
ABSTRACT

NANCE, JAMES DANIEL. Investigating Molecular Dynamics with Sparse Grid Surrogate
Models. (Under the direction of Carl T. Kelley.)

Molecules in nature conform to a geometry that minimizes their potential energy, and some

molecules have multiple potential energy minima. One can study how a molecule transitions

from one stable geometry to another by studying dynamics on its potential energy surface. The

potential energy of a molecule with N atoms is a function of 3N − 6 molecular coordinates

and is computed via an expensive optimization process, thus modeling reaction pathways in all

3N −6 coordinates can be cumbersome for large molecules. In this thesis we describe a cheaper

surrogate model for the potential energy surfaces constructed using a sparse grid interpola-

tion algorithm initially developed by Smolyak [198]. Evaluation of the surrogate is much less

expensive than the evaluation of the actual energy function, so our technique offers a more com-

putationally efficient way to study dynamics than traditional methods. Furthermore, molecular

vibrations and thermal fluctuations can cause randomness in dynamics, so it is of interest to fol-

low many reaction paths at once, necessitating a fast and efficient implementation of Smolyak’s

interpolation algorithm. We describe a new implementation that computes analytical gradients

of Smolyak’s interpolating polynomial and is designed to evaluate a large number of points

simultaneously. We compare performance times of our implementation to MATLAB’s Sparse

Grid Interpolation Toolbox [121] and present dynamical simulations for various test molecules.

We also describe how one could extend our new reaction path following method to nona-

diabatic dynamics, or dynamics where the Born-Oppenheimer approximation breaks down. In

particular, we are interested in studying intersystem crossing dynamics of iron-based molecu-

lar complexes for an application to solar cells. We present three-dimensional potential energy

surfaces for the [Fe(terpy)2]2+ complex, the first time these surfaces have been studied in more

than two dimensions.

Finally, we employ sparse grids for Bayesian inference for a groundwater model. Interpo-

lation and integration on sparse grids offer an alternative to other expensive methods such as

Markov Chain Monte Carlo (MCMC) algorithms to estimate summary statistics for quantities

of interest. Here we interpolate the likelihood function and compute marginal densities using

sparse grids for four parameters to verify results from MCMC.
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Chapter 1

Introduction

Molecules in nature conform to a geometry that minimizes their potential energy, and some

molecules have multiple potential energy minimizers. There is great interest in studying all

the possible stable geometries of molecules, with the goal of yielding new compounds with

the necessary characteristics for various needs of science and technology. For example, laser

technology and molecular electronics require chemical compounds with special structures which

can easily and rapidly be changed in a specified direction [131, 31]. Other applications include

molecular pharmacology, conversion and storage of solar energy, photochemistry, biopolymers

and polyelectrolytes [94], laser stimulation of chemical reaction [189], biological sensing [226] and

many others [142]. Recently, selective isomerization of photochromes have allowed the design of

simple Boolean logic devices [5]. Furthermore, one can study how a molecule transitions from

one geometry to another by studying dynamics on its potential energy surface.

A molecule’s potential energy depends on the interatomic forces between all of its electrons

and nuclei, thus a molecule’s potential energy is a function of its geometry. The geometry

of a molecule can be uniquely determined by nuclear coordinates consisting of bond lengths,

bond angles, and dihedral angles. A nonlinear molecule requires 3N−6 nuclear coordinates p ∈
R3N−6, whereas a linear molecule requires only p ∈ R3N−5. For a given geometry, the molecule’s

potential energy Ei is found by approximating a solution the time-independent Schrödinger

equation

ĤΨi(p) = EiΨi(p)

where Ĥ is the molecular Hamiltonian operator and Ψi is the molecular wavefunction for elec-

tronic state i ∈ N0. Potential energy is a quantized value, meaning that for a fixed geometry p

the molecule’s potential energy takes on discrete values that make up a a countable subset of the

real numbers. That is, the energies Ei are such that E0 < E1 ≤ E2 ≤ . . . . As a function of geome-
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try, Ei(p) is called the potential energy surface (PES) for electronic state i ∈ N0. Approximating

a solution is no trivial task. Popular approaches such as the Hartree-Fock Self-Consistent-Field

method [177, 22] or Density functional theory [107, 126, 125] involve writing the wavefunction

as Ψi =
∑M

j=1 cjφj for some set of basis functions {φj} and iteratively varying the coefficients

ci to minimize the energy Ei. If n is the number of basis functions, the computational cost of

these methods is O(n3) for density functional theory and O(n4) for Hartree-Fock [125]. More

accurate and thus computationally intensive methods scale can scale as O(n6) or even O(n7).

One can cause a molecule to transition from one electronic state to another by exciting

electrons with photons. When an electron is excited it will change states to occupy a higher

energy orbital. Once excited to a new state, the molecule conforms to minimize its potential

energy in the new electronic state. There is no guarantee that a molecular geometry that is a

minimum for one energy state will be a minimum for the next excited state. By exciting and

relaxing a molecule through one or several energy states back to its lowest energy state, or

ground state, it is possible for a molecule to conform to a different ground state geometry from

which it began. Other than simply having different molecular geometries, some molecules have

different properties in different ground state potential energy minima. For example, the boiling

point of cis-2-butene is different from that of trans-2-butene [61].

The conformational path that the molecule takes from one geometry to another is called

the reaction path and is the solution to

ṗ = −∇Ei(p). (1.1)

Geometrically, the reaction path is the path of continuous steepest descent on the PES from

the initial geometry to a local minimum.

Since many coordinates do not change significantly during state transitions, we can re-

duce the dimensionality of the dynamics by partitioning the molecular coordinates into design

variables x and remainder variables ξ. Then, we can compute the reaction path as

ẋ = −∇Ei(x) (1.2)

where now the energy is computed by freezing the design variables and optimizing the remainder

variables via

Ei(x) = min
ξ
Ei(x, ξ). (1.3)

For example, the isomerization of 2-butene takes place via the first excited electronic state

and can be modeled as a function of the rotation of the double bond connecting the two central

carbon atoms. Figure 1.1 shows this one-dimensional reaction path from cis-2-butene to trans-
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2-butene.

Figure 1.1: The isomerization of 2-butene. The blue line is the ground state PES, the red line
is the first excited state PES, and the black line is the reaction path from cis to trans.

While this partitioning of geometric coordinates reduces the dimensionality of the reaction

path dynamics, these simulations are still limited to relatively few design coordinates x because

of the computational cost of the energy Ei(x) in Equation 1.3 and its gradient in Equation

1.2. Each iteration of any standard optimization algorithm for Equation 1.3 involves approxi-

mating a solution to the time-independent Schrödinger equation, a task which is prohibitively

burdensome for large molecules. The aim of this thesis is to replace the PES Ei(x) with a com-

putationally inexpensive surrogate model. The technique we use to do so constructs surrogate

PESs by means of interpolation. Standard interpolation methods on full grids, however, are

restricted to small molecules because of the computational cost of constructing the PESs to

within a sufficient accuracy. The number of grid points required for interpolation on full grids

grows exponentially with dimension, a problem known as the curse of dimensionality. As such,

we build a surrogate model using a sparse grid interpolation algorithm initially developed by

Smolyak [198]. Smolyak’s sparse grid interpolation algorithm approximates a function with a
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linear combination of tensor product interpolations on different levels of sparse grids. Sparse

grid points grow only polynomially with the dimension and thus help alleviate the curse of

dimensionality. Consequently, sparse grids enable us to increase the number of design variables

for reaction path simulations.

Once we calculate our surrogate PESs, our molecular dynamics simulation follows the re-

laxation path of a molecule back to its ground state on these surrogate PESs after an initial

light-induced excitation to a higher energy state. The goal is to identify the end configuration

and report the entire path so that one can look for nearby paths to other interesting configu-

rations. We also wish to investigate the effects of thermal fluctuations in molecular dynamics

which can cause a molecule to jump over low energy barriers from one path to another. To

do this we must simultaneously follow reaction paths of several different trajectories, necessi-

tating a fast and efficient implementation of Smolyak’s algorithm. In this thesis we present an

implementation of Smolyak’s algorithm that is specifically designed for this application.

Our implementation utilizes Judd et al. ’s reformulation of Smolyak’s algorithm that re-

arranges terms to eliminate redundant calculations [118]. Their implementation is used for an

application to derivative-free dynamic economic models, where Smolyak’s interpolating poly-

nomial must be evaluated at a large number of points sequentially. On the other hand, our

application requires evaluating Smolyak’s interpolating polynomial and its gradient at a large

number of points both sequentially and simultaneously. As such, we extended the work of Judd

et al. in these two ways: first, our implementation evaluates the analytical gradient of Smolyak’s

interpolating polynomial. Second, our implementation is designed to quickly evaluate the inter-

polating polynomial and its gradient at a large number of points simultaneously by recursively

computing the unidimensional basis polynomials. Our implementation of Smolyak’s algorithm

has been accepted for publication [152].

With our new implementation we are able to improve upon the reaction path following

method of Mokrauer et al. and efficiently follow multiple reaction paths simultaneously. Our

method allows one to visualize the entire PES landscape before simulating the reaction process,

a task that is often unfeasible with conventional reaction path following methods. Also, our

method allows one to increase the number of degrees of freedom in simulations and track entire

reaction paths on all involved electronic state PESs. In [151] and this thesis, for example, we

study the photoisomerization of 2-butene with 6 degrees of freedom for the first time. Prior to

this work, simulating this electronic state reaction has been limited to one [179], two [6, 174],

or three [146] molecular coordinates.

Finally, we use Smolyak’s sparse grid interpolation algorithm to study the PESs of Fe(II)-

polypyridines. These complexes are of great interest to the chemical community because of

their potential application to solar cells [93, 51, 159, 27, 239]. Sunlight can be converted to

electricity in solar cells via interfacial electron transfer (IET) between a molecular complex and
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a semiconductor. The most successful class of complexes is based on Ru(II)-polypyridines. While

efficient, Ru is a relatively rare and expensive metal. On the other hand, Fe is common and

inexpensive, but Fe-based complexes are not as efficient as their Ru counterparts. The presence

of many electronic states of various spin multiplicities impedes successful IET. The study of

their PESs could lead to a better understanding of the photochemical processes that take place

during IET, and ultimately to the design of more efficient Fe-based complexes for solar energy

applications. With our sparse grid PESs, we are also able to compute entire intersection seams

between PES and locate minimum energy crossing points (MECPs) on these seams. The changes

in molecular spin state during IET necessitate modifications to our reaction path following

method that account for more quantum effects. As such, we provide a theoretical framework

that extends our reaction path following method to Tully’s surface hopping algorithm [211], a

mixed quantum mechanical/classical mechanical method for studying such dynamics.

This thesis is outlined as follows: Chapter 2 reviews sparse grids and presents our imple-

mentation Smolyak’s interpolation algorithm. Chapter 3 gives a brief introduction to quantum

chemistry and outlines the computational chemistry algorithms used in energy optimizations

and Chapter 4 details our reaction path following method and presents simulation results for

several different molecules. In we Chapter 5 motivate our application of sparse grids to study

PESs of Fe(II)-polypyridines, present results for the Fe(II)-polypyridine [Fe(tpy)2]2+, and pro-

vide a theoretical framework for a sparse grid surrogate-based implementation of Tully’s surface

hopping algorithm.
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Chapter 2

Sparse Grids

2.1 Background

In 1963 Smolyak studied tensor product problems and introduced a general approach that uses

optimal approximations from the unidimensional case to yield an almost optimal approximation

for d > 1 dimensions [198]. The method is a discretization technique that constructs a multi-

dimensional, multilevel basis by the tensor product expansion of a one-dimensional multilevel

basis, and, compared to full grids, improves the ratio of invested storage and computing time

to approximation accuracy [35]. The method is closely related to the blending methods for

interpolation and approximation of Gordon [80], the Boolean interpolation method of Delvos

[53] and an iterative interpolation process developed by Deslauriers and Dubuc [54]. The grid

points used in Smolyak’s algorithm form what is called a “sparse grid.”

Since their inception, sparse grids have gained a significant amount of traction in the math-

ematical community, especially since the advent of supercomputers and the need for efficient

methods for high dimensional problems. In this section we will present a brief, chronological

literature review of sparse grids and their applications. Bungartz and Griebel present a com-

prehensive review of sparse grids in [37] that is much easier to read and digest than the English

translation of Smolyak’s original paper [198], and the interested reader is encouraged to start

there for a more thorough introduction to sparse grids. Later in the chapter we will describe

the interpolation method we use in detail and prove some its nice properties.

In the late 1980’s, Bank, Dupont and Yserentant [232, 10] built off of Smolyak’s multigrid

foundation [198] and introduced the hierarchical basis multigrid method to solve elliptic bound-

ary value problems. In 1991 Zenger [237] formally introduced the idea of “sparse grids” and

applied them as a numerical scheme to solve partial differential equations. Like some finite-

element methods, Zenger’s technique used piecewise linear elements but also incorporated the

aforementioned hierarchical basis method of [232, 10]. The sparse grid finite element technique
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can be interpreted as a multigrid combination extrapolation technique to solve elliptic bound-

ary value problems[89, 34]. In 1994, Stortkfuhl took the first step towards higher order sparse

grid techniques by using a piecewise bicubic hierarchical Hermite basis [203], quickly followed

by Bungartz in 1996, who used quadratic hierarchical splines for Lagrangian interpolation on

sparse grids [32]. Bungartz then worked with Dirnstorfer to extend this technique for arbitrary

dimension d and polynomial basis degree p in [55, 33, 36].

In 1995 Wasilkowski and Wozniakowski derived explicit cost bounds for algorithms which

compute an approximation to a solution to within a given error tolerance, as well as upper

bounds for the number of points required for such an approximation [222]. As interest in sparse

grids and the dimensions of problems grew, it became necessary to begin investigating efficient

algorithms and data structures for implementing sparse grids. In the same year, Balder and

Zenger developed an efficient approach where all of the algorithmic work is done in a single

dimension [9]. In 1996 Novak and Ritter [155] developed an algorithm for numerical integration

on a d-dimensional cube using Smolayk’s algorithm with the one-dimensional Clenshaw-Curtis

rule [45]. Later, in 1999, they extended this work for cubature formulas with high polynomial

exactness in [156]. Also working within the realm of numerical quadrature, in Gerstner and

Griebel reviewed several multivariate quadrature formulas on sparse grids based on several dif-

ferent one-dimensional quadrature rules in [77]. Griebel also independently made an important

stride with the successful implementation of adaptive sparse grids based on finite differences

in [86]. The hierarchical basis construction allows one to estimate the error of an approxima-

tion, and Griebel used this fact to develop an adaptive algorithm for elliptic partial differential

equations based on finite differences.

In 2000, Sprengel derived error estimates for interpolation on Gauss-Chebyshev grids for

functions from special kinds of Besov-type spaces[199], Garcke and Griebel extended the com-

bination technique [89] for d-dimensional eigenproblems on sparse grids and used it to solve the

Schrodinger equations for hydrogen and helium [74]. This combination technique was studied

further and generalized by Hegland, Garcke and Challis in [102]. Barthelmann worked with

Novak and Ritter to develop a polynomial interpolation method using sparse grids with Cheby-

shev nodes [13]. In 2003 Achatz used a sparse grid method that employed higher order finite

elements for discretizing and solving partial differential equations with variable coefficients [1]

and Petras investigated how to obtain a Smolyak cubature formula with a given degree of poly-

nomial exactness and studied the asymptotically minimal number of nodes required to do so

[164]. In 2005 Gajda studied Smolyak’s algorithm for weighted L1-approximation of multivariate

functions and derived the asymptotic behavior of the error [73].

In 2005 Klimke and Wohlmuth developed a robust sparse gird interpolation toolbox for

MATLAB (for documentation, see [121]) and published their algorithm for piecewise multilinear

hierarchical sparse grid interpolation [122]. In 2006 Yserentant developed an adaptive sparse
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grid refinement scheme that takes advantage of symmetry properties of the underlying function,

and augmented sparse grid spaces to tackle high-dimensional, antisymmetric functions [233]. A

year later, Sickel and Ullrich broadened the class of functions studied for convergence rates of

Smolyak’s algorithm by studying periodic functions in Sobolev and Besov spaces [192].

In 2008 the stochastic and statistical modeling communities began using sparse grids. Nobile,

Timpana and Webster developed a Smolyak sparse grid stochastic collocation method for partial

differential equations with random input data [154]. Building off of this work, in 2010 Ma

and Zabaras developed a technique using adaptive sparse grid collocation [138] and in 2011

Agarwal and Aluru proposed a weighted Smolyak algorithm [2], both to solve stochastic partial

differential equations.

In 2011 Murarasu et al. optimize sparse grid discretization for their use on GPUs for a

data imaging application [150], and later present fastsg, a library of C routines for the sparse

grid technique that optimizes cache use and vectorization to improve algorithm performance

on single processors [149]. Recently, Griebel and Harbrecht studied the optimal construction of

sparse tensor products for certain spaces, deriving cost complexities to approximate functions

with anisotropic and isotropic smoothness on a tensor product domain [87].

While a great deal of work with sparse grids is based on more theoretical aspects, sparse

grids have also been used in a wide range of applications. Sparse grids are used most often as

a finite element discretization for partial differential equations as in [237], [115] and [1], but

other applications are vast. Sparse grids have been used to study: fluid flow [90, 238], quantum

mechanics [81], stochastic differential equations and optimization [138, 185, 180], chemistry

[103], discrete differential forms [82], boundary integral equations [88], economics and finance

[127, 38, 139], time-dependent advection problems [129], data mining [75], colocation methods

for uncertainty quantification [228, 227, 39], and Bayesian inverse problems [236, 238, 133]

among others.

Before we discuss Smolyak’s interpolation algorithm, we first present the concept of sparse

grids and their construction as first proposed originally by Zenger in [237]. From this we will gain

insights as to why sparse grids are increasingly superior to full grids for increasing dimension d.

We begin by outlining the hierarchical multilevel subspace splitting using notation from [37].

2.1.1 Subspace splitting and the curse of dimensionality

In this section we introduce the hierarchical subspace splitting as originally proposed in [237] and

draw attention to the curse of dimensionality and how sparse grids offer a more tenable solution.

Consider multivariate functions u(x) ∈ R on the d-dimensional unit interval Ω̄ = [0, 1]d. We
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will denote mixed derivatives as

Dαu =
∂|α|1u

∂xα1
1 u . . . ∂xαd

d

where α ∈ Nd is a d-dimensional multi-index with norms |α|1 =
∑
αi and |α|∞ = maxαi. For

multi-indices α and β and x ∈ R we have the following relations and operators:

xα = (xα1 , . . . , xαd),

α ≤ β ⇔ αi ≤ βi ∀ 1 ≤ i ≤ d,

α < β ⇔ α ≤ β and αi 6= βi ∀ 1 ≤ i ≤ d.

Xp,r(Ω̄) denotes the space of all functions of bounded (with respect to the Lp-norm) mixed

derivatives up to order r and Xp,r
0 (Ω̄) is the subspace of Xp,r(Ω̄) that is zero on the boundary

of Ω̄. For purposes of simplicity we will only consider Xp,r
0 (Ω̄).

The family of d-dimensional standard rectangular grids is

{Ωl : l ∈ Nd}

where l is a multi-index that denotes the level of a grid in a multivariate sense. The mesh size

is

hl = (hl1 , . . . , hld) = 2−l, (2.1)

where h is the width of the interval. Taking negative powers of 2 cuts each dimension di’s mesh

width in half as we increase the corresponding level li by one. Grid points are denoted

xl,i = (xl1,i1 , . . . , xld,id) = i · hl

for 0 ≤ i ≤ 2l. Since we are interested in approximating functions in Xp,r
0 (Ω̄), we must first

define discrete approximation spaces. We will use the standard 1-dimensional hat function

φ(x) =

1− |x|, if x ∈ [−1, 1]

0, otherwise
(2.2)

and note that φ(x) can be used to generate an arbitrary hat function with support [xlj ,ij −
hlj , xlj ,ij + hlj ] by dilation and translation via

φlj ,ij (xj) = φ

(
xj − ijhlj

hlj

)
. (2.3)

9



Figure 2.1 shows hat functions for l = 1 (solid) and l = 2 (dashed) on the interval [−1, 1].

Figure 2.1: Hat functions for l = 1 (solid) and l = 2 (dashed) on the interval [−1, 1].

We build piecewise d-linear basis functions in each grid point xl,i by the tensor product

construction

φl,i(x) =
d∏
j=1

φlj ,ij (xj). (2.4)

Since we are only concerned with basis functions that correspond to inner grid points, we define

Vl = span{φl,i : 1 ≤ i ≤ 2l − 1} (2.5)

as the space of piecewise d-linear functions with respect to the interior of Ωl. Furthermore, we

define the hierarchical increments

Wl = span{φl,i : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d} (2.6)
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and note that

Vl =
⊗
k≤l

Wk. (2.7)

Thus, by defining the index set

Il = {i ∈ Nd : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d} (2.8)

we get a second basis of Vl, the hierarchical basis

{φk,i : i ∈ Ik,k ≤ l}. (2.9)

Finally, with hierarchical difference spaces Wl we define

V =

∞∑
l1=1

. . .

∞∑
ld=1

W(l1,...,ld) =
⊗
l∈Nd

Wl (2.10)

with its natural hierarchical basis {φl,i : i ∈ Il, l ∈ Nd}. An advantage of hierarchical bases is its

multilevel structure enables one to distinguish between high-level basis functions with a large

support that usually already contain a significant part of the information, and low-level basis

functions whose contribution to an interpolant or finite element approximation is comparatively

small [35].

Note that in finite-dimensional subspaces of V , e.g.

V (∞)
n =

⊗
|l|∞≤n

Wl, (2.11)

any function u ∈ Xp,r
0 (Ω̄) can be uniquely split by

u(x) =
∑
l

ul(x), ul(x) =
∑
i∈Il

vl,i · φl,i(x) ∈Wl (2.12)

where vl,i are the coefficient values of the hierarchical product basis representation of u. These

vl,i are called the hierarchical surpluses. Note that V
(∞)
n is the space of piecewise d-linear

functions on the rectangular grid with equidistant mesh size in each coordinate direction. It is

well known that the number of inner grid points for V
(∞)
n is

|V (∞)
n | = (2n − 1)d = O(h−dn ) (2.13)
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and interpolation error for an approximating function u
(∞)
n ∈ V (∞)

n is

‖u− u(∞)
n ‖2 ≤ O(h2

n). (2.14)

Equation 2.13 reveals the curse of dimensionality that often impedes solving problems in higher

dimensions, as the number of nodes required to achieve an accuracy of O(h2
n) grows exponen-

tially as d increases. In the next section, we discuss the derivation of sparse grids and how they

help alleviate this problem.

For sparse grids we are more interested in decompositions of these finite-dimensional ap-

proximations spaces of V rather than the splitting given in Equation 2.12. The classical sparse

grid construction arises from a cost to benefit analysis that is detailed in [37]. In short, by

balancing the number of degrees of freedom involved in a grid (cost) with the square of the

upper bounds for interpolation error (benefit), one can solve a constrained optimization prob-

lem to solve for underlying index sets I ∈ Nd to form the approximation space U =
⊗

l∈IWl.

The nodes corresponding to these spaces U are called sparse grids, and the choice of norm for

interpolation error leads to different sparse grids. For example, for L2 based sparse grids we get

the relation

|l|1 ≤ n+ d− 1

as a qualification for a subspace Wl to be taken into account. Thus, the new discrete approxi-

mation space for our sparse grid is

V (1)
n =

⊗
|l|1≤n+d−1

Wl. (2.15)

The dimension, or number of degrees of freedom or inner grid points, of V
(1)
n is

|V (1)
n | = O(h−1

n · | log2 hn|d−1) (2.16)

and the L2 upper bound for the interpolation error of a function u in the sparse grid space V
(1)
n

is

‖u− u(1)
n ‖2 ≤ O(h2

n · nd−1). (2.17)

Proofs of these bounds and other properties of sparse grids can be found in [37]. Observe

that the number of degrees of freedom is reduced greatly while the accuracy is only slightly

decreased in comparison to V
(∞)
n (see Equations 2.13 and 2.14). Sparse grids only lessen the

curse of dimensionality, however, and do not overcome it completely.

Our method uses Lagrange interpolation with Chebyshev nodes in conjunction with an

approximation algorithm developed by Smolyak in [198], as first proposed by Barthelmann,

12



Novak and Ritter [13]. This method is outlined in the following section.

2.2 Smolyak’s Algorithm

Smolayk’s algorithm uses a linear combination of approximations on sparse grids. To understand

the multi-dimensional interpolation algorithm, we first consider the one dimensional interpola-

tion problem where we would like to approximate the value of a function f : [−1, 1]→ R at some

point in the domain. Given a set of mi = 2i−1 + 1 nodes {xj} ∈ [−1, 1] and the corresponding

set of function values {f(xj)} we can construct the unique interpolating polynomial of degree

mi − 1 denoted

U i[f ](x) =

mi∑
i=1

f(xij)`
i
j(x) (2.18)

where `ij(x) are the Lagrange basis polynomials

`ij(x) =
∏
k 6=j

x− xik
xij − xik

. (2.19)

We will refer to i as the level of the interpolation. As suggested in [13], we utilize Chebyshev

nodes that are of the form

xij = − cos
π(j − 1)

mi
, 1 ≤ j ≤ mi (2.20)

with xi1 = 0 if mi = 1;. Note that our choice of mi leads to sets of nodes that are nested as we

increase in level, i.e. if χi is the set of nodes for level i we have χi ⊂ χi+1. For example, the set

of nodes for the i = 2 is

χ2 = {−1, 0, 1},

and the set of nodes for i = 3 is

χ3 =

{
−1,−

√
2

2
, 0,

√
2

2
, 1

}
= χ2 ∪

{
−
√

2

2
,

√
2

2

}
.

The Lagrange basis polynomials for level i = 3 are shown in Figure 2.2.
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Figure 2.2: The Lagrange basis polynomials on for interpolation level i = 3 on the domain
[−1, 1].

Expanding this idea to d > 1 dimensions, we now let f : Rd → R. We will use the standard

multi-index notation

i = (i1, . . . , id) and |i| =
d∑
j=1

ij .

For x ∈ Rd and multi-index i we define the d-dimensional Lagrange polynomial by a tensor

product of one-dimensional Lagrange polynomials:

U i[f ](x) =
d⊗
r=1

U ir [f ](x) (2.21)

=

mi1∑
j1=1

. . .

mid∑
jd=1

f(xi1j1 , . . . , x
id
jd

)
d∏
r=1

`irjr(xr). (2.22)

This tensor product has a poor order of convergence, but serves as the foundation for the more

complicated algorithm of Smolyak [155].
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Example 2.2.0.1. Let d = 3 and i = (2, 3, 2) and consider a function f : [−1, 1]3 → R.

Our choice of i says we want to take the tensor product of three one-dimensional Lagrange

polynomials. The Lagrange polynomials in dimensions 1 and 3 are of interpolation level 2 and

the Lagrange polynomial in dimension 2 is of interpolation level 3. Evaluating this tensor product

at x = (x1, x2, x3), Equation 2.22 becomes

U i[f ](x) =
3∑

j1=1

5∑
jd=1

3∑
jd=1

f(x2
j1 , x

3
jd
, x2

jd
)

d∏
r=1

`irjr(xr).

Given a degree of exactness k, we define q = d+ k. For Smolyak’s algorithm we define the

set of allowable multi-indices i by

Q(q, d) = { i ∈ Nd| k + 1 ≤ |i| ≤ q}. (2.23)

Each multi-index i ∈ Q(q, d) contains the levels of each dimension’s interpolation and can be

thought of as representing a different sparse grid on which we must approximate the function.

Smolyak’s algorithm [198] uses linear combinations of Equation 2.22 on different sparse grids

to approximate the multivariate function f .

Smolyak’s formula is originally given in [198] by the operator

A(q, d) =
∑
|i|≤q

(∆i1 ⊗ . . .⊗∆id) (2.24)

with

∆i = U i − U i−1

for i ∈ N and U0 = 0. In [222] Wasilkowski and Wozniakowski showed that Equation 2.24 is

equivalent to

A(q, d) =
∑

i∈Q(q,d)

(−1)q−|i|

(
d− 1

q − |i|

)
U i, (2.25)

which we will prove in the following theorem.

Theorem 2.2.0.1. Equations 2.24 and 2.25 are equivalent.

Proof. First define the set

P (q, d) = {i = [i1, . . . , id] : 1 ≤ i, |i| ≤ q}.

The cardinality of P (q, d) is

(
q

d

)
[222] and contains all the indices used in Equation 2.24.
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The restriction of 1 ≤ i is included since we have ∆0 = 0, so any i containing an element that

is 0 will not be included in the sum in Equation 2.24.

Now we have

A(q, d) =
∑

i∈P (q,d)

d⊗
r=1

∆ir =
∑

i∈P (q−1,d−1)

(
d−1⊗
r=1

∆ir

)
⊗
q−|i|∑
id=1

∆id (2.26)

=
∑

i∈P (q−1,d−1)

(
d−1⊗
r=1

∆ir

)
⊗ U q−|i| (2.27)

since we obtain a telescoping series
m∑
j=1

∆j = Um. (2.28)

Now observe that
d⊗
r=1

∆ir =
∑

α∈{0,1}d
(−1)|α|

d⊗
r=1

U ir−αr

and
⊗d

r=1 U
jr appears in A(q, d) for all indices i such that ir = jr + αr with α ∈ {0, 1}d and

|α| ≤ q − |j|. With these observations we can explicitly derive a form of A(q, d) for all indices

i such that ir = jr + αr where α ∈ {0, 1}d and |α| ≤ q − |j|. First observe that the sign of⊗d
r=1 U

jr is (−1)|α|. Defining

b(z, d) =
∑

α∈{0,1}d,|α|≤z

(−1)|α|, (2.29)

Equation 2.27 now reads

A(q, d) =
∑

j∈P (q,d)

b(q − |j|, d)
d⊗
r=1

U jr . (2.30)

To compute b(z, d), note that we can sum with respect to |α| = 0, 1, . . . , d. Since |α| = j

corresponds to

(
d

j

)
terms, we have

b(z, d) =

min{z,d}∑
j=0

(
d

j

)
(−1)j = (−1)z

(
d− 1

z

)
. (2.31)
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In particular, b(z, d) = 0 for z ≥ d. Thus we have

A(q, d) =
∑

i∈Q(q,d)

(−1)q−|i|

(
d− 1

q − |i|

)
U i (2.32)

and the equivalence is shown.

Example 2.2.0.1. Let d = 2 and k = 2, so q = 4. The set of allowable multi-indices is

Q(4, 2) = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (2, 1)}.

Since 3 is the largest element of any i ∈ Q(4, 2), our nested sets of nodes are

χ1 = {0},

χ2 = {−1, 0, 1} ,

and χ3 =

{
−1,−

√
2

2
, 0,

√
2

2
, 1

}
.

Each i ∈ Q(4, 2) defines a set of points via the cartesian product of the two corresponding sets

of nodes. For example, for i = (2, 2) we have

χ2 × χ2 = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)},

which are shown in Figure 2.3 along with the entire set of points used by Smolyak’s algorithm.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 2.3: Left: sparse grid points for i = (2, 2). Right: all sparse grid points for d = k = 2.
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2.2.1 Complexity

To evaluate the Smolyak interpolating polynomial, one only needs to know function values at

the sparse grid nodes

H(q, d) =
⋃

k+1≤|i|≤q

(χi1 × . . .× χid), (2.33)

where χi = {xi1, . . . , ximi
} is the set of points used by the interpolant U i. Since our sets of nodes

are nested we also have H(q, d) ⊂ H(q + 1, d). Figure 2.4 shows the sparse grids H(7, 2) and

H(8, 3).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

0

1
−1

−0.5

0

0.5

1

Figure 2.4: Examples of sparse grids for H(7, 2) (left) and H(8, 3) (right) on the domain
[−1, 1]d. Notice that the nodes are well-dispersed throughout the domain.

Given a specified error tolerance, an upper bound for the number of nodes required for an

approximation for a solution was first developed in [222] by Wasilkowski and Wozniakowski. In

[164], Petras studied the asymptotically minimal number of nodes to obtain a cubature formula

with a given degree of exactness. Here, however, we derive an estimate for the number of grid

points, n(k, d), required for a given degree of exactness k for interpolation as in [156]. We use

≈ to denote strong equivalence of sequences. That is,

vn ≈ wn ⇔ lim
n→∞

vn
wn

= 1.

The next theorem characterizes how n(k, d) grows as we increase our dimension d.
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Theorem 2.2.1.1. For some fixed value of k and as d→∞,

n(k, d) ≈ 2kdk

k!
, (2.34)

thus the number of nodes for Smolyak’s algorithm grows polynomially in d. In this sense,

Smolyak’s algorithm helps alleviate the curse of dimensionality.

Proof. We will denote the number of nodes in a set as n(χ). Since χ0
j = ∅ and n(χ2

j \ χ1
j ) = 2,

we have ⋃
|i|=q, ir≤2

(χi11 \ χ
i1−1
1 )× . . .× (χidd \ χ

id−1
d ). (2.35)

Assuming k ≤ d gives us a lower bound on the number of nodes

n(k, d) ≥

(
d

k

)
· 2k. (2.36)

Now, if x ∈ H(q, d) then there may only be up to k coordinates of x which are not members of

the respective χ1
j . Let J = {j1, . . . , jv} be a set of directions so that {xj /∈ χ1

j |∀ j ∈ J}. Assume

that x ∈ H(q, d) with xj /∈ χ1
j if and only if j ∈ J . If v = k, then

xj ∈ χ2
j \ χ1

j ∀j ∈ J

and therefore

n({x ∈ H(q, d)|xj /∈ χ1
j iff j ∈ J}) ≤ 2k.

If v < k then

xj ∈
k⋃
i=1

χij ∀ j ∈ J

and therefore, recalling that mi is the number of nodes needed at the ith level in one dimension,

n({x ∈ H(q, d)|xj /∈ χ1
j iff j ∈ J}) ≤

(
k∑
i=1

mi

)k
= ck.

Finally, we have

n(k, d) ≤
k−1∑
v=0

(
d

v

)
· ck +

(
d

k

)
· 2k ≤ k · dk−1 · ck +

(
d

k

)
· 2k. (2.37)

Equations 2.36 and 2.37 give us the desired result.
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To illustrate this drastic reduction in grid points, Table 2.1 compares the number of grid

points needed for tensor product interpolation with 5 points in each dimension and Smolyak’s

sparse grid interpolation.

Table 2.1: The number of grid points for tensor product grids with 5 points in each dimension
and for Smolyak sparse grids.

d Tensor Product
Sparse Grid

k = 1 k = 2 k = 3

1 5 3 5 9

2 25 5 13 29

5 3,125 11 61 241

10 9,765,625 21 221 1,581

15 30,517,578,125 31 481 5,021

2.2.2 Error

General error and cost bounds for Smolyak’s algorithm were derived by Smolyak in [198] and

more explicitly by Wasilkowski and Wozniakowski in [222]. In [199] Sprengel derived error

estimates for interpolation on Gauss-Chebyshev grids, but restricted to functions from certain

kinds of Besov-type spaces. Here we prove error bounds as in [13] for functions with continuous

mixed derivatives. First, however, we state and prove one of the most important properties of

Smolyak’s interpolation algorithm: polynomial exactness.

Exactness

In one dimension Lagrange interpolation with k + 1 distinct nodes will exactly interpolate

polynomials of degree k. There is an analogous result for Smolyak interpolation, which is stated

in the following theorem. The proof is similar to the one from [155] where the authors proved

the result for quadrature formulas. We will denote the space of polynomials in one variable of

degree m or less as Pm.

Theorem 2.2.2.1. A(q, d)(f) will exactly reproduce all polynomials of the form∑
|i|=q

(
Pmi1

−1 ⊗ . . .⊗ Pmid
−1

)
where Pm is the space of one-dimensional polynomials of degree less than or equal to m.
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Proof. As in [155] we will proceed by induction on d. For d = 1, A(q, 1) = U q which is exact.

Assume d > 1 and the function f is a product of univariate polynomials

f = fi1 ⊗ . . .⊗ fid+1
(2.38)

where |i| = q and i1 + . . .+ id = m (note that we have m+ id+1 = q). We will use the fact that

A(q, d+ 1) can be written in terms of A(`, d) by

A(q, d+ 1) =

q−1∑
`=d

A(`, d)⊗ (U q−` − U q−`−1)

⇒ A(q, d+ 1)f =

q−1∑
`=d

A(`, d)(fi1 ⊗ . . .⊗ fid) · (U q−` − U q−`−1)fid+1
.

Since

U q−`fid+1
= U q−`−1fid+1

= fid+1

for d ≤ ` ≤ m− 1 and from our inductive hypothesis we have that

A(`, d)(fi1 ⊗ . . .⊗ fid) = fi1 ⊗ . . .⊗ fid

for m ≤ ` ≤ q − 1, we obtain

A(q, d+ 1)f =

q−1∑
`=m

fi1 ⊗ . . .⊗ fid · (U
q−` − U q−`−1)fid+1

= fi1 ⊗ . . .⊗ fid · U
q−mfid+1

= fi1 ⊗ . . .⊗ fid+1
= f.

Thus A(d+ k, d) is exact for all polynomials of degree less than or equal to k.

Barthelmann et al. also derive error bounds for Smolyak’s algorithm in [13] and we summa-

rize their work here. Starting with d = 1, the interpolation operator U i is exact on P(mi−1), the

space of polynomials with degree at most mi − 1. They apply the general error bound formula

‖f − U i(f)‖∞ ≤ Emi−1(f) · (1 + Λmi) (2.39)

where Em is the error of the best approximation by polynomials p ∈ P(m) and Λmi is the
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Lebesgue constant for Chebyshev nodes defined as

Λmi = max
x∈[−1,1]

 mi∑
j=1

|`ij(x)|

 (2.40)

where `ij is defined in Equation 2.19. From [110, 62] we have that

Λmi ≤
2

π
log(mi − 1) + 1 (2.41)

for m ≥ 2.

Consider the space

F k1 = Ck([−1, 1])

with the norm

‖f‖ = max {‖Dαf‖∞ |α = 0, . . . , k}

for d = 1 and the space

F kd =
{
f : [−1, 1]d → R|Dαf continuous if αi ≤ k ∀ i

}
with norm

‖f‖ = max
{
‖Dαf‖∞ |α ∈ Nd0, αi ≤ k

}
for d > 1. Finite linear combinations of functions g =

d⊗
i=1

fi with fi ∈ F k1 are dense in F kd and

‖g‖ =
d∏
i=1

‖fi‖.

We will let Id denote the embedding F kd ↪→ C([−1, 1]d) and

‖S‖ = sup
{
‖S(f)‖∞ |f ∈ F

k
d , ‖f‖ ≤ 1

}
for S : F kd → C([−1, 1]d). In the following we will use cd,k to denote constants that only depend

on d and k. Equations 2.39, 2.41, and the well-known Jackson estimate

En(f) ≤ c1,k · ‖f‖ · n−k

give us the error bound

‖I1 − U i‖ ≤ ĉ1,k · (logmi) ·m−ki (2.42)
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for any f ∈ F k1 and i > 1. This is an optimal bound for every k up to the logarithmic factor.

Barthelmann, Novak and Ritter use this one-dimensional estimate to prove error bounds for

higher dimensions. We state and prove the theorem as in [13].

Theorem 2.2.2.1. Let n = n(q, d) be the number of nodes required by A(q, d). Then for the

space F kd ,

‖Id −A(q, d)‖ ≤ cd,kn−k(log n)(k+2)(d−1)+1. (2.43)

Proof. Let D = 2−k. First, note that ‖I1‖ = 1. For i > 1, Equation 2.42 yields

‖I1 − U i‖ ≤ ĉ1,k · (logmi) ·m−ki
= ĉ1,k · (log(2i−1 + 1)) · (2i−1 + 1)−k

≤ ĉ1,k · log(2i) · (2i−1)−k

= ĉ1,k ·
log2(2i)

log2(e)
· 2k(1−i)

= CiDi

where C = ĉ1,k · 2k

log2(e) > 0 and D = 2−k. Similarly,

∥∥∆i
∥∥ ≤ EiDi

for some E > 0. Defining

p(s, j) =

1, if j = 0∑
i∈Nj ,|i|=s

∏j
ν=1 iν otherwise

for j ∈ N0 and s ≥ j, we claim that for every q ≥ d (recall q = d+ k)

‖Id −A(q, d)‖ ≤ CDk+1
d−1∑
j=0

(ED)j
k+j∑
s=j

(k + j + 1− s)p(s, j).

This estimate is proved in [13] but omitted here.
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Let B = max
{
E,D−1

}
. Now we have

‖Id −A(q, d)‖ ≤ CDk+1
d−1∑
j=0

max(1, ED)d−1
k+j∑
s=j

(k + j + 1− s)p(s, j)

≤ CBd−1Dq
d−1∑
j=0

k+j∑
s=j

(k + j + 1− s)p(s, j).

If we let

Γ =
d−1∑
j=1

k+j∑
s=j

(k + j + 1− s)p(s, j),

then

d−1∑
j=0

k+j∑
s=j

(k + j + 1− s)p(s, j) = Γ +

k∑
s=0

(k + 1− s)

= Γ +
1

2
(k + 1)(k + 2)

and

Γ =

d−1∑
j=1

k+j∑
s=j

(k + j + 1− s)
∑

i∈Nj ,|i|=s

j∏
ν=1

iν

≤
d−1∑
j=1

k+j∑
s=j

(k + j + 1− s)

(
s− 1

j − 1

)(
s

j

)j

≤
d−1∑
j=1

k+j∑
s=j

(k + j + 1)

(
q − 2

j − 1

)
(q − 1)d−1

≤ cd · q2d−1.

We now have

‖Id −A(q, d)‖ ≤ cd,k · 2−kqq2d−1,

but we wish to relate this bound to the number of nodes, n. From [155], n can be bounded

above by

n ≤ cd · qd−1 · 2q
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if mi = 2i−1 + 1, ensuring the nodes are nested with increasing level i. Thus,

‖Id −A(q, d)‖ ≤ cd,k · (n/qd−1)−kq2d−1

≤ cd,k · n−kq(k+2)(d−1)+1

≤ cd,k · n−k(log n)(k+2)(d−1)+1

and the theorem is proved.

Error Estimation

The error of Smolyak’s interpolating polynomial can be estimated using the same approach

as Runge-Kutta methods for ordinary differential equations. Runge-Kutta methods estimate

the error of an approximate solution by comparing the current order’s approximation to a

higher order approximation [173]. Similarly, the error of Smolyak’s interpolant with polynomial

exactness k can be estimated with Smolyak’s interpolant with polynomial exactness k−1. Since

sparse grids are nested one only needs to compare the difference of the two interpolants at the

nodes unique to the order k interpolant, i.e. x ∈ H(d+ k, d) \H(d+ k− 1, d). In the sparse grid

literature these differences are known as hierarchical surpluses and are used for error estimation

in adaptive sparse grid regimes [38, 35, 123]. Since the function we approximate in this work is

far too expensive for adaptive interpolation algorithms, we use the hierarchical surpluses as a

posterior error estimate.

Consider interpolating the function f : Rd → R with polynomial exactness k. Recalling that

q = d+ k, define the set D = H(q, d) \H(q− 1, d) and let f̂ q(x) denote Smolyak’s interpolating

polynomial A(q, d)[f ](x). Our relative interpolation error estimate is

εrel = max
x∈D

‖f̂ q(x)− f̂ q−1(x)‖
‖f̂ q(x)‖

. (2.44)

Note that if we have already computed f̂ q(x) the nested structure of Smolyak’s sparse grids

allows us to easily compute f̂ q−1(x). Also, for x ∈ D f̂ q(x) = f(x), so the numerator of Equation

2.44 is indeed the absolute error for the interpolant of order k − 1.

2.3 Efficient Implementation

In this section we present a new implementation of the sparse grid polynomial interpolation

algorithm that is based on a reformulation of Smolyak’s algorithm by Judd and coworkers in

[118]. To our knowledge, previous research has focused on efficient algorithms for evaluating

Equation 2.25 simultaneously at one or very few points [122, 149, 150]. Our goal, however, is
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to evaluate the interpolant and its gradient at several thousand points simultaneously, and an

algorithm that is efficient for, say, 5 points may not be efficient for 105 points depending on the

algorithm’s scalability.

As noted by Judd and coworkers in [118], Smolyak’s algorithm as written in Equation 2.25

is inefficient because the linear combination causes several basis functions to be evaluated more

than once. As we will see, the reformulation of Smolyak’s algorithm eliminates redundant cal-

culations of basis functions by using disjoint set generators instead of the conventional nested

set generators for the Smolyak grids and basis functions. The reformulation from [118] is moti-

vated by derivative-free dynamic economic models, where Smolyak’s interpolating polynomial

is repeatedly evaluated at a large number of points. On the other hand, our application re-

quires evaluating the interpolant and its gradient at a large number of points simultaneously.

As such, we extend the work of Judd and coworkers in two ways: first, our implementation is

capable of evaluating the analytical gradient of Smolyak’s interpolating polynomial, and sec-

ond, the implementation is designed to quickly evaluate the interpolating polynomial and its

gradient at a large number of points simultaneously. In the rest of this section we will review

the implementation from [118] and describe our improvements.

2.3.1 Reformulation of Smolyak’s Algorithm

Smolyak’s algorithm as written in Equation 2.25 is inefficient in that the linear combination

causes several basis functions to be evaluated more than once. Judd and coworkers devised a

method in [118] to avoid repeated calculations by using disjoint sets of nodes to generate the

unidimensional basis functions instead of the nested sets used in the conventional algorithm. In

this section we summarize the reformulation from [118] and compare it to Smolyak’s original

formulation.

As an example, consider interpolating a function on [−1, 1]2 with k = 2. Using the conven-

tional Smolyak method, the nested sets of unidimensional nodes are

χ1 = {0},

χ2 = {−1, 0, 1} ,

and χ3 =

{
−1,−

√
2

2
, 0,

√
2

2
, 1

}
.

With Judd et al.’s disjoint sets, redundancies are removed and our sets of unidimensional nodes
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become

χ1 = {0},

χ2 = {−1, 1} ,

and χ3 =

{
−
√

2

2
,

√
2

2

}
.

The size of χn is now mn − mn−1 = 2n−2 for n ≥ 3 where mn is defined as before to be

mn = 2n−1 + 1. The size of χ2 and χ1 is 2 and 1, respectively. Table 2.2 shows the appropriate

disjoint sparse grid points for each level i for Smolyak’s algorithm with d = k = 2. The set of

sparse grid nodes corresponding to any multi index i can be obtained by taking the union of the

sets in the corresponding row and column in Table 2.2. Note that the sparse grids themselves

are still nested; it is the sets that generate the sparse grids that are not.

Table 2.2: Sets of disjoint grid nodes corresponding to each level of sparse grid.

i2 = 1 i2 = 2 i2 = 3

i1 = 1 (0, 0) (0,−1), (0, 1)
(

0,−
√

2
2

)
,
(

0,
√

2
2

)
i1 = 2 (−1, 0), (1, 0)

(−1,−1), (−1, 1),
(
−1,−

√
2

2

)
,
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−1,

√
2

2

)
,
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(
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2
2

)
,
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√

2
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)
i1 = 3
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The unidimensional basis functions φ(x) can be organized in a similar way. Following nota-

tion from [118] we let Ai be the set containing the appropriate unidimensional basis functions

for interpolation level i. This yields

A1 = {1}

A2 = {φ2(x), φ3(x)}

A3 = {φ4(x), φ5(x)}
...

where each φj(x) is a Lagrange basis polynomial constructed in the usual way utilizing all mi
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nodes of the level i to which it belongs. For example, φ4(x) is the first basis function for level

i = 3 and corresponds to the Lagrange basis polynomial centered at x2 = −
√

2
2 . So, recalling

notation from Equations 2.19 and 2.20, we have

φ4(x) = `32(x) =
5∏

j=1, j 6=2

x− x3
j

x3
2 − x3

j

. (2.45)

If we let (x, y) ∈ [−1, 1], Table 2.3 contains the disjoint multidimensional tensor product basis

functions for d = k = 2.

Table 2.3: Sets of disjoint basis functions corresponding to each level of sparse grid.

i2 = 1 i2 = 2 i2 = 3

i1 = 1 1 φ2(y), φ3(y) φ4(y), φ5(y)

i1 = 2 φ2(x), φ3(x)
φ2(x)φ2(y), φ2(x)φ3(y), φ2(x)φ4(y), φ2(x)φ5(y),
φ3(x)φ2(y), φ3(x)φ3(y) φ3(x)φ4(y), φ3(x)φ5(y)

i1 = 3 φ4(x), φ5(x)
φ4(x)φ2(y), φ4(x)φ3(y), φ4(x)φ4(y), φ4(x)φ5(y),
φ5(x)φ2(y), φ5(x)φ3(y) φ5(x)φ4(y), φ5(x)φ5(y)

With these unidimensional basis sets in hand, Smolyak’s algorithm takes on a new form.

First, for x ∈ [−1, 1]d and multi index i ∈ Nd, we define the tensor product

Ũ i[f ](x) =

mi1∑
j1=mi1−1+1

. . .

mid∑
jd=mid−1+1

bj1...jdφj1(x1) . . . φjd(xd) (2.46)

analogous to Equation 2.22. Next, we define a sum of these tensor products for a single index

i ∈ N as

Ũ i[f ](x) =
∑

α∈Nd | |α|=i

Ũα[f ](x).

The coefficients bj1...jd in Equation 2.46 are found by solving the M by M system of linear

equations 
Φ1(x1) . . . ΦM (x1)

...
. . .

...

Φ1(xM ) . . . ΦM (xM )




b1
...

bM

 =


f(x1)

...

f(xM )

 (2.47)

where M is the total number of sparse grid points, f(x) is the function we are interpolating, and

each Φi(x) is a product of the disjoint basis functions φir . Now Smolyak’s algorithm operator
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can efficiently be written as

A(q, d) =
∑
d≤i≤q

Ũ i. (2.48)

In this form each basis function Φi(x) appears only once and thus leads to large savings in

computation time. Note that this operator (Equation 2.48) and Smolyak’s original operator

(Equation 2.25) are equivalent; the reformulation only regroups terms to avoid redundant cal-

culations of the tensor product in Equation 2.22. Also, the coefficients bj1...jd need only be solved

for once and can be stored for repeated evaluation of the interpolant.

Now we quantify the computational savings of this reformulation by comparing the number

of terms in each from of Smolyak’s algorithm. From [118], the number of terms evaluated in

the original Smolyak formula (Equation 2.25) is

NS(q, d) =
∑

max(d,k+1)≤|i|≤q

 d∏
j=1

mij

 ,
and the number of terms evaluated in the new Smolyak formula (Equation 2.48) is

NJ(q, d) =
∑

d≤|i|≤q

 d∏
j=1

[mij −mij−1]

 .
Note that NJ(q, d) = #H(q, d) where #S denotes the cardinality of a set S. Defining

R(q, d) =
NS(q, d)

NJ(q, d)
,

Figure 2.5 shows R(q, d) for various values of d and k (recall q = d+k), from which the amount

of computational savings is clear, especially for larger values of k. As such, the implementation

of Smolyak’s algorithm in this work employs the formulation in Equation 2.48.

2.3.2 Recursive Lagrange Basis Polynomials

Further computational savings can be found in the construction of the univariate Lagrange

basis polynomials. Note that our concept of recursive Lagrange polynomials differs from that

of the hierarchical Lagrange basis polynomials as summarized in [37]. Here we construct global

Lagrange basis polynomials using all mi nodes of level i instead of the hierarchical Lagrange

basis polynomials which are defined locally using a hierarchical structure. Now, since the de-

nominator of Equation 2.19 does not depend on x, we can precompute the denominator for

each basis function `j , a task which only needs to be completed once. On the other hand, to

efficiently evaluate the numerator of Equation 2.19 we take advantage of the fact that the sets
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Figure 2.5: The ratio R(d, k) of the number of terms evaluated in the original Smolyak formula
to the number of terms evaluated in the new Smolyak formula.

of Chebyshev nodes χi are nested. Consider the one-dimensional interpolation problem and let

i be the current level for which we want to evaluate the basis polynomials. Instead of explicitly

computing each level’s basis polynomials, we can use the basis polynomials from level i− 1.

Let χi be the set of mi nodes for the ith level and define

χi+ = χi \ χi−1 (2.49)

so that χi+ contains only the new nodes added to level i. If we first define

Li(x) =

mi∏
k=1

(x− xk), (2.50)
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the formula for the jth Lagrange basis polynomial of level i is

`ij(x) =


`i−1
j (x) ·

∏
xk∈χi

+

x− xk
xj − xk

if xj /∈ χi+,

Li−1(x) ·
∏

xk∈χi
+

k 6=j

x− xk
xj − xk

if xj ∈ χi+.
(2.51)

Note that each Li(x) can also be computed recursively as

Li(x) = Li−1(x)
∏

xk∈χi
+

(x− xk). (2.52)

We use a similar recursive scheme to compute the analytic derivatives of the one-dimensional

Lagrange polynomials. Noting that the derivative of the Lagrange polynomial can be written

as
d

dx
`ij(x) = `ij(x)

mi∑
k 6=j

1

x− xk
, (2.53)

it can be computed in a way similar to Equation 2.51. By computing the Lagrange basis

polynomials and their derivatives in this way we are able to reduce the overall computational

cost of Smolyak’s algorithm.

2.3.3 Numerical Tests

Klimke and Wohlmuth developed the robust Sparse Grid Interpolation Toolbox for MATLAB

(see [121] for documentation). In [122] they describe the Toolbox’s algorithm for piecewise

multilinear hierarchical interpolation on sparse grids, but the Toolbox is also capable of using

other bases including the global Lagrange polynomial basis used in Section 2.2. By default

the Sparse Grid Toolbox uses a dimensionally adaptive sparse grid algorithm to approximate

the given function to within specified error tolerances. The adaptive refinement scheme can be

turned off, however, and options can be set to make algorithm perform as detailed in Section

2.2. The Sparse Grid Interpolation Toolbox also contains a gradient option that computes an

analytic gradient of the interpolating polynomial. The Sparse Grid Interpolation Toolbox’s

algorithms involve barycentric Lagrange interpolation and the Discrete Cosine Transform to

evaluate Smolyak’s formula and compute gradients of the interpolant [120, 121]. We use this

Toolbox as a benchmark for our own algorithm. While more state-of-the-art sparse grid packages

are available, e.g. SG++ [165], these packages employ spatially adaptive algorithms that would

be prohibitively time-consuming considering the cost of the function we wish to approximate.

For our application it is more feasible to generate all of the sparse grid points at once and
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compute all of the corresponding function evaluations in parallel. The MATLAB Sparse Grid

Interpolation Toolbox still represents the state-of-the-art for the computing regime to which we

are restricted. Finally, we also compare running times of Judd et al.’s reformulation with and

without our recursive Lagrange basis polynomial construction. All tests were performed with

MATLAB 2014a on a machine running Mac OS X 10.9.4 with two 2.93 GHz Quad-Core Intel

Xeon processors and 16GB RAM.

Consider the task of evaluating Smolyak’s interpolation of the function f(x), which we

denote by A(q, d)[f ](x), at the point x ∈ Rd. Our implementation and the Toolbox’s both work

in two steps. In the first step, everything that can be calculated without knowledge of x is

computed. This step takes as input the function f(x), the interpolation domain, and the degree

of polynomial exactness k, and computes the sparse grid points, the multi-index set Q(q, d),

the coefficients for Smolyak’s algorithm, and any bookkeeping data structures. The second step

evaluates Smolyak’s interpolant at x and involves computing the univariate Lagrange basis

polynomials and the tensor products (Equation 2.22) dictated by Smolyak’s algorithm.

As detailed in Chapter 4, our application requires that we integrate dynamics on the interpo-

lating polynomial A(q, d)[f ](x) continuously, meaning we must evaluate the same interpolating

polynomial and its derivative several thousand times during simulations. With this in mind,

we compare performance times of the MATLAB Sparse Grid Interpolation Toolbox and our

own implementation only for the second step of the implementation process. The first step is a

one-time computational cost and is negligible compared to the cost of simulating dynamics on

the interpolant. We note, however, that for larger values of d and k the cost of computing the

Smolyak coefficients via Equation 2.47 for our implementation can be quite cumbersome. As

one would expect, the associated matrix of this system becomes larger and more ill-conditioned

as d and k increase. Computing the coefficients in this way is acceptable for our application,

though, since d and k remain relatively small (d ≤ 5 and k ≤ 6).

In all Figures shown the method presented in this thesis is referred to as “New Method” and

the MATLAB Toolbox is referred to as “Toolbox.” All times are given in seconds. Figure 2.6

shows performance scalings in dimension d for evaluating Smolyak’s interpolant and its gradient

at one point with k = 4, and Figure 2.7 shows performance scalings in degree of exactness k for

evaluating Smolyak’s interpolant and its gradient at one point in 4 dimensions. Tables 2.4 and

2.7 tabulate the data in Figures 2.6 and 2.7, respectively, and also report percent reductions in

computation time.

It is clear that the New Method outperforms the MATLAB Toolbox for all reported dimen-

sions d and scale similarly with increasing dimension, with approximately 50-60% reductions in

computation time. The New Method also out performs the Toolbox for all degrees of exactness

k except for the k = 1 case which is insignificant since both methods evaluate the interpolant in

less than 0.01 seconds. Here the two methods scale slightly differently, resulting in the increase
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in percent reduction in computation time in Table 2.5.

Most important to our application to reaction path following, Figure 2.8 shows performance

scalings in the simultaneous evaluation of N points, where N increases in powers of 10 from

from 1 to 105. Each computation was performed with d = 4 and k = 5 and also evaluated

gradients. Table 2.6 tabulates this data with percent reductions in computation time. Here the

New Method greatly outperforms the Toolbox, with 86-99% reductions in computation time.

While the Toolbox is useful for the simultaneous evaluation of a few points, it was not designed

to approximate a function at a large number of points. The code does not vectorize interpolant

evaluation of points, and thus the simultaneous computation of several thousand points is quite

expensive.
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Figure 2.6: Comparison results for MATLAB’s Sparse Grid Interpolation Toolbox (“Toolbox”)
and the implementation presented in this thesis (“New Method”): computation time (in seconds)
vs. dimension d for evaluating 1 point with k = 4.

Table 2.4: Computation time (in seconds) and percent reduction for MATLAB’s Sparse Grid
Interpolation Toolbox (“Toolbox”) and the implementation presented in this thesis (“New
Method”) for evaluating 1 point with a degree of exactness of k = 4 and increasing dimen-
sion d.

d Toolbox (s) New Method (s) Percent Reduction (%)

2 1.52e-2 6.65e-3 56.2
3 2.85e-2 1.05e-2 63.2
4 7.18e-2 2.53e-2 64.8
5 1.47e-1 5.51e-2 62.5
6 2.70e-1 1.10e-1 59.4
7 4.60e-1 2.04e-1 55.8
8 7.34e-1 3.51e-1 52.2
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Figure 2.7: Comparison results for MATLAB’s Sparse Grid Interpolation Toolbox (“Toolbox”)
and the implementation presented in this thesis (“New Method”): computation time (in seconds)
vs. degree of exactness k for evaluating 1 point in d = 4.

Table 2.5: Computation time (in seconds) and percent reduction for MATLAB’s Sparse Grid
Interpolation Toolbox (“Toolbox”) and the implementation presented in this thesis (“New
Method”) for evaluating 1 point in d = 4 dimensions with increasing degree of exactness k.

k Toolbox (s) New Method (s) Percent Reduction (%)

1 1.25e-3 1.73e-3 -37.7
2 8.05e-3 5.50e-3 31.7
3 2.44e-2 1.22e-2 50.1
4 6.61e-2 2.48e-2 62.4
5 1.57e-1 4.60e-2 70.6
6 3.01e-1 7.86e-2 73.9
7 5.98e-1 1.29e-1 78.4

35



10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

N

T
im

e
 (

s
)

d=4, k=5, with Gradients

 

 

Toolbox

New Method

Figure 2.8: Comparison results for MATLAB’s Sparse Grid Interpolation Toolbox (“Toolbox”)
and the implementation presented in this thesis (“New Method”): computation time (in seconds)
vs. the number of evaluation points N in d = 4 dimensions with k = 5, with gradients.

Table 2.6: Computation time (in seconds) and percent reduction for MATLAB’s Sparse Grid
Interpolation Toolbox (“Toolbox”) and the implementation presented in this thesis (“New
Method”) for evaluating N points with a degree of exactness of k = 5 in d = 4 dimensions.

N Toolbox (s) New Method (s) Percent Reduction (%)

1 4.22-1 4.68e-2 88.9
10 3.55e-1 4.68e-2 86.8
102 9.80e-1 5.08e-2 94.8
103 7.80e+0 8.40e-2 98.9
104 7.54e+1 5.65e-1 99.3
105 7.43e+2 7.5e+0 99.0
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Finally, we will compare our implementation with the recursive Lagrange polynomial con-

struction to our implementation without the recursive construction. We will compare the com-

putation time of constructing the univariate Lagrange basis polynomials and their derivatives

for the same three cases as the MATLAB Toolbox comparison. First, we fix k = 4 and N = 103

and vary the dimension d. Second, we fix d = 4 and N = 103 and vary the degree of exactness

k. Third, we fix d = 4 and k = 5 and vary the number of simultaneous evaluations N . Figures

2.9 and 2.10 show the results for performance scalings in d and k, respectively, and Figure

2.11 shows the results for performance scalings in N . Tables 2.7-2.9 tabulate the same data as

Figures 2.9-2.11, respectively, and also report percent reductions in computation time.

As expected, the implementation with the recursive construction outperforms the imple-

mentation without for all test cases. While the computational savings appear to be small for a

single evaluation, these savings accumulate over the number of time steps required by integrat-

ing systems of differential equations. As discussed in the next section, our application involves

continuously following the steepest descent path, a task which requires integrating such a sys-

tem. As such, any improvement in the cost of a single evaluation of Smolyak’s interpolant and

gradient could yield large computational savings during an integration routine.

37



2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

3.5

d

T
im

e
 (

s
)

k=4, N=10
5
, with Gradients

 

 

With Recursion

Without Recursion

Figure 2.9: Comparison results for our new implementation with and without the recursive
Lagrange construction: computation time (in seconds) vs. dimension d for evaluating 103 points
with k = 4.

Table 2.7: Computation time (in seconds) and percent reduction for our new implementation
with and without the recursive Lagrange construction for evaluating 103 points with a degree
of exactness of k = 4 and increasing dimension d.

d Without Recursion (s) With Recursion (s) Percent Reduction (%)

2 7.84e-1 5.82e-1 25.8
3 1.19e+0 8.76e-1 26.3
4 1.57e+0 1.18e+0 24.8
5 1.97e+0 1.47e+0 25.5
6 2.39e+0 1.76e+0 26.4
7 2.80e+0 2.05e+0 26.8
8 3.22e+0 2.33e+0 27.7
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Figure 2.10: Comparison results for our new implementation with and without the recursive
Lagrange construction: computation time (in seconds) vs. degree of exactness k for evaluating
103 points in d = 4.

Table 2.8: Computation time (in seconds) and percent reduction for our new implementa-
tion with and without the recursive Lagrange construction for evaluating 103 points in d = 4
dimensions with increasing degree of exactness k.

k Without Recursion (s) With Recursion (s) Percent Reduction (%)

1 5.19e-2 5.26e-2 -1.32
2 1.70e-1 1.70e-1 0.00
3 5.30e-1 4.65e-1 12.4
4 1.61e+0 1.20e+0 25.5
5 5.30e+0 3.22e+0 39.2
6 1.80e+1 9.83e+0 45.4
7 6.75e+1 3.13e+1 52.9
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Figure 2.11: Comparison results for our new implementation with and without the recursive
Lagrange construction: computation time (in seconds) vs. the number of evaluation points N
in d = 4 dimensions with k = 5, with gradients.

Table 2.9: Computation time (in seconds) and percent reduction for our new implementation
with and without the recursive Lagrange construction for evaluating N points with a degree of
exactness of k = 5 in d = 4 dimensions.

N Without Recursion (s) With Recursion (s) Percent Reduction (%)

1 6.03-3 4.81e-3 20.3
10 6.33e-3 5.03e-3 20.5
102 8.56e-3 6.31e-3 26.2
103 4.10e-2 2.42e-2 40.9
104 3.27e-1 2.26e-1 31.0
105 5.29e+0 3.20e+0 39.4
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2.3.4 Chebyshev Polynomial Basis

Judd et al.’s implementation from [118] uses orthogonal Chebyshev basis polynomials as in

[127] and [139] instead of the global Lagrange polynomials from [13] which have been utilized

thus far in this Chapter. Traditionally, Lagrange basis polynomials are advantageous since the

coefficient associated with each basis polynomial centered at a node x is the function value f(x)

as in Equation 2.19. Consequently, there is no need to construct the Vandermonde system of

equations to solve for the coefficients. However, this is no longer the case with Judd et al.’s

reformulation of Smolyak’s algorithm, as we are forced to construct the Vandermonde system

(Equation 2.47) to solve for each coefficient bi. As such, the advantage of using Lagrange basis

polynomials is lost.

In this section we consider using Chebyshev basis polynomials instead of the global Lagrange

polynomials as a foundation for Smolyak’s algorithm. As we will see, Chebyshev basis polyno-

mials have a simple recursive relation that is much easier to implement than the analogous

Lagrange basis polynomial recursive relation given in Equation 2.51, and may offer computa-

tional savings for our implementation of Smolyak’s algorithm.

On the interval [−1, 1], the Chebyshev polynomials are defined as

Tk(x) = cos (k arccos(x)) (2.54)

for k = 0, 1, 2, . . .. With T0(x) = 1 and T1(x) = x, they can also be defined by the two-term

recursive relation

Tk(x) = 2xTk−1(x)− Tk−1(x) (2.55)

for k = 1, 2, 3, . . . [173]. The derivatives T ′k(x) are also straightforward to compute with this

recursive formula. Figure 2.12 shows the first five Chebyshev polynomials defined on [−1, 1].

One can define Chebyshev polynomials on an arbitrary interval [a, b] with the mapping

s =
2x− (b+ a)

b− a
(2.56)

where x ∈ [−1, 1]. Then, as before, T0(s) = 1, T1(s) = s, and

Tk(s) = 2sTk−1(s)− Tk−1(s). (2.57)

For the rest of this section we will assume we are on the interval [−1, 1]. For Chebyshev ba-

sis polynomials φji in Equation 2.46 is simply the jth Chebyshev polynomial Tj(x) in the

ith dimension. The cumbersome relabeling of Lagrange basis polynomials as demonstrated in

Equation 2.45 is no longer needed.
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Figure 2.12: Chebyshev polynomials Tk(x) on [−1, 1] for k = 0, 1, 2, 3, 4.

We now compare our implementation of Smolyak’s algorithm with Lagrange basis polyno-

mials and Chebyshev basis polynomials. We perform the same three numerical tests as before:

Table 2.10 shows computation times of N = 1 point for the two implementations vs. dimension

d with degree of exactness k = 4. Table 2.11 shows computation times of N = 1 point for the

two implementations vs. degree of exactness k in d = 4 dimensions. Finally, Table 2.12 shows

computation times for the two implementations vs. the number of points N in d = 4 dimensions

with degree of exactness k = 5.
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Table 2.10: Computation times (in seconds) for our new implementation with Lagrange and
Chebyshev basis polynomials. Here, we evaluate Smolyak’s polynomial and its gradient at one
point with k = 4.

d Lagrange Chebyshev

2 6.65e-3 3.85e-3

3 1.05e-2 8.39e-3

4 2.53e-2 2.25e-2

5 5.51e-2 5.17e-2

6 1.10e-1 1.06e-1

7 2.04e-1 2.00e-1

8 3.51e-1 3.52e-1

Table 2.11: Computation times (in seconds) for our new implementation with Lagrange and
Chebyshev basis polynomials. Here, we evaluate Smolyak’s polynomial and its gradient at one
point in d = 4 dimensions.

k Lagrange Chebyshev

1 1.73e-3 1.45e-3

2 5.50e-3 4.46e-3

3 1.22e-2 1.07e-2

4 2.48e-2 2.27e-2

5 4.60e-2 4.30e-2

6 7.86e-2 7.56e-2

7 1.29e-1 1.25e-1
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Table 2.12: Computation times (in seconds) for our new implementation with Lagrange and
Chebyshev basis polynomials. Here, we evaluate Smolyak’s polynomial and its gradient in d = 4
dimensions with k = 5.

N Lagrange Chebyshev

1 4.68e-2 4.34e-2

10 4.68e-2 4.38e-2

102 5.08e-2 4.58e-2

103 8.40e-2 6.25e-2

104 5.65e-1 3.54e-1

105 7.53e+0 4.75e+0

It is clear that the implementation with Chebyshev polynomials performs no worse than the

implementation of Lagrange polynomials for the values of degree of exactness k and dimension

d required by our application. The implementation with Chebyshev polynomials outperforms

the implementation with Lagrange polynomials as we increase the number of simultaneous

evaluations N . This is especially important considering that our application requires evaluating

Smolyak’s interpolating polynomial and its gradient at several thousand points simultaneously.

To summarize, the advantages of using Chebyshev basis polynomials are threefold. First,

their simple recursive definition is much easier to implement than the recursive definition of

Lagrange basis polynomials in this section. Second, the bookkeeping associated with the rela-

beling of Lagrange basis polynomials as in Equation 2.45 is avoided. Finally, as shown in Tables

2.10-2.12, evaluating Smolyak’s algorithm with Chebyshev basis polynomials is no slower and

in some cases faster than evaluating Smolyak’s algorithm with Lagrange basis polynomials. For

these reasons we implement Smolyak’s algorithm with Chebyshev basis polynomials as in [118].

2.4 Anisotropic and Adaptive Sparse Grids

To conclude this chapter we briefly mention adaptive sparse grids. Considering the number of

grid points and basis functions for all variables, Smolyak’s algorithm and conventional sparse

grid algorithms treat all dimensions equally. Anisotropic and adaptive sparse grids, on the other

hand, allow for a differential treatment of variables. To define an anisotropic sparse grid, let

kj denote an approximation level in dimension j. The maximum index admitted via Smolyak’s

algorithm is then imax
j = kj +1. A sparse grid is “anisotropic” if there exists a dimension j such

that kj 6= ki for all i 6= j. Otherwise, the sparse grid is called “isotropic”. The latter of these two

types of grids is what is used in Smolyak’s original algorithm. Figure 2.13 shows an example
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of an anisotropic sparse grid with imax
1 = 3, imax

2 = 2, and |i| ≤ 5. Nonadaptive anisotropic

sparse grids are a double-edged sword. On one hand, they can decrease the overall number of

grid points and thus reduce the computational expense, but on the other hand the quality of

approximation is not as good [118]. Adaptive sparse grids, however, refine the index set, grid

points, or both until a sufficiently accurate approximation is attained.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 2.13: An anisotropic sparse grid with imax
1 = 3, imax

2 = 2, and |i| ≤ 5.

The goal of adaptive sparse grid algorithms is to choose kj for each dimension j = 1, . . . , d so

that a relative or absolute error tolerance is reached. Dimensionally adaptive sparse grids were

originally proposed in the context of numerical quadrature by Gerstner and Griebel in [76] and

Hegland in [101], and spatially adaptive sparse grids were first used by Griebel in [86] for the

solution to partial differential equations. Adaptive sparse grids usually employ flexible piecewise

linear or higher order basis functions to allow for consecutive refinements of the solution in areas

where higher accuracy is needed. Conversely, our method (reviewed in Section 2.2) uses less

flexible global Lagrange and Chebyshev polynomial basis functions which restrict refinement to

specific dimensions and not specific areas of the domain.

We turn our attention first to dimensionally adaptive sparse grids. Spatially adaptive sparse

grids are related and based on the same algorithm, but are understandably more complicated.
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2.4.1 Dimensionally Adaptive Sparse Grids

Gerstner and Griebel generalized the sparse grid construction in [76] by considering a special

set of admissible indices. An index set I is called admissible if for all i ∈ I,

i− ej ∈ I for 1 ≤ j ≤ d, ij > 1 (2.58)

where ej is the jth unit vector. As noted in [76], the admissibility condition ensures the validity

of the telescope sum expansion of the general sparse grid technique using the difference operators

∆1
ij

. For an admissible index set I ∈ Nd the general sparse grid construction becomes

A(d, I)[f ] =
∑
i∈I

(∆i1 ⊗ . . .⊗∆id)[f ]. (2.59)

The goal of dimensionally adaptive sparse grids is to iteratively construct the index set I
to minimize the interpolation or integration error ε for a set number of function evaluations.

Here we summarize the algorithm from [76]. The dimensionally adaptive sparse grid algorithm

starts with the root index set {1} = {(1, . . . , 1} and successively adds indices such that first, the

resulting index sets remain admissible, and second, a possibly large error reduction is achieved.

To estimate the error for a given index i the error indicator gi is computed from the difference

operator

∆i[f ] = (∆i1 ⊗ . . .⊗∆id)[f ] (2.60)

and from other values attributed to i such as the number of function evaluations required to

evaluate ∆i[f ]. In [124], for example, Klimke suggests the error indicator

gi =
1

ni

∑
j

|wi
j| (2.61)

where wi
j are the hierarchical surpluses of the sub-grid χi = χi1∆× . . .×χ

id
∆, jk = 1, . . . ,m∆

ik
, and

ni is the number of new function evaluations required by the set of nodes χi.

For any index i we define its forward neighborhood as the set of d indices

iF = {i + ej , 1 ≤ j ≤ d} (2.62)

and similarly its backward neighborhood as the set of d indices

iB = {i− ej , 1 ≤ j ≤ d}. (2.63)

Gerstner and Griebel partition the index set I into an active set of indices A and an old set of
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indices O. The active set A contains the indices of I whose error indicators have been computed

but the error indicators of all their forward neighbors have not yet been considered. The old

index set O contains all other indices of the index set I. Note that A ∪ O = ∅. The error

indicators associated with i ∈ A can act as an global estimate of the error γ. Again from [124],

Klimke uses the estimate

γ = max
i∈A,j

|wi
j|. (2.64)

At each iteration of the adaptive algorithm, the index i with the largest associated error

indicator is selected from the active set A and put in the old set O. The error indicators of the

admissible forward neighbors of i are then computed and their indices are put into the active

index set A. The corresponding values of ∆i are then added to the current approximation

result and the global error is recalculated. If either the global error estimate falls below a

specified tolerance or the number of allowed function evaluations is exceeded, then the algorithm

is stopped and the current approximation is returned. Otherwise, the algorithm repeats this

process with the new index with the largest error indicator, and so on.

As noted in [76], error estimation is a crucial part of the algorithm, and different choices

of error indicator functions gi can lead to different adaptive grids. If the error indicator for an

index i is very small, there will be no future refinement in its forward neighborhood. This may

cause the algorithm to stop prematurely if one of the foreword neighbors has a significantly

larger error indicator. To tackle this problem Gerstner and Griebel employ the error indicator

gi = max

{
λ
|∆if |
|∆1f |

, (1− λ)
1

ni

}
(2.65)

where λ ∈ [0, 1]. With λ = 1 the algorithm becomes greedy and disregards the number of

function evaluations. A greedy algorithm would be ideal in the case where the function is

known to be very smooth and the error estimates would decay with increasing indices anyway.

Classical sparse grids are employed by selecting λ = 0.

On the other hand, Klimke proposes a similar approach in [124] that introduces the param-

eter λ in a separate indicator that relates the largest index i ∈ I and the smallest index i ∈ A.

In this way, the foreword neighbors of an index iact = argmini∈A |i| if

|iact|
maxi∈I |i|

≤ (1− λ) (2.66)

regardless of the error indicator gi, i ∈ A.

As noted in both [124] and [76], efficient data structures must be used in order to store

the indices in such a way that it is easy to: insert and remove indices from A, insert indices

into O, find the index in the active index set with the largest error, and check if an index
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is admissible. The details of such data structures is omitted here, but can be found in [124]

and [76]. Finally, we note that the MATLAB Sparse Grid Interpolation Toolbox [124, 121]

utilizes Klimke’s implementation of the dimensionally adaptive sparse grid algorithm and is

freely available online at http://www.ians.uni-stuttgart.de/spinterp.

2.4.2 Spatially Adaptive Sparse Grids

Spatially, or locally, adaptive sparse grids were first proposed by Griebel in [86] for the solu-

tion of elliptic partial differential equations, and have since been used for a variety of other

applications [136, 137, 138, 166, 165, 38]. As opposed to the generalized sparse grid method

of the preceding section, locally adaptive sparse grids attempt to reduce the number of points

in a sparse grid by refining the grid in rapidly varying or discontinuous regions. The method

is implicitly dimension-adaptive but is capable of adding necessary points in dimensions that

the dimensionally adaptive algorithm might deem unimportant [111]. Returning to the sparse

grid construction and notation from Section 2.1.1, from [86] the locally adaptive sparse grid

representation of a function u(x) is given by

uε,‖·‖(x) =
∑

(l,i)∈A(u,ε,‖·‖)

vl,i · φl.i(x) (2.67)

where ε is the the tolerance for hierarchical surpluses, and A(u, ε, ‖ · ‖) denotes the set of active

indices. Indices (l, i) ∈ A(u, ε, ‖ · ‖) satisfy either of the two requirements

1. i ∈ I1, ‖vl,i · φl.i(x)‖ ≥ ε

2. ∃(k, j) : k ≥ l, ‖vk,j · φk,j(x)‖ ≥ ε, supp(φk,j) ∩ supp(φl,i) 6= ∅

where supp(φ) = {x : φ(x) > 0} is the open support of φ. Naturally, one cannot compute the

infinite expansion of u(x) and then remove the indices whose error indicator is within the given

tolerance. Instead, Griebel proceeds in a top down approach that starts from the coarsest level

and refines recursively level by level [86].

In [111] Jakeman and Roberts incorporate a locally adaptive procedure into the generalized

sparse grid algorithm. For each index i they define the active point set Ai and the redundant

point set Ri. The active point set contains all admissible points associated with the index i

with an error indicator γi,j ≥ ε, and the redundant point set contains all admissible points with

an error indicator γi,j < ε. A point is admissible if one of its d possible ancestors exists in the

grids associated with the iB. Jakeman and Roberts employ the error indicator

γi,j = |vl,i · wl,i| (2.68)
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for each sparse grid point xl,i where the weights

wl,i =

∫
Ix

φi,j(x)dµ(x) (2.69)

can be easily calculated without any extra function evaluations. The point xl,i is added to the

active point set Ai if γi,j ≥ ε, otherwise it is added to the redundant index set Ri.

Pflüger has implemented a spatially adaptive sparse grid algorithm in the software package

SG++ [165]. The libraries are written in C++ and Python using the algorithm and data

structures as described in [86]. Documentation and code can be found at http://www5.in.

tum.de/SGpp/releases/index.html.
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Chapter 3

Background Chemistry

3.1 Molecules

A molecule is a group of atoms that are chemically bonded together and form when two or more

atoms bond by sharing electrons and become connected by attractive forces. Molecules can be

made from atoms of the same element (e.g. O2) or atoms of different elements (e.g. H2O). A

molecule consists of the nuclei of the atoms and electrons, which are described by one-electron

wavefunctions called orbitals. Figure 3.1 shows an acrolein molecule (C3H4O) with and without

electron orbitals.

Figure 3.1: An acrolein (C3H4O) molecule without electron orbitals (left) and with electron
orbitals (right).

The physical arrangement of the atoms within a molecule is called its molecular geometry.

Molecular geometry can be specified by the location of the nuclei in Cartesian coordinates,
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but it is more useful to describe the geometry via internal coordinates [163]. The three types

of internal coordinates are: bond length, bond angle and dihedral angle. A bond length is the

distance between two bonded nuclei and is measured by the atomic unit angstroms, Å, where

1 Å= 10−10 meters. A bond angle is the angle formed by three nuclei connected by two bonds.

A dihedral angle, or torsion angle, requires 4 nuclei connected by three bonds and is measured

as the angle formed by the projection of the two outer bonds onto the plane perpendicular

to the center bond. Bond angles and dihedral angles are measured in degrees. An example of

each of these types of coordinates is shown in Figure 3.2. A molecule with N atoms is uniquely

Bond length Bond angle of 120°

Dihedral angle of 0° Dihedral angle rotated 90°

Figure 3.2: Examples of molecular geometry coordinates.

determined by 3N − 6 coordinates: N − 1 bond lengths, N − 2 bond angles and N − 3 dihedral

angles. These coordinates are collected into a table called a Z-matrix.
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Example 3.1.0.1. Ethylene Z-matrix. Table 3.1 shows a sample Z-matrix for ethylene, C2H4.

Row i of the Z-matrix gives the internal coordinates for atom i within the molecule. Atom1,

Atom2, and Atom3 are the numbers of previously-specified atoms and are used to define atom

i’s position. The position of the atom i is specified by giving the length of the bond connecting

Atom1 and atom i, the bond angle formed by this bond and the bond connecting Atom1 and

Atom2, and the dihedral angle created by the plane containing atom i, Atom2, and Atom3, and

the plane containing atom i, Atom1, and Atom2.

Table 3.1: Example Z-matrix for Ethylene, C2H4.

Atom Element Atom1 Bond Length Atom2 Bond Angle Atom3 Dihedral Angle

1 C - - - - - -
2 C 1 1.3 Å - - - -
3 H 1 1.1 Å 2 120° - -
4 H 1 1.1 Å 2 120° 3 180°
5 H 2 1.1 Å 1 120° 3 0°
6 H 2 1.1 Å 1 120° 3 180°

Figure 3.3 shows the Ethylene molecule as described by the Z-matrix in Table 3.1 and the

molecule if we change the last dihedral angle from 180 to 100 degrees.

eth.com
Created by GaussView 5.0.9
06/05/15 17:13:58

6H4H

2C1C

5H3H

eth.com
Created by GaussView 5.0.9
06/05/15 17:14:18

4H

2C1C

5H3H

6H

Figure 3.3: Ethylene as described in Table 3.1 with 180 degree (left) and 100 degree (right)
dihedral angle defined by atoms 6, 2, 1 and 3 (left).
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3.2 Quantized Operators

While the Z-matrix contains information about the nuclei of the atoms in a molecule, it does

not give any information about the electrons’ orbitals. Fortunately, the coordinates within the

Z-matrix are sufficient for uniquely determining these orbitals [224]. The orbitals are described

by the solutions to the time-independent Schrödinger equation

Ĥψ = Eψ (3.1)

where E is the energy, ψ is the wavefunction that completely describes the state of the system,

and Ĥ is the Hamiltonian operator for a molecule of k atoms with n electrons with fixed nuclei.

The assumption of fixed nuclei is appropriate since nuclei are much heavier than electrons.

Even though the electrons’ velocities are greater than the nuclei’s, the nuclei’s kinetic energy

is far greater than surrounding electrons’ kinetic energy. Since we are interested in studying

the electrons we neglect the nuclei’s kinetic energy. This approximation is commonly known

as the Born-Oppenheimer Approximation [25] and is central to modern quantum chemistry.

The wavefunction ψ gives us a probabilistic description of the system; |ψ(x)|2 is the probability

density for finding an electron at the coordinates in x. Wavefunctions ψ and energies E that are

solutions to Equation 3.1 are eigenfunction/eigenvalue pairs of the operator Ĥ. As a function

of geometry x, E(x) is called the potential energy surface (PES), a concept that will be more

thoroughly introduced in Chapter 4.

The Hamiltonian Ĥ is the sum of the kinetic energy operators for the electrons and potential

energy operators that result from particle attraction and repulsion [132]. The kinetic energy

operator for a single electron is

T̂ = − h2

8π2me
∇2. (3.2)

where h is Planck’s constant (6.6 × 10−34 J · s), me is the mass of an electron (9.109 × 10−31

kg), and ∇ is the Laplace operator. Defining

~ =
h

2π
,

the kinetic energy operator can also be written as

T̂ = − ~2

2me
∇2. (3.3)

Recall that for two electrons separated by a distance r, the electric potential energy is given
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by
e2

4πε0r
=
e′2

r

where e = 1.6 × 10−19 C is the charge of a proton, ε0 = 8.854 × 10−12 C2

Nm2 is the permittivity

of vacuum and e′ = e√
4πε0

. Thus for our system of k nuclei and n electrons the potential energy

operator is

V̂ =
k−1∑
i=1

k∑
j=i+1

ZiZje
′2

rij
−

n∑
i=1

k∑
j=1

Zje
′2

rij
+
n−1∑
i=1

n∑
j=i+1

e′2

rij

where Zj is the number of protons in the jth nucleus. The first term is the potential energy

of the repulsions among the nuclei, the second term is the potential energy of the attractions

among the electrons and nuclei and the last term is the potential energy of the repulsions among

the electrons. Combining the kinetic and potential energy terms, we have

Ĥ = T̂ + V̂ = − ~
2me
∇2 +

k−1∑
i=1

k∑
j=i+1

ZiZje
′2

rij
−

n∑
i=1

k∑
j=1

Zje
′2

rij
+
n−1∑
i=1

n∑
j=i+1

e′2

rij
. (3.4)

As we will see, applying this Hamiltonian Ĥ to the time-independent Schrödinger equation

(Equation 3.1) yields discrete values of the energy E. An operator with this property is called a

quantized operator. In the following example we will explicitly solve a problem from quantum

mechanics to demonstrate this property.

Example 3.2.0.1. Particle in a Box: here we will consider a single particle with mass m in a

one-dimensional box where the potential energy is defined as

V (x) =

0 if 0 ≤ x ≤ a

∞ otherwise

and is depicted in Figure 3.4.

The Hamiltonian for this system is

Ĥ = − ~2

2m

d2

dx2
+ V (x),

thus our Schrödinger equation for x ∈ R is

− ~2

2m

d2

dx2
ψ(x) + V (x)ψ = Eψ. (3.5)
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Figure 3.4: Potential energy function for a particle in a one-dimensional box.

Taking limits outside of the box, Equation 3.5 becomes

− ~2

2m

d2

dx2
ψ = (E −∞)ψ

which implies

ψ =
1

∞
d2

dx2
ψ

since E −∞ = −∞. From this we can conclude that ψ(x) = 0 outside of the box, so we only

need to solve Equation 3.5 inside the box. For 0 ≤ x ≤ a Equation 3.5 is simplified to

− ~2

2m
ψ = Eψ.

From [132], general solutions to this type of differential equation are

ψ(x) = c1 cos

(√
2mE

~
x

)
+ c2 sin

(√
2mE

~
x

)
.

Since |ψ(x)|2 is the probability density for finding the particle at x ∈ R and the probability of

finding the particle outside the box is zero, our boundary conditions are ψ(0) = 0 and ψ(a) = 0.

Enforcing these conditions, we find that c1 = 0 and

0 = c2 sin

(√
2mE

~
a

)
.

55



Since we are not interested in the trivial solution ψ(x) = 0, we assume c2 6= 0 and thus

√
2mE

~
a = ±nπ, n = 1, 2, . . .

Finally, solving for the energy of the system yields

E =
n2h2

8ma2
, n = 1, 2, . . . (3.6)

To solve for our wavefunction ψ, we use the normalization requirement of probability densities

to solve for c2. This yields ∫ ∞
−∞
|ψ|2dx = 1

⇒
∫ a

0

∣∣∣c2 sin
(nπx

a
x
)∣∣∣2 dx = 1

⇒ c2 =

√
2

a

and thus our wavefunction is

ψ =

√
2

a
sin
(nπx

a

)
, n = 1, 2 . . . .

Note that E = 0 is not a solution since it yields the wavefunction ψ = 0, so n = 0 is not

allowed. Equation 3.6 shows that only discrete values of E are allowed, and these values depend

on the so-called quantum number n. Therefore the energy of the system is quantized and Ĥ is

a quantized operator. The lowest energy state of a system is called the ground state, and any

higher energy state is called an excited state.

3.3 Hydrogen Atom

The only chemical systems where a wavefunction may be computed analytically is the family

of hydrogen-like ions, or atoms made up of any atomic nucleus and just one electron. Examples

include hydrogen itself, He+ (helium with one less electron) and Li2+ (lithium with two fewer

electrons). We will let Z be the number of protons in the nucleus of an atom. Z = 1 for hydrogen

and Z = 3 for lithium, for example. The Hamiltonian for a hydrogen-like ion is simplified from

Equation 3.4 to

Ĥ = − ~2

2µ
∇2 − Ze′2

r
,
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where

µ =
memn

me +mn

is the reduced mass of the atom, mn is the mass of the nucleus, and

e′ =
e√

4πε0

where again e = 1.6× 10−19 C is the charge of a single proton. Before solving the Schrödinger

equation with this Hamiltonian, we will first introduce another operator that will simply things

for us later. In quantum mechanics the square of the orbital-angular-momentum operator L̂2 is

given by [132]

L̂2 = −~2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
.

For the purposes of this thesis we only define the operator mathematically and give its eigen-

functions and eigenvalues. We refer the reader to [132] for a more rigorous treatment of orbital-

angular-momentum operators. In regards to the eigenvalue problem

L̂2Y (θ, φ) = cY (θ, φ),

the eigenvalues are

c = l(l + 1)~2, l = 0, 1, 2, . . .

and eigenfunctions are given by

Y m
l (θ, φ) =

1√
2π
Sl,m(θ)eimφ

where Sl,m(θ) are associated Legendre functions given by

Sl,m(θ) = sin|m|θ
∑
j

aj cosj θ

with the coefficients given by the recursion relation

aj+2 =
[(j + |m|)(j + |m|+ 1)− l(l + 1)]

(j + 1)(j + 2)
aj .

The sum is over even (starting at 0) or odd values of j depending on whether l− |m| is even or

odd. a0 and a1 can be found by imposing normalization constraints on the wavefunction. The

possible values for the quantum number m are

m = −l,−l + 1, . . . , l − 1, l.
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The functions Y m
l (θ, φ) are called spherical harmonics and are the wavefunctions for a quantum

two-particle rigid rotor system. In this system, two particles are held at a fixed distance apart

from each other and one is allowed to revolve around the other. With the Born-Oppenheimer

approximation, this is very much like an electron orbiting around a fixed nucleus.

Now, to solve the Schrödinger equation for the hydrogen-like ions we will reformulate the

problem in spherical coordinates. From [132], the Laplacian operator in spherical coordinates

is

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− 1

r2~2
L̂2,

so our Hamiltonian becomes

Ĥ = − ~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
+

1

2µr2
L̂2 − Ze′2

r
.

Since the potential energy of a Hydrogen atom is a function of r only, the properties of eigen-

functions allow us to write our wavefunction ψ as a spherical harmonic Y (θ, φ) multiplied by a

radial function R(r),

ψ(r, θ, φ) = R(r)Y m
l (θ, φ).

Applying the Hamiltonian and dividing both sides of the Schrödinger equation by Y m
l (θ, φ)

yields the differential equation

R′′(r) +
2

r
R′(r) +

(
2E

ae′2
+

2Z

ar
− l(l + 1)

r2

)
R(r) = 0 (3.7)

where a = ~2/µe′2.

Solving Equation 3.7 is tedious and is omitted here for the sake of simplicity, but it is

possible to find an analytic solution. From [132],

R(r) = Rnl(r) = rle−Zr/na
n−l−1∑
j=0

bjr
j ,

where the coefficients bj are found by the recursion relation

bj+1 =
2Z

na

j + l + 1− n
(j + 1)(j + 2l + 2)

bj

where b0 can be found by enforcing normalization requirements. Thus the complete hydrogen

wavefunctions are

ψnlm =
1√
2π
Rnl(r)Slm(θ)eimφ (3.8)

with quantum numbers n = 1, 2, . . ., l = 0, 1, . . . , n − 1, and m = −l,−l + 1, . . . , l − 1, l. The
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associated energies are given by

E = −Z
2µe′4

2n2~2
. (3.9)

Finally, note that for any value of n we can have n different values of l and 2l+ 1 values of

m, implying that each energy level has n2 independent wavefunctions. Energy levels that have

more than one independent wavefunction are called degenerate.

3.4 Spin

To obtain a complete description of atoms and molecules, we must consider an additional

property of electrons called spin. Electrons have angular momentum due to their motion just

like all other particles from classical mechanics, but they also have an intrinsic spin angular

momentum. We must modify our wavefunction for an electron to reflect this property. The

spin of an electron has two possible values, ms = 1
2 (spin “up”) and ms = −1

2 (spin “down”).

The components of the Hamiltonian operator that involve spin do not interact with the spatial

variables, so we can separate the one-electron wavefunction as

ψ(x, y, z,ms) = ψ(x, y, z)g(ms).

A wavefunction that is the product of a spatial wavefunction and a spin function g(ms) is called

a spin-orbital. Spin functions are commonly denoted

g

(
1

2

)
= α and g

(
−1

2

)
= β.

While spin has no effect on the energy of the system, it does impose additional constraints

on the wavefunction due to the requirement of indistinguishability of identical particles in

quantum mechanics [132]. The Pauli exclusion principle [162] states that no two electrons can

occupy the same spin-orbital. Mathematically, this means that the wavefunction of a system of

electrons must be antisymmetric with respect to the interchange of any two electrons. In other

words, if we exchange the ordering of any two electrons in our system, the wavefunction must

be multiplied by −1. If we let qi = (xi, yi, zi,msi) denote the Cartesian coordinates and spin of

the ith electron, our wavefunctions must satisfy

P̂ijψ(q1, . . . , qn) = −ψ(q1, . . . , qn)

where P̂ij is the exchange operator and is defined by

P̂ijf(q1, . . . , qi, . . . , qj , . . . , qn) = f(q1, . . . , qj , . . . , qi, . . . , qn).
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This requirement on the wavefunction is called the Pauli exclusion principle [162]. As we will see

in the next section, there is a simple way to construct wavefunctions that obey this antisymmetry

requirement.

3.4.1 Slater Determinants

As we we have just seen, electrons occupy spin-orbitals that can be represented by the product

of a spatial function and a spin function. We will denote these spin-orbitals by

χ(q) = ψ(x, y, z)g(ms)

where again q = (x, y, z,ms) is a vector of electron coordinates. Because we have two different

values of spin (see Section 3.4), each spatial function ψ(x, y, z) yields two different spin-orbitals,

χ(q) = ψ(x, y, z)α or χ(q) = ψ(x, y, z)β.

With this in mind, we can construct an antisymmetric wavefunction by taking a linear

combination of spin-orbitals via Slater determinants [195]. A Slater determinant is a determinant

of a matrix whose entries are different spin-orbitals. All the elements in a given column of a

Slater determinant use the same spin-orbital, whereas elements in the same row all involve the

same electron [132]. For an n-electron system, the Slater determinant to construct a normalized

wavefunction is defined as [206]

ψ(q1, . . . , qn) =
1√
n!

∣∣∣∣∣∣∣∣∣∣
χ1(q1) χ2(q1) . . . χn(q1)

χ1(q2) χ2(q2) . . . χn(q2)
...

...
...

χ1(qn) χ2(qn) . . . χn(qn)

∣∣∣∣∣∣∣∣∣∣
. (3.10)

One can easily check from the properties of determinants that this construction ensures that our

wavefunction will be antisymmetric. Furthermore, if two electrons violated the Pauli exclusion

principle by occupying the same spin-orbital, then the two corresponding columns of the matrix

would be identical and make the determinant zero.

3.5 Calculating Energy

Although only the wavefunction and energy for a single-electron atoms can be solved for ana-

lytically, we must approximate solutions to more complicated systems. We will introduce two

methods for doing so in this section. First, the variation method assumes a structure for the

wavefunction that is dependent on certain parameters and then optimizes over those parame-

ters. Second, perturbation theory splits the Hamiltonian operator into two parts: one that has
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a known wavefunction and another that slightly increases the complexity of the Hamiltonian.

Before we proceed we will introduce bracket notation. Following notation from [132], for any

operator Â and any two, possibly complex, functions fm and fn we will use the abbreviation∫
f∗mÂfndτ =

〈
fm|Â|fn

〉
where f∗m is the complex conjugate of fm. In the absence of an operator this notation denotes

the standard inner product ∫
f∗mfndτ = 〈fm|fn〉 .

Finally, a linear operator Â is said to be a Hermitian operator if it satisfies〈
fm|Â|fn

〉
=
〈
fn|Â|fm

〉∗
. (3.11)

Hamiltonian operators for quantum molecular systems are Hermitian operators. This fact will

be useful in proving important results in the following subsections.

3.5.1 Variation Method

The first method we will discuss is the variation method. The method seeks to find an optimal

wavefunction from a class of trial functions of our choosing. These trial functions usually have

the same form but vary continuously with respect to one or more parameters. Before we outline

the method, we will state and prove the Variation Theorem, an important result that validates

the variation method as a reasonable method for approximating our solution.

Theorem 3.5.1.1. Variation Theorem. Let Ĥ be a time-independent Hamiltonian with lowest

eigenvalue E1. Then for any wavefunction φ,

W =

〈
φ|Ĥ|φ

〉
〈φ|φ〉

≥ E1. (3.12)

Proof. We will prove the theorem for the case that φ is normalized. If φ is not normalized we

can multiply φ by the appropriate constant to normalize it. Let {ψi} be the complete set of

normalized eigenfunctions for Ĥ. Expand our wavefunction φ in terms of our complete set of

eigenfunctions

φ =
∑
i

ciψi. (3.13)
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Note that since φ is normalized we have

1 = 〈φ|φ〉 =

〈∑
i

ciψi

∣∣∣∣∣∑
j

cjψj

〉
=

∑
i

∑
j

cicj 〈ψi|ψj〉

=
∑
i

|ci|2.

Then plugging Equation 3.13 into the left hand side of Equation 3.12 yields〈∑
i

ciψi

∣∣∣Ĥ∣∣∣∑
j

cjψj

〉
=

〈∑
i

ciψi

∣∣∣∣∣∑
j

cjĤψj

〉

=

〈∑
i

ciψi

∣∣∣∣∣∑
j

cjEjψj

〉
=

∑
i

∑
j

c∗iEjcj 〈ψi|ψj〉

=
∑
i

|ci|2Ei

≥
∑
i

|ci|2E1 = E1

since E1 ≤ Ei for all i = 2, 3, . . ..

We must be sure that our class of trial functions φ satisfy any boundary conditions and

properties that we would like our solution to satisfy. The simplest use of the Variation Theorem

is to make φ depend on a parameter, α, and then minimize

W (α) =

〈
φα|Ĥ|φα

〉
〈φα|φα〉

by solving d
dαW (α) = 0, but a common choice for the form of the test function is a linear

combination of linearly independent basis functions {fi},

φ =
n∑
i=1

cifi.

This is called the linear variation method [132]. Our goal is to solve for the coefficients cj .
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Letting c = (c1, . . . , cn) first note that

W (c) =

〈
φ
∣∣∣Ĥ∣∣∣φ〉
〈φ|φ〉

=

∑n
j=1

∑n
k=1 cjckHjk∑n

j=1

∑n
k=1 cjckSjk

⇒W (c)

n∑
j=1

n∑
k=1

cjckSjk =

n∑
j=1

n∑
k=1

cjckHjk

where Sjk = 〈fj |fk〉 and Hjk =
〈
fj

∣∣∣Ĥ∣∣∣ fk〉. Differentiating both sides with respect to ci yields

∂W

∂ci

n∑
j=1

n∑
k=1

cjckSjk +W
∂

∂ci

 n∑
j=1

n∑
k=1

cjckSjk

 =
∂

∂ci

 n∑
j=1

n∑
k=1

cjckHjk


⇒ ∂W

∂ci

n∑
j=1

n∑
k=1

cjckSjk +W
∂

∂ci

 n∑
j=1

n∑
k=1

cjckSjk

 =
∂

∂ci

 n∑
j=1

n∑
k=1

cjckHjk


⇒ ∂W

∂ci

n∑
j=1

n∑
k=1

cjckSjk + 2W
n∑
k=1

ckSik = 2
n∑
k=1

ckHik

⇒ ∂W

∂ci

n∑
j=1

n∑
k=1

cjckSjk = 2
n∑
k=1

[Hik −WSik]ck.

Setting ∂W
∂ci

= 0 for i = 1, . . . , n we conclude that

n∑
k=1

[Hik −WSik]ck = 0,

a system of linear homogeneous equations. For there to be a nontrivial solution (ci 6= 0 for some

i), we must ensure

det(Hik − SikW ) = 0. (3.14)

Equation 3.14 is called the secular equation.

To solve this system we expand the determinant and obtain an algebraic equation in terms

of W of degree n with coefficients αi

α0 + α1W + . . .+ αnW
n = 0.

Such an equation has n real roots, W1, . . .Wn, and we can arrange them such that W1 ≤ . . . ≤
Wn. One can show that Wi ≥ Ei for any i = 1, . . . , n. In this way we can approximate energies

for ground and excited states of molecules. Note, though, that the Variation Theorem only
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guarantees that our approximation is greater than or equal to the true energy, it gives no upper

bound on the error of our approximation.

We will now demonstrate the variation method by returning to the particle in a box problem.

Example 3.5.1.1. Consider again the particle in a box problem with V (x) = 0 for 0 ≤ x ≤ a.

We will attempt to approximate the wavefunction with

ψ(x) = x(a− x) for 0 ≤ x ≤ a.

For our choice of trial function Equation 3.12 yields

W =

〈
ψ
∣∣∣Ĥ∣∣∣ψ〉
〈ψ|ψ〉

=

∫ a
0 x(a− x)−~

2

2m
d2

dx2
x(a− x)dx∫ a

0 x
2(a− x)2dx

=
30~2a3

6ma5

=
5~2

ma2
≈ 0.1266515

h2

ma2
.

The variation theorem guarantees that our approximated energy is greater than or equal to the

lowest eigenvalue E1 of the particle in a box Hamiltonian. Returning to the particle in a box

example, we find that E1 = h2/8ma2 ≈ 0.125h2/ma2, thus we have successfully approximated

the energy to within 1.3% error.

3.5.2 Perturbation Theory

The second method used to approximate the energy of a system is called perturbation theory.

Again, our goal is to solve the time-independent Schrödinger equation

Ĥψn = Enψn (3.15)

by finding the eigenfunctions ψn and eigenvalues En. For perturbation theory we will assume

that our Hamiltonian Ĥ is slightly different from a Hamilton Ĥ0 of an equation we can solve

analytically,

Ĥ0ψ(0)
n = E(0)

n ψ(0)
n , (3.16)

which we will refer to as the unperturbed system. We will assume that the eigenvalues of the

unperturbed problem are nondegenerate, that is, E
(0)
n 6= E

(0)
m for all n 6= m. So now our system
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in Equation 3.15 only differs from Equation 3.16 by a perturbation, Ĥ ′. That is,

Ĥ = Ĥ0 + Ĥ ′. (3.17)

For perturbation theory we insert a parameter λ ∈ [0, 1] into Equation 3.17 to get

Ĥ = Ĥ0 + λĤ ′. (3.18)

By doing this we can vary the perturbation continuously from unperturbed (λ = 0) to fully

perturbed (λ = 1). The idea of perturbation theory is to approximate a solution to Equation

3.15 by relating ψn and En to our known eigenpairs from Equation 3.16.

First we expand our wavefunction, ψn, and energy, En, in a power series about λ and

evaluate at λ = 0. Letting ψ
(k)
n = 1

k!
∂kψn

∂λk
|λ=0 and E

(k)
n = 1

k!
∂kEn

∂λk
|λ=0, this yields

ψn = ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . . (3.19)

and

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . . (3.20)

We assume the perturbation is small and the two series converge. Note that ψn and En are

unknown, so we will use a nearby problem whose solution is known to approximate the wave-

function and energy.

Assume that we have orthonormal wavefunctions {ψ0
n} and corresponding energies {E0

n} to

the zeroth order Schrödinger equation

Ĥ0ψ0
n = E0

nψ
0
n.

Further assume that the ψn satisfy the intermediate normalization condition〈
ψ(0)
n |ψn

〉
= 1,

which with Equation 3.19 implies that 〈
ψ(0)
n |ψ(i)

n

〉
= 0

for any i ≥ 1. Now, substituting Equations 3.18, 3.19 and 3.20 into Equation 3.1, we have

(
Ĥ0 + λĤ ′

)(
ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . .

)
=(

E0
n + λE(1)

n + λ2E(2)
n + . . .

)(
ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . .

)
.
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Operating and combining terms with like powers of λ yields

Ĥ0ψ(0)
n = E0

nψ
(0)
n ,

Ĥ0ψ(1)
n + Ĥ ′ψ(0)

n = E(0)
n ψ(1)

n + E(1)
n ψ(0)

n , (3.21)

...

We now multiply Equation 3.21 by ψ
(0)∗
m , rearrange and integrate to get〈

ψ(0)
m

∣∣∣Ĥ0
∣∣∣ψ(1)

n

〉
− E(0)

n

〈
ψ(0)
m |ψ(1)

n

〉
= E(1)

n

〈
ψ(0)
m |ψ(0)

n

〉
−
〈
ψ(0)
m

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
. (3.22)

The fact that Ĥ0 is a Hermitian operator allows us to rewrite the first term of Equation 3.22

as 〈
ψ(0)
m

∣∣∣Ĥ0
∣∣∣ψ(1)

n

〉
= E(0)

m

〈
ψ(0)
m |ψ(1)

n

〉
.

This implies (
E(0)
m − E(0)

n

)〈
ψ(0)
m |ψ(1)

n

〉
= E(1)

n δmn −
〈
ψ(0)
m

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
(3.23)

and thus

E(1)
n =

〈
ψ(0)
n

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
.

To find ψ
(1)
n we use our set of known solutions

{
ψ

(0)
n

}
to expand

ψ(1)
n =

∑
m

amψ
(0)
m

where am =
〈
ψ0
m|ψ

(1)
n

〉
. For m 6= n Equation 3.23 becomes

(
E(0)
m − E(0)

n

)〈
ψ(0)
m |ψ(1)

n

〉
= −

〈
ψ(0)
m

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
.

Substituting in our expansion for ψ
(1)
n yields(

E(0)
m − E(0)

n

)
am = −

〈
ψ(0)
m

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
.

Since we assumed that the energy levels were nondegenerate we are assured that E
(0)
m −E(0)

n 6= 0

and we can safely write

am =

〈
ψ

(0)
m

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
E

(0)
n − E(0)

m

.
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Thus the first-order correction to the wavefunction is

ψ(1)
n =

∑
m 6=n

〈
ψ

(0)
m

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
E

(0)
n − E(0)

m

ψ(0)
m

and

ψn ≈ ψ(0)
n +

∑
m6=n

〈
ψ

(0)
m

∣∣∣Ĥ ′∣∣∣ψ(0)
n

〉
E

(0)
n − E(0)

m

ψ(0)
m .

Degenerate levels of energy require some special care but are not discussed here. It should

also be noted that it is possible to solve for higher-order energy and wavefunction corrections

but the process is tedious. Since we assume our perturbations are small, it is usually sufficient

to include only the first order corrections.

3.5.3 Hartree-Fock Self-Consistent Field Method

The Hartree-Fock method [177] is an application of the variation method which separates the

inner product
〈
ψ
∣∣∣Ĥ∣∣∣ψ〉 by electronic interactions. We will first introduce the Hartree self-

consistent-field (SCF) method as discussed in detail by Blinder in [22].

Recall that the Hamiltonian operator for an n-electron atom is

Ĥ = − ~2

2me

n∑
i=1

∇2
i −

n∑
i=1

Ze′2

ri
+
n−1∑
i=1

n∑
j=i+1

e′2

rij

where the first sum is the kinetic energy operators, the second sum is the potential energy

for the attractions between the electrons and the nucleus of charge Ze′ and the last sum is the

potential energy of the inter-electronic repulsions. Note that this Hamiltonian is still incomplete

since we do not account for spin-orbit and other interactions. Applying the perturbation method

yields a zeroth-order wavefunction that is a product of n one-electron spin-orbitals

ψ(0) =
n∏
i=1

fi(ri, θi, φi)

where each f is a hydrogen-like orbital of the form of Equation 3.8. This wavefunction, however,

is quantitatively inaccurate for complex systems [132]. We can get a better approximation by

using a variation function without restricting ourselves to any particular form of orbitals. We

can take

φ =
n∏
i=1

gi(ri, θi, φi)
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and look for the functions gi that minimize the variational integral given in Equation 3.12.

The method for determining the gi’s is called the Hartree self-consistent-field method and

is outlined as follows. First, we guess a product wavefunction

φ0 =

n∏
i=1

si(ri, θi, φi)

where each si is a normalized function R(r) multiplied by a spherical harmonic Y (θ, φ) (see

Section 3.3). We now average out the instantaneous interactions between electron 1 and all

other electrons, which we assume are homogonized to form a fixed distribution of electric charge

through which electron 1 moves. The potential energy for such an interaction is

V̄1(r1, θ1, φ1) =

n∑
j=2

e′2
∫ |sj |2

r1j
dvj −

Ze′2

r1
.

We also make use of the central-field approximation, which assumes that the effective potential

acting on an electron in an atom can be adequately approximated by a function of r only. With

this assumption, the resulting potential energy of this interaction is given by [132] to be

V1(r1) =

∫ 2π
0

∫ π
0 V̄1(r1, θ1, φ1) sin θ1dθ1dφ1∫ 2π

0

∫ π
0 sin θdθdφ

.

We then plug this potential energy into a one-electron Schrödinger equation[
− ~2

2me
∇2

1 + V1(rr)

]
t1(1) = ε1t1(1) (3.24)

and solve for t1(1), an improved orbital for electron 1. We get a set of solutions that are products

of a spherical harmonic and radial factor, and we choose the solution that corresponds to the

orbital we are improving. We then iterate through the rest of the n electrons, regarding them

as moving in a charge cloud density due to the other electrons and use the improved orbitals

as we go. Once we have repeated this process for all n electrons, we repeat the entire process

until we are satisfied with the quality of our orbitals. In the end we will have orbitals gi(i) and

energies εi. The energy approximation for the system is

E =
∑
i

εi −
∑
i

∑
j>i

〈
gi(i)gi(i)

∣∣∣∣e′2rij
∣∣∣∣ gj(j)gj(j)〉 .

Recalling that Hartree’s method does not account for spin, The Hartree-Fock SCF method

is similar to the Hartree SCF method but uses antisymmetrized spin-orbitals via Slater deter-
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minants (see Section 3.4.1) to include spin explicitly in the wavefunction. The method solves

F̂ ui = εiui

where ui is the ith spin-orbital and the Fock operator F̂ is similar to the operator in Equation

3.24 but includes some extra terms. εi is the orbital energy of ui. As proposed by Roothaan

in [177], the Hartree-Fock orbitals are written as linear combinations of a set {χj} of basis

functions

gi =
∑
j

cjiχj

where the cji’s are found by the SCF iterative process and minimize the energy of the system.

A Hartree-Fock SCF calculation for a many-electron atom requires a great deal of computation,

but one can get very accurate results with astutely chosen basis functions, the subject of the

next section.

3.5.4 Basis Sets

In performing ab initio computational chemistry calculations the choice of basis set plays a

significant role in the accuracy of the results. Recalling from the previous section that molecular

orbitals gi are represented as a linear combination of basis functions gi =
∑
j

cjiχj , in this section

we describe some popular choices for the basis set {χj}. As we will see, an understanding of

the molecular system in question is the first step towards choosing an appropriate basis set.

Two large families of basis sets are built off of the so-called Slater-type orbitals (STOs) and

Gaussian-type functions (GTFs).

Originally proposed by Slater in 1930, an STO centered on atom a has the form

χSTO = Nrn−1
a e−ζraY m

l (θa, φa) (3.25)

with quantum numbers n, l, and m [196]. The function Y m
l (θa, φa) is a spherical harmonic as

defined in Equation 3.3, the parameter ζ is called the orbital exponent, and N is a normalization

constant. The simplest of STO basis sets is called the minimal basis set and consists of one STO

for each inner shell and valence shell atomic orbital of each atom. The size of the basis set can

be increased by increasing the number of STO’s per atomic orbital. For example, a double-zeta

basis set refers to a minimal basis set that replaces each STO by two STO’s that have different

orbital exponents, and analogously a triple-zeta basis replaces each STO by three STO’s with

different orbital exponents.

Valence shell electrons, or electrons in the outermost shell, play an important role in molec-

ular bonding, so one may wish to use more basis functions to describe these orbitals. A split-
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valence basis set uses two or more STO’s for each valence atomic orbital but only one STO for

each inner orbital. To account for atomic orbital polarization, basis functions whose l quantum

numbers are greater than the maximum l of the valence shell can be added to the basis set.

Adding polarization functions allows the atomic orbitals to vary and shifts the charge density

away from the nuclei and into the bonding regions within the molecule [132]. For situations

where there is a significant electron density at large distances from nuclei, one can add diffuse

functions, or functions with a very small orbital exponent, to the basis set. SCF calculations

on moderately sized molecules can use anywhere to 40 to 400 basis functions, which conse-

quently produce 300000 to 3 × 109 electron-repulsion integrals, the evaluations of which are

very time-consuming [132].

The other family of basis sets use Gaussian-type functions as their building block, and

were first proposed by Boys in 1950 to speed up molecular integral evaluation [29]. A cartesian

Gaussian, or primitive Gaussian, centered on atom a at (xa, ya, za) is defined as

χPG = Nxiay
j
az
k
ae
−αr2a (3.26)

where i, j, k ∈ Z+, α is a positive orbital exponent, and N is again a normalizing constant. Since

a single Gaussian function gives a poor representation of an atomic orbital for small values of ra,

in practice one forms each basis function by taking a normalized linear combination of GTFs.

Such a basis function is called a contracted Gaussian-type function (CGTF) and has the form

χCG =
∑
i

βiχ
PG
i . (3.27)

Creating a basis set in this way increases the number of integral evaluations during the SCF

procedure, but Gaussian integrals require much less computational cost than Slater integrals

[132]. Usually, each χPGi is held fixed and only the βi’s are varied during the SCF variational

procedure, reducing the number of parameters to be optimized and thus further reducing the

computational cost. Furthermore, CGTF basis sets can be modified in the same vein as STO

basis sets and are the most widely used for ab initio molecular calculations because of they are

less computationally expensive than STO basis sets.

This work makes frequent use of the 6-31G split valence basis set, which uses six primitive

Gaussians in each inner-shell CGTF and uses one CGTF with three primitives and one Gaussian

with one primitive in each valence-shell orbital. This basis set is named using notation from [56],

where split-valence basis sets are denoted X-YZG. X is the number of primitive Gaussians used

for each inner-shell CGTF. The valence-shell orbitals are described by two CGTF functions

made with Y and Z primitive Guassians, respectively. The 6-31G basis set can be modified to

include polarization functions on heavy atoms by adding “ * ” and diffusion functions on heavy
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atoms by adding “ + ”. For example, the 6-31+G* basis set is the 6-31G basis set supplemented

by both diffuse and polarization functions. Two asterisks or two plus signs denote that the

corresponding functions are also added to the light atoms: hydrogen and helium. Clearly, larger

basis sets yield more accurate results but take more computation time. There is a vast number

of basis sets to choose from when performing ab initio calculations. Many of the most commonly

used basis sets and their corresponding literature references can be found at the Environmental

Molecular Sciences Laboratory Gaussian Basis Set Exchange website (bse.pnl.gov/bse/portal).

3.5.5 Density Functional Theory

We now introduce a completely different method to calculate energy that is based on the fact

that all information about a given system can be described by the electron density. For a system

with N electrons, the electron density, ρ(r̄), is defined as

ρ(r̄) = N

∫
. . .

∫
|Ψ(x̄1, . . . , x̄N )|2 ds1dx̄2 . . . dx̄N (3.28)

and determines the probability of finding any of the N electrons with arbitrary spin within the

specified volume dr̄1 while the other N − 1 electrons have arbitrary positions and spin in the

state represented by Ψ.

Density functional theory (DFT) was given a firm theoretical foundation by Hohenberg and

Kohn in 1964 [107], in which they prove two theorems that lay the foundation for the theory.

The first Hohenberg-Kohn theorem states that the external potential energy is, to within a

constant, a unique functional of the electron density. Furthermore, this potential energy uniquely

determines the Hamiltonian operator and thus all properties of the system. This allows one to

write the ground state energy as a functional of the true electron density ρ0,

E0[ρ0] = T [ρ0] + Vee[ρ0] + VNe[ρ0]

= T [ρ0] + Eee[ρ0] +

∫
ρ0(r̄)VNedr̄

where we split the energy into three parts: kinetic energy, electron-electron potential energy, and

nuclei-electron potential energy. From this we define the Hohenberg-Kohn functional FHK [ρ0]

and write

E0[ρ0] = FHK [ρ0] +

∫
ρ0(r̄)VNedr̄. (3.29)

It is important to note that the exact form of this functional that produces the correct ground

state energy has not been determined. However, it does exist, and advances in density functional

theory rely on developing functionals that satisfactorily approximate the true functional.

The second Hohenberg-Kohn theorem states that FHK [ρ] gives the lowest energy if and
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only if the input density is the true ground state density, ρ0. Recalling the variation principle

introduced in Section 3.5.1, this means that for any trial density ρ̃(r̄) the energy obtained

from the functional in Equation 3.29 is an upper bound to the true ground state energy E0.

This theorem only applies to the exact functional, and since we are forced to approximate this

functional, one should be careful interpreting energies calculated from density functional theory

methods. In the Hartree-Fock approximation the variation principle holds for all wavefunctions,

but this is not the case for density functional theory and all functionals.

The Kohn-Sham Method

In 1965 Kohn and Sham developed a method for finding the density ρ0 and ground state energy

E0 in [126]. They employ what is called a noninteracting system, often denoted by the subscript

s, ofN noninteracting electrons that each experience the same external potential energy function

Vs(r̄i). This potential energy function is chosen to make the ground state electron probability

density ρs(r̄) of this fictitious system equal to the exact ground state electron density ρ0(r̄).

Using notation from [125], the Hamiltonian for the noninteracting system is

Ĥs =
N∑
i=1

[
−1

2
∇2
i + vs(r̄i)

]
=

N∑
i=1

ĥKSi . (3.30)

The Kohn-Sham reference system can be related to the real system via

Ĥλ = T̂ +

N∑
i=1

vλ(r̄i) + λV̂ee (3.31)

where the λ ∈ [0, 1] and vλ is defined as the external potential that will make the ground state

electron density of the λ-system equal to that of the real molecule’s ground state [125]. Note

that for λ = 0 we have the noninteracting system and for λ = 1 we have the real system.

The ground state wave function ψs,0 is the Slater determinant of the Kohn-Sham spin orbitals

uKSi = θKSi σi and each spatial part θKSi satisfies

ĥKSi θKSi = εKSi θKSi (3.32)

where the εKSi ’s are the Kohn-Sham orbital energies.

For simplicity we shall henceforth drop the subscript from ρ0 and refer to the exact electron

density as ρ. Kohn and Sham defined the functionals

∆T [ρ] = T [ρ]− Ts[ρ] (3.33)
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and

∆Vee[ρ] = Vee[ρ]− 1

2

∫ ∫
ρ(r̄1)ρ(r̄2)

r12
dr̄1dr̄2 (3.34)

to quantify the differences in the average ground state electronic kinetic energy and electron-

electron potential energy between the molecule and the reference system of noninteracting

electrons. The sum of these two functionals is called the exchange-correlation energy functional

and is defined as

Exc[ρ] = ∆T [ρ] + ∆Vee[ρ]. (3.35)

We can now rewrite Equation 3.29 as

E0[ρ] =

∫
ρ(r̄)VNe(r̄)dr̄ + Ts[ρ] +

1

2

∫ ∫
ρ(r̄1)ρ(r̄2)

r12
dr̄1dr̄2 + Exc[ρ]. (3.36)

The first three terms of Equation 3.36 are relatively easy to evaluate given the density ρ. The

exchange-correlation term Exc[ρ], however, is not and is the key to accurate Kohn-Sham DFT

methods [132]. The true form of Exc[ρ] is not known and various approximations have been

proposed (see [160] for details). In this work we make use of the popular B3LYP (Becke, three-

parameter, Lee-Yang-Parr) method which uses a combination of functionals from Becke [16]

and Lee, Yang, and Parr [130].

Since the noninteracting system is defined to have the same electron density as the ground

state of the molecule, we have that ρs = ρ. Thus, as shown in [132], the ground state electron

density can be expressed can be expressed in terms of the Kohn-Sham spatial orbitals as

ρ =

N∑
i=1

|θKSi |2. (3.37)

The Kohn-Sham orbitals are found via a process similar to the method used to find the Hartree-

Fock orbitals [160]. Once we have found the appropriate Kohn-Sham orbitals and a sufficient ap-

proximation to the exchange-correlation energy functional, we can calculate our approximation

to the ground state energy E0. One can calculate excited state energies via the time-dependent

DFT method, a method first proposed by Runge and Gross in [178]. Finally, we note that we

have only scratched the surface of density functional theory, as it is the subject of current and

ongoing research. Excellent reviews of the theory can be found in [160] and [125].

3.6 Geometry Optimization

The equilibrium geometry of a molecule corresponds to the nuclear arrangement that minimizes

the molecular electronic potential energy. Using the methods presented in the previous Section,
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we can now compute the energy of a molecule for any molecular geometry with coordinates p.

A molecule will conform to minimize its energy in any quantum state n, thus

Ên = min
p
En(p).

This optimization can be performed with the computational chemistry software Gaussian

09 [72] using the Berny optimization algorithm, which is based on an algorithm developed

by Schlegel in [182]. Schlegel’s algorithm is a variation of Pulay mixing [171], a quasi-Newton

method that constructs the consecutive iterates using a linear combination of potential solutions.

Quasi-Newton methods are Newton optimization methods that use an approximate Hessian Hc

instead of an analytic one, and updates Hc as the iterative optimization proceeds. At each

iterate xc quasi-Newton methods

1. Compute the Newton step d = −H−1
c ∇f(xc),

2. Compute the next iterate x+ = xc + λd, where λ is a step length parameter,

3. Update Hc to H+.

Newton methods can be difficult to implement because of the unavailability or cost of a gradient

∇f(xc) and/or Hessian Hc. For En(p), however, it is possible to compute an analytic gradient,

∇En(p), and even an analytic Hessian. In the following subsection, we derive an expression for

the gradient of the energy. While analytic Hessians are possible, the default option within the

Berny optimization algorithm is to use a finite difference Hessian [72].

3.6.1 Energy Gradient

One of the greatest advances in computational chemistry was the analytic expression for the

gradient of the energy of a system, which can be obtained via the Hellmann-Feynman theorem

[105, 69]. Before deriving the analytic expression for the gradient, we present and prove the

Hellman-Feynman theorem.

Theorem 3.6.1.1. Hellman-Feynman Theorem: For any energy state n,

∂En
∂λ

=

〈
ψn(λ)

∣∣∣∣∣∂Ĥ∂λ
∣∣∣∣∣ψn(λ)

〉
(3.38)

where ψn, En and Ĥ all depend parametrically on λ.

Proof. Consider the Schrödinger equation with normalized eigenfunctions. Because of normal-
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ization and assuming well-behavedness of our integrand,

En =

∫
ψ∗nĤψndτ

⇒ ∂En
∂λ

=
∂

∂λ

∫
ψ∗nĤψndτ

=

∫
∂ψ∗n
∂λ

Ĥψndτ +

∫
ψ∗n

∂

∂λ

(
Ĥψn

)
dτ.

Noting that
∂

∂λ

(
Ĥψn

)
=
∂Ĥ

∂λ
ψn + Ĥ

∂ψn
∂λ

,

we can write
∂En
∂λ

=

∫
∂ψ∗n
∂λ

Ĥψndτ +

∫
ψ∗n
∂Ĥ

∂λ
ψndτ +

∫
ψ∗nĤ

∂ψn
∂λ

dτ.

Evaluating the first term using the Schrödinger equation and the fact that the Hamiltonian is

Hermitian yields

∂En
∂λ

= E

∫
∂ψ∗n
∂λ

ψndτ +

∫
ψ∗n
∂Ĥ

∂λ
ψndτ +

∫
∂ψn
∂λ

(
Ĥψn

)∗
dτ

= E

∫
∂ψ∗n
∂λ

ψndτ +

∫
ψ∗n
∂Ĥ

∂λ
ψndτ + E

∫
ψ∗n
∂ψn
∂λ

dτ

= E

∫ (
∂ψ∗n
∂λ

ψn + ψ∗n
∂ψn
∂λ

)
dτ +

∫
ψ∗n
∂Ĥ

∂λ
ψndτ

= E
∂

∂λ

∫
ψ∗nψndτ +

∫
ψ∗n
∂Ĥ

∂λ
ψndτ

= 0 +

∫
ψ∗n
∂Ĥ

∂λ
ψndτ

since ∫
ψ∗nψdτ = 1

⇒ ∂

∂λ

∫
ψ∗nψdτ = 0.

To compute one component of the energy gradient we will take λ = xp to be one of the

Cartesian coordinates specifying molecular geometry.
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For a system of k atoms and n electrons the Hamiltonian is

Ĥ = − ~
2m

n∑
i=1

∇2
i −

n∑
i=1

k∑
j=1

Zj
rij

+

n−1∑
i=1

n∑
j=i+1

1

rij
+

k−1∑
i=1

k∑
j=i+1

ZiZj
rij

.

Differentiating with respect to λ yields

∂Ĥ

∂λ
= − ∂

∂λ

~
2m

n∑
i=1

∇2
i −

∂

∂λ

n∑
i=1

k∑
j=1

Zj
rij

+
∂

∂λ

n−1∑
i=1

n∑
j=i+1

1

rij
+

∂

∂λ

k−1∑
i=1

k∑
j=i+1

ZiZj
rij

.

Since the first and third terms do not depend on λ we have

∂Ĥ

∂λ
= − ∂

∂λ

n∑
i=1

k∑
j=1

Zj
rij

+
∂

∂λ

k−1∑
i=1

k∑
j=i+1

ZiZj
rij

= −Zp
n∑
i=1

xi − xp
r3
ip

+ Zp

k∑
i 6=p

Zi(xi − xp)
r3
ij

,

and thus we can write the partial derivative of the wavefunction with respect to λ as

∂En
∂λ

=

〈
ψn(λ)

∣∣∣∣∣∣−Zp
n∑
i=1

xi − xp
r3
ip

+ Zp

k∑
i 6=p

Zi(xi − xp)
r3
ij

∣∣∣∣∣∣ψn(λ)

〉
.

Now that we have an expression for the gradient, we will outline Pulay mixing [171], the

method that motivated the Berny optimization algorithm.

3.6.2 Pulay Mixing

At the heart of Gaussian 09’s optimization algorithm is a method called direct inversion of the

iterative subspace (DIIS), also known as Pulay mixing [171] and closely related to Anderson

acceleration [4]. Our goal is to solve the optimization problem

minE(p1, . . . , pn)

with respect to parameters or coordinates pk for k = 1, . . . , n. Pulay mixing begins with a set

of coordinates, p̄1 = (p1
1, . . . , p

1
n) and an approximate inverse Hessian H−1

0 . Pulay originally

developed this approach as an improvement over what he termed “simple relaxation” (SR),
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which, starting from an initial iterate p̄1, generates the next iterate via

p̄i = p̄1 −
i−1∑
j=1

H−1
0 ∇E(p̄j).

In [171] Pulay posited that a much better approximation could be constructed from the first

m iterated vectors p̄1, . . . , p̄m. These m vectors form the (m + 1)th iterate by writing p̄m+1 as

a linear combination of the previous m vectors,

p̄m+1 =

m∑
i=1

cip̄
i.

The ci’s are found by solving

min
ci

m∑
i=1

ci∆p̄
i

subject to
∑m

i=1 ci = 1 where ∆p̄i = p̄i+1 − p̄i. This minimization problem is solved via the

Lagrange multiplier technique with Lagrange constant λ, a value which yields the squared norm

of the residuum vector ∆p̄m+1. This results in a system of m+ 1 linear equations

B11 B12 . . . B1m −1

B21 B22 . . . B2m −1
...

...
...

...
...

Bm1 Bm2 . . . Bmm −1

−1 −1 . . . −1 0





c1

c2

...

cm

λ


=



0

0
...

0

−1


where Bij =

〈
∆pi|∆pj

〉
. Once p̄m+1 is obtained and the convergence criteria is tested by a step

of SR. If convergence has not been reached, p̄m+1 is added to the list of vectors and the DIIS

process is repeated.

Once the new iterate pk+1 is determined, the method proceeds with the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) update scheme [30, 70, 79, 188] for the new approximate Hessian

H+ = Hc +
yyT

yT s
− (Hcs)(Hcs)

T

sTHcs

where s = x+ − xc and y = ∇f(x+)− f(xc).

Gaussian 09 [72] currently utilizes the Berny geometry optimization algorithm [182] which

takes advantage of redundant internal coordinates [172]. Gaussian gives the user an option to

set constraints for the optimization process. In this work we often freeze, or fix, one or several

internal coordinates. Such coordinates are referred to as frozen variables. According to [72],
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each step of the current implementation for finding a minimum takes the following actions:

1. Update the Hessian via BFGS.

2. Update the trust radius using the method of Fletcher and Bofill from [23].

3. Set components of the gradient vector corresponding to frozen variables to zero. This

eliminaties their contribution to the next optimization step.

• Perform a polynomial line search to find the step length. The degree of the polynomial

is determined principally by the availability of second derivatives.

4. If the latest point is the best so far, a quadratic step is determined using the Rational

Function Optimization (RFO) approach [194, 8].

5. Set components of the quadratic step vector corresponding to frozen variables to zero.

6. If the step exceeds the trust radius, reduce the step in length to the trust radius by

searching for a minimum of the quadratic function on the sphere having the trust radius

[78].

7. Test for convergence.

Berny geometry optimizations use more convergence criteria than standard quasi-Newton meth-

ods which normally terminate at small gradient [135]. The four additional criteria are

1. The root-mean square of ∇E(p̄) is less than 10−5

2. The largest component of ∇E(p̄) is less than 1.5× 10−5

3. The root-mean square of the geometry displacement is less than 4× 10−5

4. The maximum single displacement is less than 6× 10−5.
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Chapter 4

Reaction Path Following

The potential energy surface (PES) of a molecule describes the energy of an N -atom molecule as

a function of its 3N − 6 geometric coordinates [220]. Local minima of these surfaces correspond

to stable molecular geometries, and first order saddle points correspond to transition states

[20]. As such, there is great interest in studying the global structure of these PESs, especially

in regards to following reaction paths from one stable molecular geometry to another. Reaction

path following from transition states to local minima has been studied extensively [17, 63,

183, 104, 190, 20, 24], but current algorithms are computationally burdensome for molecules

composed of more than a handful of atoms. Molecules of interest can have hundreds of atoms and

degrees of freedom so model and/or dimension reduction must be applied to efficiently compute

the reaction path. Because of the computational expense, most approaches for reaction path

following do not explicitly construct the PESs.

For many reactions only a few of the 3N − 6 molecular coordinates change significantly and

the rest remain approximately constant. As such, a popular approach for dimension reduction

is to follow reaction paths for only a small subset of the 3N − 6 molecular coordinates. In [20],

for example, Birkholz and Schlegel use principal component analysis to identify the reduced

number of internal coordinates with which to define the reaction path.

A popular approach for model reduction involves iteratively optimizing a finite set of points,

or images, on the PES to find a minimum energy path between a minimum and a transition

state. Two methods that work in this way are nudged elastic band [116] and the string method

[223].

The model reduction technique we are interested in constructs surrogate PESs by means

of interpolation. Ischtwan and Collins, for example, use an inverse distance weighted method

known as modified Shepard interpolation [47, 46] to represent the PES [109]. Spline interpolation

has been used to construct PESs for d ≤ 3 dimensions [169, 181, 145], and has recently been

applied to higher dimensions with non-uniform meshes [161]. These interpolation methods,
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however, are restricted to small molecules because of the computational cost of constructing

the PESs to within a sufficient accuracy. The number of grid points required for interpolation on

full grids grows exponentially with dimension, a problem known as the curse of dimensionality.

In this thesis we present a method for reaction path following based on the work of Mokrauer,

Kelley, and Bykhovski [146, 144] that applies both model and dimension reduction by construct-

ing a surrogate model via interpolation on sparse grids [198, 13, 118]. Mokrauer’s approach

isolates a few, say d, molecular coordinates and then uses sparse interpolation to approximate

the PESs in patches during the reaction simulation using a combination of trust-region and

error estimation algorithms [144]. The numerous interpolation patches, however, introduce dis-

continuities in the PES that are unphysical. The method presented in this thesis is similar, but

constructs a single global PES and then simulates the reaction. In this way one can visualize

the entire interpolated PES landscape before simulating the reaction process.

Furthermore, this new reaction path following method allows one to track entire reaction

paths on the ground and all specified excited state PESs. Knowledge of excited state dynamics

is particularly useful in studying reaction paths of photoisomerization processes, for example, in

which a molecule’s absorption of a photon causes it to excite to a different electronic state and

consequently change between isomers. Isomers are molecules with the same molecular formula

but with different geometric configurations and possibly different properties [61].

4.1 Surrogate Model

4.1.1 Potential Energy Surface Approximation

In this section we describe how we approximate PESs using Smolyak’s sparse grid interpolation

algorithm [13, 118, 198]. The potential energy En of an N -atom molecule at any electronic state

n = 0, 1, 2 . . . , can be computed as a function of (redundant) internal coordinates p ∈ R3N−6

composed of bond lengths, bond angles, and dihedral angles. The first step of our method is to

partition

p =

(
x

ξ

)
into a vector of design variables x ∈ Rd and a vector of remainder variables ξ ∈ R3N−6−d, where

chemical knowledge or intuition of the system guides the appropriate choice of design variables

x. The d-dimensional ground state PES is computed via the constrained optimization problem

E0(x) = min
ξ
E0 (x, ξ) (4.1)
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where the minimization is only over the remainder variables ξ. Points on the excited state PESs

En(x), n ≥ 1, are calculated at optimized ground state geometries. Because Equation 4.1 is

such an expensive optimization process, continuous dynamical simulations are often unfeasible.

Smolyak’s algorithm [198, 13, 118], however, allows one to simulate dynamics with a cheap

surrogate potential energy function.

Smolyak’s interpolating polynomial is constructed by evaluating the Equation 4.1 at each

point of the sparse grid. We note that the interpolation domain for the ith dimension must be

specified to match the corresponding design variable xi. For example, [0◦, 360◦] would be an ap-

propriate domain for a dihedral angle. The nested structure of sparse grids (recall from Chapter

2 that H(q, d) ⊂ H(q+ 1, d)) means that one can reuse all of the function evaluations from the

k sparse grid, which are in our case expensive electronic structure calculations, to obtain an

approximation on the k+1 sparse grid. The nestedness also allows one to estimate interpolation

errors [146]. Explicit error bounds for Smolyak’s algorithm have been studied extensively (see

Section 2.2.2), but in general depend on the dimension d, the degree of polynomial exactness

k, the size of the interpolation domain, and the smoothness of the PESs En(x).

To employ Smolyak’s algorithm one must perform the electronic structure optimization in

Equation 4.1 and any corresponding excited state energy calculations for each point xi in the

sparse grid H(q, d). While the necessary electronic structure calculations are expensive, they are

the sole computational burden of this method. With the sets of sparse grid points xi and energy

values En(xi) in hand, one can use Equation 2.25 to interpolate the PESs. We will denote this

surrogate for the potential energy function by

Esn(x) = A(q, d)[En](x) (4.2)

for any electronic state n ≥ 0.

4.1.2 Dynamics

The goal of our simulations is to successfully predict the natural excitation and relaxation of a

molecule for a given sequence of m electronic states {n1, . . . , nm} and track the entire reaction

path. The sequence can specify both multi-photon and single photon excitations, as well as

any decay path. For example, a sequence of {0, 3, 0} would represent a single photon excitation

and relaxation between the ground state and the third excited state. The reaction path of a

molecule moves in the direction of the negative gradient on PESs [143], and large steps across

the PESs may pass over local minima or be physically unnatural. With this in mind, we track

the reaction path and find local minima via continuous steepest descent[135, 49] by integrating

the dynamics

ẋ = −∇Esn(x) (4.3)
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until ‖∇Esn(x)‖ is smaller than a prescribed tolerance τ ≈ 0. These dynamics employ the Born-

Oppenheimer approximation (see Section 3.2) and are referred to as adiabatic dynamics, or

dynamics where interactions are represented on a single PES.

The solution x to 4.3 is the reaction path and is approximated using MATLAB’s ode15s

variable order solver [140, 187]. We stress that the time step is non-physical and in no way reflects

the time scale of the physical reaction; we are only interested in the path the molecule takes.

Continuous steepest descent would be unfeasible without the surrogate model. The gradient of

the potential energy in Equation 4.1, while available in analytic form, is far too expensive to

compute at each time step. On the other hand, the surrogate model Esn(x) and its gradient,

which can also be computed analytically, are both multidimensional polynomials and are much

less expensive to evaluate than En(x) and its gradient ∇En(x). For moderately sized molecules,

the evaluation time can be reduced from several minutes to a fraction of a second.

Each reaction path simulation begins with n1 = 0 at an equilibrium geometry on the

surrogate ground state PES, from which the molecule is excited to the next specified electronic

state n2. The steepest descent path is followed to find a local minimizer x̂n2 on the PES, and

then the molecule is excited to the next state. The simulation continues in this way until a

local minimum on the highest specified electronic state, say ni, has been reached. To simulate

the relaxation of a molecule from one state to the next, thermal fluctuations and molecular

vibrations are accounted for by reinitializing dynamics on the succeeding state at x̂ni +γ where

γ is a d-dimensional vector of random numbers. The domain for γj depends on the type of

molecular coordinate: γj ∈ [−0.05, 0.05] Å if the jth design variable is a bond length, and

γj ∈ [−30, 30]◦ if the jth design variable is a bond or dihedral angle. These intervals were

chosen arbitrarily to approximate the effects of molecular vibrations and thermal fluctuations.

4.2 Examples

4.2.1 2-Butene

A good test molecule for our simulations is 2-butene because it has a known transition path

from cis-2-butene to trans-2-butene via excitation to the first excited singlet state [19, 158, 226].

Both stable ground state geometries for 2-butene are shown in Figure 4.1 and the isomerization

process is depicted in Figure 4.2 where we label each of the four C atoms with superscripts.

The first step of our reaction path method is to choose design coordinates and corresponding

interpolation bounds. The main reaction coordinate for the isomerization of 2-butene is the

dihedral angle formed by the four C atoms C1-C2=C3-C4, so we choose this angle to be x1.

The cis-2-butene and trans-2-butene geometries correspond to x1 = 0◦ and x1 = 180◦ and the

transition state corresponds to x1 = 90◦ [19, 158, 226], so we choose bounds of [−190, 190]◦ for
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(A) (B)

Figure 4.1: The two stable ground state geometries of 2-butene: (A) trans-2-butene and (B)
cis-2-butene.

H3C1 

C2 C3

H

H C4H3

H3C1 

C2 C3

C4 H3

H H

hv

Figure 4.2: Photoisomerization of trans-2-butene (left) and cis-2-butene (right). Carbon atoms
are labeled with superscripts.

x1. A one dimensional simulation of the reaction path with this degree of freedom without the

effects of randomness is shown in Figure 4.3 and reproduces results found in [226] and [146].

The second and third coordinates x2 and x3 are rotations of the methyl groups that are

governed by the dihedral angles formed by the atoms C3=C2-C1-H3 and C2=C3-C4-H3. Only

one C=C-C-H dihedral angle is frozen during the optimization, as we expect the methyl group to

retain its symmetry. We do not expect these coordinates to change much during the simulation,

so we choose bounds of [−130, 130] degrees for both x2 and x3. Design coordinates x1, x2, and

x3 are shown in 4.4. Finally, we choose the three carbon-carbon bond lengths as additional
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Figure 4.3: Reaction path of 2-butene for the photoisomerization of cis-2-butene to trans-2-
butene. The ground state PES is labeled in blue, the first excited state PES is labeled in red,
and the reaction path is labeled in black with arrows pointing in the direction of the path the
molecule follows.

degrees of freedom. The C2=C3 bond length is x4, the C1-C2 bond length is x5, and C3-C4

bond length is x6. Since we expect the double bond length (x4) to change more than the single

bond lengths (x5 and x6), we choose the domain [1.3, 1.7] Å for x4 and [1.4, 1.7] Å for x5 and

x6. In the following, all units for reported energies, angles, and bond lengths are electronvolts

(eV), degrees, and angstroms (Å), respectively.

We know that the isomerization takes place via the first excited state [226], so our sequence

of electronic states to model this phenomenon is {0, 1, 0}. While our method can be applied

using any electronic structure method and basis set, each geometry optimization is calculated

using the B3LYP hybrid functional [200, 119] with the CEP-31G* basis set [201, 202, 50]. All

excitation energies are computed using the TD-DFT method [178]. We used the GAUSSIAN

09 software package [72] for all electronic structure calculations.

We present results for three simulations: Simulation 1 is a two-dimensional simulation with

design coordinates x1 and x2, Simulation 2 is a three-dimensional simulation with design coordi-
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Figure 4.4: Design variables x1, x2, and x3 for 2-butene simulations.

nates x1, x2, and x3, Simulation 3 is a six-dimensional simulation with all six design coordinates.

To our knowledge this is the first time 2-butene isomerization has been studied with more than

3 degrees of freedom. All three simulations are initialized at the stable cis-2-butene geometry,

and the gradient norm tolerance for continuous steepest descent is set to τ = 10−10. We employ

our own implementation of Smolyak’s algorithm that is specifically designed to construct and

follow multiple dynamics paths on PESs [152].

Refinement Study

For each simulation we must choose an appropriate degree of polynomial exactness k for

Smolyak’s algorithm. To do this, we perform a refinement study in k for each dimension d = 2, 3,

and 6 by comparing the local minima of the true PESs with those of the surrogate PESs. Ta-

bles 4.1-4.3 show minimizers for the fully optimized molecule and PESs approximated with

k = 1, 2, . . . , 5 for d = 2, d = 3, and d = 6. Since the interpolation domain is centered on the

cis geometry for x1, x2, and x3, the cis minimizer for surrogate PES aligns perfectly with the

fully optimized structure for these degrees of freedom. Greater discrepancy is found between the

trans minimizers, where a degree of exactness of k = 4 or k = 5 aligns with the fully optimized

structure to within an acceptable degree of accuracy.

We also use the method of manufactured solutions to observe how the accuracy of our

approximation increases with k. Henceforth we assume that the k = 5 PES is the “true”

solution. This value of k was chosen since the minimizers of its surrogate PES sufficiently

approximated the physical cis and trans minimizers (see Tables 4.1-4.3). We then quantify the

error by calculating the largest relative error εrel at points in the sparse grid H(d+5, 5). If Êk(x)
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Table 4.1: Two-dimensional minimizers corresponding the the trans-2-butene geometry for the
true PES and Smolyak’s surrogate PES for various values of k.

PES x (cis) x (trans)

True (0.0, 0.0) (180.0, 0.0)

k = 1 (0.0, 0.0) (190.0, 0.0)

k = 2 (0.0, 0.0) (190.0, -5.0)

k = 3 (0.0, 0.0) (168.8, 6.8 )

k = 4 (0.0, 0.0) (180.2, -6.3)

k = 5 (0.0, 0.0) (178.9, 2.1)

Table 4.2: Three-dimensional minimizers corresponding the the trans-2-butene geometry for
the true PES and Smolyak’s surrogate PES for various values of k.

PES x (cis) x (trans)

True (0.0, 0.0, 0.0) (180.0, 0.0, 0.0)

k = 1 (0.0, 0.0, 0.0) (190.0, 0.0, 0.0)

k = 2 (0.0, 0.0, 0.0) (190.0, -5.1, -5.1)

k = 3 (0.0, 0.0, 0.0) (169.0, 7.0, 7.0)

k = 4 (0.0, 0.0, 0.0) (180.0, -6.4, -6.4)

k = 5 (0.0, 0.0, 0.0) (178.9, 2.2, 2.3)

Table 4.3: Six-dimensional minimizers corresponding the the trans-2-butene geometry for the
true PES and Smolyak’s surrogate PES for various values of k.

PES x (cis) x (trans)

True (0.0, 0.0, 0.0, 1.36, 1.52, 1.52) (180.0, 0.0, 0.0, 1.36, 1.52, 1.52)

k = 1 (0.0, 0.0, 0.0, 1.35, 1.54, 1.54) (190.0, 0.0, 0.0, 1.35, 1.54, 1.54)

k = 2 (0.0, 0.0, 0.0, 1.37, 1.52, 1.52) (190.0, -4.7, -4.7, 1.36, 1.52, 1.43)

k = 3 (0.0, 0.0, 0.0, 1.37, 1.52, 1.52) (170.7, 6.1, 6.1, 1.37, 1.52, 1.52)

k = 4 (0.0, 0.0, 0.0, 1.37, 1.52, 1.52) (179.4, -6.4, -6.3, 1.36, 1.52, 1.52)

k = 5 (0.0, 0.0, 0.0, 1.37, 1.52, 1.52) (179.0, 1.2, 1.2, 1.36, 1.52, 1.52)

is the PES approximated with a degree of polynomial exactness k, then the error indicator is

εrel(k) = max
x∈H(d+5,5)

‖Êk(x)− Ê5(x)‖
‖Ê5(x)‖

(4.4)

= max
x∈H(d+5,5)

‖Êk(x)− E(x)‖
‖E(x)‖

(4.5)
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since Ê5(x) = E(x) for all x ∈ H(d+ 5, d).

Results of the refinement study for each dimension are shown in Figure 4.5. It is interesting

to note that εrel is on the order of 10−3 for all degrees of exactness k in each dimension d.

Furthermore, while εrel does decrease as we increase k, it does not decrease as much as one

might expect.

k
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Figure 4.5: Refinement study results for 2-butene: εrel vs. k for d = 2, d = 3, and d = 6.
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Simulation 1: d = 2

The interpolated PESs for both the ground and first excited state are shown in Figure 4.6 with

each sparse grid point. One can visually observe that the global minimum of the first excited

state lies directly above the global maximum of the ground state, so it is clear that randomness

caused by molecular vibrations and thermal fluctuations could play an important role in the

reaction. Also, as we expect, the potential energy does not vary much in the x2 direction.
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Figure 4.6: Ground and first excited state PESs approximated with k = 5.

Fifty different reaction paths are shown on the PESs in Figure 4.7. The reaction path is

initialized on the ground state in the cis geometry at x = (0.0, 0.0)◦, and continuous steepest

descent converges to a minimizer of x̂1 = (−89.9, 49.5)◦ on the first excited state PES. The

approximated effects of thermal fluctuations and molecular vibrations upon relaxation do indeed

either send the molecule back to its original geometry or towards its trans-2-butene counterpart.

Note that that x2 also converges to the two geometrically identical values of either 0◦ or -120◦.

Simulation 2: d = 3

For this simulation we include our third degree of freedom x3. The reaction path is initialized

on the ground state at x = (0.0, 0.0, 0.0)◦, corresponding to the cis-2-butene geometry of our

88



0
-50

-100

x
1

-150
0

50

x
2

100

2

6

0

8

4

e
V

Figure 4.7: 50 simulation reaction paths on PESs approximated with k = 5. Here we show
only the relevant portion of the larger PES shown in Figure 4.6.

surrogate PES. After excitation to the first excited singlet state, continuous steepest descent

converges to a minimizer of x̂1 = (−89.7, 43.6, 43.7)◦. Upon relaxation, the effects of thermal

fluctuations and molecular vibrations again either send the molecule back to a cis geometry or

towards trans. Fifty different reaction paths are shown in Figure 4.8.

The simulation finds several different ground state local minima, but each has values suf-

ficiently close to 0◦ or 180◦ for x1. Dihedral angles x2 and x3 both change from 0◦ to ap-

proximately 44◦ while the molecule is in its first excited electronic state, and the simulated

randomness upon relaxation sends trajectories to either 0◦ or 120◦ (note that these two values

are geometrically equivalent for the rotation of the methyl groups). The energies of each reac-

tion converge to two slightly different values, reflecting the fact that the trans geometry is a

lower energy configuration than its cis counterpart.

Simulation 3: d = 6

Finally, we include the three carbon-carbon bond lengths for a total of six degrees of freedom.

Simulations begin on the ground state at the local minimum x = (0.0, 0.0, 0.0, 1.37, 1.52, 1.52)

corresponding to the cis geometry and are excited to the first electronic state. Continuous

steepest descent converges to a minimum of x1 = (−89.6, 49.7, 49.6, 1.42, 1.52, 1.52) on the first
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Figure 4.8: Simulation 3 results for 2-butene: (A) reaction paths for design variable x1, (B)
reaction paths for design variable x2, (C) reaction paths for design variable x3, (D) energies for
reaction paths. The x-axis in each plot is our non-physical time variable.

excited state PES and 50 reaction paths are reinitialized on the ground state. Reaction paths

for all 6 degrees of freedom are shown in Figure 4.9.

The dihedral angle x1 behaves as expected, with trajectories converging sufficiently close to

0◦ or 180◦. Similar to Simulation 2, dihedral angles x2 and x3 both change from 0 to 49.7◦ while

the molecule is in its first excited electronic state, and the simulated randomness upon relaxation

sends trajectories to either 0 or 120◦ (again, note that these two values are geometrically

equivalent for the rotation of the methyl groups). The reaction paths for x4 show that the

C2=C3 bond length changes from its initial value of 1.37 Å to 1.59 Å in a comparatively small
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number of time steps after excitation, but eventually decreases to its stable minimizer of 1.42

Å there after. After relaxation back to the ground state, x4 converges to two slightly different

bond lengths corresponding to cis and trans geometries. The single carbon bond lengths x5

and x6 vary as well, but by no more than 0.04 Å . Similar to x4, the trajectories for x5 and x6

converge to two different bond lengths. Energy paths resemble those shown in Figure 4.8(D)

for Simulation 2 and are not shown for this simulation.
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Figure 4.9: Simulation 4 results for 2-butene: (A) reaction paths for design variable x1, (B)
reaction paths for design variable x2, (C) reaction paths for design variable x3, (D) reaction
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4.2.2 Stilbene

Stilbene is considered a model for trans-cis isomerization studies, as they are ideal for molec-

ular electronics due to their properties of organic conductors, photoswitches, organic displays,

or biosensors [176]. Like 2-butene, stilbene isomerization has been studied extensively and a

transition paths between cis and trans are known [193, 21, 216, 186, 219].

Both cis and trans geometries are shown in Figure 4.10.

(a): trans-stilbene (b): cis-stilbene

Figure 4.10: Stilbene molecule, C14H12.

3 Degrees of Freedom

To corroborate our results, we will focus on a recent study by Jiang et al. [114] where they model

laser-induced trans to cis isomerization with a method called semiclassical electron-radiation-

ion dynamics (see A.3 for details on this method).

For our simulations we chose three degrees of freedom: x1 is a rotation about the central

C=C bond, and x2 and x3 correspond to the two vinyl-phenyl dihedral angles. From [114], the

cis geometry corresponds to x̄ = (0, 50, 50) (this value differs from what is reported in [114]

because of how they define the dihedral angle controlling this rotation - we have modified it

appropriately) and the trans geometry corresponds to x̄ = (180, 0, 0). The interpolation domain

for each degree of freedom is: [-10, 190]◦, [-80, 80]◦, and [-80, 80]◦, respectively. Figure 4.11 shows

these degrees of freedom with the molecule at its cis stable geometry. We construct PESs with

a degree of exactness of k = 3 and perform each geometry optimization at the B3LYP/6-31G*

level of theory. The stilbene z-matrix used for the electronic structure calculations can be found
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Figure 4.11: Degrees of freedom for stilbene simulations.

in Appendix A.6.

We initialize simulations in the cis geometry and excite the molecule to its first excited

singlet electronic state. 50 different reaction paths are shown in Figure 4.12, where the artificial

vibrations and fluctuations successfully simulate the cis-trans photoisomerization process.
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Figure 4.12: Simulation results for stilbene: (A) reaction paths for design variable x1, (B)
reaction paths for design variable x2, (C) reaction paths for design variable x3, (D) energies for
reaction paths. In each plot the x-axis is the reaction path time step.
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4.2.3 2-Pentene

Pentene (C5H10) is another molecule that can transition between cis and trans isomers (see

Figure 4.13). The main reaction coordinate, which we set as x1, is the dihedral angle governing

the twisting of the carbon-carbon double bond. The second degree of freedom x2 is a twisting of

the single carbon-carbon bond in the middle of the molecule. Both degrees of freedom are labeled

in Figure 4.14. The interpolation domain for both of these degrees of freedom is [−190, 190]◦.

The energies are calculated at the B3LYP/6-31G* level of theory and the PESs are built with

a degree of exactness k = 5.

Figure 4.13: Isomerization between cis-2-pentene (left) and trans-2-pentene (right).

X1

X2

Figure 4.14: Degrees of freedom for pentene reaction path dynamics.

We initialize the simulations in the cis conformation with x = (0.0, 0.0) and excite the

molecule to the first excited singlet state. The reaction path is followed to the minimizer of the

first excited singlet state, x = (−89.9, −58.3), and the simulated randomness causes reaction
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paths to split among the four stable ground state geometries listed in Table 4.4. The reaction

paths for 50 different simulations are shown in Figure 4.16. The two isomers cis-cis and trans-cis

(Figures 4.4a and 4.4b) are known, but our reaction path simulations also converge to two other

stable geometries which we have labeled cis-trans and trans-trans (Figures 4.4c and 4.4d).

(a): Cis-cis-2-pentene (b): Trans-cis-2-pentene

(c): Cis-trans-2-pentene (d): Trans-trans-2-pentene

Figure 4.15: 2-Pentene molecule, C5H10.
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Table 4.4: Two-dimensional minimizers of the approximated PES for 2-pentene.

Stable Geometry Minimizer (x1, x2)

cis-cis (0.0, 0.0)

cis-trans (2.4, -119.7)

trans-cis (-178.9, 8.1)

trans-trans (-178.8, -119.7)

0-50-100

X
1

-150

-100

-50

X
2

0

6

4

2

8

0

e
V

Figure 4.16: Simulations run on the ground and first excited singlet state of 2-pentene. The
PESs were generated with k = 5.
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Chapter 5

Potential Energy Surfaces and

Nonadiabatic Dynamics of Fe-based

Molecular Complexes

5.1 Introduction

Sunlight offers abundant amounts of energy that could be converted into electricity or other

sources of fuel. In 2002, the total solar energy absorbed in one hour by Earth’s atmosphere,

oceans, and land masses was more energy than the world used in the entire year [148]. While

advances in the field have been made, the efficient capture, storage, and transport of energy

from sunlight are still significant challenges to properly harvesting this energy. Sunlight can be

converted to electricity via dye-sensitized solar cells (DSSCs) [93, 85] or to chemical fuels via

photocatalytic synthetic cells [209]. These cells contain either a single photoactive molecule or

molecular array anchored to a semiconductor. This work focuses on the latter, where conversion

of sunlight to electricity occurs takes place by the interfacial electron transfer (IET) between

the molecule and the semiconductor after the molecule absorbs light [93].

The most successful class of molecules used in these cells is based on Ru(II)-polypyridine

compounds. While efficient, ruthenium (Ru) is a relatively rare and expensive metal. More

common metals such as iron [67, 68] and copper [48] have been investigated for use in these

cells, and are ideal for the development of economical and sustainable solar cells or artificial

photosynthetic systems because of their low cost and high abundance [60, 147, 134]. Unfortu-

nately, compounds based on these metals are not as efficient as their ruthenium counterpart.

The presence of a number of low-lying metal-centered excited states of various spin multiplici-

ties inhibits the control the photochemical activity of compounds based on first row transition

metals, i.e. iron [117]. Iron-based complexes have a weaker ligand-field compared to ruthenium-
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based complexes, and therefore the metal-centered ligand-field (MC) states lie lower in energy

than the lowest energy metal-to-ligand charge transfer (MLCT) state. As a result, successful

interfacial electron transfer is impeded by a very fast intersystem crossing (ISC) into these MC

states [117, 147, 108, 197]. An ISC is a radiationless transfer between two electronic states with

different spin multiplicities. For example, an ISC occurs when an excited singlet state, in which

all electron spins are paired (different spin), transitions to an excited triplet state, in which

the excited electron is no longer paired with the ground state electron (same spin). Several

models of intersystem crossing have been proposed [108, 197, 52, 217, 43, 239, 51], but the

phenomenon is still not completely understood. Figure 5.1 shows an energy level diagram com-

paring the electronic states of an Fe(II)-polypyridine and a Ru(II)-polypyridine. In particular,

observe that the 5MC state lies lower in energy for the Fe(II)-polypyridine than it does for the

Ru(II)-polypyridine.

Figure 5.1: Energy level diagram comparing excited state dynamics of Fe(II)-polypyridine and
Ru(II)-polypyridine compounds. Green lines represent photo excitation from the singlet ground
state (1A) to a singlet MLCT state (1MLCT). Dashed red lines represent the ISC into the MC
state (5MC), and solid red lines represent IET into the TiO2 conduction band. The dashed blue
line represents radiative decay back into the ground state. Image produced by Elena Jakubikova.

Several factors make this an extremely challenging system to study: first, the complexes in

question have upwards of 50 atoms and require a large amount of computational resources for

electronic structure calculations. Second, the change in spin multiplicities during ISC cannot

be described by adiabatic dynamics methods, such as the one presented in Chapter 4. Third,
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the distortions in molecular geometry and the large number of electronic states involved in ISC

require more computational overhead than the simple two-state reactions studied in Chapter 4.

One goal of this work is to model ISC events in these Fe-based systems. First, we must

obtain a better understanding of the potential energy surfaces (PESs) of Fe(II)-polypyridines.

Specifically, we will construct adiabatic PESs for the the 1A, 1,3MLCT, 3MC, and 5MC electronic

states for the [Fe(tpy)2]2+ complex. One or two dimensional PES’s for FE(II)-polypyridines

have been studied in the past [52, 51, 157, 71, 40, 240], and [Fe(tpy)2]2+ has been studied

experimentally in [44] and [112].

Second, we will locate minimum energy crossing points (MECPs) between pairs of PES’s. A

minimum energy crossing point is a point where two energy surfaces corresponding to different

spin states intersect with minimum energy. Transitions between the two PESs of different spin

are most likely to occur at these points [229, 230, 15]. We will also compute the entire intersection

seam for the pairs of PESs that intersect. Because we utilize a sparse grid approximation for

the PESs, visualization of the seams is computationally inexpensive.

Finally, we will introduce both nonadiabatic transition state theory [96, 97] and Tully’s

fewest-switches surface hopping nonadiabatic dynamics [210], two methods by which to simulate

ISC and IET. The reaction path following method presented in Chapter 4 can only be applied

to adiabatic dynamics - dynamics based on the Born-Oppenheimer approximation that can be

represented on a single PES. The complicated changes in spin-states of Fe(II)-polypyridines,

however, necessitates the application of nonadiabatic dynamics - dynamics where the Born-

Oppenheimer approximation breaks down because of the speed of the reaction or changes in

spin-state. The breakdown of the the Born-Oppenheimer approximation necessitates special

methods to account for the splitting of the population among several electronic states [12].

In the subsequent sections we will present PES results for the [Fe(tpy)2]2+ complex, intro-

duce nonadiabatic transition state theory and Tully’s fewest-switches surface hopping nona-

diabatic dynamics, and show how we could extend our reaction path following method from

Chapter 4 to account for nonadiabatic dynamics.

5.2 Potential Energy Surfaces of [Fe(tpy)2]
2+

[Fe(tpy)2]2+ is an iron complex that has two terpyridine ligands, and is of particular interest

to the chemical community due to its unique photophysical properties [100, 175]. The lowest

energy excited state for [Fe(tpy)2]2+ is a high-spin quintet (5MC) state, which is populated

via a very fast intersystem tossing cascade after excitation from the singlet ground state (1A)

[100, 159].

The observed lifetime of the 5MC state at low temperatures increases with decreasing energy

difference between the 1A and 5MC states, primarily due to the fact that the non-radiative decay
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pathway 5MC→1A can only occur via a tunneling mechanism without external perturbations

[99]. At low temperatures, this behavior allows “light-induced excited state spin trapping”

(LIESST), a process that can potentially be employed for molecular switches such as memory

[99]. [Fe(tpy)2]2+ is unique because when it is embedded in a loose solid matrix, the lifetime

of the 5MC state drastically increases relative to similar complexes. This phenomenon is called

“strong-field LIESST” (SF-LIESST), and is not fully understood. Elucidating the properties of

[Fe(tpy)2]2+ that cause this phenomenon could establish new design principles for molecular

switches and sensitizers.

Studying the PESs of [Fe(tpy)2]2+ could yield insights into the mechanism of SF-LIESST.

As such, these surfaces of are particular interest to the chemical community and are the subjects

of active research. It has been suggested that a single reaction coordinate model is insufficient

to describe the spin-state transitions of [Fe(tpy)2]2+ [100]. In [159], for example, the authors

study the phenomenon with respect to two degrees of freedom: the axial Fe-N bond lengths and

the “biting” angle created by the NNN atoms of each ligand. The elongation of the Fe-N bond

lengths occurs because two electrons are transferred from the nonbonding t2g orbitals to the e∗g

type anti bonding orbitals, leading to the expansion of the system [159].

After inspecting fully optimized structures for the 1A, 3MC, and 5MC states, we identified

three degrees of freedom for our surrogate PESs: axial N-Fe bond lengths, equatorial N-Fe bond

lengths, and a “rocking” angle. This work marks the first time that such an angle has been

considered in analyzing the photochemical processes of Fe(II)-polypyridines. The axial bond

lengths x1 are the two bonds connecting the Fe atom to the N atom of each ligand’s middle

pyridine. The equatorial bond lengths x2 are the four bonds connecting the Fe atom to the N

atoms of each ligand’s outer pyridines. The rocking angle x3 is defined as the axial N-Fe-N bond

angle’s deviation from 180◦. The interpolation domain for each of these degrees of freedom is

[1.76, 2.37] Å. The rocking angle is defined as the axial N-Fe-N bond angle’s deviation from

180◦. The interpolation domain for x3 is [-20, 20] degrees (◦). The three degrees of freedom

are shown in Figure 5.2. Figure 5.3 shows the molecule with a rocking angle of 0◦ and 20◦. To

simplify notation and clarify discussion, we relabel our coordinates (Rax, Req,Θ) := (x1, x2, x3)

in the following.

We will construct diabatic PESs for the the ground singlet (1A), lowest-lying metal-to-ligand

transfer (1MLCT), lowest-lying triplet (3MC), and lowest lying (5MC) electronic states for the

[Fe(tpy)2]2+ complex. For our initial studies, we employed Smolyaks algorithm with a degree

of exactness of k=1, but found that a degree of exactness of k=3 was necessary to achieve

a satisfactory approximation. As previously mentioned, the nested structure of sparse grids

allowed us to reuse calculations from the k=1and k=2 grids when constructing the k=2 and

k=3 grids, respectively. For example, the k=1 sparse grid contains 7 grid points and the k=2

sparse grid contains 25 grid points. If we already have the energy values at the 7 grid points
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Figure 5.2: The 3 degrees of freedom for [Fe(tpy)2]2+.

Figure 5.3: The iron-based complex [Fe(tpy)2]2+ with a rocking angle of 0◦ (left) and a rocking
angle of 20◦ (right).

from the k=1 sparse grid, we only need to perform 18 new electronic structure calculations to

construct the k=2 approximation.
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We use the B3LYP functional [200, 119] with Grimme’s D2 dispersion correction [91], which

has been shown to be applicable to Fe(II)-polypyridine based complexes [28]. We utilize the

SDD basis set for Fe and the 6-311G* basis for all other atoms for the 1A, 3MC, and 5MC

surfaces. The polarizable continuum model will be used to account for solvent effects (water).

TD-DFT [178, 204, 41, 14] with the same functional and basis set are used to obtain the energies

of 1MLCT and 3MLCT states, using the 1A state as a reference.

For some sparse grid points the triplet and quintet electronic structure calculations did not

converge to the desired electronic state. For example, several calculations for the 3MC surface

converged to a MLCT state rather than the correct metal-centered state. This is not entirely

surprising as the 3MC and 5MC states are highly destabilized at reduced metal-ligand bond

lengths. We developed a step-by-step process to attempt to converge to the correct state for

these cases. The first step is to find “nearby” sparse grid point that converged to the correct

state. Since it is known that the presence of a solvent stabilizes MLCT states, we then perform

a single point calculation in vacuum using the wavefunction from the “nearby” sparse grid point

as an initial guess. If the single point calculation successfully converges to the correct state, we

then proceed with a geometry optimization in vacuum using the single point wavefunction as an

initial guess. If the resulting electronic state is still MC, we repeat the single point/optimization

steps in solvent using the wavefunction from the previous steps as an initial guess. To summarize,

the process is:

1. Find a “nearby” sparse grid point that converged to the correct state.

2. Perform a single point calculation in vacuum using the “nearby” wavefunction as an initial

guess.

3. If MC state, perform an optimization in vacuum using the wavefunction from step 2 as a

guess.

4. If MC state, perform a single point calculation in solvent using the wavefunction from

step 3 as an initial guess.

5. If MC state, perform an optimization in solvent using the wavefunction from step 4 as a

guess.

If at any point these calculations do not converge to the correct state, one could either try

using an initial guess from a different “nearby” sparse grid point, or simply keep the results

from the lowest energy state. In choosing the latter, we simply refer to the PES as adiabatic

instead of diabatic. We were unable to compute the MC state for 4 triplet sparse grid points

and for 6 quintet sparse grid points, and these points are shown on the 3D sparse grid in Figures

5.4 and 5.5, respectively. These points all correspond to geometries with the shortest axial and

104



equatorial bond lengths, so we believe the MLCT state is lower in energy than the MC state

for these geometries.
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Figure 5.4: Electronic states for each sparse grid point for the 3MC adiabatic PES. Metal-
centered (MC) states are labeled in black, and metal-to-ligand charge transfer (MLCT) states
are labeled in red.
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Figure 5.5: Electronic states for each sparse grid point for the 5MC adiabatic PES. Metal-
centered (MC) states are labeled in black, and metal-to-ligand charge transfer (MLCT) states
are labeled in red.

Finally, a stability analysis was also performed on all singlet, triplet, and quintet electronic

calculations. If the wavefunction was found to be unstable, we first stabilized the wavefunction

(via the keyword and option Stable=Opt in Gaussian 09), and then performed a geometry

optimization using the stable wavefunction as an initial guess.
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5.2.1 Results

Table 5.1 shows the minimizers of each PES as well as their optimized values computed from

a full optimization in Cartesian coordinates. Surfaces with the degree of polynomial exactness

k = 1 and k = 2 were determined to have insufficient accuracy based on the reproduction of

the energy minima of the metal-centered (MC) states. Interpolated minima for k = 3 surface

are overall in a good agreement with the minima of the fully relaxed geometries. The errors in

all metal-ligand bond lengths range from 0.00-0.02 Å, while the errors in Θ range from 0.0-1.0°.

Table 5.1: Optimized values for each degree of freedom for each state. 1A is the singlet ground
state, 3MC is the lowest-lying triplet excited state, and 5MC is the lowest-lying quintet excited
state.

1A

Deegree of Freedom Optimized Value k = 1 k = 2 k = 3

Rax (Å) 1.91 1.95 1.91 1.91
Req (Å) 2.00 2.09 2.01 2.01
Θ (◦) 0.0 0.0 0.0 0.0

1MLCT

Deegree of Freedom Optimized Value k = 1 k = 2 k = 3

Rax (Å) - 1.94 1.93 1.90
Req (Å) - 2.06 1.99 1.99
Θ (◦) - 0.0 0.0 0.0

3MLCT

Deegree of Freedom Optimized Value k = 1 k = 2 k = 3

Rax (Å) - 1.87 1.88 1.89
Req (Å) - 2.04 1.98 1.94

Θ(◦) - 0.0 0.0 0.0
3MC

Deegree of Freedom Optimized Value k = 1 k = 2 k = 3

Rax (Å) 1.94 2.01 1.92 1.93
Req (Å) 2.14 2.18 2.14 2.16
Θ (◦) ±0.2 0.0 0.0 0.0

5MC

Deegree of Freedom Optimized Value k = 1 k = 2 k = 3

Rax (Å) 2.16 2.18 2.17 2.16
Req (Å) 2.20 2.22 2.20 2.20
Θ (◦) ±10.7 0.0 ±6.1 ±11.8
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Table 5.2 shows the energies of each state’s minimum relative to the minimum of the 1A

state for both fully optimized structures and the k = 3 sparse grid approximation. Again, we

see that our sparse grid approximation is an agreement with results computed from the fully

optimized structures.

Table 5.2: Energies (kcal/mol) of each state’s minimum relative to the minimum of the 1A
state.

State Optimized Energy k = 3 Sparse Grid Energy
1A 0.0 0.0

3MC 15.27 14.17
5MC 5.83 5.8

1MLCT - 61.91
3MLCT - 57.06

The use of the surrogate model enables us to visualize and explore the PES’s in many

different ways. Figures 5.6-5.8 show two-dimensional projections of the k = 3 PES’s for each

pair of degrees of freedom, fixing the third degree of freedom at its k = 3 optimized value for

the 1A state from Table 5.1. Figure 5.10 shows a one-dimensional projection of the k = 3 PES’s

where Rax = Req and Θ = 0°. Finally, Figure ?? shows the stable (i.e. lowest energy) electronic

state as a function of both bond lengths and a rocking angle of 0°.
As we expect, the 1MLCT and 3MLCT states lie close together at all points in our domain,

with the 1MLCT state energy slightly higher than the 3MLCT state energy. These are both

higher in energy than the 3MC and 5MC states at all points in our domain except for a small

region in the corner where axial and equatorial bond lengths are both less than ≈ 1.9 Å. Note

also that the 3MC and 5MC states are both lower in energy than the 1A state when both axial

and equatorial bond lengths are elongated. There is a region of the domain where the 3MLCT

energy is higher than the 1MLCT (see top corner of Figure 5.6A). This is not physical, but

rather a result of Runge’s phenomenon, a problem where interpolating polynomials oscillate

near the boundary of the interpolation domain. These oscillations are reduced by our use of

Chebyshev sparse grid points, but the phenomenon is still evident in our results because the

two MLCT energies are very close together in that region. Regardless, we do not expect any

dynamics to venture towards that area of the domain, so the small oscillation is of no concern.

It is evident from Figures 5.6-5.8 that the PESs of various electronic states are not energet-

ically well separated, but there are a number of crossing seams between various pairs of PESs

present. Most notably, 5MC electronic surface crosses every single PES investigated. Therefore,
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depending on the actual structure of the [Fe(tpy)2]2+, 5MC electronic state can be either the

lowest or the highest energy electronic state of this complex among those investigated. Interac-

tion of the 5MC surface with every PES investigated suggests that 5MC electronic state plays

a key role in the ISC cascade and the ability to control the overall shape of its PES via vari-

ous structural modifications will translate into our ability to control the ISC cascade. Overall,

it is apparent that the length of the metal-ligand bonds has a large impact on the ordering

of the MC and MLCT states in Fe(II)-polypyridines: the short bond lengths tend to stabilize

MLCT states, while the long bond lengths stabilize the MC states. This can be exploited in

construction of the complexes with desired energetic ordering of electronic states.
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Figure 5.6: Two views of the 1A, 1,3MLCT, 3MC, and 5MC electronic state PES’s for
[Fe(tpy)2]2+ as a function of axial and equatorial bond lengths.
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Figure 5.7: 1A, 1,3MLCT, 3MC, and 5MC electronic state PES’s for [Fe(tpy)2]2+ as a function
of axial bond lengths and rocking angle.
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Figure 5.8: 1A, 1,3MLCT, 3MC, and 5MC electronic state PES’s for [Fe(tpy)2]2+ as a function
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Figure 5.9: 1A, 1,3MLCT, 3MC, and 5MC electronic state PES’s for [Fe(tpy)2]2+ as a function
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Figures 5.11-5.13 show contour plot projections of the k = 3 PES’s for each pair of degrees

of freedom. All Figures show projections of the PES’s for two degrees of freedom with the other

degree of freedom at its k = 3 optimized value taken from Table 5.1. From these plots, we find

large valleys of low energy when considering distortions to Θ near the energy minima. This is

most evident for the 3MLCT and 5MC states, which have large regions of low energy around

their minima. Also, the shallow symmetric double wells potential for the 3MLCT and 5MC

states about Θ are clearly visible. These low energy regions are within the error of the DFT

methodology, and so their energy cannot be considered significantly different than that of the

minima. This is important when considering dynamics on the PESs, as there is very little barrier

to prevent the molecular conformations from traversing these regions of the PESs. This could

potentially lead to dynamics that differ quite significantly from other Fe(II)-polypyridines which

lack the energetic capacity for these angular distortions. This is also important as we calculate

the minimum-energy crossing points (MECPs) of the surfaces, where intersystem crossing is

likely to occur. By considering as many design parameters as possible to explore the distortions

between the relevant states, we insure that the surfaces and MECPs we calculate are reasonable

approximations to the exact values (complete surface) at the same level of theory.

These results suggest that there is a very low energy barrier associated with the rocking

motion of the ligand in these complexes. The distortion in Θ is one of the most pronounced

structural differences between the 1A and 5MC minima, where the Θ changes from 0° in 1A to

10.4° in 5MC. Making this distortion less energetically favorable via structural modifications

could kinetically slow down the ISC process.
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Figure 5.11: Contour plots of the (A) 1A, (B) 1MLCT, (C) 3MLCT, (D) 3MC, and (E) 5MC
electronic state PES’s for [Fe(tpy)2]2+ as a function of axial and equatorial bond lengths.
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Figure 5.12: Contour plots of the (A) 1A, (B) 1MLCT, (C) 3MLCT, (D) 3MC, and (E) 5MC
electronic state PES’s for [Fe(tpy)2]2+ as a function of axial bond length and rocking angle.
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Figure 5.13: Contour plots of the (A) 1A, (B) 1MLCT, (C) 3MLCT, (D) 3MC, and (E) 5MC
electronic state PES’s for [Fe(tpy)2]2+ as a function of equatorial bond length and rocking angle.
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5.2.2 Minimum Energy Crossing Points and Seam of Intersection

In this section we calculate the minimum energy crossing points (MECPs) for each pair of PESs

with different spin states. An MECP, the point where two PESs corresponding to different spin

states intersect with minimum energy, is important because it serves as the most likely place

where a transition between the two electronic states occurs [229, 230, 15]. It is necessary to

compute MECPs in order to understand and quantify the physical interactions at the crossing

point such as spin-orbit coupling [42].

Following the definition from [98], we begin by defining

y := ∇Ei(p)−∇Ej(p) (5.1)

where p denotes geometric coordinates and Ei(p) is the PES of state i. The MECP between

two PESs Ei and Ej can be found by minimizing

‖ḡ(p)‖ = ‖g(p) + f(p)‖ (5.2)

where

f(p) = [Ei(p)− Ej(p)] y (5.3)

g(p) = ∇Ei(p)− y

‖y‖

(
∇Ei(p) · y

‖y‖

)
. (5.4)

Transitions between the two PESs of different spin are most likely to occur at these points

[229, 230, 15], and as such they play an important role in nonadiabatic transition state theory.

We also compute the intersection seam for each pair of PESs. The seam for two energy

surfaces E1 and E2 is defined as the set

S1,2 = {x|E1(x) = E2(x)} . (5.5)

Table 5.3 shows the MECP coordinates for each pair of the surfaces that intersect, along with

the MECP energies relative to the minimum ground state energy. The structure and energies

of the MECPs obtained from the interpolated surfaces are very similar to those of the fully

optimized MECPs (see Table 5.1). The MECP for intersection of 1A and 5MC electronic states

lies at the lowest energy, approximately 10 kcal/mol higher than the 1A minimum, with the

MECPs for 1A/3MC and 3MC/5MC pairs lying only 4-4.4 kcal/mol above. These results are

similar to those determined at the B3LYP* and CASPT2 levels of theory in the previous work

by Papai and coworkers [159]

Figures 5.14-5.18 show plots of the entire intersection seam between these surfaces. The
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Table 5.3: Minimum energy crossing points for each pair of PESs. 1A is the singlet ground
state, 3MC is the lowest-lying triplet excited state, and 5MC is the lowest-lying quintet excited
state. The * indicates fully optimized MECPs that were calculated with Gaussian 09.

Surfaces MECP (Rax, Req,Θ) MECP Energy (kcal/mol)
1A/3MC (1.93, 2.20, 0.00) 14.76
1A/5MC (2.03, 2.13, 0.00) 10.30

1A/5MC* (2.03, 2.13, 0.00) 10.77
3MC/5MC (1.95, 2.17, 0.00) 14.38

3MC/5MC* (1.96, 2.15, 0.00) 15.31
1MLCT/5MC (1.87, 1.92, 0.00) 65.53
3MLCT/5MC (1.89, 1.94, 0.00) 57.06

MECP is shown in red, and the energy of the intersection seam is relative to the MECP en-

ergy. In each case, the intersection seam is a two-dimensional manifold that slices through our

three-dimensional domain. Each intersection seam contains a large area around the MECP

in which the energy is less than 5 kcal/mol higher than the MECP energy, with 2.5 and 5.0

kcal/mol contours plotted in white and red, respectively. With the exception of 1MLCT/5MC

surface (Figure 5.16, this low-energy area around the MECP is situated primarily along the Θ

coordinate, indicating that large areas of the intersection seams around the MECP are ener-

getically accessible via the ligand rocking motion. Consequently, the state crossing may occur

for a number of different conformations around the MECP, and not necessarily always at the

MECP geometry.
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Figure 5.14: 1A/3MC intersection seam for [Fe(tpy)2]2+.

Figure 5.15: 1A/5MC intersection seams for [Fe(tpy)2]2+.
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Figure 5.16: 1MLCT/5MC intersection seam for [Fe(tpy)2]2+.

Figure 5.17: 3MLCT/5MC intersection seam for [Fe(tpy)2]2+.

122



Figure 5.18: 3MC/5MC intersection seam for [Fe(tpy)2]2+.
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Finally, we computed the minimum energy pathway (MEP) for each pair of surfaces that

intersect. An MEP connects two separate surfaces’ minimum via the MECP using the path with

the smallest change in energy [190]. Figures 5.19-5.23 show the MEPs for each of the pairs of

surfaces that intersect. We computed these MEPs by computing two steepest descent reaction

paths: one from the MECP to the minimum of the first surface, and another from the MECP to

the minimum of the second surface. With the exception of the the 3MLCT/5MC MEP (Figure

5.23), the rocking angle remained at Θ = 0◦ for the entire reaction path. Consequently, we

were able to project these MEPs onto two-dimensional potential energy surfaces (see Figures

5.19-5.22).
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Figure 5.19: 1A/3MC minimum energy pathway for [Fe(tpy)2]2+.
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Figure 5.20: 1A/5MC minimum energy pathway for [Fe(tpy)2]2+.
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Figure 5.21: 3MC/5MC minimum energy pathway for [Fe(tpy)2]2+.
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Figure 5.22: 1MLCT/5MC minimum energy pathway for [Fe(tpy)2]2+.
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Figure 5.23: 3MLCT/5MC minimum energy pathway for [Fe(tpy)2]2+.
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The construction of these reduced PESs is the first step towards performing dynamics of the

photocycle for the complex, which could aid in understanding its unique strong-field LIESST

behavior. Further investigations into the transitions between states and the deactivation path-

ways for the complex will hopefully lead to insight into the unique dynamics observed for the

[Fe(tpy)2]2+ complex. This and future work will also aid in establishing design principles and

structure-function relationships in Fe(II)-polypyridine complexes, to afford a wider range of

tunability towards numerous photophysical applications.
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5.3 Nonadiabatic Dynamics

In this section we discuss the methodologies needed to describe the complex dynamics of Fe(II)-

polypyridine systems. These dynamics are called nonadiabatic dynamics, and require the inclu-

sion of more quantum effects than the adiabatic dynamics described in Chapter 4.

There are several methods for describing nonadiabatic dynamics at or near intersections of

two PESs intersect [212, 214]. There are two types of intersections: conical intersections take

place between states of the same spin, and intersystem crossings take place between states of

different spin [234]. The work presented in this Chapter focuses primarily on the latter. The

approaches we will employ for nonadiabatic dynamics are nonadiabatic transition state theory

(TST) [96, 97] and Tully’s fewest switches trajectory surface hopping method [210]. TST pro-

vides a simple time-independent approach for computing nonadiabatic transition probabilities

between two states of different spin. Nonadiabatic dynamics at an intersystem crossing between

two PES’s is described by the two surface’s minimum energy crossing point (MECP), the lowest

energy geometry on the seam of intersection between the two surfaces. In Tully’s more compli-

cated time-dependent method, nuclear dynamics are described by classical equations of motion

of electronic PESs. At any given time, trajectories can “hop” from one surface to another.

The probability of a hop from one state to another is calculated from either the spin-orbit or

nonadiabatic coupling and the relative energy between the two states.

There are other methods for treating nonadiabatic dynamics. The ab initio multiple spawn-

ing (AIMS) method [18] interprets the nuclei as frozen Gaussian wave packets evolving on an

electronic PES. As the wave packet propagates, it can separate, or spawn, depending on the

nonadiabatic coupling between the electronic states. Another alternative is the the Ehrenfest

method [141] where trajectories evolve on a optimally weighted average of PESs instead of hop-

ping between them. Ref. [214] offers a great review of nonadiabatic dynamics and the methods

for which to study them, including both the Ehrenfest and surface hopping methods. In the

next section we describe Tully’s fewest switches trajectory surface hopping method [210], as it

will be our method of choice in future work.

5.3.1 Nonadiabatic Transition State Theory

Nonadiabatic transition state theory (TST) [96, 97] can account for the kinetics of reactions

involving intersystem crossing. These reactions are nonadiabatic in the sense that they occur

on more than one PES, with transformation from reactants to products requiring the system

to “hop” from the PES corresponding to the initial spin state onto that corresponding to the

product state for reaction to occur. TST is a time-independent method that yields reactivity

rate constants on single PESs for each step of nuclear motion. The rate coefficient ki→j of a
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spin-forbidden reaction at a given internal energy E is

ki→j =
kgT

h
exp

(
∆EMECP

RT

)
Phop (5.6)

where ∆EMECP is the energy difference between the two surfaces at the MECP, kg is the Boltz-

mann constant, R is the molar gas constant, T is the temperature, and Phop is the probability

of a transition between the two surfaces. This transition probability is calculated using the

Lendau-Zener formula [235, 153, 225]

Phop = 1− exp

(
−2πHSO

ij

ν∆F

)
(5.7)

where ν is the velocity of the system as it passes through the MECP, HSO
ij is the spin-orbit

coupling-derived off-diagonal Hamiltonian matrix element between the two electronic states

defined as

HSO
ij =

〈
φi|ĤSO|φj

〉
, (5.8)

and ∆F is the relative slope of the two surfaces at the MECP [96, 97].

5.3.2 Tully’s “Fewest Switches” Surface Hopping

Surface hopping [106] is a popular approach for modeling nonadiabatic dynamics. The method is

a time-dependent mixed quantum mechanical/classical mechanical technique that is designed

to more accurately treat quantum mechanical effects of dynamics in regions of PESs where

the Born-Oppenheimer approximation breaks down (i.e. conical intersections and intersystem

crossings). As opposed to the reaction path method of Chapter 4 where trajectories traveled on

one PES, in the surface hopping method trajectories are allowed to “hop” between surfaces at

any given time. Tully’s “Fewest Switches” Surface Hopping method [210] is perhaps the most

widely used surface hopping algorithm, and we describe the method in this section.

Let r and R denote the electronic and atomic coordinates, respectively. In [210], Tully writes

the total Hamiltonian of the system as

Ĥ = T̂R + Ĥ0(r,R), (5.9)

where Ĥ0(r,R) is the electronic Hamiltonian for fixed atomic positions and T̂R is the atomic

motion kinetic energy operator.

We first choose an orthonormal set of M electronic basis functions φj(r; R) that depend

parametrically on the atomic positions. These may be, for example, wave functions derived from
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the time-independent Schrödinger equation within Born-Oppenheimer approximation

Ĥ0φi = Eiφi (5.10)

for eigenstates (electronic states) j = 1, 2, . . . ,M . Next, define matrix elements of the electronic

Hamiltonian

Vij(R) =
〈
φi(r; R|Ĥ0(r,R)|φj(r; R)

〉
(5.11)

where we use bra-ket notation introduced in Chapter 3. Note that

Ei = Vii. (5.12)

Finally, we define the “nonadiabatic coupling vector”

dij(R) = 〈φi(r; R)|∇R|φj(r; R)〉 (5.13)

where the gradient is defined with respect to the atomic coordinates. This vector can also be

computed from the off-diagonal Hellmann-Feynman forces [59]

dij(R) =

〈
φi(r; R|∇RĤ0|φj(r; R)

〉
Ei − Ej

, i 6= j. (5.14)

Tully’s surface hopping method assumes that there is a continuous function such that R =

R(t) where t is time. For this work we employ the continuous steepest descent equation from

our reaction path method in Chapter 4

Ṙ = −∇REj . (5.15)

Consequently, the electronic Hamiltonian Ĥ0(r; R) is now a time-dependent operator Ĥ0(r; R(t)).

Another popular option for the classical trajectories is Rm is

R̈ = − 1

Mm
∇REj (5.16)

where Mm is the associated mass. This is the equation of choice for the Newton-X software

package [11, 12] and the solution is often approximated with the Velocity Verlet algorithm [205]

(see Appendix A.5).

Consider the time-dependent electronic Schrödinger equation

i~
∂

∂t
ψ(r,R, t) = Ĥeψ(r,R, t) (5.17)
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where ψ(r,R, t) is the wave function that describes the electronic state at time t. Tully expands

this wave function in terms of the electronic eigenfunctions

ψ(r,R, t) =
M∑
j

cj(t)φj(r; R) (5.18)

where the time-dependent expansion coefficients cj(t) ∈ C are called quantum amplitudes.

This approximation is commonly known as the Born-Huang expansion [26]. Substituting this

expansion into the time-dependent electronic Schrödinger equation, multiplying on the left by

φk(r,R), and integrating over r yields

i~ċk =

M∑
j

cj

(
Vkj − i~Ṙ · dkj

)
. (5.19)

In this form two terms promote transitions between electronic states: the off-diagonal elements

of Vkj and the nonadiabatic coupling term R · dkj .
It is often convenient to write Equation 5.19 in its equivalent density matrix form. Letting

akj = ckc
∗
j and using the properties of a set of orthonormal basis functions φi, Equation 5.19

becomes

i~ȧkj =
∑
i

[
aij

(
Vki − i~Ṙ · dki

)
− aki

(
Vij − i~Ṙ · dij

)]
. (5.20)

Here, akk are the occupation probabilities of the instantaneous adiabatic eigenstates and akj ,

k 6= j define the quantum coherence [59]. For a swarm of N trajectories, the number of trajec-

tories on a PES j at time t is ajj(t) ·N . The electronic state populations satisfy

ȧkk =
∑
l 6=k

bkl

where

bkl = 2~−1Im(a∗klVkl)− 2Re(a∗klR · dkl).

Our task is to simultaneously integrate Equations 5.15 and 5.20. Even though the time-

dependent wave function ψ is mixed state, the forces on the classical subsystem are determined

by a single “occupied” state. Tully’s fewest switches algorithm applies to the standard surface-

hopping procedure [215, 191], where trajectories evolve on a single PES, not some weighted

average, with the possibility of sudden jumps from one state to another that occur instanta-

neously. As the name suggests, Tully’s fewest switches algorithm minimizes the number of state
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switches. The method is outlined in three steps:

1. The system is assigned initial conditions, including positions and velocities of all the

atoms and the initial electronic density matrix elements akj . The initial wave functions

are usually the reference state wave function (e.g. ground state wave function) [170].

2. The classical mechanical equations of motion for the atoms (Equation 5.15) on the current

PES Vkk are integrated for a sufficiently small time interval ∆t.

3. For conical intersections, the switching probabilities gkj from the current electronic state

k to all other states j are computed from the density matrix elements via

gkj(t) = max

(
0,

∆tbjk
akk

)
. (5.21)

For intersystem crossings, on the other hand, probabilities are computed using the Lendau-

Zener formula [235, 153, 225] formula given in Equation 5.7. Then, a number ξ is drawn

with uniform probability from the interval (0, 1) to determine if a switch to any state j

will occur.

4. If a switch to state k′ occurs, the trajectory will now evolve on the PES Vk′k′ . Note that any

change in energy must be accounted for to conserve total energy. Tully suggests making

this adjustment to the component of velocity in the direction of the nonadiabatic coupling

vector dkk′(R) at the position of the transition R. If the velocity reduction required is

greater than the component of velocity to be adjusted, then the switch is not invoked.

Return to step 2.

Steps 2-4 are repeated until the trajectory reaches whatever stopping criteria specified by the

application. We will apply this method to study nonadiabatic dynamics of PESs of [Fe(tpy)2]2+.

Adiabatic vs. Diabatic Representation

For nonadiabatic dynamics there are two common choices of representation for the basis func-

tions φi: adiabatic wave functions and diabatic wave functions. The most common is the adia-

batic or Born-Oppenheimer wave functions, which are solutions to the time-independent elec-

tronic Schrödinger equation (Equation 5.10) for fixed nuclear coordinates R. In this repre-

sentation the electronic Hamiltonian (Equation 5.11) is a diagonal matrix where Vkk = Ek and

dkj 6= 0. Diabatic wave functions, on the other hand, are designed such that dkj = 0 and Vkj 6= 0

[59]. A number of different procedures for defining diabatic wave functions have been proposed,

but we describe the one presented in [214] here. First we split the electronic Hamiltonian

Ĥ0 = ĤD + V̂c
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where V̂c is a small coupling term which is responsible for the splittings between adiabatic states

at avoided crossings or conical intersections (i.e., where adiabatic PES’s nearly intersect). The

diabatic wave functions are solutions to

ĤDφi = Eiφi (5.22)

and Ei are the associated diabetic energies. For example, this representation can be used to treat

spin transitions by letting ĤD be the non-relativistic electronic Hamiltonian and V̂c characterize

the spin-orbit interaction as in [84]. A diabatic basis can be defined by a transformation of

the adiabatic electronic basis functions such that the vector of couplings dij is small enough

to neglect [113]. We employ the adiabatic representation, as the diabatic representation is

incompatible with surface hopping [213, 92].

Analogously, there are two representations of PESs: adiabatic and diabatic. An adiabatic

PES is one in which the energy for a particular electronic state is followed. On the other

hand, a diabatic PES is the lowest-energy electronic state available for each set of nuclear

coordinates [231]. The Born-Oppenheimer approximation implies following adiabatic surfaces,

but this approximation breaks down when the molecule transitions from one electronic state to

another. Figure 5.24 shows two adiabatic PESs that intersect and the resulting diabatic PES.

Figure 5.24: A simple one-dimensional example of two adiabatic paths that intersect and the
resulting diabatic path (image taken from [231], Chapter 20, pg. 174 ).
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Propagation of Quantum Amplitudes

Propagation of the quantum amplitudes ck can be carried out in a variety of different ways.

We summarize three here that are available options in the Newton-X software package [11, 12].

First let

σij = dij · Ṙ. (5.23)

The three methods are:

1. Explicit evaluation of the nonadiabatic coupling vectors dij via Equation 5.13.

2. If the nonadiabatic coupling vectors are not available σij(t) can be approximated by

σij(t) ≈
1

4∆t
(3Sij(t)− 3Sji(t) (5.24)

− Sij(t−∆t) + Sji(t−∆t) (5.25)

where Sij(t) = 〈φi(t−∆t)|φj(t)〉 are wavefunction overlaps between different time steps

[95, 167].

3. Finally, the local diabatization approach [83, 168] allows one to obtain ck without explicitly

evaluating σjk. In this case,

c(t+ ∆t) = T−1 exp

(
−iV (t) + TV (t+ ∆t)T−1

2~

)
(5.26)

where again V is the diagonal matrix of adiabatic energies and T is an adiabatic-to-

diabatic transformation constructed by a Löwdin orthogonalization of the S(t+∆t) over-

lap matrix.

5.4 Nonadiabatic Dynamics with Surrogate Models

Given means to calculate nonadiabatic coupling vectors in Equation 5.13 and spin-orbit cou-

plings in Equation 5.8, we can extend our reaction path following method from Chapter 4 to

include nonadiabatic dynamics. To do so, we propose approximating these terms with Smolyak’s

sparse grid interpolation algorithm. Instead of explicitly evaluating the nonadiabatic coupling

vectors and spin-orbit couplings during Tully’s surface-hopping dynamics, we instead evaluate

a surrogate.

As before, we begin by choosing design coordinates x ∈ Rd such that R = (x, ξ) and
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approximating the adiabatic PESs for each electronic state of interest to obtain

Êj(x) = A(q, d)[Ej ](x) (5.27)

where

Ej(x) = min
ξ
Ej(x, ξ). (5.28)

Next we use Smolyak’s sparse grid interpolation algorithm to approximate the nonadiabatic

coupling vectors

d̂ij(x) = A(q, d)[dij(R)] (5.29)

and the spin orbit couplings

ĤSO
ij (x) = A(q, d)[HSO

ij (R)]. (5.30)

In the construction of these three surrogates the remainder variables ξ are taken to be

ξ = argmin
ξ
E0(x, ξ).

Finally, Tully’s surface hopping algorithm can be implemented by simultaneously integrating

ẋ = −∇Êj(x) (5.31)

and

i~ȧkj =
∑
i

[
aij

(
Vki − i~ẋ · d̂ki

)
− aki

(
Vij − i~ẋ · d̂ij

)]
(5.32)

where hopping probabilities are computed with

Phop = 1− exp

(
−2πĤSO

ij

ν∆F

)
. (5.33)

Recall that since we are using an adiabatic representation of the PESs, V is a diagonal matrix

with Vii = Êi.

Currently, we lack the tools required to calculate diabatic and spin-orbit couplings at the

DFT level of theory. Nonadiabatic dynamics between states of different spin have been per-

formed before, however. Zaari et al. studied intersystem crossing between triplet and singlet
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spin-sates of SiH2 in [234] and computed spin-orbit couplings with the complete active space

configuration interaction method (CAS-CI) with singlet-triplet state averaged complete active

space self-consistent field method (CASSCF) orbitals, and a partial 2-electron and full 1-electron

spin-orbit Hamiltonian (HSO2P) [66, 65]. Several schemes for calculating these nonadiabatic

coupling vectors within TDDFT are available, provided that one of the states is the ground state.

In [207], Tavernelli et al. studied intersystem crossing of [Ru(bpy)3]2+ using the linear response

TDDFT (LR-TDDFT) method from [208] to compute nonadiabatic coupling vectors with the

CPMD software package (http://www.cpmd.org/), and the method of Wang et al. [221] to

compute spin-orbit couplings with the ADF2009.01 software package (http://www.scm.com/).

No methods for computing spin-orbit or diabatic couplings for DFT wave functions are available

in Gaussian 09 [72].

However, our collaborators are working closely with Dr. Sergey Varganov of the University

of Nevada, Reno, who is actively researching efficient methods to compute spin-orbit couplings

at the DFT level of theory. Once these methods have been developed we can move forward

in implementing our surrogate model for Tully’s surface hopping algorithm and studying the

nonadiabatic dynamics of Fe(II)-polypyridines. These are goals of future work related to this

dissertation and will be carried out by another student.
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Chapter 6

Conclusion

In this dissertation we have used Smolyak’s sparse grid interpolation algorithm [198, 13, 118]

to study reaction path dynamics and potential energy surfaces (PESs) of complex molecules.

Sparse grids are an effective means by which to study these systems, as often of the computa-

tional cost of constructing entire PESs often limits the number of degrees of freedom and/or

the size of the molecule one can study. Sparse grids optimize the ratio of invested storage

and computation time to approximation accuracy [37]. In this sense, they give us the most

accurate approximation using the least amount of grid points. In Chapter 2 we discussed the

history of sparse grids, and detailed the specific interpolation algorithm we use as first proposed

by Barthelmann, Novak, and Ritter [13]. We developed an implementation of this algorithm

specifically for this application that allows us to compute several thousand reaction paths si-

multaneously and efficiently. To do so, we utilized a reformulation of Smolyak’s algorithm by

Judd and coworkers [118] that removes redundant calculations Smolyak’s original formulation.

We expanded upon this reformulation by including analytical gradients, recursively computing

the basis polynomials, and vectorizing the computation of tensor products in MATLAB (see

Appendix A.1.3 for details) [152]. We then demonstrated that our implementation outperforms

MATLAB’s Sparse Grid Interpolation Toolbox [121, 122, 124].

After giving an introduction to quantum and computational chemistry in Chapter 3, we

presented our surrogate reaction path following method [151] in Chapter 4. There are several

benefits to using our surrogate model instead of traditional reaction path methods. First, the

use of sparse grids easily enables one to increase the number of degrees of freedom in reac-

tion path dynamics. Second, the sparse grid points used by Smolyak’s algorithm are uniquely

determined a priori, meaning all required electronic structure calculations can be performed

trivially in parallel. Third, the sparse grids we employ are nested, so one can reuse electronic

structure calculations to construct a higher order approximation. Finally, our implementation

of Smolyak’s algorithm allows one to continuously follow several different reaction paths simul-
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taneously. We demonstrated the power our surrogate model method by performing reaction

path simulation studies for molecules including 2-butene, stilbene, and pentene, with as many

as six degrees of freedom.

In Chapter 5 we use Smolyak’s sparse grid interpolation algorithm to study the PESs of

Fe(II)-polypyridines. These complexes are of great interest to the chemical community because

of their potential application to solar cells [93, 51, 159, 27, 239]. The study of their PESs

could lead to a better understanding of the photochemical processes that take place during

the conversion of sunlight to electricity, and ultimately to the design of more efficient Fe-based

complexes for solar energy applications. We used sparse grids to study the PESs of the Fe(II)-

polypyridine [Fe(tpy)2]2+. Our surrogate model allowed us to not only visualize these surfaces

in many different ways, but also compute entire intersection seams, locate minimum energy

crossing points, and calculate minimum energy pathways. This work marks the first time the

PESs of any Fe(II)-polypyridine has been studied so extensively with three degrees of freedom.

Finally, we provided a theoretical framework for extending our reaction path following method

from Chapter 4 to include nonadiabatic dynamics. To do so, we developed a surrogate model

for Tully’s surface hopping algorithm [211] that uses Smolyak’s sparse grid interpolation algo-

rithm to approximate PESs, nonadiabatic coupling vectors, and the spin-orbit coupling matrix.

The work presented in this thesis will be continued to study different Fe(II)-polypyridines and

implement our surrogate model for Tully’s surface hopping algorithm. Once realized, our surro-

gate model could provide novel insights into the complicated photochemical processes involved

in solar cells.
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[161] M. Patŕıcio, J. L. Santos, F. Patŕıcio, and a. J. C. Varandas. Roadmap to spline-fitting
potentials in high dimensions. J. Math. Chem., 51(7):1729–1746, April 2013.

[162] Wolfgang Pauli. Nobel Lecture: Exclusion principle and quantum mechanics, 1946.

[163] Chunyang Peng, Philippe Y Ayala, H. Bernhard Schlegel, and Michael J Frisch. Us-
ing Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition
States. Journal of Computational, 17(1):49–56, 1996.

[164] Knut Petras. Smolyak cubature of given polynomial degree with few nodes for increasing
dimension. Numerische Mathematik, 93:729–753, 2003.
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[166] Dirk Pflüger, Benjamin Peherstorfer, and Hans-Joachim Bungartz. Spatially Adaptive
Sparse Grids for High-Dimensional Data-Driven Problems. J. of Complexity, 26(5):508–
522, October 2010.

150



[167] Jiri Pittner, Hans Lischka, and Mario Barbatti. Optimization of mixed quantum-classical
dynamics: Time-derivative coupling terms and selected couplings. Chemical Physics,
356(1-3):147–152, February 2009.

[168] Felix Plasser, Giovanni Granucci, Jiri Pittner, Mario Barbatti, Maurizio Persico, and Hans
Lischka. Surface hopping dynamics using a locally diabatic formalism: Charge transfer in
the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer. Journal
of Chemical Physics, 137, 2012.

[169] P. M. Prenter. Splines and Variational Methods, volume 56. Wiley, New York, 1975.

[170] O V Prezhdo and P J Rossky. Mean-field molecular dynamics with surface hopping. J.
Chem. Phys., 107(February):825, 1997.

[171] Peter Pulay. Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration.
Chem. Phys. Lett., 73(2):393–398, 1980.

[172] Peter Pulay and Geza Fogarasi. Geometry optimization in redundant internal coordinates.
J. Chem. Phys., 96(4):2856–2860, 1992.

[173] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, New York,
2nd edition, 2007.

[174] Jason Quenneville and Todd J. Martinez. Ab Initio Study of Cis-Trans Photoisomerization
in Stilbene and Ethylene. J. Phys. Chem., 107:829–837, 2003.

[175] Franz Renz, Hiroki Oshio, Vadim Ksenofontov, Markus Waldeck, Hartmut Spiering, and
Philipp Gtlich. Strong field iron(II) complex converted by light into a long-lived high-spin
state. Angewandte Chemie - International Edition, 39(20):3699–3700, 2000.

[176] Damien Riedel, Marion Cranney, Marta Martin, and Romain Guillory. Surface-
Isomerization Dynamics of trans -Stilbene Molecules Adsorbed on Si(100)-21. J. Am.
Chem. Soc., 131:5414–5423, 2009.

[177] C. C. J. Roothaan. New Developments in Molecular Orbital Theory. Reviews of Modern
Physics, 23(2):69–89, 1951.

[178] Erich Runge and E. K. U. Gross. Densitfy-Funcational Theory for Time-Dependent
Systems. Phys. Rev. Lett., 52(12):997–1000, 1984.

[179] Jack Saltiel, Srinivasan Ganapathy, and Constance Werking. The DeltaH for Thermal
trans-Stilbene/cis-Stilbene Isomerlzatlon. Do S0 and T1 Potential Energy Curves Cross?
J. Phys. Chem., 1991(11):2755–2758, 1987.

[180] Sethuraman Sankaran, Charles Audet, and Alison L. Marsden. A method for stochastic
constrained optimization using derivative-free surrogate pattern search and collocation.
J. Comput. Phys., 229(12):4664–4682, June 2010.

[181] N. Sathyamurthy. Quasiclassical trajectory studies using 3D spline interpolation of ab
initio surfaces. J. Chem. Phys., 63(1):464–473, 1975.

151



[182] H. Bernhard Schlegel. Optimization of Equilibrium Geometries and Transition Structures.
J. Comput. Chem., 3(2):214–218, 1982.

[183] H Bernhard Schlegel. Some Thoughts on Reaction Path Following. J. Chem. Soc. Faraday
Trans., 90(12):1569–1574, 1994.

[184] H. Bernhard Schlegel and J. J. W. McDouall. Do You Have SCF Stability and Conver-
gence Problems? In C. Ogretir and I. G. Csizmadia, editors, Computational Advances in
Organic Chemistry: Molecular Structure and Reactivity, pages 167–185. Kluwer Academic
Publishers, The Netherlands, 1991.

[185] Ch. Schwab and R.a. A. Todor. Sparse Finite Elements for Stochastic Elliptic Problems
- Higher Order Moments. Computing, 71(1):43–63, August 2003.

[186] Roseanne J. Sension, Stephen T. Repinec, Arpad Z. Szarka, and Robin M. Hochstrasser.
Femtosecond laser studies of the cis-stilbene photoisomerization reactions. J. Chem.
Phys., 98(8):6291–6315, 1993.

[187] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE Suite. SIAM J. Sci.
Comput., 18:1–22, 1997.

[188] D. F. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization. Math.
Comp., 24(111):647–656, 1970.

[189] Junfeng Shao, Yibo Lei, Zhenyi Wen, Yusheng Dou, and Zhisong Wang. Nonadiabatic sim-
ulation study of photoisomerization of azobenzene: detailed mechanism and load-resisting
capacity. J. Chem. Phys., 129(16):164111, October 2008.

[190] Daniel Sheppard, Rye Terrell, and Graeme Henkelman. Optimization methods for finding
minimum energy paths. J. Chem. Phys., 128(134106):1–10, April 2008.

[191] David S. Sholl and John C. Tully. A generalized surface hopping method. J. Chem. Phys.,
109(18):7702–7710, 1998.

[192] Winfried Sickel and Tino Ullrich. Smolyak’s Algorithm, Sampling on Sparse Grids and
Function Spaces of Dominating Mixed Smoothness. East J. Approx., 13:387–425, 2007.

[193] Anton Simeonov, Masayuki Matsushita, Eric A Juban, Elizabeth H Z Thompson, Tim-
othy Z Hoffman, Albert E Beuscher Iv, Matthew J Taylor, Peter Wirsching, James K
Mccusker, Raymond C Stevens, David P Millar, Peter G Schultz, A Richard, Kim D
Janda, Wolfgang Rettig, and Richard A Lerner. Blue-Fluorescent Antibodies. Science,
290(5490):307–313, October 2000.

[194] Jack Simons, Poul Jorgensen, Hugh Taylor, and Judy Ozment. Walking on Potential
Energy Surfaces. J. Phys. Chem., 87(15):2745–2753, 1983.

[195] J. C. Slater. The Theory of Complex Spectra. Phys. Rev., 34(10):1293–1322, 1929.

[196] J. C. Slater. Atomic Shielding Constants. Phys. Rev., 36:57–64, 1930.

152



[197] Amanda L Smeigh, Mark Creelman, Richard a Mathies, and James K McCusker. Fem-
tosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover:
temporal resolution of low-to-high spin optical switching. Journal of the American Chem-
ical Society, 130(43):14105–7, October 2008.

[198] S Smolyak. Quadrature and interpolation formulas for tensor products of certain classes
of functions. Soviet Math. Dokl., 4:240–243, 1963.

[199] Frauke Sprengel. Interpolation of Functions from Besov-type Spaces on Gauss-Chebyshev
Grids, 2000.

[200] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab Initio Calculation of
Vibrational Absorption and Circular Dichroism Spectra Using Densitfy Functional Force
Fields. J. Phys. Chem., 98(45):11623–11627, 1994.

[201] Walter J Stevens, Harold Basch, and Morris Krauss. Compact effective potentials and
efficient sharedexponent basis sets for the first and secondrow atoms. J. Chem. Phys.,
81:6026–6033, 1984.

[202] Walter J. Stevens, Morris Krauss, Harold Basch, and Paul G. Jasien. Relativistic compact
effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and
fifth-row atoms. Can. J. Chem., 70:612–630, 1992.

[203] T. Stortkuhl. Ein numerisches adaptives Verfahren zur Losung der biharmonischen Gle-
ichung auf dunnen Gittern. PhD thesis, TU Munchen, 1995.

[204] R. Eric Stratmann, Gustavo E. Scuseria, and Michael J. Frisch. An efficient implementa-
tion of time-dependent density-functional theory for the calculation of excitation energies
of large molecules. The Journal of Chemical Physics, 109(19):8218–8224, 1998.

[205] William C. Swope. A computer simulation method for the calculation of equilibrium
constants for the formation of physical clusters of molecules: Application to small water
clusters. The Journal of Chemical Physics, 76(1):637, 1982.

[206] Attila Szabo and Neil S Ostlund. Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory. McGraw-Hill, New York, 1st edition, 1989.

[207] Ivano Tavernelli, Basile F.E. Curchod, and Ursula Rothlisberger. Nonadiabatic molecu-
lar dynamics with solvent effects: A LR-TDDFT QM/MM study of ruthenium (II) tris
(bipyridine) in water. Chem. Phys., 391:101–109, 2011.

[208] Ivano Tavernelli, Enrico Tapavicza, and Ursula Rothlisberger. Non-adiabatic dynamics
using time-dependent density functional theory: Assessing the coupling strengths. Journal
of Molecular Structure: THEOCHEM, 914(1-3):22–29, 2009.

[209] Joseph a. Treadway, John a. Moss, and Thomas J. Meyer. Visible Region Photooxida-
tion on TiO(2) with a Chromophore-Catalyst Molecular Assembly. Inorganic Chemistry,
38(20):4386–4387, October 1999.

153



[210] John C. Tully. Molecular dynamics with electronic transitions. J. Chem. Phys.,
93(2):1061–1071, 1990.

[211] John C. Tully. Nonadiabatic molecular dynamics. Int. J. Quantum Chem., 40(S25):299–
309, 1991.

[212] John C Tully. Mixed quantum-classical dynamics. Faraday Discuss., 110:407–419, 1998.

[213] John C. Tully. Nonadiabatic Dynamics. In Donald L. Thompson, editor, Modern Methods
for Multidimensional Dynamics Computations in Chemistry, chapter Nonadiabat, pages
34–72. World Scientific Publishing Company, Singapore, 1998.

[214] John C Tully. Perspective: Nonadiabatic dynamics theory. J. Chem. Phys.,
137(22):22A301, December 2012.

[215] John C. Tully and Richard K. Preston. Trajectory Surface Hopping Approach to Nonadi-
abatic Molecular Collisions: The Reaction of H+ with D2. J. Chem. Phys., 55(2):562–572,
1971.

[216] Valentin D Vachev, John H Frederick, Boris A Grishaninj, Victor N Zadkov, and Nikolai I
Koroteev. Quasiclassical Molecular Dynamics Simulation of the Photoisomerization of
Stilbene. J. Phys. Chem., 99:5247–5263, 1995.

[217] Michel van Veenendaal, Jun Chang, and a. J. Fedro. Model of Ultrafast Intersystem
Crossing in Photoexcited Transition-Metal Organic Compounds. Physical Review Letters,
104(6):067401, February 2010.

[218] Loup Verlet. Computer ”Experiments” on Classical Fluids. I. Thermodynamical Proper-
ties of Lennard-Jones Molecules. Phys. Rev., 159(1):98–103, 1967.

[219] D. H. Waldeck. Photoisomerization Dynamics of Stilbenes. Chem. Rev., 91:415–436, 1991.

[220] David J. Wales. Energy Landscapes. Cambridge University Press, Cambridge, UK; New
York, 2003.

[221] Fan Wang and Tom Ziegler. A simplified relativistic time-dependent density-functional
theory formalism for the calculations of excitation energies including spin-orbit coupling
effect. Journal of Chemical Physics, 123(2005), 2005.

[222] Grzegorz W. Wasilkowski and Henryk Wozniakowski. Explicit Cost Bounds of Algorithms
for Multivariate Tensor Product Problems. J. of Complexity, 11:1–56, 1995.

[223] E Weinan, Ren Weiqing, and Eric Vanden-Eijnden. Finite temperature string method for
the study of rare events. J. Phys. Chem. B, 109(14):6688–6693, April 2005.

[224] E. Bright Wilson, Jr, J.C. Decius, and Paul C. Cross. Molecular Vibrations: The Theory
of Infrared and Raman Vibrational Spectra. McGraw-Hill, New York, 1955.

[225] Curt Wittig. The Landau-Zener Formula. J. Phys. Chem. B, 109(17):8428–8430, May
2005.

154



[226] Dwight L. Woolard, Elliott R Brown, Michael Pepper, Michael Kemp, and R. Brown.
Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?
Proc. IEEE, 93(10):1722–1743, October 2005.

[227] Dongbin Xiu. Efficient Collocational Approach for Parametric Uncertainty Analysis.
Communications in Computational Physics, 2(2):293–309, 2007.

[228] Dongbin Xiu and Jan S. Hesthaven. High-Order Collocation Methods for Differential
Equations with Random Inputs. SIAM J. Sci. Comput., 27(3):1118–1139, 2005.

[229] David R. Yarkony. Theoretical studies of spin-forbidden radiationless decay in polyatomic
systems: insights from recently developed computational methods. Journal of the Amer-
ican Chemical Society, 114(13):5406–5411, June 1992.

[230] David R Yarkony. Systematic Determination of Intersections of Potential Energy Surfaces
Using a Lagrange Multiplier Constrained Procedure. J. Phys. Chem., 97:4407–4412, 1993.

[231] David C Young. Computational Chemistry: A Practical Guide for Applying Techniques
to Real-World Problems. John Wiley & Sons, Inc., New York, 2001.

[232] H. Yserentant. On the Multi-level Splitting of Finite Element Spaces for Indefinite Elliptic
Boundary Value Problems. SIAM J. Numer. Anal., 23(3):581–595, 1986.

[233] H. Yserentant. Sparse Grids, Adaptivity, and Symmetry. Computing, 78(3):195–209,
November 2006.

[234] Ryan R. Zaari and Sergey a. Varganov. Nonadiabatic Transition State Theory and Tra-
jectory Surface Hopping Dynamics: Intersystem Crossing Between 3B1 and 1A1 States of
SiH2. The Journal of Physical Chemistry A, page 150213093044006, 2015.

[235] C. Zener. Non-Adiabatic Crossing of Energy Levels. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 137(833):696–702, September 1932.

[236] Lingzao Zeng, Liangsheng Shi, Dongxiao Zhang, and Laosheng Wu. A sparse grid based
Bayesian method for contaminant source identification. Advances in Water Resources,
37:1–9, March 2012.

[237] Christoph Zenger. Sparse Grids. Notes on Numerical Fluid Mechanics, 31:241–251, 1991.

[238] Guannan Zhang, Dan Lu, Ming Ye, Max Gunzburger, and Clayton Webster. An efficient
surrogate modeling approach in Bayesian uncertainty analysis. In 11th International
Conference of Numerical Analysis and Applied Mathematics, volume 1558, pages 898–
901. AIP Publishing LLC, 2013.

[239] Wenkai Zhang, Roberto Alonso-Mori, Uwe Bergmann, Christian Bressler, Matthieu Chol-
let, Andreas Galler, Wojciech Gawelda, Ryan G Hadt, Robert W Hartsock, Thomas Kroll,
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155



Kelly J Gaffney. Tracking excited-state charge and spin dynamics in iron coordination
complexes. Nature, 509(7500):345–8, May 2014.

[240] X. Zhang, M. L. Lawson Daku, J. Zhang, K. Suarez-Alcantara, G. Jennings, C. a. Kurtz,
and S. E. Canton. Dynamic JahnTeller Effect in the Metastable High-Spin State of
Solvated [Fe(terpy)2]2+. J. Phys. Chem. C, 119:3312–3321, 2015.

156



APPENDICES

157



Appendix A

Appendix-A

A.1 Smolyak Interpolation in MATLAB

In this section we will describe our implementation of Smolyak’s algorithm in MATLAB and

provide some user documentation for the codes.

A.1.1 m-files

Your MATLAB path should contain the following m-files:

• smolyak step1 T.m: Evaluates user’s function at Smolyak grid points

• smolyak approx T.m: Evaluates Smolyak interpolation at user-supplied points

A.1.2 Implementation

The user will only have to call smolyak step1 T.m and smolyak approx T.m. For smolyak -

step1 T.m, the syntax is as follows:

>> S = smolyak_step1_T(d, k, bounds, fun);

The inputs are:

• d: The dimension of user’s function

• k: The degree of polynomial exactness for the interpolation

• bounds: The boundary of user’s domain. Each dimension’s bounds are a row of this matrix

158



• fun: The name of user’s function

The outputs are:

• S: A data structure of information to be used in smolyak approx T.m.

After this function runs successfully, the user must call smolyak approx T.m. The syntax

is:

>> [fhat, ghat] = smolyak_approx_T(t, S);

The inputs are:

• t: N × d matrix of points at which to evaluate Smolyak’s interpolant

• S: Data structure from smolyak step1 T.m

The output are:

• fhat: N × 1 vector of values of Smolyak interpolating function at t

• ghat: N × d matrix of values of the gradient of Smolyak interpolating function at t

Example

We will interpolate the function

f(x, y, z) = xy + ey + z

on [−1, , 1]3 with k = 5. The user must write the following function:

function [y, g]=test_function(x)

y=x(:,1).*x(:,2) + exp(x(:,2));

y=y+x(:,3);

g=ones(size(x));

g(:,1)=x(:,2);

g(:,2)=x(:,1)+exp(x(:,2));

end
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We will approximate this function at t1 = (−0.1,−0.2, 0.1) and t2 = (0.9, 0.25,−.7). This can

be done as follows:

>> d=3; k=5; bounds=[-1 1; -1 1; -1 1];

>> S = smolyak_step1_T(d,k,bounds,@test_function);

>> t=[-.1 -.2 .1; .9 .25 -.7];

>> [fhat, ghat] = smolyak_approx_T(k,all_f,all_points,nodesMaxK,nnodes,t);

>> fhat

fhat =

0.9387

0.8090

>> ghat

ghat =

-0.2000 0.7187 1.

0.2500 2.1840 1.

>> [f, g]= test_function(t)

>> f

f =

0.9387

0.8090

>> g

g =

-0.2000 0.7187 1.

0.2500 2.1840 1.
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A.1.3 Function Details

S Structure Data Fields

The output of smolyak step1 is a structure containing information that is be used in smolyak -

approx and other subfunctions of smolyak step1. The data fields of S are listed in Table A.1.

Table A.1: Data fields of S. See Section 2.3.1 for notational details.

Field Name Description

A indices Cell whose ith entry contains the indices for interpolation level i so that
nodesMaxLevel(d,Al indices{i}) returns a vector of all the nodes in
Ai = χi \ χi−1 in dimension d.

A nnodes Vector whose ith entry is the number of unidimensional nodes in the set
Ai.

A nodes Cell whose ith entry contains the unidimensional nodes in Ai on [−1, , 1].

Q Matrix containing multi-indices for Smolyak’s algorithm.

b Coefficient vector for Smolyak’s algorithm (solution to Equation 2.47).

bounds Interpolation domain, given by bounds = [a1, b1; ... ad, bd].

d Dimension.

ell list Matrix whose rows contain each basis number combination j in the order
they appear in Smolyak’s algorithm in Equation 2.48.

k Degree of exactness.

level indices Cell whose ith entry contains the indices for interpolation level i so that
nodesMaxLevel(d,level indices{i}) returns a vector of all level i nodes
in dimension d.

maxLevel Highest level of sparse grid.

nodesMaxLevel All nodes in each dimension for highest interpolation level.

numNodes Vector whose ith entry is the number of unidimensional nodes in χi.

q d+ k.

unidimNodes Cell whose ith entry contains the unidimensional nodes in χi on [−1, , 1].

Tensor Product Calculation in smolyak approx T.m

By far the most expensive part of Smolyak’s algorithm is the calculation of tensor product

basis functions in Equation 2.46. Here we take advantage of the MATLAB function bsxfun to

compute these products.
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Consider evaluating Smolyak’s algorithm at a N × d matrix of points t

f̂ = A(q, d)[f ](t).

Before computing any tensor products we first construct A bases, a (k + 1) × d cell whose

(ith, jth) entry contains a N ×M all of the M disjoint basis functions for dimension j and level

i. For example, if we let φ be the first basis function for level i = 3 in dimension j = 2, A -

bases{3,2}(:,1) is the vector of φ evaluated at t(:,2). If gradients are requested we construct

the analogous cell A bases deriv for the derivatives of the basis functions.

After we evaluate the unidimensional basis functions we loop through the set of allowable

multi indices Q(q, d). Since the first element of Q(q, d) is i = 1, the first term of Smolyak’s

algorithm is simply the constant term b1 computed from Equation 2.47. As such, we initialize

the approximation with f̂ = b1 and start our loop through Q(q, d) with the second multi index.

For each i ∈ Q(q, d) we initialize

L=A_bases{i(1),1};

and loop through the remaining dimensions to compute

A=reshape(L,ts,1,[]);

B=bsxfun(@times,A,A_bases{i(di),di});

L=reshape(B,ts,[]);.

The reshape/bsxfun/reshape sequence element-wise multiplies all possible combinations of

columns of L and columns of A bases{i(di),di}. For example, consider i = (2, 2) and let φji
be the ith basis function in dimension j. Interpolation level i = 2 corresponds to the two disjoint

basis functions φ2 and φ3. Initializing L in the first dimension with

L = [φ1
2, φ1

3],

the reshape/bsxfun/reshape step process yields

L = [φ1
2φ

2
2, φ1

2φ
2
3, φ1

3φ
2
2, φ1

3φ
2
3].

In this way we compute all tensor products of basis function functions for the multi index

i. We then add the current piece of the linear combination to our approximation of f̂ via

fhat = fhat + L*b_i

where b i= bi is the slice of the coefficient vector b that corresponds to the multi index i. The

Vandermonde matrix in Equation 2.47 is constructed so that we can initialize a counter c=2

and perform
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b_i = b(c:c+size(L,2)-1);

fhat = fhat + L*b_i;

c=c+size(L,2));.

Finally, the pseudocode for the tensor product evaluation is given below:

% Evaluate unidimensional basis functions

A_bases = eval_unidim_bases(t,S);

ts = size(t,1);

% Initialize fhat with constant term

fhat=b(1);

c=2;

for each i in Q

% Initialize in the first dimension

L=A_sets_bases{i(1),1};

% Loop through other dimensions

for di = 2:d

A=reshape(L,ts,1,[]);

B=bsxfun(@times,A,A_bases{i(di),di});

L=reshape(B,ts,[]);

end

% Add current piece to Smolyak approximation

b_i = b(c:c+size(L,2)-1);

fhat=fhat+L*b_i;

% Update b index

b_i=b_i+size(L,2);

end
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A.2 Documentation for MATLAB Molecular Dynamics Codes

The purpose of this section is to introduce readers to the MATLAB code I have written for

studying molecular potential energy surfaces and reaction paths. The code is capable of writing

Gaussian 09 input files corresponding to sparse grid points in a given molecular coordinate

interpolation domain, reading Gaussian 09 .log files to read molecular energies, plotting and

finding minima of interpolated potential energy surfaces, and simulating reaction path dynam-

ics. Section A.2.1 contains documentation for each MATLAB function, Section A.2.2 describes

the structure of problem-specific MATLAB scripts that must be written to generate Gaussian

09 input files, and Section A.2.3 gives a step-by-step example.

NOTE: The following assumes that smolyak step1 T.m and smolyak approx T.m are both

in your MATLAB search path. Documentation for these codes can be found in Appendix [ref-

erence to be added later].

A.2.1 Function Documentation

• addStates(molecule,nAddStates): creates Gaussian input files according to the data

found in the molecule data structure to add nAddStates excited states to existing TD

calculations. The input files are stored in the directory ./name/method/dd/kk.

Input Description

molecule a structure containing information about the jobs to be performed. See

section A.2.2 for information on structure fields and A.2.3 for an exam-

ple.

nAddStates number of excited states to add

• create input files(molecule): creates Gaussian input files according to the data found

in the molecule data structure. The input files are stored in the directory ./name/method/dd/kk.

Input Description

molecule a structure containing information about the jobs to be performed. See

section A.2.2 for information on structure fields and A.2.3 for an example.
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• find MECP(path to energy,state indices,x0): computes the minimum energy cross-

ing point between the two surfaces given by state indices using x0 as an initial guess.

Input Description

path to energy string of path to the directory that contains the /tt energy.mat file

state indices 2x1 array of indices of energies matrix (found in path to -

energy/energy.mat) corresponding to states to compute MECP

between.

Output Description

xstar MECP

• PES energy(x,S): evaluates the potential energy surface stored in the Smolyak data struc-

ture S at a point x.

Input Description

x point at which to evaluate the PES

S Smolyak data structure for PES (see documentation for PES S.m).

Output Description

E energy of PES at x.

f forces (gradient) of PES at x.

• PES min(path to energy,state index,x0): finds a local minimum of the potential en-

ergy surface using the energies found in the column corresponding to state index found

in energies matrix stored at path to energy/energies.mat. The function computes the

minimum with MATLAB’s fmincon function using the initial iterate specified by x0.

Input Description

path to energy string of path to the directory that contains the /tt energy.mat file

state index column index of energies matrix (found in energy.mat) that corre-

sponds to state of interest.

x0 initial guess for minimization algorithm

Output Description

xmin local minimum of PES
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• PES S(path to energy,state index): generates the Smolyak data structure for the po-

tential energy surface using the energies stored in the column corresponding to state -

index found in the energies matrix stored at path to energy/energies.mat.

Input Description

path to energy string of path to the directory that contains the /tt energy.mat file

state index column index of energies matrix (found in energy.mat) that corre-

sponds to state of interest.

Output Description

S Smolyak data structure

• plot intersection seam(path to energy,state indices,fixed dims,x0,var names):

finds the minimum energy crossing point and plots 1D, 2D, or 3D visualization of the in-

tersection seam between the two PES’s. The dimensions specified in the fixed dims input

are held constant and the PES is projected onto the remaining dimensions. This input

is only necessary for cases where d > 3. The input x0 is used as an initial guess for the

minimum energy crossing point (see documentation for find MECP). If unspecified, x0 is

the center of the interpolation domain.

Input Description

path to energy string of path to the directory that contains the /tt energy.mat file

state indices 2x1 array of indices of energies matrix (found in path to -

energy/energy.mat) corresponding to states plot intersection seam

between.

fixed dims (required for d > 3) fixed dimensions and values for projection given

by the matrix [dim1 val1; dim2 val2; ...]

var names (optional) labels for x- and y-axes given by {’name1’, ’name2’}

• plot PES(path to energy,state indices,fixed dims,var names): plots 3D visualiza-

tion of PES projected onto two dimensions. The dimensions specified in the fixed dims

input are held constant and the PES is projected onto the two remaining dimensions.

Input Description

path to energy string of path to the directory that contains the /tt energy.mat file

state indices array of indices of energies matrix (found in path to -

energy/energy.mat) corresponding to states to plot.

fixed dims fixed dimensions and values for 2D projection plot given by the

matrix [dim1 val1; dim2 val2; ...]

var names (optional) labels for x- and y-axes given by {’name1’, ’name2’}

166



• plot contour(path to energy,state index,fixed dims,var names): plots contour plot

visualization of PES projected onto two dimensions. The dimensions specified in the

fixed dims input are held constant and the PES is projected onto the two remaining

dimensions.

Input Description

path to energy string of path to the directory that contains the energy.mat file

state index column index of energies matrix (found in energy.mat) that corre-

sponds to state of interest.

fixed dims fixed dimensions and values for 2D projection plot given by the

matrix [dim1 val1; dim2 val2; ...]

var name (optional) labels for x- and y-axes given by {’name1’, ’name2’}
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• read logs(path to files,path to prev k files,NaddStates): reads Gaussian .log files

and stores energies (in eVs) in path to files/energies.mat. For each .log file there are

five possible outcomes.

– The calculation successfully converged. No further actions are needed.

– The calculation terminated via Link 9999, meaning the optimization failed to con-

verge and needs to be restarted. In this case read logs will write a new .com file that

will restart the optimization from the checkpoint file. All jobs that fail in this way

can be resubmitted by running bash resubmit failed opts.sh from the command

line.

– The calculation terminated because of a failed SCF calculation. The user must make

appropriate changes to the .com file and resubmit the job manually.

– The calculation terminated because of a hardware issue. On the -gto queue I have

experienced two additional failure modes which I call “NaN” and “ITU=***,” both

of which are the result of a hardware issue on the blade. In this case read logs

will write a new .com file that will restart the optimization from a step in the

checkpoint file before either the “NaN” or “ITU=**” occurred. All jobs that fail in

these ways can be resubmitted by running bash resubmit thrown nans.sh or bash

resubmit null itu.sh from the command line.

– The calculation terminated for some unforeseen reason (e.g. a file was accidentally

deleted during the calculation). All jobs that fail in this way can be resubmitted

by running bash resubmit failed others.sh from the command line, but it is

recommended that the user inspect each of these jobs to discover the failure reason

before doing so.

Input Description

path to files string of path to the directory that contains the .log files to

be read.

path to prev k files (optional) string of path to the directory that contains the

/tt energy.mat file from the k-1 sparse grid

NaddStates (optional) the number of states added to TD calculations (re-

quired to read jobs created by addStates.m)

Output Description

energies A M×N matrix of energies where M is the number of sparse

grid points and N is the number of electronic states.
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• reaction path(path to energy,x0,stateSequence,gammaRange,nSims): simulates re-

action path dynamics.

Input Description

path to energy directory where the /tt energy.mat file is stored.

x0 initial point for simulations.

stateSequence electronic state sequence for simulations.

gammaRange vector specifying radius for each degree of freedom’s approximated

molecular vibration/thermal fluctuation effects.

nSims number of reaction paths to follow.

Output Description

yPath N × (d · nSims) matrix of reaction paths where N is the number

of time steps. The first d columns are the paths the d degrees of

freedom take for the first reaction path, the next d columns are the

paths the d degrees of freedom take for the second reaction path,

and so forth.

ePath N × nSims matrix of reaction path energies.

yFinal returns the result of Ypath(end, :)
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A.2.2 Molecule Input Scripts

Input scripts are used to create a data structure called molecule that stores information about

the molecule and electronic structure calculations. This data structure is then fed to create -

input files.m to create all required Gaussian 09 input files.

The first thing to do in an input script is initialize the molecule structure by reading

in the z-matrix from a .zmat file. This can be accomplished by calling molecule = read -

zmat(‘your molecule.zmat’);. Next, add fields to the molecule structure that provide details

about the electronic structure calculations. Table A.2 describes the data fields that need to be

user-specified. After all data fields have been set, create the Gaussian .com files by calling

create input files(molecule);. Alternatively, to add excited states to existing calculations,

call addStates(molecule, N); where N is the number of states to add. For each .com file,

create input files or addStates create an associated hpc job submission script outlined as

follows for the first job for butene:

-------BEGIN FILE--------------------

#!/bin/csh

#BSUB -o butene1.out

#BSUB -e butene1.err

#BSUB -n 8

#BSUB -R "span[ptile=8]"

#BSUB -q gto

source /home/gwhowell/scripts/mvapich-intel/int101_mvapich.csh

#BSUB -W 400:00

#BSUB -J butene

mkdir /scratch/unity_id

setenv GAUSS_SCRDIR /scratch/unity_id

g09 butene1.com

rm -rf /scratch/unity_id

------------END FILE---------------------

Finally, both of these functions create a bash script called submit files.sh that needs to

be executed on the henry2 to submit all the jobs. This can be done on the Terminal command

line with $ bash submit files.sh.
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Table A.2: User-specified data fields for the molecule data structure.

DOF A cell containing strings of code specifying which degree of free-
dom corresponds to which molecular coordinate. For example,
’D(5)=DOF(i,1);’ would set the 5th dihedral angle to the 1st degree
of freedom.

atom Cell of atomic symbols listed in order as they appear in the molecule’s
z-matrix.

bases A cell containing two basis sets: the first is for the ground state geometry
optimizations and the second is for ground state point calculations to
be performed after the optimization. If these bases are the same, no
point calculation is performed. If gen is used for the basis set, the data
field basis options must be specified.

basis options A cell comprised of lines of the gen basis set input section of Gaussian
input files, e.g. {’Fe 0’,’sdd’,’****’,’N C H 0’,’6-311g*’}.

bounds Matrix containing the sparse grid interpolation domain, given in the
form [A1 B1; A2 B2; ... Ad Bd];.

charge Charge of molecule.

frozen A cell containing the coordinates to be frozen during Opt=Z-Matrix
calculations. For example, {’D1’,’D2’}; would freeze the first two di-
hedral angles.

k Degree of polynomial exactness for Smolyak’s sparse grid interpolation
algorithm.

modredun Cell of strings where each string is a line of an Opt=ModRedundant
modify redundant coordinates section. For example, {’D 1 2 3 4

F’,’B 2 3 F’}; would freeze the dihedral angel created by atoms 1-2-
3-4 and the bond distance between atoms 2-3.

multiplicity Spin multiplicity of molecule.

name Name of molecule.

pop options Population analysis options, e.g. Full. If not specified, no population
analysis is performed.

opt coord Coordinates for geometry optimization. Use either ’z-matrix’ or
’ModRedundant’.

opt method Method for geometry optimizations, e.g. b3lyp.

other options Other options ground state calculations to be included in the route
section of the .com file, e.g. ’NoSymm’ or Int=UltraFine.

point method Method for point calculations, e.g. b3lyp.

prev k Set to 1 if the k-1 sparse grid has already been calculated. Set to 0

otherwise.

scf options Options for SCF procedure, e.g. ’VTL, XQC’.

scrf options Options for SCRF procedure, e.g. ’PCM, Solvent=Water, Read’. If
not specified, SCRF is not used in the calculations.

td options Options for TD calculation, e.g. ’Root=1, NStates=10’.

td other options Other options for excited state calculations to be included in the route
section of the Gaussian input file, e.g. ’NoSymm Int=UltraFine’.

unity id NCSU unity ID for use on the henry2 cluster.
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A.2.3 2-Butene Example

Here we will show an example of a singlet 2-butene input script. We will perform a geometry

optimization using the 3-21G* basis set, followed by a point calculation using the CEP-31G*

basis set. We will also use TD to compute the first three singlet excited states. We will use the

B3LYP DFT functional for all calculations. The 2-butene z-matrix, as written in butene.zmat,

is shown in Figure A.1. Note the use of 0’s in place of blanks for the first few lines. This is

necessary for how read zmat reads the .zmat file.

C 0 0 0 0 0 0 0

C 1 1.4 0 0 0 0 0

C 2 1.4 1 125 0 0 0

C 3 1.4 2 125 1 0.0 0

H 4 1.1 3 114 2 0.0 0

H 4 1.1 3 114 5 120 0

H 4 1.1 3 114 5 -120 0

H 1 1.1 2 114 3 0 0

H 1 1.1 2 114 8 120 0

H 1 1.1 2 114 8 -120 0

H 2 1.1 3 115 1 180 0

H 3 1.1 2 115 4 180 0

Figure A.1: butene.zmat: z-matrix file for butene.

We choose three degrees of freedom for this example: D1, D2, and D5. These correspond to the

dihedral angle formed by the 4 C atoms, and one C-C-C-H dihedral angle for each methyl group.

We will use a degree of exactness of k = 5 for Smolyak’s sparse grid interpolation algorithm.

We will also perform a full population analysis after the point calculation and excited states

calculation. The entire MATLAB input script is shown in Figure A.2 and can be run from the

MATLAB command line.
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% Name .zmat file

zmat_file = ’butene.zmat’;

% Populate fields of molecule data structure

molecule = read_zmat(zmat_file);

molecule.name=’butene’;

molecule.charge=0;

molecule.multiplicity=1;

molecule.opt_method=’b3lyp’;

molecule.point_method=’b3lyp’;

opt_basis = ’3-21G*’;

point_basis = ’CEP-31G*’;

molecule.bases={opt_basis, point_basis};

molecule.k=5;

molecule.prev_k=0;

molecule.bounds=[-20 200; -100 100; -100 100];

molecule.opt_options = ’VeryTight,CalcFC’;

molecule.opt_coord = ’Z-Matrix’;

molecule.scf_options=’VTL,xqc,maxConventionalCycles=1000’;

molecule.other_options=’Symm=None Int=UltraFine’;

molecule.pop_options = ’Full’;

molecule.td_options=’Root=1,NStates=3’;

molecule.td_other_options=’Symm=None Int=UltraFine’;

molecule.DOF={’D(1)=DOF(i,1); ’...

’D(2)=DOF(i,2);’...

’D(5)=DOF(i,3);’};

molecule.frozen={’D1’,’D2’,’D5’};

molecule.unity_id=’jdnance2’;

% Call create_input_files

create_input_files(molecule);

Figure A.2: butene input.m: an example of an input script for butene.
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After executing submit files.sh and all Gaussian jobs have finished, we can read the .log

files and extract energies by executing

>> [energies, failures, successes] = read_logs(’butene/b3lyp/d3/k5’);

in the MATLAB command line. If some optimizations failed to converge, read logs will create

a bash script called resubmit failed opts.sh that can be executed to resubmit failed opti-

mizations by reading the initial geometry from the job’s checkpoint file. Similarly, if some jobs

fail for other reasons where a restart would be appropriate (I’ve seen invalid read/write issues

on henry2 which can be fixed by simply restarting the calculation), read logs will create a

bash script called resubmit failed others.sh. Finally, if any jobs fail during an SCF proce-

dure, read logs will list these jobs so appropriate modifications can be made by the user to

the .com files (e.g. using less strict convergence criteria or changing basis sets). If all jobs are

successful then read logs will store the energies as a matrix in energy.mat in the directory

butene/b3lyp/d3/k5/.

Now that we have performed all the necessary electronic structure calculations, we can

visualize the PES’s and run dynamics simulations. As an example of how to visualize the PES,

we will project the 3-dimensional PES for the ground and first excited singlet state onto the

first two degrees of freedom and hold the 3rd constant at its equilibrium value of x3 = 0. This

can be performed by executing

>> names = {’C=C Rotation’, ’Methyl Rotation 1’};

>> plot_PES(’butene/b3lyp/d3/k5’,[1 2],[3 0],names);

Alternatively, we can view a contour plot of the ground state PES by executing

>> plot_contour(’butene/b3lyp/d3/k5’,1,[3 0],names);

Figures A.3 and A.4 show the results of these two commands.

Finally, we will compute a reaction path for the cis-trans photoisomerization of 2-butene.

Our electronic state sequence is {0,1,0}, the initial point for our simulations is x = (1.0, 0.0, 0.0),

each degree of freedom’s molecular vibration/thermal fluctuation radius is 20, and we compute

50 reaction paths. The simulation can be started with

>> N = 50;

>> x0 = [1 0 0];

>> seq = [0 1 0];

>> gamma = [20 20 20];

>> [yPath, ePath, yFinal] = reaction_path(’butene/b3lyp/d3/k5’,x0,seq,gamma,N);

Figures A.5-A.8 shows the results of the reaction path simulation for each degree of freedom

and the energies of all 50 reaction paths.
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Figure A.4: Contour plot of ground state PES for 2-butene projected onto the first two degrees
of freedom.
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Figure A.6: Reaction paths for x2.
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A.2.4 Troubleshooting Gaussian Optimizations

Computational chemistry algorithms, especially Gaussian’s optimization algorithm, are finicky

and very sensitive to input parameters. In this section we survey the most common issues and

offer some possible solutions.

Error Messages and Solutions

• “Error: Old/New curvilinear step failed...” means the SCF algorithm has failed.

– If you are using the default algorithm (a variation of DIIS from [128]), try using

alternative algorithms for the SCF method. The Gaussian 09 options SCF=XQC or

SCF=QC take more computer time but converge more frequently than DIIS. Try

SCF=XQC first. It performs an iterate of the QC algorithm in the event of a failed

DIIS iterate. QC stands for “quadratically convergent” and the algorithm can be

found in [7]. A great reference for tips on SCF convergence can be found in [184].

– Use higher accuracy integrals, a finer integration grid, or both. The Gaussian 09

option to set the integral tolerance to 10−N is Int=(Acc2E=N), and the option to

use a finer grid is Int=VeryFine or Int=UltraFine.

• “Maximum number of iterations exceeded” means the optimization algorithm failed to

converge in the allowed number of optimization iterations. Unlike SCF, we cannot increase

the maximum number of iterations, but there are other solutions. In addition to the

solutions mentioned above, also consider the following:

– Try a slightly different input geometry by shortening or lengthening one or two of the

bond distances. Also, Gaussian’s optimization algorithm seems to not like dihedral

angles close to 180 degrees, so this may require reconstructing the z-matrix to reduce

the number of angles close to 180.

– Allow more SCF iterations. This is done using the SCF=(MaxCycle=N) option,

where N is the maximum number of iterations.

– Consider using a different (smaller) basis set, level of theory, or both.

– Request that the algorithm compute analytic Hessians at the first step. This is done

with the Opt=CalcFC option.

• “Small interatomic distances encountered . . . Atoms too close.”

– Include the Geom=NoCrowd option to disable distance checking.

Remarks

• If you are requesting higher accuracy optimizations via the Opt=VeryTight option, make

sure to request higher accuracy integrals with Int=VeryFine, too.
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A.3 Semiclassical electron-radiation-ion dynamics (SERID)

In this section we outline a method called semiclassical electron-radiation-ion dynamics (SERID),

which is a technique for simulating the coupled dynamics of valence electrons and ion cores (nu-

clei) in a molecule. The method was introduced by Allen, Dumitrica and Torralva in [3], where

it is called tight-binding electron-ion dynamics (TED), and used in [57] and [114] to study the

isomerization of stilbene. The method treats valence electrons quantum-mechanically but treats

the radiation field and the motion of the ion cores classically. According to [3], this treatment

is valid since the masses of the ions are 104 − 105 times larger than electron mass. SERID is

presented as an alternative to the popular Born-Oppenheimer approximation and allows one

to study processes such as multiple electronic and vibrational excitations, intramolecular vi-

brational energy redistribution, and interdependence of the various electronic and vibrational

degrees of freedom [57]. SERID is an O(N) method where N is the number of atoms in the

system [3].

SERID calculates the forces on the ion cores and updates the wave function at every time

step. The wavefunctions are found via the time-dependent Schrödinger equation

i~
∂Ψj

∂t
= S−1HΨj (A.1)

where S is the overlap matrix for the atomic orbitals and j is an index over the electrons

[3]. Note that the product S−1H is a Hermitian operator since: first, the overlap matrix S is

Hermitian and symmetric so S−1 is also Hermitian and symmetric; second, the Hamiltonian H is

Hermitian; and third, S−1H = HS−1 since S and thus S−1 are symmetric, so the product S−1H

is also Hermitian. A laser pulse is introduced into the system by coupling a time-dependent

vector potential A(t) to the electronic Hamiltonian via the Peierls substitution

Hab(X −X ′) = H0
ab(X −X ′) exp

(
iq

~c
A(t)(X −X ′)

)
(A.2)

with

H0 = −~∇2

2m
+ V (x). (A.3)

Here, X and X ′ are nuclear coordinates, a and b label atomic orbitals, q is the charge of

an electron, and c is the speed of light. Finally, the motion of the ion cores is described by

Ehrenfest’s theorem

M`Ẍ`α = −1

2

∑
j

Ψ∗j

(
∂H

∂X`α
− i~ ∂S

∂X`α

∂

∂t

)
Ψj + h.c.−

∂Urep

∂X`α
(A.4)

where the parameters determining the Hamiltonian matrix H and ion-ion interaction Urep are
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fitted to first-principles densitfy-functional calculations, and ”h.c.” represents the Hermitian

conjugate of the first term [57]. Derivations and justifications of these formulae, along with

further analysis, can be found in [3].

The solution to Equation A.4 is approximated via the velocity Verlet algorithm [218]. The

algorithm integrates the general equation of motion

mr̈i =
∑
j 6=i

f (rij) (A.5)

via

ri(t+ h) = −ri(t− h) + 2ri(t) +
∑
j 6=i

f (rij(t))h
2 (A.6)

where h is the time step. At each step the algorithm must compute 1
2N(N − 1) terms, but

Verlet introduces a bookkeeping device that reduces reduces the computing time by a factor of

the order of 10 [218].

The solution to Equation A.1 requires a different approach. Following [3], the time-evolution

equation can be written in the form

exp

(
iH∆t

2~

)
Ψj(t+ ∆t) = exp

(
−iH∆t

2~

)
Ψj(t). (A.7)

Approximating the exponential by its first two terms in its Taylor series yields the Cayley

algorithm

Ψj(t+ ∆t) =

(
1 +

iH∆t

2~

)−1(
1− iH∆t

2~

)
Ψj(t). (A.8)

This algorithm is ideal because it preserves the probability and the orthogonality of the system

[3]. Torralva introduced an improvement to this method in [3] where the first-order term in a

Dyson-like series for the time evolution operator U(t+ ∆t) is written as

U(t+ ∆t, t) =

(
1 + iH̄

2~

)−1(
1− iH̄

2~

)
(A.9)

with

H̄ =
1

∆t

∫ t+∆t

t
dsH(s). (A.10)

After approximating the elements of H̄ with a sufficient quadrature rule, the electron states are

obtained from

Ψj(t+ ∆t) = U(t+ ∆t, t)Ψj(t). (A.11)

This algorithm preserves orthonormality of Ψj to the machine accuracy of better than 10−12
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[3].

SERID was originally developed in the context of semiconductors and is the recommended

method for simulations of the interaction of light and matter. DFT methods are not suitable for

such problems because the excited states are too low for semiconductors and nonadiabatic pro-

cesses require very small time steps [3]. SERID has been used to study elements and molecules

including gallium arsenide, silicon and H+
2 [3], butadiene [58], and stilbene [57, 114].

A.4 Modified Shepard Interpolation

In this section we outline a potential energy surface interpolation scheme originally proposed by

Ischtwan and Collins in [109]. The scheme is a modified Shepard interpolation and is related to a

moving least squares interpolation procedure. There are several variations of and improvements

to this method in the literature (see [64], for example), but the core algorithm remains the same

so we present the scheme in it’s original form.

Consider a molecule with N atoms and let R ∈ R3N−6 be a column vector of interatomic

distances. We will let {R(i), i = 1, . . . , Nd} denote a set of Nd configurations of the molecule

at which the potential energy V is known. Using a Taylor series expansion for the potential

energy, we have

U(R; i) = V R(i) + [R−R(i)]TG(i) +
1

2
[R−R(i)]TF (i)[R−R(i)] + . . . (A.12)

where G(i) and F (i) are the gradient vector and the Hessian at R(i), respectively. Ischtwan

and Collins employ inverse length coordinates ρn = 1
Rn

in the Taylor series, yielding

V (ρ(R); i) = V R(i) + [ρ− ρ(i)]TGρ(i) +
1

2
[ρ− ρ(i)]TFρ(i)[ρ− ρ(i)] + . . . (A.13)

where Gρ(i) and Fρ(i) are the analogous gradient vector and the Hessian in inverse coordinates.

One of the goals of reaction-path based potentials is to choose an optimal configuration

R(i) on the reaction path about which to center the Taylor expansion. The potential energy of

any configuration can be given by a modified Shepard interpolation, a scheme that gives the

potential energy surface as a weighted average of the Taylor expansions of the PES about each

point in the configuration R(i). More explicitly, the potential energy becomes

V (R) =

Nd∑
i=1

wi(R)[V ρ(R); i] (A.14)
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where the weight function wi(R) has the form

wi(R) =
vi(R)∑Nd
k=1 vk(R)

. (A.15)

The functions vi(R) are unnormalized weight functions such that vi(R) → 0 as |R − Ri| → ∞
and vi(R)→∞ as |R−Ri| → 0. Ischtwan and Collins adopt the form

vi(R) =
1

|R−R(i)|p
(A.16)

for a parameter p. Assuming distinct configurations R(i), as |R − Ri| → 0, wi(R) → 1 and

wj(R)→ 0 for j 6= i. Furthermore, the Nd weights wi(R) sum to 1 and thus

Nd∑
k=1

∂wk(R)

∂R
= 0. (A.17)

With these properties and with p > 2, V (R) will exactly interpolate the energy, gradient, and

Hessian at R = R(i) for i = 1, . . . , Nd. In general, if the Taylor series in Equation A.13 is

truncated after the nth order, the function, gradient, and Hessian will be interpolated correctly

if p > n [109].

A.5 Velocity Verlet Algorithm [205]

:

R̈ =f(R) (A.18)

d2R

dt2
=− 1

M

∂Vk
∂R

. (A.19)

Letting h be the time step for numerical integration, define tn = nh. The Verlet algorithm uses

the following approximations for first and second derivatives:

Ṙn =
Rn+1 −Rn−1

2h
(A.20)

R̈n =
Rn+1 − 2Rn + Rn−1

h2
. (A.21)

Treating Equation A.21 as an equality yields the Verlet algorithm:

Rn+1 = 2Rn −Rn−1 + h2f(Rn). (A.22)
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Equation A.20 is used to compute the velocity, if it is needed.

The velocity form of the Verlet algorithm is

Rn+1 =Rn + hVn +
h2

2
f(Rn), (A.23)

Vn+1 =Vn +
h

2
(f(Rn+1) + f(Rn)) . (A.24)

This formulation is mathematically equivalent to the Verlet algorithm, but is more numerically

stable.

A.6 Z-Matrices

A.6.1 2-Butene

The 2-butene z-matrix with x1 = −20.0 and x2 = −100.0 is printed below. Note that x1

corresponds to D1 and x2 corresponds to D2.

0 1

C

C 1 B1

C 2 B2 1 A1

C 3 B3 2 A2 1 D1 0

H 4 B4 3 A3 2 D2 0

H 4 B5 3 A4 5 D3 0

H 4 B6 3 A5 5 D4 0

H 1 B7 2 A6 3 D5 0

H 1 B8 2 A7 8 D6 0

H 1 B9 2 A8 8 D7 0

H 2 B10 3 A9 1 D8 0

H 3 B11 2 A10 4 D9 0

B1=1.450000

B2=1.450000

B3=1.450000

B4=1.100000

B5=1.100000

B6=1.100000

B7=1.100000

B8=1.100000
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B9=1.100000

B10=1.100000

B11=1.100000

A1=125.000000

A2=125.000000

A3=114.000000

A4=114.000000

A5=114.000000

A6=114.000000

A7=114.000000

A8=114.000000

A9=115.000000

A10=115.000000

D1=-20.000000

D2=-100.000000

D3=120.000000

D4=-120.000000

D5=0.000000

D6=120.000000

D7=-120.000000

D8=180.000000

D9=180.000000

A.6.2 Stilbene

The z-matrix for stilbene with x1 = −200, x2 = −100 and x3 = −150 is

C

C 1 B1

C 2 B2 1 A1

C 3 B3 2 A2 1 D1 0

C 4 B4 3 A3 2 D2 0

C 5 B5 4 A4 3 D3 0

H 2 B6 1 A5 6 D4 0

H 3 B7 2 A6 7 D5 0

H 4 B8 3 A7 8 D6 0

H 5 B9 4 A8 9 D7 0

H 6 B10 5 A9 10 D8 0
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C 1 B11 2 A10 7 D9 0

C 12 B12 1 A11 2 D10 0

C 13 B13 12 A12 1 D11 0

C 14 B14 13 A13 12 D12 0

C 15 B15 14 A14 13 D13 0

C 16 B16 15 A15 14 D14 0

C 17 B17 16 A16 15 D15 0

C 18 B18 17 A17 16 D16 0

H 19 B19 14 A18 13 D17 0

H 18 B20 19 A19 20 D18 0

H 17 B21 18 A20 21 D19 0

H 16 B22 17 A21 22 D20 0

H 15 B23 16 A22 23 D21 0

H 13 B24 14 A23 19 D22 0

H 12 B25 1 A24 6 D23 0

B1=1.4

B2=1.4

B3=1.4

B4=1.4

B5=1.4

B6=1.09

B7=1.09

B8=1.09

B9=1.09

B10=1.09

B11=1.4

B12=1.4

B13=1.4

B14=1.4

B15=1.4

B16=1.4

B17=1.4

B18=1.4

B19=1.09

B20=1.09

B21=1.09
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B22=1.09

B23=1.09

B24=1.09

B25=1.09

A1=120.0

A2=120.0

A3=120.0

A4=120.0

A5=120.0

A6=120.0

A7=120.0

A8=120.0

A9=120.0

A10=120.0

A11=120.0

A12=120.0

A13=120.0

A14=120.0

A15=120.0

A16=120.0

A17=120.0

A18=120.0

A19=120.0

A20=120.0

A21=120.0

A22=120.0

A23=110.0

A24=110.0

D1=0.0

D2=0.0

D3=0.0

D4=180.0

D5=0.0

D6=0.0

D7=0.0

D8=0.0

D9=0.0
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D10=-150.0

D11=-200.0

D12=-100.0

D13=180.0

D14=0.0

D15=0.0

D16=0.0

D17=0.0

D18=0.0

D19=0.0

D20=0.0

D21=0.0

D22=-100.0

D23=-150.0

where x1 corresponds to D11, x2 corresponds to D12 with preprocessed angle D22 and x3

corresponds to D10 with preprocessed angle D23.

A.6.3 2-Pentene

The z-matrix for 2-pentene with x1 = 0 and x2 = 0 is

C

C 1 B1

C 2 B2 1 A1

C 3 B3 2 A2 1 D1

C 4 B4 3 A3 2 D2

H 1 B5 2 A4 3 D3

H 1 B6 2 A5 3 D4

H 1 B7 2 A6 3 D5

H 2 B8 1 A7 7 D6

H 3 B9 2 A8 9 D7

H 5 B10 4 A9 3 D8

H 5 B11 4 A10 3 D9

H 5 B12 4 A11 3 D10

H 4 B13 5 A12 11 D11

H 4 B14 5 A13 11 D12

B1=1.4
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B2=1.4

B3=1.4

B4=1.4

B5=1.1

B6=1.1

B7=1.1

B8=1.1

B9=1.1

B10=1.1

B11=1.1

B12=1.1

B13=1.1

B14=1.1

A1=120.0

A2=120.0

A3=120.0

A4=120.0

A5=120.0

A6=120.0

A7=120.0

A8=120.0

A9=120.0

A10=120.0

A11=120.0

A12=120.0

A13=120.0

D1=0.0

D2=180.0

D3=-120.0

D4=0.0

D5=120.0

D6=180.0

D7=0.0

D8=180.0

D9=300.0

D10=60.0

D11=60.0
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D12=-60.0

A.6.4 [Fe(tpy)2]
2+

The z-matrix for [Fe(tpy)2]2+ with axial bond lengths and equatorial bond lengths equal to

2.065 Åand a tilting angle of 0◦ is given below.

Fe

X 1 1.200000

X 1 1.200000 2 90.000000

N 1 2.065000 2 90.000000 3 D1 0

N 1 2.065000 4 A3 3 D2 0

N 1 2.065000 4 A4 5 D3 0

N 1 2.065000 3 90.000000 2 90.000000 0

N 1 2.065000 7 A6 2 D5 0

N 1 2.065000 7 A7 8 D6 0

C 4 B9 1 A8 5 D7 0

C 10 B10 4 A9 1 D8 0

C 11 B11 10 A10 4 D9 0

C 12 B12 11 A11 10 D10 0

C 4 B13 10 A12 11 D11 0

C 5 B14 1 A13 4 D12 0

C 15 B15 5 A14 1 D13 0

C 16 B16 15 A15 5 D14 0

C 17 B17 16 A16 15 D15 0

C 18 B18 17 A17 16 D16 0

C 6 B19 1 A18 4 D17 0

C 20 B20 6 A19 1 D18 0

C 21 B21 20 A20 6 D19 0

C 22 B22 21 A21 20 D20 0

C 23 B23 22 A22 21 D21 0

H 15 B24 16 A23 17 D22 0

H 16 B25 15 A24 5 D23 0

H 17 B26 16 A25 15 D24 0

H 18 B27 17 A26 16 D25 0

H 13 B28 12 A27 11 D26 0

H 12 B29 13 A28 14 D27 0

H 11 B30 12 A29 13 D28 0
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H 23 B31 24 A30 6 D29 0

H 22 B32 23 A31 24 D30 0

H 21 B33 22 A32 23 D31 0

H 20 B34 21 A33 22 D32 0

C 7 B35 1 A34 8 D33 0

C 36 B36 7 A35 1 D34 0

C 37 B37 36 A36 7 D35 0

C 38 B38 37 A37 36 D36 0

C 7 B39 36 A38 37 D37 0

C 8 B40 1 A39 7 D38 0

C 41 B41 8 A40 1 D39 0

C 42 B42 41 A41 8 D40 0

C 43 B43 42 A42 41 D41 0

C 8 B44 41 A43 42 D42 0

C 9 B45 1 A44 7 D43 0

C 46 B46 9 A45 1 D44 0

C 47 B47 46 A46 9 D45 0

C 48 B48 47 A47 46 D46 0

C 9 B49 46 A48 47 D47 0

H 41 B50 42 A49 43 D48 0

H 42 B51 43 A50 44 D49 0

H 43 B52 44 A51 45 D50 0

H 44 B53 45 A52 8 D51 0

H 39 B54 38 A53 37 D52 0

H 38 B55 37 A54 36 D53 0

H 37 B56 36 A55 7 D54 0

H 49 B57 50 A56 9 D55 0

H 48 B58 49 A57 50 D56 0

H 47 B59 48 A58 49 D57 0

H 46 B60 47 A59 48 D58 0

B9=1.350000

B10=1.380000

B11=1.380000

B12=1.380000

B13=1.350000

B14=1.350000
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B15=1.380000

B16=1.380000

B17=1.380000

B18=1.380000

B19=1.350000

B20=1.380000

B21=1.380000

B22=1.380000

B23=1.380000

B24=1.080000

B25=1.080000

B26=1.080000

B27=1.080000

B28=1.080000

B29=1.080000

B30=1.080000

B31=1.080000

B32=1.080000

B33=1.080000

B34=1.080000

B35=1.350000

B36=1.380000

B37=1.380000

B38=1.380000

B39=1.350000

B40=1.350000

B41=1.380000

B42=1.380000

B43=1.380000

B44=1.350000

B45=1.350000

B46=1.380000

B47=1.380000

B48=1.380000

B49=1.350000

B50=1.080000

B51=1.080000
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B52=1.080000

B53=1.080000

B54=1.080000

B55=1.080000

B56=1.080000

B57=1.080000

B58=1.080000

B59=1.080000

B60=1.080000

A3=76.000000

A4=76.000000

A6=76.000000

A7=76.000000

A8=120.000000

A9=120.000000

A10=120.000000

A11=120.000000

A12=120.000000

A13=120.000000

A14=120.000000

A15=120.000000

A16=120.000000

A17=120.000000

A18=120.000000

A19=120.000000

A20=120.000000

A21=120.000000

A22=120.000000

A23=120.000000

A24=120.000000

A25=120.000000

A26=120.000000

A27=120.000000

A28=120.000000

A29=120.000000

A30=120.000000

A31=120.000000
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A32=120.000000

A33=120.000000

A34=120.000000

A35=120.000000

A36=120.000000

A37=120.000000

A38=120.000000

A39=120.000000

A40=120.000000

A41=120.000000

A42=120.000000

A43=120.000000

A44=120.000000

A45=120.000000

A46=120.000000

A47=120.000000

A48=120.000000

A49=120.000000

A50=120.000000

A51=120.000000

A52=120.000000

A53=120.000000

A54=120.000000

A55=120.000000

A56=120.000000

A57=120.000000

A58=120.000000

A59=120.000000

D1=90.000000

D2=0.000000

D3=180.000000

D5=0.000000

D6=180.000000

D7=180.000000

D8=180.000000

D9=0.000000

D10=0.000000
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D11=0.000000

D12=180.000000

D13=180.000000

D14=0.000000

D15=0.000000

D16=0.000000

D17=180.000000

D18=180.000000

D19=0.000000

D20=0.000000

D21=0.000000

D22=180.000000

D23=180.000000

D24=180.000000

D25=180.000000

D26=180.000000

D27=180.000000

D28=180.000000

D29=180.000000

D30=180.000000

D31=180.000000

D32=180.000000

D33=180.000000

D34=180.000000

D35=0.000000

D36=0.000000

D37=0.000000

D38=180.000000

D39=180.000000

D40=0.000000

D41=0.000000

D42=0.000000

D43=180.000000

D44=180.000000

D45=0.000000

D46=0.000000

D47=0.000000
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D48=180.000000

D49=180.000000

D50=180.000000

D51=180.000000

D52=180.000000

D53=180.000000

D54=180.000000

D55=180.000000

D56=180.000000

D57=180.000000

D58=180.000000
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Appendix B

Appendix-B

B.1 Sparse Grids Applied to Bayesian Inference

Consider the model for heat transport in the shallow subsurface given by

u(t, z; θ) = Ce−αz sin
( π

12
t− αz + ω

)
+ Ĉ (B.1)

with parameters θ = [C,α, ω, Ĉ], depth z, and time t. C is the amplitude, α is the damping

parameter, ω is the phase shift, and Ĉ is the average temperature, assuming the temperature

u approaches Ĉ as z →∞.

Data, which we will denote by Y , was collected at three locations in North America with

different Köpen climate classifications: tropical (Dataset A), desert (Dataset B), and undifferen-

tiated highlands (Dataset H). Temperatures were collected over 5-minute intervals for a period

of 40 days at depths of z = 1, 5, 10, 15, 20, 25, and 30 cm. With this data we calibrate our model

parameters θ using the Bayesian framework.

Bayes’ Theorem is given by

π(θ|Y ) =
f(Y |θ)π0(θ)∫

Γ f(Y |θ)π0(θ)dθ
(B.2)

where p(θ|Y ) is the posterior probability density of θ given our data Y , f(Y |θ) is the sampling

density of the data Y given our parameters θ, and π0(θ) is the prior density. The prior density

can be used to incorporate prior knowledge about the parameters into analysis. For this work

we assume an uninformative (constant) prior density.

Assuming identically and independently (iid) normally distributed errors with mean 0 and
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weighted variance σ2

22i
, the sampling density is given by

f(Y |θ) =
1

(
√

2πσ2)7nt

7∏
i=1

[
wnt
i exp

(
−1

2σ2
SS

)]
(B.3)

where nt is the number of data points in time and the weights wi depend on depth z. The sum

of squares SS is given by

SS =

nt∑
j=1

[wi(yij − f(ti, zj , θ))]
2. (B.4)

While the variance σ2 could be considered as a fifth parameter in Bayesian analysis, we fix the

variances σ2
A = 0.01, σ2

B = 0.0567, and σ2
H = 0.3299 for the respective datasets.

To evaluate the posterior density π(θ|Y ) we approximate the likelihood function and its

integral with sparse grids using the MATLAB Sparse Grid Interpolation Toolbox [121, 124, 122].

The bounds for the interpolation domain Γi for θi was taken from the minimum and maximum

parameter values from Markov Chain Monte-Carlo (MCMC) chains computed with the Delayed

Rejection Adaptive Metropolis (DRAM) algorithm. The chains were run for 7500 iterations.

For Dataset A, for example, the interpolation domain is

Γ = ΓC × Γα × Γω × ΓĈ

= [2.368, 2.666]× [0.08514, 0.09126]× [5.845, 5.960]× [23.11, 23.14].
(B.5)

We use the NoBoundary sparse grid option that employs the maximum-norm-based sparse

grid without points on the boundary with a grid depth of 10 to obtain the approximation

π̂(θ|Y ) ≈ π(θ|Y ) (B.6)

that requires 471,041 evaluations of the likelihood f(Y |θ). The sharp peak of the likelihood func-

tion necessitates the high sparse grid depth, as sparse grids with lower depth lead to significant

error due to magnitude of the likelihood’s derivatives in the neighborhood of the peak.

Using our approximation of the likelihood, the marginal density for θi is

pi(θi) =

∫
Γ′
π̂(θ|Y )dθ′ (B.7)

where Γ′ and dθ′ include all Γj and dθj for j 6= i. For a given value of θi, the marginal distribution

is found by calculating the integral in Equation B.7 with sparse grids using the MATLAB Sparse

Grid Interpolation Toolbox [121]. Here we also use the NoBoundary sparse grid option but with

a depth of 9. We note that this integral must computed each time we evaluate the marginal

pi(θi), and the high depth of the sparse grids makes this an expensive process.
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In Figure B.1, we compare the marginal distributions for each parameter for Dataset A

computed from Equation B.7 with the marginal distributions computed from DRAM results.

The same comparisons for Datasets B and H are shown in Figures B.2 and B.3. We expect that

if we increase the depth of our sparse grids the DRAM and sparse grid marginal distributions

would agree even more, but the computational expense of higher-level sparse grids is inhibitive.
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Figure B.1: Comparison for Dataset A: each marginal distribution calculated with the MAT-
LAB Sparse Grid Interpolation Toolbox (SG) and the marginal distribution calculated from
DRAM results.
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Figure B.2: Comparison for Dataset B: each marginal distribution calculated with the MAT-
LAB Sparse Grid Interpolation Toolbox (SG) and the marginal distribution calculated from
DRAM results.
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Figure B.3: Comparison for Dataset H: each marginal distribution calculated with the MAT-
LAB Sparse Grid Interpolation Toolbox (SG) and the marginal distribution calculated from
DRAM results.
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