}.

Definition 2.2.11. The free abelian group @ = @Zai is called the root lattice, Q4 =

el
ZZZOO‘Z' is the positive root lattice, and Q- = —Q4 is the negative root lattice. For each
el
a € Q, let

0o ={z € g|[h,z] = a(h)x for all h € h}.

If @ # 0 and g, # 0, then « is called a root of g and g, is called the root space attached to a.

The dimension of g, is called the root multiplicity of a.

We denote the set of all roots by A and denote the set of positive (respectively, negative)
roots by Ay = AN Q4+ (respectively, A; = AN Q_). We have the following decompositions of
the Kac-Moody algebra.

Proposition 2.2.12. [6]
(1) The Kac-Moody algebra g has the following root space decomposition:
9= Do,
ac@
with dim g, < oo for all a € Q.

(2) Let g+ = P Ce; and g— = PCf; (i € I) be subalgebras of the Kac-Moody algebra g.

Then g has the following triangular decomposition:
g=9-©hdgy.

(3) There exists an involution w : g — g, called the Chevalley involution, such that e; — — f;,
fi— —e;, and h — —h.

Given the triangular decomposition, g = g_ ® h & g4, if « is a positive root, then g, € g+
and if o is a negative root, then g, € g—. Also, by the Chevalley involution, if « is a positive
root, then w(gy) = g—q, implying mult(a) = mult(—«).

Corresponding to a Kac-Moody algebra, g, we can construct its universal enveloping algebra

as follows.

11



Proposition 2.2.13. [2] The universal enveloping algebra U(g) of g is the associative algebra
over C with unity generated by e;, f; (i € I) and b such that the following relations hold:

(1) Bl = W'h for b, 1 € b,

(2) eifj — fjei = 6z]hz fori,7 €1,

(3) he; —eih = aj(h)e; for he b, i€,
(4) hfi— fih = —as(h)fs for he b, i€,

1—a;;
1 — aij —Qij— . .
(5) Z (—1)* < kaj ) e} K kejef =0 for i # j,

k=0

17(17;‘7' ..
6 Y (-1 ( o ) FTh = 0 for i 4 .

k=0
We can extend the root space decomposition and triangular decomposition to the universal
enveloping algebra of g using the PBW Theorem. First, let U+ (respectively, U° and U~) denote
the subalgebra of U(g) generated by the elements e; (respectively, h and f;) for i € I. Also,
define the root spaces of U(g) as follows:

Ug={ueU(g) | hu —uh = p(h)ufor all h € h} for 5 € Q;

Uy = {u € U™ | hu—uh = B(h)u for all h € b} for § € Q.

Proposition 2.2.14. [2] For Kac-Moody algebra, g, and its corresponding universal enveloping

algebra, U(g), we have the follow decompositions:
(1) U(g)2U-UeUT

(2) Ulg) =P Us

peQ

+ +
() U= D U;
BEQ+

2.3 Representation Theory

Given a Kac-Moody algebra g and a g-module V', we define the notion of weights and associated
weight spaces of V. This leads to the study of integrable highest weight g-modules. We assume

g is a Kac-Moody algebra in this section.

12



Definition 2.3.1. Let V be a g-module. For any u € h*, the pu-weight space is
Ve=A{v eV |hv=p(h)v for all h € h}.

If V,, # 0, then p is called a weight and the dimension of V), is called the weight multiplicity of
p. A vector v € V, is called a weight vector of weight p.

Definition 2.3.2. A g-module V is a weight module if it admits a weight space decomposition:

V=V,

Heh*

Definition 2.3.3. Given a g-module V, if dim V), < oo for all weights i, the character of V is

ch V=Y dimV,e",
"

where e# are formal basis elements of the group algebra C[h*] with multiplication defined as
Al — A+
etet = e TH,

An important class of weight modules are called highest weight modules.

Definition 2.3.4. A weight module V' is a highest weight module of highest weight A € h* if

there exists nonzero vector vy € V', called a highest weight vector, such that
e;vy=0forall i € I,
hvy = A(h)vy for all h € b,
V =U(g)va.
We now consider a specific type of highest weight module called a Verma module.

Definition 2.3.5. Fix A € h* and let J(A) be the left ideal of U(g) generated by all e; and
h—XM)1 (i€ I, heb). Set M(A\) =U(g)/J(\) and give M(\) a U(g)-module structure by
left multiplication. Then M (\) is called the Verma module.

We have the following properties regarding Verma modules.
Proposition 2.3.6. [6]

(1) M(\) is a highest weight g-module with highest weight A\ and highest weight vector
vy=1+J ()\)

(2) Every highest weight g-module with highest weight A is a homomorphic image of M (\).

13



(3) As a U -module, M()) is free of rank 1, generated by the highest weight vector vy =
14+ J(\).

(4) M(X) has a unique maximal submodule, N ().

Definition 2.3.7. Given Verma module M () and its unique maximal submodule, N (), define
V(A) = M(X)/N(X). Then V(X) is the irreducible highest weight module of Uy(g).

Definition 2.3.8. Define a partial ordering on h* by A > pifand only if \—p € Q4+ = Z L>oo
el

for A\, € b*. Then, for A € b*, let D(A) = {u € b* | p < A} called the A-cone. The category

O is the set of weight modules V over g with finite dimensional weight spaces for which there

exists a finite number of elements A1, A2, ..., As € h* such that
wt(V) C D(A)U---UD(N\).

The morphisms in the category O are g-module homomorphisms.

Proposition 2.3.9. [6] Every irreducible g-module in the category O is isomorphic to V()

for some A € h*.

Definition 2.3.10. A weight module V over a Kac-Moody algebra g is integrable if all e; and
fi (i € I) are locally nilpotent on V, ie. for any v € V, there exists N € Z~¢ such that zV.v =0
for x € {e;, fi | 1 € I'}.

Definition 2.3.11. Recall the weight lattice P = {\ € h* | A(h;) € Z, for all i € I}. Elements
in this set are called integral weights. Also, define Pt = {\ € P | A(h;) € Z>o, for all i € I} to

be the set of dominant integral weights.
We can now define a subcategory consisting of all integrable g-modules.

Definition 2.3.12. The category O,y consists of integrable g-modules in the category O such
that wt(V) C P.

Any g-module V in category Oiy is completely reducible and has a weight space decompo-

V:@VA,

AeP

where V) = {v € V' | hjv = A(h;)v for all i € I}.

sition,

Proposition 2.3.13. [6] Let V(\) be the irreducible highest weight g-module with highest
weight A\ € h*. Then V() is in category Oint, ie. V/(A) is integrable, if and only if A € PT.

This proposition leads to our main result regarding integrable highest weight g-modules.

14



Theorem 2.3.14. [6] Let g be a Kac-Moody algebra associated with the Cartan datum
(A,IL IV, P, PV). Then every g-module in the category Oy is isomorphic to a direct sum of
irreducible highest weight modules V (\) with A\ € PT.

2.4 Quantum Groups

In this section, we will introduce quantum deformations of the universal enveloping algebra of
a Kac-Moody algebra g. These deformations are called quantum groups and denoted Ug(g). In
particular, if g is an affine Kac-Moody algebra, then the quantum deformation is called a quan-
tum affine algebra. The quantum affine algebra Uq(Df’)) is our main focus in future chapters,

but we first develop the representation theory of quantum groups.

For m,n € Z and q any indeterminate, define the following:

n n

o [n|, = % is a q-integer;
q—dq
e [n]y! = [n]yln—1]y---[1]y (n > 0) and [0],! = 1 are g-factorials;
!
° [m} = '[m#.‘ (m >n > 0) is the g-binomial coefficient.
nly [n]g![m — nlq!

Let A = (a;j)ijer be a symmetrizable GCM with symmetrizing matrix S = diag(s; | ¢ €
I, S; € Z>0).

Definition 2.4.1. [2] The quantum group or the quantized enveloping algebra U,(g) associ-
ated with the Cartan datum (A,II, 11V, P, PV) is the associative algebra over C(q) with unity
generated by the elements e;, f; (i € I) and ¢" (h € PV) with the following relations.

(1) ¢"=1; ¢"¢" = ¢"*" for h, W € P,
(2) ¢eigh = q®Me; for he PV, iel,

(3) "fig" =q W for he PV, i€l

sih; —s;h;
(4) eifj — fjei = (5”% for i,j c I,
1—a;;
(5) > (-1 [1 _k:aij] el Fesek =0 for i # J,
k=0 q°%
1—a;;
(6) > (-1 [1 _kmj] TR = 0 for i # .
k=0 g%
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Note, that as ¢ — 1, Uy(g) — U(g).

Example 2.4.2. Given g = s/(2,C), the quantum groups U,(sf(2,C)) is the associative algebra
generated by {e, f,¢"} such that the following relations hold:

(1) q"eqg " = g%,

(2) ¢"fa"=q7%f,

h_ .—h
q —q
(3) ef —fe=—+
g—q"
Since the defining relations for a quantum group U,(g) are analogous to those for the
universal enveloping algebra, U(g), U,(g) has both a root space decomposition and a triangular

decomposition.

Uy(8) = P Ug(9)a;
acq@

where Uy (g)a = {u € Uy(g) | ¢"ug™" = ¢®Mu for all h € PV},

: - 0
Also, define U,f(g) (respectively, U (g) and U,(g)) to be the subalgebra generated by the
elements e; (respectively, the elements f; and ¢ for h € PV). Then, the triangular decomposition
of Uy(g) is,
Uq(8) = U, (9) @ Ug () © Uy (9)-

The representation theory of g-modules and U(g)-modules discussed in the previous section

is parallel to the representation theory of modules over the quantum group, U,(g), denoted V4.

Definition 2.4.3. Let V7 be a U,(g)-module. For any p € P, the p-weight space is
Vi={veV1] ¢"v = ¢y for all h e PV}.

If VI # 0, then p is called a weight and the dimension of V) is the weight multiplicity of . A

vector v € V){ is called a weight vector of weight p.
Definition 2.4.4. A U,(g)-module V7 is a weight module if it admits a weight space decompo-

vi=pvy.

pneP
Denote by wt(V'9) the set of weights of the U,(g)-module V4.

sition,

Definition 2.4.5. Given a U,(g)-module V7, if dim V] < oo for all weights 1 € wt(V?), the
character of V1 is
ch V4= dim Ve,
m
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where e are formal basis elements of the group algebra C[P] with multiplication defined as
et = e i,

Definition 2.4.6. A weight module V7 is a highest weight module of highest weight \ € P if

there exists a nonzero vector vy € V9, called a highest weight vector, such that
e;vy =0foralli €1,
q"vy = @My, for all h e PV,
V4 =U,(g)vx.

Just as we discussed in the representation theory for Kac-Moody algebras, we aim to study
unique irreducible, integrable highest weight modules. The construction of such modules follows

similarly to those of Kac-Moody algebras.

Definition 2.4.7. Fix A € P are let J9(\) be the left ideal of U,(g) generated by all e; and
=MW1 (i e I, h e PY). Set M9(\) = U,(g)/J9(\) and give M9(\) a U,(g)-module structure
by left multiplication. Then M9(\) is the Verma module.

Set vy =1+ J9(A). Then, we have the following,
s = ¢+ JIN) = P01+ JIN) = ¢* Py,
eivy = e; + JIA) = JI(\) =0,

Uy(9)vx = Uy(9)/J9(N) = MI(N).

Thus, M9%()) is a highest weight module with highest weight A\ and highest weight vector
vy = 1+ J9(N). Also, we know that M?(\) has a unique maximal submodule, N?(\).

Definition 2.4.8. Given Verma module M?()\) and its unique maximal submodule, N%(}),

define V4(X) = M?(X)/N9(X). Then V() is the irreducible highest weight module with highest
weight .

Definition 2.4.9. A weight module V9(\) over the quantum group U,(g) is integrable if all e;
and f; (i € I) are locally nilpotent on V1.

Just as before, for A € P, consider the A-cone, D(X) = {p € P | u < A}. The category O9 is
the set of weight modules V¢ over U,(g) with finite dimensional weight spaces for which there

exists a finite number of elements A1, Ao, ..., Ay € P such that
wt(V?) C D(A)U---UD(\).

We can then define the subcategory of category OY of integrable U,(g)-modules.
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Definition 2.4.10. The category Of , consists of integrable U,(g)-modules in the category O.

Similar to category Oy, any Ug(g)-module in category O is completely reducible and has

a weight space decomposition.

Proposition 2.4.11. [2] Let V() be the irreducible highest weight U,(g)-module with highest
weight A € P. Then V9() is in category Of ., ie. VI(A) is integrable, if and only if A € PT.

This result shows that we can construct a unique irreducible, integrable highest weight
Uqy(g)-module for each A € PT, denoted V().
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Chapter 3
Crystal Base Theory

Crystal base theory provides combinatorial tools to study the structure of integrable U,(g)-
modules V7 in the category O . Crystal bases can be viewed as bases at ¢ = 0 and behave
nicely with respect to the tensor product. Also, the crystal bases correspond to perfect crystals,
whose crystal graphs are useful in determining the structure of the Demazure modules for
Uq(Dflg)) described in the next chapter.

3.1 Crystal Base

Let V1 = @ V/\q be a U,(g)-module in the category O, and let A be a weight of V7 such that

n
AEP
Vi £ 0. For each i € I, every weight vector v € V) may be written as

v=1p+ fivy + -+ fi(N)UNa
fF

[k]q!
determined uniquely by v and v # 0 only if A(h;) + k > 0.

where N € Z>o, v € V)? ko [ ker e;, and fi(k) = Each v in the above expression is

Definition 3.1.1. The Kashiwara operators €;, fz : V4 — V4 (i € I) are endomorphisms such
that for v € V1,

N N
Gw = Z fi(k—l)vk’ fv = Z fi(k“)vk-
k=1 k=1

We note that for v € V!, év € V{

; .
. and fjv € V/\_ai.

Now, consider the principal ideal domain, A, with C(q) as its field of quotients defined as

follows,

i = {29 ). 1ta) € €l 1(0) 0}
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Definition 3.1.2. [2] A free A-submodule £ of V7 € Of  is a crystal lattice if
(1) L generates V9 as a vector space over C(q), ie. V1= L, ®4 C(q) for each p € wt(V9),

(2) L= @E,\, where £ = LN VY for all A € P,
AEP

(3) &L C L and fi£ C L forallie I

Remark 3.1.3. Let J = (q) be the unique maximal ideal of A. Then, there exists an isomor-
phism of fields from A/J onto C given by f(¢) +J — f(0). This implies that C ®4 £ = L/qL.
This passage from L to £/qL is called taking the crystal limit. Since L is preserved by é; and

fi, we can also define the Kashiwara operators on £/¢L and use the same symbols.
We now define a crystal base for the Uy(g)-module V9 € O
Definition 3.1.4. [2] A crystal base for V7 is a pair (£, B) such that
(1) L is a crystal lattice of V9,
(2) Bisa C-basis of L/qL = C®, L,

(3) B=| | By, where By = BN (£x/qL)),
AEP

(4) &B c BU{0} and f;B c BU{0} for all i € I,
(5) for any b,/ € B and i € I, we have f;b =V if and only if b = &'

Definition 3.1.5. Given a crystal base, (£, B) for V4 € O], we can define a crystal graph of
V4 in the following way: Let the elements of B be the set of vertices and for each ¢ € I, we join
be Bto b e B with an i-colored arrow (b — V) if and only if f;b =¥

Let B be the crystal graph for the Uy(g)-module in Of . For i € I and b € By, A € P, we
define the maps €;, @; : B — Z by,

g;(b) = max{k > 0 | &b € B},

©i(b) = max{k >0 | f¥b e B}.

Then, by the crystal graph, €; denotes the number of i-colored arrows coming into the vertex b,
and ¢; denotes the number of i-colored arrows coming out of the vertex b. Thus, ¢;(b) + €;(b)
denotes the length of the i-string through b, and we have ¢;(b) — £;(b) = A(h;).

The existence and uniqueness of crystal bases for integrable U,(g)-modules in category O |

follows from the following theorem of Kashiwara:
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Theorem 3.1.6. [2] Let A € Pt be a dominant integral weight and let VI(X\) be the irreducible
highest weight U,(g)-module with highest weight X and highest weight vector vy. Let

[’()‘) = Z Afhfm to firvx\’

r>0, ipel
BO) = {firfio - fioon +aL(N) € LO)/aLO) |72 0, iy, € I} {0}.
Then the pair (L(X),B(\)) is a crystal base of VI(A).

Crystal bases behave nicely under the tensor product, providing one of the nicest combina-

torial features of a crystal base.

int
base of qu (7 =1,2). Set L = L1 ®p L9 and B = By x By. Then (L,B) is a crystal base of

vy ®c(q) V! where the Kashiwara operators €; and fi on B are giwen as follows:

Theorem 3.1.7. [2] Let V}q be a Uy(g)-module in the category OF , and let (L}, B;) be a crystal

fi(by @ by) = fiby ®~b2 if pi(b1) > €i(ba),
b1 @ fiba if pi(b1) < &i(b2).

Hence, we have:

wt(bl ® b2) = U)t(bl) + wt(bQ)’
gi(b1 ® ba) = max(g;(b1),ei(b2) — (hi, wi(br))),
pi(b1 ® b2) = max(p;i(ba), pi(b1) + (hi, wi(be))).

Note that we understand by ®0 = 0® by = 0. Also, we write by ® by instead of (b1,b2) € By x Ba,
and denote the crystal graph of V{1 @ V3l as By @ Bas.

By considering the abstract notion of a crystal base, we obtain a purely combinatorial

structure.

Definition 3.1.8. [2] Let I be a finite index set and A = (a;j)ijer be a GCM with Cartan
datum (A,ILIIV, P,PY). A crystal associated with the Cartan datum (and hence, Uy(g)) is a
set B together with the maps, wt: B — P, &, f; : B — BU{0}, and &;,¢; : B = Z U {—oc},

satisfying the following properties:

(1) i(b) =&i(b) + (hs, wt(b)) for all i € I,
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(2) wt(é;b) = wt(b) + o if &b € B,

(3) wt(f;b) = wt(b) — o if fib € B,

(4) gi(€:b) = &i(b) — 1, pi(€ib) = p(b) + 1 if ;b € B,

(5) ei(fib) = €i(b) + 1, pi(fib) = @(b) — 1if fib € B,

(6) fib =1V if and only if b= &' for b,b € Band i € I,
(7) if @i(b) = —oo for b € B, then éb = fib = 0.

The tensor product rule defined above also holds for abstract crystals. Also, we can define

maps between crystals in the following way:

Definition 3.1.9. Let By, B2 be crystals associated with the Cartan datum (A, I, IV, P, PV).
A crystal morphism U : By — By is a map ¥ : By U {0} — B2 U {0} such that,

(1) w(0) =0,

(2) if b € By and ¥(b) € By, then wt(V(b)) = wt(b), e(¥(b)) = (b), and (¥ (b)) = (b) for
alli €1,

(3) if b1/ € By, W(b), (V') € By and fib =1V, then f;¥(b) = ¥(V) and W(b) = &P () for all
icl.

A crystal morphism W : By — Bs is a crystal isomorphism if ¥ is a bijection from B; U {0} to
By U {0}

3.2 Quantum Affine Algebras and Perfect Crystals

Using the crystal base theory defined above, we develop the notion of a perfect crystal for
quantum affine algebras. Perfect crystals allow us to realize the crystal graph of the irreducible
highest weight U,(g)-module in terms of certain paths. We begin by recalling basic definitions

related to quantum affine algebras.

Let I = {0,1,...,n} and (A,II,IIV, P, PV) be the Cartan datum of an affine Kac-Moody
algebra g, where A = (a;5);jer is an affine GCM, II = {qa; | @ € I} is the set of simple roots,
and ITV = {h; | i € I'} is the set of simple coroots. Recall that the dual weight lattice and affine
weight lattice are,

PV =Zho®Zh & ---® Zh, ® Zd,
1

0

o,
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where {A; | i € I} is the set of fundamental weights, § = dpag + d1ag + - - - + dpay, is the null
root, and d is the scaling element such that g = [g,g] + Cd. Elements of P are called affine
weights. Also, the Cartan subalgebra is h = C @7 PV.

The linear functionals, «; and A;, act on b in the following way:
ai(hj) = aji, a;(d) = do,i,

Ai(hy) = bij, Ai(d) = 0.

Note that the center of g is one-dimensional, spanned by the canonical central element,
c = cohg+ cith1 + -+ crhy.
Then, the quantum group associated with the affine Cartan datum (A,II, 11V, P, PV) above

is called a quantum affine algebra, denoted U,(g).

Definition 3.2.1. Let U,(g) be the subalgebra of U,(g) generated by {ei, fi,q™shi | i € I},

This subalgebra is also called a quantum affine algebra. Let
PV =Zho®Zh & - D Zhy, h=Cw®zPY.

If we consider «; and A; as linear functionals on b, we can similarly define the classical weights
as elements of
P=7ZA®ZAN D DZA,.

Then the quintuple (A,II, 11V, P, PV) is called the classical Cartan datum and Ug(g) is the

quantum group associated with the classical Cartan datum.

We distinguish between U,(g) and U;(g) because the “classical” quantum affine algebra,
U,(g), can have finite dimensional irreducible modules while U;(g) has no nontrivial finite

dimensional irreducible modules.

Definition 3.2.2. Let PT = {\ € P | A\(h;) € Z>¢ for all i € I'} be the set of affine dominant
integral weights. For an affine dominant integral weight, A\ € PT, the level of ) is the nonnegative

integer £ = A(c), where c is the canonical central element defined above.

Definition 3.2.3. A classical crystal is a crystal associated with the classical Cartan datum
(A,ILIIY, P, PV). This crystal is also known as a U (g)-crystal.

Let B be a classical crystal, and for b € B, define

e(b) = Z&'(b)/\i, o(b) = Z%’(b)/\i-

23



For a positive integer, £ > 0, set Pt = {\ € P | A(c) = (}.

Definition 3.2.4. [2] For a positive integer, £ > 0, a finite classical crystal By is a perfect crystal
of level £ if it satisfies the following properties:

(1) There exists a finite dimensional Uj(g)-module with a crystal base whose crystal graph is

isomorphic to By,
(2) By ® By is connected,

(3) There exists a classical weight \g € P such that wt(B;) C Ao + Z Lo, #By, =1,
i#0

(4) For any b € By, we have (c,e(b)) > ¢,

(5) Foreach A € P, there exists unique vectors b*, by € By such that e(b*) = X and ¢(by) = A.

We now present a crystal isomorphism theorem that allows us to obtain what is called
the path realization of a crystal graph. For the rest of the chapter, assume that g is an affine
Kac-Moody algebra, ¢ € Z>q, By is a perfect crystal of level £, A € Pf is a classical dominant
integral weight, by is the unique vector in By such that ¢(by) = A, L(A) is the highest weight
Uq(g)-module with highest weight A, and B(\) is the crystal graph of L(\).

Theorem 3.2.5. [2] The following map
W B(A) = B(e(ba)) ® By given by uy +— ugp,) @ by,

where uy is the highest weight vector of B(A\) and u.y,) is the highest weight vector of B(e(by)),

is a strict isomorphism of crystals.

3.3 Path Realizations

We will use Theorem 3.2.5 to develop path realizations of crystal graphs. The path realization
gives the combinatorial structure of a crystal, which we will use when studying Demazure crys-

tals.

We first set
)\0 = )\, )‘k-f—l = 6(b)\k);
bp = by, be+1 = bxpy-

By Theorem 3.2.5, we have a crystal isomorphism,

WU B(Aj) = B(Aj1) ® By given by uy, + uy,,, ® b;.

Jj+1
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Composing the U’s yields a sequence of crystal isomorphisms,
B(A) = B(\) @ By — B(h2) @ By @ By — -+ B(A\) @ BYF — -+,
given by
Uy = Uy, @by Uy, @b @by = - uy, Qb1 @ @by @by -
Thus, for each k > 1, we have the following crystal isomorphism,
Uy BO\) — B(\g) ® BY* given by uy + uy, ® bp_1 @ -+ ® by @ by.

There also exists two infinite sequences,

Wi = (Me)ieo = (-v oy Mot 1y Ay - -5 AL, Ag) € (]3;)00,

Pr= (b)) = Rb1 @b @ @by @by € (By)™.

Since P; and B, contain only finitely many elements, there exists N > 0 such that Ay = Ao

and hence, by = bg = by. Then, ¢ and ¢ are bijective, yielding the following equalities,

b)\o = ‘P_l(/\O) = 90_1(/\N) = b)\N
A =¢e(by) = e(bay) = ANt

e (AN+1) = bays,

S
>
5
|
~6|
|
—~
>~
>
N—
I

)‘j = E(b)\j71) = <C:(b)\N+j—1) = >‘N+j

b)\j = 90_1()‘j) = ‘P_l()\N-&-j) = b>\N+j

AN—1 = €(bry_y) = (brgy_,) = Aan—1

b)\N—l = 50_1()‘1\7—1) = 90_1()‘21\/—1) = b>\2N—1

Hence the sequences w) and p) are periodic with the same period N > 0.

Definition 3.3.1. The sequence p) = (bg)i2y = - @ bpy1 @ b ® -+ ® by ® by is called the
ground-state path of weight A.

Definition 3.3.2. A A-path in B, is a sequence p = (pi)32y = " Pit1 @ Pr ® -+ @ P1 @ Po
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with pg € By such that py = by for all k> 0. We let P(\) denote the set of all A-paths in By.
We can define a crystal structure on P(\) as shown in the following theorem.

Theorem 3.3.3. [2/ Let p = (pi)32, be a A-path in By and let N > 0 be the smallest positive
integer such that py = by for all k > N. For each i € I, define

N-1
MP:AN—F Zmpkv
k=0

Ep =+ @PNt1 ®E&(PN @ @ Po),
fip=-®pnn® filpy® - ®po),
ei(p) = max{e;(p’) — ¢(bn), 0},

¢i(P) = wi(p") + max{p;(bn) — :(p'), 0},

where p’ = py_1®- - - p1®Po and wt denotes the classical weight. Then the maps wt : P(\) — P,
i fi : P(N) = P(A\) U0}, &5, : P(N\) = Z define a U,(g)-crystal structure on P(A).

Since P(A) has a Ué(g)-crystal structure, we can now define the path realization of the
U,(g)-crystal B(\) associated with the highest weight U, (g)-module, L(X).

Theorem 3.3.4. [9] There exists an isomorphism of U,(g)-crystals,
U : B(A) — P(A) given by uy — pa.

Thus, B(\) and P()) are isomorphic as Uy(g)-crystals.

3.4 Demazure Modules and Demazure Crystals

In this section, we define a Demzaure module and its corresponding Demazure crystal, developed
by Kashiwara. We then give the main theorem, which states that under certain conditions, the
path realizations of Demazure crystals have tensor product-like structures. We will use this
theorem in Chapter 5.

Recall that an affine quantum algebra, U,(g), has a triangular decomposition, U,(g) =
Uf(g)® U((I)(g) ® U, (g). Also, let V4(X) be the irreducible highest weight Ug(g)-module in O
with highest weight A and highest weight vector wu.

Let W denote the Weyl group for an affine Kac-Moody algebra, g, generated by simple
reflections, {r; | i € I}. For any w € W, it is known that the weight space, VI(\)y», is

one-dimensional, with basis vector wu,, [6]. This vector is called the extremal vector.
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Definition 3.4.1. For w € W and weight space VI(A\)yx = Cuyy, the Demazure module
associated with w is Vi (A) = U (g)twa-

The Demazure modules are finite subspaces of V9(\) and satisfy the following properties:
e VI = |J VaV)

weW
e For w,w’ € W with w < w’ (the Bruhat order), V,(\) C V().

Now, let B(\) and L£(\) be the crystal and the crystal lattice for V4¢()), respectively. Kashi-
wara showed in 1993 [15] that for each w € W, there exists a subset B,(\) C B()\) such
that

Vip(A) N
V(N 1 qL be@ Q0.

Definition 3.4.2. For w € W, the subset By, (\) of B(X) defined above is the crystal for the
Demazure module, V,,(A). It is called the Demazure crystal.
The Demazure crystal has the following recursive property [15]:
If w < rjw, then By (A U P By(N)\ {0}
n>0

Using this recursive property, we begin to establish the necessary notation used in the main
theorem below.

Suppose A(c) = £ > 1 and By is a perfect crystal of level ¢ for U,(g). By Theorem 3.3.4, the
crystal B(\) is isomorphic to the set of paths, P(\) = P(A, B). Under this isomorphism, we
identify the highest weight vector uy € B(\) with the ground-state path py = --- ® b3 @ by @ by.

We can define the path realizations for the Demazure crystals, B, (A), as shown in [16].
First, set d, k € Z~q. For a sequence of integers, {za) |j>1,1<a<d} C{0,1,...,n}, define
the subsets {B((lj |7 >1, 0<a<d} as follows,

B = b B9 = B2\ (o)

k>0
Using these subsets, we define Bc(ljﬂ’j) forj>1,1<a<d as,

B(()jJrl,j) — B((]jJrl) ® Béj), Bc(bj+1,j U f J+1)B (J+ 1 \{O}
k>0

We continue in this way until we define,

j+K—1,....] z itr—1,....
BL(1]+5 1nd) — U f:(lefl)B(gj_lﬁ ) \ {0}.
k>0
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Also, define a sequence of Weyl group elements, {w®) | w®) € W} as,
w® =1, wk) = rimw(k*l), (k> 0).

Here j and a are determined uniquely from k by the relation k¥ = (j — 1)d + a for j > 1,
1<a<d.
Lastly, for k > 0, define the subsets, P*)(X, By) of P(\, By) as,

,P(O)()VBE) = {p)\}7

PEI(N, By) = . . o
e® B(()J"FQ) ® Bé]""l) ® BC(LJw-J—“"‘l) ® B®(j—ﬁ) lf] > K.

The following theorem by Kuniba, Misra, Okado, and Uchiyama, gives a tensor product-like

structure to path realizations of Demazure crystals, B, x) ().

Theorem 3.4.3. [16] Let A € P with X(c) = ¢ and By be a perfect crystal of level £ for the
quantum affine algebra Uy(g). For fized d,x € Zo, suppose we have a sequence of integers
{z}(l]) |j>1,1<a<d} C{0,1,...,n} satisfying the following conditions:

(1) for any j > 1, Bc(lj+n—1,...,j) _ Bc(lj+n—1,...,j+1) 2 By,

(2) forany j>1and1l <a<d, <>\j,hi((zj)> < 52,53)(6), be BY. | and

a—1>

(3) the sequence of elements {w(k)}kzo s an increasing sequence of Weyl group elements with

respect to the Bruhat order.
Then, we have Byu (\) = PR(X, By).

The positive integer « in Theorem 3.4.3 is called the mizing index and is dependent on
the choice of perfect crystal B, [22]. There is a conjecture that for any affine quantum algebra
U,(g), the mixing index x < 2. It has been shown that for A = /A, where A € P, A(c) = 1, and
the perfect crystal By, there exists a sequence of Weyl group elements {w(k)} which satisfy the
conditions in Theorem 3.4.3 with x = 1 for any classical quantum affine algebra [17], U, (Df))
21], and U,(GS") [4].

We use the following proposition to check the validity of condition (3) in Theorem 3.4.3.

Proposition 3.4.4. [16] For w € W, if (wu, hj) > 0 for some p € PT, then w < rjw.

Finally, for b € B, let fimax(b) denote ffi(b)(b). Then, for j > 1 and 1 < a < d, set b(()j) =b;
and b)) = fmaxp0) .
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We will define the quantum affine algebra, Uq(Df’)), the perfect crystal associated with
Uq(Df)), and its path realization in the next chapter. Then, we will use Theorem 3.4.3 to show
path realizations of Demazure crystals for Uq(Df’)) have tensor product-like structure for one

dominant integral weight and give evidence of this for two other dominant integral weights.
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Chapter 4

The Quantum Affine Algebra
3
Uy(D)

In this chapter, we define the affine Kac-Moody algebra Df’) and the quantum affine algebra
Uq(DiS)). We then give a description of the Uq(Df))—perfect crystal, By of level £ > 0 as shown

in [13], and the corresponding path realization.

4.1 Defining the Quantum Affine Algebra Uq(Df’))

We begin by constructing the affine Kac-Moody algebra, Df’). First, fix I ={0,1,2}.
Consider the affine Kac-Moody algebra, g = Df’), associated with the generalized Cartan

matrix A = (a;j)i jer given by

2 -1 0
A= -1 2 -3 |,
0o -1 2
obtained from the Dynkin diagram,
1 2 1
{ @ 9
(674} (65} a9

Figure 4.1: Dynkin Diagram for Df’)

The numerical labels on the Dynkin diagram are the coordinates of the standard null root,

§ = (do,dy,d)T, such that A6 = 0 and dy, dy, ds are relatively prime integers.
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Let {ap, a1, a2}, {ho, h1, ho}, and {Ag, A1, A2} denote the set of simple roots, simple coroots,
and fundamental weights, respectively.
The center of g = fo’) is one-dimensional, spanned by the canonical central element, ¢ =
ho + 2hy + 3hg € 1.
Let d € b such that
ap(d) =1, a1(d) =0, az(d) =0.

Then {hg, h1, ha,d} form a basis for the Cartan subalgebra, ). Therefore, the affine Kac-
Moody algebra Df’) is generated by {e;, fi | i = 0,1,2} U b, satisfying the following relations:

(1) [h, 1] =0 for h, R’ € b,

(2) lei, fi] = Gihi,

(3) [h,ei] = ai(h)e; for h € b,
(4) [h, fil = —ai(h) fi for h € b,
(5) (ad €;)17%ie; = 0 for i # j,
(6) (ad fi)' =i f; =0 for i # j.

Let P = ZAo ® ZA1 ® ZA5 be the set of classical weights for g = Df’), and let PT = {\ €
P | X(h;) € Zsq for i = 0,1,2} be the set of classical dominant integral weights. Recall, the
level for each classical dominant integral weight, A\ € Pt is £ = A\(c), where c is the canonical

central element.

Example 4.1.1. For g = Df), the level of each fundamental weight is
Ao(c) =1, Ai(c) =2, ,Aa(c) = 3.

Let W be the Weyl group for g = Df') generated by the simple reflections, {rg,r1,72},
where 7;(A\) = X\ — A(hy)ay, 1 =0,1,2.

Recall that the affine generalized Cartan matrix associated with g = Df) is symmetrizable,
with symmetrizing matrix S = diag{si, s2, s3} = diag{1, 1, 3}.

Then, the quantum affine algebra Uq(Df’)) is generated by the elements {e;, f;, qt" | i =
0,1,2,h € b}, satisfying the following relations:

(1) ¢® =1; ¢"¢" = ¢"*" for h, I € b,
(2) ¢"eigh = ¢ Me; for heh,i=0,1,2,

(3) ¢"figh =q W f for heh,i=0,1,2,
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qsihi q_szhz o
(4) eifj — fJez = (Sij qsi e ; fOr 1,] = 0, 1, 2,
1—a;; _1 -
(5) Z (—1)* ka” egfa”*kejef =0 for i # j,
k=0 - da%
l—aij _1 -
— A5 1— z_k . .
(6) (—1)* y T f TR =0 for i £ 5.
k=0 - 4

The representation theory for g = Df’) and Uq(Df’)) remains the same as in the previous
chapters and requires no modification. We now only consider the case when g = Df’) and
3
Usle) = Uy(D}7).

4.2 Uq(Df’) )-Perfect Crystals and Path Realizations

We will use the quantum affine algebra Uq(fo’)) to construct the perfect crystal By of level
¢ >1 as defined in [13].
Define the set,

L x3 = Z3 (mod 2)
By=<b= (xl,xg,x3,$3,$2,$1) S Z6>0 wat+Ta ’ _ B .
T+ a2+ TS +xo+ 21 </
For b = (1, z2, x3%3, T2, T1) € By, we denote
T3 + T3 _ _ T3 + T3
5(b) = 1 + w2 + + Ty + I, t(b)=w2+T,
_ _ _ T3 — T3
21 = %1 — %1, 22 = T2 — X3, 23 = I3 — T2, Z4=T»

and
A =(0,21,21 + 22,21 + 22 + 324, 21 + 22 + 23 + 324,221 + 22 + 23 + 324).

The Kashiwara operators, & and f;, for i = 0,1, 2 are given as follows for

b= (x1,x2,x3,T3,T2,T1) € By. We denote (a) = max{a,0}.
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)
(1,29, 23,23, T2+ 1,21 — 1)

e1(b) = 4 (z1, 22,23+ 1,23 — 1,72, 71)

\ (x1 + 1,20 — 1,23, %3, T2, Z1)

.
(CL’l - 1a$2 + ]-a m37j37i27j1)

f1(b) = (w1, 22,23 — 1,23 + 1,22, 71)

<$17$27$37j37'f2 - 17~f1 + 1)

if 29 > (—23)+,
if 29 < 0 < z3,

if (22)4 < —z3,

if (22)+ < —Z3,

if 20 <0< zs,

if 29 > (—23)+,

~ (w1, 22,23,%3 +2,T2 — 1,21) if 24 >0,
éa(b) =
<$1,$2+1,x3—27j3,{f2,i’1) if 24 <07
. (w1,22 — 1,23 + 2,73, T2, 71) if 24 <0,
f2(b) = .
<I‘17$2’$3,i’3—27£2+17i‘1) if 24 > 07
(331 — 1,29, 13,73, T, T1) if (&1),
(Q? , L9, T3 — 1,373—1,372,@1—!—1) if (52>,
3 (z1, 72,3 — 2,%3,%2 + 1,71) if (&3),
éo(b) =
(x1,22 — 1,23, 3 + 2, T2, 71) if (€4),
(fL‘l 1,20, 25+ 1,23 + 1, .Tg,l‘l) if (55),
(z1, %2, 23,73, T2, 71 + 1) if (&),
(z1+ 1,29, 23, T3, To, T1) if (1),
($ $2,£U3+1,.f3—|—1,.i‘2,3_91—1) if (]:2),
- (w1, 22,23 + 2,73, %2 — 1,71) if (73),
fo(b) = ,
(1‘ 1‘24—1,%3,533—2,@2,@1) if (.F4),
(.73 + 1,290,235 — 1,553—1,]72,%1) if (f5),
($1,$2,$3,LE3,$2,$1 — 1) lf (.Fﬁ),
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where the conditions (F;)— (Fs) are given below. The conditions for (£1) — (&) are obtained
from (Fi) — (Fs) by replacing the inequality > with > and the inequality < with <.

Fi
Fa

(F1) z1+ 22+ 23+324 <0, 21+ 23+324 <0, 21 +220<0, 21 <0,
(F2)
(F3) 21+ 23+324 <0, 234+324 <0, 24 <0, 29 >0, 21 +22 >0,
(F1)
(F5)
(F6)

21+ 204+ 23+324 <0, 29+324 <0, 20 <0, 21 >0,

'\,.]

4) 21+ 29 +324 >0, 29+324 >0, 24 >0, 253<0, 21 +23 <0,
Fs

Fo) z1+20+23+324>0, 21 +23+324 >0, 21 +23 >0, 21 >0.

21+ 204+ 23+324 >0, 25+324 >0, 23>0, 21 <0,

We then define the maps, ¢; and ¢;, i =0, 1,2 for b = (x1, o, x3, T3, T2, T1) € By as follows:

e1(b) = &1 + (Z3 — T2 + (x2 — 3) 4+ )+,

e2(b) = T2 + %(903 — T3)4,

eo(b) =€ — s(b) + max A — (221 + 22 + 23 + 324),
e1(b) = o1 + (23 — 22 + (T2 — T3)4 )+,

p2(b) = 2 + %(53 — 3)+,

wo(b) = £ — s(b) + max A.

We note that for b € By, if &(b) or fi(b) does not belong to By, ie. if x; or Z; becomes
negative or if s(b) > ¢, we understand it to be 0.

Then, as shown in [13], for the quantum affine algebra Uq(Df)), the set B, with the maps
€i, fi,ei, wi, 1 = 0,1,2, is a perfect crystal of level £. Also, the minimal elements are given by
[13],

(B)min = {(, 8, 8,8, 8,) | o, B € Z>0, 2a+ 38 < 1}

Example 4.2.1. For ¢ = 1, we have By = {bg, b1, ba, b3, by, b5, bg, b7}, where

b = (0,0,0,0,0,0) by = (0,0,1,1,0,0)
b1 = (1,0,0,0,0,0) bs = (0,0,0,2,0,0)
by = (0,1,0,0,0,0) bs = (0,0,0,0,1,0)
bs = (0,0,2,0,0,0) b7 = (0,0,0,0,0,1)

The perfect crystal graph for By is,
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(0,0,0,0,0,0) (0,0,2,0,0,0)

\

(0,0,1,1,0,0)

'\

0 (0,0,0,2,0,0)

A

(0,0,0,0,1,0)

\

(0,0,0,0,0,1)

Figure 4.2: Perfect Crystal Graph for By

Given a Uq(DS’))—perfec‘c crystal, By, we can constuct a path realization of 5.

Let V(A) be the irreducible highest weight Ué(Df’))—module with highest weight A and
highest weight vector uy. Let B(A) be the crystal graph of V(\) and By be the associated
perfect crystal of level /.

Recall, the ground state path of weight A is

Pr= @by @bp®--- @by ® b,

where

Ao = A, A1 = €(by,);
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bo = by, brt1 = by,

Example 4.2.2. For the Ué(Df’) perfect crystal of level one given in Example 4.2.1, the ground
state path is,
Pry = - ® by ® by ® by,

where by = (0,0,0,0,0,0) € By.

By considering all A-paths, P()\), we use Theorem 3.3.3 to define a crystal structure on
P(A). Then, by Theorem 3.3.4, B(\) = P()\) as Ué(Df))-crystals.

Example 4.2.3. The irreducible highest weight Ué(Df’))—module of highest weight \ such that
the perfect crystal has level one is V(Ag). The (partial) path realization is given below. See

Example 4.2.1 for notation.
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(- @by @by @by) (- @by bs)

§<

0
®b0®b1®b5 ®b0®b6
(- ®bo®bl®bz ®bo®b7 ®bo®b1®bﬁ)

Figure 4.3: (Partial) Path Realization of V(Ag), a Ué(Df))—module.
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Chapter 5

Uq(Df))-Demazure Crystals

In this chapter, we consider Uq(Df’))—Demazure crystals for A = fAy, A\ = (Ay, and \ =
2(Ag+ Ay). We will use the perfect crystal graphs and path realizations to prove Theorem 3.4.3
when A = /Ao, and give a conjecture with some evidence that Theorem 3.4.3 holds when A = /A
and A = (Ao + Aq).

5.1 Case 1: A\ = (A,

We begin by considering A = /A and the irreducible highest weight Ué(Df’))—module with
highest weight ¢As. Note that (¢A2)(c) = 3¢, so we will use the associated perfect crystal
B = Bsy. The {Ay-minimal element in B is b = (0,¢,£,£,£,0). Also, \; = X\ = ¢A for j > 1, and
hence b; = b. Thus, the ground-state path is py = --- ® b® b ® b.

Set d = 6 and define the sequence {igj) |j>1,1<a<6}C{0,1,2} as follows,

(7)

{9 i) g ) _ ) W _ .

iy . ) .
=iy =2, iy =iy =iy =1, ig =
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By the action of ﬁ on B, we have

) = (0,¢,0,0,0,0),

i) = fmaxpld)y = (0,0,3¢,¢,¢,0),
b)) = fmaxpiy = (0,0,0,4¢,¢,0),
b = fmaxp)) = (0,0,0,0,3¢,0),
) = fmaX(bgﬁ) = (0,0,0,0,0,30),
) = fmaxp)) = (3¢,0,0,0,0,0),
) = maX(bg”) = (0,3¢,0,0,0,0).

Using the notation from Theorem 3.4.3, yields the following Lemma.

Lemma 5.1.1. Define conditions P and @, 1 <n <6 forbe B as follows,

P):23>0,23+324 > (—229)4,21 + 22 + 23 + 324 > 0,t(b) < 2¢, s(b) < 3¢,

123 <0,24>0,21+ 20+ 324 > 0,21 + 229 + 23+ 324 > 0,t(b) < 20, s(b) < 3¢;

129> 0,24 <0,234+324 <0,21 + 22> 0,21 + 229+ 23 > 0,5(b) <3¢

129 >0,24 <0,234+324 <0,21 + 22 <0,29 4+ 23 >0,s(b) <3¢

129 >0,23 20,21 + 20+ 23+ 324 < 0,23 + 324 > 0,t(b) < 2¢,s(b) < 3¢

cx1 >0,2320,234+324 20,21 + 204+ 23 +324 20,21 4+ 229 + 23+ 324 > 0,

t(b) < 2¢,s(b) < 3¢;

cx1 > 0,23 < 0,24 > 0,21 + 22+ 324 < 0,20+ 324 > 0,20+ 23 > 0,8(b) < 2¢,5(b) < 3¢.
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Then, the subsets {B,gj) |7 >1,0<a<6} of B are given by,

BY) = {(0,¢,¢,0,0,0)}

BY = B U {(0, 29, 33,,£,0) | 23 > 0, s(b) = 3¢}

BY) = BY U {(0, 20, 3,73, 6,0) | 25 < 0,23 > 0, s(b) = 3¢}

BY = BY) U{(0, 22,25, 75,72,0) | 23 > 0,23 + 321 > 0,4(b) < 20, 5(b) = 3}

BY) = BY) U{(0, 22, 23,3, 32, 71) | 71 > 0,23 > 0,25 + 324 > (~222)1, £(b) < 20, 5(b) = 3¢}
BY =B UCUD, UDyU---U Dg

BY) =B,

where C' = {(0, x9, x3, T3, T2,T1) | (P) holds} and for 1 <n <6, D, = {(x1,z2, 23, T3, T2, T1) |

(Qn) holds}.

Proof. By definition, B(()j) = {b;}, where b; = (0,¢,¢,£,£,0) when A\ = ¢A5. Then, Béj) =
U Ji]‘fj)B(gj_)l \ {0}. To obtain By), we apply fo repeatedly to (0,4,¢,¢,0,0). Since z4 = 0, apply-
k>0
ing fo repeatedly yields new elements of the form {(0, 29, x3,£,¢,0) | z3 > 0, s(b) = 3¢}. Thus,
BY = B U{(0, 29, 23,0,£,0) | 23 > 0, s(b) = 3¢}.

To obtain Béj ), we apply fl repeatedly to elements in B§j ). Since zo = 0 and z3 > 0 for all
), applying fi repeatedly yields new elements of the form {(0, x9, z3,Z3,¢,0) |
z9 < 0,23 > 0,s(b) = 3¢}. Thus, Béj) = ng) U {(0,z2,x3,Z3,¢,0) | 22 < 0,23 >0,s(b) = 3¢}

elements in ng

Next, to obtain B?()j ), we apply fo repeatedly to elements in B;j ). Since B%j ) contain elements
obtained by applying fg repeatedly, we only need to examine the action of fz to elements in
{(0, 29, 23,%3,£,0) | 22 < 0,23 > 0,s(b) = 3¢}. If z4 < 0, then applying fo repeatedly yields
elements of the form {(0,z2,x3,73,¢,0) | 22 < 0,23 > 0,24 < 0,s(b) = 3¢}. Each of these
elements is already contained in Béj ), so no new elements are obtained. If z4 > 0, then applying
f2 repeatedly yields new elements of the form {(0, x9, x3,%3,T2,0) | 23 > 0,24 > 0,23 + 324 >
0,t(b) < 2¢,s(b) = 3¢}. These elements are not contained in Béj) since t(b) < 2¢ here, whereas
t(b) = 2¢ for all elements in Béj ),

Then, if z4 = 0 in the set above, we again repeatedly apply f» to yield new elements of
the form {(0, z2,x3, T3, Z2,0) | 23 > 0,24 < 0,23 + 324 > 0,¢(b) < 2¢,s(b) = 3¢}. Again, these
elements are not contained in Béj ) by the same reasoning above, and they are also not contained
in the set {(0,x9,x3,73,%2,0) | 23 > 0,24 > 0,23 + 324 > 0,¢(b) < 2¢,s(b) = 3¢}, since z4 < 0
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now. We cannot apply fz anymore and obtain new elements. Thus, combining the two sets
above gives Bi(;j) = Béj) U {(0, 9, 3, T3,%2,0) | 23 > 0,23 + 324 > 0,¢(b) < 2¢,s(b) = 3(}.

To obtain Bij ), we apply f1 repeatedly to elements in B?()j ). Since Béj ) contain elements
obtained by applying fl repeatedly to ng ), we only need to examine the action of fl to elements
in {(0,z2,x3,%3,72,0) | 23 > 0,23 + 324 > 0,t(b) < 2¢,s(b) = 3¢}. If 290 < 0 and 23 = 0, then
we obtain no new elements since 1 = 0 and we cannot subtract from xq. If 20 <0 and z3 > 0,
then applying f; repeatedly yields elements of the form {(0, 22, 23, T3,%2,0) | 22 < 0,23 >
0,23 4+ 324 > 0,t(b) < 2¢,s(b) = 3¢}. Each of these elements is alreay contained in Béj) , SO No
new elements are obtained. If zo > 0, applying fi repeatedly yields new elements of the form
{(0, x9, 23, %3, T2, Z1) | T1 > 0,22 > 0,23 > 0,23 + 324 > 0,¢(b) < 2¢,s(b) = 3¢}. These elements
are not contained in B?Ej ) since 1 > 0.

Then, if zo = 0 and z3 > 0 in the set above, we again repeatedly apply fl to yield new
elements of the form {(0, z2, x3,Z3,Z2,%1) | T1 > 0,20 < 0,23 > 0,23+ 324 > 0,229+ 23+ 324 >
0,t(b) < 2¢,s(b) = 3¢}. These elements are not contained in Béj) since ; > 0; also, they
are not contained in the set above since zo < 0. We cannot apply f; anymore since z; = 0.
Thus, combining the two sets above yields Bflj) = Béj) U {(0, z2, x3, %3, T2,Z1) | T1 > 0,23 >
0,23 + 324 > (—222)4,t(b) < 2¢,s(b) = 3¢}.

To obtain Béj ), we apply fo repeatedly to elements in Bij ),

(C) Consider elements from Bij) of the form {(0, z2, x3,Z3,Z2,%1) | T1 > 0,23 > 0,23 + 324 >
(—222) 4,21 + 22 + 23 + 324 > 0,t(b) < 2¢,s(b) = 3¢}. We have z; > 0 and 21 + 23 > 0.
Then, if z0 > 0, z3+324 > 0, implying z1 + 234324 > 0. On the other hand, if z5 < 0, then
21+ 2o+ 23+ 324 > 0 implies z1 + z3 + 324 > 0. So, these elements satisfy condition (Fg);
by repeatedly applying fo to elements of this form, we obtain new elements of the form
{(0, 22,23, %3,%2,%1) | 23 > 0,23 + 324 > (—222) 4,21 + 22+ 23+ 324 > 0,t(b) < 2, s(b) <
3(}. These elements are not contained in Bij ) since s(b) # 3¢. This set is precisely C.

(D7) Consider elements from Bflj) of the form {(0,z9,x3,Z3,Z2,71) | T1 > 0,23 > 0,24 >
0,21 4+ 22+ 324 > 0,229 + 23+ 324 > 0,t(b) < 2¢,s(b) = 3¢}. This set is contained in Bij)
since if z9 > 0, then z3 > 0 and z4 > 0 implies z3 4+ 324 > (—222)1. Conversely, if 29 < 0,
then 2z9 + z3 + 324 > 0 implies z3 + 324 > (—222) = (—222)4. Also, if t(b) = 2¢, then
s(b) = 3¢ implies To + T1 = ¢, so Ty < {. Then 229 + 23 + 324 > 0 imples To > ¢. This
is a contradiction, so ¢(b) < 2¢. Then, since z; > 0, the conditions for (Fg) are satisfied;
by applying fo repeatedly, we obtain new elements of the form {(0, z2, z3, T3, Z2,0) | 23 >
0,24 > 0,214+20+324 > 0,229+23+324 > 0,t(b) < 2¢,5(b) < 3¢}. Then, if 21 +29+324 > 0,
the conditions for (Fs) are satisfied. Applying fo repeatedly yields elements of the form
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{(z1, 22, 23,%3,%2,0) | 23 > 0,24 > 0,21 + 22 + 324 > 0,21 + 220 + 23 + 324 > 0,t(b) <
2¢,s(b) < 3¢}. Finally, if z3 = 0, then the conditions for (F4) are satisfied. Applying fo
repeatedly yields elements of the form {(z1, z2, x3, T3, T2,0) | 23 < 0,24 > 0,21+ 224324 >
0,21 + 222 + 23 + 324 > 0,t(b) < 2¢,5(b) < 3¢}. We also consider elements from Bij) of
the form {(0,x9,x3,Z3,%2,0) | 23 > 0,24 > 0,21 + 22 + 324 > 0,21 + 229 + 23 + 324 >
0,t(b) < 2¢,s(b) = 3¢}. By the same arguments as above, these elements are part of Bé(lj).
The conditions for (F5) are satisfied, so applying fo repeatedly yields elements of the form
{(z1, 22, 23,%T3,%2,0) | 23 > 0,24 > 0,21 + 29 + 324 > 0,21 + 229 + 23 + 324 > 0,t(b) <
20, s(b) = 3¢}. Then, if z3 = 0, the conditions for (Fy) are satisfied, yielding new elements
of the form {(x1,x2,x3,T3,T2,0) | 23 < 0,24 > 0,21 + 20 + 324 > 0,21 + 229 + 23 + 324 >
0,t(b) < 2¢,s(b) = 3¢}. Combining this set with the set {(x1,z9,x3,Z3,T2,0) | 23 <
0,24 > 0,21 +22+324 > 0,21 +220+ 23+ 324 > 0,6(b) < 2¢,5(b) < 3¢}, we obtain the set

D1. These elements are not contained in Bflj ) since z3 < 0.

Consider elements from Bij) of the form {(0,z9,x3,7Z3,%2,%1) | T1 > 0,20 > 0,24 <
0,23 + 324 > 0,21 + 22 > 0,21 + 229 + 23 > 0,s(b) = 3¢}. This set is contained in Bij)
since z4 < 0 and z3 + 3z4 > 0 implies z3 > 0. Also, 23 + 324 > 0 and z; + 22 > 0 imply
that 2t(b) = 2x9 + x3 + T3 < 4%1 + 4T9. Then, s(b) = 3¢ implies that 2¢(b) < 4(Z; + T2) =
120 — 4t(b). So, 6t(b) < 12¢ implying ¢(b) < 2¢. Then since z; > 0, the conditions for
(Fe) are satisfied. By repeatedly applying fg to elements of this form, we obtain the set
{(0, x2, x3,%3,%2,0) | 22 > 0,24 <0,23+324 > 0,21 +20 > 0,21 +2220+ 23 > 0, s(b) < 3(}.
Since z; = 0, the conditions for (F;) are now satisfied. Applying fg repeatedly yields
{(z1, 2, 23, T3,%2,0) | 22 > 0,24 <0,23+324 > 0,21+29 > 0,21+220+23 > 0,5(b) < 3(}.
If 234324 =0, 20 > 0, and 21 + 22 > 0, then the conditions for (F3) are satisfied.
So, we obtain elements of the form {(z1,x9,xs,T3,Z2,0) | 22 > 0,24 < 0,23 + 324 <
0,21422 > 0,21+222423 > 0,5(b) < 3¢}. We also consider elements from Bflj) of the form
{(0, 22,23, %3,%2,0) | 22 > 0,24 <0,23+324 > 0,21 +29 > 0,21 +220+ 23 > 0, 5(b) = 3(}.
These elements are elements of Bij ) by the same argument above. Then the conditions
for (Fs) are satisfied, so applying fo repeatedly yields {(x1, 2, 3, T3, T2,0) | 20 > 0,24 <
0,23 +324 > 0,21 + 22 > 0,21 + 229 + 23 > 0,s(b) = 3¢}. Finally, if z3 + 324 = 0,
z9 > 0, and z1 + 22 > 0, the conditions for (F3) are satisfied. Repeatedly applying fo
yields elements of the form {(x1, z2,x3, T3, Z2,0) | 22 > 0,24 < 0,23 + 324 < 0,21 + 29 >
0,21 + 229 + 23 > 0,s(b) = 3¢}. Combining this set with the set, {(z1, z2, z3, T3, Z2,0) |
29 > 0,24 < 0,234+ 324 < 0,21+ 22 > 0,21 + 229 + 23 > 0,5(b) < 3¢}, we obtain the set

Ds. These elements are not contained in Bflj ) since z3 + 3z4 < 0.

Consider elements from Bz(lj) of the form {(0,xz9,x3,Z3,Z2,Z1) | T1 > 0,290 > 0,23 =
0,24 > 0,20 + 23 > 0,s(b) = 3¢}. We see that zo > 0, z3 = 0, and z4 > 0 imply that
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t(b) < 2Z3. Then, s(b) = 3¢ implies that t(b) < 2¢; so these elements are from Bij ),
Then, since z; > 0, the conditions of (Fg) are satisfied. Repeatedly applying fo yields
{(0, 22,23, %3,%2,0) | 22 > 0,23 = 0,24 > 0,29 + 23 > 0,5(b) < 3¢}. Then, z; = 0, so the
conditions of (Fy) are now satisfied. Applying fo yields {(0, x2, x3,Z3,T2,0) | 22 > 0,23 <
0,24 > 0,22 + 23 > 0,5(b) < 3¢}. If z4 = 0, then the conditions for (F3) are satisfied, so
we obtain elements of the form {(0, x2, 3, Z3,%2,0) | 22 > 0,24 < 0,23+324 < 0,22+ 23 >
0,s(b) < 3¢}. Finally, if zo = 0, the conditions for (F7) are satisfied. Applying fo to these
such elements and adding the new elements to this set gives {(x1, z2,x3, T3, T2,0) | 22 >
0,24 <0,234+324 <0,294 23 >0,21 + 22 < 0,5(b) < 3¢}. This set is precisely D3, and

these elements are not contained in Bij ) since z3 + 324 < 0.

Consider elements from Bé(lj) of the form {(0, z2, x3, Z3,Z2,%1) | T1 > 0,29 > 0,23 > 0,21+
294234324 > 0, 23+324 > 0,t(b) < 2¢,s(b) = 3¢}. This set is clearly a subset of Bij) since
(—2z2)4+ = 0. Since z; > 0, the conditions for (Fg) are satisfied. So, applying fo repeatedly
gives elements of the form {(0,x2,x3,Z3,%2,0) | 22 > 0,23 > 0,21 + 22 + 23 + 324 >
0,23+32z4 > 0,6(b) < 2¢,s(b) < 3¢}. Then, if 21 + 22+ 23+ 324 > 0, the conditions for (Fs)
are satisfied. We obtain the set {(z1,x2, x3, T3,%2,0) | 22 > 0,23 > 0,21 + 29 + 23 + 324 >
0,23+32z4 > 0,t(b) < 2¢,s(b) < 3¢}. Finally, if 21 + 20+ 23+ 324 = 0 and 21 + 22 < 0, then
the conditions for (F7) hold. Repeatedly applying fo vields {(x1, 22, 23,%3,T2,0) | 20 >
0,23 > 0,21 + 22+ 23+ 324 < 0,23 + 324 > 0,6(b) < 2¢,5(b) < 3¢}. This set is precisely
)

Dy, and these elements are not contained in Bff since x1 > 0.

Consider elements from Bij) of the form {(0, x2, x3,Z3, T2, Z1) | T1 > 0,23 > 0, 23 + 324 >
0,21 + 22 + 23 + 324 > 0,229 + 23 + 324 > 0,t(b) < 2¢,s(b) = 3¢}. This set is clearly
a subset of Bij) since if zo > 0, then z3 + 324 > 0 = (—2z3)4; or if 2o < 0, then
229 + 23 + 3z4 > 0 implies 23 + 324 > (—222)4. Since z; > 0, the conditions for (Fg) are
satisfied. Applying fo repeatedly yields elements of the form {(0, 22, x3, T3, T2,0) | 23 >
0,23+ 324 > 0,21 + 22+ 23+ 324 > 0,229 + 23 + 324 > 0,¢(b) < 2¢,5(b) < 3¢}. Then, if
z1+29+23+324 > 0, the conditions for (F5) hold. We obtain the set {(x1, x2, x3, T3, T2,0) |
x1 > 0,23 >0,234+324 > 0, 21+20+23+324 > 0, 214220+23+324 > 0,8(b) < 24, 5(b) < 3¢}.
We also consider elements from Bij) of the form {(0, 2, x3, T3,%2,0) | 23 > 0,23 + 324 >
0,21+ 22+ 23+ 324 > 0,229 + 23+ 324 > 0,t(b) < 2¢,s(b) = 3¢}. These elements are part
of Bflj ) by the same arguments as above. Then, since z; = 0, the conditions for (F5) are
satisfied. Applying fo repeatedly yields {(z1,x2, %3, T3,%2,0) | &1 > 0,23 > 0,23 + 324 >
0,21 + 22 + 23 + 324 > 0,21 + 229 + 23 + 324 > 0,t(b) < 2¢,5(b) = 3¢}. Combining
this set with {(x1,z2, 23, Z3,T2,0) | ©1 > 0,23 > 0,23 + 324 > 0,21 + 29 + 23 + 324 >
0,21 + 222 + 23 + 324 > 0,t(b) < 2¢,s(b) < 3¢}, we obtain the set Ds. These elements are
)

not contained in Bfg since x1 > 0.
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(Dg) Finally, consider elements from Bij) of the form {(0,x2,x3,%3,T2,%1) | T3 > 0,29 <
0,23 > 0,24 > 0,21 + 22+ 324 > 0,29 + 23 > 0,229 + 23 + 324 > 0,8(b) < 2¢,5(b) = 3(}.
Since zo < 0 and 2z9 + 23 + 324 > 0, we have z3 4+ 324 > (—222)4. Also, if ¢(b) = 2¢, then
s(b) = 3¢ implies To + T = ¥, so To < (. Then, 229 + 23 + 324 > 0 implies To > ¢. This
is a contradiction, so t(b) < 2¢. Thus, these elements are contained in Bij ). Since z1 > 0,
the conditions for (Fg) are satisfied. Applying fo repeatedly yields elements of the form
{(0, 22, 22,%3,%2,0) | 29 < 0,23 > 0,24 > 0,21 + 20+ 324 > 0,20 + 324 > 0,29 + 23 >
0,t(b) < 2¢,s(b) < 3¢}. Then since z; = 0, the conditions for (F3) are satisfied. So,
we obtain elements of the form {(x1,x2,x3,Z3,%2,0) | 23 > 0,24 > 0,21 + 22 + 324 >
0,204+324 > 0,20423 > 0,21 +22 < 0,8(b) < 20,5(b) < 30}.If z3 =0and 21 +22+324 > 0,
then the conditions for (F4) hold. Repeatedly applying fo yields {(z1, 2, x3, T3, T2,0) |
23 < 0,24 > 0,21 + 224+ 324 > 0,20+ 324 > 0,22 + 23 > 0,t(b) < 2¢,5(b) < 3¢}. Finally, if
21 + 22 + 324 = 0, then 2; 4+ 22 < 0 and the conditions for (F;) hold. We obtain elements
of the form {(z1,x2,x3,%3,%2,0) | x1 > 0,23 < 0,24 > 0,21 + 22 + 324 < 0,22 + 324 >
0,22 + 23 > 0,t(b) < 2¢,s(b) < 3¢}. This set is precisely Dg, and these elements are not

contained in BE ) since 1 > 0.

Therefore, by repeatedly applying fo to elements in Bé(lj ), we obtain Béj ) = Bg Jucu DU

D> U D3 U Dy U Ds U Dg.

To obtain Bé‘j ), we apply fl repeatedly to elements in Béj ). We want to show that Béj ) = B,
).

so we list the elements in B that are not contained in Béj
(L1) {(0,22,23,%3,%2,Z1) | T1 > 0,23 + 324 < (—222)4, 21 + 22 + 23 + 324 > 0,5(b) < 3¢}
(L2) {(0,29,23,%3,T2,%1) | T1 > 0,23 <0, 234+324 > (—222)4, 21+ 22+ 23+324 > 0,5(b) < 3¢}

(Lg) {(0,1‘2,%3,.@3,52,@1) ’ T1>0,292>0,232>0,234324 <0,21+204+23+324 < 0,3(1)) < 36}

(L4) {(0,1‘2,:U3,53,£i'2,i‘1) | T1 > 0,290 < 0,23 < 0,229 4+ 234+324 < 0,21 +20+23+324 <
0, 5(b) < 3¢}

(L5) {(O,xg,wg,ig,i'g,i'l) | 20 < 0,230,220+ 234+324 < 0,21+ 20+ 23+ 324 < O,S(b) < 35}
(L@) {(O,xz,wg,.fg,i'Q,i‘l) ’ 2020,23<0,234+324 <0,21+20+23+324 < O,S(b) < 35}

(M) {(z1,22,23,%3,72,0) | 21 > 0,20 > 0,24 < 0,23 +324 < 0,20 + 23 < 0,21 + 222 + 23 <
0,s(b) < 3¢}

(MQ) {(xl,xg,x37f3,.’i'g,0) | 1 > 0,29 > 0,23 < 0,24 > 0,20+ 23 < 0,21 + 220 + 23 <
0,21 + 22 + 23 + 324 < 0,5(b) < 3¢}
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(Mg) {(xl,xg,xg,fg,fg,()) | 1> 0,29 <0,232>0,21 +204+ 23 +324 < O,S(b) < 35}
(M4) {(xl,xg,xg,iﬁ3,i'g,0) | 20 < 0,23 <0,21 4+ 229+ 23+ 324 < O,S(b) < 35}

(M5) {(xl,xg,mg,:ig,@,()) ’ 290 < 0,23 > 0,234324 > 0,21+204+23+324 > 0,21 +229+23+324 <
0,5(b) < 3¢}

(N) {(xl,xg,xg,fg,fg,fl) | 1> 0,71 > O,S(b) < 35}

We will show that these elements are obtained by repeatedly applying fl to elements in

BY.

(L1) Consider elements from Béj) of the form {(z1,z2,x3,%3,%2,0) | 22 > 0,23 > 0,24 <
0,23+324 < 0,21+22+23+324 > 0,5(b) < 3}. Since z1+29+23+324 > 0 and 23+324 < 0,
we have z1 + zo > 0. Thus, these elements are contained in D5 in Bé‘j ), Since z3 > 0 and
z9 > 0, we have zg > (—z3)+. Applying the third condition for fl repeatedly, we obtain
elements of the form {(z1,z2,x3,%3,T2,%1) | T1 > 0,22 > 0,23 > 0,24 < 0,23 + 324 <
0,21 + 22 + 23 + 324 > 0,5(b) < 3¢}. Then, if zo0 = 0 and z3 > 0, we apply the second
condition for f; repeatedly. This yields elements of the form {(z1, 22,23, T3, T2,71) | T1 >
0,29 < 0,23 > 0,229 + 23+ 324 < 0,21 + 22 + 23 + 324 > 0, s(b) < 3¢}. We stop if 21 = 0.
For z1 # 0 and z3 = 0, we apply the first condition for fl repeatedly. We obtain elements
of the form {(0,x9,x3,T3,Z2,T1) | T1 > 0,20 < 0,23 < 0,229 + 23 + 324 < 0,21 + 22 +
z3 + 3z4 > 0,s(b) < 3¢}. Combining this set with the previous one where 21 = 0 yields
{(0,x2, 3, T3, T2, T1) | T1 > 0,29 < 0,229+ 23+ 324 < 0,21 + 22+ 23+ 324 > 0, s(b) < 3¢}.
We also consider elements in Béj) of the form {(z1,x2,x3,%3,%2,0) | 22 > 0,29 + 23 >
0,23+324 < 0,21+ 20+ 23+ 324 > 0,5(b) <3¢} If 24 < 0, then this set is contained in Dy
in Béj) by the same argument above. If z4 > 0, then z3+ 3z4 < 0 implies z3 < 0. Then, we
have z1 + 29+ 23+ 324 > 0, implying z1 + 29 + 324 > 0 and 21 + 229 + 23 + 324 > 0. All we
need to show is t(b) < 2¢ in order to show this set is a subset of Béj). So, assume t(b) > 2¢.
Since s(b) < 3¢, we have x1 + t(b) + To < 3(. If ¢(b) > 2¢, then x1 + T2 < ¢, implying
ZTg < {. Now, z3 + 3z4 < 0 implies 3Z3 < x3 + 2x9. Then 2t(b) = 2x9 + x3 + T3 < 4T3.
Also, z2 > 0 means To > Z3. So, 2t(b) < 4Z3 < 4Z9 < 4¢. This means ¢(b) < 2¢, which
is a contradiction. Therefore, ¢(b) < 2¢ and so, these elements are contained in D; in
Béj). Since zo > 0 and 2 + z3 > 0, we have zo > (—z3)+. Applying the third condition
for fi repeatedly, we obtain elements of the form {(z1, 2, 23, T3, T2, 1) | T1 > 0,29 >
0,20+ 23 > 0,23+ 324 < 0,21 + 22+ 23+ 324 > 0,8(b) < 3¢}. If x1 = 0, we stop.
For z; # 0 and z3 + 23 = 0, we have (22)1 > —z3. So repeatedly applying the first
condition for fl yields {(0,x2,x3,Z3,T2,%1) | Z1 > 0,20 > 0,220 + 23 < 0,23 + 324 <
0,21 + 22 + 23 + 324 > 0,s(b) < 3¢}. Combining this set with the previous one yields
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{(0,22,23,%3,%2,%1) | T1 > 0,22 > 0,23 + 324 < 0,21 + 22 + 23 + 324 > 0,s(b) < 3(}.
Then, we combine these two final sets to obtain L.

Consider elements from Béj) of the form {(0, x2, x3, T3, T2,0) | 23 < 0, 290+23 > 0, 23+324 >
0,21 + 22 + 23 + 324 > 0,s(b) < 3¢}. Since z3 < 0 and 23 + 3z4 > 0, we have z4 > 0.
Also, since z1 + 29 + 23 + 3z4 > 0, subtracting z3 yields z; + 22 + 324 > 0. Then, since
zo + z3 > 0, we have zo > 0 and so, 21 + 229 + 23 + 324 > 0. Thus, we only need to
show that t(b) < 2¢ in order for this set to be contained in Béj). Assume t(b) > 2.
Since s(b) < 3¢, we have t(b) + To < 3¢. This implies Zo < ¢. Then z3 + 3z4 > 0 implies
3%3 > x3+ 2xa. So, 2t(b) = 2x9 + x3 + T3 < 4T3. But, 29 > 0 implies T > Z3. This means
2t(b) < 4x3 < 49 < 4L. Dividing by 2 yields ¢(b) < 2¢, which contradicts our assumption.
Thus, t(b) < 2¢ and the set above is contained in Béj). Since z3 < 0, z9 < 0, and 29423 > 0,
we have zo > (—23)+. Applying the third condition for fl repeatedly, we obtain elements of
the form {(0, x2,$3,§?37j2,§31) | T1 > 0,23 <0,29423>0,234+324 > 0,21+20+23+324 >
0,s(b) < 3¢}. We also consider elements in Bé‘j) of the form {(z1, 2, x3,Z3,%2,0) | 1 >
0,29 > 0,23 <0,29423 >0,23+324 >x1,21 + 22+ 23+ 324 > 0,5(b) < 3¢}. Since z3 <0
and z3+3z4 > x1 > 0, we have z4 > 0. By the same argument as above, we see that these

elements are contained in D in Béj ). Then z3 < 0, zo > 0, and 2z + z3 > 0. This means

z9 > (—z3)4, so we apply the third condition for f1 repeatedly. This yields elements
of the form {(xl,xg,xg,fg,fg,fl) | 1,1 > 0,29 > 0,23 < 0,29+ 23 > 0,23 + 324 >
x1,21 + 22 + 23 + 324 > 0,5(b) < 3¢}. Then if 23 + z3 = 0, we repeatedly apply the
first condition for f; to yield {(0, x9, 23, %3, T2, Z1) | T1 > 0,22 > 0,23 < 0,29 + 23 <
0,23 + 324 > 0,21 + 22 + 23 + 324 > 0,s(b) < 3¢}. Finally, consider elements in Béj) of
the form {(x1,x9,x3,%3,T2,0) | 21 > 0,29 > 0,23 > 0,23 + 324 > 21,21 + 20 + 23+ 324 >
0,s(b) < 3¢}. Since z3 + 3z4 > x1 > 0, we have z3 + 3z4 > 0. Also, since z3 + 324 > 0
and z2 > 0, we have £(b) < 2¢ by a similar argument as above. Thus, these elements are
contained in Ds in Béj). Since zo > 0 and z3 > 0, we have z9 > (—z3)+. Applying the
third condition for fl repeatedly, we obtain elements of the form {(z1, z2, 3, T3, T2, Z1) |
x1,@1 > 0,29 > 0,23 > 0,23 + 324 > 1,21 + 22 + 23 + 324 > 0,s(b) < 3¢}. Then, if
zo = 0, we repeatedly apply the second condition for fl. This yields elements of the
form {(x1,x9,x3,%3,T2,%1) | ©1,T1 > 0,290 < 0,23 > 0,23 + 324 > x1,229 + 23 + 324 >
x1,21 + 22 + 23 + 324 > 0,5(b) < 3¢}. If 23 = 0, we have (22)+ < —z3, so we repeatedly
apply the first condition of fi. This gives elements of the form {(0, z, z3, T3, T2, T1) | Z1 >
0,20 < 0,23 <0,234+324>0,22904+23+324 > 0,21 + 220+ 23+ 324 > O,S(b) < 3@}. After
combining these three sets, we obtain L.

Consider elements from Béj) of the form {(0, z2,x3,Z3,%2,0) | 22 > 0,23 > 0,23 + 324 <
0,21 + 22 + 23 + 324 < 0,5(b) < 3¢}. Since z3 > 0 and 23 + 324 < 0, we have z4 < 0. Also,
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(La)

z1 > 0,80 z1 + 29 > 0 and z1 + 229 + z3 > 0. Thus, these elements are contained in Dy
in Béj ). Since z9 > 0 and z3 > 0, we have z5 > (—z3)4. Applying the third condition for

f1 repeatedly, we obtain elements of the form {(0, z2, 3, T3, Z2,Z1) | T1 > 0,29 > 0,23 >
0,23+ 324 < 0,21 + 22 + 23 + 324 < 0,s(b) < 3¢}. This set is precisely Ls.

Consider elements from Béj) of the form {(x1,x2,x3,T3,72,0) | 1 > 0,29 > 0,23 >
0,23 +324 < 0,21 + 22 > 0,21 + 20 + 23 + 324 < 0,5(b) < 3¢}. Since z3 > 0 and
z3 + 3z4 < 0, z4 < 0. Thus, this set is a subset of D5 in Béj). Since zo > 0 and z3 > 0,
we have z9 > (—z3)4+. Applying the third condition for fl repeatedly, we obtain elements
of the form {(z1, 9,3, Z3,ZT2,%1) | 1,Z1 > 0,20 > 0,23 > 0,23 + 324 < 0,21 + 22 >
0,21 + 22 + 23 + 324 < 0,s(b) < 3¢}. Then, if zo0 = 0, we repeatedly apply the second
condition for fl. This yields the set {(x1, z2, x3, T3, T2, %1) | x1,71 > 0,21 > 0,29 < 0,23 >
0,229+23+324 < 0,21+ 22+23+324 <0, s(b) < 3¢}. Finally, if z3 = 0, then we repeatedly
apply the first condition for fl. We obtain elements of the form {(0,z2,x3,Z3, T2, Z1) |
T1 > 0,20 < 0,23 < 0,229+ 23+ 324 < 0,21 + 22+ 23+ 324 <0,s(b) < 3¢}. This set is
precisely Ly.

Consider elements from Béj) of the form {(0, x2, x2, T3, T2,0) | 22 > 0,23 > 0,23 + 324 <

0,21 + 22 + 223 + 324 < 0,(b) < 3¢}. Since z3 > 0 and z3 + 3z4 < 0, we have z4 < 0.
Therefore, this set is contained in Dy in Béj ). Since zo > 0 and z3 > 0, we have zo >
(—2z3)+. Applying the third condition for f1 repeatedly, we obtain elements of the form
{(0, x2, 3, T3, T2, T1) | T1 > 0,22 > 0,23 > 0,23 + 324 < 0,21 + 20 + 223 + 324 < 0, 5(b) <
3¢}. Then, if zo = 0, we repeatedly apply the second condition for f1. This yields the set
{(0,x2, 3, T3, T2, T1) | T1 > 0,20 < 0,23 > 0,220 + 23 + 324 < 0,21 + 22 + 223 + 324 <
0,s(b) < 3¢}. Then, since z3 > 0 and 21 + 22 + 223 4+ 324 < 0, we have 21 + 29 + 23 + 324 <
—z3 < 0. Thus, the set becomes {(0,z2, x3, T3, T2,T1) | T1 > 0,29 < 0,23 > 0,229 + 23 +
324 < 0,21+ 22+ 23+324 < 0,(b) < 3¢}. Now we consider elements from Béj) of the form
{(0, x2, 3, T3,T2,0) | 22 = 0,23 > 0,229+ 23+ 324 < 0,21 + 22 + 223+ 324 < 0, s(b) < 3¢}.
By a similar argument as above, we see that this set is contained in D5 in BE()j ), Then,
zo = 0 and z3 > 0, so we repeatedly apply the second condition for fl. This yields elements
of the form {(0, zo, 3, T3, T2,0) | 220 < 0,23 > 0,229 + 23 + 324 < 0,21 + 22 + 223 + 324 <
0,s(b) < 3¢}. Again, these conditions imply that z; + 2o + 23 + 324 < 0, so the set becomes
{(0, 22,23, %3,%2,0) | 22 < 0,23 > 0,229 + 23 + 324 < 0,21 + 22 + 23 + 324 < 0, 5(b) < 3(}.

Then, combining the two final sets above, we obtain Ls.

Consider elements from Béj) of the form {(0,x2,x3,Z3,%2,0) | 22 > 0,23 < 0,22 + 23 >
0,23 +324 < 0,21 + 290 + 23 + 324 < 0,8(b) < 3¢}. Since 2z + 23 > 0 and 23 = 0,

21+ 29+ 23+ 324 < 0 implies that z4 < 0. Thus, these elements are contained in D5 in Béj ).
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Since zo > 0, z3 < 0, and 29 + 23 > 0, we have zo > (—z3)+. Applying the third condition
for f repeatedly, we obtain elements of the form {(0,z2, x3,%3,T2,%1) | 22 > 0,23 < 0, 22+
23 > 0,23+324 < 0,21+22+23+324 < 0,s(b) < 3¢}. We also consider elements of the form
{(z1, 2, 23, T3,T2,0) | 1 > 0,22 > 0,23 < 0,24 < 0,29+ 23 > 0,23 +324 < 0,21 + 29 <
0, 21+22+23+324 < 0,5(b) < 3¢}. This set is clearly contained in D3 in Béj). Then, zo > 0,
z3 < 0, and 29+ 23 > 0 imply 22 > (—23)+. Applying the third condition for f1 repeatedly,
we obtain elements of the form {(x1,x2,x3,%3,Z2,Z1) | 1 > 0,29 > 0,23 < 0,24 <
0,20423>0,234324 < 0,21+22 <0,21+20+23+324 < 0,5(b) <3} Then, if zo+23 = 0,
we repeatedly apply the first condition for fl. This yields the set {(0,z2,x3, T3, T2, Z1) |
29 > 0,23 < 0,24 < 0,20+ 23 < 0,23 +324 < 0,21 + 22+ 23+ 324 < 0,8(b) < 3¢}
Finally, consider elements of the form {(x1,z2, 3, Z3,%2,0) | 21 > 0,22 > 0,23 < 0,24 >
0,20423 > 0,21+22+324 < 0,21+ 20+23+324 <0,5(b) < 3¢}. In order to show that this
set is contained in Dg in B, we only need to show ¢(b) < 2¢. Assume t(b) > 2¢. Since
s(b) < 3¢, we have x1 + t(b) + T2 < 3¢. This implies x1 + T2 < ¢ and so, To < ¢. Then,
zo > 0 implies [ > Zo > Z3. Also, z4 > 0 implies [ > T3 > x3. Finally, zo + 23 > 0 implies
To+x3 > Tz+wo. Then, 2t(b) = 2x9+23+T3 < 2x9+2T3 < 2To+2x3 < 20+2¢ = 44. Thus,
t(b) < 2¢, which contradicts our assumption. So, ¢(b) < 2¢, making the set above a subset
of Dg in Béj). Since z9 > 0, z3 < 0, and 22 + 23 > 0, we have zo > (—z23)+. Applying the
third condition for fi repeatedly, we obtain elements of the form {(z1,x2, 3, T3, T2, T1) |
x1 > 0,20 20,23 < 0,24 >0,20423 >0,21+20+324 <0, 21+20+23+324 <0,5(b) <3}
Then, if z5 + 23 = 0, we repeatedly apply the first condition for f. This yields the set
{(0, 22, 23,%3,%2,%1) | 22 > 0,23 < 0,24 > 0,29+ 23 < 0,21+ 22+ 23+324 <0,5(b) < 3(}.
Since z1 > 0,, z9 > 0, and 21 + 29 + 23 + 324 < 0, we have z3 + 3z4 < 0. So, we add this
condition to the set above to yield {(0, z2, z3,Z3,Z2,%1) | 22 > 0,23 < 0,24 > 0,29 + 23 <
0,23 + 324 < 021 + 22 + 23 + 324 < 0,s(b) < 3¢}. Then, combining the three final sets

above, we obtain Lg.

Consider elements from Béj) of the form {(z1, 2, 3, T3,%2,0) | 1 > 1,29 > 0,24 <0, 23+
324 < 0,2904+23 =0,21+229+23 < 0,s(b) < 3¢}. This set is clearly contained in D3 in Béj).
Since zo > 0 and 29 + z3 = 0, we have z3 < 0. This imples (z2)4 < —z3 and we repeatedly
apply the first condition for fi. This yields elements of the form {(z1, o, z3, Z3, T2, 0) |
x1>0,290>0,29>0,24 <0,23+324 <0,20+ 23 <0,21 + 229+ 23 < 0,5(b) < 3¢}. This
set is precisely M;.

Consider elements from Béj) of the form {(x1, o, x3, T3, T2,0) | 1 > 1,29 > 0,23 < 0,24 >
0,22+23 =0, 21+220423 < 0, 21+20+324 < 0,5(b) < 3¢}. We see that this set is contained
in Dg in BY) if #(b) < 2¢. Assume #(b) > 2. Then s(b) < 3¢ implies z + £(b) + Z5 < 3L.

So, x1 4+ Ty < £, implying To < £. Since zo > 0, we have [ > Ty > Z3. Also, since z4 > 0, we
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have £ > T3 > x3. Finally, since 25+ 23 = 0, we have Ty = T3+x9— 3 > T3+ T9— T3 = To.
So, I > Ty > xo. Therefore, 2t(b) = 2w9 + w3 + T3 < 20 + £ + £ = 44. So, t(b) < 2¢, which
contradicts our assumption. Thus, t(b) < 2¢ and the set above is contained in Dg in Béj ),
Since zp > 0 and 23 + 23 = 0, we have (22)4 < —z3. Applying the first condition for f;
repeatedly, we obtain elements of the form {(x1,x2,x3,Z3,%2,0) | ©1 > 0,29 > 0,23 <
0,24 > 0,20+ 23 < 0,21+ 220+ 23 < 0,21 + 220 + 23 + 324 < 0,8(b) < 3¢}. This set is

precisely M.

Consider elements from Béj) of the form { (1, z2, z3,Z3,%2,0) | x1 > 0,20 = 0,23 > 0, 23+
324 < 0,21+ 294+223+324 < 0,5(b) < 3¢}. Since z3 > 0 and 23+ 324 < 0, we have z4 < 0.
Also, z1 < 0, 80 z1+29 = 21 < 0. Finally, z9+23 = 23 > 0. Thus, this set is contained in D3
in Béj ). Since z9 = 0 and z3 > 0, we repeatedly apply the second condition for fl to obtain
the set {(z1,z2,3,%3,%2,0) | 1 > 0,20 < 0,23 > 0,21 + 22 + 223 + 324 < 0, s(b) < 3/(}.
Since z3 > 0 and 21 + 29 + 223 + 324 < 0, we have z1 + 29 + 23+ 324 < —23 < 0. So, our set
becomes {(x1,x2, x3, T3, T2,0) | 21 > 0,20 < 0,23 > 0,21 + 220 + 23 + 324 < 0, s(b) < 3/},
which is precisely Ms.

Conisder elements from Béj) of the form {(x1,x9,x3,T3,72,0) | 1 > 0,29 = 0,23 >
0,23+324 < 0,21 4+220+23+324 < 0,s(b) < 3¢}. This set is contained in D3 in Béj) by the
same reasoning as the set considered in M3. Since zo = 0 and z3 > 0, we repeatedly apply
the second condition for f; to obtain the set {(z1, 22,3, T3,%2,0) | 1 > 0,22 < 0,23 >
0,21+229+23+324 < 0,8(b) < 3¢}. Then, if z3 = 0, we repeatedly apply the first condition
for fi. This yields {(z1, 22,3, T3,%2,0) | 22 < 0,23 < 0,21 +220+23+324 < 0,s(b) < 3¢},
which is precisely Mjy.

Consider elements from Béj) of the form {(z1, 2, x3,T3,%2,0) | 22 =0, 23 > 0,21 + 229 +
23+ 324 < 0,23+ 324 < 0,21+ 20+ 23 +324 = —1,s(b) < 3¢}. This set is contained in Ds
in Béj ) by the same reasoning as the set considered in Ms3. Since zo = 0 and z3 > 0, we
repeatedly apply the second condtion for f; to obtain the set {(z1, 2, 23, T3,T2,0) | 22 <
0,23 > 0,21+220423+324 < 0,21+22+23+324 > 0,5(b) < 3¢}. Since z; > 0, 29 < 0, and
21+ 22+ 23+ 324 > 0, we have z3+ 324 > 0. Thus, the set becomes {(x1, x2, x3, T3, T2,0) |
29 < 0,23 > 0,23 +324 > 0,21 + 220+ 23+ 324 < 0,21 + 22 + 23 + 324 > 0,5(b) < 3¢},
which is precisely M5.

Conisder elements of the form {(z1,z2,x3,T3,%2,0) | 1 > 0,29 > 0,23 > 0,23 + 324 >
0,21 + 22 + 23 + 324 > 0, s(b) < 3¢}. This set is contained in D in BY) if ¢(b) < 2¢. So,
assume t(b) > 2¢. Since s(b) < 3¢, we have 1 + t(b) + T2 < 3¢. This implies z; + T3 < ¢,
so Tg < £. Also, z3 + 3z4 > 0 implies 3Z3 > x3 + 2x9. Also, zo > 0 implies Ty > Z3.
Then, 2t(b) = 2x9 + x5 + T3 < 4%3 < 4% < 4¢. Thus, t(b) < 2¢, which contradicts our
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assumption. Therefore, ¢(b) < 2¢ and the set above is contained in Ds in B5j). Since
zo > 0 and z3 > 0, we have zo > (—z3);. By repeatedly applying the third condition
for fl, we obtain elements of the form {(x1,x9,x3,%3,%2,71) | 1,Z1 > 0,20 > 0,23 >
0,23 + 324 > 0,21 + 22 + 23 + 324 > 0,5(b) < 3¢}. Next, consider elements of the form
{(z1, 22, 23,%3,%2,0) | x1 > 0,29 > 0,23 > 0,23 +324 > 0,21 + 22 + 223 + 324 < 0,5(b) <
3(}. Since z3 > 0 and 21 + 22 + 223 + 324 < 0,w e have z1 + 22 + 23 + 324 < —2z3 < 0. This
set is contained in Dy in Béj) provided ¢(b) < 2¢. Since zg > 0, 234324 > 0, and s(b) < 3¢,
we have t(b) < 2¢ by the same argument as above. Therefore, this set is contained in Dy
in Béj). Since zo > 0 and z3 > 0, we have zo > (—z3)1. By repeatedly applying the third
condition for f, we obtain elements of the form {(z1,x2,x3,T3,T2,71) | ®1,T1 > 0,29 >
0,23 >0,23+324 > 0,21 + 22+ 23+ 324 < 0,5(b) < 3¢}. We now consider elements of the
form {(x1,x2,23,%3,%2,0) | x1 > 0,22 > 0,23 > 0,23 + 324 < 0,21 + 22 > 0,s(b) < 3(}.
Since z3 > 0 and z3 4+ 3z4 < 0, we have z4 < 0. This implies the set is contained in D>
in Béj ). Since z9 > 0 and z3 > 0, we have zo > (—z3)+. Repeatedly applying the third
condition for fl yields the set {(x1, z2, x3, T3, T2, 1) | ©1,T1 > 0,29 > 0,23 > 0,235 +324 <
0,21 4 22 > 0,s(b) < 3¢}. We finally consider elements of the form {(z1, z2, z3, Z3, Z2,0) |
x1 > 0,29 > 0,23 >0,234+324 < 0,21 + 290 <0,5(b) < 3¢}. Since z3 > 0 and 23+ 324 < 0,
we have z4 < 0. This implies the set is contained in D3 in Béj ). Since zo >0 and z3 > 0,
the condition z2 > (—z3)4+ is satisfied. So, by repeatedly applying the third condition
for fi, we obtain elements of the form {(x1,xs,x3, &3, T2, %1) | #1,Z1 > 0,29 > 0,23 >
0,23 + 324 < 0,21 + 22 < 0,5(b) < 3¢}. Then, combining the four final sets above yields
the set S1 = {(z1, x2, 3, %3, T2, %1) | 1,71 > 0,29 > 0,23 > 0, 5(b) < 3(}.

Now, consider elements of the form {(z1, z2, x3, T3, Z2,0) | x1 > 0,29 > 0,23 > 0, 23+323 >
0,21 + 22 + 23+ 324 > 0,8(b) < 3¢}. Since 29 > 0, z3 + 324 > 0, and s(b) < 3¢, we have
t(b) < 2¢ by a similar argument as above. This implies this set is contained in Dj in Béj ),
Since zo > 0 and z3 > 0, we repeatedly apply the third condition for fl to obtain the
set {(z1,z2,3,T3,T2,%1) | ®1,T1 > 0,22 > 0,23 > 0,23 + 324 > 0,21 + 20 + 23 + 324 >
0,s(b) < 3¢}. Then, if zo = 0, we repeatedly apply the second condition for fl. This yields
{(z1, 2, 23, T3, T2, T1) | 1,T1 > 0,22 < 0,23 >0, 234324 > 0, 21+2290423+324 > 0, 5(b) <
3(}. Since zo < 0 and z1 + 229 + 23 + 324 > 0, we have 21 + 29 + 23 + 324 > —22 > 0. We
also consider elements of the form {(x1, z9, z3, T3, T2,0) | 1 > 0,20 > 0,23 > 0, 23+ 324 >
0,21 + 22 + 223 + 324 < 0,s(b) < 3¢}. Since z3 > 0 and 21 + 22 + 223 + 324 < 0, we
have z1 + 29 + 23 + 324 < —z3 < 0. Then, this set is contained in D, in Béj)
t(b) < 2¢. Since z3 > 0, 23 + 324 > 0, and s(b) < 3¢, we have ¢(b) < 2¢ by the same

argument as above. Therefore, this set is contained in Dy in Béj ). Since zo > 0and z3 > 0,

provided

we repeatedly apply the third condition for fi to obtain the set {(z1,x2, 3, T3, T2, T1) |

50



21,1 > 0,290 > 0,23 > 0, 234324 > 0, 21+22+223+324 <0, 5(b) < 3¢}. Then, if zo = 0, we
repeatedly apply the second condition for fi. This yields {(z1,x2, 23, T3, T2, %1) | 1,71 >
0,20 < 0,23 > 0,23+ 324 > 0,21 + 22 + 223 + 324 < 0,8(b) < 3¢}. Since z3 > 0 and
21+ 29 + 223 + 324 < 0, we have 21 + 20 + 23 + 324 < —2z3 < 0. Finally, we consider
elements of the form {(x1,xz9,x3,%3,T2,0) | 21 > 0,29 > 0,23 > 0,323 + 324 < 0,21 +
z9 > 0,s(b) < 3¢}. Since z3 > 0 and 323 + 324 < 0, we have z4 < 0. So, this set is
contained in Dy in BE()j ). Since zo > 0 and z3 > 0, we repeatedly apply the third condition
for fi to obtain elements of the form {(x1,x2,x3, T3, T2, 1) | ©1, 71 > 0,22 > 0,23 >
0,323 + 324 < 0,21 + 22 > 0,5(b) < 3¢}. Then, if z9 = 0, we repeatedly apply the second
condition for f;. This yields {(z1, 22, 23, T3, T2, T1) | 1,Z1 > 0,22 < 0,23 > 0,323 +324 <
0,s(b) < 3¢}. Since z3 > 0 and 3z3 + 3z4 < 0, we have z3 + 324 < —2z3 < 0. So, the set
becomes {(x1,x2,x3, T3, T2, T1) | 1,Z1 > 0,22 < 0,23 > 0, 23 + 324 < 0,5(b) < 3¢}. Then,
combining the three final sets above yields the set Sy = {(x1, 2, x3, T3, T2, Z1) | 1,T1 >
0,22 < 0,23 >0,s(b) < 3¢}.

We now consider elements of the form {(z1, z9, z3, T3, Z2,0) | 1 > 0,23 < 0,24 < 0,22 +
z3 > 0,21 + 29 > 0,s(b) < 3¢}. Since z3 < 0 and z3 + 23 > 0, we have zo > 0. This
implies that the set is contained in Dy in Béj). Since zo > 0, 23 < 0, and 22 + 23 > 0, we
have zo > (—z3)+. Applying the third condition for f1, we obtain elements of the form
{(z1, 22, 23,3, T2, %1) | ®1,T1 > 0,23 < 0,24 < 0,20 + 23 > 0,21 + 22 > 0,s(b) < 3(}.
Next, we consider elements of the form {(x1,x2,x3,%3,72,0) | 21 > 0,23 < 0,24 <
0,29 + 23 > 0,21 + 22 < 0,5(b) < 3¢}. Again, since z3 < 0 and 29 + 23 > 0, we have
zo > 0. This implies that the set is contained in D3 in Béj ). Since z9 > 0, z3 < 0, and
z9 + z3 > 0, we have zo > (—z3)+. Repeatedly applying the third condition for f1, we
obtain elements of the form {(x1,x2,x3,Z3,T2,Z1) | 1,T1 > 0,23 < 0,24 < 0,29 + 23 >
0,21 + 22 < 0,s(b) < 3¢}. We now consider elements of the form {(z1,z2,x3,T3,%2,0) |
x1 > 0,23 < 0,24 > 0,20+ 23 > 0,21 + 22 + 324 > 0,s(b) < 3¢}. Since 22 + z3 > 0 and
21 + 22 + 3z4 > 0, adding the two inequalities yields z1 + 229 + z3 + 324 > 0. So, this
set is contained in D; provided t(b) < 2¢. Assume t(b) > 2¢. Then s(b) < 3¢ implies
x1 + t(b) + Z2 < 30. So, x1 + Ty < ¢, implying Zo < £. Also, since z3 < 0 and z3 + 23 > 0,
we have zo > 0. This means ¢ > Zo > Z3. Then, z4 > 0 implies T3 > x3. Since z9 + z3 > 0,
To > Tz+xo—T3 > T3+x2—T3 = Ta. S0, > To > x9. Finally, 23 < 0 implies z3 < xo < L.
Putting this all together gives 2t(b) = 2x9 + x3 + T3 < 20+ + £ = 4L. So, t(b) < 2/,
which contradicts our assumption. Therefore, ¢(b) < 2¢ and the set is contained in D; in
Béj). Since z2 > 0, z3 < 0 and 29 + z3 > 0, we have 2o > (—z3)+. Repeatedly applying
the third condition for f; yields the set {(z1, 22, 23, T3, T2, Z1) | 1,T1 > 0,23 < 0,24 >
0,22 + 23 > 0,21 + 22 + 324 > 0,s(b) < 3¢}. Finally, we consider elements of the form
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{(z1, 22, 23,T3,%2,0) | 1 > 0,23 < 0,24 > 0,290 + 23 > 0,21 + 22 + 324 < 0,s(b) < 3(}.
Since z3 < 0 and 29 + 23 > 0, we have 2o > 0. So, 29 + 324 > 0. Also, since z2 > 0, 23 < 0,
z4 >0, 20+ 23 > 0, and s(b) < 3¢, we have t(b) < 2¢ by the same argument as above.
Thus, this set is contained in Dg in Béj). Since zo > 0, z3 < 0, and 22 + 23 > 0, we have
z9 > (—z3)+. Repeatedly applying the third condition for f1 yields elements of the form
{(z1, 2, 23, T3, T2, 1) | 1,%1 > 0,23 < 0,24 > 0,20+23 > 0,21+ 20+324 < 0,5(b) < 3(}.
Then, combining the four final sets above yields the set S3 = {(z1,x2, 3, T3, T2,T1) |
21,1 > 0,23 < 0,29 + 23 > 0,5(b) < 3(}.

Lastly, we consider elements of the form {(z1,z9,x3,73,%2,0) | 1 > 1,23 < 0,24 <
0,29+ 23 > 0,21 + 22 > 0,5(b) < 3¢}. Since z3 < 0 and z3 + z3 > 0, we have z5 > 0. This
implies the set above is contained in Dj in Béj). Since z9 > 0, 23 < 0, and 2z + z3 > 0,
we have zo > (—z3)4+. By repeatedly applying the third condition for fl, we obtain
elements of the form {(z1,x2,x3,%3,%2,%1) | x1 > 1,71 > 0,23 < 0,24 < 0,22 + 23 >
0,21 4+ 22 > 0,s(b) < 3¢}. Then, if 29 + 23 = 0, we repeatedly apply the first condition
for fi. This yields the set {(21,22, 23, T3, T2, 71) | 21,71 > 0,23 < 0,24 < 0,23 + 23 <
0,21 4+ 22 > 0, s(b) < 3¢}. Next, consider elements of the form {(x1, z2, x3, T3, Z2,0) | 21 >
1,23 < 0,24 < 0,294+ 23 > 0,21 + 20 < 0,5(b) < 3¢}. Since z3 < 0 and 29 + 23 > 0,
we have zo > 0. This implies the set is contained in D3 in Béj ). Since 20 >0, 23 <0,
and zo + z3 > 0, we have zo > (—z3)+. Repeatedly applying the third condition for
fl yields elements of the form {(z1,x2,z3,Z3,%2,Z1) | 1 > 1,71 > 0,23 < 0,24 <
0,29 + 23 > 0,21 + 22 < 0,8(b) < 3¢}. Then, if 29 + 23 = 0, we repeatedly apply the first
condition for f;. We obtain elements of the form {(z1, 29, x3, T3, T2, T1) | 1,T1 > 0,23 <
0,24 < 0,29 4+ 23 < 0,21 + 22 < 0,5(b) < 3¢}. We now consider elements of the form
{(z1,x2,23,T3,%2,0) | &1 > 1,23 < 0,24 > 0,29 + 23 > 0,21 + 22 + 324 > 0,5(b) < 3¢}.
Since z9 + z3 > 0 and z1 + 29 4+ 324 > 0, we add the two inequalities to obtain the
condition 2z + 229 4+ 23 + 324 > 0. Then, since z3 < 0 and 2z + z3 > 0, we have zo > 0.
With 2z > 0, 23 <0, 24 > 0, 29 + 23 > 0, and s(b) < 3¢, we can show that £(b) < 2¢ by a

). Since 20 >0, 23 <0,

similar argument as above. Thus, this set is contained in D; in Béj
and zo + z3 > 0, we have zo > (—z3)4+. By repeatedly applying the third condition for
f1, we obtain elements of the form {(z1,x2,23,%3,T2,%1) | 1 > 1,Z1 > 0,23 < 0,24 >
0,29 + 23 > 0,21 + 22 + 324 > 0,5(b) < 3¢}. Then, if z5 + 23 = 0, we repeatedly apply
the first condition for fl. This yields the set {(x1,x2,23,%3,%2,Z1) | x1,21 > 0,23 <
0,24 > 0,29+ 23 < 0,21 + 22 + 324 > 0,5(b) < 3¢}. Finally, consider elements of the form
{(z1,x2,23,%3,%2,0) | &1 > 1,23 < 0,24 > 0,29 + 23 > 0,21 + 22 + 324 < 0,5(b) < 3¢}.
Since z3 < 0 and z3 + z3 > 0, we have 25 > 0. This implies z3 + 324 > 0. Also, since
29 >0, 23 < 0,24 >0, 290423 >0, and s(b) < 3¢, we have t(b) < 2¢ by a similar
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argument as above. Thus, the set is contained in Dg in Béj ). Since z9 > 0, z3 < 0, and
z + 23 > 0, we have zp > (—z3),. By repeatedly applying the third condition for fi,
we obtain elements of the form {(z1,x2,z3,T3,T2,Z1) | 21 > 1,71 > 0,23 < 0,24 >
0,22+ 23 > 0,21 + 22 + 324 < 0,5(b) < 3¢}. Then, if 2o + z3 = 0, we repeatedly apply the
first condition for fl. This yields the set {(z1, z2, z3,%3,%2,%1) | 1,Z1 > 0,23 < 0,24 >
0,20 + 23 < 0,21 + 22 + 324 < 0,s(b) < 3¢} Then, combining the four final sets above
yields the set Sy = {(z1, 22, z3,%3,%2,Z1) | 1,T1 > 0,23 < 0,29 + 23 < 0, 5(b) < 3(}.

We see that by combining S1 = {(x1, 2, x3, T3, T2, T1) | 1,Z1 > 0,292 > 0,23 > 0,5(b) <
30}, So = {(x1, e, x3,%3,T2,T1) | x1,T1 > 0,22 < 0,23 > 0,5(b) < 3¢},

S3 = {(z1,22,23,%3,%2,%1) | x1,T1 > 0,23 < 0,22 + 23 > 0,s(b) < 3¢}, and Sy =
{(z1, 22,3, T3, T2, T1) | 1,71 > 0,23 < 0,22 + 23 < 0,s(b) < 3¢}, we obtain the set Nj.

Therefore, the missing elements in B are obtained by repeatedly applying fl to elements in
Béj). So, Béj) = B and we have now constructed the sets B((l]) for 0 < a <6. O

By direct calculations of the simple reflections r; (i = 0,1,2) on Ay, we obtain the following

Lemma, which we will use along with Proposition 3.4.4 to prove Theorem 3.4.3 for A = £A,.

Lemma 5.1.2. Letk € Z~g and k =6(j — 1)+ a for 1 <a < 6. Then wk Ay = Ay — moag —

miaq — moas, where

352 + 35 ifa=1,2,3,4
mo =

3i249j4+6 ifa=5,6

652 + 3] ifa=1

6;2+9j+3 ifa=2,3
mi =

6524125 +6 ifa=4,5

\3j2+15j+9 ifa =6

372+3j+1  ifa=1,2
mo =

3j246j+3 ifa=3,4,56
The main result for A = A5 is given below.

Theorem 5.1.3. For A\ = {As, ¢ > 1 and the given perfect crystal B = Bsy for the quantum
affine algebra, Uq(DS’)), with d = 6 and the sequence {il(zj)} given above, conditions (1), (2), and
(8) in Theorem 3.4.3 hold with k = 1. Hence, we have path realizations of the corresponding
Demazure crystals B,k (¢A2) for Uq(Dfls)) with tensor product-like structures.
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Proof. 1t is sufficient to show that conditions (1), (2), and (3) hold in Theorem 3.4.3. We have
already shown, by explicit construction of the subsets B((ZJ ) in Lemma 5.1.1 that Béj ) = B, and

hence, condition (1) holds for k = 1.

In order to show condition (2), we consider (€Az,h (;)). Observe that ((Ag,h ;) = 0 <
Ei(j)(b) for all b € Béj_)l, a = 2,4,5,6. Also, <€A2,hi(j)>a: { for a = 1,3. We mu;t consider
E;(b) for all b € Béj) and Béj). Note that for all b ; B(()j) or Béj), we have Zo = (. Hence,
62@0::i2+é($3—i@+,:l+%(x3—jﬁ+,ZéHberbE<Bg)andléﬂ.Thu&<€A2J%gﬁjgséﬂ(w

for all b€ BY) | and condition (2) holds.

a—1>

To prove condition (3), we use Lemma 5.1.2. For k =6(j —1)+a, j > 1,1 < a < 6, we have

(

3j4+2 ifa=2
3j+3 ifa=35
(w®) Ay, ha) ) =93i+4 ifa=6
6j+3 ifa=1

6j+6 ifa=4

Hence, for positive 7, (w(k)Az,hiw ) is greater than zero. By Proposition 3.4.4, this implies

a+

wktl) = rg)ﬂw(k) > w®) . Thus, the sequence of Weyl group elements, {w(k)}kzo, is increasing

with respect to the Bruhat order, satisfying condition (3).

Since conditions (1), (2), and (3) hold in Theorem 3.4.3, we have B, u ((A2) = P*) (¢Ay, B).
O

5.2 Case 2: A\ = /A

Now, consider A = ¢/A; and the irreducible highest weight U;(Df))—module with highest weight
¢A. Note that (¢A1)(c) = 2¢, so we will use the associated perfect crystal B = Bgy. The ¢A;-
minimal element in B is b = (£,0,0,0,0,¢). Also, \; = A\ = ¢A; for j > 1, and hence b; = b.
Thus, the ground-state path is py =---®b® b® b.
Set d = 6 and define the sequence {i,(lj) |j>1,1<a<6}C{0,1,2} as follows,
(7)) _ () _ z’éj) —1, igj) _ z’éj) —9, iflj) -0

i =13
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By the action of ﬁ on B, we have

b9 —

b(j)
b(J
b(J
b(J
b(J
b(J

= (£,0,0,0,0,0),
= fmax Uy = (0,2,0,0,0,0),
e, § ) = (0,0,2¢,0,0,),
fmax(bg ) = (0,0,0,2¢,0,¢),
max ()Y = (£,£,0,0,0,0),
fnax (p7) = (0,2¢,0,0,0,0),
maX(bé])) (0,0,4¢,0,0,0).

Using the notation from Theorem 3.4.3, yields the following Lemma.
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Lemma 5.2.1. Define conditions Py,, Qn, and Rs for b € B as follows,

;

(P1):21 20,20 <0,24 <0,21 + 23+ 324 = 0,5(b) = 2¢;
(P2):21>20,20<0,21+23>0,21 +204 23 +324 > 0,21 + 229+ 23 + 324 <0,
t(b) + x1 =¥, s(b) < 2¢;
(P3):21>0,20<—1,21+23>0,21+ 204+ 23+ 324 < 0,¢(b) + x1 >, 71 + T3 = ¢,
s(b) < 2¢;
(Py) 121 < 0,290 < 0,23 >0,21+ 20+ 23 +324 <0,t(b) + 71 > ¢, %1 + T3 =14, s(b) <24
(P5):23<0,24 20,21 +23<0,204+324 >0,21 4+ 22+ 324 > 0,21 + 229+ 23 + 324 <0,
t(b) +x1 =¥, s(b) < 2¢;
(Ps) 121 >0,20<0,24 =0,21 + 23 <0,21 +220 + 23+ 324 < 0,8(b) + ©1 > b, 21 + 20 =¥,
s(b) < 2¢;
(P7):21<0,20<0,23<0,24=0,21+2204+ 23+ 324 <0,t(b) + T1 >, 71 + 12 =/,
s(b) < 2¢;
(Pg):21 <0,20=0,23 <0,24 =0,21 + 220 4+ 23 + 324 < 0,¢(b) + z1 = ¢, s(b) < 24,
(Py):21 20,20 <0,24 >0,21 +23 <0,20 4324 <0,21 + 229+ 23+ 324 < 0,8(b) + 21 > ¥,
tb)+x1 >, 21+ T3 < l,x1+ 20 — 23+ T3 =4,8(b) < 2¢;
(Pro) : 21 < 0,23 < 0,24 > 0,21 + 20+ 324 < 0,21 + 229 + 23 + 324 < 0,¢(b) + 1 > ¢,
xo — w3+ Tz + T1 = £, s(b) < 24
(P11):21 <0,23 > 0,21 + 29+ 23+ 324 > 0,21 + 2220 + 23 + 324 < 0,¢(b) + 21 = £, 5(b) < 2;
(Pr2) 21 < —1,20 < 0,23 > 0,20+ 23 +324 > 0,21 + 22+ 23+ 324 < 0,6(b) + z1 > ¥,

T1+23=1{,5(b) <24
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121 20,22<0,21+Z320,21+Z3+3Z4>0,21+222+23+3Z4<0,S(b):2€;

121 ZO,ZQ<—1,21+Zg20,21+222+23+3Z4<0,t(b)+x1 > 0,32+ 33 >4,

s(b) < 2¢4;

129 < 0,23 <0,214+23<0,21+20+23+324 <0,t(b) +x1 > 4,71 + T3 ={,5(b) < 2¢;
121 < 0,20 <0,23>0,21 + 220 + 23+ 324 < 0,8(b) +T1 > £, %1 + T3 > £, s(b) < 2
) <0,Z3<0,21+Z3<0,21+222+Z3+3Z4<0,t(b)+$1 >€,t(b)+§31 >/,

T1+ T3> 0, s(b) <24

129 < 0,23 <0,24 =0,21 + 23 <0,21 + 229+ 23 + 324 < 0,¢t(b) + x1 > £,t(b) + 1 > ¢,

T1+ 20 > 4,1 + 19 >£,S(b) < 2/

123<0,24 >0,214+23<0,21 + 204+ 23 +324 <0,21 4+ 229 + 23+ 324 <0,

t(b)—i—l’l >0 x1+x9— T3+ Ty > L, xo—x3+ T+ T1 >€,S(b) < 2/

t21 < —1,20 < 0,23 > 0,204+ 23 +324 > 0,21 + 229 + 23 + 324 < 0,t(b) + z1 > ¢,

t(b) + 1 < l,z1 + T3 >, s(b) <2

129 < 0,23 <0,204324 >0,21 + 23 <0,21 + 2290+ 23 + 324 < 0,¢t(b) + x1 > ¢,

1+ T3> 0,s(b) < 24

021 <0,23 >0,234+324 >0,8b) —21 >0+ x1,8(0b) + 20+ 23+ 324 > £+ 21, 8(b) < 2¢;
123 <0,24 >0,21 4+ 23 <0,8b) —21 >0+ x1,800) — 21 + 22+ 324 > £+ 21,

s(b) + z2 + 324 > £+ 1, s(b) < 24,

121 20,21 4+23>0,21 +23+324>0,50b) —21 >+ 21,8(b) + 22+ 23+ 324 > { + x1,
s(b) < 2¢;
124 <0,234+324 <0,21 + 23+ 324 <0,8(b) —21 >+ x1,8(b) — 21 + 20 > 0+ 71,

s(b) + z2 > £+ x1,5(b) < 2¢.
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Then, the subsets {B,gj) |7 >1,0<a<6} of B are given by,

BY) ={(¢,0,0,0,0,0)}

BY = B U{(21,22,0,0,0,8) | 21 > 0,2 + 23 = 0, 5(b) = 2}

BY) = BY U {(21,29,73,0,0,8) | 21 > 0,24 < 0,21 + 23 + 324 = 0, 5(b) = 20}

BY) = BY U{(x1,72,73,73,0,0) | 21 > 0,20 < 0,21 + 23 > 0,21 + 223 + 23 + 324 = 0,
s(b) = 20}

BY =By UuciuC,U---UCha

BY =B UD;UD,U---UDy

BY) = FFUFRUFUF,,

where Cy, = {(x1,22,x3,%3,0,%1) | (Py) holds} for 1 <n <12, D,, = {(x1,2z2,x3,%3,0,Z1) |
(Qn) holds} for 1 <n <9, and F,, = {(x1,x2,x3,T3,T2,T1) | (Ry) holds} for 1 <n < 4.

Proof. By definition, BY) = {b;}, where b; = (£,0,0,0,0,¢) when A = £(Ag + A;). Then,

B(g]) = U j;k(:j)BC(LJ—)l \ {0}. To obtain B%J), we apply f1 repeatedly to (¢,0,0,0,0,¢). Since
k>0

z9 = z3 = 0, we apply the first condition for fl repeatedly to yield new elements of the form

{(z1,22,0,0,0,¢) | z1 > 0,21 + 23 = 0,s(b) = 2¢}. Thus, B%j) = B(gj) U{(z1,22,0,0,0,0) | 21 >
0,21 4+ 23 = 0,s(b) = 2(}.

To obtain Béj ), we apply fg repeatedly to elements in B%j ). Note that xo = T3 = 0 for
(¢, Q,0,0,0,E) ENB((]J), so we cannot apply fa to Béj ). Then, since z4 = 0 for all elements in
ng), applying fo repeatedly yields new elements of the form {(x1,z2,23,0,0,¢) | 21 > 0,24 <
0,21 + 23 + 324 = 0,5(b) = 2¢}. These elements are not contained in B@ since z3 > 0. Thus,

BY = BY U {(x1,19,23,0,0,0) | 21 > 0,24 < 0,2 + 23+ 324 = 0, 5(b) = 20}

Next, to obtain Béj ), we apply fl repeatedly to elements in Béj ) Since B%j ) contains el-
ements obtained by applying fi repeatedly, we only need to examine the action of fi to el-
ements in {(z1,22,23,0,0,€) | 21 > 0,24 < 0,21 + 23 + 324 = 0,5(b) = 2¢}. If 23 < 0, then
(z2)4 < —z3 and applying fi repeatedly yields elements of the form {(x1,x2,3,0,0,€) | z; >
0,23 < 0,24 < 0,21 + 23 + 324 = 0,s(b) = 2¢}. Each of these elements is already contained
in ng), so no new elements are obtained. If z3 > 0, then we have z9 = 0 < z3, so apply-
ing fi repeatedly yields new elements of the form {(x1,x2,23,23,0,£) | 21 > 0,29 < 0,23 >
0,21 + 229 + 23 + 324 = 0,s(b) = 2¢}. Then, if z3 = 0, the first condition for fl holds and
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we repeatedly apply fl to obtain new elements of the form {(z1,z2,23,%3,0,¢) | 21 > 0,29 <
0,23 <0,21423 > 0,21+220+23+324 = 0, s(b) = 2¢}. We combine the two sets above to obtain
{(z1,x2,23,%3,0,0) | 21 > 0,29 <0, 21+23 > 0, 21+2290+23+324 = 0, s(b) = 2¢}. These elements
) )

are not contained in Béj since T3 > 0 here, whereas 3 = 0 for all elements in Béj .Therefore,

we have B:gj) = Béj) U{(x1,z2,23,%3,0,0) | 21 > 0,20 < 0,21 + 23 > 0,21 + 2290 + 23 + 324 =

0, s(b) = 2¢}.

To obtain Bij ), we apply fo repeatedly to elements in Béj ),

(C1) Consider the subset of B§j), {(z1,22,0,0,0,¢) | 21 > 0,21 + 23 = 0,s(b) = 2¢}. The
conditions for (F3) are satisfied, so we repeatedly apply fo to obtain new elements of the
form {(x1,z2,23,%3,0,Z1) | 21 > 0,20 < 0,24 = 0,21 + 23 = 0,s(b) = 2¢}. Also, consider
the subset of Béj), {(z1,29,23,0,0,0) | 21 > 0,24 < 0,21 + 23 + 324 = 0,s(b) = 2/(}.
Again, the conditions for (F3) are satisfied, so we repeatedly apply fo to obtain the set
{(z1, 22, 23,73,0,%1) | 21 > 0,29 < 0,24 <0, 21+23+324 = 0, s(b) = 2¢}. Combining these
two sets yields the set C1. We note that C is not contained in Bs since z1 4+ 23+ 324 =0
and s(b) = 2¢ imply Z1 + T3 = ¢, and 22 < 0 implies that z; < /.

(Ca) Consider elements of the form {(x1,z2,23,%3,0,¢) | 21 > 0,20 < 0,21 + 23 > 0,21 +
229 + 23 + 324 = 0,s(b) = 2¢}. This set is clearly a subset of Béj). Then, since z9 < 0
and z1 + 229 + z3 + 324 = 0, we have 21 + 23 + 324 > 0 and 21 + 29 + 23 + 324 > 0.
So, conditions for (Fg) are satisfied. Repeatedly applying fg to elements of this form
yields the set {(z1,z2,23,%3,0,%1) | 21 > 0,20 < 0,21 + 23 > 0,21 + 22 + 23 + 324 >
0,21 4+ 229 + 23 + 324 < 0,t(b) + x1 = £, s(b) < 2¢}. This set is precisely Cy. Note that Cy
is not contained in ng) since z1 4+ 229 + 23 + 324 < 0.

(C3) Consider elements of the form {(z1,z2,23,23,0,¢) | 21 > 0,20 < 0,21 + 23 > 0,21 +
229 + z3 + 324 = 0,s(b) = 2¢}. This set is clearly a subset of Béj). Then, since z9 < 0
and 21 + 220 + 23 + 324 = 0, we have 21 + 23 + 324 > 0 and 21 + 22 + 23 + 324 > 0.
So, conditions for (Fg) are satisfied. Repeatedly applying fo to elements of this form
yields the set {(Il,xg,l‘g,i‘g,o,.fl) | 21 2> 0,20 < 0,21 +23 > 0,21 + 290+ 23 +324 >
0,214+220+ 234324 < 0,t(b)+x1 = ¥¢,s(b) < 2¢}. Then, if z; > 0 and 21 +22+23+324 =0,
the conditions for (F2) are satisfied since zo 4+ 324 = —21 — 23 < 0. Repeatedly applying
fo to elements of this form yields the set {(z1,22,23,%3,0,71) | 21 > 0,20 < —1,21 + 23 >
0,21+ 22+ 23+ 324 < 0,t(b) +x1 > £, 71+ T3 = £, s(b) < 2¢}. We note that the condition
Z1 + T3 = (£ is obtained from 2y + 29 + z3 + 324 = 0 and ¢(b) + x1 = £. Then, this set is

precisely C3 and is not contained in B:gj ) since z1 + 229 + 23 + 324 < 0.

(C4) Consider elements of the form {(x1,x2,x3,23,0,¢) | 21 > 0,220 < 0,21 + 23 > 0,21 + 229 +
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z3 + 3z4 = 0,s(b) = 2¢}. This set is clearly a subset of Bi(,,j). Then, since z2 < 0 and
214220+ 23+ 324 = 0, we have 21 + 23+ 324 > 0 and z1 + 29 + 23 + 324 > 0. So, conditions
for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields the set
{(z1,22,23,%3,0,71) | 21 > 0,20 < 0,214+23 > 0,21+ 22+23+324 > 0,21 +220+23+324 <
0,t(b) + 1 = £,s(b) < 2¢}. Then, if z; > 0 and 2] + 22 + 23 + 324 = 0, the conditions
for (F2) are satisfied since zo + 324 = —2z1 — 23 < 0. Repeatedly applying fo to elements
of this form yields the set {(x1,x9,23,%3,0,Z1) | 21 = 0,20 < —1,23 > 0,21 + 23 >
0,21+ 22+ 234+324 < 0,8(b) + 21 > £, 71+ T3 = {,s(b) < 2¢}. Since z; = 0, the conditions
for (Fy) are satisfied. Repeatedly applying fo yields the set {(z1, 22, 23,%3,0,%1) | 21 <
0,20 < —1,23 > 0,21+22+23+324 < 0,t(b)+x1 > £,z1+x3 = ¢, s(b) < 2¢}. Now, consider
elements of the form {(x1,x9,x3,%3,0,0) | 21 > 0,20 < 0,21 + 23 > 0,20 + 23 + 324 =
0,21 + 222 + 23 + 324 = 0,s(b) = 2¢}. This set is clearly a subset of B:gj). Then, since
zo < 0and z1 + 220 + 23+ 324 = 0, we have 21 + 23+ 324 > 0 and 21 4+ 290 + 23 + 324 > 0.
So, conditions for (Fg) are satisfied. Repeatedly applying fo to elements of this form
yields the set {(x1,x9,23,%3,0,Z1) | 21 = 0,20 < 0,23 > 0,21 + 23 > 0,20 + 23 + 324 =
0,214220+23+324 < 0,t(b)+x1 = £,5(b) < 2¢}. Then since z; = 0 and 2o+ z3+324 = 0,
conditions for (F1) are satisfied. We repeatedly apply fg to obtain new elements of the
form {(z1,x2,23,%3,0,%1) | 21 < 0,29 < 0,23 > 0,21 + 20 + 23 + 324 < 0,¢t(b) + 71 =
0,71 + z3 = £, s(b) < 2¢}. Combining the two final sets above yields the set Cs. We note

that this set is not contained in B:g] ) since 214 220 4+ 23 4+ 324 < 0.

Consider elements of the form {(z1,z2,x3,73,0,¢) | 21 > 0,20 < 0,21 + 23 > 0,29 + 324 >
0,21 +220+23+324 = 0,s(b) = 2¢}. This set is clearly a subset of Béj). Then, since 2 < 0
and z1 + 229 + 23 + 324 = 0, we have 21 + 23 + 324 > 0 and 21 + 29 + 23 + 324 > 0. So,
conditions for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields
the set {(x1,x2,x3,73,0,Z1) | 21 > 0,20 < 0,21 +23 =0,20+324 > 0,21 +220+23+324 <
0,t(b)+z1 = ¢,s(b) < 2¢}. Since z1+2z3 = 0 and z2+3z4 > 0, we have z1+20+23+324 > 0,
satisfying the conditions for (Fy). Repeatedly applying fo to elements of this form yields
{(z1,22,23,%3,0,Z1) | 21 > 0,24 > 0,21 + 23 < 0,220+ 324 > 0,21 + 220 + 23 + 324 <
0,t(b) +x1 = ¢,s(b) < 2¢}. Next, consider elements of the form {(x1, z2,x3,%3,0,¢) | 21 >
0,22 < 0,23 > 0,22 4+ 324 > 0,21 + 229 + 23 + 324 = 0,s(b) = 2¢}. This set is clearly a
subset of B:())j). Then, since z5 < 0 and 27 + 229 + 23 + 324 = 0, we have z1 + 23+ 324 >0
and 21 + 29 + 23 + 324 > 0. So, conditions for (Fg) are satisfied. Repeatedly applying fo to
elements of this form yields the set {(z1, 2, z3,%3,0,Z1) | 21 = 0,22 < 0,23 > 0,290+324 >
0,21 +220+ 23+ 324 < 0,t(b) + 1 = ¢, 5(b) < 2¢}. Since z; =0, z3 > 0, and 22 + 324 > 0,
we have 21 + 22 + 23 + 324 > 0 and conditions for (F5) are satisfied. We repeatedly apply

fo to these elements to obtain the set {(x1, 2, 3, £3,0,Z1) | 21 < 0,23 = 0, 21 + 22+ 324 >
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(Ce)

(C7)

0,21 + 22+ 23+ 324 > 0,21 + 220 + 23 + 324 < 0,£(b) + 21 = ¢, s(b) < 2¢}. Then, since
z3 = 0 and z1 + 29 + 23 + 324 > 0, the conditions for (Fy) are satisfied and we repeatedly
apply fo to these elements. This yields the set {(z1,22,23,%3,0,%1) | 21 < 0,23 < 0,24 >
0,21 + 22 +324 > 0,21 + 220 + 23 + 324 < 0,8(b) + z1 = £,s(b) < 2¢}. Combining the
two final sets above yields the set C5. We note that C5 is not contained in B:gj ) since
21+ 229 + 23+ 324 < 0.

Consider elements of the form {(x1,x2,x3,73,0,¢) | 21 > 0,20 < 0,21 + 23 > 0,29+ 324 >
0,21 +220+23+324 = 0,5(b) = 2¢}. This set is clearly a subset of ng). Then, since zo < 0
and z1 + 229 + 23 + 324 = 0, we have 21 + 23 + 324 > 0 and 21 + 29 + 23 + 324 > 0. So,
conditions for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields
the set {(x1,x2,x3,73,0,Z1) | 21 > 0,20 < 0,21 +23 =0,20+324 > 0,21 +229+23+324 <
0,t(b)+x1 = ¢,s(b) < 2¢}. Since z1+2z3 = 0 and z2+3z4 > 0, we have z1+2z0+23+324 > 0,
satisfying the conditions for (Fy). Repeatedly applying fo to elements of this form yields
{(z1,22,23,%3,0,Z1) | 21 > 0,24 = 0,21 + 23 < 0,220+ 324 > 0,21 + 220 + 23 + 324 <
0,t(b) + 1 = ¢,s(b) < 2¢}. Then, since z4 = 0, 22 + 324 > 0, and z3 < 0, we must have
zg = 0. If z; > 0, then the conditions for (F») are satisfied and we repeatedly apply fo to
yield the set {(z1,z2,23,%3,0,%1) | 21 > 0,20 < 0,24 = 0,21 +23 < 0,21 +220+ 23+ 324 <
0,t(b) + x1 > L, + xo = £,5(b) < 2¢}. We obtain the condition 1 + xo = ¢ from
zo = z4 = 0 and t(b) + x1 = £. Then, this set is precisely Cs. We note that Cg is not
contained in B?()j) since z1 + 229 + 23 + 324 < 0.

Consider elements of the form {(x1,z2,x3,%3,0,¢) | 21 > 0,20 < 0,21 + 23 > 0,29+ 324 >
0,21 +220+23+324 = 0,5(b) = 2¢}. This set is clearly a subset of ng). Then, since z9 < 0
and z1 + 229 + 23 + 324 = 0, we have z1 + 23 + 324 > 0 and 21 + 29 + 23 + 324 > 0. So,
conditions for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields
the set {(x1,x2,x3,73,0,Z1) | 21 > 0,20 < 0,21 +23 =0,20+324 > 0,21 +229+23+324 <
0,t(b)+x1 = ¢,s(b) < 2¢}. Since z1+2z3 = 0 and z9+3z4 > 0, we have z1+20+23+324 > 0,
satisfying the conditions for (Fy). Repeatedly applying fo to elements of this form yields
{(z1,22,23,%3,0,71) | 21 > 0,24 = 0,21 + 23 < 0,20+ 324 > 0,21 + 220+ 23 + 324 <
0,t(b) +x1 = ¢,s(b) < 2¢}. Then, since z4 = 0, 22 + 324 > 0, and 22 < 0, we must have
zo = 0. If z; > 0, then the conditions for (F») are satisfied and we repeatedly apply fo to
yield the set {(z1,z2,23,23,0,%1) | 21 = 0,22 < 0,23 < 0,24 = 0,21 + 229 + 23 + 324 <
0,t(b) + x1 > €,z + x2 = £, s(b) < 2¢}. Since z; = 0, the conditions for (F;) are satisfied
and we repeatedly apply fo. This yields the set {(z1,22,23,%3,0,%1) | 21 < 0,22 < 0,23 <
0,24 = 0,21 + 229+ 23 + 324 < 0,¢(b) + T1 > ¢, 71 + x2 = ¢, s(b) < 2¢}, which is precisely

C7. Again, note that C7 is not contained in Béj) since z1 + 229 + 23 + 324 < 0.
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(Cs)

(C10)

Consider elements of the form {(z1,z2,x3,%3,0,¢) | 21 > 0,20 < 0,21 + 23 > 0,29 + 324 >
0,21 +222+23+324 = 0,s(b) = 2¢}. This set is clearly a subset of Béj). Then, since 29 < 0
and z1 + 229 + 23 + 324 = 0, we have z; + z3 + 324 > 0 and 21 + 29 + 23 + 324 > 0. So,
conditions for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields
the set {(x1,z2,23,%3,0,%1) | 21 > 0,20 < 0,21 4+23 = 0,20+ 324 > 0,21+ 220+ 23+ 324 <
0,t(b)+x1 = £,s(b) < 2¢}. Since z1+23 = 0 and 29+324 > 0, we have 21 +29+23+324 > 0,
satisfying the conditions for (F4). Repeatedly applying fo to elements of this form yields
{(z1, 22, 23,23,0,%1) | 21 = 0,23 < 0,24 = 0,21 +23 < 0,20+324 > 0,21 +220+ 23+ 324 <
0,t(b) + 1 = £,s(b) < 2¢}. Since z4 = 0, 20 + 324 > 0, and 22 < 0, we must have
z9 = 0. Then, z; = 0 implies the conditions for (F7) are satisfied. We repeatedly apply
fo to these elements to obtain the set {(z1,22,23,%3,0,Z1) | 21 < 0,20 = 0,23 < 0,24 =
0,21 + 220 + 23 + 324 < 0,¢(b) + 1 = ¢,s(b) < 2¢}. This set is precisely Cg and is not
contained in Béj) since z1 + 229 + 23 + 324 < 0.

Consider elements of the form {(x1, z2,23,%3,0,¢) | 21 > 0,22 < 0,21 + 23 > 0,290 + 324 >
0,21 + 229 + 23 + 324 = 0,s(b) = 2¢}. This set is clearly a subset of B:gj). Then, since
zo < 0and z1 + 220 + 23+ 324 = 0, we have 21 + 23+ 324 > 0 and 21 + 20 + 23 + 324 > 0.
So, conditions for (Fg) are satisfied. Repeatedly applying fg to elements of this form
yields the set {(z1,z2,x3,73,0,%1) | 21 > 0,22 < 0,21 + 23 = 0,20 + 324 > 0,21 + 229 +
z3 + 324 < 0,t(b) + 21 = ¢,s(b) < 2¢}. Since 21 + z3 = 0 and 22 + 3z4 > 0, we have
21 + 22 + 23 + 324 > 0, satisfying the conditions for (Fy). Repeatedly applying fo to
elements of this form yields {(z1,x2,z3,%3,0,Z1) | 21 > 0,24 > 0,21 + 23 < 0,29 + 324 =
0, 21+220+23+324 < 0,8(b)+x1 = ¢,s(b) < 2¢}. Then, if z; > 0 and z4 > 0, the conditions
for (F2) are satisfied and we repeatedly apply fg to these elements. This yields the set
{(z1, 22, 23,23,0,%1) | 21 > 0,20 < 0,24 > 0,21+23 <0,20+324 < 0,21+220+23+324 <
0,t(b) +x1 > L, t(b)+z1 > L, 21+ T3 < l,x1+ 22 — 23+ T3 = {,s(b) < 2¢}. The condition
ZT1 + 3 < { is obtained from ¢(b) + 1 = ¢, z1 + 23 < 0, and 29 + 324 = 0. Also, the
condition x1 + 9 — x3+ Z3 = £ is obtained from ¢(b) +x1 = £ and 29+ 3z4 = 0. Then, this
set, is precisely Cy. We note that Cy is not contained in Béj ) since 21+ 2294+ 23+ 324 <O.
Consider elements of the form {(x1,z2,x3,Z3,0,¢) | 21 > 0,20 < 0,21 + 23 > 0,29+ 324 >
0,21 +222+23+324 = 0,5(b) = 2¢}. This set is clearly a subset of Béj). Then, since 2 < 0
and z1 + 229 + 23 + 324 = 0, we have 21 + 23 + 324 > 0 and 21 + 29 + 23 + 324 > 0. So,
conditions for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields
the set {(x1,x2,x3,73,0,Z1) | 21 > 0,20 < 0,21 +23 =0,20+324 > 0,21 +229+23+324 <
0,t(b)+z1 = ¢,s(b) < 2¢}. Since z1+2z3 = 0 and z2+3z4 > 0, we have z1+20+23+324 > 0,
satisfying the conditions for (Fy). Repeatedly applying fo to elements of this form yields
{(.1‘1,.1‘2,.%3,.?3,0,131) ‘ 21 20,24 20,21+ 23 < 0,204324 = 0,21 +220 + 23+ 324 <
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0,t(b)+x1 = ¢,s(b) < 2¢}. Then, if z; > 0 and z4 > 0, the conditions for (F2) are satisfied
and we repeatedly apply fo to these elements. This yields the set {(z1,x2,23,23,0,Z1) |
21 =0,20<0,23 < 0,24 >0,21+23 <0,20+324 <0,21 +220+ 23 +324 <0,¢(b) + 1 >
0t(b)+T1 > 0,51 + T3 < l,x1 +x9 — w3+ T3 = £, 5(b) < 2¢}. Since z; = 0, conditions for
(F1) are satisfied and we apply fo to obtain elements of the form {(z1, 22, x3,%3,0,Z1) |
21 < 0,290 <0,23<0,24 >0,204324 <0,21+220+23+324 < 0,8(b) +x1 > £, t(b)+71 >
0,71 + T3 < lyxog —xg + T3+ 1 = {,s(b) < 2¢}. Next, consider elements of the form
{(z1, 22, 23,23,0,¢) | 21 > 0,20 < 0,21+23 >0,20+324 > 0,21 +229+23+324 =0, 5(b) =
2¢}. This set is clearly a subset of Béj). Then, since zo < 0 and 21 + 229 + 23 + 324 = 0,
we have z1 + 23+ 324 > 0 and 21 + 22 + 23 + 324 > 0. So, conditions for (Fg) are satisfied.
Repeatedly applying fo to elements of this form yields the set {(z1, z2, 3, Z3,0,Z1) | 21 >
0,20 < 0,21 +23=0,20+324 > 0,21 +229+ 23+ 324 <0,t(b) + z1 = £, s(b) < 2¢}. Since
21423 = 0 and 22+324 > 0, we have z;+22+23+324 > 0, satisfying the conditions for (Fy).
Repeatedly applying fo to elements of this form yields {(z1, 2, 3, 3,0, %) | 21 = 0, 23 <
0,24 > 0,214+23 < 0,204324 =0, 21 +220+23+324 < 0,t(b)+x1 = £,s(b) < 2¢}. If z4 > 0,
the conditions for (F;) are satisfied. Repeatedly applying fg to these elements yields the
set {(z1,x2,23,%3,0,Z1) | 21 < 0,22 < 0,23 < 0,24 > 0,204+ 324 = 0,21+ 229+ 23+ 324 <
0,t(b) + z1 = ¢,s(b) < 2¢}. Finally, consider elements of the form {(z1,x2,z3,%3,0,¢) |
z1 > 0,20 < 0,23 >0,20+324 > 0,21 +220+ 23+ 324 = 0, s(b) = 2¢}. This set is clearly a
subset of B:(,)j). Then, since z9 < 0 and 27 + 229 + 23 + 324 = 0, we have z1 + 23+ 324 >0
and z1 + 22 + 23 + 324 > 0. So, conditions for (Fs) are satisfied. Repeatedly applying
fo to elements of this form yields the set {(z1,z2,23,%3,0,%1) | 21 = 0,29 < 0,23 >
0,22 + 324 > 0,21 + 220 + 23 + 324 < 0,t(b) + 1 = ¢,s(b) < 2¢}. Since z; = 0, z3 > 0,
and zo + 324 > 0, we have z1 + 22 + 23 + 324 > 0 and conditions for (F5) are satisfied. We
repeatedly apply fo to these elements to obtain the set {(z1,x2,23,73,0,Z1) | 21 < 0,23 =
0,21+22+324 > 0,21 +20+23+324 > 0,21 +220+ 23+324 < 0,¢t(b) + 21 = £, s(b) < 2(}.
Then, since z3 = 0 and z1 + 22 + 23 + 324 > 0, the conditions for (F;) are satisfied and
we repeatedly apply fo to these elements. This yields the set {(z1,22,23,%3,0,71) | 21 <
0,23 <0,24 > 0,21 +20+324 =0,21 + 229+ 23+ 324 < 0,t(b) + ©1 = £, s(b) < 2¢}. Since
z4 > 0 and 21 + 22 + 324 = 0, we have 21 + 22 < 0 and conditions for (F;) are satisfied.
Repeatedly applying fo to elements of this form yields the set {(z1, 2o, 23, Z3,0,Z1) | 21 <
—1,23 < 0,24 > 0,20+ 324 > 0,21 + 20+ 324 < 0,21 + 229 + 23 + 324 < 0,¢t(b) + x1 >
lixg —x3+ T3+ 71 =4, s(b) < 2¢}. The condition x9 — x3 + T3 + Z1 = ¢ is obtained from
t(b) +x1 = £ and z; + 29 + 324 = 0. Then, combining the three final sets above yields the
set C1p. We note that Cyg is not contained in B:,()j) since z1 + 229 + 23 + 324 < 0.

(C11) Consider elements of the form {(z1,x2,z3,%3,0,¢) | 21 > 0,22 < 0,23 > 0,29 + 324 >
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(C12)

0,214 229+ 23+324 = 0, s(b) = 2¢}. This set is clearly a subset of Béj). Then, since z9 < 0
and z1+229+23+324 = 0, we have z1+23+324 > 0 and z1+29+23+324 > 0. So, conditions
for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields the set
{(z1,22,23,%3,0,Z1) | 21 = 0,22 < 0,23 > 0,20+324 > 0, 21+220+23+324 < 0,t(b)+x; =
£,s(b) < 2¢}. Since z1 =0, z3 > 0, and z3 + 3z4 > 0, we have z; + z3 + 23 + 324 > 0 and
conditions for (F5) are satisfied. We repeatedly apply fo to these elements to obtain the
set {(x1,x2,23,73,0,Z1) | 21 < 0,23 > 0,21 + 20 + 23 + 324 > 0,21 + 229 + 23 + 324 <
0,t(b) + x1 = ¢,s(b) < 2¢}. This set is precisely C11. Note that C1; is not contained in
B:gj) since z1 + 229 + z3 + 324 < 0.

Consider elements of the form {(z1,x2,z3,%3,0,€) | 21 > 0,29 < 0,23 > 0,29 + 324 >
0,214 229+ 23+324 = 0, s(b) = 2¢}. This set is clearly a subset of Béj). Then, since zo < 0
and z1+229+23+324 = 0, we have z1+23+324 > 0 and 21 +29+23+324 > 0. So, conditions
for (Fg) are satisfied. Repeatedly applying fo to elements of this form yields the set
{(z1,22,23,%3,0,Z1) | 21 = 0,22 < 0,23 > 0,20+324 > 0, 21+220+23+324 < 0,t(b)+x; =
£,s(b) < 2¢}. Since z1 =0, z3 > 0, and 23 + 3z4 > 0, we have z; + 23 + 23 + 324 > 0 and
conditions for (F5) are satisfied. We repeatedly apply fo to these elements to obtain the set
{(z1, 22, 23,73,0,%1) | 21 < 0,23 > 0,21+22+23+324 = 0, 21+220+23+324 < 0,t(b)+x1 =
£, s(b) < 2¢}. Then, since z1+ 22+ 23+324 = 0, we have z;+29+32z4 < 0 and the conditions
for (Fy) are satisfied. We repeatedly apply fo to yield {(z1, z2, 3, 23,0, %1) | 21 < —1, 22 <
0,23 > 0,204+ 23424 > 0,21 +22+23+324 <0,8(b)+x1 > £, 71 +Z3 =4, s(b) < 2}. The
condition Z1 + Z3 = /£ is obtained from z; + 23 + 23 + 324 = 0 and ¢(b) + 21 = ¢. Then,

this set is precisely Ci2 and is not contained in Bé‘j ) since 21 + 229 + 23 + 324 < 0.

()

Therefore, by repeatedly applying fo to elements in By, we obtain Bij ) = B?()j U Ci1UCyU
C3UuCL UCsUCgUC7UCsUCyUChgUCrp U Chs.
To obtain Béj ), we apply fi repeatedly to elements in Bi] ). Since Béﬂ ) contains elements

()

obtained by applying fl repeatedly to By, we only need to examine the action of fl on elements

(D1)

in Bij) \B?Ej) =ChU---UChs.

Consider elements of the form {(z1,z2,x3,%3,0,%1) | 21 > 0,22 < 0,23 > 0,24 < 0,21 +
z3+3z4 = 0, s(b) = 2¢}. This is clearly a subset of C in Bz(lj). Since zo < 0 < z3, the second
condition for fj is satisfied. Repeatedly applying fi to this set yields {(z1,x2,x3,23,0,71) |
z1 > 0,20 < 0,23 > 0,21 + 23 + 324 > 0,21 + 220 + 23 + 324 < 0,5(b) = 2¢}. Then
if z3 = 0, the first condition for fl holds and we repeatedly apply fl to obtain the set
{(z1, 22, 23,73,0,Z1) | 21 > 0,22 < 0,23 < 0,21 + 23 > 0,21 + 23 + 324 > 0,21 + 229 +
z3 + 3z4 < 0,s(b) = 2¢}. Combining these two sets yields the set D;. We see that D

is not contained in Béj ) since z1 + 229 + 23 + 324 < 0. Also, Dq is not contained in Cy
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in Bflj) since 21 + 23 + 324 > 0. D; is not contained in Cs, C3, C5, Cg, Cg, or Cy; since
s(b) = 2¢. Finally, D; is not contained in Cy, C7, Cs, Cg, or C12 since z; > 0. Thus, D;
is not contained in Bz(lj ),

Consider elements of the form {(z1,z2,23,23,0,%1) | 21 > 0,22 < —1,23 > 0,21 + 22 +
z3+324 < 0,t(b) +x1 > £,71 + 23 = ¢, s(b) < 2¢}. This set is a subset of C3 in Bij). Since
zo < 0 < z3, we repeatedly apply the second condition for fl to obtain new elements of
the form {(z1,x2,23,%3,0,Z1) | 21 > 0,22 < —1,23 > 0,21 + 220+ 23+ 324 < 0,¢(b) + 1 >
0,T1+ T3 > €, s(b) < 2¢}. Then, if z5 = 0, the first condition for fi is satisfied. Repeatedly
applying fi yields the set {(x1,z2,x3,%3,0,%1) | 21 > 0,20 < —1,23 < 0,2 + 23 >
0,21 + 220+ 23 + 324 < 0,t(b) + x1 > £, 71 + T3 > £, s(b) < 2¢}. Combining these two sets
yields the set Dy. We note that Do is not contained in Béj ) since z1 + 229 + 23 + 324 < 0.
Also, Ds is not contained in Cy in Bij ) since s(b) < 2¢. Then Dy is not contained in Cy,
C5, or Cy; since t(b) + x1 > {. Do is not contained in Cs, Cy, Cg, C7, Cy, or C12 since
Z1 + T3 > L. Finally, D5 is not contained in Cg or (g since z; > 0. Thus, D5 is not
contained in Bij ),

Consider elements of the form {(x1,x2,x3,%3,0,Z1) | 21 < 0,22 < 0,23 = 0,29 + 324 <
0,21 + 22 + 23 + 324 < 0,8(b) + 1 > ¢, T1 + T3 = £, s(b) < 2¢}. This is clearly a subset
of Cy in Bij). Since z3 = 0 and 29 < 0, we have (z2)1 < —z3. Repeatedly applying
the first condition for fi yields elements of the form {(z1,22,23,%3,0,71) | 22 < 0,23 <
0,21+23 <0,204+324 <0,21+20+23+324 <0,8(b)+x; >, x1+T3 = {,s(b) < 2¢}. Next
consider elements of the form {(x1,x2,23,%3,0,Z1) | 21 < —1,20 < 0,23 = 0,29 + 324 >
0,21 + 29 + 23 + 324 < 0,t(b) + 21 > £,Z1 + T3 = ¢,s(b) < 2¢}. This set is contained
in C12 in Bflj ). We have 29 < 0 = z3, s0 (22)+ < —z3 and we repeatedly apply the first
condition for fl. This yields {(z1,x2,x3,%3,0,Z1) | 22 < 0,23 < 0,21 + 22 < 0,20 + 324 >
0,214+22+234+324 < 0,t(b)+x1 > ¢, 1+x3 = £, s(b) < 2¢}. Combining the two sets above
yields the set D3. We note that Dj is not contained in B:gj ) since z1 + 220 + 23 + 324 < 0.
Also, Dj is not contained in C7, Cg, C7, or Cg in Bflj) since T1 + T3 = ¢ and s(b) < 2/
implies that z; + z3 + 3z4 > 0 which then implies that z4 > 0 since z; + z3 < 0. Then,
D3 is not contained in Cy or Cj since z1 + 23 < 0. D3 is not contained in Cjy, Cy1, or C1a
since z3 < 0. Next, D3 is not contained in Cj since £(b) + x1 > £. D3 is not contained in
Cy since T1 + T3 = {. Finally, D3 is not contained in Cg since xo — x3 + T3 + T1 # £.

Thus, Dg3 is not contained in Bij ),

Consider elements of the form {(x1,z2,23,%3,0,%1) | 21 < 0,22 < 0,23 > 0,21 + 22 + 23+
324 < 0,t(b) + 1 > ,T1 + T3 = £, s(b) < 2¢}. This is clearly a subset of Cy in Bz(j). Since
z9 < 0 < z3, the second condition for fl is satisfied. Repeatedly applying fl to elements
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in this set yields {(z1,z2,23,73,0,Z1) | 21 < 0,20 < 0,23 > 0,21 + 229 + 23 + 324 <
0,t(b) + 1 > £,&1 + T3 > £,s(b) < 2¢}. This set is precisely D4. Note that D, is not
contained in Bi(,)j ) since 21 + 229 + 23 + 324 < 0. Also, Dy is not contained in C7, Co, Cs3,
Cg, or Cy since z1 < 0. Then Dy is not contained in Cy or Cqo since Z1 + T3 > £. Dy is
not contained in Cs5, C7, Cg, or Cyg since z3 > 0. Finally, D4 is not contained in C7; since
t(b) + x1 > £. Thus, D, is not contained in Bflj).

Consider elements of the form {(z1,z2,x3,%3,0,Z1) | 21 < 0,22 < 0,23 > 0,21 + 22 +
23+ 324 < 0,8(b) + T1 > €, + T3 = £, s(b) < 2¢}. This is a subset of Cy in Bij). Since
29 < 0 < z3, the second condition for f; is satisfied. Repeatedly applying fl to elements
in this set yields {(x1,z2,23,%3,0,Z1) | 21 < 0,220 < 0,23 = 0,21 + 220 + 23 + 324 <
0,t(b)+z1 > ¢,z1+x3 > £,s(b) < 2¢}. Then z3 = 0, so we have (z2)4+ < —z3. Repeatedly
applying the first condition for fi yields the set {z1,22,23,%3,0,Z1) | 22 < 0,23 < 0,21 +
23 < 0,21 + 220 + 23 + 324 < 0,t(b) + 1 > £,t(b) + z1 > £,Z1 + T3 > {,s(b) < 2¢}. The
condition ¢(b) + x1 > ¢ is obtained from ¢(b) + Z; > ¢ and z; < 0. This set is precisely
Ds. We note that Ds is not contained in B:gj) since z1 + 229 + 23 + 324 < 0. Also, Ds
is not contained in Cy, Cg, C7, Cy, or Cis since T + T3 > ¢ and s(b) < 2¢ imply that
21+ 234324 > 0. D5 is not contained in Cy or C3 since z1 +2z3 < 0, and Ds is not contained
in Cy or C11 since z3 < 0. Then Dj is not contained in C5 or Cg since t(b) + 1 > ¢ and
t(b) + 1 > {. D5 is not contained in Cyg since zg — x3 + T3 + Z1 # £. Thus, Dj5 is not
contained in Bij ).

Consider C7 = {(z1,z2,23,%3,0,%1) | 21 < 0,20 < 0,23 < 0,24 = 0,21 + 229 + 23 +
3z4 < 0,t(b) +x1 > £,T1 + 22 = £,5(b) < 2} in Bflj). Since 29 < 0 and 23 < 0, we
have (z2)4+ < —z3 so we repeatedly apply the first condition for f1. This yields the set
{(z1,22,23,%3,0,71) | 22 < 0,23 < 0,24 =0,21+23 <0,21+229+23+324 < 0,¢(b)+x1 >
0t(b) + 71 > bz +x2 > 4,71 + 22 = £,s(b) < 2¢}. The conditions t(b) + x1 > ¢ and
x1 + xg > ( are obtained from the conditions ¢(b) + 1 > ¢, T1 + 2 = ¢, and z; < 0.
Next, consider elements of the form {(x1,x9,23,%3,0,Z1) | 21 < 0,290 = 0,23 < 0,24 =
0,21+ 220 + 23 + 324 < 0,t(b) + @1 = £,T1 + a0 = £,5(b) < 2} in BY). This set is
clearly contained in Cy in Bg ). Since z3 < 0 = 29, we apply the first condition for fl
to obtain elements of the form {(z1,x2,z3,%3,0,Z1) | 22 = 0,23 < 0,24 = 0,21 + 23 <
0,21 4+ 229+ 23 + 324 < 0,t(b) + 1 > £, t(b) + 1 > b, x1 +x2 > 0,71 + 22 > £, 5(b) < 20},
Again, the conditions t(b) + z; > ¢ and x1 + x2 > ¢ are obtained from ¢(b) + 7; = ¢,
T1 + x2 > £, and z; < 0. Combining these two sets yields the set Dg. We note that Dg
is not contained in Bé‘j ) since z1 + 229 + 23 + 324 < 0. Also, Dg is not contained in Cy
since z1 4+ z3 + 3z4 < 0. Dg is not contained in Cy or Cy since z; + z3 < 0, and Dg is not

contained in Cy4, Cq1, or Cqo since z3 < 0. Then Dg is not contained in C5 or Cy since
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t(b) + x1 > ¢ and t(b) + z; > {. Finally, Dg is not contained in Cg, C7, Cg, or Cjg since

r1 4+ x0 >4, T1 + 29 > £, and z4 = 0. Thus, Dg is not contained in Bflj).

Consider Cyg = {(z1,x2,23,%3,0,%1) | 21 < 0,23 < 0,24 > 0,21 + 220+ 324 < 0,21 + 229 +
23+324 < 0,t(b)+x1 > b, 2o —x3+T3+T1 = £, s(b) < 20} in Bflj). Since zo < 0 and 23 < 0,
we have (z3)+ < —z3. So, we repeatedly apply the first condition for f1 to obtain new
elements of the form {(x1,z9o,x3,%3,0,%Z1) | 23 < 0,24 > 0,21+ 23 < 0,21+ 20+ 23+ 324 <
0,214+229+23+324 < 0,t(b)+x1 >0, Z1+T3 < {,x1+x9—23+T3 > {, 00— 3+ T3+T1 >
£,s(b) < 2¢}. The conditions 1 + Z3 < £ and x1 + x2 — x3 + T3 > ¢ are obtained from
the conditions z1 < 0, 23 < 0, and x92 — x3 + T3 + T1 = £. We see that this set is precisely
D~. Note that D7 is not contained in Bé‘j ) since 21 + 229 + 23 + 324 < 0. Also, D7 is not
contained in C7, Cg, Cv, or Cy since z4 > 0. Then D~ is not contained in C5, Cs, or Cq
since t(b) +x1 > ¢ and D7 is not contained in C since 21 + z3 < 0. D7 is not contained in
Cy or C1g since z3 < 0. Finally, D~ is not contained in Cg or Cyg since x1+xo—x3+T3 > £
and o — r3 + T3 + T1 > £. Thus, D7 is not contained in Bflj).

Consider elements of the form {(z1,z2,x3,73,0,Z1) | 21 < —1,22 < 0,23 > 0,22 + 23 +
324 > 0,214+ 204+ 234+324 < O,t(b) +x1 > E,t(b) +T1 <, x1+T3="{¢, S(b) < 26}. This set
is a subset of (19 in Bij ). Since 2o < 0 < z3, we repeatedly apply the second condition
for fl to obtain the set {(z1,x2,z3,%3,0,Z1) | 21 < —1,29 < 0,23 > 0,29 + 23 + 324 >
0,21 + 222 + 23 + 324 < 0,8(b) + x1 > £,t(b) + T1 < £, 71 + T3 > £, s(b) < 2¢}. This set is
precisely Dg. We note that Dg is not contained in ng ) since z1 + 229 + 23+ 324 < 0. Also,
Dsg is not contained in Cy, Cy, C3, Cg or Cy since z; < —1. Then Dg is not contained in
Cy4 or (19 since T1 + T3 > ¢, and Dg is not contained in C5, C7, Cg or Cqg since z3 > 0.
Finally, Dg is not contained in Cq; since t(b) + z1 > £. Thus, Dg is not contained in Bij).
Consider elements of the form {(z1,z2,23,23,0,71) | 21 < —1,22 < 0,23 > 0,29 + 23 +
324 > 0,21+ 20+ 23+324 < 0,t(b) +x1 > 0, t(b)+ 71 < £, Z1+ T3 = {,s(b) < 2¢}. This set
is a subset of C1g in Bz(lj ). Since 2o < 0 < zs3, we repeatedly apply the second condition
for fi to obtain the set {(z1,22,23,%3,0,71) | 21 < —1,20 < 0,23 = 0,22 + 23 + 324 >
0,21 + 229 + 23+ 324 < 0,t(b) + 21 > £,t(b) + T1 < £,Z1 + T3 > £, s(b) < 2¢}. Then since
z3 = 0, we have (z3)+ < —z3 and we repeatedly apply the first condition of f1 to yield
{(z1, 22, 23,73,0,%1) | 22 < 0,23 < 0,21 + 23 < 0,290 + 324 > 0,21 + 2290 + 23 + 324 <
0,t(b) +x1 > £,t(b) + &1 < £,z1 4+ T3 > £,s(b) < 2¢}. We need the condition ¢(b) + 1 < ¢
in order to be disjoint from Dj. Then, this set is precisely Dg and we see that Dg is not
contained in Béj ) since 21 + 229 4 23 + 324 < 0. Also, Dy is not contained in Cy, Cg, C7,
or Cg since z4 > 0 and Dg is not contained in Cy since z9 + 3z4 > 0. Then Dg is not

contained in C9 or C5 since z1 + z3 < 0, and Dy is not contained in C4 or Cy; since z3 < 0.
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Dy is not contained in Cj since t(b) + x1 > £. Finally, Dy is not contained in Cy and C12
since z3 < 0 and Z1 + 3 > ¢ imply that xo — x3 + Z3 + Z1 > £. Thus, Dy is not contained
in BY

4 .

Therefore, by repeatedly applying fi to elements in Bij), we obtain Béj) = B‘(lj) UD;UDyU
D3UD4UD5UD6UD7UD8UD9

To obtain Béj ), we apply f2 repeatedly to elements in B(] ). Since B( 7 contains elements
obtalned by applylng fg repeatedly to B, we only need to examine the action of f1 on elements
in BY) \ BY). We first show that BY) = BY) UL UM; UM, UN; UN, UN3U--- U Nig,
where L = {(33‘1,:L‘2,:E3,$3,:E2,€) | (X) holds}, M, = {(x1,x2,23,%3,0,71) | (Vi) holds}, and
N, = {(z1,22,23,%3,T2,%1) | (Zy) holds}. The conditions for X, Y;,, and Z,, (1 < m < 2,
1 <n <18) are,

(X) Z2>0,20 >0,21 +23 >0,21 +23+324 > 0,21 + 20 + 23 + 324 > 0, 5(b) = 2¢;

(Y1) 22 =0,24 < 0,23 +324 < 0,21 + 23 +324 < 0,21 + 220 + 23 + 324 < 0,¢(b) + 21 > ¢,
t(b) +x1 > £, s(b) < 20};

(Y2) 20 < 0,24 < 0,23 +324 < 0,21 + 23 +324 < 0,21 + 220 + 23 + 324 < 0,(b) + T1 > ¢,
s(b) — 21 + 290 > L+ x1,8(b) + 20 > L+ 1, 8(b) < 2¢;
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(Z1) 2 > 0,21 > 0,21 + 23 > 0,21 + 23 +324 > 0,21 + 22 + 23 + 324 > 0,8(b) + 21 + 22 =,
s(b) < 2¢;

(Z3) T3> 0,21 > 0,21 +23 >0,21 +23+324 > 0,21 + 20+ 23 + 324 < 0,8(b) + 21 + T2 > ¢,
T1+ T3+ 2T2 = £, 5(b) < 24,

(Z3) Za > 0,21 < 0,235 > 0,23 + 324 > 0,21 + 22 + 23 + 324 < 0,1(b) + 1 + T2 > £,
Ty + T3+ 2T2 = £, 5(b) < 24

(Z4) T3> 0,23 < 0,24 > 0,21 + 23 <0,20+324 > 0,21 + 20+ 324 > 0,8(b) + 21 + T2 = ¢,
s(b) < 2¢;

(Z5) T3> 0,290 > 0,24 < 0,23+ 324 < 0,21 + 25+ 324 < 0,21 + 22 >0,8(b) + 1 + T2 = ¢,
s(b) < 2¢;

(Zg) T2 > 0,21 <0,23 < 0,24 > 0,21 + 20+ 324 <0,8(b) + 21 + T > £,5(b) + 20 + 324 = L+ x1,
s(b) < 2¢;

(Z7) T3> 0,21 = 0,20 < 0,24 < 0,21 + 24324 < 0,8(b) + 21 + T2 > £, t(b) + T1 + T2 > ¢,
T1+ T3 < l,8(b) — 21 + 29+ 324 <L+ x1,8(b) + 22 < L+ 1, 5(b) < 24

(Zs) T3 > 0,21 < 0,24 < 0,23 +324 < 0,21 + 25+ 324 < 0,21 + 29 + 324 <0,
214+ 22+ 23 + 324 < 0,8(b) + 21 + Zo > £,8(b) + 20 = L+ 21, 5(b) < 2¢;

(Zg) T3 > 0,21 < 0,23 >0,23+324 > 0,21 + 20 + 23 + 324 > 0,8(b) + x1 + To = £, s(b) < 2¢;

(Z10) T > 0,23 > 0,23 + 324 > 0,20 + 235 + 324 > 0,21 + 22 + 23 + 324 < 0,t(b) + 21 + T > ¢,
Ty + Ty + 22y = £, 5(b) < 20;

(Z11) T3 > 0,21 > 0,21 + 23 > 0,21 + 23 + 324 > 0,8(b) — 21 + T2 > 0,5(b) = 2¢;

(Z12) T2 > 0,21 > 0,21 + 23 > 0,21 + 23+ 324 > 0,t(b) + x1 + To > £,t(b) — 21 + T2 > 0,
Ty + T3+ 2T2 > L, 5(b) < 24,

(Z13) T2 > 0,21 < 0,23 > 0,25 + 324 > 0,t(b) + T1 + To > £,t(b) — 21 + T2 > 0,1 + Tz + 2To > ¢,
s(b) < 2¢;

(Z14) T2 > 0,23 < 0,24 > 0,21 + 23 < 0,21 + 20 + 23 + 324 > 0,t(b) + &1 + To > £,t(b) — 21 + T2 > 0,
T1+ Tg + 232 > {,s(b) <20

(Z15) T2 > 0,23 < 0,24 > 0,21 + 23 < 0,21 + 20 + 23 + 324 < 0,t(b) + &1 + To > ¢,
s(b) —z1 + 204+ 324 > L+ x1,8(b) + 20 + 324 > L+ 21, 5(b) < 2¢;

(Z16) T2 > 0,24 < 0,23 +324 < 0,21 + 23+ 324 < 0,21 + 20+ 23 +324 <0,8(b) + 21 + T2 > ¢,
s(b) — 21 + 20 > €+ x1,8(b) + 22 > £ + 1, 5(b) < 2¢;

(Z17) T2 > 0,21 < —1,23 > 0,23 + 324 > 0,20 + 23 + 324 > 0,¢(b) + 21 + T2 > £, t(b) + T1 + T2 < ¢,
t(b) — 21 4 Ty > 0,71 + T3 + 229 > £, 5(b) < 20.

(L) Consider elements of the form {(z1,x2,23,%3,0,€) | 21 > 0,20 < 0,24 > 0,21 + 23 > 0,21 + 220 +

zg + 3z4 = 0,s(b) = 2¢}. This set is clearly contained in B:(,,j). Then since z4 > 0, we apply the

second condition for fg to obtain new elements of the form {(z1,z2,x3,T3,%2,¢) | To > 0,21 >

69



0,24 > 0,21 + 23 > 0,21 + 29 + 23 + 324 > 0, s(b) = 2¢}. Then if z4 = 0, the first condition for fg
is satisfied. Repeatedly applying fo yields {(z1, %2, 253,%3,T2,0) | To > 0,21 > 0,24 < 0,21 + 23 >
0,21 + 23+ 324 > 0,21 + 22 + 23 + 324 > 0, 8(b) = 2£}. Combining these two sets yields the set L.

Consider elements of the form {(x1,x9,x3,%3,0,Z1) | 220 =0,23 < 0,24 = 0,21 + 23 < 0,21 + 22 +
324 > 0,21 4 220 + 23 + 324 < 0,¢(b) + 21 = £, s(b) < 2¢}. This is clearly a subset of Cy in Bflj).
Since z4 = 0, we repeatedly apply the first condition for f, to obtain new elements of the form
{(z1,%2,25,%3,0,%1) | 22 = 0,24 < 0,21 + 220 > 0,21 + 22 + 25 + 324 < 0,¢(b) + z1 = ¢, s(b) < 2¢(}.
Next consider elements of the form {(z1,x2,3,%3,0,Z1) | 21 < 0,29 = 0,23 < 0,24 = 0,21 +
229 + z3 + 324 < 0,t(b) + T1 = £, s(b) < 2¢}. This is a subset of Cy in Bflj), and since z4 = 0, we
repeatedly apply the first condition for fz. This yields elements of the form {(x1, z2, 23, Z3,0,Z1) |
21 < 0,20 =0,24 <0,23+324 <0,21+220+23+324 <0,t(b)+71 = £, s(b) < 2¢}. Lastly, consider
elements of the form {(z1,x2,r3,%3,0,Z1) | 22 = 0,23 < 0,24 = 0,21+ 23 < 0,21 + 220+ 23+ 324 <
0,t(b) + x1 > £,¢(b) + T1 > ¢, s(b) < 2¢}. This set is contained in Dg in Béj). Then since z4 = 0,
we repeatedly apply the first condition for f, to yield the set {(z1,22,23,%3,0,%1) | 220 = 0,24 <
0,23 +324 < 0,21 + 23+ 324 < 0,21 + 229 + 23+ 324 < 0,8(b) + 1 > £,t(b) + Ty > £, s(b) < 20}
Combining these three sets yields the set M;.

Consider Cs = {(21,%2,3,%3,0,Z1) | 21 > 0,20 < 0,24 = 0,21 + 23 < 0,21 + 220 + 23 + 324 <
0,t(b)+x1 >, x1+x2 = £,5(b) < 20} in Bij). Since z4 = 0, we repeatedly apply the first condition
for fg to obtain the set {(z1, z2,x3,%3,0,%1) | 21 > 0,22 < 0,24 < 0,21 + 23 + 324 < 0,21 + 220 +
23+ 324 < 0,t(b) + 1 > €1 + 29 — 24 = £, 8(b) < 2¢}. Next consider C7 = {(z1, x2, x3,%3,0,Z1) |
21 < 0,29 < 0,23 < 0,24 = 0,21 + 220 + 23 +324 < 0,8(b) + &1 > £,T1 + a2 = £,5(b) < 20}
in Bflj ), Again, z4 = 0, so we repeatedly apply the first condition for fg. This yields the set
{(z1,22,25,%3,0,%1) | 21 < 0,22 < 0,24 < 0,23 + 324 < 0,21 + 220 + 23 + 324 < 0,¢(b) + T1 >
0,1 4 29 — z4 = £, 8(b) < 2¢}. Finally, consider elements of the form {(z1, z2,x3,%3,0,Z1) | 22 <
0,23 < 0,24 =0,21+23 <0,214+220+23+324 < 0,8(b)+T1 > £, 21432 > £, T1+x0 > £, 5(b) < 20}
This is a subset of Dg in Béj ) Then z4 = 0, so repeatedly applying the first condition for fg yields
{(x1,22,253,%3,0,%1) | 22 < 0,24 < 0,23 +324 < 0,21 + 23 +324 < 0,21 + 220 + 23 + 324 <
0,t(b)+x1 >, x1+x9— 24 > 4, T1 + T2 — 24 > £, 5(b) < 2¢}. Combining the three final sets above
yields the set Ms.

Consider elements of the form {(x1,z2, 23, %3,0,%1) | 21 > 0,20 < 0,24 > 0,21 + 23 > 0,21 + 20 +
zg + 324 > 0,21 + 222 + 23 + 324 < 0,¢t(b) + 21 = £,s(b) < 2¢}. This is clearly a subset of Cy
in Bij ) Then since z4 > 0, we repeatedly apply the second fg condition to obtain new elements
of the form {(z1,22,23,Z3,T2,T1) | Ta > 0,21 > 0,24 > 0,21 + 23 > 0,21 + 20 + 23 + 324 >
0,t(b) + &1 + T2 = £,s(b) < 2¢}. Then if z4 = 0, we repeatedly apply the first condition for
f>. This yields {(z1, 22, 23,T3,T2,Z1) | T2 > 0,21 > 0,24 < 0,21 + 23 > 0,21 + 22 + 324 >
0,21 + 22+ 23+324 > 0,8(b) + 21 + T2 = £, s(b) < 2¢}. Combining these two sets yields the set V.

Consider elements of the form {(x1,z2,23,%3,0,%1) | 21 > 0,20 < —1,24 > 0,21 + 23 > 0,21 +
Zo + 23+ 32 < 0,t(b) + a1 > £, % + &3 = £,5(b) < 2¢}. This set is contained in C3 in BY.
Since z4 > 0, we repeatedly apply the second condition for fg to obtain elements of the form
{(z1, 22, 23,T3,T2,%1) | T2 > 0,21 > 0,24 > 0,21 + 23 > 0,21 + 20 + 23 + 324 < 0,¢(b) + 1 + T2 >
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£,T1 + T3 + 2T = £,s(b) < 2¢}. Then if z4 = 0, we repeatedly apply the first condition for fo.
This yields the set {(x1, 2,23, T3, T2,%1) | T2 > 0,21 > 0,24 < 0,21 + 23 > 0,21 + 23 + 324 >
0,21 + 22+ 23 + 324 < 0,¢(b) + 21 + To > £,T1 + T3 + 2T = £, s(b) < 2¢}. Combining these two
sets yields the set Ns.

Consider elements of the form {(x1,z2, 3, %3,0,%1) | 21 < 0,22 < 0,23 > 0,24 > 0,21 + 22 + 23 +
324 < 0,t(b)+Z1 > ¢, T+ T3 = £, s(b) < 2¢}. This set is contained in Cy in Bflj). Since z4 > 0, we
repeatedly apply the second condition for f> to obtain elements of the form {(x1, %2, 25,%3, T2, T1) |
To > 0,21 < 0,23 > 0,24 > 0,21+ 20+ 23+ 324 < 0,8(b) +Z1 +Ta > {,T1 + T3 + 232 =
¢,s(b) < 20}. Then if z3 = 0, we repeatedly apply the first condition for fo. This yields the
set {(z1,%2,73,%3,T2,T1) | T2 > 0,21 < 0,23 > 0,24 < 0,23 +324 > 0,21 + 20 + 23 + 324 <
0,t(b) + 1 + To > €, T1 + T3 + 2T2 = ¢, s(b) < 2¢}. Combining these two sets yields the set Ns.

Consider elements of the form {(z1,x2,23,%3,0,71) | 23 < 0,24 > 0,21 + 23 < 0,20 + 324 >
0,21 + 22 + 324 > 0,21 + 229 + 23 + 324 < 0,t(b) + 21 = £,5(b) < 2¢}. This set is contained in
Cs in Bé(lj ) Since z4 > 0, we repeatedly apply the second condition for fg to obtain elements of
the form {(x1, 2,23, T3, T2, T1) | T2 > 0,23 < 0,24 > 0,21 + 23 < 0,20 + 324 > 0,21 + 20 + 324 >
0,t(b) + z1 + To = £, s(b) < 2¢}. This set is precisely Nj.

Consider elements of the form {(x1,22,23,%35,0,%1) | 23 < 0,24 > 0,21 + 23 < 0,20 + 324 >
0,21 + 224+ 324 > 0,21 + 220+ 23 + 324 < 0,t(b) + 21 = £, s(b) < 2¢}. This set is a subset of C5 in
Bé(lj ). Since 24 > 0, we repeatedly apply the second condition for f> to obtain elements of the form
{(z1, 22, 23,%3,T2,T1) | T2 > 0,22 > 0,23 < 0,24 = 0,21 + 23 < 0,22+ 324 > 0,21 + 20 + 324 >
0,t(b)+x1+Zs = £,5(b) < 2(}. Then z4 = 0 so repeatedly applying the first condition for f, yields
the set {(z1, 22,23, T3, T2, T1) | To > 0,20 > 0,24 < 0,25 + 324 < 0,21 + 23 + 324 < 0,21 + 20 >
0,t(b) + x1 + T2 = ¢, s(b) < 2¢}. This set is precisely Ns.

Consider elements of the form {(x1,x9,23,%3,0,%1) | 21 = 0,22 < 0,25 < 0,24 > 0,22 + 324 <
0,21 +220+23+324 < 0,t(b) +x1 > 4, t(b)+T1 > 0,1+ T3 < l,x1+x9—235+T3 =, 5(b) < 20},
This is a subset of Cy in B —4U). Since z, > 0, we repeatedly apply the second condition for fg to
obtain elements of the form {(x1,x9,x3,Z3,T2,T1) | Ta > 0,21 = 0,24 > 0,21 + 23 < 0,22 + 324 <
0,t(b) + x1 + T2 > L,t(b) +T1 + T2 > 0,71 + T3 < {, 11 + 22 — x5 + Ty + 2T2 = £, s(b) < 2¢}. Next
consider Cg = {(x1,z2,23,%3,0,%1) | 21 < 0,23 < 0,24 > 0,21 +220+324 < 0,21 +220+23+324 <
0,t(b)+x1 > ¥, xo—x3+T3+T1 = £, s(b) < 2} in Bflj). Since z4 > 0, we repeatedly apply the second
condition for f> to yield {(x1,22,25,%3,T2,T1) | T2 > 0,21 < 0,23 < 0,24 > 0,21 + 22 + 324 <
0,t(b) + x1 + To > €, 20 — x3 + Ty + 2T2 + T1 = £, s(b) < 2¢}. Combining the two final sets above
yields the set Ng.

Consider elements of the form {(x1,xq,23,%3,0,%1) | 21 = 0,29 < 0,23 < 0,24 > 0,29 + 324 <
0,21 +220+ 23 +324 < 0,t(b) + 1 > £, t(b) +T1 > £, 71+ T3 < {,x1 +x2 — 23+ T3 = {,5(b) < 2(}.
This is a subset of Cy in B — 4. Since z;, > 0, we repeatedly apply the second condition for fo
to obtain elements of the form {(x1,x2,x3, T3, T2, Z1) | To > 0,21 = 0,290 < 0,24 = 0,21 + 23 <
0,20 + 324 < 0,8(b) + 21 + T2 > L,t(D) + T1 + T > 0,71 + T3 < {,21 + 22 — 23 + Ty + 2T9 =
0, x9+2T9+T1—24 = ¢, s(b) < 2¢}. Then since z4 = 0, we repeatedly apply the first condition for fo
which yields {(z1, x2, 3, T3, T2, Z1) | T2 > 0,21 = 0,22 < 0,24 < 0,21 +25+324 < 0,¢(b)+21+T2 >
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(N1o)

g,t(b)ﬁ-fl +To >4, T1+T3<l,x1+x0— 13+ T3+ 2To <, xo+ 2T +T1 — 24 gé,s(b) < 26}
This set is precisely N7.

Consider Cyg = {(21, 2, 23,%3,0,%1) | 21 < 0,23 < 0,24 > 0,21+ 20+324 < 0,21 +220+23+324 <
0,t(b)+x1 > ¥, xo—x3+T3+T1 = £, s(b) < 2} in Bflj). Since z4 > 0, we repeatedly apply the second
condition for fo to yield {(x1,%2,25,%3,T2,%T1) | T2 > 0,21 < 0,23 < 0,24 = 0,21 + 22 + 324 <
0,t(b) + 1 + T2 > €, w0 — x3 + T3 + 2T2 + T1 = £, 5(b) < 2¢}. Then z4 = 0, so repeatedly applying
the first condition for fo yields elements of the form {(x1,%2,23,T3,T2,T1) | T2 > 0,21 < 0,24 <
0,25 +324 < 0,21 +23+324 < 0,21+ 22+ 324 < 0,21 + 20+ 23+ 324 < 0,t(b) + 1 + T2 >
l,xo + 2T + Ty — 24 = £, 8(b) < 2¢}. This set is precisely Ng.

Consider elements of the form {(x1,z2,23,%3,0,%1) | 21 < 0,23 > 0,24 > 0,21 + 22 + 23 + 324 >
0,21 4+ 220 + 23 + 324 < 0,t(b) + 21 = ¢, s(b) < 2¢}. This is set is clearly contained in C7; in Bflj).
Since z4 > 0, we repeatedly apply the second condition for fo to yield {(z1, %2, x5, T3, T2, T1) |
To > 0,21 < 0,23 > 0,24 > 0,21 + 22 + 23+ 324 > 0,8(b) + 21 + T2 = £,5(b) < 2¢}. Then if
z4 = 0, the first condition of fg is satisfied. Repeatedly applying fg to elements of this form yields
the set {(z1, 22,23, T3,T2,T1) | T2 > 0,21 < 0,23 > 0,24 < 0,25 + 324 > 0,21 + 22 + 23 + 324 >
0,t(b) + x1 + T2 = ¢, s(b) < 2¢}. Combining these two sets yields the set Ny.

Consider elements of the form {(x1, z2,23,%3,0,%1) | 21 < —1,22 < 0,23 > 0,24 > 0, 20+23+324 >
0,21 +22423+324 < 0,8(b)+x1 > £,T1+T5 = ¢, s(b) < 2¢}. This is clearly a subset of C5 in Bflj).
Since z; > 0, we repeatedly apply the second condition for fo to yield {(z1, xo, 3, T3, T2, T1) | T2 >
0,21 < —1,23 > 0,24 > 0,290+ 23+324 > 0,21 +20+235+324 < 0,t(b)+x1+T2 > €, T1 +T3+2T5 =
£, s(b) < 2¢}. Then if z4 = 0, the first condition of f is satisfied. Repeatedly applying f> to clements
of this form yields the set {(x1,22,23,%3,T2,%1) | T2 > 0,21 < —1,23 > 0,24 < 0,23 + 324 >
0,20+ 235+ 324 > 0,21 + 20+ 23 + 324 < 0,8(b) + 21+ Ta > 0, &1 + Tg + 2T2 = £,5(b) < 20},
Combining these two sets yields the set Nyg.

Consider elements of the form {(z1,22,23,%3,0,Z1) | 21 > 0,20 < 0,23 > 0,24 > 0,21 + 220 +
z3 + 324 < 0,8(b) = 2¢}. This set is clearly contained in D; in Béj). Since z4 > 0, we repeatedly
apply the second condition for fo to yield {(x1, %2, 253,%3,T2,T1) | To > 0,21 > 0,23 > 0,24 >
0,t(b) — z1 + T2 > 0, s(b) = 2¢}. The condition ¢(b) — z1 + Z2 > 0 is obtained from the conditions
21 + 229 + 23 + 324 < 0 and s(b) = 2¢. Then if z;4 = 0, the first condition for f, is satisfied.
Repeatedly applying fg to elements of this form yields the set {(x1,xz2, 23, T3, T2, T1) | To >
0,21 > 0,23 > 0,24 <0,234+324 >0,t(b) — 21 + T2 > 0, s(b) = 2¢}. Combining the two sets above
vields {(z1,x2,x3,Z3,T2,T1) | T2 > 0,21 > 0,23 > 0,25 + 324 > 0,8(b) — 21 + T2 > 0, s(b) = 2(}.
Next, consider elements of the form {(x1, 29, x3,%3,0,Z1) | 21 > 0,22 < 0,23 < 0,24 > 0,21 + 25 >
0,21 + 229 + 23 + 324 < 0,5(b) = 2¢}. This set is clearly contained in D in Béj). Since z4 > 0, we
repeatedly apply the second condition for f, to yield {(z1,x2,23,T3,T2,T1) | Ta > 0,21 > 0,23 <
0,24 > 0,21 + 23 > 0,t(b) — 21 + T2 > 0,5(b) = 2¢}. Then if z4 = 0, the first condition for fg is
satisfied. Repeatedly applying fo to elements of this form yields the set {(z1, 22,23, T3, T2, T1) |
Tog>0,21 > 0,24 <0,21 + 23 > 0,23 +324 < 0,21 +23+324 > 0,¢(b) — 21 + T2 > 0,5(b) = 2¢}.
Combining the two sets above yields {(x1,z2, 23, T3, T2, Z1) | T2 > 0,21 > 0,21 + 23 > 0,21 + 25 +
324 > 0,t(b) — 21 + T2 > 0, s(b) = 2¢}. Finally, we combine the two final sets above to obtain the
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(N12)

(N14)

set N11.

Consider elements of the form {(x1,x2,x3,%3,0,Z1) | 21 > 0,20 < —1,23 > 0,24 > 0,21 + 229 +
23+ 324 < 0,8(b) + 21 > £, + T3 > £,s(b) < 2¢}. This set is clearly contained in Dy in Béj).
Since z; > 0, we repeatedly apply the second condition for fy to yield {(z1, z2, 23, T3, T2, T1) |
To>0,21 >0,23 >0,24 >0,t(0) + 1 + To > £, t(b) — 21 + T2 > 0,T1 + Tz + 2T3 > £, 5(b) < 2¢}.
The condition ¢(b) — 21 + Tz > 0 is obtained from the conditions z; + 229 + 23 + 324 < 0 and
s(b) < 20. Then if z4 = 0, the first condition for f, is satisfied. Repeatedly applying f2 to elements
of this form yields the set {(z1,22,x3,T3,%2,%1) | T2 > 0,21 > 0,23 > 0,24 < 0,23 + 324 >
0,t(b)+x1+T2 > £,t(b) — 21+ T2 > 0,1 + T3 +2T2 > £, s(b) < 2¢}. Combining the two sets above
vields {(z1, x2, x5, T3, T2, T1) | T2 > 0,21 > 0,23 > 0,23+324 > 0,t(b)+x1+T2 > £, t(b)— 21+ T2 >
0,Z1 + T3 + 2T2 > £, s(b) < 2¢}. Next, consider elements of the form {(x1,z2,23,%3,0,Z1) | 21 >
0,20 < —1,23 < 0,24 >0,21+23 > 0,21 +220+23+324 < 0,8(b) + 21 > £,T1+T3 > {,5(b) < 2(}.
This set is again contained in Dy in Béj ). Since z4 > 0, we repeatedly apply the second condition
for fg to yield {(x1,x2,x3,T3,T2,T1) | To > 0,21 > 0,23 < 0,24 > 0,21 + 23 > 0,¢(b) + x1 + T2 >
£,t(b)—214+T2 > 0,T1+T3+2T3 > £, 5(b) < 2¢}. Then if z4 = 0, the first condition for f is satisfied.
Repeatedly applying fo to elements of this form yields the set {(x1, z2, x5, T3, Ta, T1) | Tz > 0,21 >
0,24 <0,21423 > 0,234+324 <0, 21+23+324 > 0,8(b)+21+T2 > £, t(b)—21+T2 > 0,T1+T3+2T2 >
£, s(b) < 2¢}. Combining the two sets above yields {(z1, z2, x5, Z3,Z2,Z1) | T2 > 0,21 > 0,21 +25 >
0,21 + 23+ 324 > 0,t(b) + &1 + Ta > £, t(b) — 21 + T2 > 0,1 + Tz + 2T2 > £, s(b) < 2¢}. Finally,

we combine the two final sets above to obtain the set Nia.

Consider elements of the form {(z1, z2,z3,%3,0,%1) | 21 < 0,22 < 0,23 > 0,24 > 0,21 + 220 + 23+
324 < 0,t(b) + T1 > £,T1 + T3 > £,s(b) < 2£}. This is a subset of Dy in Béj). Since z4 > 0, we
can repeatedly apply the second condition for f» to obtain the set {(z1, z2, x3,T3,T2,Z1) | T2 >
0,21 < 0,23 > 0,24 > 0,8(b) + 1 + T2 > £,t(b) — 21 + T2 > 0,71 + Tz + 2T2 > £,s(b) < 24}.
The condition ¢(b) — 21 + Tz > 0 is obtained from the conditions z; + 222 + 23 + 324 < 0 and
s(b) < 2¢. Then if z4 = 0, we repeatedly apply the first condition for f2 to obtain new elements
of the form {(x1, 2,23, T3,T2,T1) | T2 > 0,21 < 0,23 > 0,24 < 0,23+ 324 > 0,8(b) + T1 + Ty >
,t(b) — 21 + ZTo > 0,T1 + Tg + 2T > £, s(b) < 2¢}. Combining these two sets yields the set Nis.

Consider elements of the form {(x1,z2, x3,%3,0,%1) | 22 < 0,23 < 0,24 > 0,21 + 23 < 0,21 + 22 +
23 +324 > 0,21 + 220 + 23 + 324 < 0,8(b) + 1 > £, t(b) + T1 > £, %1 + T3 > £, s(b) < 2¢}. Thisis a
subset of D5 in Béj ) Since z4 > 0, we can repeatedly apply the second condition for fg to obtain the
set {(z1, 22, 23, T3, To,T1) | T2 > 0,23 < 0,24 > 0,214+23 < 0,21+22+23+324 > 0,8(b) +1+T2 >
Lt(b)+T1+To > L, t(b)—21+To > 0,T1+T3+2T2 > £, s(b) < 2¢}. The condition ¢(b) —z1 +Z2 > 0
is obtained from the conditions z; + 229 + 23 + 324 < 0 and s(b) < 2¢. Next, consider elements
of the form {(x1,x9,x3,%3,0,Z1) | 22 < 0,23 < 0,20 + 324 > 0,21 + 23 < 0,21 + 22 + 23 + 324 >
0,21 + 222 + 23 + 324 < 0,t(b) + 21 > £, t(b) + T1 < €, %1 + T3 > {,s(b) < 2¢}. This is a subset
of Dy in Béj). Since z4 > 0, we can repeatedly apply the second condition for f, to obtain the
set {(x1,x9,x3,T3,T2,T1) | To > 0,23 < 0,24 > 0,20+ 324 > 0,21 + 23 < 0,21 + 20 + 23 + 324 >
0,t(b) +x1+ T2 > £, (D) +T1 + T2 < L, t(b) — 21 + T2 > 0,F1 + T3 + 2T > £, s(b) < 2¢}. Combining
the two final sets above yields the set Ny4.
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(N1s)

(N1g)

Consider D7 = {(z1,x2,73,%3,0,Z1) | 23 < 0,24 > 0,21 + 23 < 0,21 + 20 + 23 + 324 < 0,21 +
220 + 23 + 324 < 0,t(b) + 21 > l,x1 + 22 — w3+ Tg > Lo —x3 + Tz + 31 > £,8(b) < 20}
in Béj ). Since z4 > 0, we can repeatedly apply the second condition for fg to obtain the set
{(z1,22,23,%3,T2,T1) | T2 > 0,23 < 0,24 > 0,21 + 25 < 0,21 + 22+ 235 + 324 < 0,¢(b) + x1 + T2 >
x4+ 29 — x5 + Ty + 2T > L, 29 — T3 + Ty + 2To + T1 > £, s(b) < 2¢}. This set is precisely Nig.

Consider D7 = {(z1,z2,23,%3,0,%1) | 23 < 0,24 > 0,21 +23 < 0,21 + 20+ 23+ 324 < 0,21 + 222+
234324 < 0,t(b)+x1 > €, 21 +x2—23+T3 > {,x0—x3+T5+T1 > ¢, s(b) < 2(}in Béj). Since z4 > 0,
we can repeatedly apply the second condition for fg to obtain the set {(z1, 2, 3, T3, T2, T1) | T2 >
0,25 <0,24 =0,21 + 23 < 0,21 + 20+ 23 +324 <0,8(b) + &1 + To > ¥, 1 + X2 — x3 + T3 + 2T >
b,k — x5+ Ty + 2T2 + T1 > £, 8(b) < 2¢}. Then z4 = 0, so we repeatedly apply the first condition
for f~2. This yields the set {(z1,z2,23,Z3,T2,T1) | T2 > 0,24 < 0,23 + 324 < 0,21 + 23 + 324 <
0,21 +22+23+324 < 0,t(0) +x1+T2 > a1+ T2+ 2To— 24 > L, 20+ 2To+T1 —24 > £, 5(b) < 20}
This set is precisely Ni7.

Consider elements of the form {(x1, 2, x3,%3,0,%1) | 21 < —1,29 < 0,23 > 0,24 > 0, 20+23+324 >
0,21 + 229 + 23 + 324 < 0,t(b) + 21 > £,t(b) + T1 < £,T1 + T3 > £,s(b) < 2¢}. This set is
contained in Dg in Béj ). Since z4 > 0, we can repeatedly apply the second condition for fg
to obtain the set {(x1,z2,23,%3,%T2,%1) | T2 > 0,21 < —1,23 > 0,24 > 0,22 + 23 + 324 >
0,t(b) + 1 + T2 > £,t(b) + T1 + T2 < L,t(b) — 21 + T2 > 0,T1 + Tz + 2T2 > £,s(b) < 24},
The condition t(b) — 21 + Zz > 0 is obtained from the conditions z; + 229 + 23 + 324 < 0 and
s(b) < 2¢. Then if z4 = 0, the first condition for f> is satisfied. Repeatedly applying f» yields
the set {(x1,22,23,T3,T2,T1) | To > 0,21 < —1,23 > 0,24 < 0,23 + 324 > 0,20 + 23 + 324 >
0,t(b) +x14+ T2 > £, (D) +T1 + T2 < L, t(b) — 21 + T2 > 0,F1 + T3 +2T2 > ¢, s(b) < 2¢}. Combining
the two sets above yields the set Nig.

Therefore, by repeatedly applying f> to elements in Béj ), we obtain Béj ) = Béj JuLuU My U My U
NiUN,U- U Ni7. Now, we work to show that BY) = Fy U F, U Fy U Fy.

(F1)

We first combine C in Bij) with N3 in Béj) to obtain the set Fy 1 = {(z1, 22,23, T3, T2,%1) | 21 <
0,23 > 0,23 +324 > 0,21 + 22+ 23+ 324 < 0,¢(b) + T1 + T2 > {,T1 + T3 + 272 = £, s(b) < 24}.
Then, combine Cq; in Bflj) with Ny in Béj) yielding the set Fy o = {(z1, %2, %3, T3, T2,T1) | 21 <
0,23 > 0,23 + 324 > 0,21 + 22 + 23 + 324 > 0,8(b) + 21 + T2 = £, s(b) < 2¢}. Next, combine
Cis in Bij) with Nyg in Béj) to obtain the set Fy 3 = {(x1, z2, 3, T3, T2, T1) | 23 > 0,23 + 324 >
0,20+ 23+324 > 0,21+ 20+ 23 +324 < 0,8(b) + 21+ Ty > 0,T1 + Ty + 2T = £,5(b) < 20},
Finally, combine Dg in Béj) with N7 in Béj) yielding the set Fy 4 = {(x1, x2, %3, T3, T2, T1) | 721 <
0,23 > 0,23 +324 > 0,20+ 23+ 324 > 0,8(b) + &1 + ZTo > £,t(b) + T1 + To < £,t(b) — 21 + T2 >
0,Z1 + Z3 + 2T2 > £, s(b) < 2¢}. Combining the sets Ny3 = {(21, 22, 23,%3,T2,T1) | T2 > 0,21 <
0,23 > 0,23 + 324 > 0,8(b) + Ty + To > £,t(b) — 21 + T2 > 0,T1 + T3 + 2T2 > £, s(b) < 24},
Fi1={(z1,22,23,%3,%2,%1) | 21 < 0,23 > 0,23 +324 >0, 21 + 22+ 23 + 324 < 0,8(b) + T1 + T2 >
0T + T3 + 2T = {,s(b) < 20}, F1o = {(z1,%2,23,T3,T2,%1) | 21 < 0,23 > 0,23 + 324 >
0,21 + 22 + 23 + 324 > 0,t(b) + z1 + &2 = £,5(b) < 20}, F1 3 = {(z1,22,23,%3,%2,%1) | 23 >
0,23+324 > 0,20+25+324 > 0,21+ 20+25+324 < 0,t(b)+21+T2 > €, T1+T3+2T2 = £, 5(b) < 24},
and Fy 4 = {(z1,22, %3, T3,T2,T1) | 21 < 0,23 > 0,23+ 324 > 0,20 + 23 + 324 > 0,¢(b) + 1 + T2 >

74



L,t(b) + T1 4+ To < £,t(b) — 21 + Ta > 0,T1 + Tz + 2T2 > £,s(b) < 2{}, we obtain the set Fy as
desired.

(Fy) First combine Cg, C7 and Cy in Bij) with Dg in Béj) to obtain the set Fy 1 = {(z1, %2, 3, T3,0,%1) |
20 < 0,23 < 0,24 =0,21 +23 < 0,21 + 220+ 23+ 324 <0,8(b) + 21 > 6,t(b)+71 > bz + 30 >
0,T1 + x2 > £,8(b) < 2¢}. Then, we combine Cy and Cp in Bij) with D5, D7, and Dg in Béj)
yielding the set Fao = {(z1,22,%3,73,0,Z1) | 23 < 0,24 > 0,21 + 23 < 0,21 + 220 + 23 + 324 <
0,t(b) + 1 > l,x1 + x2 — 3 + Ty > L,x9 — x3 + Ty + T1 > {,s(b) < 2¢}. Next, combine Cs
in Bij) with Ny in Béj) to obtain the set Fbs = {(x1,22,%3,%3,T2,%1) | 23 < 0,24 > 0,21 +
23 < 0,29 +324 > 0,21 + 290 + 324 > 0,8(b) + x1 + T2 = £,s(b) < 2¢}. Combining the sets
Ng = {(x1,22,23,T3,T2,%1) | T2 > 0,21 < 0,23 < 0,24 > 0,21 + 22 + 324 < 0,¢(b) + 21 + T2 >
£, 5(b)+204324 = l+x1,8(b) < 20}, N1y = {(x1,x2,23,T3,T2,T1) | Toa > 0,23 < 0,24 > 0,21+23 <
0,21 + 22+ 23 + 324 > 0,t(b) + 21 + T2 > £,t(b) — 21 + Ta > 0,T1 + Tz + 2T > £, s(b) < 24},
Nis = {(21,22,23,T3,T2,T1) | To > 0,24 < 0,23+ 324 < 0,21 + 23+ 324 < 0,21 + 20 + 23 + 324 >
0,t(b) + @1 + Tp > L,4(b) — 21 + Ty > 0,21 + T3 + 225 > £, 5(b) < 20} in BY) with Fyq, Fy, and

I, 5 given above, we obtain the set Fy as desired.

(F3) We first can combine the disjoint sets in Béj) to obtain Béj) = {(z1,%2,23,%3,0,¢) | 21 > 0,2 +
z3 > 0,21 + 23 + 324 > 0,21 + 222 + 23 + 324 = 0,5(b) = 2¢}. Next, combine Cj5 in Bé(lj) with
Ny in Béj) to obtain the set F51 = {(z1,%2,23,%3,%2,%T1) | 21 > 0,21 + 23 > 0,21 + 23 + 324 >
0,21 + 22 + 23 + 324 < 0,8(b) + &1 + Ta > ,T1 + T3 + 2T2 = ¢, s(b) < 2¢}. Then, combine D in
Béj) with Njs in Béj) yielding F5 o = {(21, ®2, x3, T3, T2, %1) | 21 > 0,21 + 23 > 0,21 + 23 + 324 >
0,t(b) + x1 + T2 > L,t(b) — 21 + T2 > 0,71 + T3 + 2T2 > {,5(b) < 2(}. We combine C; in
Bflj) with D; in Béj) and Np; in Béj) to obtain the set Fy3 = {(x1, 22,23, %3, T2, %1) | 21 >
0,21 + 23 > 0,21 + 23 + 324 > 0,t(b) — 21 + T2 > 0,s(b) = 2¢}. Finally, combine Béj), Cy in
Bé(lj), and L and Nj in Béj) yielding the set F34 = {(z1,%2,%3,%3,%2,%1) | 21 > 0,21 + 23 >
0,21 + 23+ 324 > 0,21 + 20 + 23 + 324 > 0,t(b) + 21 + T2 = £,s(b) < 2¢}. Combining the sets
F51 = {(z1,22,23,%3,%2,%1) | 21 > 0,21 + 23 > 0,21 + 23 +324 > 0,21 + 22 + 23 + 324 <
0,t(b) +x14+ T2 > £, +T3+2T2 = £, 5(b) < 20}, F3 5 = {(x1,22,%3,%3,T2,%1) | 21 > 0,21+ 23 >
0,21 + 23 + 324 > 0,¢(b) + 21 + T > Lt(b) — 21 + T2 > 0,71 + T3 + 275 > £,5(b) < 20},
Fs 5 ={(z1,22,23,%3,%2,%1) | 21 > 0,21 +23 > 0,21 + 23+ 324 > 0,(b) — 21 + T2 > 0, 5(b) = 2¢},
and F3 4 = {(x1,22,23,%3,%2,%1) | 21 > 0,21 + 23 > 0,21 + 23 +324 > 0,21 + 22 + 23 + 324 >
0,t(b) + x1 + T2 = ¢, s(b) < 2£}, we obtain the set F3 as desired.

(Fy) We first combine M;, Ms, Ng, and Nig in Béj) to obtain the set Fy1 = {(z1, 2, x3, T3, T2, 1) |
24 <0,234+324 <0,21 +23+324<0,21 +204+23+324 < 0,t(b)+1171 + Ty > E,S(b) — 21+ 29 2
l+x1,5(b)+22 > {421, 5(b) < 2¢}. Then, combining Fy ; above with N5 = {(z1, x2, z3, T3, T2, T1) |
To > 0,20 20,24 <0,234+324 <0,21 +23+324 <0,21 +20 > O,t(b) + 21+ T2 = Z,S(b) < 2@}
from Bé] ) yields the set F as desired.

Thus, Béj) = Fy U F5; U F5 U F; and we have now constructed the set B,gj) for 0 <a<6. O

Remark 5.2.2. By the explicit construction of B,gj ) in Lemma 5.2.1, we can see that Béj ) #*

B. For example, the element (0,0,0,0,0,0) is not contained in Béj), but is contained in B.
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Therefore, in Theorem 3.4.3, x # 1.

We now show conditions (2) and (3) in Theorem 3.4.3 are satisfied with the sequence {z((f ) |
j>1,1<a <6} given above for A = ¢A;.

By direct calculations of the simple reflections r; (i = 0,1,2) on Ay, we obtain the following
Lemma, which we will use along with Proposition 3.4.4 to provide justification for condition
(3) in Theorem 3.4.3.

Lemma 5.2.3. Let k € Zso and k =6(j — 1) +a for 1 <a <6. Then wkA; = Ay — Mmooy —

miay — moqia, where

252 -3j+1 ifa=1,2,3
2j2 + 3 ifa=4,5,6
452 —45+1 ifa=1,2
my =452 -2j+1 ifa=3,4
452 ifa=5,6
22 -3j+1 ifa=1
mo = ¢ 252 —j ifa=2,3,4,5
252+ ifa=6

Proposition 5.2.4. Conditions (2) and (3) in Theorem 3.4.3 are satisfied with the sequence
{i((zj) | 7>1,1 <a<6} and the Weyl group sequence {w(k)}kzo given above for A = fA;.

Proof. In order to show condition (2), we consider (¢A1,h ;). Observe that (€A1, b)) =0 <
Ei(j)(b) for all b€ BY, a= 2,4,6. Also, (¢Aq, hi(j)> =/{ for a = 1,3,5. We must consider £1(b)

a—1
for all b € B(()j)7 Béj), and Bij). First, note that for all b € B(()j) or ng), we have 1 = £. Hence,
61(b) =71+ (12‘3 — T2+ (172 — :L'3)+)+ =1+ (Zf‘g — T+ (1‘2 — l’3)+)+ >/fforallbe B(()]) and Béj)
Now, consider b € Bij). Note that for all b € Bf), Tog=0,50¢1(b) =21+ (T3 + (x2 —23)+)+ =

Z1 + &3+ (x2 — x3)+. We consider each subset in Bflj).

o Ifbe Béj), then z; = £ and €1(b) > ¢ by the same reasoning as above.

o If b € C1, then z1 + 23 + 324 = 0 and s(b) = 2¢. The condition z; + z3 + 324 = 0 implies
T1+3%3 = 21+ 22+ 323 = 5(b) —T1 — 3. So, 271 +2T3 = s(b) = 2, implying 1 + T3 = L.
Thus, 81(6) =1+ X3+ (1‘2 —x3)4 > L.

o If b € Cy, then 21 + 290 + 23+ 324 > 0 and t(b) + 21 = £. Since 21 + 22 + 23 + 324 > 0, we
have Z1 + 323 > x1 + z2 + 3x3. This means 1 + 23 > 21 + 22+ 513+ 523 = t(b) + 21 = L.
Thus, 61(6) =1+ 23+ (.1‘2 — .%'3)+ > /.

76



o If b € C3,C4, then Z1 + T3 = ¢. This implies €1(b) = Z1 + T3 + (x2 — x3)+ > L.

o If b € C5, then z3 < 0, 21 + 22 + 324 > 0, and ¢(b) + 1 = ¢. Since z3 < 0, €1(b) =
Z1 + Z3 + 22 — x3. Then z1 + 29 + 324 > 0 implies Z; + %Zi;g > %3:3 + z1. Thus, 1(b) =
1+ T3+ 0 — 23 > %i’g—i—%xg—l—wg—i-:ﬁl :t(b)—i—xl =/.

o Ifbe Cg,then 21 >0, 24 =0, 21+ 23 <0, and 1 + 9 = £. Since z; > 0 and z; + 23 <0,
we have z3 < 0. So, £1(b) = 1+ T3+ x2 — x3. Then, z4 = 0, implying 23 = Z3. This makes
e1(b) = T1 + x9 > 1 + 22 = £ since z; > 0.

o If b € C7, then 23 < 0, 24 = 0, and Z; + x2 = £. Since z3 < 0, 1(b) = Z1 + T3 + T2 — T3.
Then z4 = 0 implies Z3 = 3 and hence, €1(b) = T1 + x2 = L.

o If b € (s, then z5 = 0, z3 < 0, z4 = 0, and #(b) + ;1 = {. Since z3 < 0, €1(b) =
1+ T3 + x2 — x3. Then z4 = 0 implies T3 = x3, so €1(b) = T1 + 2. Also, z2 = 0, so
Zg = x3 = 0. This implies £ = t(b) + 1 = 2 + Z;. Thus, ,(b) = £.

o If b € Uy, then z1 > 0, 21 + 23 < 0, and x1 + 9 — x3 + T3 = £. The conditions z; > 0 and
21 + 23 < 0 imply that z3 < 0. So, £1(b) =21 + T3 + 2 — a3 > 1 + 2 — x3 + T3 = L.

e If b € Cyp, then z3 < 0 and x9 — 23 + T3 + 1 = . Since z3 < 0, we have ¢,(b) =

T1+ T3+ a0 — a3 =1

o If b € C11, then 21 + 22+ 23 + 324 > 0 and t(b) + x; = ¢. Since z1 + 22 + 23 + 324 > 0, we
have z1 + %3?3 >z +x9+ %{L‘g. This means 1 + T3 > 1 + 2 + %:Eg + %i’g =t(b)+x = L.
Thus, 81(5) =1 +x3+ (1‘2 — x3)+ > /.

o If b € Cio, then 23 > 0 and Z; + Z3 = ¢. Since z3 > 0, we have £1(b) = 1 + T3 = /.
Therefore, £1(b) > ¢ for all b € B((]j), Béj), and B[(lj). This implies (¢Aq, him) < €i(j)(b) for

all b€ BY) | and condition (2) holds.

a—1>

To prove condition (3), we use Lemma 5.2.3. For k =6(j —1)+a, j > 1,1 < a < 6, we have

;

2j—1 ifa=1,4

2j ifa=2,5
(WP Ay, by ) = ’
fat1 45 -1 ifa=3

4j+1 ifa=6.

Hence, for positive j, (w(k)Al,hi@ ) is greater than zero. By Proposition 3.4.4, this implies
a+1

wktl) = rl(-jllw(k) > w®) . Thus, the sequence of Weyl group elements, {w(k)}kzo, is increasing
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with respect to the Bruhat order, satisfying condition (3).
O

We have shown above that Béj ) = BB and hence, k # 1 in Theorem 3.4.3. Due to the previous
conjecture that k < 2, we have conjectured that kK = 2 for A = £A;. We provide the conjecture

and evidence toward the conjecture below.

Conjecture 5.2.5. For A = (Aq, £ > 1 and the given perfect crystal B = Byy for the quantum
affine algebra, Uq(Df’)), with d = 6 and the sequence {z(])} giwen above, we conjecture that
conditions (1), (2), and (3) in Theorem 3.4.3 hold with k = 2. This would imply that path
realizations of the corresponding Demazure crystals B, ) ((Ay) for Uq(Df’)) have tensor product-

like structures.

We provide justification for this conjecture by giving the sets BC(LHl’j), 0<a<6for{=1,2
and show that Béj L) = Béj )®B in these two cases. This implies condition (1) in Theorem 3.4.3
holds with x = 2.

5.2.1 ¢=1 Case

First, by Lemma 5.2.1, we have the following sets B((zj ) for 0 <a<6.

BY = {(1,0,0,0,0,1)}
B§‘) BY U{(0,1,0,0,0,1)}
BY) = ]) U {(0,0,2,0,0,1)}
BQ) ]) u{(0,0,0,2,0,1),(0,0,1,1,0,1)}
By = ” U {(0,0,0,2,0,0),(0,0,1,1,0,0),(0,0,3,1,0,0),(0,1,0,0,0,0), (0, 1, 1,1,0,0),
(1,0,1,1,0,0),(1,1,0,0,0,0)}

BY = BY U {(0,0,0,4,0,0),(0,0,1,3,0,0), (0,0,2,2,0,0), (0, 1,0, 2,0,0), (0,2,0,0,0,0),
(1,0,0,2,0,0)}

BY = BY U {(0,0,0,0,1,0), (0,0,0,0,1,1), (0,0,0,0,2,0), (0,0,0,2,1,0), (0,0,1,1,1,0),
(0,0,2,0,0,0
(1,0,0,0,1,0

):(0,0,2,0,1,0),(0,0,4,0,0,0),(0,1,0,0,1,0), (0,1,2,0,0,0),
)7 (1?07 27 O? 0’ 0)}'

Note the elements in B that are missing in Béj) are (0,0,0,0,0,0), (0,0,0,0,0,1),
(0,0,0,0,0,2), (1,0,0,0,0,0), and (2,0,0,0,0,0). Thus, BY # B, and hence r # 1.
‘We now construct the sets BC(LJ +L ), 0 < a < 6 explicitly.
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By definition, BY ™) = BY™) @ BY). Since BY) = {b;} and b; = (1,0,0,0,0,1) for all
j > 1, we have BY™ = {(1,0,0,0,0,1)}. So,

BY ) = {(1,0,0,0,0,1) @ (o, . ah, &, 75, 8) | (o, ah, 0%, &, 7. 7) € B},

Then we use the recursive formula,

o 5 e
Byt = U fi]{(:j+1)BC(l,{1 ) \ {0},
k>0
to determine B((zj +1.) for 1 < a < 6. We use the tensor product rule defined in Theorem 3.1.7
along with the operators, ;, ¢;, i = 0,1,2 defined in Chapter 4 to do this.

We define the following conditions for (z}, 2%, 25, 74, T, T)) € B,

(
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Thus, the sets B(gj +19) for ¢ = 1 are constructed as follows,

BEJ'HJ) ]+1,J) U{(1,0,0,0,0,1) ® (0,0,0,0,0,2)}

( )@ (
U{(0,1,0,0,0,1) ® (2}, 2}, 2%, T, 7y, 7}) | (P1) holds},
BT = BUTM) U {(0,0,2,0,0,1) ® (o}, o, o, &, Z, ) | (P2) holds},
Bt = ”LJ) U{(0,0,1,1,0,1) ® (2}, zb, 2y, T4, T, 7}) | (P,) holds}
U {(0,0,0,2,0,1) ® (x}, x5, 2%, T4, T5, 7)) | (P3) holds},

BY) = {(1,0,0,0,0,1)} ® BU{(0,1,0,0,0,1)} ® BU{(0,1,1,1,0,0)} ® B
U{(0,0,2,0,0,1)} ® BU{(0,0,3,1,0,0)} ® BU{(0,0,1,1,0,0)} ® B
u{(1,0,1,1,0,0)} ® BU{(0,0,0,2,0,0)} ® (x, b, x5, T4, T, ;) | (P3) holds}
U {(z1,22,0,0,0,0) ® (), 25, 2%, T4, T, ) | 72 = 1, s(b) <2, (Ps) holds}

(
(
u{(0,1,0,0,0,0 xy, wh,25,0,0,0) | (Py) holds}
(
(
(

) @ ( (
U {(1,1,0,0,0,0) @ (x}, 25, 25,0,0,0) | (P5) holds}
U{(1,1,0,0,0,0) ® (z}, 25, 25,1,0,0) | s(b)’ < 2}

U{(1,1,0,0,0,0) ® (0,0,0,2,0,0)},
Béj+1’j) = {(x1, 29, 3,%3,0,1) | s(b) =2} @ B

U{(z1,22,0,0,0,0) | 2 >0, s(b) <2} @B

U {(x1,x2,23,73,0,0) | 22 <0, s(b) <2} ® B,
BYTH) = BIYYD U {(w1, mo, w3, B3, B2, 1) | 22 > 0, s(b) <2} ® B

U{(x1,22,23,0,0,0) | 24 <0, s(b) <2} ®B.

We see that by combining the sets in B(j+ ) , we obtain B(]H’J) Béj) ®B. Thus, condition

(1) in Theorem 3.4.3 holds for A = A; with x = 2. This implies Conjecture 5.2.5 holds when
¢ = 1, and path realizations of the corresponding Demazure crystals By «) (A1) for Uq(Df’))

have tensor product-like structures.
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5.2.2 ¢ =2 Case

First, by Lemma 5.2.1, we have the following sets B((zj ) for 0 <a<6.

B = {(2 0,0,0,0,2)}

BY = BY U{(21,22,0,0,0,2) | 21 > 0,21 + 23 = 0, s(b) = 4}
B(J) = U{(J: x9,23,0,0,2) | 21 > 0,24 < 0,21 + 23 + 324 = 0,5(b) =4}
B(J U {(z1, 22, 23,%3,0,2) | 21 > 0,29 < 0,21 + 23 > 0,21 + 220 + 23 + 324 = 0,

s(b) = 4}
BY) =BY uc,uc,u---UCyy
BY) =BY UD;UDyU---UDy
BY) = Fy UF, UF3 U Fy,

where C,, = {(z1,z2,23,%3,0,%1) | (P,) holds} for 1 < n < 12, D,, = {(z1, z2,x3,73,0,71) |
(Qn) holds} for 1 < n <9, and F,, = {(z1, %2, x3,T3,%2,%1) | (Ry) holds} for 1 < n < 4 with
(=2,

We note that Béj) # B since (0,0,0,0,0,0) ¢ Béj), and hence k # 1. We now construct the
sets B((ljﬂ’j), 0 < a < 6 explicitly.

By definition, B(Hl’j) = B(jH) ® B( 7 Since B = {b;} and b; = (2,0,0,0,0,2) for all
j > 1, we have B(J“) {(2,0,0,0,0,2)}. So,

BT = {(2,0,0,0,0,2)® (2}, 2, 0%, 3%,3,30) | (&}, b, 0%, 2%, 35,71 € B}

Then we use the recursive formula,

BYHD = | Jli B\ {0},
k>0

to determine B((lj +1.9) for 1 < a < 6. We use the tensor product rule defined in Theorem 3.1.7
along with the operators, ;, ;, i = 0, 1,2 defined in Chapter 4 to do this.
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We define the following conditions for (2, xh, x4, 75, 75, 7)) € B,

NI—= N
&
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+ +

zh) = 1,24 > 0,25 > 0,
1 _ _
wy + 5 (x5 +74) > 0,7 > 2,
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Thus, the sets B(gj +19) for ¢ = 1 are constructed as follows,

BUTH) = BUTLD (5 1(2,0,0,0,0,2) ®

U{(0,2,0,0,0,2) ®

U{(0,2,0,0,0,2) ®

U{(1,1,0,0,0,2) ®
u{(1,1,0,0,0,2) ®
U{(1,1,0,0,0,2) ®
( )@
( )@
( )@
( )@

®(:C1,x27$37$é,f/2,i’/1) | j/1 >3, S(b)/ = 4}
Pp) holds, 1 < s(b) <4}
P,) holds}

=/ =/

Ty, w9, 25, T, Ty, T1) |

(
vy, 73, T, To, 71) | (
xh, w5, Th, Th, 77) | (Ps) holds}
rY,75,0,0,0,2) | (P;) holds}

(1,
(h,
(h,
(1,
(), xh, x5, 75,0,0) | (Py) holds}
(1,
(1,
(2,2
(21,

X

U{(1,1,0,0,0,2) ® («},0,4,0,0,0) |z} < 1}
u{(1,1,0,0,0,2 oy, oh, 2%, 75, 1,0) | (P5) holds}
u{(1,1,0,0,0,2 2y, 75,0,0,75, 7)) | (Ps) holds}
u{(1,1,0,0,0,2 xy, oy, 25, 75,0,1) | (Pr) holds,
Béj“’j) ]H’] U {(0,0,4,0,0,2) ® (z}, x5, 25, T4, 5, Z7) | (Q1) holds}
U {(0,0,4,0,0,2) ® (2}, 5, x5, 75,0,1) | 2 < s(b)’ < 4}
U{(0,0,4,0,0,2) ® (), 2}, 2, 74, 0,0) | 74 > 2}
U {(0,0,4,0,0,2) @ (z}, 25, 25,1,0,0) | £(b)" > 2, s(b) < 4}
U{(0,1,2,0,0,2) ® (0,0,0,0,,, 7,) | 2 < s(b) < 4}
U{(0,1,2,0,0,2) @ (z}, 25, 25, T4, Th, 7)) | (Q2) holds}
U{(0,1,2,0,0,2) @ (z}, 25, 25, 75,0,0) | (Q3) holds}
U{(0,1,2,0,0,2) @ (z}, 25, 25, 75,0,0) | (Q4) holds}
U{(1,0,2,0,0,2) ® (0,0,0,0,z5,7,) | 3 < s(b)’ <4}
U{(1,0,2,0,0,2) @ (x, 25, x5, T4, Th, T}) | (Q5) holds}
U{(1,0,2,0,0,2) ® («}, b, b, %, &, 1) | (Qg) holds}
U{(1,0,2,0,0,2) ® (a}, 2}, 2, 74,0,1) | &4 > 0, 3 < s(b)’ < 4}
U{(1,0,2,0,0,2) ® («}, b, 2%, &4, 0,0) | (Qr) holds}
u{(1,0,2,0,0,2) ® (z}, x5, 25, 74,0,0) | (Qs) holds}
U {(1,0,2,0,0,2) ® (z}, 5, 25, T4, T5,0) | (Qg) holds}
U{(1,0,2,0,0,2) ® («}, 2, 1,1,1,0) | 2} > 0, s(b) < 4}
U {(1,0,2,0,0,2) ® (z}, x5, 25, 75,3,0) | s(b) = 4}
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BYTH) = BUTL) (5 {(0,0,0,4,0,2) @ (2], 2, aly, T4, Th, ) | T) + 2 > 2, s(b) < 4}
U{(0,0,0,4,0,2) ® (a7}, b, 2, %, 1,0) | & > 0, s(b) < 4}
U {(0,0,3,73,0,2) ® (0,0,0,0,z5, 7)) | 23 >0, 22 <0, s(b) =4,
2 < s(b) <4}
U {(0,0,z3,73,0,2) @ (2], 25, 2%, 75,75, 7)) | 23 > 0, 20 <0, s(b) = 4,
(R1) holds}
U {(0,0,3,73,0,2) ® (2}, 25, 25, 74, 75,0) | 23 > 0, 20 <0, s(b) = 4,
(R2) holds}
U{(0,1,0,2,0,2) ® (2], x5, x5, T4, T, T)) | ) + 7h > 3, s(b)’ < 4}
U{(0,1,0,2,0,2) ® (2], 2%, x5, T4, T, T}) | ) + 75 =2, 75 > 1, s(b)’ < 4}
U {(z1, 22,23, 73,0,2) ® (2], b, 2%, 75,1,0) | 21 + w2 = 1,20 + 23 + 324 = 0,
s(b) =4, (R3) holds}
U{(x1,22,0,2,0,2) @ (2, 25,1,1,1,0) | 21 + 22 = 1, 75 > 1,3 < s(b)’ < 4}
U{(0,1,1,1,0,2) & (0,0,0,0, %, 7,) | 2 < s(b) < 4}
U{(0,1,1,1,0,2) @ (x}, x5, x5, T5, 75, 7}) | (Q2) holds}
u{(0,1,1,1,0,2) @ (x}, x5, 25, 75,0,0) | (Q3) holds}
u{(0,1,1,1,0,2) ® (27, 5, x5, 74,0,0) | (R4) holds}
U{(1,0,z3,%3,0,2) @ (x}, 25, 2%, 5, 75, 7)) | 220 < 0,s(b) = 4,3 < s(b)’ < 4}
U{(1,0,z3,73,0,2) @ (2}, 2, 2%, 75,75, 7)) | 22 <0, s(b) =4, (Qg) holds}
U{(1,0,1,1,0,2) ® (2}, x5, x5, 74,0,0) | (R5) holds}
U{(1,0,1,1,0,2) ® (z}, x5, x5, 74,0,7}) | (Rs) holds
U{(1,0,1,1,0,2) ® (2}, x5, 25, 75,0,1) | (R7) holds},
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BYTH) = {(0,0,23,75,0,71) | T3 > 3,24 > 0,5(b) = 2} ® B
U{(z1,22,23,2,0,0) | 2 < 2,23 >0,2<s(b) <4} @B
U{(z1,2,23,73,0,0) | x3 = Z3,21 < 1,5(b) <4} @ B
U{(z1,22,23,2,0,1) | s(b) =3} @B
U{(z1,z2,23,1,0,1) | 21 < 1,3 < s(b) <4} ®@ B
U{(z1,22,0,0,0,1) | 1 <29 <2,3<s(b)<4}®B
U {(z1,z2,x3,73,0,2) | T3 < 2,s(b) = 4} ® B,

BUTY) = {(21, 29, 23, 73,0,0) | T3 > 2,2 < s(b) < 4} @ B
U{(z1,z2,23,%3,0,0) | z3 = T3 < 1,29 > 2,5(b) < 4} @B
U {(z1,z2,x3,73,0,1) | Z3 > 0,3 < s(b) <4} ® B
U{(z1,22,0,0,0,1) | z2 > 0,3 < s(b) <4} ® B
U{(z1, z2,x3,73,0,2) | 3 < 2,s(b) = 4} ® B,

Béj+1,j) _ Béj) ® B.

From above, we see that condition (1) in Theorem 3.4.3 holds for A = 2A; with x = 2.
This implies Conjecture 5.2.5 holds when £ = 2, and path realizations of the corresponding

Demazure crystals B, ) (2A;) for Uq(Df)) have tensor product-like structures.

5.3 Case 3: A\ = /(Ao + A1)

We begin by considering A = ¢(Ag + A;) and the irreducible highest weight Ué(Df))—module

with highest weight ¢(Ag + A1). Note that £(Ag + A1)(c) = 3¢, so we will use the associated

perfect crystal B = Bsg. The £(Ag + A1)-minimal element in B is b = (£,0,0,0,0,¢). Also,

Aj =X ={(Ao+Aq) for j > 1, and hence b; = b. Thus, the ground-state path is py = - - -@bRb&b.
Set d = 6 and define the sequence {i$ | j > 1,1 < a < 6} C {0,1,2} as follows,

(7)

) ) B ) B ) B ) )
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By the action of ﬁ on B, we have

b = (£,0,0,0,0,),

) = fmaxpi)) = (0,4,0,0,0,0),
) = fmax ) = (0,0,2¢,0,0,0),
b — fmaX(bg ) = (0,0,0,2¢,0,¢),
b)) = fmax )y = (¢,2,0,0,0,0),
) = fmaxp)) = (0,2¢,0,0,0,0),
b(] maX(béﬂ)) (0,0,44,0,0,0).

Using the notation from Theorem 3.4.3, yields the following Lemma.

Lemma 5.3.1. Define conditions Pp,, Qn, and Rs for b € B as follows,

(P1) :

23<0,24 20,214+ 23<0,290+324>0,21 +204+324 > 0,21 +220 4+ 23 + 324 <O,
t(b) + x1 =¥, s(b) < 2¢;

121 <0,23<0,24>0,21+29+324 <0,21 +220+23+324 <0,T1 +Tg < ¥,

t(b) +x1 > 0, t(b) + 71 < 20,29 — w3+ T3+ T1 = £, s(b) < 3¢

121 20,20<0,214+2320,21 +234+324 20,21 + 20+ 23+ 324 <0,

21+ 229+ 234+ 324 < 0,71 + T3 = £, s(b) < 2¢;

121 <0,2320,234+324 20,21 + 204+ 23+ 324 < 0,21 + 229 + 23 + 324 <0,

1+ T3 =4,s(b) < 3¢

121> 0,21 +23 20,21+ 20+ 23+ 324 > 0,21 + 2290+ 23+ 324 < 0,¢(b) + x1 = ¢,

s(b) < 2¢;

121 20,2420,21—}—23<0,22—|—324<0,i‘1+ig<f,t(b)+$1 >/,

x1+ a9 —x3+ T3 =L, 5(b) < 20

121 <0,232>0,234+324 20,21+ 204+ 23+ 324 > 0,21 + 220 + 23 + 324 <0,

t(b) +x1 =4, s(b) < 2¢;
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(Q1) :23<0,24>0,21+23<0,21 + 22+ 23+324<0,21 +2204+ 23 +324 <0,Z1 + T3 <Y,
t(b) +xy >l x1 + 290 — w3+ Ty > L, 190 — 3+ T3 +T1 > £, 5(b) < 3¢5

(Q2) 121 >0,290 < 0,21 +23 >0,21 +23+324 > 0,21 +220+ 23+ 324 < 0,Z1 + T3 > ¢,
t(b) + x1 > ¢, s(b) < 2¢;

(Q3) 121 <0,23>0,23+324 >0,21 + 220+ 23+ 324 < 0,T1 + T3 > £,t(b) + 1 > ¢,
s(b) + z1 < 2¢,s(b) < 3¢

(Q4) 123 < 0,24 > 0,21 +23 <0,21 + 220+ 23+ 324 < 0,71 + T3 > {,t(b) + 1 > ¢,
s(b) + z1 + 23 < 20,5(b) < 3¢4;

(R1):21>0,21+23>0,21 + 23+ 324 > 0,71 + T3+ 2T2 > {,5(b) — 21 > L+ z1,s(b) <2/

(Rg):21<0,23 >0,234+324 >0, + T3+ 2T3 > {,8(b) — 21 > L+ x1,5(b) + 21 < 20,
s(b) < 3¢;

(R3) 123 < 0,24 > 0,21 4+ 23 <0,8(b) — 21 > €+ x1,8(b) — 21 + 22+ 324 > £ + x1,
s(b) + 2o+ 324 > L+ x1,8(b) + 21 + 23 < 20, 5(b) < 3¢;

(Ry):24<0,234+324<0,21+23+324 <0,8(b) —21 >0+ x1,5(0b) — 21 + 220 > £+ x1,

s(b) + 20 > 0+ x1,8(b) + 21 + 23 + 324 < 20, 5(b) < 3¢.

Then, the subsets {B((,j) |7 >1,0<a<6} of B are given by,

By = {(¢£,0,0,0,0,0)}

B%j) = B(()j) U {(21,22,0,0,0,£) | 21 > 0,21 + 23 = 0,5(b) = 2¢}

Béj) = ng) U{(z1,22,23,0,0,0) | 21 > 0,24 < 0,21 + 23+ 324 = 0, 5(b) = 2¢}

BY = BY) U{(x1,22,73,75,0,0) | 21 > 0,2 < 0,21 + 23 > 0,21 + 222 + 23 + 324 = 0,
s(b) = 20}

BY =By uciuc,u---UCy

BY = BY) U D, UD,U D3 U Dy

BY) = FLURUFUF,

where C,, = {(x1, 2, 3,73,0,%1) | (Py) holds} for 1 < n <7, D, = {(x1,x2,23,%3,0,Z1) |
(Qn) holds} for 1 <n <4, and F,, = {(z1,x2,x3,T3,T2,%1) | (Ry) holds} for 1 <n < 4.

Proof. By definition, B(gj) = {b;}, where b; = (£,0,0,0,0,¢) when A = ¢(Ag + A1). Then,
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BY) = U j;’fj)Bc(LjJI \ {0}. We first note that the sequence {igj) | 7 > 1,1 < a < 6} for
k>0
A =l(Ag+Aq) is the same as that for A = /A. Also, we have b; = (£,0,0,0,0,¢) when A = ¢A;.

Thus, the sets B(()j)7 B%j), Béj), and Béj) are the same as those for A = /A4 since fl and fg do
not change s(b) = 2¢.

To obtain Bij ), we apply fo repeatedly to elements in Béj ),

(C1) Consider elements from Béj) of the form {(x1,x2,x3,%3,0,¢) | 21 > 0,23 < 0,24 > 0,21 +
23 > 0,20+ 324 > 0,21 + 220 + 23 + 324 = 0,t(b) + 1 = £, s(b) = 2¢}. This is a subset
of B:gj) since z1 + 23 > 0, 24 > 0, and 21 + 220 + 23 + 324 = 0 imply that zo < 0.
This implies z1 + 22 + 23 + 324 = —z > 0; hence, these elements satisfy condition (Fg).
Repeatedly applying fo to elements of this form yields the set {(z1, 29, x3,%3,0,T1) | 21 >
0,23 < 0,24 > 0,21 +23 =0,204+324 > 0,21 +22+324 > 0,21 +220 4+ 234+ 324 <
0t(b) + 21 = £, s(b) < 2¢}. Then, condition (F;) is satisfied and we repeatedly apply fo to
yield {(z1, z2,x3,73,0,%1) | 21 > 0,23 < 0,24 > 0,21 +23 < 0,204+324 > 0,21 +29+324 >
0,21 + 229 + 23 + 324 < 0,t(b) + z1 = £,5(b) < 2¢}. Now, consider elements of the form
{(z1, 22, 23,23,0,¢) | 21 > 0,23 > 0,24 > 0,290+324 > 0,21 +220+23+324 = 0,¢(b)+x1 =
£, s(b) = 2¢}. This is a subset of Bg()j ) by the same reasoning as above. We also have that
21 + 29 + 23 + 324 = —2z92 > 0, so these elements satisfy condition (Fg). Repeatedly
applying fo to these elements yields the set {(z1,22,23,%3,0,Z1) | 21 = 0,23 > 0,24 >
0,21+ 23 > 0,20+ 324 > 0,21 + 229 + 23 + 324 < 0,8(b) + x1 = £,s(b) < 2¢}. Then the
conditions for (F5) are satisfied. By repeatedly applying fg, we obtain elements of the
form {(x1,x2,23,%3,0,Z1) | 21 < 0,23 = 0,24 > 0,29 + 324 > 0,21 + 22 + 324 > 0,21 +
229 + 23+ 324 < 0,t(b) + x1 = £, s(b) < 2¢}. Finally, the conditions for (F,) are satisfied,
so we repeatedly apply fo to this set to yield {(z1,22,23,%3,0,%1) | 21 < 0,23 < 0,24 >
0,21+23 < 0,204+324 > 0,21 +20+324 > 0,21+220+235+324 < 0,t(b)+x1 = £,5(b) < 2(}.
Combining the two final sets above yields the set C;. We note that this set is not contained
in Béj) since 21 + 229 + 23 + 324 # 0.

(C) Consider elements from Béj) of the form {(x1,x2,x3,%3,0,¢) | 21 > 0,23 < 0,24 > 0,21 +
z3 > 0,21 + 229 + 23 + 324 < 0,t(b) + 21 = ¢,s(b) = 2¢}. This is a subset of B:gj) since
z1+23 >0, z4 > 0, and 21 + 220 + 23 + 324 = 0 imply that zo < 0. This implies
21 + 29 + 23 + 324 = —z2 > 0; hence, these elements satisfy condition (Fg). Repeatedly
applying fo to elements of this form yields the set {(z1,xo, 23, Z3,0,Z1) | 23 < 0,24 >
0,20 + 23 = 0,21 + 22+ 23+ 324 > 0,21 + 220 + 23 + 324 < 0,t(b) + 21 = £,5(b) <
20}. Then, the conditions for (F;) are satisfied and we repeatedly apply fo. This yields

elements of the form {(x1,x2,x3,%3,0,Z1) | 21 > 0,23 < 0,24 > 0,21 + 23 < 0,29 + 324 =
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(C3)

0,21 + 229 + 23 + 324 < 0,t(b) + z1 = £,s(b) < 2¢}. Since z4 > 0 and 29 + 3z4 = 0,
we have zo < 0 and conditions for (F3) are satisfied. Repeatedly applying fo yields
{(z1,22,23,73,0,Z1) | 21 = 0,24 > 0,21 + 23 < 0,20 + 324 < 0,21 + 22 + 23 + 324 <
0,71+ &3 < £,t(b) +x1 > l,x1 + 29 — 3 + T3 = {,5(b) < 2¢}. Finally, the conditions
for (F1) are satisfied, so we repeatedly apply fo to obtain the set {(z1,x2,x3,%3,0,Z1) |
21 < 0,23 <0,2420,20+324 <0,214+204+324 <0,21+2204+234+324 < 0,21 +73 <
0,t(b) + x> 0, t(b) + 71 < 20,29 — x3 + T3 + 71 = £, s(b) < 3¢}. Now, consider elements
of the form {(x1,x2,x3,%3,0,€) | 21 > 0,23 > 0,24 > 0,20+ 324 > 0,21 + 229+ 23+ 324 =
0,t(b) + x1 = £,s(b) = 2¢}. This is a subset of Béj) by the same reasoning as above. We
also have that z; + 2o + 23 + 324 = —29 > 0, so these elements satisfy condition (Fg).
Repeatedly applying fo to these elements yields the set {(z1,x2,23,%3,0,%1) | 21 =0, 23 >
0,24 >0,214+23 > 0,204324 > 0,21 +220+23+324 < 0,t(b)+x1 = ¢, s(b) < 2¢}. Then the
conditions for (F5) are satisfied. By repeatedly applying fo, we obtain elements of the form
{(z1, 22, 23,23,0,%1) | 21 < 0,23 =0,24 > 0,290+324 > 0,21 +20+324 > 0,21 +220+ 23+
3z4 < 0,t(b) + x1 = £,s(b) < 2¢}. The conditions for (Fy) are satisfied, so we repeatedly
apply fo to this set to yield {(z1, 29, 23,73,0,Z1) | 21 < 0,23 < 0,24 > 0,29 + 324 >
0,21+22+324 = 0,21 +220+23+324 < 0,¢(b) +x1 =¥, s(b) < 2¢}. Finally, the conditions
for (F,) are satisfied. Repeatedly applying fo yields the set {(z1,x2, x3,%3,0,Z1) | 21 <
0,23 < 0,24 > 0,204324 > 0,21 +204+324 < 0,21 +220+23+324 < 0,7 +23 <
0,t(b) + 2 > L,t(b) + 71 <€ < 20,0 —x3 + T3+ T1 = {,5(b) < 3¢}. Combining the two
)

final sets above yields the set Cs. We note that this set is not contained in Béj since

21 + 229 + 23 4+ 324 # O.

Consider elements from Béj) of the form {(z1,x2,0,0,0,¢) | 21 > 0,21 + 23 = 0, s(b) = 2¢.
This set is a subset of B:gj ) since it is a subset of B%j ). The conditions for (F2) are
satisfied, so we repeatedly apply fo to obtain elements of the form {(z1, z2, x3,Z3,0,Z1) |
21 > 0,20 < 0,24 = 0,21 + 23 = 0,77 + 23 = ¢,s(b) = 2¢}. Next, consider elements
from B:gj) of the form {(x1,x2,23,0,0,¢) | 21 > 0,24 < 0,21 + 23 + 324 = 0,s(b) = 2¢}.
This set is a subset of Béj ), so it is contained in B?Ej). Again, conditions for (F3) are
met, so repeatedly applying fy yields the set {(x1,x2,23,23,0,Z1) | 21 > 0,22 < 0,24 <
0,21 + 23 + 324 = 0,71 + 3 = {,s(b) = 2¢}. Finally, consider elements of the form
{(z1,22,23,%3,0,0) | 21 > 0,29 < 0,23 < 0,21+ 23 > 0,21 + 220+ 23+ 324 = 0, s(b) = 2¢}.
This is clearly a subset of B?Ej ). Also, z1 + 29 + 23 + 324 = —29 > 0; hence, these elements
satisfy condition (Fg). Repeatedly applying fo to elements of this form yields the set
{(z1, 22, 23,73,0,%1) | 22 < 0,23 < 0,21+23 > 0,21 +20+23+324 = 0,21 +220+23+324 <
0,t(b) +x1 = £, s(b) < 2¢}. Then conditions for (F3) are satisfied, so we repeatedly apply
fo. This yields the set {(z1,z2,23,%3,0,%1) | 21 > 0,29 < 0,21 + 23 > 0,21 + 23 + 324 >
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0,21+ 22+ 23 +324 < 0,21 + 229+ 23+ 324 < 0,71 + T3 = £, 5(b) < 2¢}. Combining the
three final sets above yields the set C's. We note that this set is not contained in B?()J )

since z1 + 229 + 23 + 324 # 0.

First, consider B(()j) = {(¢,0,0,0,0,¢)}. The conditions for (F;) are satisfied, so we re-
peatedly applying fo to obtain the set {(z1,0,0,0,0,¢) | z1 < 0,2¢ < s(b) < 3¢}. Now,
consider elements from Béj) of the form {(z1,22,0,0,0,¢) | z1 > 0,21 + z3 = 0, s(b) = 2¢.
This set is a subset of Béj ) since it is a subset of By ). The conditions for (F2) are sat-
isfied, so we repeatedly apply fo to obtain elements of the form {(z1,x2,x3,%3,0,Z1) |
z1 = 0,29 < 0,24 = 0,21 + 23 = 0,71 + T3 = ¢,s(b) = 2¢}. Then, the conditions for
(F1) are satisfied. Repeatedly applying fo yields {(z1,22,23,%3,0,71) | 21 < 0,20 <
0,23 = 0,24 = 0,71 + &3 = £,20 < s(b) < 3¢}. Next, consider elements from B:gj)
of the form {(x1,x9,23,0,0,¢) | 21 > 0,24 < 0,21 + 23 + 324 = 0,s(b) = 2¢}. This
set is a subset of Béj ), so it is contained in B:gj). Again, conditions for (F2) are met,
so repeatedly applying fo yields the set {(z1,22,23,23,0,Z1) | 21 = 0,20 < 0,24 <
0,21 + 23+ 324 = 0,21 + T3 = £, s(b) = 2¢}. Then conditions for (F;) are satisfied. We
repeatedly apply fo to obtain elements of the form {(z1,x2,23,23,0,Z1) | 21 < 0,22 <
0,24 <0,234+324 =0,71 + T3 = £,2¢ < s(b) < 3¢}. Now, consider elements of the form
{(z1,x2,23,%3,0,0) | 21 > 0,20 < 0,23 < 0,21+ 23 > 0,21 + 222+ 23+ 324 = 0, s(b) = 2¢}.
This is clearly a subset of Béj ), Also, z1 + 22 + z3 + 324 = —2z9 > 0; hence, these elements
satisfy condition (Fg). Repeatedly applying fo to elements of this form yields the set
{(z1,22,23,%3,0,T1) | 22 < 0,23 < 0,214+23 > 0,21+22+23+324 = 0,21 +229+23+324 <
0,t(b) +x1 = £, s(b) < 2¢}. Then conditions for (F3) are satisfied, so we repeatedly apply
fo. This yields the set {(z1,x2,x3,73,0,%1) | 21 = 0,29 < 0,21 + 23 > 0,21 + 23 + 324 >
0,21 + 20+ 23+ 324 < 0,21 + 220+ 23+ 324 < 0,71 + T3 = £,5(b) < 2¢}. We see that
conditions for (Fj) are satisfied, and we repeatedly apply fo to obtain elements of the
form {(z1,z2,23,%3,0,%1) | 21 < 0,22 < 0,23 > 0,23+ 324 > 0,21 + 20 + 23 + 324 <
0,21 + 229 + 23 + 324 < 0,%1 + T3 = £, s(b) < 3¢}. Finally, consider elements of the form
{(z1, 22, 23,23,0,¢) | 21 > 0,290 < 0,23 < 0,21 +23 > 0,21 +220+ 23+ 324 = 0, 5(b) = 2¢}.
This is a subset of Béj ) since by the same reasoning as above. We have zo > 0, so these
elements satisfy condition (Fg). Repeatedly applying fo to elements of this form yields the
set {(x1, 2, 23,%3,0,%1) | 21 = 0,22 < 0,23 > 0,21 +20+23+324 > 0,21 +220+23+324 <
0,t(b) + x1 = £, s(b) < 2¢}. The conditions for (Fs) are met, so repeatedly applying fo
yields elements of the form {(x1,z2,23,%3,0,%1) | 21 < 0,23 > 0,23 + 324 > 0,21 + 22 +
23+ 324 = 0,21 + 229 + 23+ 324 < 0,t(b) + x1 = £,s(b) < 2¢}. Then, conditions for (F)
hold and we repeatedly apply fo to yield {(z1,x2,23,23,0,Z1) | 21 < 0,23 > 0,23+ 324 >
0,20 +23+324 >0,21+20+23+324 < 0,21 +220+ 23 +324 < 0,21 + 73 = {,s(b) <3}
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Combining the five final sets above yields the set Cy. We note that this set is not contained
in B:gj) since 21 + 229 + 23 + 324 # 0.

(Cs) Consider elements from Béj) of the form {(z1,z2,x3,%3,0,¢) | 21 > 0,22 < 0,21 + 23 >
0, 21+229+23+32z4 = 0, s(b) = 2¢}. This is clearly a subset of Béj). Also, z1+290+23+324 =
—z9 > 0; hence, these elements satisfy condition (Fg). Repeatedly applying fo to elements
of this form yields the set {(z1, 2, x3,73,0,Z1) | 21 > 0,21 + 23 > 0,21 + 20 + 23 + 324 >
0,21 + 220 + 23 + 324 < 0,¢(b) + 1 = ¢,s(b) < 2¢}. This set is precisely C5 and is not

contained in Béj) because z1 + 229 + 23 + 324 # 0.

(Cg) Consider elements from Béj) of the form {(z1, z2,x3,%3,0,¢) | 21 > 0,22 < 0,23 < 0,24 >
0,21 + 23 > 0,21 + 229 + 23 + 324 = 0,s(b) = 2¢}. This is clearly a subset of B:(,)j). Also,
21+ 22 + 23 + 324 = —z9 > 0; hence, these elements satisfy condition (Fg). Repeatedly
applying fo to elements of this form yields the set {(z1,z2,23,%3,0,Z1) | 21 > 0,22 <
0,23 < 0,24 >0,214+23=0,20+324 < 0,21 + 29+ 23+324 20,21 +2204+ 23+ 324 <
0t(b) + 21 = ¢, 5(b) < 2¢}. Then, condition (F;) is satisfied and we repeatedly apply fo
to yield {(x1,z2,23,%3,0,Z1) | 21 > 0,23 < 0,24 > 0,21 + 23 < 0,20 + 324 = 0,21 +
229 + 23+ 324 < 0,t(b) + z1 = ¢, s(b) < 2¢}. Finally, conditions for (F2) are met, so we
repeatedly apply fo to obtain elements of the form {(x1,x2,x3,%3,0,%1) | 21 > 0,2 <
0,24 > 0,21 +23 < 0,20 +324 < 0,21 + 22+ 23+324 < 0,21 +23 < £,t(b) +z1 >
lixy +x9 — 3+ T3 = £, 5(b) < 2¢}. This set is precisely Cg and is not contained in B?Ej)

because z1 + 229 + z3 + 324 # 0.

(C7) Consider elements from ng) of the form {(z1, z2,x3,%3,0,¢) | 21 > 0,22 < 0,23 > 0,29 +
23+ 3z4 > 0,21 + 229 + 23 + 324 = 0,s(b) = 2¢}. This is clearly a subset of Béj). Also,
21 + 22 + z3 + 324 = —z2 > 0; hence, these elements satisfy condition (Fg). Repeatedly
applying fo to elements of this form yields the set {(z1,z2,23,%3,0,%1) | 21 = 0,22 <
0,23 > 0,20+23+324 > 0,21+ 20+23+324 > 0,21 +220+23+324 < 0,¢(b)+x1 = ¢,5(b) <
2¢}. Then conditions for (F5) are satisfied and we repeatedly apply fo to yield the set
{(z1,x2,23,23,0,Z1) | 21 < 0,23 > 0,23+324 > 0, 21+20+23+324 > 0,21 +220+23+324 <
0,t(b) + x1 = £, s(b) < 2¢}. This set is precisely C7 and is not contained in B:gj ) because
21 + 229 + 23 4+ 324 # 0.

Therefore, by repeatedly applying fo to elements in Béj ), we obtain Bij ) = B?Ej Y Ci1UCyU
C3UCLUCsUCg U CY.

To obtain Béj ), we apply fi repeatedly to elements in Bé(lj ). Since B:gj ) contains elements
obtained by applying fl repeatedly to Béj ), we only need to examine the action of fl on elements
in B\ BY =y u---uch.
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(D1)

Consider the set Cy = {(x1,x9,x3,%3,0,Z1) | 21 < 0,23 < 0,24 > 0,21+ 220+ 324 < 0,21 +
220+ 23+324 < 0,21 +33 < £, t(b)+x1 > £,t(b)+T1 < 20,29 —x3+T3+T1 =, s(b) < 3(}.
Since z2 < 0 and 23 < 0, we have (z2)4+ < —z3. So, applying the first condition of fl yields
elements of the form {(x1,z2,z3,%3,0,Z1) | 23 < 0,24 > 0,21+ 23 < 0,21+ 22+ 23+ 324 <
0,214+220+234+324 < 0,21 +23 < f,t(b)—l—aﬁ >l x1+axo—x3+33 > L, x90—23+T3+T1 >
£,s(b) < 3¢}. Also, consider elements of the form {(x1,x2,23,%3,0,%1) | 21 < 0,23 =
0,24 > 0,21 + 204+ 23 +324 < 0,21 + 220 + 23 + 324 < 0,77 + 23 = {,5(b) < 35}.
This set is clearly contained in Cy in Bij ). Then z9 < 0 and z3 = 0, so (22)+ < —z3.
Repeatedly applying the first condition of f; yields the set {(z1,x2,23,%3,0,Z1) | 23 <
0,24 >0,214+23<0,21+20+23+324 < 0,21 +220+23+324 < 0,%1 +Z3 = £, s(b) < 3(}.
Combining the two final sets above yields the set D;. We note that D; is not contained
in B?Ej) since z1 + 229 + 23 + 324 < 0. Also, Dy is not contained in C7, C5, or C7 because
t(b) + x1 > £. Then, D; is not contained in Cy or Cg since x1 + x9 — x3 + T3 > ¢ and
To — x3 + XT3 + T1 > L. D1 is not contained in C5 since z; + z3 < 0, and finally, D7 is not
contained in C}y since z3 < 0. Therefore, D is not contained in Bflj ),

Consider elements of the form {(z1, z2, x3,73,0,Z1) | 21 > 0,22 < 0,23 > 0,21 +23+324 >
0,21+ 22+ 23+324 <0,21+220+23+324 < 0,1 + 73 = £,t(b) + 21 > {,s(b) < 2¢}. This
set is clearly contained in C5 in Bij ). We have 22 < 0 < z3, so we repeatedly apply the
second condition for f; to obtain elements of the form {(z1, 22, 23,%3,0,%1) | 21 > 0,22 <
0,23 20,21 +234+324 >0,21 + 220+ 23+ 324 < 0,21 + T3 > E,t(b) +x1 > €,s(b) < 26}
Then if z3 = 0, we have (22)+ < —z3 and we repeatedly apply the first condtion for fl.
This yields the set {(x1,x2,23,%3,0,Z1) | 20 < 0,23 < 0,21 + 23 > 0,21 + 23 + 324 >
0,21+ 220+ 234+ 324 < 0,Z1 + T3 > £, t(b) + 21 > £, s(b) < 2¢}. Combining these two sets
yields the set Ds. We note that Dy is not contained in Béj ) since z1 + 229 + 23+ 324 < 0.
Also, Dy is not contained in C1, C5, or C7 because ¢(b)+x1 > £. Then, D5 is not contained

in Cy, C3, Cy or Cg since T1 + T3 > £. Therefore, Dy is not contained in Bflj ),

Consider elements of the form {(z1, z2,z3,73,0,Z1) | 21 < 0,23 > 0,23+ 24 > 0,21 + 20+

23+ 324 < 0,21 + 220 + 23 + 324 < 0,71 + T3 = £,t(b) + x1 > £s(b) < 3¢}. This set is

)

clearly contained in Cjy in Bij . Then 2o < 0 < z3, so we repeatedly apply the second

condition of fi. This yields the set {(z1,22,23,%3,0,71) | 21 < 0,23 > 0,23 + 324 >
0,21 + 2290 + 23+ 324 < 0,21 + T3 > £, t(b) + 21 > £, s(b) + z1 < 2¢,s(b) < 3¢}. Note that
s(b)+2z1 < 2¢ since z3+324 > 0 and 1 + T3 = £ initially. This set is precisely D3. We note

)

that D3 is not contained in Béj since z1 + 229 + 23 + 324 < 0. Also, D5 is not contained

in Cq, Cs, or C7 because t(b) + x1 > ¢. Then, D3 is not contained in Cy, Cs3, Cy or Cy

since Z1 + T3 > £. Therefore, D3 is not contained in Bz(lj ).
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(D4) Consider elements of the form {(z1,z2,x3,23,0,71) | 21 < 0,23 > 0,234+ 24 > 0,21 + 22 +
23+ 324 < 0,21 + 229 + 23 + 324 < 0,71 + T3 = £,t(b) + 1 > ¢,s(b) < 3¢}. This set is
clearly contained in Cj in Bij ). Then zo < 0 < z3, so we repeatedly apply the second
condition of fi. This yields the set {(x1,x2,23,%3,0,%1) | 21 < 0,23 > 0,23 + 324 >
0,21 + 229 + 23 + 324 < 0,Z1 + T3 > £, t(b) + 1 > £,s(b) + 21 < 2¢,s(b) < 3¢}. Note
that s(b) + 21 < 20 since z3 + 3z4 > 0 and &1 + T3 = £ initially. Then if z3 = 0, we have
(z2)+ < —z3 and we repeatedly apply the first condition of f1 to obtain elements of the
form {(z1, z2,23,%3,0,%1) | 23 < 0,24 > 0,21 + 23 < 0,21 + 229 + 23 + 324 < 0,71 + T3 >
0,t(b) +x1 > £,5(b) + 21 + 23 < 2¢,s5(b) < 3¢}. We obtain the condition s(b) 4 21 + z3 < 2¢
from s(b) + 21 < 2¢ and z3 = 0. This set is precisely D4. We note that Dy is not contained
in Béj) since z1 + 229 + 23 + 324 < 0. Also, D4 is not contained in C7, C5, or C7 because
t(b) + x1 > £. Finally, Dy is not contained in Cq, C3, Cy, or Cg since &1 + 3 > £. Thus,
Dy is not contained in Bij ),

Therefore, by repeatedly applying fl to elements in Bij ), we obtain Béj ) = Bfg U Dy UDy U

D3 U Dy.

To obtain Béj ), we apply fg repeatedly to elements in Béj ). Since B;j ) contains elements
obtained by applying fg repeatedly to By, we only need to examine the action of fl on el-
ements in Béj) \ Béj). We first show that Béj) = Bz(lj) U G UGy UG3 U Gy, where G, =
{(z1, %2, 3, T3,ZT2,%1) | (Sn) holds}. The conditions for S,, 1 <n <4 are,

(S1) 24 < 0,23 +324 < 0,21 +234+324 <0,8(b) —21 >+ x1,5(b) — 21 + 20 > L + 21,
s(b) +z2 > L+ x1,5(b) + 21 + 23 + 321 < 20, 5(b) < 34

(S2) g > 0,23 < 0,24 >0,21 4+ 23 <0,8b) —21 >0+ x1,8(b) — 21 + 22+ 324 > L+ 21,
s(b) + 29+ 324 > £+ w1, 8(b) + 21 + 23 < 20, 5(b) < 3¢

(S3) T2 > 0,21 > 0,21 + 23 > 0,21 + 23+ 324 > 0,71 + T3 + 2T2 > £,5(b) — 21 > € + x1,
s(b) < 2¢;

(S4) T2 > 0,21 < 0,23 >0,234+324 > 0,21 + T3+ 2T2 > {,8(b) — 21 > L+ x1,5(b) + 21 < 20,
s(b) < 3¢.

(G1) Consider elements of the form {(x1,x9,x3,%3,0,Z1) | 22 > 0,23 < 0,24 = 0,21 + 23 <
0,21 +29 > 0,21 +220+ 23+ 324 < 0,t(b) + 21 = £, s(b) < 2¢}. This set is clearly a subset
of C7 in Bé(lj ), Then, since z4 = 0, we repeatedly apply the first condition of f; to obtain
elements of the form {(x1,x2,x3,%3,0,Z1) | 22 = 0,24 < 0,23 + 324 < 0,21 + 23 + 324 <
0,21+ 22 > 0,21 + 229+ 23 + 324 < 0,£(b) + 1 = £, s(b) < 2¢}. Next consider elements of
the form {(z1, 2, x3,%3,0,%1) | 23 < 0,24 > 0,21 + 23 < 0,20 + 324 > 0,21 + 22 + 324 >
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0,21+229+23+324 < 0,t(b)+x1 = ¢, s(b) < 2¢}. Again, this is a subset of C in Bflj). Since
z4 > 0, we repeatedly apply the second condition for fs to yield {(z1,x2, 3, T3, T2, T1) |
Tg > 0,23 < 0,24 > 0,21 + 20 < 0,294+ 324 > 0,21 + 204324 > 0,t(b) + x1 + T2 =
¢,5(b) < 2¢}. Then if z; = 0, the first condition for f, is satisfied. Repeatedly applying
fa to elements of this form yields the set {(z1, 22,23, T3,T2, 1) | Ta > 0,29 > 0,24 <
0,23 +324 < 0,21 + 23 +324 < 0,21 + 22 > 0,t(b) + x1 + T2 = £, s(b) < 2¢}. Combining
these two sets yields the set 17 = {(x1,x9,x3,%3,T2,T1) | 22 > 0,24 < 0,23 + 324 <
0,21 + 23+ 324 < 0,21 + 22 > 0,t(b) + x1 + T2 = £, s(b) < 2¢}.

Now consider elements of the form {(x1,z9,z3,%3,0,Z1) | 21 < 0,23 < 0,24 = 0,21 + 22 <
0,214+229+23+324 < 0,T1+Z3 < £, t(b)+x1 > £,t(b)+T1 < 20, x9—x3+T3+T1 = ¢, s(b) <
3¢}. This is clearly a subset of Cy in Bfg ). Since z4 = 0, we repeatedly apply the first
condition of f> to yield the set {(z1, 22, 23,73,0,%1) | 21 < 0,24 < 0,23+4324 <0,21+25 <
0,21+220+23+324 < 0,T1+T3 < £,t(b)+x1 > £,t(b)+T1 < 20, x9+T1—24 = £, 5(b) < 3(}.
Next consider elements of the form {(z1,x2,x3,Z3,0,%1) | 21 < 0,23 < 0,24 > 0,21 + 22+
324 < 0,21+2204+23+324 < 0,21+ 73 < L, t(b)+x1 > £,t(b)+7T1 < 20,20 —x3+T3+T1 =
l,s(b) < 3¢}. Again, this is a subset of Cy in Bij). Since z4 > 0, we repeatedly apply
the second condition for fg and obtain elements of the form {(x1, z2, x3, T3, T2, Z1) | T2 >
0,21 < 0,23 <0,24 >0,21+204+324 < 0,T1+Z3+2%T2 < £, t(b)+x1+T2 > £, t(b)+T1+T2 <
20,39 — x3 + T3 + 2T2 + T1 = {,s(b) < 3¢}. Then, if z4 = 0, we repeatedly apply the
first condition for fg. This yields the set {(z1,z2,23,%3,%Z2,Z1) | T2 > 0,21 < 0,24 <
0,23 4+324 < 0,21+ 22 < 0,T1 + Ty + 2% < £,t(b) + 21+ To > L, t(b) + 71 + To < 20,29 +
2Ty + T1 — 24 = ¢, s(b) < 3¢}. Now consider elements of the form {(x1,z2,x3,%3,0,71) |
23 < 0,24 = 0,21 +23 < 0,21 +204+23+324 < 0,21 +220+23+324 < 0,71 +23 <
0t(b) +x1 > w1 + 29 — 23 + T3 > L, w9 — 23+ Ty + T1 > £, s(b) < 3¢}. This is clearly a
subset of Dj in Béj ), Then, z4 = 0, so we repeatedly apply the first condition for fs to yield
the set {(x1,z2,23,%3,0,%1) | 24 < 0,23 +324 < 0,21 + 23+ 324 < 0,21 + 22+ 23+ 324 <
0,214+229+23+324 < 0,214+T3 < £,t(b)+x1 > b, x1+20—24 > {, m0+T1—24 > ¥, 5(b) < 3(}.
Then, consider elements of the form {(x1,z9,23,%3,0,Z1) | 23 < 0,24 > 0,21 + 23 <
0,21+20+23+324 < 0,21+229423+324 < 0,71 +73 < L, t(b)+x1 > b, x1+x0—23+T3 >
l,xo —x3+ T3+ T > ¢, s(b) < 3¢}. This is clearly a subset of D; in Béj). Since z4 > 0, we
repeatedly apply the second condition for fo. This yields the set {(z1, 2, 23, Z3, Zo, Z1) |
To>0,23<0,24>0,21+23 <0,21+220+23+324 < 0,71 +T3+2%T2 < L, t(b)+x1+T2 >
lx1+xo—23+T3+2T9 > {, w9 — 13+ T3+2T2+T1 > L, s(b) < 3(}. Then, if z4 = 0, the first
condition for f is satisfied. Repeatedly applying fo to elements of this form yields the set
{(x1,22,23,T3,T2,%1) | T2 > 0,24 < 0,23 +324 < 0,21 +23+324 < 0,21 + 22+ 23+ 324 <
0,Z1+Z3+2T9 < L, t(b)+x1+T2 > {, x1+x2+2T0—24 > {, x0+2To+T1—24 > £, 5(b) < 3(}.
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Lastly, consider elements of the form {(x1,x2,x3,%3,0,Z1) | 23 < 0,24 > 0,21 + 23 <
0,21 + 220 + 23 + 324 < 0,21 + &3 > 0, t(b) +x1 > £,5(b) + 21 + 23 < 2(,s(b) < 3(}.
This set is clearly contained in Dy in Béj ). Since z4 > 0, we repeatedly apply the second
condition for fo to obtain new elements of the form {(z1,x2,23,T3,T2,%1) | T2 > 0,23 <
0,24 > 0,21+ 23 < 0,Z1 + Ty +2To > £, t(b) + x1 + Ta > £,5(b) + 21 + 23 < 20, 5(b) < 3(}.
Then, if z4 = 0, the first condition for f, is satisfied. Repeatedly applying fo vields the
set {(z1, 22,23, T3, To,T1) | T > 0,24 < 0,23+ 324 < 0,21 + 23+ 324 < 0,T1 + T3 + 2T >
0t(b)+x1+To > 0, s(b)+21+23+324 < 2¢,5(b) < 3¢}. Combining the five final sets above
yields the set Ty = {(z1, x2, 3, T3, T2, T1) | 24 < 0,23 + 324 < 0,21 + 23 + 324 < 0,¢(b) +
x14+To >l w1+ x0+2T9—24 > U, 00+2T0+T1—24 > £, 5(b)+21+23+324 < 20, 5(b) < 3(}.

Lastly, consider elements of the form {(x1,x2,23,%3,0,Z1) | 21 > 0,20 < 0,24 = 0,21 +
z3 < 0,1 + T3 < L,t(b) + x1 > L,x1 + 29 — 23 + T3 = ¢,s(b) < 2¢}. This is clearly
a subset of Cg in Bflj ). Since 24 = 0, we repeatedly apply the first condition for f to
obtain elements of the form {(x1,z2,23,%3,0,%1) | 21 > 0,20 < 0,24 < 0,21 + 23 + 324 <
0,71 + T3 < £, t(b) + x1 > l,x1 + 22 — 24 = £,5(b) < 2¢}. Next, consider elements of
the form {(z1,22,23,%3,0,%1) | 21 > 0,24 > 0,21 + 23 < 0,20 + 324 < 0,T1 + T3 <
0t(b) +x1 > l,x1 + w92 — x3 + T3 = £,s(b) < 2¢}. This is also a subset of Cg in Bij).
We have z4 > 0, so we repeatedly apply the second condition for fg to yield the set
{(z1, 22, 23,3, T2, 1) | T2 > 0,21 > 0,24 > 0,21 + 23 < 0,29 + 324 < 0,1 + T3 + 2T2 <
0t(b) + 21 + To > iz + 29 — 3 + Ty + 2T9 = £,5(b) < 2¢}. Then if z4 = 0, we
repeatedly apply the first condition for f. This yields the set {(x1,x2,x3, T3, T2, 1) |
To > 0,21 > 0,20 < 0,24 < 0,21 + 23+ 324 < 0,71 + Ty + 2Ty < £,t(b) + 21 + T2 >
l,x1 4+ xo + 2T9 — z4 = £, 8(b) < 2¢}. Combining the two final sets above yields the set
T3 = {(z1,22,23,T3,T2,%1) | 21 > 0,20 < 0,24 < 0,21 + 23 + 324 < 0,T1 + T3 + 2T2 <
0t(b) +x1 + o > U, w1 + w9 + 2T9 — 24 = £, 5(b) < 20}

We see that by combining T = {(x1, x2, x3, T3, T2, T1) | 22 > 0,24 < 0,23 + 324 < 0,21 +
234324 < 0,21+ 29 > O,t(b) +x1+To =4, S(b) < 2@}, T = {(xl, T9, .CCg,fg,fQ,i‘l) ‘ 24 <
0,234324 < 0,21+23+324 < 0,t(b)+x1+T2 > l,x1+20+2T0—24 > {, 20+ 2T0+T1—24 >
0,5(b)+21+23+324 < 20,5(b) < 30}, and Ty = {(x1, T2, T3, T3, T2, T1) | 21 > 0,29 < 0,24 <
0,214+ 234+324 < 0,21 +73+272 < f,t(b)+$1 +To >0, x1+x0+2T0— 24 = K,s(b) < QE},
we obtain the set G1. We note that G1 is not contained in Béj) if Z9 > 0. Then, if Zo =0
(and hence, zo < 0), G is not contained in Béj) since z1 + 229 + 23 + 324 < 0. Also, G is
not contained in Cq, Cy, Cg, D1, or Dy since z4 < 0. G1 is not contained in C3, Cs, C7,
or Dy since z1 + 23 + 3z4 < 0. Finally, G; is not contained in C4 or Dg since z3 + 3z4 < 0.

Consider elements of the form {(z1, z2,z3,%3,0,%1) | 23 < 0,24 > 0,21+ 23 < 0,20+324 >
0,21 + 22+ 324 > 0,21 + 220 + 23 + 324 < 0,t(b) + x1 = ¢,s(b) < 2¢}. Again, this is a
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subset of C} in B g ). Since z4 > 0, we repeatedly apply the second condition for f5 to yield
{(xl,mg,arg,:fg,@,a_cl) ’ To > 0,23 < 0,24 20,21 4+220 <0,204324 > 0,21 + 29+ 324 >
0,t(b)+x1+x2 =¥, s(b) < 2¢}. Next, consider elements of the form {(z1, 2, z3,Z3,0,71) |
21 < 0,23 <0,24 >0,21 +29+324 <0,21 +2290+234+324 < 0,21 + 73 < K,t(b) +x1 >
0,t(b) + 71 < 20,35 — w3 + T3 + 71 = £, s(b) < 3¢}. This is a subset of Cy in BY). Since
z4 > 0, we repeatedly apply the second condition for fg and obtain elements of the form
{(z1, 22, 23,3, T2,%1) | T2 > 0,21 < 0,23 < 0,24 > 0,21 + 22 + 324 < 0,1 + T3 + 2T2 <
0t(b) + 21 + Ta > L,t(b) + &1 + T < 20,m9 — w3 + Ty + 2T9 + T1 = {,s(b) < 3/},
Next, consider elements of the form {(x1,x2,23,23,0,Z1) | 21 > 0,24 > 0,21 + 23 <
0,2904324 < 0,21 +73 < ﬁ,t(b) 4+x1 >0, x1+x9— 23+ T3 =4, S(b) < 2f}. This is clearly
a subset of Cg in Bij ). We have z4 > 0, so we repeatedly apply the second condition for
fo to yield the set {(z1,x2,23,T3,%2,%1) | T2 > 0,21 > 0,24 > 0,21 + 23 < 0,20 + 324 <
0,Z14+Z3+2% <, t(b)+x1+To > L, x1+x9—x3+T3+2T9 = £, 5(b) < 2¢}. Then, consider
elements of the form {(x1,z2,23,%3,0,Z1) | 23 < 0,24 > 0,21+ 23 < 0,21+ 220+ 23+ 324 <
0,214+220+234+324 < 0,21 +23 < K,t(b)—ka:l >l x1+xo—x3+33 > L, x90—x3+T3+T1 >
£,s(b) < 3¢}. This is clearly a subset of D; in Béj ). Since z4 > 0, we repeatedly apply
the second condition for fo. This yields the set {(z1,x2,23,T3,T2,T1) | To > 0,23 <
0,24 > 0,21 +23 < 0,21 + 20+ 23+324 < 0,T1 + T3+ 2T2 < L,t(b) + 21 + T2 >
iz + xo — 3 + Ty + 2To > U, w9 — 23 + Ty + 2T9 + T1 > £, s(b) < 3¢}. Lastly, consider
elements of the form {(x1, x2, x3,%3,0,Z1) | 23 < 0,24 > 0,21 +23 < 0,21 +220+23+324 <
0,21 + 3 > £,t(b) + x1 > £,5(b) + 21 + 23 < 2¢,s(b) < 3¢}. This set is clearly contained
in Dy in Béj ). Since z4 > 0, we repeatedly apply the second condition for fy to obtain
new elements of the form {(z1,x9,x3,Z3,%T2,%1) | To > 0,23 < 0,24 > 0,21 + 23 <
0,71+ 234 2x2 > £,t(b) + x1 + T2 > ,5(b) + 21 + z3 < 2, s(b) < 3¢}. Combining the five
final sets above yields the set Go. We note that G5 is not contained in Béj ) since Ty > 0.
Consider elements of the form {(z1,x2,x3,%3,0,€) | 21 > 0,20 < 0,24 > 0,21 + 23 >
0,21 + 229 + 23 + 324 = 0,s(b) = 2¢}. This is clearly a subset of Béj). Then since z4 >
0, we repeatedly apply the second condition for fg to yields new elements of the form
{(z1, 22, 23,T3,T2,¢) | T2 > 0,21 > 0,24 > 0,21 + 23 > 0,21 + 20 + 23 + 324 > 0,21 +
229 + 23 + 324 > 0,s(b) = 2¢}. Then if z4 = 0, we repeatedly apply the first condition
for fg to obtain the set {(z1,x2,x3,T3,T2,¢) | T2 > 0,21 > 0,24 < 0,21 + 23 + 324 >
0,21 + 22 + 23 + 324 > 0,21 + 229 + 23 + 324 > 0,s(b) = 2¢}. Combining these two
sets yields the set {(z1,x9,x3,Z3,Z2,0) | Toa > 0,21 > 0,21 + 23 > 0,21 + 23 + 324 >
0,21+ 22+ 23+ 324 > 0,21 + 229 + 23 + 324 > 0, s(b) = 2¢}. Next, consider elements of
the form {(x1,z9,23,%3,0,Z1) | 21 > 0,20 < 0,24 > 0,21 + 23 > 0,21 + 22 + 23 + 324 <
0,21+229+23+324 < 0,Z1+T3 = £, 5(b) < 2¢}. This is clearly a subset of C3 in Bij). Since
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24 > 0, we repeatedly apply the second condition for fo to yield {(z1, z2, 3, T3, %2, Z1) |
To>0,21 20,24 >0,214+23 > 0,21+20+23+324 < 0,71+T3+2%2 = ¢, s(b) < 2¢}. Then,
if z4 = 0, the first condition for fg is satisfied. Repeatedly applying fg yields new elements
of the form {(z1,x2,x3,T3,%T2,%1) | T2 > 0,21 > 0,24 < 0,21 + 23 > 0,21 + 23 + 324 >
0,21+ 22+ 23+324 < 0,%1+ 23+ 2% = ¢, s(b) < 2¢}. Combining these two sets yields the
set {(z1, z2,3,%3,%2,%1) | T2 > 0,21 > 0,21+23 > 0,21+23+324 > 0,21+ 20+ 23+324 <
0,Z1+Z3+2T9 = £, s(b) < 2¢}. Then, consider elements of the form {(z1, z2, z3, Z3,0,Z1) |
21 20,24 > 0,21 +23 > 0,21 + 20+ 23+ 324 > 0,21 + 220+ 23+ 324 < 0,8(b) + 1 =
0, s(b) < 2¢}. This is a subset of C5 in Bij ). Since z4 > 0, we repeatedly apply the second
condition for fy to obtain the set {(z1, 22, 23, T3, T2,%1) | T2 > 0,21 > 0,24 > 0,21 + 23 >
0,21+ 20+234+324 > 0,t(b) +x1+T2 = £, s(b) < 2¢}. Then if z4 = 0, the first condition for
fo is satisfied. Repeatedly applying fa yields the set {(z1, 2, 23, T3, T2, 1) | T2 > 0,21 >
0,24 <0,214+23>0,21+23+324 > 0,21+ 20+ 23+324 > 0,8(b) +x1+ T2 = £, 5(b) < 2¢(}.
Combining these two sets yields the set {(x1,x2, 23, T3, T2, T1) | To > 0,21 > 0,21 + 23 >
0,21 + 23+ 324 > 0,21 + 22 + 23+ 324 > 0,t(b) + 1 + T2 = £,s(b) < 2¢}. Lastly,
consider elements of the form {(x1,x2,x3,%3,0,Z1) | 21 > 0,29 < 0,24 > 0,21 + 23 >
0,21 + 220 + 23+ 324 < 0,71 + T3 > £,t(b) + x1 > £, s(b) < 2¢}. This is clearly a subset
of Dy in Béj ). Since z4 > 0, we repeatedly apply the second condition for fg to obtain
new elements of the form {(z1,x9,x3,Z3,%T2,%1) | T2 > 0,21 > 0,24 > 0,21 + 23 >
0,Z1 + T3 + 2T9 > £,t(b) + 1 + T2 > £, s(b) < 2¢}. Then if z4 = 0, the first condition for
fo is satisfied. Applying fo repeatedly yields the set {(z1, 22,3, T3,T2,T1) | T2 > 0,21 >
0,24 < 0,21+ 23 >0,21 +23+324 > 0,1 + T3+ 2Ty > L, t(b) + x1 + T2 > £, s(b) < 2(}.
Combining these two sets yields the set {(x1,z2,x3,Z3,T2,Z1) | T2 > 0,21 > 0,21 + 23 >

0,21 +23+324 > 0,21 + T3+ 2T2 > £, t(b) +x1 + T2 > £, s(b) < 2¢}. Then, combining the
)

four final sets above yields the set GG3. We note that G3 is not contained in Béj because
To > 0.
Consider elements of the form {(z1,x2,x3,%3,0,Z1) | 21 < 0,23 > 0,24 > 0,21 + 22 +

23+ 324 < 0,21 + 229 + 23+ 324 < 0,71 + T3 = ¢, 5(b) < 3¢}. This set is clearly a subset
of Cy in Bij ). Since z4 > 0, we repeatedly apply the second condition for f» to yield
{(z1, 22, 23,3, T2,%1) | T2 > 0,21 < 0,23 > 0,24 > 0,21 +22+23+324 <0,Z1+T3+2%T3 =
¢,5(b) < 3¢}. Then if z4 = 0, the first condition for f is satisfied. Repeatedly applying fa
to elements of this form yields the set {(z1, %2, x3, T3, T2, T1) | T2 > 0,21 < 0,23 > 0,24 <
0,23+ 324 > 0,21 + 22+ 23 + 324 < 0,%1 + T3 + 2T2 = £, s(b) < 3¢}. Combining these two
sets yields {(z1, z2, 3,3, Z2,%1) | T2 > 0,21 < 0,23 > 0,23+324 > 0,21 + 20+ 23+ 324 <
0,Z1+Z3+2T2 = £, s(b) < 3¢}. Next, consider elements of the form {(z1,x2, z3, Z3,0,Z1) |
21 < 0,23 >0,24 >0,21+20+23+324 > 0,21+2204+23+324 < 0,8(b)+x1 = ¢, s(b) < 2(}.
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This is clearly a subset of C7 in Bz(lj ), Then, z4 > 0, so we repeatedly apply the second
condition for fg. This yields new elements of the form {(z1,x2,zs,Z3,%2,71) | T2 >
0,21 <0,23 >0,24>0,21+22+23+324 >0,t(b) + 21+ T2 = ¢, s(b) < 20}. If z4 =0, we
repeatedly apply the first condition for fo to obtain the set {(z1, 2, 3, T3, T2, T1) | To >
0,21 < 0,23 >0,24 <0,23+324>0,21+22+23+324 >0,t(b) + 21+ T2 =¢,s(b) < 2(}.
Combining these two sets yields the set {(x1,x2,23,%3,T2,Z1) | T2 > 0,21 < 0,23 >
0,23 +324 > 0,21 + 20+ 23 + 324 > 0,6(b) + x1 + Z2 = {,s(b) < 2¢}. Lastly, consider
elements of the form {(x1,x2,23,23,0,Z1) | 21 < 0,23 > 0,24 > 0,21 + 220 + 23 + 324 <
0,Z1+x3 > £, t(b) +x1 > ¢,s(b) + 21 < 2¢,s(b) < 3¢}. This set is contained in D3 in Béj).
Since z4 > 0, we repeatedly apply the second condition for fQ to obtain new elements
of the form {(x1,x9,x3,%3,T2,%1) | Tz > 0,21 < 0,23 > 0,24 > 0,Z1 + T3 + 279 >
0,t(b) + 21 + Ta > £,8(b) + 21 < 20,5(b) < 3¢}. Then if z4 = 0, the first condition for
fs is satisfied. Repeatedly applying f» yields the set {(z1, 29,23, T3, T2, T1) | Ta > 0,21 <
0,23 > 0,24 <0,234+324 > 0,T1+T3+2T2 > £, t(b)+x1+T2 > {,5(b)+21 < 20,5(b) < 3(}.
Combining these two sets yields the set {(x1,x2,x3,Z3,T2,Z1) | T2 > 0,21 < 0,23 >
0,23 + 324 > 0,71 + T3 + 2T2 > £,t(b) + x1 + T2 > £,s(b) + z1 < 2¢,5(b) < 3¢}. Finally,
combining the three final sets above yields the set G4. We note that G4 is not contained

in Béj) because Ty > 0.

Therefore, by repeatedly applying f2 to elements in Béj ), we obtain Béj ) = Béj u G1UG2U
G3 U G4. Now, we work to show that Béj) =M Urf,UF3UFy.

(F1)

First, we can combine the disjoint sets in Béj) to obtain B:gj) = {(z1,x2,23,23,0,¢) | 21 >
0,29 <0,21423 > 0,21+229+23+324 = 0, 5(b) = 2¢}. Then, we can combine B:(,,j) with Cy
in Bflj) to obtain the set F1 1 = {(x1, z2,23,%3,0,%1) | 21 > 0, 21+23 > 0, 21+22+23+324 >
0,21 + 229 + 23 + 324 < 0,t(b) + 21 = ¢,s(b) < 2¢}. Next, we can combine C3 in Bij)
and D, in Béj) to yield the set Fj o = {(z1,22,23,73,0,Z1) | 21 > 0,22 < 0,21 + 23 >
0,21 +23+324 > 0,21 +220+ 23+ 324 < 0,Z1 + T3 > £,t(b) + 1 > £, s(b) < 2¢}. Finally,
if we combine F1 1, Fi 2, and G3 in Béj), we obtain the set F} as desired.

We can first combine Cy and C7 in Bij ) with D3 in Béj ) to obtain the set Fy; =
{(z1,22,23,%3,0,71) | 21 < 0,23 > 0,23 +324 > 0,21 + 220 + 23 + 324 < 0,T1 + T3 >
0,t(b) + 21 > £, 5(b) + 21 < 2¢,5(b) < 3¢}. Then, if we combine Fy; with G4 in BY, we

obtain the set Fy as desired.

We can combine Cq, C5, and Cg in Bz(lj) with D; and Dy in Béj) to obtain the set
F51 = {(z1,22,23,%3,0,%1) | 23 < 0,24 > 0,21+ 23 < 0,21 +220+23+324 <0, (b)) +x1 >
bixy+xo —x3+ T3 > l,xg— w3+ T3+ 71 > L,8(b) + 21 + 23 < 20,5(b) < 3¢}. Then, if we
combine F3; with G2 in Béj ), we obtain the set F3 as desired.
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(F4) The set Fy is precisely G in Béj ),

Thus, Béj) = 1 U Fy U F3U Fy and we have now constructed the set B((lj) for0<a<6. O

Remark 5.3.2. By the explicit construction of BC(Lj ) in Lemma 5.3.1, we can see that Béj ) #*

B. For example, the element (0,0,0,0,0,0) is not contained in Béj), but is contained in B.

Therefore, in Theorem 3.4.3, k # 1.

We now show conditions (2) and (3) in Theorem 3.4.3 are satisfied with the sequence {z((lj ) |
j >1,1<a <6} and the Weyl group sequence {w¥)};5q for A = £(Ag + Aq).

By direct calculations of the simple reflections r; (i = 0,1,2) on Ag + A, we obtain the
following Lemma, which we will use along with Proposition 3.4.4 to provide justification for
condition (3) in Theorem 3.4.3.

Lemma 5.3.3. Let k € Zwg and k = 6(j — 1)+ a for 1 < a < 6. Then w®(Ag + A1) =

Ao + A1 — moag — miag — maan, where

3j2-5j+2 ifa=1,2,3
352+ ifa=4,5,6
652 —7j+2 ifa=1,2
mp=146j2—4j+1 ifa=34
652 — j ifa=5,6
3j2-5j+2 ifa=1
ma = q 352 — 2j ifa=2,3,4,5
377+ ifa=6

Proposition 5.3.4. Conditions (2) and (3) in Theorem 3.4.3 are satisfied with the sequence
{igj) | j>1,1<a <6} and the Weyl group sequence {w(®};5q given above for A = £(Ag+A1).

Proof. In order to show condition (2), we consider ({(Ag + A1), h,¢;)). Observe that (¢((Ag +
Ay), hg)) =0 < g, (b) for all b € B((lj_)l, a=2,6. Also, (¢(Ao+ Al),ahim) =/ fora=1,3,4,5.
For a “: 1,3, 5, weamust consider £1(b) for all b € B(()j)7 B;j), and Bz(lj)il First, note that for all
be B(()j) or Béj), we have z; = (. Hence, €1(b) = Z1 + (T3 — T2 + (v2 — x3)4+ )4 =1+ (T3 — T2 +
(xg —x3)4)+ > L for all b € B(()j) and Béj). Now, consider b € Bij). Note that for all b € Bij)

Zg=0,80¢1(b) =71+ (T3 + (x2 — x3)+ )+ = T1 + T3 + (x2 — x3)+. We consider each subset in
BY.

)

o Ifbe Bi(;j), then 1 = ¢ and €1(b) > ¢ by the same reasoning as above.
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o If b € C1, then 23 < 0, 21 + 22 + 324 > 0, and #(b) + 1 = {. Since z3 < 0, €1(b) =

Z1 + T3 + 29 — 3. Then 21 + 29 + 324 > 0 implies T + %a?g > %363 + 21. Thus, 1(b) =
X1 +2x3+x0 — 23 > %£3+%x3+m2+m1 :t(b)+$1 =/

o If b € (9, then 23 < 0 and z3 — 23 + T3 + 1 = £. Since z3 < 0, we have £1(b) =

T1+ T3+ a0 — 23 =24
o If b e C3,Cy , then 1 + T3 = £. This implies El(b) =1 +23+ (SUQ - I3)+ > /.

o If b € C5, then 21 + 290 + 23 + 324 > 0 and ¢(b) + 1 = £. Since z1 + 29 + 23+ 324 > 0, we
have z; + %i‘g >y +xo+ %.1,‘3. This means 1 + T3 > 1 + 2 + %.1‘3 + %fg =t(b)+x = L.
Thus, El(b) =1 +23+ (.TQ - $3)+ > /.

e If b € (g, then 21 > 0, 21 + 23 < 0, and x1 + 9 — x3 + T3 = £. The conditions z; > 0 and
21 + 23 < 0 imply that z3 < 0. So, £1(b) =1 + T3 + 29 — x3 > 1 + T2 — x3 + T3 = L.

o If b € C7, then z; + 29 + 23 + 324 > 0 and ¢(b) + 1 = £. Since 21 + 22 + 23 + 324 > 0, we
have 1 + %553 > x1+xo+ %.2133. This means 1 + T3 > x1 + 2 + %.ﬁlfg + %3?3 =t(b)+x1 = L.
Thus, 81(b) =21 +23+ (3:2 - x3)+ > /.

Therefore, 1(b) > ¢ for all b € Béj), Béj), and Bflj).

For a = 4, we consider €y(b) for all b € Béj ), By definition,

go(b) = 30 — s(b) + max A — (221 + 22 + 23 + 324),

where A = (0, 21,21 + 22,21 + 22 + 324,21 + 22+ 23 + 324,221 + 20+ 23+ 324). If b € B(()j), then

eo(b) =30—-2040—0=20Tbe BY\ BY then eo(b) = 30 — 20+ (221 + 22 + 23 + 324) —

(221 + 20+ 23+ 324) = ¢, since 21 >0, 21 + 23 =0, and 20 = 24 = 0. If b € Béj) \ B%j), then

eo(b) =30 —20+ 21 — 2y = ¢, since z1 > 0, z4 < 0, 21 + 23 + 324 = 0, and 29 = 0. Finally, if

be Béj) \Béj), then eo(b) = 3¢ — 2¢ + max{z1 + 22 + 324,21 — 22} — (21 — 22) = £, since z; > 0

and zo < 0. Then go(b) > £+ (21 — 22) — (21 — 22) = . Therefore, g9(b) > ¢ for all b € Béj).
Thus, (((Ao + A1), b)) < £, (b) for all b e BY.  and condition (2) holds.
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To prove condition (3), we use Lemma 5.1.2. For k =6(j —1)+a, j > 1,1 < a < 6, we have

3j—2 ifa=1
3j -1 ifa=24
(W™ (Ao + Ay), hiﬂy =43j ifa=5
6j—2 ifa=3
6j+1 ifa=6.

\

Hence, for positive 7, (w®(Ag + A1),h. ) ) is greater than zero. By Proposition 3.4.4, this
a+1

implies w*+1) = rgllw(k) > w®). Thus, the sequence of Weyl group elements, {w(k)}kzg, is
increasing with respect to the Bruhat order, satisfying condition (3). O

We have shown above that Béj ) # B and hence, k # 1 in Theorem 3.4.3. Due to the previous
conjecture that k < 2, we have conjectured that k = 2 for A = ¢(Ag + A1). We provide the

conjecture and evidence toward the conjecture below.

Conjecture 5.3.5. For A = (Ao + A1), £ > 1 and the given perfect crystal B = Bsy for the
(3)

quantum affine algebra, Uy(D,”), with d = 6 and the sequence {i((lj)} given above, we conjecture
that conditions (1), (2), and (3) in Theorem 3.4.3 hold with k = 2. This would imply that path
realizations of the corresponding Demazure crystals B« (£(Ao+ A1)) for Uq(Dflg)) have tensor
product-like structures.

5.3.1 /=1 Case

First, by Lemma 5.3.1, we have the following sets B((lj) for 0 <a <6.

BY) ={(1,0,0,0,0,1)}

B%j) _ B(()j) u{(0,1,0,0,0,1)}
BY) = BY U {(0,0,2,0,0,1)}

BgnzBgﬁJKQOJLZOJLaxalJJLD}
BY) =BY uciuc,u---UCy

Béj) _ Bflj) UDyUDsUDsUDy

Béj) =M UFUFUF,,

where C,, = {(1‘1,1‘2,333,.’1_33,0,@1) | (Pn) hOldb} for1<n<7 D,= {($1,$2,(1’J3,.’f3,0,i‘1) |
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(Qn) holds} for 1 < n < 4, and F,, = {(x1,22,23,%3,72,%1) | (Ry) holds} for 1 < mn < 4 as
defined in Lemma 5.3.1 with ¢ = 1.

Note the elements in B that are missing in Béj ) are

{(0,0,0,0,0,Z) | s(b) < 3},

{(0,0,0,0,Z2,71) | Z2 > 0, Z1 + Z2 = 3, s(b) < 3},
{(0,0,0,Z3,Z2,71) | Z3 > 0, s(b) = 3},
{(0,0, 23, T3, T, 1) | 23 > 0, 23 < 4, s(b) = 3},
{(0,1, 23, 23, To, 1) | Tp < 1, 25 > —4, s(b) = 3},
{(1,0, 23, &3, T, 1) | 1 > 0, z3 <1, s(b) = 3},
{(21,0,0,0,0,0) | x1 > 0, s(b) < 3}.

Thus, Béj ) =% B, and hence k # 1. We now construct the sets By (7+1.9) , 0 < a <6 explicitly.
By definition, Béﬁl’]) = B(()]H) ® B( 7 Since B = {b;} and b; = (1,0,0,0,0,1) for all
j > 1, we have BY™ = {(1,0,0,0,0,1)}. So,

BE Y = {(1,0,0,0,0,1) @ (2, @, a5, 75, 75, 7)) | (2, 0, @5, 75, 75,7) € B}
Then we use the recursive formula,

B((lj+1,j U fk +1)B j+l,]) \ {O}
k>0

to determine Béj +1.9) for 1 < a < 6. We use the tensor product rule defined in Theorem 3.1.7
along with the operators, ;, ;, i = 0, 1,2 defined in Chapter 4 to do this.

We define the following conditions for (2, x}, x4, 5, 5, 7)) € B,

é z3>08(b)’:3
5 >0, z3+3z4>0 s(b) =3,

wl@m

Ps) @) + &4 + 75 > 0,

(F1)
() @
(Ps) 24
(Py) Ty +h+ 74 > 0,7 <3,
(Ps)
(Fs)

Py $3>0$3>OZ47507§() 2.
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Thus, the sets B(gj +19) for ¢ = 1 are constructed as follows,

Béj"‘lv])

J+1:]

B(]-‘rl J)

Bgﬁrlu)

U {(1,0,0,0,0,1) ® (2}, x5, 25, 75,0,1) | 25 <0, s(b)’ =3}
U {(1,0,0,0,0,1) ® (0, x%, x5, 75,0,0) | (P1) holds}
U {(0,1,0,0,0,1) ® (2}, 25,0,0,0,z}) | #} >0, s(b) <3}
U{(0,1,0,0,0,1) ® (2}, 25,0,0,75,0) | 0 < 75 < 3, s(b)’ < 3}
U{(0,1,0,0,0,1) ® (2, 25,0,0,1,1) | s(b)’ < 3}
U{(0,1,0,0,0,1) @ (x}, 2%, x5, T5, 75, Z}) | (P) holds}
U {(0,1,0,0,0,1) @ (2}, 25, 25, 75,0, 7)) | 24 #0, s(b)’ < 3}
U{(0,1,0,0,0,1) ® (7,25,0,75,1,7}) | 24 > 0, s(b)’ < 3}
U{(0,1,0,0,0,1) ® (2, 24,2,0,5,0) | @5 > 0, s(b)’ < 3}
U {(1,0,0,0,0,1) ® (0,0, x5, 5, 75,0) | (P3) holds}
U{(1,0,0,0,0,1) @ (2, 25, 25, 75, 75, 1) | 75 > 0, s(b)’ = 3}
U {(1,0,0,0,0,1) ® (0,1,1,1,1,0)}
U{(0,0,2,0,0,1) @ (x, 2%, x5, T5, 75, 7)) | (P4) holds}
U{(1,0,0,0,0,1) @ (z, 25, x5, 75, 75, 7)) | 7} > 2, s(b)’ = 3}
U {(0,1,0,0,0,1) ® (0,0, x5, 5, 75,0) | (P3) holds}
u{(0,1,0,0,0,1) ® (0,1,1,1,1,0)}
U {(0,1,0,0,0,1) ® (0,0,0,0,z5, &) | )} >0, s(b) =3}
u{(0,1,0,0,0,1) ® (0,0, 2%, z5,1,1) | 74 > 0, s(b)’ =3}
U {(0,0,2,0,0,1) ® (0,0,0,0,0,3)}
U {(0,0,2,0,0,1) ® (2}, x5, 25, T4, T5, Z}) | (P5) holds}
U{(0,0,2,0,0,1) @ (2}, 2h, 25, T5, T, 77) | ) + 75 > 0, s(b)’ < 3}
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BYTH) = {(21,0,0,0,0,1) | #1 > 0, s(b) <3} ®BU{(0,1,0,0,0,1)} ® B
U{(z1,22,1,1,0,0) | 22 <1, s(b) <3} @B
U {(z1,0,3,1,0,0) | s(b) <3} @B
U {(0,0,x3,73,0,1) @ (2, 2h, 2%, 75, T, 1) | 23 > 0, s(b) =2, (P5) holds}
U{(0,0,0,2,0,71) ® (], x5, 2%, T4, 75, 7)) | #1 < 1,5(b) < 3,71 + T2 > 0,s(b) < 3}
U{(z1,1,0,0,0,0) ® (z}, 25, 2%, 74, 7, 7)) | s(b) < 3, T1 + 72 > 0, s(b)’ < 3}
u{(0,1,0,0,0,0) ® (z}, x5, 25,0,0,0) | 25 >0, s(b)’ <3}
u{(1,1,0,0,0,0) ® (2}, x5, 25,0,0,0) | 25 > —1, s(b) < 3}
U{(1,1,0,0,0,0) @ (x}, 25, 25,1,0,0) | s(b)’ < 3}
U {(1,1,0,0,0,0) ® (0,25,0,2,0,0) | s(b) < 3}

u{(2,1,0,0,0,0) ® (z}, 75, 25,0,0,0) | s(b)’ < 3}

U{(2,1,0,0,0,0) ® (z}, xh, 25, 75,0,0) | 25 <0, s(b) <2}

U{(2,1,0,0,0,0) ® (x}, x5, 25,1,0,0) | s(b) = 3}

U{(2,1,0,0,0,0) ® (x},25,2,2,0,0) | s(b)’ = 3}

U{(2,1,0,0,0,0) ® (2,0,0,2,0,0)}

xT

xT

RSN BN RBS /s

xT

BYTH) — {(21,29,0,,0,0) | &, >0, s(b) <3} ® B
U{(0,0,z3,%3,0,1) | 24 #0, s(b) =2} @ B
U{(x1,0,z3,73,0,0) | (Ps) holds} ® B

U{(x1,22,0,0,0,0) | z2 >0, s(b) <3} @B

(
(z1
U{(z1,22,0,0,0,1) |1 <s(b) <3} B
(71
(

U{(z1,72,1,1,0,0) | 22 < 1, s(b) <3} @B
u{(0,0,1,1,0,1),(0,0,2,2,0,0)} @ B

From above, we see that condition (1) in Theorem 3.4.3 holds for A = Ag + A; with k = 2.
This implies Conjecture 5.3.5 holds when ¢ = 1, and path realizations of the corresponding

Demazure crystals B, &) (Ao + A1) for Uq(Df’)) have tensor product-like structures.
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5.3.2 ¢ =2 Case

First, by Lemma 5.3.1, we have the following sets B((zj ) for 0 <a<6.

B = {(2 0,0,0,0,2)}

BY = BY U{(21,22,0,0,0,2) | 21 > 0,21 + 23 = 0, s(b) = 4}
B(J) = U{(J: x9,23,0,0,2) | 21 > 0,24 < 0,21 + 23 + 324 = 0,5(b) =4}
B(J U {(z1, 22, 23,%3,0,2) | 21 > 0,29 < 0,21 + 23 > 0,21 + 220 + 23 + 324 = 0,

s(b) = 4}
BY) =BY uc,uc,u---UCyy
BY) =BY UD;UDyU---UDy
BY) = Fy UF, UF3 U Fy,

where C,, = {(x1, z2,23,%3,0,%1) | (P,) holds} for 1 <n <7, D,, = {(x1,x2,23,%3,0,%1) |
(Qn) holds} for 1 < n < 4, and F,, = {(x1,22,23,%3,T2,%1) | (Ry) holds} for 1 < mn < 4 as
defined in Lemma 5.3.1 with £ = 1.

We note that Béj) # B since (0,0,0,0,0,0) ¢ Béj), and hence k # 1. We now construct the
sets B((ljﬂ’j), 0 < a < 6 explicitly.

By definition, B(Hl’j) = B(jH) ® B( 7 Since B = {b;} and b; = (2,0,0,0,0,2) for all
j > 1, we have B(J“) {(2,0,0,0,0,2)}. So,

ey o o )
BYTH = {(2,0,0,0,0,2) @ (a4, 2, o, 4, 7, 71) | (2}, 2, 25, 5,8, 71) € BY}.
Then we use the recursive formula,

BYHD = | Jli B\ {0},
k>0

to determine B((lj +1.9) for 1 < a < 6. We use the tensor product rule defined in Theorem 3.1.7
along with the operators, ;, ;, i = 0, 1,2 defined in Chapter 4 to do this.
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We define the following conditions for (z}, 24, 25, z4, 5, }) € B,

P &, >0, + 7, > 3,
Py) o} +ah+ (2 +24) > 0,2 < @) <3,

T
Th, Ty > 0, 5 (xh + 24) < 3,2 < s(b) <4,

E&U

,2(w3+x3) <2,

JU

xg,xQ,xl >0,z +zh = 3,5 (2 + 24) = 1,
Ps
Py) zh < 1,3(xh 4+ @) + 7 > 2,
Py

oy +ah+ 32+ 25) > 0,0 <7 <4,

(P1)
(P2)
(P3)
(P1) 7
(F5)
(Fo)
(Pr)
(%)

332,333>() T+, =3,s(b) =4,

o +ah+ (el + 7)) > 0,3 < 2,7 +Th >4,
/

O
no
Kl

w
Vv
(@)}
(@)
A

zh <3, 5(2h + 24) + 7 > 5,
7y > 0,1 <&, 34 < 2, 5(ah +74) > 2,7 + 7 < 3,

T+ ah + S(2h +3) > 0,7 < 3,27 + 7 > 2,

+ah + g2y +a5) > 0,7 < 4
<zh <27, +7,=4,5<s(b) <6,
T+ oh + $(2h + 7)) > 0,27 + T > 2,

(Q1)

(Q2)

(@s3)

(Q4) 73

(@) &y +ah + 5(af +75) > 0,35 > 0,
(Qs) 73

(Q7)

(@s)

(Q9)

T4 >0,1 <) <2 %(af+74) + 7, > 2,

Ty, Ty > 0,2< 3 <3,3 <7 +75 <4,5<s(b) <6,
o) +ah + 5(2h + 7)) > 0,22 +7h > 3,

7 > 0,1 <75 <2, 5(ah +75) + 75 > 3,

T+ ah 4+ $(2h + 7)) > 0,3 + T4 > 0,
Th, xh > 0,3 +7h < 2, 3(ah + 74) + zh + ) > 3,
Th >0,z < 1,1(ah + ) > 2,

(R1)
(R2)
(Rs3)
(Ra) o + oy + (2 + 25) > 0,3 + 7 > 3,
(Rs)
(Rs)
(R7)
(Rs)

o + zh + 3(ah + 25) > 0,7 + 7 > 2,
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o) +ah + 5 (2 + 7)) > 0,7 + 23 > 2,

)

So) o + xh + (ah +25) > 0,1 < 7 < 2,
) x> 0,7) < 1,20 +abh+ 3(2h + 7)) > 2,
)

T3, 7) <1 x1+$2+%(1‘§+f§)237

Ss) Ty < 2,7 + T4 < 3,20 +ab + (a2 + 7)) > 4.

Thus, the sets B((lj +19) for £ = 1 are constructed as follows,

BUTH) = BUTLD (5 {(2,0,0,0,0,2) ® (0,0,0,0,5, ) | 7, > 3, s(b) = 4}
U{(2,0,0,0,0,2) ® (z}, x5, 25, T5,0,3) | s(b) = 4}
U{(2,0,0,0,0,2) @ (x}, x5, 25, 75,0,7}) | (P1) holds}
u{(1,1,0,0,0,2) ® (0,0,0,0,z5, 7)) | ) <4, 3<s(b) <4}
U {(1,1,0,0,0,2) ® (0,0,0,0,2,0)}
U{(1,1,0,0,0,2) @ (x}, 25, 25, 75,0,7}) | (P2) holds}
U{(1,1,0,0,0,2) @ (x}, x5, 25, T4, 75,0) | (P3) holds}
U{(1,1,0,0,0,2) @ (x}, x5, 25, 1,75,0) | 1 <75 <2, s(b)’ <3}
U{(1,1,0,0,0,2) ® (', 75,1,1,3,0) | s(b) < 3}
U{(1,1,0,0,0,2) @ (x}, x5, 25,0,75, 7)) | 25 >0, 1 < 75, 7] <2, s(b) <6}
U{(1,1,0,0,0,2) ® (2}, x5, 25, T4, 1,1) | (P4) holds}
U{(1,1,0,0,0,2) ® (2}, x5, x5, T4, T4, 1) | (P5) holds}
U{(1,1,0,0,0,2) ® (2}, x5, x5, 75,0,71) | 75 > 0, 7} <1, 3 < s(b) < 6}
U{(1,1,0,0,0,2) ® (2}, x5, 25,0,0,%) | #5 >0, T} <1, 3 < s(b)’ <6}
U{(0,2,0,0,0,2) ® (0,0,0,0,z5,2,) | &, <4, 2 < s(b) < 4}
U {(0,2,0,0,0,2) ® (2}, x5, 25, 74,0,%;) | (Ps) holds}
U{(0,2,0,0,0,2) @ (x}, x5, 25, T4, 75,0) | (Pr) holds}
U{(0,2,0,0,0,2) ® (a}, 2}, 2%4,0,0,0) | 2 > 0, 2 < s(b)’ < 6}
U {(0,2,0,0,0,2) ® (z}, x5, 25,0, Th, 1) | 5,75 > 0, 2 < s(b)’ < 6}
U {(0,2,0,0,0,2) ® (z}, x5, x5, 74,1,1) | &5 > 0, s(b)’ < 6}
U{(0,2,0,0,0,2) @ (z}, 25, 25, 75,2,0) | 75 < 2, s(b) <4}
U {(0,2,0,0,0,2) ® (2}, ), 24, 1,2,0) | s(b) < 6}
U{(0,2,0,0,0,2) @ (x}, x5, x5, T5, 75, 77) | (Ps) holds},
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BETH) = BUTLD ((2,0,0,0,0,2
U{(2,0,0,0,0,2

U{(2,0,0,0,0,2

U{(2,0,0,0,0,2

U {(1,0,2,0,0,2

U {(1,0,2,0,0,2

U {(1,0,2,0,0,2

U{(1,0,2,0,0,2

U{(1,0,2,0,0,2

) ® (0,0,0,0,7h, 7)) | #) <2, s(b) > 5}
)
)
)
)
)
)
)
)
u{(0,1,2,0,0,2)
)
)
)
)
)
)
)
)
)
)

x, T, ¥, T3, Ty, T1) | (Q1) holds}

Y, T, ¥, T3, T5,0) | (Q2) holds}

Y, T, ¥, T3, Ty, T1) | (Q3) holds}
,0,0,0,25, ) | ) <3, 3 < s(b) <6}
0,0,0,0,4)}

o O

)

oy, oy, s, 75, 75, 7)) | (Q4) holds}

o, b, xh, 75, 75,0) | 7h < 2, 3 < s(b) <6}
/
1

xh, oy, s, 75,0,1) | 75 >0, 3 < s(b) <6}

0,0,0,0,7,7,) | 7 <4, 2 < s(b) <4}
U{(0,1,2,0,0,2) ® (0,0,0,0,7,7,) | 7} < 1, 5 < s(b)’ < 6}
u{(0,1,2,0,0,2 xh, oy, 2, T, 75, 0) | (Q5) holds}
u{(0,1,2,0,0,2 xh, oy, 15, 75,0, 7)) | (Q) holds}

U {(0,1,2,0,0,2
U {(0,1,2,0,0,2
U {(0,1,2,0,0,2
U {(0,0,4,0,0,2
U {(0,0,4,0,0,2
U {(0,0,4,0,0,2

rh, 2y, 15,0,1,2) | 4 < s(b) <6}

7, 75,0,2,1,2) | 4 < s(b) <6}
},0,1,1,1,2) | 4 < s(b) < 6}
0,0,0,0,75, %) | 7, <4, 2 < s(b) <6}

® (
® (
® (
® (
® (
® (
® (
® (
® (
® (
@ (0,
® (24

® (2}

® (a1, 9, 23,0, 75, 71) | (Q7) holds}
® (2}

® (2}

® (2}

® (
® (
® (

(
(
(
(
(
(
(
U {(0,1,2,0,0,2
(
(
(
(
(
(

b

), xé,xé,a’:&,a’cé,f’l) | (Q7) holds}
/
1)

o, b, 2%, 75, 75,0) | (Qs) holds},
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(
U{ 07172707(]’2) (m1,$2,$3,x3,x2,x1

u{
u{

u{o,z,o,o,o,z
U{(0,2,0,0,0,2
u{(0,1,1,1,0,2
u{(0,1,1,1,0,2

U{(0,1,1,1,0,2)

U {(0,0, 23, 73,0,2
U{(0,0,23,73,0,2) ®
U{(0,0,0,4,0,2) @ (x}, 25, x5, T5, 75, 7]) | (Rs) holds}

U {(0,0,0,4,0,2) @ (z}, 25, 25, 75,1,0) | 75 > 0, s(b) <6},

= BYTH) U {(2,0,0,0,0,2) @ (), xh, oy, T4, Th, 7)) | T, > 3,7, + 7 > 4,

5 < s(b) <6}

U{(1,0,2,0,0,2) @ (z, 24, 25, T5, T, T) | T >4, 5 < s(b)' <6}

u{(0,1,2,0,0,2) ® (0,0,0,0,75, %) | ) > 2, 5 < s(b) <6}

U {(0,z2,3,0,0,) ® (2], 25, 2%, 75,0,5) | 1 < 29 < 2,t(b) = 2,5(b) = 4, s(b)' =6}

u{(0,1,2,0,0,2) ®
(
(
(

ay, xy, vy, Ty, Th, T1) | 2
) | (Rl) holds}

1,1,0,0,0,2) ® (2}, x5, 4, T4, Th, 7)) | T + 225 > 2, 5 < s(b)’ < 6}
T1,T2,73,%3,0,2) ®(0,0,0,0,75, 7)) | 21+ 22 =1, 0 <23 <2, 23+ 23 <1,

s(b) =4, 3 < s(b) <6}

U{(1,0,3,73,0,2) ® (2}, 25, 2%, T4, T, ) | T3 > 0,t(b) = 1, s(b) = 4, (R3) holds}
U{(1,0,1,1,0,2) @ (z}, 25, 25, T4, Th, 7)) | 75 > 0, 23] + 75 <2, 3 < s(b) <6}

U {(1,07()’2’0’2) ($1,$2,1'3,CL‘3,1‘2, ) | (R3) hOldS}

U {(0, xz2,x3,T3,0,2 (O,O,O,O,fQ,i‘l) |1 <9 <2 24=0, t(b) =2,

l‘,l 2’33%)1%%7%,2’-%/1) | (R4) hOldS}
1

xh xé,azé,iﬁé,a’cé,xl) | (Rs) holds}

(
(
(
(

—_ — ~—

1
', wh, x5, 73,0,0) | 25 > 0, ($3+5L’3)>2 s(b) < 6}

1
($1,$2,$é,fé,0 0) | 332 > Ong < 17 5(%’% +§:§’>) = 1’8(b), < 6}

(
u{(0,1,0,2,0,2) ® (z}, 5, x5, T4, T, 7}) | (R4) holds}
U{(0,1,0,2,0,2) @ (x}, x5, x5, T5, 75, 7)) | (Rg) holds}
u{(0,0,zs,z3,0,2)
u{(0,0,z3,73,0,2) ®

( )

( )

(

(

® (0,0,0,0,75, 7)) | Z3 > 0, s(b) =4, 2 < s(b) <6}
(2, 2h, a5, T4, Th, 1) | 3,23 > 0, s(b) =4, (Qs) holds}
® (x), o, 25, 75, 75,0) | w3,73 > 0, s(b) =4, (Ry) holds}
(2}, 25,1,1,0,0) | x3,73 > 0, s(b) =4, x5 >0, s(b) <6}
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B£j+1’j) = {(131,0,0,0,0, 2) | xr1 > 25 S(b) < 6} ®B
U{(x1,22,0,0,0,2) | z2 >0, s(b) =4} @ B
U{(z1,22,23,0,0,2) | 3 >0, s(b) =4} @ B
{(x T2, X3, X3, 0, Lfl) ‘ 3> 0,1 <23, < 1,t(b) = 2,3,8(()) < 6} ® B
U{(x1,0,23,%3,0,Z1) | 21 > 0, 23,71 < 1, t(b) =1, s(b) <6} @B
U {(0,0,3,73,0,7Z1) ® (0,0,0,0,75,27) | z3 > 0, 1 <2, s(b) =4, 2 < s(b) <6}
U {(0,0,x3,73,0,71) @ (2}, xh, x5, T4, T, 7)) | 3,73 > 0, T1 < 2,
s(b) =4, (Qg) holds}
U {(0,0,3,73,0,71) ® (27, 2%, 24, T4, T5,0) | 23,73 > 0, 71 < 2,
s(b) =4, (Ry) holds}
U {(0707x37~f3707j1) ® (-’Bll,l'lg, 171a070) ’ x3,23 >0, 71 < 2, S(b) =4,
zh >0, s(b) <6}

U{(0,0,0,4,0,21) @ (a), 'y, o, 7, 75, 24) | 1 < 2, s(b) < 4, (Rs) holds}
U{(0,0,0,4,0,71) @ (2, 75, 25, 75,1,0) | 71 < 2, s(b) <4, 75 >0, s(b)’ <6}
U{(0,1,0,2,0,71) ® (0,0,0,0,75, 7)) | 1 <z <2, 3<s(b) <6}
U{(0,1,0,2,0,7) @ (2, 25, 25, T4, 75, 7)) | 1 < T3 <2, (Ry) holds}
U {(O, ].,0, 2,0,%1) ® ($17$2,x3,x3,$2,$1) ’ 1 < II,'l < 2 (RG) hOldS}
U{(0,1,1,1,0,2) ® (0,0,0,0, %5, ;) | 5 < s(b)' < 6}
U {(O, ].7 ]., 1,0,2) (.’E17.'E2,‘T3,x37$2,$1) ’ (R5) hOldS}

1
U{(0,1,1,1,0,2) ® (2, 3, 25, 73,0,0) | 753 > 0, (wﬁf&) >2, s(b) <6}

U{(0,1,1,1,0,2) @ (), 2y, 2y, 4,0,0) | 2y > 0,2, < 1, 1(:1:3+$3) —1,5() <6}
u{(1,0,0,2,0,71) ®
u{(1,0,0,2,0,71) ®
U{(1,0,0,2,0,71) ®
U{(1,0,1,1,0,2) ® (
U{(1,0,1,1,0,2) ® (
U{(1,0,1,1,0,2) ® (
U {(0,1,0,2,0,0) ® (

) ® (

) @ (

) ® (

(0,0,0,0,25,77) |1 <71 <2, 3<s(b) <6}

(2, o, 25, 75,75, 7)) | 1 < 71 <2, (Rg) holds}

(x), 2%, 25, 75, 75,0) | 1 < 71 <2, (R3) holds}
0,0,0,0,75,71) | 3 < s(b) <6}

oy, wh, w5, 75, 75, 7)) | (Re) holds}

Ty, T, b, T, Th, TY) | T > 0, 27 + 75 <2, 3 < s(b) <6}
0,0,0,0,7,7,) | 2 < s(b) < 6}

U {(0,1,0,2,0,0
U {(0,1,0,2,0,0
U {(0,2,0,0,0,0

T, Ty, T3, Ty, T, T7) | (Rg) holds}
xh, wh, w5, 75,.1,0) | 75 > 0, s(b) <6}
0,0,0,0,25, %) | s(b)’ < 6}
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U {(0,2,0,0,0,0) ® (2, 25, 25, T4, Th, T}) | (S1) holds}

U {(0,2,z3,%3,0,0) ® (), 25, 25,0,0,0) | 23 < 1,24 = 0,5(b) < 6,25 > 0,s(b) <6}
U{(0,2,0,0,0,1) ® (0,0,0,0, 2, ;) | 3 < s(b)" < 6}

U {(07275837‘%3707'%1) & (I/Iazéuxgujévjé7jll) | T3 S ]-a Z4 = 07 jl +i‘3 - 1)

s(b) <6, (R4) holds}
U {(0,2,0,0,0,1) ® (z}, x5, 25, T4, 75, 71) | 75 > 0, 77 <1, 7} + 75 = 2, s(b)’ <6}
U1(0,2,0,0,0,1) ® (a4, 2,25, 7,1,0) | 7 > 0, S(sh +74) > 2, s < 6)
U{(0,2,1,1,0,0) @ (x, 25, x5, T4, 75, 0) | (S2) holds}
U{(0,2,1,1,0,0) @ (2}, 25, 25, 75, 1,1) | 75 > 0, s(b) <6}
U {(z1,22,0,0,0,Z1) ® (0,0,0,0,75, 7)) | 21 >0, 0 <y <2, 71 <1,

s(b) <6, s(b) <6}

( ) ®
( ) ®
U{(z1,2,1,1,0,0) ® (0,0,0,0, 5, z}) | s(b) <6, s(b)’ <6}
( ) ®
( ) ®
(

U{(z1,22,0,0,0,Z1) ® (2], b, %, 5,75, 7)) | 11 >0, 0 <29 <2, 71 < 1,
s(b) <6, (S1) holds}

U{(z1,22,0,0,0,Z1) ® (x], xh, x5, 25,0,71) | 1 >0, 0 <x2 <2, 71 < 1, s(b) <6,
0<a)+ah+ %(xg +25) <z, 7 <1, s(b) <6}

U {(z1,22,0,0,0,Z1) ® (x], xh, x5, 25,0,71) | 1 >0, 0 <x9 <2, 71 < 1, s(b) <6,
B <1, oo (4 #) >, s(0) < 6)

U {(z1,22,0,0,0,Z1) ® (z7, b, x5, 75,0,0) | z1 >0, 0 < 22 <2, 71 <1, s(b) <6,

S(ah 7)1, s(b)' <6)

U{(z1,72,0,0,0,71) ® (2}, 2%, 25, 75,0,1) | 21 >0, 0 < 22 <2, 71 < 1, s(b) <6,
rh <m +1, 2< 75 <y, s(b) <6}

2 <7y <y, @)+ x5+

U{(z1,2,1,1,0,0) ® (x], 25, 24, 75,0,7}) | z1 > 0, s(b) <6, 7} >3, s(b) <6}
U{(z1,2,1,1,0,0) ® (2}, 25, 24, 75,0,7}) | z1 > 0, s(b) <6, 7} <2,

0 <)+ 5+ ;(:c3+:1c3) <z, s(b) <6}
U{(1,2,1,1,0,0) ® (2}, 25, 25,0,0, 7)) | (S3) holds}
U{(1,2,1,1,0,0) ® (27, 2%, 25,1,0,0) | 2] 4+ a5 + %(xg +@5) > 2, s(b) < 6}
U{(2,2,1,1,0,0) @ (x}, 25, 25, 75,0, Z}) | (S4) holds}
U{(3,2,1,1,0,0) @ (2}, 25, 25, 75,0,Z7) | (S5) holds},
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Bg(,j+1’j) = {(z1,72,23,73,0,2) | s(b) =4} @ B
U{(x1,22,0,0,0,2) | 5 <s(b) <6} B
U{(71,22,0,0,0,1) [ 22 >0, s(b) <6} ® B
U {(0,0,z3,23,0,1) | 3 > 0, 3 <s(b) <4} @B

(

[

U{(21,0,23,23,0,1) [ 21,23 > 0, S(z3+Z3) <2, s(b) <6}®B

[\)
—_

U {(0,z9,x3,T3,0,1) | x2,T3 > 0,, 5(953 +z3) =1, s(b) <3}®B
U{(0,1,25,75,0,1) | 3 > 0, %(xg +ag) =2, s(b) < 6} @B
U{(0,22,0,4,0,1) | 22 > 0, s(b) <6} @B

U{(21,0, 25, 75,0,0) | 5 > 2, %(9;3 bag) <4, 2<s(b) <6} @B

U {(21, 29, 23, 75,0,0) | 22 > 0,25 > 2, %(xg b ) <3, 2<s(b) <6} @B

U{(z1,22,0,8,0,0) | z2 >0, s(b) <6} @B
U{(l’l,-TQ,].,].,0,0) ‘ To > 17 S(b) < 6} ®Ba

From above, we see that condition (1) in Theorem 3.4.3 holds for A = 2(Ag+ A1) with k = 2.
This implies Conjecture 5.3.5 holds when ¢ = 2, and path realizations of the corresponding

Demazure crystals B, u) (2(Ao + A1)) for Uq(Dflg)) have tensor product-like structures.
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