
ABSTRACT

WHEELESS, WILLIAM BENNETT. Additional Symmetries of the Extended Toda Hierarchy. (Under
the direction of Bojko Bakalov.)

Some integrable hierarchies, such as the Korteweg-de Vries (KdV) hierarchy and the Toda hi-

erarchy, arise by modeling a physical process with a base differential equation then adding other

evolutionary equations that commute with it. This allows one to create a flow of solutions of the first

equation. In addition to this, Gromov-Witten invariants of certain projective manifolds (or more

generally, orbifolds) can be organized into a generating function that is a solution to an integrable

hierarchy. The extended Toda hierarchy (ETH) was introduced to find such a hierarchy that governs

the Gromov-Witten invariants ofCP 1. Similarly, the extended bigraded Toda hierarchy (EBTH) was

found to govern the Gromov-Witten theory of certain orbifolds of CP 1 after its introduction.

The evolutionary differential equations that form a given integrable hierarchy produce actions

that commute with one another and can be solved simultaneously; in other words, they are sym-

metries of one another. These equations form flows of solutions. For some hierarchies, such as

KdV and Kadomtsev-Petviashvili (KP), these are not the only flows that commute with the flows

of the hierarchy. These additional commuting flows are fittingly called additional symmetries. Af-

ter reviewing the tools necessary to the discussion of additional symmetries in the context of the

KdV and KP hierarchies, we discuss the Toda hierarchy, its symmetries, and the ETH. We define

additional flows for the extended Toda in Lax form, proving that these flows are indeed symmetries

of the ETH and that they commute with one another as the Virasoro algebra. We then show how

these symmetries act on the tau function of the hierarchy. Finally, we move to the EBTH, defining

additional symmetries for it and investigating these additional flows’ actions on the hierarchy’s Lax

operator, wave functions, and tau function.
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CHAPTER

1

INTRODUCTION

Integrable hierarchies, such as those looked at in this thesis, are formulated in several ways. The

goal of this chapter is to introduce two such formulations, the Lax pair form and the tau function, as

well as what it means for two differential equations to be symmetries of one another. This is done

within the context of the Korteweg-de Vries and Kadomtsev-Petviashvili hierarchies so that these

concepts will be well-established when we introduce the corresponding notions for the Toda lattice

and extended Toda hierarchies in Chapter 2. The majority of this chapter’s material is adapted from

[7] and [15].

1.1 Symmetries

A central concept of this thesis is what it means for a set of evolutionary partial differential equations

to be symmetries of one another. We will first look at what this means for two such equations:

Definition 1.1. Suppose we have an evolutionary partial differential equation on u

∂t u = K (u ), (1.1)

with K only depending directly on x and its derivatives (or other like operators). Let u (x , t ) be a
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1.1. SYMMETRIES CHAPTER 1. INTRODUCTION

solution of (1.1) and use it as an initial condition (i.e. u (x , t ,0) = u (x , t ) ) of a second evolutionary

partial differential equation on u

∂s u =H (u ), (1.2)

again with H only depending directly on x and its derivatives. We say that (1.2) is a symmetry of

(1.1) if there is some neighborhood of s = 0 for which u (x , t , s ) is a solution to (1.1) for all s in that

neighborhood.

Note that this definition is symmetric in the sense that (1.2) is a symmetry of (1.1) if and only if

(1.1) is a symmetry of (1.2).

Another way of saying (1.2) is a symmetry of (1.1) is that these two equations are compatible:

they can be simultaneously solved, which is equivalent to saying

∂t

�

H (u )
�

= ∂t ∂s u = ∂s∂t u = ∂s

�

K (u )
�

. (1.3)

Taking the middle equivalence and taking the difference, we get the following definition of two

differential operators, ∂t and ∂s , being symmetries of one another:

[∂t ,∂s ]u = 0, (1.4)

where [·, ·] is the commutator bracket used in Lie algebras; for two operators, A and B ,

[A, B ] = A ◦B −B ◦A,

where ◦ denotes composition (this will be suppressed for much of the remainder of the thesis).

Equation (1.4) is the definition of symmetry that we will use for the rest of the thesis, replacing u

with various operators and functions.

If we can find such a symmetry for our base equation (1.1), then our common solution u (x , t , s )

gives us a flow of solutions for this equation; u (x , t , 0) is a solution, but so is u (x , t ,ε), where ε is in

the neighborhood of s = 0 referenced in Definition 1.1 above. This allows us to find new solutions

from known solutions by traveling along these so-called differential flows.

A set of such differential equations, ∂tn
u = Kn (u ), are all symmetries of one another if (1.4) is

satisfied for t = tn and s = tm , for any n , m in the set that indexes these equations. In this way, these

tn ’s can be thought as variables in our common solution.

2



1.2. LAX FORM AND FORMATION OF A HIERARCHY CHAPTER 1. INTRODUCTION

Example: The KdV Equation

To illustrate how finding these symmetries can be accomplished, consider the Korteweg-de Vries

(abbreviated KdV) equation:

∂t u = K (u ) =
3

2
u ux +

1

4
ux x x . (1.5)

This equation provides a model for the movement of waves through narrow, shallow channels, such

as those found in blood vessels. To find a symmetry for this equation, we first need to introduce a

grading that makes the right-hand side homogeneous. Letting deg(u ) = 2 and deg(∂x ) = 1 makes

the right side homogeneous of degree 5. Assuming the H (u ) is also homogeneous yields the first

non-trivial symmetry to be of degree 7:

∂s =H (u ) = c1u 2ux + c2u ux x x + c3ux ux x + c4ux x x x x .

For the sake of brevity, only part of the calculation is shown:

∂s∂t u = ∂s

�

K (u )
�

= ∂s

�3

2
u ux +

1

4
ux x x

�

=
3

2
us ux +

3

2
u (us )x +

1

4
(us )x x x

=
3

2
H (u )ux +

3

2
u (H (u ))x +

1

4
(H (u ))x x x .

Writing out H (u ) and taking the appropriate number of derivatives, doing the same process for the

left side (1.3), then matching like terms allows us to come to the following relationship between the

constants ck :

2c1 = 6c2 = 3c3 = 60c4,

giving us the first non-trivial symmetry of (1.5) as

∂s =H (u ) = 30u 2ux +10u ux x x +20ux ux x +ux x x x x (1.6)

up to some arbitrary non-zero multiple of the right-hand side.

1.2 Lax Form and Formation of a Hierarchy

The study of such hierarchies of differential equations as the KdV hierarchy, KP hierarchy, and Toda

hierarchies rely heavily on Lax pairs. For this reason, the vast majority of original results found in this

thesis are given in Lax pair form. We will realize the concept with the KdV hierarchy, then generalize
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1.2. LAX FORM AND FORMATION OF A HIERARCHY CHAPTER 1. INTRODUCTION

it to the larger KP (Kadomtsev-Petviashvili) and other such hierarchies.

In general, we consider an operator L of some form that incorporates the solution of the partial

differential equation in which we are interested; this is what will be called the Lax operator. In the

case of KdV, this operator is the 1-D Schrödinger operator, L = ∂ 2
x +u . Consider the following:

Lψ= z 2ψ, (1.7)

whereψ=ψ(x , z ) is an eigenfunction of L of eigenvalue z 2, also called a wave function. In general,

the power of z depends on the degree of the operator L ; since L for KdV is of degree 2 according to

the previous grading scheme, the eigenvalue is z 2.

For KdV, we find a formal solution for the family of eigenfunctions

ψ=w (x , z )e x z = e x z
�

1+w1z -1+w2z -2+ · · ·
�

,

whose coefficients can be found in terms of u and its derivatives. In addition to imposing (1.7), we

also want to find a symmetry of the form

∂tψ= Bψ, (1.8)

where B is another operator independent of z and its derivatives of finite order. Combining (1.7)

and (1.8), we get

∂t

�

Lψ
�

= z 2∂tψ

∂ L

∂ t
ψ+ L

�

∂tψ
�

= z 2∂tψ

∂ L

∂ t
ψ+ L Bψ= z 2Bψ= B

�

z 2ψ
�

= B Lψ
�

∂ L

∂ t
−B L + L B

�

ψ= 0
�

∂ L

∂ t
− [B , L ]

�

ψ= 0.

Since the operator acting on ψ in the last equality is of finite order and independent of z , there

must be a finite number of independent ψ that satisfy this equation. However, since there is an

independentψ for each z , there are an infinite number of independentψ. Thus, this operator must

be 0. This gives us
∂ L

∂ t
= [B , L ]. (1.9)

4



1.2. LAX FORM AND FORMATION OF A HIERARCHY CHAPTER 1. INTRODUCTION

This is called the Lax equation and (L , B ) is a Lax pair.

In particular for KdV, we assume that B takes the form

B = ∂ 3
x + b1∂x + b0 (1.10)

and impose (1.9) for
∂ L

∂ t
= ut . Then, we find that b1 =

3

2
u and b0 =

1

4
ux up to the addition of

arbitrary constants (assumed to be 0); the KdV equation (1.5) comes from the constant coefficient

(the ∂ 0
x term) of the right-hand side. Note that this solution makes B homogeneous of degree 3.

Pseudo-differential Operators

To arrive at a more general method of finding these symmetries in Lax form, we need to introduce

the concept of pseudo-differential operators.

Definition 1.2. An operator A is a pseudo-differential operator of order n (n ∈Z) if it is of the form

A =
n
∑

i=-∞
ai ∂

i
x , ai = ai (x ),

where an (x ) 6= 0.

Note that for any function f (x ) and n ∈ Z, we have the Leibniz rule for pseudo-differential

operators:

∂ n
x ◦ f =

∞
∑

i=0

�

n

i

�

�

∂ i
x f
�

∂ n−i
x .

We also have for any n ∈ Z that ∂ n
x e x z = z n e x z . Thus, for any pseudo-differential operator A, as

given above, we have

Ae e z =

�

n
∑

i=-∞
ai z i

�

e x z .

Define the decomposition of the space of pseudo-differential operators into “plus” and “minus”

parts as follows: for such an operator A as defined before,

A+ =
n
∑

i=0

ai (x )∂
i

x , A− =
-1
∑

i=-∞
ai (x )∂

i
x .

Finally, suppose we have a pseudo-differential operator of the form

A =
∞
∑

i=0

ai (x )∂
-i

x ,

5



1.2. LAX FORM AND FORMATION OF A HIERARCHY CHAPTER 1. INTRODUCTION

where a0(x ) 6= 0. Then A has a unique inverse, A-1 =
∞
∑

i=0

a -1
i ∂

-i
x , such that

A ◦A-1 = A-1 ◦A = 1

and whose coefficients can be solved for recursively.

Wave Operator

Define the pseudo-differential operator W , called the wave operator (or sometimes dressing oper-

ator), as

W =
∞
∑

i=0

wi (x )∂
-i

x , (1.11)

where w0(x ) = 1 and the wi (x ) are the same as those of w (x , z ) in the wave functionψ. Then we

have that

ψ=w (x , z )exp

�

x z +
∞
∑

i=1

ti z i

�

=W exp

�

x z +
∞
∑

i=1

ti z i

�

.

Combining this observation with (1.7) gives us

LW e x z+··· = z 2W e x z+···

=W
�

z 2e x z+···�

=W ∂ 2
x e x z+···,

which means that

L =W ∂ 2
x W -1. (1.12)

The Hierarchy

In order to present a Lax pair representation of a family of symmetries to (1.5), define the pseudo-

differential operator

P = ∂x +p1(x )∂
-1

x +p2(x )∂
-2

x + · · · (1.13)

such that P = W ∂x W -1, making P 2 = L . Due to this definition of P , we have that ψ is also an

eigenfunction of P with eigenvalue z . We also have a well defined concept of the inverse of P :

P -1 =W ∂ -1
x W -1 with P -1ψ= z -1ψ.

Solving for the first few coefficients of W and then P , one can show that B = (P 3)+, for B defined

as before in (1.10).

6



1.2. LAX FORM AND FORMATION OF A HIERARCHY CHAPTER 1. INTRODUCTION

We define a hierarchy of evolutionary partial differential equations based upon the KdV equation

as follows:

Definition 1.3. The KdV hierarchy (in Lax form) is given by

∂ L

∂ tn
= [(P n )+, L ], n = 1, 3, 5, . . . , (1.14)

where the tn are now new variables for L.

Each of these equations are symmetries of one another and of the KdV equation, which arises

from the equation for n = 3. We also have that ∂t1
= ∂x , allowing us to interchange x and t1 freely.

Note that since P 2 = L , (P 2k )+ = L k , making
∂ L

∂ t2k
= 0.

The KP Hierarchy

The flows of (1.14) induce similar actions on the operator P :

∂ P

∂ tn
= [(P n )+, P ], n = 1, 3, 5, . . . , (1.15)

where the restriction to positive odd integers stems from the condition that P 2 is a purely differen-

tial operator. The broader KP (Kadomtsev-Petviashvili) hierarchy comes about by removing this

restriction on P and using it as the Lax operator:

Definition 1.4. On a pseudo-differential operator P = ∂x +p1∂
-1

x +p2∂
-2

x + · · · , the flows of the KP

hierarchy are defined to be
∂ P

∂ tn
= [(P n )+, P ], n ∈Z≥1. (1.16)

Now, all previous functions and operator, including w , W , andψ, depend on t= (t1, t2, t3, . . .).

Restricting different powers of P to be purely differential operators gives us different reductions

of this hierarchy. As already seen, doing so for P 2 gives us the KdV hierarchy; doing so for P 3 gives

us the Boussinesq hierarchy; doing so for any N ∈Z≥2 gives us the N th Gelfand-Dickey hierarchy.

Finally, the KP hierarchy has a mirrored concept of a wave function and wave operator, and the

flows induce actions on each:
∂ ψ

∂ tn
= (P n )+ψ, (1.17)

∂W

∂ tn
=−(P n )−W . (1.18)

7



1.3. TAU FUNCTION CHAPTER 1. INTRODUCTION

For the remainder of this chapter, we will focus on the KP hierarchy; statements about it can also be

made for the KdV hierarchy by restricting (P 2)− = 0.

1.3 Tau Function

The last major object discussed in this dissertation is the tau function. For a hierarchy such as the

ones studied in this thesis, the tau function is a single function with which the entire hierarchy can

be described.

Existence

For a function f of t= (t1, t2, t3, . . .), define the operator G (z ) acting on f as

G (z ) f (t) = f (t− [z -1]), (1.19)

where

[z ] =
�

z ,
1

2
z 2,

1

3
z 3, . . .

�

. (1.20)

More explicitly,

G (z ) = exp

�

−
∞
∑

i=1

1

i
z -i ∂

∂ ti

�

.

Using this operator, we have the following theorem by Mikio Sato:

Theorem 1.1. For the KP hierarchy, there exists a function, τ(t), called the tau function, such that

w (t, z ) =
G (z )τ(t)
τ(t)

. (1.21)

Due to the nature of the definition of the coefficients of W and w and the result of Theorem 1.1,

τ is unique only up to multiplication by c exp

�∞
∑

i=1

ci ti

�

, where c , c1, c2, . . . are arbitrary constants

with respect to the ti variables.

1.4 Additional Symmetries of KP

The flows of the KP hierarchy (and its reductions, such as KdV) are symmetries of one another.

However, these are not the only flows whose actions commute with the hierarchy. These flows are

8



1.4. ADDITIONAL SYMMETRIES OF KP CHAPTER 1. INTRODUCTION

called additional symmetries, and there are an infinite number of them. These are not included in

the hierarchy itself because these extra flows do not commute amongst themselves.

Lax Form

Define a new operator, M , such that ∂zψ=Mψ. This gives us

M :=W x W -1+
∞
∑

n=2

n tn L n−1 (1.22)

and, for any ` ∈Z and m ∈Z≥0,

P `M mψ= ∂ m
z z `ψ, M m P `ψ= z `∂ m

z ψ.

It is important to note that this operator is only well defined when only finitely many of the tn

variables are nonzero.

Then, for such ` and m , define a new set of differential equations

∂t ∗`m
W =−(M m P `)−W , (1.23)

where t ∗`m are some new set of variables. The flows on the wave operator in (1.23) lead directly to

the actions on P :

∂t ∗`m
P = [−(M m P `)−, P ]. (1.24)

We then have the following theorem by Orlov and Schulman from [16]:

Theorem 1.2. The flows defined in (1.23) and (1.24) give the Lax representation of additional sym-

metries for the KP hierarchy; i.e.

[∂tn
,∂t ∗`m

]Φ= 0,

where Φ can be any one of W , P , orψ.

Action on τ

The actions of the additional symmetries of the KP hierarchy on the wave function induce corre-

sponding actions on the tau function by means of the Adler-Shiota-van Moerbeke formula (as seen

in [1, 2]:
∂t ∗`m

ψ

ψ
=G (z )

�

∂t ∗`m
τ

τ

�

−
∂t ∗`m

τ

τ
. (1.25)

9



1.5. OUTLINE OF THIS THESIS CHAPTER 1. INTRODUCTION

Note that the previous formula can be found by treating ∂t ∗`m
as a derivation and using the quotient

rule from calculus. The previous formula holds regardless of the hierarchy or the symmetry, as long

as there is a representation of the coefficients of the wave operator in terms of τ similar to that

found in (1.21).

The corresponding actions of the additional symmetries on τ are more easily represented within

a generating function: Define the operator

X (t,λ,µ) = exp

�∞
∑

n=1

(µn −λn )tn

�

exp

�∞
∑

n=1

(λ-n −µ-n )
1

n

∂

∂ tn

�

. (1.26)

The actions of ∂t ∗`m
on τ are then given by

∂t ∗`+m ,m
τ=

W (m+1)
` τ

m +1
, (1.27)

where, expanding X (t,λ,µ) in all powers of λ and nonnegative powers of µ−λ, we have

X (t,λ,µ) =
∞
∑

k=0

(µ−λ)k

k !

∑

j∈Z
λ− j−k W (k )

j .

These W (k )
j operators satisfy the Adler-Shiota-van Moerbeke formula for the actions of the additional

symmetries.

1.5 Outline of this Thesis

The remainder of this thesis introduces and discusses its main topic, the extended Toda hierar-

chy. Chapter 2 introduces the Toda lattice hierarchy, its Lax form and relevant operators, and its

symmetries, similar to how this chapter does the same for the KP hierarchy. It then goes on the

extend this hierarchy to the extended Toda hierarchy. Chapter 3 contains the main original results

of this thesis, involving the definitions of the additional symmetries of the extended Toda hierarchy

as well as their actions on the Lax operator, wave functions, and tau function. We also show that

these flows commute with each other as the Virasoro algebra. Finally, Chapter 4 briefly discusses a

larger hierarchy originally defined in [4], the extended bigraded Toda hierarchy. We then define its

additional symmetries in Lax form and investigate how these symmetries act on its tau function.

10



CHAPTER

2

EXTENDED TODA HIERARCHY

This thesis’ main result involves additional symmetries of the extended Toda hierarchy. As the name

implies, this is an extension of a smaller hierarchy, the Toda lattice hierarchy. In this chapter, we

discuss the Toda lattice hierarchy, the functions and operators associated with it, its additional

symmetries, and ultimately, its extension. Material found in Sections 2.1 and 2.2 primarily comes

from [3], [5], and Section 6 of [20]. Section 2.3 contains material adapted from [5] and [17].

2.1 The Toda Lattice Hierarchy

In 1967, Morikazu Toda introduced a model describing the movement of particles in an infinite

one-dimensional crystal lattice in [18]. A simplified version of this model, rescaling variables so that

the masses of the particles do not appear, is

∂ 2qn

∂ t 2
= e qn−1−qn − e qn−qn+1 , n ∈Z (2.1)

where qn = qn (t ) represents the position of the n t h particle at time t . This is the Toda lattice

equation.

In order to use the tools and theory developed for KP on Toda, we must change this second order

11



2.1. THE TODA LATTICE HIERARCHY CHAPTER 2. EXTENDED TODA HIERARCHY

equation into a first order one by way of a common method in solving partial differential equations.

Define the dependent variables vn and un by

vn =−
∂ qn

∂ t
, un = qn−1−qn .

Using these variables, the Toda lattice equation can be recast into a system of first order equations:











∂ vn

∂ t
= e un+1 − e un

∂ un

∂ t
= vn − vn−1

, n ∈Z. (2.2)

Lax Form

The KP hierarchy considers pseudo-differential operators. In analogy with these types of operators,

the Toda lattice makes use of the shift operator Λ in place of ∂x :

Definition 2.1. Let f :Z→C be a function on the infinite lattice. Then the shift operatorΛ is defined

such that

Λ fn = fn+1.

Note that Λ-1 is well defined:

Λ-1 fn = fn−1.

In the context of this thesis, a difference operator is any formal power series in Λ and Λ-1 with

coefficients functions on the lattice.

Also in analogy with KP, for any such difference operator A =
∑

i∈Z
aiΛ

i , define the “plus” and

“minus” parts of A, denoted A+ and A− respectively, as

A+ =
∑

i≥0

aiΛ
i , A− =

∑

i<0

aiΛ
i .

With these concepts in mind, define the Lax operator L for the Toda lattice as

L = Ln =Λ+ vn + e unΛ-1. (2.3)

Then the Toda lattice equation can be rewritten in Lax form as

∂ L

∂ t
= [L+, L ]. (2.4)

12
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Indeed, a direct calculation shows that the first equation of (2.2) follows from the Λ0 terms of each

side of (2.4) while the second equation follows from the Λ-1 terms.

In order to discuss the formulation of the Toda lattice hierarchy and, ultimately, its additional

symmetries, we temporarily reformulate the Lax operator as an infinite matrix. We will return to the

form in (2.3) in Section 2.3.

Infinite Matrices

Define g̃ `∞ to be the algebra of all Z×Zmatrices with only finitely many nonzero diagonals. It is

clear that multiplication of any finite number of such matrices is well defined. Define Λ ∈ g̃ `∞ (the

shift matrix) such that Λk ,k+1 = 1 for any k ∈Z and all other entries are 0:

Λ=





























...

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0
...





























.

This matrix has the property that for any infinite column vector f = ( fn )n∈Z, (Λ f )n = fn+1, similar to

the shift operator in Definition 2.1. Also, define the infinite column vector ζ(z ) := (z n )n∈Z. Note that

Λiζ= z iζ for i ∈Z. Similar to how KP considers operators that have finitely many positive powers

of ∂x , the Toda lattice will only consider such difference operators with only finitely many positive

powers of Λ.

Similar to how P is defined in the KP case, define the Lax matrix operator L =Λ+a0+a1Λ
-1 (just

as in (2.3)) , where a0 and a1 are matrices with only main diagonal entries:

L =





























...

L-2,-2 1 0 0 0

L-1,-2 L-1,-1 1 0 0

0 L0,-1 L0,0 1 0

0 0 L1,0 L1,1 1

0 0 0 L2,1 L2,2

...





























.

13
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Also as in the case with KP and the definition in the previous section, we consider the splitting

of such infinite matrices into their upper triangular (with diagonal) part, denoted as ( )+, and their

lower triangular part (without diagonal), denoted as ( )−. It is clear that A++A− = A, for any A ∈ g̃ `∞.

Definition 2.2. The Toda lattice hierarchy (in Lax matrix form) is the set of differential flows of

t1, t2, . . . on L given by (similar to KP)

∂ L

∂ tn
= [(L n )+, L ]. (2.5)

Note that for n = 1, the right-hand sides of (2.5) and (2.3) are the same. Because of this obser-

vation, we say that t = t1. There is an equivalent definition of the hierarchy using a modified Lax

matrix that will be discuss when talking about additional symmetries in Section 2.2.

Wave Matrix, Wave Vector, and Tau Vector

As in the KP case, the Toda hierarchy has a wave matrix operator W = I +w1Λ
-1+w2Λ

-2+ · · · such

that

L =W ΛW -1,
∂W

∂ tn
=−(L n )−W

We also have the wave vectorψ= (ψn )n∈Z defined as

ψ=W e ξ(t,z )ζ,

where ξ(t, z ) =
∞
∑

i=1

ti z i . Note that these definitions give us that Lψ= zψ and
∂ ψ

∂ tn
= (L n )+ψ.

Finally, just as in KP, we have the concept of a τ (vector) function for the Toda lattice hierarchy.

There exists τ= (τn )n∈Z such that we have the following relations on L andψ for all n ∈Z:

Ln ,n =−
∂

∂ t

�

log
τn+1

τn

�

, Ln ,n−1 =
τn+1τn−1

τ2
n

, ψn = e ξ(t,z )z n G (z )τn

τn
,

where G (z ) is the same shifting operator used in KP and KdV.

2.2 Additional Symmetries of Toda

In order to define the additional symmetries of the Toda lattice hierarchy, we must first introduce

an equivalent definition of the hierarchy. Define the diagonal matrix γ= diag(. . . ,γ-1,γ0,γ1, . . .)with

14
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γk =
√

√τk+1

τk
. Using this, define the following modified operator matrices and vectors:

L̃ = γ-1Lγ,

W̃ = γ-1W ,

ψ̃= γ-1ψ.

By using the τ representation of the entries of L , it is clear that L̃ is a symmetric matrix and that the

diagonal entries of L and L̃ are equal. We also have that L̃ = W̃ ΛW̃ -1, ψ̃= W̃ e ξ(t,z )ζ, and L̃ψ̃= z ψ̃.

Introduce a different splitting of g̃ `∞ into anti-symmetric part, denoted ( )s , and lower Borel

(lower triangular with diagonal) part, denoted ( )b . To demonstrate this splitting, consider the 2×2

matrix

A =

�

1 2

3 4

�

.

Then

As =

�

0 2

-2 0

�

, Ab =

�

1 0

5 4

�

.

If A is symmetric, then we have that Ab = 2A−+A0, where A0 denotes the diagonal part of A.

Using this splitting and the modified Lax matrix, the following is an equivalent definition of the

Toda lattice hierarchy:
∂ L̃

∂ tn
=

1

2
[(L n )s , L̃ ]. (2.6)

The actions of the Toda lattice flows on the modified wave function and operator matrix are similar

to those on the original wave function and operator matrix:

∂ W̃

∂ tn
=−

1

2
(L n )b W̃ ,

∂ ψ̃

∂ tn
=

1

2
(L n )s ψ̃.

Lax Form of Additional Symmetries

Just as in the KP case, we define an operator, M̃ , such that M̃ ψ̃= ∂z ψ̃:

M̃ := W̃∆W̃ -1+
∞
∑

n=1

n tn L̃ n−1,

15
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where∆ ∈ g̃ `∞ is defined

∆ :=





























...

0 0 0 0 0

-1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 2 0
...





























such that∆ζ= ∂zζ. Just as with M for the KP hierarchy in (1.22), M̃ is only well defined when finitely

many of the tn variables are nonzero.

Define flows
∂

∂ t ∗`,m
on the modified Lax operator L̃ as follows:

∂ L̃

∂ t ∗`,m
= [−(M̃ m L̃`)b , L̃ ]. (2.7)

These flows have the corresponding actions on the modified wave vector and wave operator matrix:

∂ W̃

∂ t ∗`,m
=−(M̃ m L̃`)b W̃ ,

∂ ψ̃

∂ t ∗`,m
=−(M̃ m L̃`)b ψ̃.

However, recall that L and L̃ are tridiagonal matrices and that L̃ is symmetric. So, actions that are to

act as derivatives on these matrices must preserve these properties. The only such actions that do

this are when m = 0, ` ∈Z and when m = 1, ` ∈Z≥0.

With these flows, we have the following theorem by Adler and van Moerbeke given in [3]:

Theorem 2.1. The flows defined in (2.7) are additional symmetries of the Toda lattice hierarchy; i.e.

when m = 0, ` ∈Z or when m = 1, ` ∈Z≥0, we have

[∂tn
,∂t ∗`,m

]Φ= 0,

16
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where Φ can be any one of W̃ , L̃ , or ψ̃. They commute with each other as follows:

[∂t ∗`,0
,∂t ∗k ,0

] =−
`

2
δ`+k ,0,

[∂t ∗`,0
,∂t ∗k ,1

] =−`∂t ∗`+k ,0
,

[∂t ∗`,1
,∂t ∗k ,1

] =−(`−k )∂t ∗`+k ,1
.

Note that the nonzero commutation relations of these symmetries mean that solutions of the Toda

lattice hierarchy are not functions of the t ∗`,m variables.

Action on τ

Similar to KP and KdV, the flows defined in (2.7) induce actions on the τ vector function. They are

constructed from operators W (k )
j generated by expanding the following operator in powers of λ and

µ−λ:

X (t,λ,µ) = exp

�

1

2

∞
∑

n=1

(µn −λn )tn

�

exp

�∞
∑

n=1

(λ-n −µ-n )
1

n

∂

∂ tn

�

=
∞
∑

k=0

(µ−λ)k

k !

∑

j∈Z
λ− j−k W (k )

j .

Note the factor of
1

2
in front of the tn term, differing this operator from (1.27). Expanding this

operator gives the first three terms:

W (0)
j = J (0)n =δn ,0,

W (1)
j = J (1)n ,

W (2)
j = J (2)n − (n +1)J (1)n ,

where

J (1)n =



















∂tn
, n > 0

0 , n = 0
1

2
(-n )t-n , n < 0

and

J (2)n =
∑

i+ j=n

∂ti
∂t j
+

∑

-i+ j=n

i ti ∂t j
+

1

4

∑

−i− j=n

(i ti )( j t j ).

17
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Finally, to more easily formulate the actions of these flows on τ, Adler and van Moerbeke define the

following operators:

L j
`+1,1 :=W (2)

` +2 j W (1)
` + ( j

2− j )W (0)
` ,

L j
`,0 := 2W (1)

` +2 j W (0)
` .

Using these operators, we have the following theorem from [3]:

Theorem 2.2. The actions of the additional symmetries ∂t ∗`,m
(m = 0, ` ∈ Z or m = 1, ` ∈ Z≥0) on

τ= (τ j ) j∈Z for the Toda lattice hierarchy are induced by the actions onψ= (ψ j ) j∈Z by the following:

∂t ∗`,m
ψ j

ψ j
= (G (z )−1)

L j
`,mτ j

τ j
+

1

2

 

L j
`,mτ j

τ j
−
L j+1
`,mτ j+1

τ j+1

!

. (2.8)

2.3 The Extended Toda Hierarchy

To extend an integrable hierarchy such as Toda, one needs to introduce a new set of variables with

corresponding evolutionary flows. The actions of these flows must commute with the actions of

the original hierarchy, just like additional symmetries. However, they must also commute with

each other, allowing them to be added to the original flows to make a larger hierarchy. As is briefly

discussed in [5], the flows of the Toda lattice hierarchy form a complete family of such commuting

flows when all functions are functions of discrete points on the lattice. New symmetries arise when

we view them as functions of a continuous variable, x ∈R.

The Interpolated Toda Hierarchy

For every function on the lattice f :Z→C, interpolate a corresponding function of a continuous

variable x ∈R, f :R→C, so that f (nε) = fn , n ∈ Z. Here, ε is called the string coupling constant,

which is a formal parameter that can be thought of as the lattice mesh. This interpolation also

changes our shift operator Λ so that Λ= e ε∂x :

Λ f (x ) = f (x +ε).

Typically, ε is kept as a formal parameter, as in [5]. However, in [17] and the material presented in

this thesis, ε= 1 to simplify the notation. A change of variables allows one to recover the explicit

dependence on ε. To differentiate the notations and remain consistent with the notation in [17],

18
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s =
x

ε
will be used as the continuous variable instead of x . Thus, we have

Λ f (s ) = f (s +1).

The Lax operator for Toda then becomes

L = L (s ) =Λ+ v (s ) + e u (s )Λ-1, (2.9)

and the splitting of such difference operators into “plus” and “minus” parts remains unchanged.

We use the following definition from [17]:

Definition 2.3. The (interpolated) Toda hierarchy is defined to be

∂ L

∂ tn
= [An , L ], n ∈Zn≥1, (2.10)

where

An =
1

2
(L n )+−

1

2
(L n )−

= (L n )+−
1

2
L n

=
1

2
L n − (L n )−.

Note that (2.10) amounts to ∂tn
L = [(L n )+, L ] = [−(L n )−, L ] since integer powers of L commute with

L .

This interpolation is what allows new symmetries to be added to the hierarchy. The simplest

symmetry of the Toda hierarchy that is not found within the hierarchy itself is translation along the

continuous variable s , s → s + c for some constant c , found by acting with ∂s .

Wave Operators

Just as in the KP and Toda lattice hierarchies, we have the concept of a wave or dressing operator.

However, unlike in the Toda lattice, we consider all difference operators rather than just those that

have finitely many positive powers of Λ. Because we expand the operators that we are considering,

L no long has a well defined inverse as it did in the Toda lattice; only those operators of the form

A =
∑

i≥0

aiΛ
i or A =

∑

i≤0

aiΛ
i with a0 6= 0 have well defined inverses.
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Thus, we have two wave operators for the Toda hierarchy,

W = 1+
∞
∑

i=1

wi (s )Λ
-i , W̄ =

∞
∑

i=0

w̄i (s )Λ
i , w̄0(s ) 6= 0,

such that

L =W ΛW -1 = W̄ Λ-1W̄ -1. (2.11)

The flows of the Toda hierarchy act on these dressing operator as

∂W

∂ tn
= An W −

1

2
W Λn =−(L n )−W ,

∂ W̄

∂ tn
= An W̄ +

1

2
W̄ Λ-n = (L n )+W̄ .

(2.12)

Logarithm of L and the Extension

In order to extend the Toda hierarchy, a new Lax operator must be introduced. The authors of [5]

define the so-called logarithm of L as follows

log L =
1

2
W ∂s W -1−

1

2
W̄ ∂s W̄ -1 =−

1

2

∂W

∂ s
W -1+

1

2

∂ W̄

∂ s
W̄ -1. (2.13)

The ∂s in each term of log L cancels, showing that this operator is indeed a difference operator. Also,

using each representation of L in (2.11), it clear that L commutes with each term of log L . Thus, L

and log L commute.

Using this new difference operator, we have the following:

Definition 2.4. Introduce a new set of variables, x0, x1, x2, . . ., with corresponding evolutionary flows

on L given by
∂ L

∂ xn
= [L n∂s +Pn , L ], n ∈Z≥0, (2.14)

where

Pn =−
�

L n ∂W

∂ s
W -1

�

+
−
�

L n ∂ W̄

∂ s
W̄ -1

�

−

= L n W ∂s W -1− (2L n log L )−− L n∂s

= L n W̄ ∂s W̄ -1+ (2L n log L )+− L n∂s .

These new flows along with the flows of the Toda hierarchy in (2.10) represent the extended Toda
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hierarchy (abbreviated ETH) in Lax pair form.

Again, note that (2.14) can be rewritten as ∂xn
L = [(2L n log L )+, L ] = [−(2L n log L )−, L ].

The actions of these flows on the wave operators W and W̄ are similar to those of the original

Toda flows:
∂W

∂ xn
= (L n∂s +Pn )W −W Λn∂s =−(2L n log L )−W ,

∂ W̄

∂ xn
= (L n∂s +Pn )W̄ − W̄ Λ-n∂s = (2L n log L )+W̄ .

(2.15)

Note that when comparing this to (2.12), L n∂s +Pn plays the role of An and Λ±n∂s plays the role of

±
1

2
Λ±n .

Consider the action on W and let n = 0. (2 log L )− =−
∂W

∂ s
W -1, making

∂W

∂ x0
=
∂W

∂ s
.

Similar formulas hold for W̄ and L . For this reason, we can think of x0 = s , and thus, translation

along s is a symmetry present in the new hierarchy.

The Wave Functions

The final pieces of information for the extended Toda that we need to continue are the wave functions

and tau function. There are two different wave operators, W and W̄ . So, there are two different

wave functionsψ and ψ̄ for the extended Toda. Recall from the Toda lattice that we had an infinite

column vector ζ = (z n )n∈Z such that Λζ = zζ. Interpolating along the lattice clearly leads to the

function z s , with Λz s = z s+1 = z · z s . To expand upon this observation, for any difference operator

A =
∑

i∈Z
aiΛ

i ,

Az s =

�

∑

i∈Z
aiΛ

i

�

z s =

�

∑

i∈Z
ai z i

�

z s .

In [17], Takasaki generates the exponential terms of these wave functions by acting on z s with

the following exponentials:

exp

�

±
1

2

∞
∑

n=1

tnΛ
±n

�

z s = z s e ±
1
2ξ(t,z±1),

exp

�∞
∑

n=1

xnΛ
±n∂s

�

z s = z s+ξ(x,z±1),
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recalling thatξ(t, z ) =
∞
∑

i=1

ti z i . Note that these generators,Λ±n andΛ±n∂s , are pulled from the second

terms in (2.12) and (2.15), respectively.

We then have the following definitions for the wave functions for the extended Toda hierarchy:

ψ(s , t, x, z ) =W χ =w (s , z )χ ,

ψ̄(s , t, x, z ) = W̄ χ̄ = w̄ (s , z )χ̄ ,
(2.16)

where
χ = z s+ξ(x,z )e

1
2ξ(t,z ),

χ̄ = z s+ξ(x,z -1)e - 1
2ξ(t,z -1),

(2.17)

and

w (s , z ) =w (s , t, x; z ) = 1+
∞
∑

i=1

wi (s )z
-i ,

w̄ (s , z ) = w̄ (s , t, x; z ) =
∞
∑

i=0

w̄i (s )z
i .

These wave functions are formulated in such a way that

Lψ= zψ, Lψ̄= z -1ψ̄, (2.18)

and that the actions of the flows of the extended Toda hierarchy on them are

∂ ψ

∂ tn
= Anψ,

∂ ψ̄

∂ tn
= Anψ̄,

∂ ψ

∂ xn
= (L n∂s +Pn )ψ,

∂ ψ̄

∂ xn
= (L n∂s +Pn )ψ̄.

(2.19)

The Tau Function

Now that we have explicit formulas for the wave functions, we can define the tau function for the

extended Toda hierarchy in terms of them. These definitions follow from the work in [17] but were

not explicitly written. The tau function for the extended Toda hierarchy is represented in terms of
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the wave functions as:

ψ =
τ(s , t− [z -1], x)
τ(s , t, x)

χ =
G (z )τ(s , t, x)
τ(s , t, x)

χ ,

ψ̄ =
τ(s +1, t+ [z ], x)

τ(s , t, x)
χ̄ =

Ḡ (z )τ(s , t, x)
τ(s , t, x)

χ̄ ,
(2.20)

where [z ] and G (z ) are defined in Chapter 1 in (1.20) and (1.19), respectively, and Ḡ (z ) is defined on

functions of s and t as

Ḡ (z ) f (s , t) = f (s +1, t+ [z ]), (2.21)

or more explicitly,

Ḡ (z ) = exp

�

∂s +
∞
∑

n=1

z n

n
∂tn

�

.

Dividing by χ and χ̄ respectively, we get the following relationships between the tau function

and the coefficients of the dressing operators:

w (s , z ) =
G (z )τ
τ

,

w̄ (s , z ) =
Ḡ (z )τ
τ

.
(2.22)

Change of Variables

A final note in this section is the matter of differences in notation. The standard formulation of the

extended Toda hierarchy in Lax form (as introduced in [5]) is as follows:

ε
∂ L

∂ t α,k
= [Aα,k , L ], α= 1, 2, k ∈Z≥0, (2.23)

where

A1,k =
2

k !

�

L k (log L − ck )
�

+,

A2,k =
1

(k +1)!
(L k+1)+,

(2.24)

and

c0 = 0, ck = 1+
1

2
+

1

3
+ · · ·+

1

k
(2.25)

are the harmonic numbers.

As Takasaki points out in [17], this formulation is useful in 2D topological field theory, but the

differences between this formulation and that used in this thesis are superficial. It is for this reason
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and the simplified notation that we use the definition of the hierarchy found in [17]. One can shift

from the notation of (2.23) to that used in this thesis by way of the following change of variables:

x = εs ,

t 1,k = εk !xk ,

t 2,k = ε(k +1)!
�

tk+1+2ck+1 xk+1

�

.

k ∈Z≥0, (2.26)

This change of variables creates the following relationship between the derivatives with respect to

the standard variables and the derivatives of the variables used in this thesis:

ε
∂

∂ x
=
∂

∂ s
,

ε
∂

∂ t 1,k
=

1

k !

�

∂

∂ xk
−2ck

∂

∂ tk

�

,

ε
∂

∂ t 2,k
=

1

(k +1)!
∂

∂ tk+1
.

It is clear that this change of variables can be used to recover the standard definition of the extended

Toda hierarchy.
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CHAPTER

3

SYMMETRIES OF THE ETH

This chapter contains the primary results of this thesis. We begin by going through the process of

constructing the additional symmetries of the extended Toda in Lax form in Section 3.1. Section 3.2

involves proving that these flows are indeed symmetries of the ETH as well as how these symmetries

commute with one another. Finally, in Section 3.3, we discuss the actions these symmetries have on

the tau function of the hierarchy.

3.1 Constructing the Symmetries

M and M̄

Recalling the actions of L on the wave functions in (2.18), we begin by constructing two correspond-

ing operators, M and M̄ , such that

Mψ= ∂zψ, M̄ ψ̄= ∂z -1ψ̄.
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Note that since the wave operators W and W̄ do not depend on z , we will focus on the functions χ

and χ̄ first. For these functions

Λnχ = z nχ , Λn χ̄ = z n χ̄ , (n ∈Z)

∂sχ = log(z )χ , ∂s χ̄ = log(z )χ̄ .

First, we derive an operator Γ such that Γχ = ∂zχ :

∂zχ = ∂z

�

z s+ξ(x,z )e
1
2ξ(t,z )

�

= ∂z

�

e log(z )
�

s+ξ(x,z )
�

+ 1
2ξ(t,z )

�

= ∂z

�

log(z )
�

s +ξ(x, z )
�

+
1

2
ξ(t, z )

�

· e log(z )
�

s+ξ(x,z )
�

+ 1
2ξ(t,z )

=

�

s z -1+
∑

n≥1

�

xn z n−1+n xn z n−1 log(z ) +
1

2
n tn z n−1

�

�

χ

=

�

sΛ-1+
∑

n≥1

�

xn +n xn∂s +
1

2
k tn

�

Λn−1

�

χ .

We define Γ as the operator acting on χ in the last line above:

Γ := sΛ-1+
∑

n≥1

�

xn +n xn∂s +
1

2
n tn

�

Λn−1. (3.1)

Then, we define the operator M by “dressing” (conjugating) Γ with the wave operator W :

M :=W ΓW -1 =W sΛ-1W -1+
∑

n≥1

�

xn +n xn W ∂s W -1+
1

2
n tn

�

L n−1. (3.2)

Similarly, to define M̄ , we first find an operator Γ̄ such that Γ̄ χ̄ = ∂z -1χ̄ :

∂z -1χ̄ = ∂z -1

�

z s+ξ(x,z -1)e −
1
2ξ(t,z -1)

�

=−z 2∂z

�

e log(z )
�

s+ξ(x,z -1)
�

− 1
2ξ(t,z -1)

�

=−z 2∂z

�

log(z )
�

s +ξ(x, z -1)
�

−
1

2
ξ(t, z -1)

�

· e log(z )
�

s+ξ(x,z -1)
�

− 1
2ξ(t,z -1)

=−z 2

�

s z -1+
∑

n≥1

�

xn z -n−1−n xn z -n−1 log(z ) +
1

2
n tn z -n−1

�

�

χ̄
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=−

�

sΛ+
∑

n≥1

�

xn −n xn∂s +
1

2
n tn

�

Λ-(n−1)

�

χ̄ .

Just as before, Γ̄ is the operator acting on χ̄ in the last line:

Γ̄ :=−

�

sΛ+
∑

n≥1

�

xn −n xn∂s +
1

2
n tn

�

Λ-(n−1)

�

, (3.3)

and M̄ is defined by dressing Γ̄ with W̄ :

M̄ := W̄ Γ̄W̄ -1 =−

�

W̄ sΛW̄ -1+
∑

n≥1

�

xn −n xn W̄ ∂s W̄ -1+
1

2
n tn

�

L n−1

�

. (3.4)

Once again, note that M and M̄ are only well defined when only finitely many of the tn and xn are

nonzero, just as with KP and the Toda lattice.

Based on the definitions of M and M̄ , we have the following lemma:

Lemma 3.1. We have [L , M ] = [L , M̄ ] = 1.

Proof. Note that since L commutes with itself and does not affect tn or xn , [L , M ] = [L , W sΛ-1W -1]

and [L , M̄ ] = [L ,−W̄ sΛW̄ -1]. Then

[L , M ] = [L , W sΛ-1W -1]

=W [Λ, sΛ-1]W -1

=W
�

ΛsΛ-1− s
�

W -1

=W (s +1− s )W -1

=W W -1 = 1.

[L , M̄ ] = [L ,−W̄ sΛW̄ -1]

= W̄ [Λ-1,−sΛ]W̄ -1

= W̄
�

−Λ-1sΛ+ s
�

W̄ -1

= W̄ (−(s −1) + s )W̄ -1

= W̄ W̄ -1 = 1.

This lemma and the Leibniz rule for commutator brackets lead to the following corollary, given
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without proof:

Corollary 3.1. [L n , M ] = [L n , M̄ ] = n L n−1.

Next, we determine the action of the flows of the extended Toda hierarchy on M and M̄ .

Lemma 3.2. The actions of the original flows of the Toda hierarchy on the operators M and M̄ are

∂tn
M = [An , M ],

∂tn
M̄ = [An , M̄ ].

(3.5)

Proof.

∂tn
M = ∂tn

�

W ΓW -1
�

= (∂tn
W )ΓW -1+W (∂tn

Γ )W -1+W Γ (∂tn
W -1)

=−(L n )−W ΓW -1+W
�

1

2
nΛn−1

�

W -1+W ΓW -1(L n )−W W -1

=−(L n )−M +
1

2
n L n−1+M (L n )−

= [−(L n )−, M ] +
1

2
[L n , M ] = [An , M ].

∂tn
M̄ = ∂tn

�

W̄ Γ̄W̄ -1
�

= (∂tn
W̄ )Γ̄W̄ -1+ W̄ (∂tn

Γ̄ )W̄ -1+ W̄ Γ̄ (∂tn
W̄ -1)

= (L n )+W̄ Γ̄W̄ -1− W̄
�

1

2
nΛ-n+1

�

W̄ -1− W̄ Γ̄W̄ -1(L n )+W̄ W̄ -1

= (L n )+M̄ −
1

2
n L n−1− M̄ (L n )+

= [(L n )+, M̄ ]−
1

2
[L n , M̄ ] = [An , M̄ ].

Lemma 3.3. The actions of the logarithmic flows of the extended Toda hierarchy on the operators M

and M̄ are
∂xn

M = [L n∂s +Pn , M ],

∂xn
M̄ = [L n∂s +Pn , M̄ ].

(3.6)
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Proof.

∂xn
M = ∂xn

�

W ΓW -1
�

= (∂xn
W )ΓW -1+W (∂xn

Γ )W -1+W Γ (∂xn
W -1)

= (L n∂s +Pn )M − L n W ∂s W -1M + L n−1+n L n−1W ∂s W -1−M (L n∂s +Pn ) +M L n W ∂s W -1

= [L n∂s +Pn , M ]− [L n W ∂s W -1, M ] + L n−1+n L n−1W ∂s W -1

= [L n∂s +Pn , M ]− L n [W ∂s W -1, M ]− [L n , M ]W ∂s W -1+ L n−1+n L n−1W ∂s W -1

= [L n∂s +Pn , M ]− L n W [∂s ,Γ ]W -1− [L n , M ]W ∂s W -1+ L n−1+n L n−1W ∂s W -1

= [L n∂s +Pn , M ]− L n−1−n L n−1W ∂s W -1+ L n−1+n L n−1W ∂s W -1

= [L n∂s +Pn , M ].

∂xn
M̄ = ∂xn

�

W̄ Γ̄W̄ -1
�

= (∂xn
W̄ )Γ̄W̄ -1+ W̄ (∂xn

Γ̄ )W̄ -1+ W̄ Γ̄ (∂xn
W̄ -1)

= (L n∂s +Pn )M̄ − L n W̄ ∂s W̄ -1M̄ − L n−1+n L n−1W̄ ∂s W̄ -1− M̄ (L n∂s +Pn ) + M̄ L n W̄ ∂s W̄ -1

= [L n∂s +Pn , M̄ ]− [L n W̄ ∂s W̄ -1, M̄ ]− L n−1+n L n−1W̄ ∂s W̄ -1

= [L n∂s +Pn , M̄ ]− L n [W̄ ∂s W̄ -1, M̄ ]− [L n , M̄ ]W̄ ∂s W̄ -1− L n−1+n L n−1W̄ ∂s W̄ -1

= [L n∂s +Pn , M̄ ]− L n W̄ [∂s , Γ̄ ]W̄ -1− [L n , M̄ ]W̄ ∂s W̄ -1− L n−1+n L n−1W̄ ∂s W̄ -1

= [L n∂s +Pn , M̄ ] + L n−1−n L n−1W̄ ∂s W̄ -1− L n−1+n L n−1W̄ ∂s W̄ -1

= [L n∂s +Pn , M̄ ].

Finally, it is useful to consider the difference of the operators M and M̄ :

M − M̄ =W sΛ-1W -1+ W̄ sΛW̄ -1+
∑

n≥1

�

2xn +2n xn log L +n tn

�

L n−1. (3.7)

Lemma 3.1 clearly leads to the following about this operator:

Corollary 3.2. We have [L , M − M̄ ] = 0.

Note that, while the presence of the ∂s terms in M and M̄ makes these operators not difference

operators, the terms cancel in M − M̄ . So, M − M̄ is in fact a difference operator.
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Definition of Additional Symmetries

Define additional flows, denoted ∂t ∗`
(` ∈Z≥0), on the wave operators as follows:

∂t ∗`
W =−(B`)−W ,

∂t ∗`
W̄ = (B`)+W̄

(3.8)

where

B` := (M − M̄ )L`+ W̄ Λ-(`−1)W̄ -1. (3.9)

Note that [B`, L ] = 0 due to Corollary 3.2. Also, because of Lemmas 3.2 and 3.3, Equations (2.10) and

(2.14), and the Leibniz rule, we have the following:

Corollary 3.3. We have

∂tn
B` = [An , B`], (3.10)

∂xn
B` = [Pn + L n∂s , B`]. (3.11)

The flows defined in (3.8) have corresponding actions on the wave functions:

∂t ∗`
ψ =−(B`)−ψ,

∂t ∗`
ψ̄ = (B`)+ψ̄;

(3.12)

as well as actions on the Lax operator L and the operators M and M̄ :

∂t ∗`
L = [−(B`)−, L ] = [(B`)+, L ], (3.13)

∂t ∗`
M = [−(B`)−, M ],

∂t ∗`
M̄ = [(B`)+, M̄ ].

(3.14)

3.2 First Main Theorem

Next, we will show that the actions of these additional flows commute with the actions of the

hierarchy. To aid us in proving this, we will use Lemmas 3.4 and 3.5. The proof Lemma 3.4 follows

that of Lemma 2.1 in [2]:

Lemma 3.4. Let W and W̄ be operators of the forms W =
∑

k≥0

wkΛ
-k and W̄ =

∑

k≥0

w̄kΛ
k . Also, let a
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and b be difference operators of the form

a = A− Ā, b = B − B̄

such that A and B contain only finitely many positive powers of Λ and Ā and B̄ contain only finitely

many negative powers of Λ. Suppose the vector fields ∂ ∗a and ∂ ∗b act on A, B , Ā, B̄ , W , and W̄ in the

following ways:

∂ ∗a W =−a−W , ∂ ∗b W =−b−W ,

∂ ∗a W̄ = a+W̄ , ∂ ∗b W̄ = b+W̄ ,

∂ ∗a B = [−a−+a•, B ], ∂ ∗b A = [−b−, A],

∂ ∗a B̄ = [a++ ā•, B̄ ], ∂ ∗b Ā = [b+, Ā],

where a• and ā• are operators with finitely many positive and negative powers of Λ, respectively. Then

[∂ ∗a ,∂ ∗b ]W = ∂ ∗c W =−c−W ,

[∂ ∗a ,∂ ∗b ]W̄ = ∂ ∗c W̄ = c+W̄ ,
(3.15)

where c = [A, B ]− [Ā, B̄ ]− [a•, B ] + [ā•, B̄ ].

Proof. Note that for any operators α and β ,

[α+,β+]− = [α−,β−]+ = 0.

Using the methods found in the proof of Lemma 2.1 in [2], we find that

[∂ ∗a ,∂ ∗b ]W =−C−W

where

C =−∂ ∗a b + ∂ ∗b a − [a−, b−]

=−[−a−+a•, B ] + [a++ ā•, B̄ ] + [−b−, A]− [b+, Ā]− [a−, b−]

= [A−, B ]− [Ā−, B ]− [a•, B ] + [A+, B̄ ]− [Ā+, B̄ ] + [ā•, B̄ ]

− [B−, A] + [B̄−, A]− [B+, Ā] + [B̄+, Ā]

− [A−, B−] + [A−, B̄−] + [Ā−, B−]− [Ā−, B̄−]
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=+[A−, B ] + [A, B−]− [A−, B−]

− [Ā−, B ] + [Ā, B+] + [Ā−, B−]

+ [A+, B̄ ]− [A, B̄−] + [A−, B̄−]

− [Ā+, B̄ ]− [Ā, B̄+]− [Ā−, B̄−]

− [a•, B ] + [ā•, B̄ ]

= [A−, B+] + [A, B−]− [Ā−, B+] + [Ā, B+]

+ [A+, B̄ ]− [A+, B̄−]− [Ā+, B̄ ]− [Ā+, B̄+]− [Ā−, B̄ ]

− [a•, B ] + [ā•, B̄ ]

= [A, B ]− [A+, B+] + [Ā+, B+] + [A+, B̄+]− [Ā, B̄ ]− [Ā+, B̄+]

− [a•, B ] + [ā•, B̄ ].

Since [α+,β+]− = 0 for any operators α and β , we can safely drop any term of that form from C ,

giving us

[∂ ∗a ,∂ ∗b ]W =−c−W ,

where c = [A, B ]− [Ā, B̄ ]− [a•, B ] + [ā•, B̄ ]. Thus ends the proof for W .

The proof for W̄ is similar: we have that

[∂ ∗a ,∂ ∗b ]W̄ =D+W̄

where

D =−∂ ∗a b + ∂ ∗b a + [a+, b+]

=−[−a−+a•, B ] + [a++ ā•, B̄ ] + [−b−, A]− [b+, Ā] + [a+, b+]

= [A−, B ]− [Ā−, B ]− [a•, B ] + [A+, B̄ ]− [Ā+, B̄ ] + [ā•, B̄ ]

− [B−, A] + [B̄−, A]− [B+, Ā] + [B̄+, Ā]

+ [A+, B+]− [A+, B̄+]− [Ā+, B+] + [Ā+, B̄+]
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= [A−, B ] + [A, B−] + [A+, B+]

− [Ā−, B ] + [Ā, B+]− [Ā+, B+]

+ [A+, B̄ ]− [A, B̄−]− [A+, B̄+]

− [Ā+, B̄ ]− [Ā, B̄+] + [Ā+, B̄+]

− [a•, B ] + [ā•, B̄ ]

= [A−, B ] + [A+, B ] + [A−, B−]− [Ā−, B ] + [Ā−, B+]

+ [A+, B̄−]− [A, B̄−] + [Ā+, B̄ ]− [Ā−, B̄+]

= [A, B ] + [A−, B−]− [Ā−, B−]− [A−, B̄−]− [Ā, B̄ ] + [Ā−, B̄−]

− [a•, B ] + [ā•, B̄ ].

Since [α−,β−]+ = 0 for any operators α and β , we can safely drop any term of that form from D ,

giving us

[∂ ∗a ,∂ ∗b ]W̄ = c+W̄ ,

where c = [A, B ]− [Ā, B̄ ]− [a•, B ] + [ā•, B̄ ]. Thus ends the proof for W̄ .

Given that we have the previous lemma, we also need to determine how these flows act on L

and similar operators:

Lemma 3.5. Let ∂ ∗a be a vector field, S be an invertible difference operator, and K = SΩS -1 such that

∂ ∗a Ω= 0. Suppose that ∂ ∗a S = AS for some operator A. Then ∂ ∗a K = [A, K ].

Proof. Note that for any derivation ∂ ∗a and invertible operator S , ∂ ∗a S -1 =−S -1(∂ ∗a S )S -1. Then

∂ ∗a K = ∂ ∗a (SΩS -1)

= (∂ ∗a S )ΩS -1−SΩS -1(∂ ∗a S )S -1

= ASΩS -1−SΩS -1A

= AK −K A = [A, K ].

First Main Theorem

We split the main theorem into two propositions proving that the ∂t ∗`
flows commute with the ∂tk

and ∂xk
flows, respectively.
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Proposition 3.1. The actions of the flows ∂t ∗`
commute with the actions of the original flows of the

Toda hierarchy, i.e.

[∂tn
,∂t ∗`
]Φ= 0,

where n ∈Z≥1 and Φ can be W , W̄ , or L.

Proof. Recall that

An =−(L n )−+
1

2
L n = (L n )+−

1

2
L n .

So, using Lemma 3.4 and setting

A = L n , Ā = 0,

a• =
1

2
L n , ā• =−

1

2
L n ,

B =M L`, B̄ = M̄ L`− W̄ Λ-`+1W̄ -1,

we have that

[∂tn
,∂t ∗`
]W = ∂ ∗c W =−c−W ,

[∂tn
,∂t ∗`
]W̄ = ∂ ∗c W̄ = c+W̄ ,

and, using Lemma 3.5,

[∂tn
,∂t ∗`
]L = [−c−, L ],

where

c = [L n , M L`]−
1

2
[L n , M L`]−

1

2
[L n , M̄ L`− W̄ Λ-`+1W̄ -1]

= +[L n , M ]L`+
1

2
[L n , M ]L`−

1

2
[L n , M̄ ]L`

=+n L`+n−1−
1

2
n L`+n−1−

1

2
n L`+n−1 = 0.

Proposition 3.2. The actions of the flows ∂t ∗`
commute with the actions of the logarithmic flows of

the extended Toda hierarchy, i.e.

[∂xn
,∂t ∗`
]Φ= 0,

where n ∈Z≥0 and Φ can be W , W̄ , or L.
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Proof. Recall that

Pn + L n∂s =−(2L n log L )−+ L n W ∂s W -1 = (2L n log L )++ L n W̄ ∂s W̄ -1.

So, using Lemma 3.4 and setting

A = a• = L n W ∂s W -1,

Ā = ā• = L n W̄ ∂s W̄ -1,

B =M L`,

B̄ = M̄ L`− W̄ Λ-`+1W̄ -1,

we have that

[∂xn
,∂t ∗`
]W = ∂ ∗c W =−c−W ,

[∂xn
,∂t ∗`
]W̄ = ∂ ∗c W̄ = c+W̄ ,

and, using Lemma 3.5,

[∂xn
,∂t ∗`
]L = [−c−, L ],

where

c =+[L n W ∂s W -1, M L`]− [L n W̄ ∂s W̄ -1, M̄ L`− W̄ Λ-`+1W̄ -1]

− [L n W ∂s W -1, M L`] + [L n W̄ ∂s W̄ -1, M̄ L`− W̄ Λ-`+1W̄ -1] = 0.

Combining Propositions 3.1 and 3.2 proves the first main theorem of this thesis:

Theorem 3.1. The flows ∂t ∗`
, whose actions on the wave operators are given in (3.8) and whose actions

on the Lax operator L are given in (3.13), define additional symmetries of the extended Toda hierarchy.

In other words, the actions of the flows commute with the actions of the flows of the hierarchy when

acting on the wave operators and on L, i.e.

[∂y ,∂t ∗`
]Φ= 0,

where y can be any of the tn or xn variables and Φ can be W , W̄ , or L.

35



3.3. ACTIONS ON THE TAU FUNCTION CHAPTER 3. SYMMETRIES OF THE ETH

How Additional Symmetries Commute

Now that we have proven that the flows defined in (3.8) and (3.13) are indeed additional symmetries

of the extended Toda hierarchy, it is natural to consider how their actions commute with each other

when acting on W , W̄ , and L .

Theorem 3.2. The map ∂t ∗`
7−→L`−1, ` ∈Z≥0 defines a homomorphism between the flows of (3.8) and

(3.13) acting on W , W̄ , and L and the Virasoro algebra; i.e.,

[∂t ∗`
,∂t ∗p ]Φ= (`−p )∂t ∗`+p−1

Φ, (3.16)

where Φ can be W , W̄ , or L.

Proof. In Lemma 3.4, let A =M L`, Ā = M̄ L`− W̄ Λ-`+1W̄ -1, B =M L p , B̄ = M̄ L p − W̄ Λ-p+1W̄ -1, and

a• = ā• = 0. Then,
[∂t ∗`

,∂t ∗p ]W = ∂ ∗c W = −c−W

[∂t ∗`
,∂t ∗p ]W̄ = ∂ ∗c W̄ = c+W̄

and Lemma 3.5 gives us that

[∂t ∗`
,∂t ∗p ]L = [−c−, L ] = [c+, L ],

where

c = [M L`, M L p ]− [M̄ L`− W̄ Λ-`+1W̄ -1, M̄ L p − W̄ Λ-p+1W̄ -1]

=M [L`, M ]L p +M [M , L p ]L`− M̄ [L`, M̄ ]L p − M̄ [M̄ , L p ]L`

+ [M̄ , W̄ Λ-p+1W̄ -1]L`+ [W̄ Λ-`+1W̄ -1, M̄ ]L p

= `M L`+p−1−p M L`+p−1− `M̄ L`+p−1+p M̄ L`+p−1

− (p −1)W̄ Λ-`−p W̄ -1+ (`−1)W̄ Λ-`−p W̄ -1

= (`−p )
�

(M − M̄ )L`+p−1+ W̄ Λ-`−p W̄ -1
�

= (`−p )B`+p−1.

Sinceψ=W χ , ψ̄= W̄ χ̄ , and ∂t ∗`
χ = ∂t ∗`

χ̄ = 0, the statement forψ and ψ̄ also holds true.

3.3 Actions on the Tau Function

The actions of the ∂t ∗`
flows on the wave functions induce actions on the tau function by means of

the Adler-Shiota-van Moerbeke formula (1.25). More explicitly in the case of the extended Toda, we
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want to find operators, L`−1, of the tk and xk variables and their derivatives such that ∂t ∗`
τ=L`−1τ

and

∂t ∗`
ψ =

�

G (z )
�L`−1τ

τ

�

−
L`−1τ

τ

�

G (z )τ
τ

χ ,

∂t ∗`
ψ̄ =

�

Ḡ (z )
�L`−1τ

τ

�

−
L`−1τ

τ

�

Ḡ (z )τ
τ

χ̄ ,
(3.17)

recalling the definitions of G (z ) and Ḡ (z ) from (1.19) and (2.21), respectively.

Note that due to the manner in which we shift the variables tk and s in these previous equations,

these Lp operators are only unique up to the addition of a function of x periodic in s = x0 of period

1. This is because

G (z )

�

(Lp + f (s , x))τ

τ

�

−
(Lp + f (s , x))τ

τ
=G (z )

�

Lpτ

τ

�

+
f (s , x)τ
τ

−
Lpτ

τ
−

f (s , x)τ
τ

=G (z )

�

Lpτ

τ

�

−
Lpτ

τ
,

as well as a similar statement involving Ḡ (z ). We will derive the minimal such Lp operators that

satisfy (3.17), beginning with the first four. However, we will first present a few helpful lemmas.

Lemma 3.6. For n ∈Z≥0,

−(L n )−ψ
χ

= ∂tn
w ,

(L n )+ψ̄
χ̄

= ∂tn
w̄ +δn ,0w̄ . (3.18)

Recall that if either ∂tn
or tn for n ≤ 0 are present in a term, that term is 0.

Proof. We have

−(L n )−ψ
χ

=
−(L n )−W χ

χ

=
(−(L n )−W )χ

χ

=
(∂tn

W )χ
χ

=
(∂tn

w )χ
χ

= ∂tn
w .
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Note that (L 0)+ = 1. Then we have

(L n )+ψ̄
χ̄

=
(L n )+W̄ χ̄

χ̄

=
((L n )+W̄ )χ̄

χ̄

=
(∂tn

W̄ )χ̄
χ̄

+δn ,0
W̄ χ̄

χ̄

=
(∂tn

w̄ )χ̄
χ̄

+δn ,0
w̄ χ̄

χ̄

= ∂tn
w̄ +δn ,0w̄ .

Lemma 3.7. For n ∈Z≥0,

−(2L n log L )−ψ
χ

= ∂xn
w ,

(2L n log L )+ψ̄
χ̄

= ∂xn
w̄ . (3.19)

Proof.

−(2L n log L )−ψ
χ

=
−(2L n log L )−W χ

χ

=
(−(2L n log L )−W )χ

χ

=
(∂xn

W )χ
χ

=
(∂xn

w )χ
χ

= ∂xn
w .

An identical proof is used for the second statement.

Lemma 3.8. For y = tn or y = xn ,

∂y w =

�

G (z )

�

∂yτ

τ

�

−
∂yτ

τ

�

G (z )τ
τ

,

∂y w̄ =

�

Ḡ (z )

�

∂yτ

τ

�

−
∂yτ

τ

�

Ḡ (z )τ
τ

.
(3.20)
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Proof. First, note that ∂y G (z ) = ∂y Ḡ (z ) = 0. The proof of this lemma is a simple application of the

quotient rule from calculus:

∂y w = ∂y

�

G (z )τ
τ

�

=
τ∂y (G (z )τ)− (G (z )τ)(∂yτ)

τ2

=
G (z )(∂yτ)

G (z )τ
G (z )τ
τ
−
∂yτ

τ

G (z )τ
τ

=

�

G (z )

�

∂yτ

τ

�

−
∂yτ

τ

�

G (z )τ
τ

.

An identical process proves the statement for w̄ =
Ḡ (z )τ
τ

.

Corollary 3.4. For n ∈Z≥1 and p ∈Z≥-1,

n tn∂tn+p
w =

�

G (z )

�

n tn∂tn+p
τ

τ

�

−
n tn∂tn+p

τ

τ
+ z -nG (z )

�

∂tn+p
τ

τ

��

G (z )τ
τ

,

n tn∂tn+p
w̄ =

�

Ḡ (z )

�

n tn∂tn+p
τ

τ

�

−
n tn∂tn+p

τ

τ
− z nḠ (z )

�

∂tn+p
τ

τ

��

Ḡ (z )τ
τ

.
(3.21)

Proof. Using Lemma 3.8, we have

n tn∂tn+p
w =

�

n tnG (z )

�

∂tn+p
τ

τ

�

−n tn

∂tn+p
τ

τ

�

G (z )τ
τ

=

�

n
�

tn −
z -n

n

�

G (z )

�

∂tn+p
τ

τ

�

−n tn

∂tn+p
τ

τ
+n

z -n

n
G (z )

�

∂tn+p
τ

τ

��

G (z )τ
τ

=

�

G (z )

�

n tn∂tn+p
τ

τ

�

−
n tn∂tn+p

τ

τ
+ z -nG (z )

�

∂tn+p
τ

τ

��

G (z )τ
τ

.

A similar proof is used for the second statement.

We use the previous lemmas and corollary in the proof of the following:

Corollary 3.5. For p ∈Z≥-1, let Sp be the summation portion of (M − M̄ )L p+1; i.e.

Sp =
∞
∑

n=1

�

2xn +2n xn log L +n tn

�

L n+p , p ∈Z≥-1.
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Then

−(Sp )−ψ

χ
=

�

G (z )
�Dpτ

τ

�

−
Dpτ

τ
+
∞
∑

n=1

z -nG (z )

�

∂tn+p
τ

τ

�

�

G (z )τ
τ

,

(Sp )+ψ̄

χ̄
=

�

Ḡ (z )

�

D̄pτ

τ

�

−
D̄pτ

τ
−
∞
∑

n=1

z nḠ (z )

�

∂tn+p
τ

τ

�

−δp ,-1z (x0+1)

�

Ḡ (z )τ
τ

,

(3.22)

where

Dp =
∞
∑

n=1

2xn∂tn+p
+n xn∂xn+p

+n tn∂tn+p
(3.23)

and D̄p =Dp +δp ,-1(t1 x0+2x0 x1).

Proof. Combining Lemmas 3.6, 3.7, and 3.8, Corollary 3.4, and linearity, gives us the first equality.

We also combine them for the second statement:

(Sp )+ψ̄

χ̄
=

�

Ḡ (z )
�Dpτ

τ

�

−
Dpτ

τ
−
∞
∑

n=1

z nḠ (z )

�

∂tn+p
τ

τ

�

+δp ,-1(t1+2x1)

�

Ḡ (z )τ
τ

=

�

Ḡ (z )
�Dpτ

τ

�

−
Dpτ

τ
−
∞
∑

n=1

z nḠ (z )

�

∂tn+p
τ

τ

�

+δp ,-1

�

(t1+ z )(x0+1) +2(x0+1)x1− t1 x0−2x0 x1− z (x0+1)
�

�

Ḡ (z )τ
τ

=

�

Ḡ (z )

�

D̄pτ

τ

�

−
D̄pτ

τ
−
∞
∑

n=1

z nḠ (z )

�

∂tn+p
τ

τ

�

−δp ,-1z (x0+1)

�

Ḡ (z )τ
τ

.

Lemma 3.9. For p ∈Z≥-1,

−(W sΛp W -1)ψ
χ

=

�

−s z p −
∞
∑

n=1

z p−nG (z )

�

∂tn
τ

τ

�

�

G (z )τ
τ

,

(W̄ sΛ-p W̄ -1)ψ̄
χ̄

=

�

s z -p +
∞
∑

n=1

z -p+nḠ (z )

�

∂tn
τ

τ

�

�

Ḡ (z )τ
τ

.

(3.24)
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Proof.

−(W sΛp W -1)ψ
χ

=
−(W sΛp W -1)W χ

χ
=
−W sΛpχ

χ
=
−W s z pχ

χ

=
−s z p W χ

χ
+ z p

∞
∑

i=0

i wiΛ
-iχ

χ

=
−s z p wχ

χ
+ z p

∞
∑

i=0

i wi z -iχ

χ

=−s z p w + z p
∞
∑

i=0

i wi z -i

=−s z p w − z p+1
∞
∑

i=0

(-i )wi z -i−1

=−s z p w − z p+1∂z w

=−s z p G (z )τ
τ
− z p+1∂z

�

G (z )τ
τ

�

=−s z p G (z )τ
τ
− z p+1

∞
∑

n=1

G (z )∂tn
τ

τ
z -n−1

=

�

−s z p −
∞
∑

n=1

z p−nG (z )

�

∂tn
τ

τ

�

�

G (z )τ
τ

.

A similar process is performed for ψ̄:

(W̄ sΛ-p W̄ -1)ψ̄
χ̄

=
(W̄ sΛ-p W̄ -1)W̄ χ̄

χ̄
=

W̄ sΛ-p χ̄

χ̄
=

W̄ s z -p χ̄

χ̄

=
s z -p W̄ χ̄

χ̄
+ z -p

∞
∑

i=0

i w̄iΛ
i χ̄

χ̄

=
s z -p w̄ χ̄

χ̄
+ z -p

∞
∑

i=0

i w̄i z i χ̄

χ̄

= s z -p w̄ + z -p
∞
∑

i=0

i w̄i z i

= s z -p w̄ + z -p+1
∞
∑

i=0

i w̄i z i−1

= s z -p w̄ + z -p+1∂z w̄
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= s z -p Ḡ (z )τ
τ

+ z -p+1∂z

�

Ḡ (z )τ
τ

�

= s z -p Ḡ (z )τ
τ

+ z -p+1
∞
∑

n=1

Ḡ (z )∂tn
τ

τ
z n−1

=

�

s z -p +
∞
∑

n=1

z -p+nḠ (z )

�

∂tn
τ

τ

�

�

Ḡ (z )τ
τ

.

We now can show how the additional symmetries act on the tau function. The next four proposi-

tions give the actions of the first four symmetries on the tau function and are proven by construction.

Proposition 3.3. The action of ∂t ∗0
on the tau function for the extended Toda hierarchy is given by

∂t ∗0
τ=L-1τ, where

L-1 =
∞
∑

n=1

�

2xn∂tn−1
+n xn∂xn−1

+n tn∂tn−1

�

+ t1 x0+2x0 x1. (3.25)

Proof. Note that (W sΛ-1W -1)− =W sΛ-1W -1 and (W̄ sΛW̄ -1)− = (W̄ ΛW̄ -1)− = 0. Then

∂t ∗0
ψ

χ
=
−(M − M̄ + W̄ ΛW̄ -1)−ψ

χ

=
−(W sΛ-1W -1+ W̄ sΛW̄ -1+S-1+ W̄ ΛW̄ -1)−ψ

χ

=
−W sΛ-1W -1ψ

χ
+
−(S-1)−ψ
χ

=

�

−s z -1−
∞
∑

n=1

z -n−1G (z )

�

∂tn
τ

τ

�

+G (z )
�

D-1τ

τ

�

−
D-1τ

τ
+
∞
∑

n=1

z -nG (z )

�

∂tn−1
τ

τ

�

�

G (z )τ
τ

=
�

x0(t1− z -1+2x1− t1−2x1) +G (z )
�

D-1τ

τ

�

−
D-1τ

τ

�

G (z )τ
τ

=
�

G (z )
� (D-1+ t1 x0+2x0 x1)τ

τ

�

−
(D-1+ t1 x0+2x0 x1)τ

τ

�

G (z )τ
τ

=
�

G (z )
�L-1τ

τ

�

−
L-1τ

τ

�

G (z )τ
τ

.

In the steps above, we can add any arbitrary function of the xk variables, allowing us to obtain the

2x0 x1 term we find when we perform similar steps on ψ̄:
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∂t ∗0
ψ̄

χ̄
=
(M − M̄ + W̄ ΛW̄ -1)+ψ

χ̄

=
(W sΛ-1W -1+ W̄ sΛW̄ -1+S-1+ W̄ ΛW̄ -1)+ψ̄

χ̄

=
W̄ sΛW̄ -1ψ̄

χ̄
+

W̄ ΛW̄ -1ψ̄

χ̄
+
(S-1)+ψ̄
χ̄

=
W̄ sΛW̄ -1ψ̄

χ̄
+

z W̄ χ̄

χ̄
+
(S-1)+ψ̄
χ̄

=
W̄ sΛW̄ -1ψ̄

χ̄
+ z w̄ +

(S-1)+ψ̄
χ̄

=

�

(s +1)z +
∞
∑

n=1

z n+1Ḡ (z )

�

∂tn
τ

τ

�

+ Ḡ (z )

�

D̄-1τ

τ

�

−
D̄-1τ

τ

−
∞
∑

n=1

z nḠ (z )

�

∂tn−1
τ

τ

�

− z (x0+1)

�

Ḡ (z )τ
τ

=

�

Ḡ (z )

�

D̄-1τ

τ

�

−
D̄-1τ

τ

�

Ḡ (z )τ
τ

=
�

Ḡ (z )
�L-1τ

τ

�

−
L-1τ

τ

�

Ḡ (z )τ
τ

.

In either case, we get that ∂t ∗0
τ=L-1τ.

Proposition 3.4. The action of ∂t ∗1
on the tau function for the extended Toda hierarchy is given by

∂t ∗1
τ=L0τ, where

L0 =
∞
∑

n=1

�

2xn∂tn
+n xn∂xn

+n tn∂tn

�

+ x 2
0 . (3.26)

Proof. We have

∂t ∗1
ψ

χ
=
−((M − M̄ )L +1)−ψ

χ

=
−(W s W -1+ W̄ s W̄ -1+S0+1)−ψ

χ

=
−W s W -1ψ

χ
+
(W s -1W -1)+ψ

χ
+
−(S0)−ψ
χ

=
−W s W -1ψ

χ
+

s wχ

χ
+
−(S0)−ψ
χ
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=

�

−s −
∞
∑

n=1

z -nG (z )

�

∂tn
τ

τ

�

+ s +G (z )
�

D0τ

τ

�

−
D0τ

τ
+
∞
∑

n=1

z -nG (z )

�

∂tn
τ

τ

�

�

G (z )τ
τ

=

�

G (z )

�

(D0+ x 2
0 )τ

τ

�

−
(D0+ x 2

0 )τ
τ

�

G (z )τ
τ

=
�

G (z )
�L0τ

τ

�

−
L0τ

τ

�

G (z )τ
τ

.

Just as with L-1, we can add the x 2
0 to each term without affecting the action onψ to give us the

operator obtained when we perform similar actions on ψ̄:

∂t ∗1
ψ̄

χ̄
=
((M − M̄ )L +1)+ψ̄

χ̄

=
(W s W -1+ W̄ s W̄ -1+S0+1)+ψ̄

χ̄

=
(W s W -1)+ψ̄

χ̄
+

W̄ s W̄ -1ψ̄

χ̄
+
ψ̄

χ̄
+
(S0)+ψ̄
χ̄

=
s w̄ χ̄

χ̄
+

W̄ s W̄ -1ψ̄

χ̄
+

w̄ χ̄

χ̄
+
(S0)+ψ̄
χ̄

=

�

2s +1+
∞
∑

n=1

z nḠ (z )

�

∂tn
τ

τ

�

+ Ḡ (z )
�

D0τ

τ

�

−
D0τ

τ
−
∞
∑

n=1

z nḠ (z )

�

∂tn
τ

τ

�

�

Ḡ (z )τ
τ

=

�

Ḡ (z )

�

(D0+ x 2
0 )τ

τ

�

−
(D0+ x 2

0 )τ
τ

�

Ḡ (z )τ
τ

=
�

Ḡ (z )
�L0τ

τ

�

−
L0τ

τ

�

Ḡ (z )τ
τ

.

In either case, we get that ∂t ∗1
τ=L0τ.

Before we present the L1 and L2 operators, we need to explicitly expand the τ definitions of

w (s , z ) and w̄ (s , z ) from (2.22) in powers of z -1 and z , respectively. Doing so yields the following

formulas for the first couple of coefficients of W and W̄ :

w1(s ) =−
∂t1
τ

τ
,
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w2(s ) =
1

2

�

∂ 2
t1
τ

τ
−
∂t2
τ

τ

�

=
1

2

�

∂t1

�

∂t1
τ

τ

�

+

�

∂t1
τ

τ

�2

−
∂t2
τ

τ

�

=
1

2

�

−∂t1
w1(s ) +w1(s )

2−
∂t2
τ

τ

�

w̄0(s ) =
τ(s +1)
τ

,

w̄1(s ) =
∂t1
τ(s +1)
τ

.

We also need the first coefficients of W -1 and W̄ -1 in terms of the coefficients of W and W̄ , respec-

tively:

w -1
1 (s ) =−w1(s ),

w̄ -1
0 (s ) =

1

w̄0(s )
.

Finally, the derivations for L-1 and L0 were both shown from acting on bothψ and ψ̄ to show that

the extra terms added (2x0 x1 for L-1 and x 2
0 for L0) were not arbitrary. For L1 and L2, we will only

show the derivation from the action onψ; no such additions are necessary in these cases.

Proposition 3.5. The action of ∂t ∗2
on the tau function for the extended Toda hierarchy is given by

∂t ∗2
τ=L1τ, where

L1 =
∞
∑

n=1

�

2xn∂tn+1
+n xn∂xn+1

+n tn∂tn+1

�

+2x0∂t1
. (3.27)

Proof. We’ll begin by looking at a portion of the proof to come and rewriting it as an operator applied

to w =
G (z )τ
τ

:

(W sΛW -1)+ψ
χ

=

�

s L −
∞
∑

i=1

i wi (s )Λ
-i+1W -1

�

+

ψ

χ

=
s L+ψ

χ
−

w1(s )ψ
χ

= s
Lψ

χ
+ s
−L−ψ

χ
−

w1(s )ψ
χ
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=
�

s z + s∂t1
−w1(s )

�

w

=

�

s z +G (z )

�

s∂t1
τ

τ

�

−
s∂t1

τ

τ
+
∂t1
τ

τ

�

G (z )τ
τ

;

(W̄ sΛ-1W̄ -1)−ψ
χ

=

�

s L +
∞
∑

i=1

i w̄i (s )Λ
i−1W̄ -1

�

−

ψ

χ

= s
L−ψ

χ

=−
�

Ḡ (z )

�

s∂t1
τ

τ

�

−
s∂t1

τ

τ

�

Ḡ (z )τ
τ

.

Then we have

∂t ∗2
ψ

χ
=
−((M − M̄ )L 2+ L )−ψ

χ

=
−(W sΛW -1+ W̄ sΛ-1W̄ -1+S1+ L )−ψ

χ

=
−W sΛW -1ψ

χ
+
(W sΛW -1)+ψ

χ
−
(W̄ sΛ-1W̄ -1)−ψ

χ
+
−(S1)−ψ
χ

+
−L−ψ

χ

=

�

−s z −
∞
∑

n=1

z -n+1G (z )

�

∂tn
τ

τ

�

+ s z +G (z )

�

2s∂t1
τ

τ

�

−
2s∂t1

τ

τ
+
∂t1
τ

τ

+G (z )
�

D1τ

τ

�

−
D1τ

τ
+
∞
∑

n=1

z -nG (z )

�

∂tn+1
τ

τ

�

+G (z )

�

∂t1
τ

τ

�

−
∂t1
τ

τ

�

G (z )τ
τ

=

�

G (z )

�

(D1+2x0∂t1
)τ

τ

�

−
(D1+2x0∂t1

)τ
τ

�

G (z )τ
τ

=
�

G (z )
�L1τ

τ

�

−
L1τ

τ

�

G (z )τ
τ

Thus, we get that ∂t ∗2
τ=L1τ.

Proposition 3.6. The action of ∂t ∗3
on the tau function for the extended Toda hierarchy is given by

∂t ∗3
τ=L2τ, where

L2 =
∞
∑

n=1

�

2xn∂tn+2
+n xn∂xn+2

+n tn∂tn+2

�

+2x0∂t2
+ ∂ 2

t1
. (3.28)

Proof. We will begin by determining the form of the term that would produce the ∂ 2
t1

term when
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acting on w :

∂ 2
t1

w = ∂ 2
t1

�

G (z )τ
τ

�

= ∂t1

��

G (z )

�

∂t1
τ

τ

�

−
∂t1
τ

τ

�

G (z )τ
τ

�

=

�

G (z )

�

∂ 2
t1
τ

τ

�

−
∂ 2

t1
τ

τ
+2

�

∂t1
τ

τ

�2

−2
∂t1
τ

τ
G (z )

�

∂t1
τ

τ

�

�

G (z )τ
τ

=

�

G (z )

�

∂ 2
t1
τ

τ

�

−
∂ 2

t1
τ

τ
−2
∂t1
τ

τ

�

G (z )

�

∂t1
τ

τ

�

−
∂t1
τ

τ

�

�

G (z )τ
τ

=

�

G (z )

�

∂ 2
t1
τ

τ

�

−
∂ 2

t1
τ

τ
+2w1∂t1

�

G (z )τ
τ

.

So, we have that

∂ 2
t1

w −2w1∂t1
w =

�

G (z )

�

∂ 2
t1
τ

τ

�

−
∂ 2

t1
τ

τ

�

G (z )τ
τ

.

The ∂ 2
t1

w portion of this would derive from

∂ 2
t1

W = ∂t1

�

− L−W
�

=
�

[L−, L ]−+ (L−)
2
�

W

=
�

L−v (s )− v (s )L−+ (L−)
2
�

W .

As in the case of L1, we begin by looking at portions of the proof to come and rewriting them

separately. First, based on the definition of L in terms of W , recall that

v (s ) =w1(s ) +w -1
1 (s +1) =w1(s )−w1(s +1).

Also, using the definitions of the action of ∂t1
on W , we see that

∂t1
w1(s ) =−e u (s ) =−L−Λ=−L−(L − v (s )− L−) =−L−L + L−v (s ) + (L−)

2.

Finally, recall that

2w2(s )−w1(s )
2 =−∂t1

w1(s )−
∂t2
τ

τ
.
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Then

(W sΛ2W -1)+ = s L 2−
∞
∑

i=1

i wi (s )Λ
-i+2W -1

= s (L 2)+− (2w2(s ) +w1(s )w
-1
1 (s +1) +w1(s )Λ)

= s L 2− s (L 2)−− (2w2(s )−w1(s )
2)−w1(s )(v (s ) +Λ)

= s L 2− s (L 2)−+ ∂t1
w1(s ) +

∂t2
τ

τ
−w1(s )L+

= s L 2− s (L 2)−− L−L + L−v (s ) + (L−)
2+
∂t2
τ

τ
−w1(s )L +w1(s )L−

= s L 2− s (L 2)−− L−L + L−v (s )− v (s )L−+ (L−)
2+
∂t2
τ

τ

−w1(s )L +2w1(s )L−−w1(s +1)L−

= s L 2− s (L 2)−− L−L +
�

[L−, L ]−+ (L−)
2
�

+
∂t2
τ

τ
−w1(s )L +2w1(s )L−−w1(s +1)L−.

This gives us

(W sΛ2W -1)+ψ
χ

=

�

s z 2+ s∂t2
+ z∂t1

+ ∂ 2
t1
−2w1(s )∂t1

− z w1(s ) +w1(s +1)∂t1
+
∂t2
τ

τ

�

w

=

�

G (z )

�

(s∂t2
+ ∂ 2

t1
)τ

τ

�

−
(s∂t2

+ ∂ 2
t1
)τ

τ
+ s z 2+ z G (z )

�

∂t1
τ

τ

�

−z
∂t1
τ

τ
− z w1(s )−

∂t1
τ(s +1)
τ(s +1)

∂t1
+
∂t2
τ

τ

�

G (z )τ
τ

Next, based on the definition of L in terms of W̄ , recall that

L− = e u (s )Λ-1 = w̄0(s )w̄
-1
0 (s −1)Λ-1

and that w̄ -1
0 (s ) = (w̄0(s ))-1. Then

(W̄ sΛ-2W̄ -1)−ψ
χ

=

�

s L 2+
∞
∑

i=1

i w̄i (s )Λ
i−2W̄ -1

�

−

ψ

χ

= s
(L 2)−ψ
χ

+
w̄1(s )w̄ -1

0 (s )(w̄0(s )w̄ -1
0 (s −1)Λ-1)ψ

χ
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= s
(L 2)−ψ
χ

+
w̄1(s )w̄ -1

0 (s )L−ψ
χ

=
�

−s∂t2
− w̄1(s )w̄

-1
0 (s )∂t1

�

w

=−
�

G (z )

�

s∂t2
τ

τ

�

−
s∂t2

τ

τ
+
∂t1
τ(s +1)
τ(s +1)

∂t1

�

G (z )τ
τ

.

Using Lemma 3.9, Corollary 3.5, and the previous results, we find that

∂t ∗3
ψ

χ
=
−((M − M̄ )L 3+ L 2)−ψ

χ

=
−(W sΛ2W -1+ W̄ sΛ-2W̄ -1+S2+ L 2)−ψ

χ

=
−W sΛ2W -1ψ

χ
+
(W sΛ2W -1)+ψ

χ
−
(W̄ sΛ-2W̄ -1)−ψ

χ
+
−(S2)−ψ
χ

+
−(L 2)−ψ
χ

=

�

−
∞
∑

n=1

z -n+2G (z )

�

∂tn
τ

τ

�

+G (z )

�

(D2+2s∂t2
+ ∂ 2

t1
)τ

τ

�

−
(D2+2s∂t2

+ ∂ 2
t1
)τ

τ
+
∂t2
τ

τ

+
∞
∑

n=1

z -nG (z )

�

∂tn+2
τ

τ

�

+ z G (z )

�

∂t1
τ

τ

�

− z
∂t1
τ

τ
− z w1(s ) +G (z )

�

∂t2
τ

τ

�

−
∂t2
τ

τ

�

G (z )τ
τ

=

�

G (z )
�L2τ

τ

�

−
L2τ

τ
+
∂t2
τ

τ
− z G (z )

�

∂t1
τ

τ

�

−G (z )

�

∂t2
τ

τ

�

+z G (z )

�

∂t1
τ

τ

�

− z
∂t1
τ

τ
+ z
∂t1
τ

τ
+G (z )

�

∂t2
τ

τ

�

−
∂t2
τ

τ

�

G (z )τ
τ

=
�

G (z )
�L2τ

τ

�

−
L2τ

τ

�

G (z )τ
τ

.

Thus, we see that ∂t ∗3
τ=L2τ.

While we can derive these operators for specific symmetries, it is clear that the process will

become more complex as we progress to higher symmetries. Since the first four symmetries have

been derived, the next two propositions allow us to find the actions of the remaining flows on the

tau function without the need for such computations.

Proposition 3.7. Suppose we have a family of operators Lk , k ∈Z≥-1 that commute as the Virasoro

algebra and so that ∂t ∗`
Lp = 0 for ` ∈ Z≥0. Also, suppose that two of these operators, Lp and Lq ,

p 6= q , can be derived from the Adler-Shiota-van Moerbeke formula (3.17) so that ∂t ∗p+1
τ=Lpτ and
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∂t ∗q+1
τ=Lqτ. Then Lp+q can be derived from the Adler-Shiota-van Moerbeke formula as well; i.e.

∂t ∗p+q+1
ψ

χ
=

�

G (z )

�

Lp+qτ

τ

�

−
Lp+qτ

τ

�

G (z )τ
τ

and ∂t ∗p+q−1
τ=Lp+qτ.

Proof. Using similar methods to those used to prove Lemma 3.1 in [3], we have that

[∂t ∗p+1
,∂t ∗q+1

]ψ=

�

G (z )

�

[Lp ,Lq ]τ

τ

�

−
[Lp ,Lq ]τ

τ

�

G (z )τ
τ

χ .

Since the Lp commute as Virasoro by assumption and by the result of Theorem 3.16, the previous

equation becomes

(p −q )∂t ∗p+q+1
ψ= (p −q )

�

G (z )

�

Lp+qτ

τ

�

−
Lp+qτ

τ

�

G (z )τ
τ

χ ,

or, with common terms canceled,

∂t ∗p+q+1
ψ

χ
=

�

G (z )

�

Lp+qτ

τ

�

−
Lp+qτ

τ

�

G (z )τ
τ

.

Thus, Lp+q can be derived from the Adler-Shiota-van Moerbeke formula and ∂t ∗p+q+1
τ=Lp+qτ.

Proposition 3.8. Define operators Lp for p ∈Z≥-1 as

L-1 =
∞
∑

n=1

�

2xn∂tn−1
+n tn∂tn−1

+n xn∂xn−1

�

+ t1 x0+2x0 x1

L0 =
∞
∑

n=1

�

2xn∂tn
+n tn∂tn

+n xn∂xn

�

+ x 2
0

Lp =
∞
∑

n=1

�

2xn∂tn+p
+n tn∂tn+p

+n xn∂xn+p

�

+2x0∂tp
+

p−1
∑

n=1

∂tn
∂tp−n

, p ∈Z≥1.

(3.29)

These operators commute as the Virasoro algebra; i.e.

[Lp ,Lq ] = (p −q )Lp+q .

Note that the operators derived in Propositions 3.3, 3.4, 3.5, and 3.6 are part of theseLp operators.

Proof. Clearly, the formula holds for p = q . So, let p 6= q . We will first compute [Dp , Dq ], where these
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are defined in (3.23) as the summation portion of Lp and Lq , respectively. Take note of the following

non-zero commutators of the summands in Dp and Dq :

[2xn∂tn+p
, m tm∂tm+q

] =δm ,n+p 2(n +p )xn∂tn+p+q
,

[2xn∂tn+p
, m xm∂xm+q

] =−δn ,m+q 2m xm∂tm+p+q
+δq ,-1δn ,1δm ,12x1∂tp

,

[n tn∂tn+p
, m tm∂tm+q

] =δm ,n+p n (n +p )tn∂tn+p+q
−δn ,m+q m (m +q )tm∂tm+p+q

,

[n xn∂xn+p
, m xm∂xm+q

] =δm ,n+p n (n +p )xn∂xn+p+q
−δn ,m+q m (m +q )xm∂xm+p+q

.

We then have that

[Dp , Dq ] =
∞
∑

n=1

2(n +p )xn∂tn+p+q
+2n xn∂tn+p+q

+n (n +p )tn∂tn+p+q
+n (n +p )xn∂xn+p+q

−
∞
∑

n=1

2(n +q )xn∂tn+p+q
+2n xn∂tn+p+q

+n (n +q )tn∂tn+p+q
+n (n +q )xn∂xn+p+q

−δp ,-1 x1∂tq
+δq ,-1 x1∂tp

= (p −q )
∞
∑

n=1

2xn∂tn+p+q
+n xn∂xn+p+q

+n tn∂tn+p+q
−δp ,-1 x1∂tq

+δq ,-1 x1∂tp

= (p −q )Dp+q −δp ,-1 x1∂tq
+δq ,-1 x1∂tp

.

Similarly, we compute that [Dp , 2x0∂tq
] =−2q x0∂tp+q

+δp ,-12x1∂tq
.

Since Dp does not involve any ∂tn
or ∂xn

for p ≥ n ,

[Dp , t1 x0+2x0 x1] =δp ,0(t1 x0+4x0 x1), p ≥ 0,

[Dp , x 2
0 ] =δp ,-12x0 x1.

Next, we want to compute
p−1
∑

n=1

[∂tn
∂tp−n

, Dq ] for p ≥ 2: for q 6= -1,

p−1
∑

n=1

[∂tn
∂tp−n

, Dq ] =
p−1
∑

n=1

n∂tp−n
∂tn+q

+ (p −n )∂tn
∂tp+q−n

=
p−1
∑

n=1

(p −n )∂tn
∂tp+q−n

+
p+q−1
∑

n=q

(n −q )∂tn
∂tp+q−n

,
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and for q = -1,

p−1
∑

n=1

[∂tn
∂tp−n

, D-1] =
p−1
∑

n=2

n∂tp−n
∂tn−1

+
p−2
∑

n=1

(p −n )∂tn
∂tp−n−1

=
p−2
∑

n=1

(n +1)∂tp−n−1
∂tn
+ (p −n )∂tn

∂tp−n−1

= (p +1)
p−2
∑

n=1

∂tn
∂tp−1−n

.

We also have that
p−1
∑

n=1

[∂tn
∂tp−n

, t1 x0] = 2x0∂tp−1

and that

[2x0∂tp
, t1 x0] =δp ,12x 2

0 .

So, let us compute [L0,L-1], [L1,L-1], and [Lp ,L-1] for p ≥ 2:

[L0,L-1] = [D0+ x 2
0 , D-1+ t1 x0+2x0 x1]

= [D0, D-1] + [D0, t1 x0+2x0 x1] + [x
2
0 , D-1]

=D-1+ t1 x0+4x0 x1−2x0 x1

=D-1+ t1 x0+2x0 x1 =L-1;

[L1,L-1] = [D1+2x0∂t1
, D-1+ t1 x0+2x0 x1]

= [D1, D-1] + [2x0∂t1
, D-1] + [2x0∂t1

, t1 x0]

= 2D0+ x1∂t1
−2x1∂t1

2x 2
0

= 2
�

D0+ x 2
0

�

= 2L0;
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[Lp ,L-1] = [Dp +2x0∂tp
+

p−1
∑

n=1

∂tn
∂tp−n

, D-1+ t1 x0+2x0 x1]

= [Dp , D-1] + [2x0∂tp
, D-1] +

p−1
∑

n=1

[∂tn
∂tp−n

, D-1] +
p−1
∑

n=1

[∂tn
∂tp−n

, t1 x0]

= (p +1)Dp−1+ x1∂tp
− x1∂tp

+2p x0∂tp−1
+ (p +1)

p−2
∑

n=1

∂tn
∂tp−1−n

+2x0∂tp−1

= (p +1)

�

Dp−1+2x0∂tp−1
+

p−2
∑

n=1

∂tn
∂tp−1−n

�

= (p +1)Lp−1.

So, the relations hold when one of the operators is L-1.

Next we compute [Lp ,L0] for p ∈Z≥1 to show it holds for either operator being L0:

[Lp ,L0] = [Dp +2x0∂tp
+

p−1
∑

n=1

∂tn
∂tp−n

, D0+ x 2
0 ]

= [Dp , D0] + [2x0∂tp
, D0] +

p−1
∑

n=1

[∂tn
∂tp−n

, D0]

= p Dp +2p x0∂tp
+p

p−1
∑

n=1

∂tn
∂tp−n

= p

�

Dp +2x0∂tp
+

p−1
∑

n=1

∂tn
∂tp−n

�

= pLp .

Finally, we compute [Lp ,Lq ] for p , q ∈Z≥1:

[Lp ,Lq ] = [Dp +2x0∂tp
+

p−1
∑

n=1

∂tn
∂tp−n

, Dq +2x0∂tq
+

q−1
∑

n=1

∂tn
∂tq−n

]

= (p −q )Dp+q +2p x0∂tp+q
+

p−1
∑

n=1

(p −n )∂tn
∂tp+q−n

+
p+q−1
∑

n=q

(n −q )∂tn
∂tp+q−n

−2q x0∂tp+q
−

q−1
∑

n=1

(q −n )∂tn
∂tp+q−n

−
p+q−1
∑

n=p

(n −p )∂tn
∂tp+q−n

= (p −q )

�

Dp+q +2x0∂tp+q
+

p+q−1
∑

n=1

∂tn
∂tp+q−n

�

= (p −q )Lp+q .

Thus, the commutation relations hold for any such Lp , Lq .
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The combination of Propositions 3.7 and 3.8 prove for us the second main theorem of this thesis:

Theorem 3.3. The actions of the additional flows on the wave functions in (3.12) induce actions on

the tau function:

∂t ∗`
τ=L`−1τ, (3.30)

where L`−1 are defined in (3.29).

Finally, recall from (2.26) that we performed a change of variables to simplify the notation for

the extended Toda hierarchy. If we perform the reverse change of variables,

s =
x

ε
,

tn+1 =
1

ε(n +1)!

�

t 2,n −2cn+1t 1,n+1
�

,

xn =
1

εn !
t 1,n ,

(3.31)

on the Virasoro operators of (3.29), we obtain the following formulas for Lp :

L-1 =
∞
∑

n=1

t α,n∂t α,n−1 +
1

ε2
t 1,0t 2,0,

L0 =
∞
∑

n=1

n (t 1,n∂t 1,n + t 2,n−1∂t 2,n−1 ) +2t 1,n∂t 2,n−1 +
1

ε

�

t 1,0
�2

,

Lp = ε2
p−1
∑

n=1

k !(p −n )!∂t 2,n−1∂t 2,p−n−1 +
∞
∑

n=1

(p +n )!
(n −1)!

�

t 1,n∂t 1,p+n + t 2,n−1∂t 2,p+n−1

�

+2
∞
∑

n=0

αp (n )t
1,n∂t 2,p+n−1 ,

(3.32)

where

αp (0) = p !, αp (n ) =
(p +n )!
(n −1)!

p+n
∑

j=n

1

j
, n > 0,

and sums that include t α,∗ are implied to be sums over α= 1, 2. These Lp of (3.32) precisely match

those given by Dubrovin and Zhang in [9].
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CHAPTER

4

EXTENDED BIGRADED TODA

Attention is now turned toward a hierarchy of which the extended Toda is a special case. Instead of

considering a Lax operator whose powers of Λ stop at 1 and -1, we consider difference operators

whose highest power of Λ is k and whose lowest power is -m , where k , m ∈Z≥1. This hierarchy was

first introduced by Carlet in [4] as a generalization of the extended Toda and was further investigated

by Carlet and van de Leur in [6]. Using these two papers, Section 4.1 will consist of the definitions

of the bigraded Toda and extended bigraded Toda. We define the additional symmetries of the

hierarchy in Lax form in Section 4.2, very similar to what was done in Chapter 3. In Section 4.3, we

determine the action of these flows on the tau function.

4.1 Definition

Just as with the ETH, the extended bigraded Toda hierarchy is an extension of a smaller hierarchy,

the bigraded Toda hierarchy. Thus, this section will first define this hierarchy and then move on to

define the extended bigraded Toda.
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Bigraded Toda Hierarchy

Consider a Lax operator of the form

L =Λk +uk−1Λ
k−1+ · · ·+u-m+1Λ

-m+1+u-mΛ
-m , (4.1)

where k , m ∈Z≥1 and u-m 6= 0. In the special case where k =m = 1, it is clear that this form reduces

to the Lax operator of the Toda hierarchy.

Just as with the Toda and extended Toda hierarchies, the Lax operator has representations using

dressing operators,

W = 1+
∞
∑

i=1

wi (s )Λ
-i

and

W̄ =
∞
∑

i=0

w̄i (s )Λ
i , w̄0(s ) 6= 0 :

L =W Λk W -1 = W̄ Λ-m W̄ -1. (4.2)

Similar to how the KP hierarchy and its Lax operator were introduced in Chapter 1, (4.2) allows us to

define fractional power of L :

L
1
k =W ΛW -1 =Λ+

∑

i≥0

ai (s )Λ
-i , L

1
m = W̄ Λ-1W̄ -1 =

∑

i≥-1

bi (s )Λ
i . (4.3)

Note that L commutes with both of these operators and that we have

�

L
1
k

�k
=
�

L
1

m

�m
= L .

It is heavily stressed that, due to the powers of Λ involved in each operator, L
1
k 6= L

1
m , unless we are

in the notable case k =m = 1. We will use the notation

L
p
k =

�

L
1
k

�p
=W Λp W -1, L

p
m =

�

L
1

m

�p
= W̄ Λ-p W̄ -1, p ∈Z.

With these new operators in mind, we have the following:

Definition 4.1. Define variables tn and t̄n , n ∈ Z≥1, with a system of flows on the Lax operator L
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given by
∂ L

∂ tn
= [(L

n
k )+, L ] = [−(L

n
k )−, L ],

∂ L

∂ t̄n
= [(L

n
m )+, L ] = [−(L

n
m )−, L ],

(4.4)

where ( )+ and ( )− are defined as in Toda and extended Toda. These flows define the bigraded Toda

hierarchy.

Using this notation, it is important to note that we consider tnk = t̄nm since their flows on L are

identical. The flows of (4.4) also induce flows on the dressing operators:

∂W

∂ tn
=−(L

n
k )−W ,

∂ W̄

∂ tn
= (L

n
k )+W̄ ,

∂W

∂ t̄n
=−(L

n
m )−W ,

∂ W̄

∂ t̄n
= (L

n
m )+W̄ .

(4.5)

Logarithm of L and Definition of the Hierarchy

Extending the bigraded Toda involves the same steps as with the Toda hierarchy. Define the loga-

rithm of L as before:

log L =
1

2

�

W ∂s W -1− W̄ ∂s W̄ -1
�

.

Just as before, this operator commutes with L and all integral powers of L . However, the composition

of a fractional power of L and log L is not well defined.

Using log L , we have the following:

Definition 4.2. The extended bigraded Toda hierarchy (abbreviated EBTH) consists of a system of

flows given in Lax pair form by (4.4) and by

∂ L

∂ xn
= [(2L n log L )+, L ] = [−(2L n log L )−, L ], n ∈Z≥0. (4.6)

Just as with extended Toda, these new flows induce corresponding actions on the dressing

operators:
∂W

∂ xn
=−(2L n log L )−W ,

∂ W̄

∂ xn
= (2L n log L )+W̄ . (4.7)

Change of Variables

The version of the extended bigraded Toda hierarchy presented in this thesis is not the version

originally introduced by Carlet in [4] nor the one used in [6] by Carlet and van de Leur. We will
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compare our version with [6] since that is the more recent publication. In that paper, the authors

consider a Lax operator of the form

L =Λ-k +u1Λ
-k+1+ · · ·+uk+mΛ

m , uk+m 6= 0,

the reverse of what this thesis considers. Recalling the use of the spectral parameter ε from Section

2.3, the form of the Lax operator used in this thesis can be obtained by making the change ε → -ε.

Doing so also changes Λ → Λ-1 and ζ → ζ-1 (z in this thesis) in [6].

After making this change, the authors define the extended bigraded Toda hierarchy as the

following flows on L :
∂ L

∂ q
β
n

= [(Bβn )+, L ] =−[(Bβn )−, L ], n ∈Z≥0 (4.8)

where

B
β
n =

1

εk

�

-
β

k

�

-n−1
L n− βk +1, β = 1, 2, . . . , k −1,

B
β
n =

1

εm

�

β −k

m
−1

�

-n−1
L
β−k

m +n , β = k +1, k +2, . . . , k +m ,

B k
n =

2

εn !

�

L n
�

log L −
cn

2

�

1

k
+

1

m

���

,

(4.9)

the harmonic numbers cn are defined in (2.25), and for ` ∈Z≥1,

(q )0 = 1,

(q )` =
∏̀

i=1

(q − i +1),

(q )-` =
0
∏

i=-`+1

(q − i +1)-1 =
1

(q + `)`
.

Using Takasaki’s logic again, the use of the harmonic numbers and the use of (q )n are necessary

for the study of the underlying manifold. Otherwise, they are superficial and are dropped for this

thesis. As with the ETH, we have the following change of variables allowing us to convert from the
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definition of [6] to the one used here:

x = εs ,

q k−α
n = εk

�

n +
α

k

�

n+1
tnk+α, α= 1, 2, . . . , k −1, n ∈Z≥0,

q
k+β
n = εm

�

n +
β

m

�

n+1
t̄nm+β , β = 1, 2, . . . , m −1,

q k+m
n = εm (n +1)!

�

t(n+1)k + cn+1

�

1

k
+

1

m

�

xk+1

�

,

q k
n = εn !xn ,

(4.10)

keeping in mind that tnk = t̄nm . The inverse of this change can be used to translate the results of the

next section back to the version of the hierarchy used by Carlet and van de Leur.

4.2 Additional Symmetries

In this section, we use the methods found in Chapter 3 to formulate additional symmetries for the

EBTH in Lax form. As a result, many of the propositions and theorems found here have proofs very

similar to those found in the previous chapter. Those proofs will be omitted, and any significant

differences will be highlighted instead.

Wave Functions

To derive additional symmetries of the EBTH as was done for the ETH in Chapter 3, we need to

introduce an appropriate pair of wave functions,ψ and ψ̄. Similar to how Takasaki does this for

the ETH in [17], the exponential terms of the wave functions are generated by acting on z s with the

59



4.2. ADDITIONAL SYMMETRIES CHAPTER 4. EXTENDED BIGRADED TODA

undressed generators of the flows of the hierarchy:

exp

�∞
∑

n=1

tnΛ
n −

1

2
tnkΛ

nk

�

z s = z s e
∑

tn z n− 1
2

∑

tnk z nk
,

exp

�∞
∑

n=1

xnΛ
nk∂s

�

z s = z s+
∑

xn z nk
,

exp

�∞
∑

n=1

t̄nΛ
-n −

1

2
t̄nmΛ

-nm

�

z s = z s e -
∑

t̄n z -n+ 1
2

∑

t̄nm z -nm
,

exp

�∞
∑

n=1

xnΛ
-nm∂s

�

z s = z s+
∑

xn z -nm
.

This gives us the following definitions for wave functions of the EBTH:

ψ :=W χ =wχ ,

ψ̄ := W̄ χ̄ = w̄ χ̄ ,
(4.11)

where w =w (s , z ) and w̄ = w̄ (s , z ) are defined as in the extended Toda and

χ = z s+
∑

xn z k n
e
∑

tn z n− 1
2

∑

tnk z nk
,

χ̄ = z s+
∑

xn z -mn
e -

∑

t̄n z -n+ 1
2

∑

tnk z -nm
.

We thus have that

Lψ= z kψ,

Lψ̄= z -mψ̄
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and that the flows of the hierarchy act on these wave functions as follows:

∂ ψ

∂ tn
= (L

n
k )+ψ, n /∈ kZ≥1,

∂ ψ

∂ tnk
=
�

−(L n )−+
1

2
L n
�

ψ,

∂ ψ

∂ t̄n
=−(L

n
m )−ψ, n /∈mZ≥1,

∂ ψ

∂ xn
= (L n∂s +Pn )ψ,

∂ ψ̄

∂ tn
= (L

n
k )+ψ̄, n /∈ kZ≥1,

∂ ψ̄

∂ t̄nm
=
�

(L n )+−
1

2
L n
�

ψ̄,

∂ ψ̄

∂ t̄n
=−(L

n
m )−ψ̄, n /∈mZ≥1,

∂ ψ̄

∂ xn
= (L n∂s +Pn )ψ̄.

Here, Pn is defined as in the ETH in Definition 2.4.

M and M̄

With the introduction of wave functions for the hierarchy, we can now derive the operators M and

M̄ . Just like before, we want these operators defined in such a way that

[L , M ] = [L , M̄ ] = 1.

To this end, M and M̄ are to act on their respective wave functions as follows:

Mψ= ∂z kψ, M̄ ψ̄= ∂z -m ψ̄.

Mirroring the derivations from Section 3.1, we have the following definitions for M and M̄ :
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M :=
1

k
W sΛ-k W -1+

∞
∑

n=1

�

1

k
xn L n−1+n xn W ∂s W -1L n−1+

n

k
tn L

n−k
k −

1

2
n tnk L n−1

�

, (4.12)

M̄ :=−

�

1

m
W̄ sΛm W̄ -1+

∞
∑

n=1

�

1

m
xn L n−1−n xn W̄ ∂s W̄ -1L n−1+

n

m
t̄n L

n−m
m −

1

2
n t̄nm L n−1

�

�

. (4.13)

The flows of the EBTH act on M and M̄ as follows:

∂tn
M = [−(L

n
k )−+ L

n
k , M ], n /∈ kZ≥1,

∂tnk
M = [−(L n )−+

1

2
L n , M ],

∂t̄n
M = [−(L

n
m )−, M ], n /∈mZ≥1,

∂xn
M = [L n∂s +Pn , M ]

∂tn
M̄ = [(L

n
k )+, M ], n /∈ kZ≥1,

∂tnk
M̄ = [(L n )+−

1

2
L n , M̄ ],

∂t̄n
M̄ = [(L

n
m )+− L

n
m , M̄ ], n /∈mZ≥1,

∂xn
M̄ = [L n∂s +Pn , M̄ ].

Finally, we have the following difference operator that commutes with L :

M − M̄ =
1

k
W sΛ-k W -1+

1

m
W̄ sΛm W̄ -1+

∞
∑

n=1

��

1

k
+

1

m

�

xn L n−1+n xn (2L n−1 log L )

+
n

k
tn L

n−k
k +

n

m
t̄n L

n−m
m −n tnk L n−1

�

.

(4.14)

Additional Symmetries

With the previous two sections in mind, the additional symmetries for the extended bigraded Toda

hierarchy are defined identically to those of the ETH: define additional flows denoted by ∂t ∗`
that act

on the Lax operator L by

∂t ∗`
L = [(B`)+, L ] = [−(B`)−, L ], (4.15)
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where

B` = (M − M̄ )L`−
k −1

2k
W Λk (`−1)W -1+

m +1

2m
W̄ Λ-m (`−1)W̄ -1.

These flows induce actions on the wave operators, wave functions, and M and M̄ :

∂t ∗`
W =−(B`)−W , ∂t ∗`

W̄ = (B`)+W̄ ; (4.16)

∂t ∗`
ψ=−(B`)−ψ, ∂t ∗`

ψ̄= (B`)+ψ̄. (4.17)

∂t ∗`
M = [−(B`)−, M ], ∂t ∗`

M̄ = [(B`)+M̄ ]. (4.18)

The main result of this chapter is the following theorem:

Theorem 4.1. The flows ∂t ∗`
defined in (4.15) on L and in (4.16) on W and W̄ define additional

symmetries in Lax pair form for the extended bigraded Toda hierarchy; i.e. for Φ being L, W , or W̄

and y being any of the tn , t̄n , or xn variables, we have that

[∂y ,∂t ∗`
]Φ= 0.

The proof of this theorem is fundamentally the same as the proof for Theorem 3.1 and is therefore

omitted. These additional symmetries commute with one another as the symmetries of the ETH do:

Theorem 4.2. The map ∂t ∗`
7−→L`−1, ` ∈ Z≥0 defines a homomorphism between the flows of (4.16)

and (4.15) acting on W , W̄ , and L of the extended bigraded Toda hierarchy and the Virasoro algebra;

i.e.,

[∂t ∗`
,∂t ∗p ]Φ= (`−p )∂t ∗`+p−1

Φ, (4.19)

where Φ can be any of W , W̄ , and L.

Again the proof of this theorem is fundamentally the same as the proof for Theorem 3.2 and is

omitted.

4.3 Symmetries on Tau Function

Continuing with the process set forth in Chapter 3, the next step is to use the Adler-Shiota-van

Moerbeke formula in (1.25) to determine these symmetries’ actions on the tau function of the

EBTH. To do this, we require the representation of the coefficients of W and W̄ in terms of the tau

function, such as (2.22) for the ETH. Carlet and van de Leur provide such formulas in [6], and after
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the appropriate change of variables, we have the following:

w (s , z ) =
G1(z )τ
τ

, w̄ (s , z ) =
G2(z )τ
τ

. (4.20)

Here, G1(z ) and G2(z ) are defined on functions of s , t= (t1, t2, . . .), t̄= (t̄1, t̄2, . . .), and x= (x1, x2, . . .) by

G1(z ) f (s , t, t̄, x) = f (s , t− [z -1], t̄, x)

and

G2(z ) f (s , t, t̄, x) = f (s +1, t, t̄+ [z ], x)

where [z ] is defined in (1.20).

We again want to find operators Lp , p ∈Z≥-1 such that ∂t ∗p+1
τ=Lpτ and

∂t ∗p+1
ψ=

�

G1(z )

�

Lpτ

τ

�

−
Lpτ

τ

�

ψ

and

∂t ∗p+1
ψ̄=

�

G2(z )

�

Lpτ

τ

�

−
Lpτ

τ

�

ψ̄.

Actions of L-1 and L0

Proposition 4.1. The first additional symmetry of the EBTH acts on the tau function as ∂t ∗0
τ=L-1τ,

where

L-1 =
∞
∑

n=1

��

1

k
+

1

m

�

xn∂tk (n−1)
+n xn∂xn−1

+
n

k
tn∂tn−k

+
n

m
t̄n∂t̄n−m

−n tnk∂tk (n−1)

�

+tk x0+
�

1

k
+

1

m

�

x0 x1+
1

2k

k−1
∑

α=1

�

αtα
��

(k −α)tk−α
�

+
1

2m

m−1
∑

β=1

�

β t̄β
��

(m −β )t̄m−β
�

.

(4.21)

Since this proof and the proof for L0 use many of the same methods that were used in Chapter

3, many details have been omitted. Also, note that, even though it shifts the t̄nm variables since

t̄nm = tnk , the presence of the n tnk∂tk (n−1)
term in L-1 and similar terms in the remaining Virasoro

operators effectively makes the shifting operator G1(z ) only affect the
n

k
tn∂tn−k

terms. Similarly,

G2(z ) effectively only shifts the
n

m
t̄n∂t̄n−m

terms of L-1.
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Proof. We have

∂t ∗0
ψ

χ
=

1

χ

�

−(M − M̄ )−+
k −1

2k
W Λ-k W -1

�

W χ

=
1

χ

�

−
1

k
W sΛ-k W -1−

∞
∑

n=1

�n

k
tn (L

n−k
k )−+ · · ·

�

+
k −1

2k
W Λ-k W -1

�

W χ

=

�

−s
z -k

k
−

z -k+1

k
∂z −

1

k

k−1
∑

α=1

αtαzα−k +
k −1

2k
z -k +

∞
∑

n=1

�n

k
tn∂tn−1

+ · · ·
�

�

w

=

�

s

�

tk −
z -k

k

�

− s tk −
1

k

∞
∑

n=1

z -k−nG1(z )

�

∂tn
τ

τ

�

+
1

2k

k−1
∑

α=1

�

α

�

tα−
z -α

α

�

(k −α)
�

tk−α−
zα−k

k −α

�

−αtα(k −α)tk−α

�

+
∞
∑

n=1

�

n

k
tn∂tn−1

�

G1(z )

�

∂tn−k
τ

τ

�

−
∂tn−k

τ

τ

�

+ · · ·
�

�

G1(z )τ
τ

=
�

G1(z )
�L-1τ

τ

�

−
L-1τ

τ

�

G1(z )τ
τ

since the G1(z ) shift operator does not affect any of the xn or the strictly t̄n variables. A similar

calculation involving the action on ψ̄ gives rise to the
m−1
∑

β=1

β t̄β (m−β )t̄m−β and
�

1

k
+

1

m

�

x0 x1 terms,

thus proving the proposition.

Proposition 4.2. The second additional symmetry of the EBTH acts on the tau function as ∂t ∗1
τ=L0τ,

where

L0 =
∞
∑

n=1

��

1

k
+

1

m

�

xn∂tk n
+n xn∂xn

+
n

k
tn∂tn

+
n

m
t̄n∂t̄n

−n tnk∂tk n

�

+
1

2

�

1

k
+

1

m

�

x 2
0 +

k 2−1

24k
+

m 2−1

24m
.

(4.22)

Proof. We have

∂t ∗1
ψ

χ
=

1

χ

�

−((M − M̄ )L )−W χ
�

=
1

χ

�

−
1

k
W s W -1+

s

k
−
∞
∑

n=1

�n

k
tn (L

n
k )−+ · · ·

�

�

W χ
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=

�

−
1

k
z∂z +

∞
∑

n=1

�n

k
tn∂tn

+ · · ·
�

�

w

=

�

−
1

k

∞
∑

n=1

z -nG1(z )

�

∂tn
τ

τ

�

+
∞
∑

n=1

�

n

k
tn

�

G1(z )

�

∂tn
τ

τ

�

−
∂tn
τ

τ

�

+ · · ·
�

�

G1(z )τ
τ

=
�

G1(z )
�L0τ

τ

�

−
L0τ

τ

�

G1(z )τ
τ

.

The same calculation using the action on ψ̄ and the shift operator G2(z ) gives rise to the 1
2

�

1
k +

1
m

�

x 2
0

term. Note that the last two terms of L0 vanish when converting from the action on τ back to the

action on ψ or ψ̄. Thus, their presences are not necessary when viewing the action of L0 alone.

However, to maintain the Virasoro commutation relations so that [L1,L-1] = 2L0, these two terms

are added to L0.

The Remaining Actions

Finally we present the following theorem for the actions of the remaining symmetries on the tau

function, the proof of which to be presented in a future publication:

Theorem 4.3. For p ∈ Z≥1, the actions of the additional symmetries ∂t ∗p+1
on the tau function are

given by

Lp =
∞
∑

n=0

��

1

k
+

1

m

�

xn∂tk (n+p )
+n xn∂xn+p

+
n

k
tn∂tn+p k

+
n

m
t̄n∂t̄n+p m

−n tnk∂tk (n+p )

�

+
1

2k

p k−1
∑

α=1

∂tα∂tp k−α +
1

2m

p m−1
∑

β=1

∂t̄β ∂t̄p m−β .

(4.23)

Combining a constructive proof for L2, verification that these Lp operators commute as Virasoro,

and Proposition 3.7 would prove this theorem. However, as of the writing of this thesis, no such

proof of L2 has been produced. The proof of this theorem that will be given in the future involves

using the commutators of the operator L-1 and the Heisenberg algebra to show that the remaining

Lp operators must be of the form given in (4.23). The last statement given in this thesis is these

operators do in fact commute as the Virasoro algebra:

Proposition 4.3. The Lp operators of (4.21), (4.22), and (4.23) commute with one another as the

Virasoro algebra; i.e.

[Lp ,Lq ] = (p −q )Lp+q , p , q ∈Z≥-1.

Since many of the calculations for this proposition are virtually identical to those given in the
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proof for Proposition 3.8, we will not include the rigorous proof of this proposition. Instead, only the

particular calculations that are wholly different from those previously shown will be given below.

Note that the presence of the n tnk∂tk (n+p )
term in Lp (p ∈ Z≥-1) ensures that there is only one

such term in the operator. This effectively allows partial derivatives involving tn to only affect the
n

k
tn∂tn+p k

term and those involving t̄n to only affect the
n

m
t̄n∂t̄n+p m

term. Because of this observation

and that the Lp operators do not mix the tn and t̄n variables, we will omit the t̄n variables with these

calculations.

We will determine the commutator of a double derivative term, such as those found in Lp for

p ∈Z≥1, and the new term found in L-1. For the terms from L1 and L-1, we have

1

4k 2

k−1
∑

α,β=1

[∂tα∂tk−α ,β tβ (k −β )tk−β ] =
1

2k 2

k−1
∑

α=1

α(k −α)tα∂tα +
1

2k 2

k−1
∑

α=1

α(k −α)

=
1

2k 2

k−1
∑

α=1

α(k −α)tα∂tα +
k 2−1

12k
.

Recalling that [L1,L-1] = 2L0, the last term provides the constant terms added to L0 in (4.22). For

the terms from Lp (p ≥ 2) and L-1, we have

1

4k 2

p k−1
∑

α=1

k−1
∑

β=1

[∂tα∂tp k−α ,β tβ (k −β )tk−β ] =
1

k 2

k−1
∑

α=1

α(k −α)tk−α∂tp k−α

=
1

k 2

k−1
∑

α=1

α(k −α)tα∂t(p−1)k+α
.

The summations in each of these results combine with other terms in their respective commutators

to give the
n

k
tn∂tn+p k

terms for 1≤ n ≤ k −1 after taking into account that [Lp ,L-1] = (p +1)Lp−1.
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