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NGAMINI, MELISSA GUEMO. Nonlinear Filtering Problems for Systems Governed by PDEs.
(Under the direction of Kazufumi Ito.)

In this thesis, we study how to efficiently solve nonlinear filtering and smoothing problems

and joint state and parameters estimation problems. Data assimilation is one of the type of

processes that we will be addressing as well since our approach encompasses a method for com-

bining observations of variables into models. Also, our proposed methods can be applied for

uncertainty quantification [20, 31]. Our objective is to develop smoothing and filtering algorithm

for a large scale model dynamics, especially system governed by large scale partial differential

equations dynamics. These large scale dynamics are commonly used in mathematical modeling,

data assimilation and uncertainty quantification and have a lot of real life applications. Devel-

oping effective and efficient algorithm is essential due to the large scale and complex dynamics.

This is why we must develop and analyze efficient but effective filtering algorithm to perform

the task at hand.

Our approach is based on the optimal filtering theory; i.e., the optimal filter based on

the Bayes’ formula for discrete time dynamics and the Zakai equation for continuous time.

After understanding the relationship between the discrete time and continuous time filter, we

conclude that the discrete time filter with properly determined one step solution map can be

applied directly to the continuous time filtering.

Well known result of Bayes’ optimal filter is the Kalman filter for linear and Gaussian system.

And our objective is to use Gaussian filter for nonlinear (significantly) system to improve the

Kalman filter (extended). That is, we develop the filtering update via the assumed Gaussian

density filter. A key step is that we update the covariance in the square root factors form and

thus we update the square root factors of the Gaussian covariance. This evolves into the reduced

Gaussian filter based on the reduced factor updates.

For dissipative system, we also develop an alternative to the reduced Gaussian filter, by

the assumed covariance filter. For systems that are time reversible, we use the time reversal

filter. As a result we obtain the forward and backward filter for time reversible systems. We

also focus on the joint state-parameters estimate for parameters dependent problems such as

media identification.
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Chapter 1

Introduction

In this thesis we consider the nonlinear filtering problems, parameter estimation for a general

class of stochastic dynamics. The nonlinear filtering and parameter estimation are very impor-

tant aspects of mathematical modeling and have many significant applications in all sciences

and engineerings, especially in fields of geosciences, weather forecasting, fluid dynamics and

wave scattering. For example in weather forecasting, quantitative data is collected about the

current state of the atmosphere at a given place and are used with a model to predict future

state or to project how the atmosphere will change. A commonly used model dynamics to pre-

dict the physics and dynamics of the atmosphere are called primitive equations [27]. Therefore,

the data collected is used to predict and estimate the state function and the parameters based

on the model dynamics and the filtering algorithms. This suggests that the filtering methods

require a good mathematical model, good algorithm and rich observations on which we can

have a good estimate of the state [15, 19]. Developing good algorithms is what we are focused

on throughout the thesis.

The Kalman filter is one of the very essential discovery for the last century and provides

estimate of state and parameters. It has been used extensively in engineering and now extends

further to other branch of sciences. It works well if the dynamics are nearly linear but it

requires improvements for significantly nonlinear and non-Gaussian system. Contributions of

the thesis includes an improved variation of Kalman filter for large scale nonlinear stochastic

systems based on the Gaussian filter [2, 4, 8] and a noble implementation of Gaussian filters.

The Gaussian filter is based on the optimal filtering theory; using the Bayesian formula [2]

for discrete stochastic dynamics and the Zakai equation [5] for the continuous time stochastic

differential dynamics. We develop a clear relationship between the discrete and continuous

time filtering theory. It states that if we develop an accurate and effective one-step map in the

discrete dynamics that approximates the solution of the equation driven by the drift term in the

Itô stochastic differential equation for the continuous time, then the continuous time filtering
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problem can be well represented by the corresponding discrete time filtering problem, e.g. see

the details in Chapter 2.

A large class of physical processes can be modeled by partial differential equations (PDE)

stochastic differential equations, such as random wave equations, reaction diffusion equations

and conservation laws. In such applications it is very essential to estimate the medium (function)

parameters in terms of coefficients and source distributions. Our approach is to discretize in

time and space in order to obtain an accurate and stable discrete time model that captures

the original PDE dynamics. On this discretized model, we apply the proposed filter for the

PDE governed system to perform the original filtering problem. The resulting system may be

a very large system and could have many function parameters. Thus it is necessary to develop

an efficient filter algorithm, since the covariance update for Gaussian (Kalman) filter is too

expensive and requires a lot of storage. In order, to improve the performance of our proposed

Gaussian filter we update the square root factor of the covariance and then develop an effective

reduced order Gaussian filtering method. In this way we are able to reduce the storage need

and the complexity of the system, moreover improve the performance.

In many applications the model dynamics is time reversible. There is a time reversal smooth-

ing method for wave propagations [9] and we extend it and develop an assumed covariance filter.

For example, for energy conservative systems we use the so-called dissipative filter and develop

forward and backward filtering/smoothing algorithm. Since in general the diffusion systems are

not time reversible, we use the quasi-reversible method to construct smoothing algorithms for

systems with mild diffusion (or, the advection and convection dominant dynamics).

The other contribution of the thesis is the joint estimate of the state and parameters for

parameter-dependent systems. As we mentioned parameter-dependent dynamics are very im-

portant in mathematical modeling and we develop the joint state-parameter estimate algorithm

based on our proposed filters. Thus, we can use our proposed method for data assimilation and

uncertainty quantification problems.

Now, we list some key topics which will be examined throughout the thesis.

• In Chapter 2: Nonlinear Filtering Problem and Gaussian Filter. We present the optimal

filter based on the Baye’s formula for discrete time system. We develop our Gaussian filter

algorithm, which uses a Gaussian density assumption for nonlinear and non-Gaussian

systems. The key step of the Gaussian filter is to represent the covariance in square root

form and thus result in a square root filter. This Gaussian filter uses the square root

filter to represent the covariance in square root form and uses a sampling and directional

method. Realizing the Gaussian filter we use the CDF (central difference filter) which is

a form of the directional sampling. The Lorenz 96 model and the wave equation model

are the examples we tested our proposed Gaussian filter with. Finally, we develop the
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mixed Gaussian filter since even when we start with a single Gaussian initial condition,

the resulting probability density function is not always Gaussian.

• In Chapter 3: Continuous Time Optimal Filter by Zakai Equation. We present the optimal

filter which is described by the Zakai equation for nonlinear stochastic dynamics. To

motivate the importance of an accurate and stable one step map from the discrete time

to the continuous time dynamics, we present the relationship between the discrete time

Bayes’ formula and the Zakai equation for the continuous time filter. We develop the

relationship between the discrete time and the continuous time filter and conclude that

a proper one step solution map is necessary from the discrete time to the the continuous

time filter for our proposed Gaussian filter algorithm. The parabolic stochastic system

and conservation law are the PDE examples we examine. Finally we derive the Gaussian

filter for the continuous time case.

• In Chapter 4: The Reduced Order Method. We develop the reduced order filter which

reduces the sampling directions and thus the complexity of our proposed Gaussian filter.

Singular value decomposition is used to reduced the square root factors for the Gaussian

covariance update. To make our proposed filter effective and efficient, we truncate the

square root factors by singular value decomposition and thus we reduce the directional

sampling in CDF for the reduced Gaussian filter. We test our proposed reduced filter on

the Lorenz 96 model, the wave speed and the wave with potential equations.

• In Chapter 5: Assumed Covariance and Time Reversal Filters. Some system have inherent

dissipative property, we develop the assumed covariance filter for system that have a

dissipative property. We develop the forward and backward smoothing method for system

that are time reversible, which we used for the time reversal filter for estimating the

initial condition. We used the Quasi reversible method for mildly diffusive system and

thus not time reversible. We test our backward and smoothing method with the Burgers’

equation and the time reversal filter on the advection equation. We also examine the

Quasi reversible method with conduction equation.

• In Chapter 6: Parameter Dependent Case. Mathematical modeling can not be completed

without the estimation of the parameters. We develop the joint state and parameters

estimation algorithms for parameters dependent systems. We develop algorithms for joint

state and parameters estimation for conservation laws and diffusion models. We exam-

ine these algorithms for the Lorenz equation, and PDE model dynamics. For the wave

equation the function parameters the wave speed and the potential will be the function

parameters estimated jointly with the states.
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We also conclude our contribution in developing effective filtering/smoothing algorithms.

Especially for PDEs model dynamics and parameters dependent models. We test our proposed

algorithms (case by case) for concrete examples dynamics and demonstrate its capability.
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Chapter 2

Nonlinear Filtering Problems and

Gaussian Filter

In this chapter we discuss the discrete time stochastic dynamics and the optimal filter for

nonlinear systems which is based on the Bayes’ formula update of the probability density

function. The optimal filter based on the Bayes’ formula consists of sequentially updating the

probability density function in two steps which are the predictor and corrector steps. Since

the computation of the probability density function is not always feasible, next we discuss the

Gaussian filter which updates the probability density function as a Gaussian distribution. That

is, to use the Bayes’ update formula for the predictor and corrector steps we employ an assumed

density filter via Gaussian distribution and project the conditional probability density function

onto the Gaussian distributional space. The key step of the Gaussian filter is to represent the

covariance in square root form and update the covariance in the square root factor form [13, 22].

Even when we start with a single Gaussian initial distribution, the resulting probability density

function is possibly no longer a Gaussian. That is why we develop the mixed Gaussian filter to

approximate the probability density function by a sum of Gaussian distribution. The Lorenz 96

and the wave equation models are concrete examples we are going to use to test our Gaussian

filter.

2.1 Discrete time filtering problem

In this section we introduce the discrete time and nonlinear filtering problems and their optimal

filtering theory. To this end, we first introduce the discrete time stochastic process and present

5



an example of one such system. If we suppose that our model dynamics is of the form
xk = f(xk−1, ak−1) + wk,

ak = ak−1

yk = h(xk) + vk

(2.1.1)

Here, {xk}, represents the random process of the state, ak are parameters in the model and

{yk} is observation process. f(x, a) is the one step map of the model dynamics and may depend

on the parameter a and finally h(x) is the observation map of the state xk. Here, wk ∈ N(0, Q)

and vk ∈ N(0, R) are the noise in the system and the observation respectively, they are often

assumed to be independent and identically distributed (i.i.d.) random variables. For example

if we consider the stochastic (Itô ) DE model,

dXt = b(Xt, a) dt+ σ(Xt)dBt (2.1.2)

(2.1.2) is an SDE with drift b(Xt, a) and diffusion coefficient σ(Xt), while Bt is the Brownian

motion process. The corresponding one step map in this case is

f(xk−1, ak−1) = xk−1 + ∆t b(xk−1, ak−1), wk = σ(xk−1)∆Bk (2.1.3)

where ∆t > 0 is the time step size and ∆Bk = Btk −Btk−1
is the Brownian motion increment.

For the discrete time system in (2.1.1), the nonlinear filtering problem is to determine (estimate)

the (xT , a) from observation {yk}, 1 ≤ k ≤ T where T > 0 is the current time. Assume model

dynamics f and observation map h are known and system and observation {wk} and {vk} are

i.i.d. Gaussian random variables with covariance Q and R, respectively and x0 is a Gaussian

random variable with covariance P0, which is independent with {wk} and {vk}. The optimal

nonlinear filtering theory is to determine the conditional expectation E[xk|Yk] of the state

process xk, given the observations data Yk = σ {yj , 1 ≤ j ≤ k} [22, 25, 30]. The conditional

expectation E[xk|Yk] is given by

E [f(xk)|Yk] =

∫
Rn
f(x)pk|k(x) dx for all f ∈ C(Rn) (2.1.4)

where pk|k(x) is the conditional probability density function of xk with respect to Yk. This

means that in order to solve discrete time nonlinear filtering problems, we need to have a good

understanding on how to compute pk|k(x).
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2.2 Bayes’ formula for the discrete time optimal filtering

Now, we discuss the optimal filtering theory for the discrete time system (2.1.1) based on the

Bayes’ update for the conditional probability density in pk|k in (2.1.4) [11, 13]. The conditional

probability density is updated sequentially in two steps; first the prediction step which is based

on the model dynamics, and the correction step which uses the new observation yk. In the

predictor step, we have the Bayes’ update for the conditional density by

pk|k−1(x) =

∫
Rn

1√
(2π)n detQ

exp

[
−1

2
(x− f(t))TQ−1(x− f(t))

]
pk−1|k−1(t)dt. (2.2.1)

It is based on the model dynamics and the one step map f(x) (the first equation of (2.1.1)).

The corrector step is

pk|k(x) = c exp

[
−1

2
(yk − h(x))TR−1(yk − h(x))

]
pk|k−1(x) (2.2.2)

where c > 0 is the normalization constant, pk|k−1 is the one step prediction and is the probability

density function of xk conditioned at Yk−1. The corrector update is based on the observation

map h(x) (the third equation of (2.1.1)), and uses the innovation process which will be explained

in depth in Section 2.3.

In summary, the formulae (2.2.1)–(2.2.2) is the recursive filter that consists of the predictor

(2.2.1) and the corrector (2.2.2) steps. It is an optimal filter and provides an exact solution in

the case of linear Gaussian systems [19].

2.3 Kalman filter for linear Gaussian system

An example of the analytic form of the optimal filter that is linear and Gaussian is the Kalman

filter [15, 19]. It operates recursively on noisy input data to produce a statistically optimal

estimate of the underlying system state. The Kalman filter is also the most well know case

where one can derive the exact form of the optimal filter based on (2.2.1)-(2.2.2) for linear

Gaussian system. Suppose we consider the linear dynamics:
xk = Akxk−1 + bk−1 + wk, x0 ∈ N(m,Σ0)

yk = Hkxk + vk, k ≥ 1

(2.3.1)

where the system matrix Ak ∈ Rn×n and the observation matrix Hk ∈ Rp×n are given. If x0

is a Gaussian (independent with (wk, vk)), then (xk, yk) will turn out to be linear and jointly

7



Gaussian. Since the sum of Gaussian random variables is Gaussian, thus all the conditional

densities are Gaussian and thus we assume that pk|k = N(x̂k|k,Σk|k) is a Normal distribution

with mean x̂k|k and covariance Pk|k. From the predictor step (2.2.1) we obtain

pk|k−1(x) =
∫
Rn

1√
(2π)n det Σk−1|k−1

× exp
[
−1

2(t− x̂k−1|k−1)TΣ−1
k−1|k−1(t− x̂k−1|k−1)

]
pk−1|k−1(t)dt

(2.3.2)

It is equivalent to the predictor step of the Kalman filter: the mean x̂k|k−1 is

x̂k|k−1 = E[xk|Yk−1]

= Ek|k−1[Akxk−1 + bk + vk|Yk−1]

= Akx̂k−1|k−1 + bk

and the covariance update Σk|k−1 is

Σk|k−1 = Ek|k−1[(xk − x̂k|k−1)(xk − x̂k|k−1)T ]

= Ek|k−1[(Akxk−1 + vk −Akx̂k−1|k−1)(Akxk−1 + vk −Akx̂k−1|k−1)T |Yk−1]

= Ek|k−1[(Ak(xk−1 − x̂k−1|k−1))(Ak(xk−1 − x̂k−1|k−1))T |Yk−1] +Q

= Ek|k−1[Ak(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)TATk |Yk−1] +Q

= AkΣk−1|k−1A
T
k +Q

where

Σk|k−1 = Ek|k−1[(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)T |Yk−1].

In summary pk|k−1 is a Gaussian with mean

x̂k|k−1 = Akx̂k−1|k−1 + bk (2.3.3)

and covariance

Σk|k−1 = AkΣk−1|k−1A
T
k +Q. (2.3.4)

The corrector step (2.2.2) for the linear case is equivalent to the innovation process approach

by Kailath [18]. First, we define the innovation process as

Ik = yk − Ek|k−1[yk] = yk − Ek|k−1[Hkxk] = Hxk −Hkx̂k|k−1 + vk. (2.3.5)
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One can prove that {Ik} are independent Gaussian random variables and is orthogonal to Yk−1

[18]. Thus, we have

x̂k|k = E[xk|Yk] = x̂k|k−1 +GIk

for some G ∈ Rn×p. We find G as follows. First,

GE[IkI
∗
k ] = E[(xk|k − x̂k|k−1)I∗k ] = E[xkI

∗
k ]

and we have

E[xkI
∗
k ] = E[xk(wk +Hkxk − x̂k|k−1)∗)]

= E[xk(xk − x̂k|k−1)∗]H∗k

= E[(xk − x̂k|k−1)(xk − x̂k|k−1)∗]H∗k

= Σk|k−1H
∗
k

and

E[IkI
∗
k ] = Rk +HkΣk|k−1H

∗
k .

Thus we obtain

G = Gk = Σk|k−1H
∗
k

(
Rk +HkΣk|k−1H

∗
k

)−1
.

Next we define the error covariance update

Σk|k = E[(xk − x̂k|k)(xk − x̂k|k)∗] = E[(xk − x̂k|k−1 −GIk)(xk − x̂k|k−1 −GIk)∗]

= E[(xk − x̂k|k−1)(xk − x̂k|k−1)∗]−GE[IkI
∗
k ]G∗

= Σk|k−1 − Σk|k−1H
∗
k(Rk +HkΣk|k−1H

∗
k)−1HkΣk|k−1

= Σk|k−1 −GkHkΣk|k−1.

In summary the corrector step of (2.2.2) for the Kalman filter (pk|k = N(x̂k|k,Σk|k)) is a

Gaussian with mean

x̂k|k = x̂k|k−1 +Gk(yk −Hkx̂k|k−1) (2.3.6)

and covariance update

Σk|k = Σk|k−1 −GkHkΣk|k−1, (2.3.7)

where Gk is the Kalman gain and is defined by

Gk = Σk|k−1H
T
k (HkΣk|k−1H

T
k +R)−1. (2.3.8)

As we have stated previously the Kalman filter derives and exact form of the optimal filter
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based (2.2.1)-(2.2.2) for linear Gaussian system. While the optimal filter based on (2.2.1)-

(2.2.2) is optimal, in general it may not be possible to use the steps (2.2.1)–(2.2.2) directly in

computations. We develop a Gaussian filter to perform the updates of the conditional densities

using assumed Gaussian density for nonlinear cases.

2.4 Gaussian filter

In this section we describe the Gaussian filter which employs the Bayes’ update for nonlinear

and non Gaussian system using an assumed Gaussian distribution for conditional probability

pk|k(x). In order to practically achieve the Bayes’ update (2.2.1)-(2.2.2) we use an assumed

density filter with a single Gaussian distribution. Since we have assumed the probability density

function to be Gaussian, this means that we will have to update the mean and covariance. This

involves setting pk−1|k−1 = N(xk−1|k−1, Pk−1|k−1) and project onto the update formula (2.2.1).

That is, to obtain the mean we calculate the conditional expectation by

Ek|k−1[x] =

∫
Rn
xpk|k−1(x)dx

=

∫
Rn

(∫
Rn

1√
(2π)n detQ

exp

[
−1

2
(x− f(t))TQ−1(x− f(t))

]
pk−1|k−1(t)dt

)
xdx

=

∫
Rn

(∫
Rn

1√
(2π)n detQ

exp

[
−1

2
(x− f(t))TQ−1(x− f(t))

]
xdx

)
pk−1|k−1(t)dt

=

∫
Rn
f(t)pk−1|k−1(t)dt.

For the predictor step, to get the mean it turns out that we evaluate the one step map f(t)

against the Gaussian density function. Thus, the mean is

xk|k−1 =

∫
Rn
f(t)

1√
(2π)n detPk−1|k−1

× exp

[
−1

2
(t− xk−1|k−1)TP−1

k−1|k−1(t− xk−1|k−1)

]
dt.

(2.4.1)
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Next, we obtain the covariance by

Ek|k−1[xxT ] =

∫
Rn

xxT pk|k−1(x)dx

=

∫
Rn

(∫
Rn

1√
(2π)n detQ

exp

[
−1

2
(x− f(t))TQ−1(x− f(t))

]
pk−1|k−1(t)dt

)
xxT dx

=

∫
Rn

(∫
Rn

1√
(2π)n detQ

exp

[
−1

2
(x− f(t))TQ−1(x− f(t))

]
xxT dx

)
pk−1|k−1(t)dt

= Q+

∫
Rn

f(t)f(t)T pk−1|k−1(t)dt.

Thus for the covariance we evaluate f(t)f(t)T against the assumed Gaussian distribution. Thus

the covariance is

Pk|k−1 = Q+

∫
Rn

(f(t)− xk|k−1)(f(t)− xk|k−1)T
1√

(2π)n detPk−1|k−1

× exp

[
−1

2
(t− xk−1|k−1)TP−1

k−1|k−1(t− xk−1|k−1)

]
dt.

(2.4.2)

For the corrector step for the Gaussian filter from (2.2.2), we have to approximate

Ek|k−1[Hkxk] by its Gaussian approximation z where the mean z̃ is obtain by evaluating the

observation map h(t) against pk|k−1

z̃ =

∫
Rn
h(t)pk|k−1(t)dt

=
∫
Rn h(t) 1√

(2π)n detPk|k−1
exp

[
−1

2(t− xk|k−1)TP−1
k|k−1(t− xk|k−1)

]
dt

(2.4.3)

and the covariance Pzz of z is obtain by evaluating h(t)h(t)T against pk|k−1

Pzz =

∫
Rn
h(t)h(t)T pk|k−1(t)dt

=

∫
Rn

(h(t)− z̃)(h(t)− z̃)T 1√
(2π)n detPk|k−1

× exp

[
−1

2
(t− xk|k−1)TP−1

k|k−1(t− xk|k−1)

]
dt.

(2.4.4)

Now using the innovation process as in Section 2.3, we can construct the Gaussian update
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of pk|k with mean xk|k and covariance Pk|k defined by

xk|k = xk|k−1 + Lk(yk − z̃) (2.4.5)

and

Pk|k = Pk|k−1 + LkP
T
xz. (2.4.6)

Lk is the Gaussian filter gain defined by

Lk = Pxz (R+ Pzz)
−1 (2.4.7)

and the covariance Pxz is defined by

Pxz =

∫
Rn

(t− xk|k−1)(h(t)− z̃)T 1√
(2π)n detPk|k−1

× exp

[
−1

2
(t− xk|k−1)TP−1

k|k−1(t− xk|k−1)

]
dt.

(2.4.8)

In order to realize the Gaussian filter we need to develop a method to evaluate integrals

(2.4.1) to (2.4.8). The first thing we will need to do is to change the covariance matrices that

are in our formulae to transform the integrals into something easier to compute.

2.5 Directional sampling method and Central difference filter

(CDF)

In this section, we discuss how we evaluate the Gaussian integrals (2.4.1)–(2.4.8) for the Gaus-

sian filter in Section 2.4. We use the change of coordinate transform (2.5.2) by square root

factors of the covariance Σ to transform the Gaussian integrals into normalized Gaussian in-

tegrals. Next, we will discuss how to evaluate the normalized Gaussian integral by a sampling

method via central difference. Alternatives are the Gauss-Hermite quadrature rule [13] and the

Julier-Uhlmann [13, 16, 17]. Thus, we develop our proposed Central difference filter (CDF) that

use a directional samplings of functions.

Now, we define the general form of Gaussian integrals:

I =

∫
Rn
F (t)

1√
(2π)n det Σ

exp

[
−1

2
(t− x̄)TΣ−1(t− x̄)

]
dt (2.5.1)

where F (t) is a given function. The first (key) step for evaluating I in (2.5.1) is to take the
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coordinate change by [13]

t = ST s+ x̄ (2.5.2)

where Σ = STS and we obtain

I =

∫
Rn
F (ST s+ x̄)

1√
(2π)n

e−
1
2
|s|2 ds (2.5.3)

which is the standard weighted integral with the Gaussian weight. One of the most used method

to calculate this integral is the Gauss-Hermite quadrature rule. It is given by∫ ∞
−∞

g(x)
1

(2π)1/2
e−x

2
dx =

m∑
i=1

wig(xi)

where equality holds for all polynomials of degree up to 2m − 1. The sample points xi and

weights wi are determined as followed.

If we let J be a symmetric tridiagonal matrix with zeros diagonals and Ji,i+1 =
√

i
2 for 1 ≤ i ≤

m− 1. Then {xi} are the eigenvalues of the matrix J and wi = |(vi)1|2 where (vi)1 is the first

element of the i-th normalized eigenvector of J . Thus, I is approximated by

Im =
m∑
i1=1

· · ·
m∑

in=1

F̃ (qi1 · · · qin)wi1 · · ·win (2.5.4)

where qi = xi ×
√

2, 1 ≤ i ≤ m and F̃ (s) = F (ST s+ x̄). If we use m samples in each direction

we have dm number of evaluations where s ∈ Rd, which grows very rapidly with respect to d

(dimension of space) and m (number of evaluation points).

Now, we introduce the evaluation method using the polynomial interpolation of F̃ (s). We

use the quadratic function P for interpolation of F̃ :

F̃ (εi) ∼ P (s) = F̃ (0) +
d∑
i=1

(
aisi +

1

2
Hii|si|2

)
(2.5.5)

where si is the i-th coordinate of a point s ∈ Rd, a = ai ∈ Rd is a central difference vector and

H = Hii is the second order central difference of the diagonal elements of F̃ .

ai =
F̃ (hei)− F̃ (−hei)

2h
, 1 ≤ i ≤ d (2.5.6)

Hii =
F̃ (hei)− 2F̃ (0) + F̃ (−hei)

h2
, 1 ≤ i ≤ d (2.5.7)
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Therefore we have the central difference rule:

I ∼ Î =
∫
Rd P (s) 1

(2π)d/2
e−

1
2
|s|2 ds

= F̃ (0) +
d∑
i=1

1

2
Hii

(2.5.8)

and the integral

J =

∫
Rd
F̃1(s)F̃2(s)

1

(2π)d/2
e−

1
2
|s|2 ds

by

J ∼ Ĵ =

∫
Rd

(P (1)(s)− Î(1))(P (2)(s)− Î(2))
1

(2π)d/2
e−

1
2
|s|2 ds

=

d∑
i=1

(
a

(1)
i a

(2)
i +

1

2
H

(1)
ii H

(2)
ii

)
.

(2.5.9)

In summary the predictor step of the central difference filter (CDF) gives us

pk|k−1 = N(xk|k−1, Pk|k−1) with mean

xk|k−1 = f(xk−1|k−1) +
1

2

d∑
i=1

Hii (2.5.10)

and covariance update

Pk|k−1 = Qk +

d∑
i=1

(
aia

T
i +

1

2
HiiH

T
ii

)
(2.5.11)

For the corrector step we update pk|k = N(xk|k, Pk|k) with mean update

xk|k = xk|k−1 + Lk(yk − zk) (2.5.12)

and the covariance update is

Pk|k = Pk|k−1 − LkP Txz (2.5.13)
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where

zk = H(xk|k−1) +

d∑
i=1

1

2
Gii

Pxz = S̃T (b1, · · · , bd)T

Pzz =

d∑
i=1

bib
T
i +

d∑
i=1

1

2
GiiG

T
ii

Lk = Pxz(R+ Pzz)
−1

and

bi =
h̃(hei)− h̃(−hei)

2h
, 1 ≤ i ≤ d (2.5.14)

Gii =
h̃(hei)− 2h̃(0) + h̃(−hei)

h2
, 1 ≤ i ≤ d (2.5.15)

The CDF (2.5.8)-(2.5.9) are only based on the values F̃ (±hei).

Remarks:

(1) The square factor S of Σ can be obtained by the Cholesky decomposition.

(2) We only use 2d+ 1 number of the sample points; which grows linearly in dimension d.

(3) The step size h > 0 can be adjusted, for example we can sample from the constrained set

(e.g., nonnegative (R+)d).

(4) If we use the singular value decomposition Σ = V Σ̃V T one can truncate Σ̃ by the singular

values (we only use the dominant singular values of Σ̃). In practice it offers a significant re-

duction in number of function evaluations. See the details in Chapter 4: Reduced Order Method.

(5) If we remove the second-order correction term Hii in (2.5.10) and (2.5.11) then the CDF

coincides with the extended Kalman filter with the Jacobian of f computed by its central

difference (2.5.6). That means that for the predictor step we obtain

xk|k−1 = f(xk−1|k−1)

Pk|k−1 = Qk +

d∑
i=1

aia
T
i .
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We use the square root factors for the covariance, thus it is an extended Kalman filter in a

stable and robust manner and it works better. Without the square root factor, the Kalman

filter may not work. This method will be used in a similar manner for the corrector step.

(6) The accuracy of the predictor step of the CDF is of second order with the term
1

2

∑
i

Hii

and the covariance update contains higher moments.

2.6 Mixed Gaussian filter

In general even if we start from a single Gaussian initial condition the (conditional) probability

density pk|k(x) is no longer Gaussian. In this section we will discuss the mixed Gaussian filter

in which we approximate the conditional density pk|k(x) by a linear combination of a sum of

Gaussians. Since the mean and covariance for the predictor and corrector steps can be updated

using the CDF formulae (2.5.10) to (2.5.13), we will discuss how to update the weights for the

predictor and corrector steps.

For example consider

dxt = xt(1− x2
t ) dt+ σ dBt

Then, the density function p(t, x) of xt satisfies the Fokker-Planck equation

∂p

∂t
− (b(x)p)x =

σ2

2

∂u

∂x2
(2.6.1)

where b(x) = x(1 − x2). In this example we start with p(0, x) = N(0, 1) the solution p(1, x) is

not Gaussian but a bi-modal distribution.

As with this example one can approximate the probability density function by a sum of

Gaussian distributions of the form:

pk|k(x) ∼
m∑
i=1

α
(j)
k N

(
m

(j)
k , P

(j)
k

)
. (2.6.2)

We will address how to update (m
(j)
k , P

(j)
k ) for the predictor and corrector steps and also the

update formula for the weight α
(j)
k . Then, one can have the mixed Gaussian filter as a method

to improve the performance of the Gaussian filter.

For the predictor step, we assume that the conditional probability density is a sum of

Gaussian distributions, i.e., for the mixed Gaussian filter, we approximate pk−1|k−1 by the
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linear combination of multiple Gaussian distributions, of the form

pk−1|k−1(x) =
m∑
i=1

α
(i)
k−1|k−1

1√
(2π)n detP

(i)
k−1|k−1

× exp

[
−1

2

(
x− x(i)

k−1|k−1

)T (
P

(i)
k−1|k−1

)−1 (
x− x(i)

k−1|k−1

)] (2.6.3)

with weight α
(i)
k−1|k−1 for each i-th Gaussian distribution at the time k − 1.

The update of the mean and covariance is done by applying (2.5.10) for each individual

Gaussian distribution N
(
x

(i)
k−1|k−1, P

(i)
k−1|k−1

)
separately. Now, we describe the update method

for weights α
(j)
k|k−1 in

pk|k−1(x) =

m∑
i=1

α
(i)
k|k−1N

(
x

(i)
k|k−1, P

(i)
k|k−1

)
.

Note that

α̃
(j)
k = pk|k−1(x

(j)
k|k−1) =

m∑
i=1

α
(i)
k−1|k−1

1√
(2π)nP

(i)
k|k−1

× exp

[
−1

2

(
x

(j)
k|k−1 − x

(i)
k|k−1

)T (
P

(i)
k|k−1

)−1 (
(x

(j)
k|k−1 − x

(i)
k|k−1

)]

where α
(i)
k−1|k−1 is the i-th weight at the time k − 1. Now we will update the weight α

(j)
k|k−1 for

the predictor step. by normalizing α̃
(j)
k by

α
(j)
k|k−1 =

α̃
(j)
k∑m

i=1 α
(i)
k

. (2.6.4)

For the corrector step, once again, we update mean x
(i)
x|k and covariance P

(i)
k|k, separately

based on (2.5.12) and (2.5.13) respectively. Each update is independent from the other and can

be performed in a parallel manner. Thus, we obtain

pk|k(x) =

m∑
i=1

α
(i)
k

1√
(2π)n detP

(i)
k|k−1

× exp

[
−1

2

(
x− x(i)

k|k−1

)T (
P

(i)
k|k−1

)−1 (
x− x(i)

k|k−1

)]
.

(2.6.5)
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Now, we update the weight α
(i)
k is based on the Baye’s formula

pk|k(x) ∼ exp

[
−1

2
(y − h(x))TR−1(y − h(x))pk|k−1(x)

]
(2.6.6)

with assumed mixed Gaussian density

pk|k−1(x) =
m∑
i=1

α
(i)
k|k−1

1√
(2π)nP

(i)
k|k−1

× exp

[
−1

2

(
x− x(i)

k|k−1

)T (
P

(i)
k|k−1

)−1 (
(x− x(i)

k|k−1

)]
.

(2.6.7)

There are three types of approaches to update the weights [13].

Moment Approach

For the Moment Approach, first we equate the zero moment of each Gaussian distribution

and obtain

α
(i)
k

∫
Rn

1√
(2π)n detP

(i)
k|k

exp

[
1

2

(
x− x(i)

k|k

)T (
P

(i)
k|k

)−1 (
x− x(i)

k|k

)]
dx

= α
(i)
k−1

∫
Rn

1√
(2π)n detP

(i)
k|k−1

exp

[
−1

2
(y − h(x))T R−1 (y − h(x))

+
(
x− x(i)

k|k−1

)T (
P

(i)
k|k−1

)−1 (
x− x(i)

k|k−1

)]
dx.

Now we approximate the right hand side by the method as in (2.4.1)-(2.4.8) and we get

α
(i)
k = α

(i)
k−1

1√
(2π)n det (R+ Pzz)

exp

[
−1

2
(y − z̃)T (R+ Pzz)

−1(y − z̃)
]

(2.6.8)

where z̃ and Pzz are defined by (2.4.3) and (2.4.4).
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Collocation Approach

For the Collocation Approach, we apply the collocation condition at x = x
(i)
k|k, thus we have

pk|k(x
(i)
k|k) = α

(i)
k

1√
(2π)n detP

(i)
k|k

exp

[
−1

2

(
x

(i)
k|k − x

(i)
k|k

)T (
P

(i)
k|k

)−1 (
x

(i)
k|k − x

(i)
k|k

)]

= α
(i)
k

1√
(2π)n detP

(i)
k|k

.

On the other hand from (2.2.2) we have

pk|k(x
(i)
k|k) = α

(i)
k−1

1√
(2π)n detP

(i)
k|k−1

exp

[
−1

2

((
y − h

(
x

(i)
k|k

))T
R−1

(
y − h

(
x

(i)
k|k

))

+
(
x

(i)
k|k − x

(i)
k|k−1

)T (
P

(i)
k|k−1

)−1 (
x

(i)
k|k − x

(i)
k|k−1

))]
.

Thus we obtain

α
(i)
k = α

(i)
k−1

√√√√√ detP
(i)
k|k

detP
(i)
k|k−1

exp

[
−1

2

((
y − h

(
x

(i)
k|k

))T
R−1

(
y − h

(
x

(i)
k|k

))

+
(
x

(i)
k|k − x

(i)
k|k−1

)T (
P

(i)
k|k−1

)−1 (
x

(i)
k|k − x

(i)
k|k−1

))] (2.6.9)

Least Square Approach

The Least square approach is the simultaneous update of the weights. This means that we

will determine the weights α
(i)
k by the L2-projection, that is α

(i)
k , 1 ≤ i ≤ m minimizes

∫
Rn

∣∣∣∣∣∣pk|k(x)−
m∑
i=1

1√
(2π)n detP

(i)
k|k

× exp

[
−1

2

(
x− x(i)

k−1|k−1

)T (
P

(i)
k−1|k−1

)−1 (
x− x(i)

k−1|k−1

)]∣∣∣∣2 dx
(2.6.10)

over (R+)
m

, where pk|k is defined as in equation (2.2.2) with pk|k−1 defined as in (2.6.7).
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In order to perform this minimization (2.6.10) we need to evaluate integral of the form∫
Rn

exp

[
−1

2
(y − h(x))TR−1(y − h(x))

]
1√

(2π)n det Σ
exp

[
−1

2
(x− x̄)TΣ−1(x− x̄)

]
this is relatively expensive.

In order to do this minimization we propose

m∑
i=1

∣∣∣∣∣∣pk|k
(
x

(i)
k|k

)
−

m∑
j=1

α
(j)
k

1√
(2π)n detP

(j)
k|k

× exp

[
−1

2

(
x

(i)
k|k − x

(j)
k|k

)T (
P

(j)
k|k

)−1 (
x

(i)
k|k − x

(j)
k|k

)]∣∣∣∣2
(2.6.11)

since in L2 minimization is relaxed by the sum of the collocation distances over α ∈ Rm,

satisfying α ≥ α0 ≥ 0. The positive constant α0 is chosen so that the likelihood of each

Gaussian distribution is nonzero (e.g : α0 = 0.001(1, · · · , 1)T ∈ Rm). (2.6.11) is formulated as

the constraint quadratic programing

min
1

2
αTATAα−AT b+

δ

2
|α|2 subject to α ≥ α0 > 0 (2.6.12)

where δ > 0 is chosen so that the singularity of the matrix ATA is avoided and the matrices

(A, b) are defined by

Ai,j =
1√

(2π)n detP
(i)
k|k

× exp

[
−1

2

(
x

(i)
k|k − x

(j)
k|k

)T (
P

(j)
k|k

)−1 (
x

(i)
k|k − x

(j)
k|k

)]

bi =
m∑
i=1

1

(2π)n
√

detR detP
(j)
k|k−1

exp

[
−1

2

((
y − h

(
x

(i)
k|k

))T
R−1

(
y − h

(
x

(i)
k|k

))

+
(
x

(i)
k|k − x

(i)
k|k−1

)T (
P

(i)
k|k−1

)−1 (
x

(i)
k|k − x

(i)
k|k−1

))]
.

Thus, we solve (2.6.12) to obtain α
(j)
k at each corrector step by using the existing numerical

optimization method.

The theoretical foundation of the Gaussian sum approximation as above is that any proba-

bility density function can be approximated as closely as desired by a Gaussian sum [13].
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2.7 Lorenz 96 Example

In this section we introduce examples for the discrete optimal filter (2.2.1). First, we consider

the Lorenz 96 system [26]

dxi
dt

= xi−1 (−xi−2 + xi+1)− xi + F (2.7.1)

where i = 1, 2, · · · , N with periodic boundary conditions i.e., x0 = xN , x−1 = xN−1, xN+1 = x1.

It is a one dimensional atmospheric model, even though its equations are not much like those

of the atmosphere but instead models the structure property of the atmosphere. The nonlinear

(convective) term conserves the total energy |x|2. It has been used as a benchmark study for

system with chaotic-dynamics, filtering problem and data assimilation. With partially noisy

observations of the state at p uniformly distributed locations, we estimate the behavior of the

state at the other coordinates. Here xi are values of some atmospheric quantity in N sectors of a

latitude circle and F is a forcing constant. The most common model that has chaotic behavior is

with N = 40 and F = 8. The physics of the atmosphere is present only to the extent that there

are external forcing and internal dissipation, simulated by the constant and linear terms, while

the quadratic terms, simulating advection, together conserve the total energy (x2
1 + · · ·+x2

N )/2

[26].

To develop the discrete time dynamics (2.1.1) for the Lorenz 96 system we define a proper

one step map by applying the fixed point iterates defined by

x+
i =

xn0 + ∆txni−1

(
−xni−2 + xni+1

)
+ ∆tF

1 + ∆t
(2.7.2)

for xn+1
i , where xn−1

i = xn0 , i = 0. The resulting discrete dynamics in written in matlab code:

for kk=1:5; xx=[x(N-1);x(N);x;x(1)];

x=(x0+dt*F+dt*(xx(i2).*(xx(i4)-xx(i1))))/(1+dt); end

x=x+0.1*sqrt(dt)*randn(N,1); xxx=[xxx x];

y(:,k)=x([1 11 21 31])+sqrt(dt*.01)*randn(4,1); end

where and the fixed point iterate (second line) is iterated 5-times and we add noise to xk and

yk ∈ R4 with Q = .01 and R = .01. Then we use the Gaussian filter based on CDF. We set the

initial condition x0 = sin(πx), N = 40, and F = 8. We test it for p = 4, 5, 6 and 8 observations

cases. In Figure 2.1 we show the estimate of states at xi = 27 for p = 4 and p = 5 cases and In

Figure 2.2 we show the estimate of states for p = 6 and p = 8 cases

First we observe p = 4 is not responsible and does not give a good estimate but p = 5 is

acceptablle and gives a reasonable estimate. Incerasing in number of observation the Gaussian

filter performs excellently.
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(a) xi = 27, p = 4
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(b) xi = 27, p = 5

Figure 2.1: Lorenz 96 model, N = 40.

0 200 400 600 800 1000 1200
-4

-2

0

2

4

6

8

10

real
estimate

(a) xi = 27, p = 6
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(b) xi = 38, p = 8

Figure 2.2: Lorenz 96 model, N = 40.

From our tests we conclude that at least 5 observations are needed to make a reasonable

estimate of the state.

2.8 Wave equation examples

In this section we discuss a PDE model example to illustrate an application of Gaussian filter.

More detailed discussion of PDE models will be given in Section 4.2. We consider the wave
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equation
∂2

∂t2
u = c2(x) ∆u− q(x)u in x ∈ Ω (2.8.1)

where u = u(t, x) represents the acoustic pressure, elastic deformation and electrical or magnetic

field. c(x) is the propagation speed in the medium Ω and q(x) is the potential in the medium.

We assume the nominal values of the wave speed c̄(x) and potential q̄(x). Our interests are to

determine the state u = u(t, x) from the observation

yk = u(tk, xi) + vk, xi ∈ Ω = [0, 1] (2.8.2)

for the one-dimensional case. Or, we generate a solution for (2.8.1) with randomly perturbed

medium with c(x) = c̄(x) + ”noise” and q(x) = q̄(x) + ”noise” and it results in a noisy

observation yk. For multiple dimensional case we will have

yk(s) = u(tk, s), s ∈ Γ = a surface Γ in Ω.

First, we develop the first order form of the wave equation and we then develop a stable

and accurate discretization in time and space for the one step map. The first order form is

d

dt
(u, v) = A(u, v),

i.e.,

ut = v, vt = c2(x) ∆u.

where v is the velocity. We use the second order central difference in space and the Leapfrog

finite difference in time:

un+1
k − 2unk + un−1

k

∆t2
= c2

k

unk+1 − 2unk + unk−1

∆x2
− qk unk (2.8.3)

where Ω = [0, 1]. xk = k
N is the uniform grid and unk represents the value of u(t, x) at (n∆t, xk)

with ∆t > 0 the time step size. It can be proven that if we assume the CFL condition ∆t ≤
max(ck)∆x, then (2.8.3) is stable in the sense of Neumann criterion. Our discrete dynamics in

the first order form is written as

v
n+1

2
k −v

n− 1
2

k
4t = c2

k

unk+1−2unk+unk−1

4x2 − qkunk , un0 = 0, unN = 0

un+1
k −unk
4t = v

n+ 1
2

k .

where we assume zero boundary condition u(t, 0) = 0 and u(t, 1) = 0. So first we will have to
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find how to update v, knowing u and the previous value of v. This means that

v
n+ 1

2
k = v

n− 1
2

k +
4t
4x2

c2
k(u

n
k+1 − 2unk + unk−1)−4tqkunk .

Thus, we obtain the one step map in the form f(u, v) where

f(u, v) =


v
n− 1

2
k +4t

(
c2
k

unk+1−2unk+unk−1

4x2 − qkunk
)

unk +4tvn+ 1
2

k +4t2
(
c2
k

unk+1−2unk+unk−1

4x2 − qkunk
)
.

(2.8.4)

This is represented in the matlab file

for k=1:100;

tmp=-dt*(1+.05*randn)*u(ip).*(h0*u(1:m));

u(m+[1:m])=u(m+[1:m])+tmp;

u(1:m)=u(1:m)+dt*u(m+[1:m]); xx=[xx u]; end

y=xx([30 80],:); y0=y; y=y0+.01*randn(size(y));

In our first numerical tests we pick n = 100, and m = n− 1 ∆x = .01 and

c2
k = .9 + .1 sin(2πxk)) + .05randn(1, n− 1) (2.8.5)

and qk = 0 (no potential term ) and CFL = 1 (i.e., ∆t = ∆x = .01). In the third line in

the matlab we update the velocity v and in the fourth line we update the state u according to

(2.8.4). Here we used two point measurements yk at x1 = .3 and x2 = .8 in (2.8.2). We tested

our algorithm, we set the initial condition

u0(x) = u0(x) + .05 ∗ randn(x)

as depicted in Figure 2.3 and test the Gaussian filter (2.5.8)-(2.5.9).
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Figure 2.3: u0 vs noisy û0

We obtain the estimated û and v̂ at time T = 1 as depicted in Figure 2.4.
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(a) displacement û at T = 1
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Figure 2.4: estimation of û and v̂ with Noisy initial u

First the results are shown for no noise in the measurements for Figure 2.3 and Figure 2.4.

We also added the regularization step after the predictor and corrector steps as

un → (I + βH)−1un

vn → (I + βH)−1vn

with β = 1e − 6 (we need to adjust in general). This regularization step turns out to be very
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essential to obtain good estimates (u, v). If we use the same method, this time with noisy

measurements

y(x) = y(x) + .01 ∗ randn(y)

which is shown in Figure 2.5,
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Figure 2.5: y with no noise vs y with noise added

then we show the estimated u and v at time T = 1 in Figure 2.6.
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(b) û velocity

Figure 2.6: estimation of u and v with noisy observations y

Based on our tests we can conclude that the Gaussian filter works very well and thus gives
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a good estimate of the state given noisy initial conditions or noisy observations.
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Chapter 3

Continuous Time Optimal Filter by

Zakai Equation

In this chapter we discuss the continuous time stochastic dynamics governed by Itô stochastic

differential equations (SDEs) and the optimal filtering problem with continuous time observa-

tions. The optimal filter equation for the conditional probability density is governed by the Zakai

equation. As will be discussed, the first term of the Zakai equation corresponds to the predictor

step while the second term corresponds to the corrector step in comparison to Bayes’ updates.

Next, we discuss the optimal filter for continuous time with discrete-time observation case then

compare and relate it to the time splitting method of the Zakai equation for continuos-time.

They have the common predictor step by solving the Fokker-Plank equation. The corrector

steps are directly related if we make the correspondence yk ∼ y(tk)−y(tk−1)
∆t using the innovation

process. That is, the discrete time filter is a good representation of the continuous time filter.

Here, of course, we must have a good one step map in (2.1.1) from the continuous time (3.1.1)

to the discrete time dynamics. Thus, we use the filtering methods for the resulting discrete time

model to obtain a filtering algorithm for the continuous time case.

3.1 Nonlinear stochastic system

We consider a continuous time stochastic process xt by the Itô’s stochastic differential equation,

i.e., the continuous-time stochastic process xt satisfies
dxt = f(xt) dt+ σ(xt) dBt

dyt = h(xt) dt+ dWt

(3.1.1)
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where f and h are nonlinear in general and f(xt), σ(xt) represents the drift and the intensity

of the diffusion, respectively. Also, h is the observation map and yt is the observation process.

Here (Bt,Wt) are Brownian motions. Even if f is linear and σ = σ(t) is constant, if the initial

condition x0 is not Gaussian then xt is not a Gaussian process.

The stochastic differential equations (3.1.1) should be understood in the integral form as

xt = x0 +

∫ t

s
f(xs) ds+

∫ t

0
σ(xs) dBs

yt =

∫ t

0
h(xs) ds+Wt.

(3.1.2)

The path-wise unique solution to SDEs is established under assumption (Itô’s) condition, i.e.,

f and σ are Lipschitz and linear growth on σ (|σ(x)| ≤ C (1 + |x|)) [11]. Also, the probability

density function p = p(t, x) of the state process xt satisfies the Fokker-Plank equation also

known as Kolmogorov forward equation

∂

∂t
p = A∗p(t, x), p(0, x) = p0(x), (3.1.3)

where A is the generator of the Itô diffusion process xt and A is defined by

Aφ =
n∑
j=1

fj(x)
∂φ

∂xj
+

1

2

n∑
i,j=1

aij(x)
∂2φ

∂xi∂xj
, φ ∈ C2(Rd) (3.1.4)

where the symmetric positive matrix a = σσt. Thus, by Green’s formula the (formal) adjoint

A∗ of the generator A is given by

A∗p = −
n∑
j=1

∂

∂xj
(bj(x), p) +

1

2

n∑
i,j=1

∂2

∂xi∂xj
(aij(x)p). (3.1.5)

Next, the unnormalized conditional density p of the process xt, given σ-field Y = σ(ys, s ≤ t),
generated by observation process, i.e.,

x̂t = E[xt|Yt] =

∫
Rn xp(t, x) dx∫
Rn p(t, x) dx

is governed by the Zakai equation [5, 14, 36]

dp(t, x) = A∗p(t, x) dt+R−1h(x) dyt. (3.1.6)

That is, the Zakai equation gives the optimal filter but for unnormalized density, i.e., for
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any measurable function f we have the formula for conditional expectation of f by

f̂(xt) = E[f(Xt)|Yt] =

∫
Rn f(x)p(t, x) dx∫
Rn p(t, x) dx

.

Also, the normalized density satisfies the Kushner’s equation [12, 30]. Note that p(t, x) is a

random process and Zakai equation (3.1.6) is a linear stochastic differential equation in L2(Rn)

[19, 30]. The Zakai theory also states that yt is a Brownian motion on the transformed triple

(Ω,Yt, P̃ ) with Randon-Nikodym derivative

dP̃

dP
∼ exp

(∫ t

0
(ĥ(xs))dys −

1

2
|(ĥ(xs))| ds

)
.

3.2 Time-Splitting method and Relation to Discrete-time opti-

mal filter

In this section we first describe the case of continuous time process xt governed by (3.1.1) but

with a discrete time observation

yk = h(xtk) + wk.

In this case the optimal filter is given as follows. First given p(t+k−1) we solve the Fokker-Plank

equation
∂p(t, x)

∂t
= A∗p(t, x) (3.2.1)

on the interval [tk−1, tk]. Then, we incorporate the new observation yk at tk and update the

conditional probability density p(t+k ) by the corrector step:

p(t+k ) ∼ exp

[
−1

2
(h(x)− yk)TR−1(h(x)− yk)

]
p(tk). (3.2.2)

Now, we introduce the time-splitting method for the Zakai equation (3.1.6). The first step of

the time-splitting method for Zakai equation equals to the Fokker Plank step (3.2.1) and the

second step is to solve for p+(tk)

dp+(t, x) = R−1h(x)p+(t, x)dyt, p+(tk−1) = p(tk), (3.2.3)

where yt is the continuous time observation on [tk−1, tk]. The time-splitting method splits de-

terministic part (Fokker-Plank) and stochastic part (as innovation). (3.2.3) is equivalent to

p(t+k ) ∼ exp

[
h(x)

(
ytk − ytk−1

∆t
− h(x)2

2

)
∆t

]
p(tk). (3.2.4)
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Now, comparing the formulae (3.2.2) (discrete-time observation) and (3.2.3) (continuous-time

observation) clearly they are related by the correspondence

yk ∼ ytk − ytk−1
.

This relation suggests that the continuous time filtering (3.2.3) can be performed by the

corresponding discrete time filtering (3.2.2). Recall that the Bayes’ formula for the predictor

step (2.2.1)

pk|k−1(x) =

∫
Rn

1√
(2π)n detQ

exp

[
−1

2
(x− f(t))TQ−1(x− f(t))

]
pk−1|k−1(t)dt (3.2.5)

where f is the one-step map of
dx

dt
= b(x) on [tk−1, tk]. (3.2.5) gives an approximation formula

to the Fokker-Plank equation (3.2.1). So, one has a very clear relationship between the opti-

mal filter (3.2.1)-(3.2.2) for continuous time with discrete time observations, the time splitting

(3.2.1)-(3.2.3) of the Zakai equation as well as the Bayes’ updates (2.2.1)-(2.2.2) for discrete

time optimal filter.

Thus, we must have an accurate stable one step map from the continuous time dynamics to

the discrete time dynamics. Thus, the different examples that we test need a careful construction

of the one step map case-by-case.

3.3 Important aspects of the filtering problems

In this section we state and summarize the related and important aspects of the filtering prob-

lems in addition to what we described.

Remarks:

(1) As we stated before the continuous time SDE (2.1.2) can be approximated by

xtk ∼ xtk−1
+ ∆tk b(xtk−1

) + σ(xtk−1
)(Btk −Btk−1

).

That is, it reduces to the one-step map (2.1.3) as

f(xtk−1
) = xtk−1

+ ∆t b(xtk−1
).

But, if we have a stiff ODE system
dx

dt
= b(x), we must have a stable one-step map based on

an implicit scheme. Especially, time and space discretization for PDE system and like we did

for the Lorenz 96 model (2.7.1) with the one step map (2.7.2).
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(2) It is very essential to estimate unknown parameters a in models in discrete time model

xk = f(xk, ak) + vk

and in continuous time model

dxt = b(xt, a) dt+ σ(xt, a)dBt

as well as in PDEs models (e.g., wave equation with speed and potential medium parameter

(2.8.1) in Chapter 2, conductivity (3.4.3) in Section 3.4 and 3 by 3 Lorenz model in Chapter

6). We have an augmented model:

xk = f(xk−1, ak) + vk

ak = ak−1 + ”noise”

(3.3.1)

in which a is a random coefficient. We also consider the mean return model

xk = f(xk−1, ak) + vk

ak = γ (ā− ak−1) + ”noise”

(3.3.2)

where γ > 0 is a return rate to an equilibrium ā. We apply the proposed filter for the joint

estimation the state xk and parameter ak in Chapter 6.

(3) As we sated in Section 2.5 where we introduce the CDF one can introduce reducing d = n

(full rank) to m by a sampling method, i.e., in the transformation t = ST s + x̄ (2.5.2) with

Σ = STS (square factor) we use the singular value decomposition Σ = U Σ̃UT and use the

reduced order transform t = STms + x̄ (4.1.1). But, this reduction in directions works for any

linearization of f and h just not only for the CDF.

(4) Smoothing problem is to estimate the initial condition x0 from discrete time {yk, k ≤ T}
and solving backward. It can be performed by using time reversal method that will be discussed

in depth in Chapter 5.

(5) We will introduce the assumed covariance filter of the form

xk|k−1 = f(xk−1|k−1), xk|k = xk|k−1 +G(yk − h(xk|k−1))
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where G = ΣHT is the assumed gain. In Gaussian filter the covariance Σk|k is updated by

the covariance updates (2.5.10)–(2.5.13). For example for the assumed covariance filter, we use

the so-call dissipative gain G = γHT (equivalently, we assume Σ = γ I for the time-reversal

filter/smoothing (see details in Chapter 5).

3.4 PDEs example

In this section we discuss PDE (partial differential equation) models for the stochastic dynamics.

Recall we have introduce a wave equation model in Chapter 2. Now we discuss different PDE

models.

First, consider parabolic stochastic system of the form

∂

∂t
u+∇ · (F (u)) = µ∆u+ σ(x)

dBt
dt

in x ∈ Ω (3.4.1)

with boundary condition

α
∂u

∂ν
+ βu = ”noise” at boundary ∂Ω

This represents stochastic model for conduction, diffusion and advection processes for u =

u(t, x), x ∈ Ω where Ω is a domain in Rd. It a system for vector filed u and F (u) is a flux

vector in general. A wide class of PDE models including model (3.4.1) is described by semi

linear dynamics of the form

dut = (Au(t, x) dt+ F (ut)) dt+ σ(xt) dBt (3.4.2)

where A generates an analytic semi group on X = the state space for u and F is a nonlinear

part of the dynamics. Existence of solutions to (3.4.2) has been discussed in literature [32, 33]

based on the C0 semigroup theory. That is, the (mild) solution u(t) satisfies

u(t) = S(t)u(0) +

∫ t

0
S(t− s)F (x(s)) ds+

∫ t

0
S(t− s)σ dBs.

A specific case is the conservative law when the viscosity µ = 0, e.g., a linear diffusion

advection equation:

∂

∂t
u+

∂

∂x1
(a(x1, x2))u) +

∂

∂x2
(b(x1, x2)u) = µ∆u (3.4.3)

where µ > 0 is the viscosity. Also, nonlinear case such as the Burgers’ equation (see Section

5.3) and Shallow water model [34]. In general (3.4.2) encompasses models for heat diffusion,
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meteorology, oceanography, acoustic wave propagation, physical or mathematical systems. And

it also contains compressible fluid equations and primitive equations.

Once again as stated in Section 3.2, it is very essential to develop an accurate and stable

discretization in time and space so that we have the corresponding discrete time dynamics with

an accurate one step map (2.1.1). In this manner we develop the filtering method for PDE

models, by the corresponding discrete time dynamics (2.1.1).

3.5 Gaussian filter for continuous-time case

In this section we derive the Gaussian filter for the continuous time case as (3.2.1)–(3.2.2). It is

shown in Section 3.1 that the unnormalized conditional probability function p(t, x) ∈ L2(Rd).

The nonlinear filtering theory [21] is summarized as The best estimate is given by the conditional

probability density

x̂(t) = E[x(t)|Yt] =

∫
Rn
xπ(t, x) dx

where π(t, x) is the conditional density of x(t) given Yt and the optimal filtering equation is

given by

dx̂(t) = f̂(x(t)) dt+G(t)(dyt − ĥ(x(t)))

where

E[φ(x)|Yt] =

∫
Rn
φ(x)π(t, x) dx

and the filter gain is defined by

G(t) = ̂x(t)h(x(t))T − x̂(t)ĥ(x(t))
T
.

In the case h(x) = Hx we have

G(t) = E[(x(t)− x̂(t))(x(t)− x̂(t))t]Ht = Σ(t)Ht.

The covariance Σ is updated by

dΣ

dt
= F (x̂,Σ(t))−G(t)G(t)T +Q = 0.

where GGT = ΣHtR−1HΣ(t) and F is

F (t, x̂,Σ) =

∫
(f(x)− f̂(x(t)))(x− x̂(t))TN(t, x) dx +

∫
(x− x̂(t))T (f(x)− f̂(x(t)))TN(t, x) dx.
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For example, (bi-linear case)

f(x, a) = ax

thus we have
f̂ = x̂x̂E[â(x− x̂) + x̂(a− â) + (x− x̂)(a− â)]N(t, x) dx

= âx̂+ Σx̂,â

and
F = 2E[â(x− x̂) + x̂(a− â) + (x− x̂)(a− â)(x− x̂)]N(t, x) dx

= 2 (âΣx̂,â + x̂Σx̂,â) .

We need to evaluate

f̂ =
∫
f(x)dN(t, x̂,Σ)

= f(x̂) +
∫

(f(x)− f(x̂))N(t, x̂,Σ) dx

= f(x̂) +
∫

(f ′(x̂(x− x̂) + 1
2f
′′(x̂)(x− x̂)2 + h.o.d.)N(t, x̂,Σ) dx

∼ f(x̂) + 1
2f
′′(x̂)Σ

and ∫
(f(x)− f̂(x))(x− x̂)tN(t, x̂,Σ) dx

∼
∫

(f ′(x̂(x− x̂) + 1
2f
′′(x̂)(x− x̂)2)(x− x̂)tN(x, x̂,Σ) dx = f ′(x̂)Σ.
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Chapter 4

Reduced Order Method

As we have noted in Chapter 2, if the dimension n = d of a stochastic system is large, the

implementation of the Gaussian filter is too time consuming, requires too large of a storage and

thus may not have real time applications. Problem arises due to a large number of sampling di-

rections (full rank) and the corresponding covariance updates (2.5.10)–(2.5.13) is too expensive.

In this chapter we discuss how to remove these difficulties and actually improve the performance

of our filter by using the reduced order filter approach. The reduced order approach consists of

first compute the singular value decomposition of a nominal matrix, reduce its rank by choosing

the dominant singular values and use the coordinate change t = STms + x̄ (4.1.1) see remark

(4) in Section 3.3. That is, we reduce S to Sm based on the dominant singular values. Thus, in

the reduced filter we don’t store the covariance matrix Σ but update the square root factors.

Because we have reduced the unnecessary and redundant part by the reduced order filter, it

should improve the performance of our filter. We will demonstrate how good this reduced order

filter is by testing it on the Lorenz 96 and the wave equations models.

4.1 Reduced order filter

Recall the transformation step (2.5.2) for the Gaussian filter:

t = ST s+ x̄ < S = UT Σ̃
1
2

with singular value decomposition Σ = U Σ̃UT . We use the reduced order transformation of Sm

that corresponds to the m dominant singular values of Σ, i.e. Sm = Σ̃
1
2
mUTm. The selection of m

depends on the speed, storage and performance requirements as we discuss using the concrete

examples we tested. It results in the coordinate transform

t = UmΣ
1
2
ms+ x̂k−1|k−1 (4.1.1)
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in the predictor step of the Gaussian filter. Thus, we only need to use m << d directions for

the central difference operations, i.e., evaluate

ai =
F̃ (hei)− F̃ (−hei)

2h
1 ≤ i ≤ m

Hii =
F̃ (hei)− 2F̃ (0) + F̃ (−hei)

h2
1 ≤ i ≤ m

(4.1.2)

Now, the predictor step (reduced) becomes

x̂k|k−1 = x̂k−1|k−1 +
1

2

m∑
i=1

Hii (4.1.3)

and we have the square root form of the covariance (we don’t form Σk|k−1)

Σk|k−1 = Qk +
m∑
i=1

aia
T
i +

1

2

m∑
i=1

HiiH
T
ii . (4.1.4)

Next the corrector step becomes (for simplicity for the linear observation we assume that

h(x) = Hx).

x̂k|k = x̂k|k−1 +Gk(yk −Hkx̂k|k−1) (4.1.5)

where the gain Gk is computed as follows. Let’s recall the gain formula:

Gk = Σk|k−1H
T
k (R+HkΣk|k−1H

T
k )−1.

First, we evaluate

Σk|k−1H
T
k = QkHk +

m∑
i=1

ai(Hkai)
T +

1

2

m∑
i=1

Hii(HiiHk)
T .

Then, we can compute the gain using the gain formula (2.3.8). For the purpose of reducing

the complexity of the filter in terms of the covariance update, there is the option of dropping

the Hii part which is the 2nd order variation term. The most technical part is how to update

Σk|k without ever forming it. We use the Householder transformation of A = [ak, bj ] to obtain

PA = [R1, R2], where R1, R2 correspond to columns of ak and columns of bj . Thus, we have

P

 m∑
k=1

aka
T
k −

p∑
j=1

bjR̃b
T
j

P T =

 R1R
T
1 −R2R̃R

T
2 0

0 0


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where

bj = Sj =

(
Q−

p∑
k

aka
T
k

)
HT
j,:

and

R̃ = R+HkΣk|k−1H
T
k .

Assuming that Q = α I we can take the singular value decomposition of

α Im+p +R1R
T
1 −R2R̃R

T
2 .

Thus the Householder transform helps us to keep the square root form of the covariance update.

After this step, we can now proceed to the next time step for the predictor and corrector steps.

In summary to perform the reduced order Gaussian filter, we first initialize the SVD de-

composition as P0|0 = U Σ̃UT .

Predictor step:

• From the decomposition UΣUT reduce the rank by UmΣ̃mU
T
m.

• Define Sm = Σ̃
1
2
mUTm.

• Change Coordinate with t = STms+ x̂k−1|k−1.

• Set F̃ (s) = f(STms+ x̂k−1|k−1).

• Compute CDF components (4.1.2):

ai =
F̃ (hei)− F̃ (−hei)

2h
1 ≤ i ≤ m,

Hii =
F̃ (hei)− 2F̃ (0) + F̃ (−hei)

h2
1 ≤ i ≤ m.

• Update the mean and covariance by

x̂k|k−1 = xk−1|k−1 +
1

2

m∑
i=1

Hii

Σk|k−1 = Qk +

m∑
i=1

aia
T
i +

1

2

m∑
i=1

HiiH
T
ii .
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Corrector step:

• Compute the gain Gk by

Sk = QHT +
m∑
i=1

ai(Hai)
T

and

Gk = Sk(HSk +R)−1STk .

• Thus the mean is updated by

x̂k|k = x̂k|k−1 +Gk(yk −Hkx̂k|k−1).

Householder step:

• Use the Householder transforms for A and obtain

P

 m∑
k=1

aka
T
k −

p∑
j=1

bjR̃b
T
j

P T =

 R1R
T
1 −R2R̃R

T
2 0

0 0

 .
• Proceed to the prediction step without having to form Σk|k.

In summary, the reduced order filter uses the same one step map and the same observation,

the initial estimate û0 but only difference is that we use a much reduced directional sampling

(4.1.2) and update the square factor without forming the covariance matrices. Thus, for the

reduced order filter, the complexity is very much reduced so that real time application may be

possible. As shown in our examples (Sections 4.2, 4.3 and 4.4) the reduced order filter actually

outperforms the full rank filter, which shows the effectiveness of the reduced ordered filter.

4.2 Reduced order for Lorenz 96

We tested the Gaussian filter for the Lorenz 96 model in Section 2.7. Now we test the reduced

order Gaussian filter for the Lorenz 96 , i.e., we reduce N = 40 to a reduced rank m as in

Section 4.1.

Specifically, we examine p = 4 observations cases as in Section 2.7, Figure 2.1 (a). Figures

4.1-4.2 show the results with different reduced order m = 10, 15 20. According to singular value

plot Figure 4.1 (a) we tested m = 10 (starting) and m = 15 (middle) and m = 20 (maximum

order).
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Figure 4.1: reduced order with Lorenz 96 p = 4
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Figure 4.2: reduced order with Lorenz 96 p = 4

The following is matlab we used to implement the reduced order filter (number of observation

p = 4 and number of sampling direction m = 15).

MM=M;

for kk=1:nmax;

[U S V]=svd(P+1e-7*eye(N)); S=U(:,1:m)*sqrt(S(1:m,1:m));

x=S*yy+M*ones(1,2*m+1);

for k=1:2*m+1; ff=x(:,k); x0=ff;

for ii=1:5; xx=[ff(N-1);ff(N);ff;ff(1)];
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ff=(x0+dt*F+dt*(xx(i2).*(xx(i4)-xx(i1))))/(1+dt); end

f(:,k)=ff; end;

for k=1:m;

g1(:,k)=f(:,2*k+1)-f(:,2*k); g2(:,k)=f(:,2*k+1)-2*f(:,1)+f(:,2*k); end

g1=g1/2/h; g2=g2/h/h;

M=f(:,1); for k=1:m; M=M+.5*g2(:,k); end

P=c*speye(N);

for k=1:m; P=P+g1(:,k)*g1(:,k)’+.5*g2(:,k)*g2(:,k)’; end

Pxz=P*H’; Pzz=R+H*Pxz; L=Pxz/Pzz; z=H*M;

M=M+L*(y(:,kk)-z); P=P-L*Pxz’; MM=[MM M]; end

In summary, we conclude that the reduced order filter perform very well for our tested

example, i.e. one can obtain a reasonable estimate with p = 4, number of observations for

N = 40 (dimension of system) with reduced order filter with m = 15. Recall the full rank filter

was reasonable for p = 5 observations but not for p = 4 observations. Thus, our claim of the

reduced filter is demonstrated (i.e, reduce complexity but yet a better performance).

4.3 Reduced order for the wave speed

We test the reduced order filter in section 2.8 for the wave equation (2.8.1). For the first case

we let

c2
k = .9 + .1 sin(2πxk)) + .05randn(1, n− 1)

as (2.8.5) and qk = 0, i.e., the one-step map of our discrete time model is

f(u, v) =


v
n− 1

2
k +4t

(
c2
k

unk+1−2unk+unk−1

4x2

)

unk +4tvn+ 1
2

k +4t2
(
c2
k

unk+1−2unk+unk−1

4x2

)
.

(4.3.1)

All set ups are same and the only difference in order m as in Section 2.8. Figure 4.3 shows the

singular values. Around m = 20 the singular value curve has a lagest curvature. Our test is

conduced with m = 10, 15 and 20 for the directional sampling (4.1.1).We show our estimate for

the displacement in Figure 4.4, and the estimate for the velocity hatv in Figure 4.5. The results

are nearly equal performance comparing to the full rank case (N = 198) depicted in Figure 2.4,

but m is 5–10% of N .
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Figure 4.3: Singular values N = 198

0 10 20 30 40 50 60 70 80 90 100
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

u real
u estimate

(a) m = 10, û, T = 1
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Figure 4.4: reduced order for wave equation u estimate
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Figure 4.5: reduced order for wave equation v estimate

We can conclude that using the reduced order filter with m = 20, gives us a good estimate

of the velocity. The matlab code below concludes this.

u=zeros(N,1); u(1:m)=u0+.01*randn(m,1); q=20;

P=1.e-5*eye(N); W=[];

for kk=1:100; P=P+1.e-5*eye(N);

[U S V]=svd(P); S=U(:,1:q)*sqrt(S(1:q,1:q));

J=zeros(N); J(1:m,m+[1:m])=speye(m);

J(m+[1:m],1:m)=-spdiags(c0,0,m,m)*h0;

J(1:m,:)=J(1:m,:)+dt*J(m+[1:m],:); JJ=speye(N)+dt*J; g1=JJ*S;

tmp=-dt*c0.*(h0*u(1:m));u(m+[1:m])=u(m+[1:m])+tmp;

u(1:m)=u(1:m)+dt*u(m+[1:m]);

P=0*speye(N); P=P+g1*g1’;

Pxz=P*C’; Pzz=R+C*Pxz; L=Pxz/Pzz; z=C*u;

u=u+L*(y(:,kk)-z); u(1:m)=(speye(m)+al*hh)\u(1:m);

u(m+[1:m])=(speye(m)+al*hh)\u(m+[1:m]);

P=P-L*Pxz’; W=[W u]; end

In the first line, q represent the number m of sampling directions we are going to reduce

from. This means we are going from N = 198 sampling directions to m = 15, 20 and 25. In

the third line we calculate Sm = Σ̃
1
2
mUTm that is obtained by reducing the rank by UmΣ̃mU

T
m

using singular value decomposition. In the 12th and 13th lines we have the regularization of the

displacement and velocity.

In summary, we can conclude that the reduced order filter with m = 20 gives us a good

enough estimate of the state û and the velocity v̂ for the wave equation (2.8.1) as shown in

Section 4.3.
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4.4 Reduced order for the potential

In this section, we test the reduced filter for the state estimate (u, v) in wave equation (2.8.1)

but with c2
k = 1 and random potential and

qk = .5(1 + .5 sin(2πxk)) + .05randn(1, n− 1).

∂2

∂t2
u = ∆u− q(x)u. in x ∈ Ω.

Thus, our discrete time model (4.3.1) is
v
n+ 1

2
k = v

n− 1
2

k +4t
(
unk+1−2unk+unk−1

4x2 − qkunk
)

un+1 = unk +4tvn+ 1
2

k +4t2
(
unk+1−2unk+unk−1

4x2 − qkunk
)
.

(4.4.1)

All set ups are same except the new model with ck and qk as above and We test the reduced

order filter with reduced order direction m as in Section 4.3.

Our test is conduced with m = 60 for the directional sampling (4.1.1). In Figure 4.6 we

show our estimate for the displacement, and in Figure 4.9 we show our estimate for the velocity.

The result are a better performance comparing to full rank case (N = 198) depicted in Figure

4.7, here m is 30% of N .
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Figure 4.6: reduced order for potential equation u estimate
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Figure 4.7: reduced order for potential equation v estimate

We can conclude that using the reduced order filter with m = 60, gives us a good estimate of

the velocity and displacement. The matlab code below concludes this.

u=zeros(N,1); u(1:m)=u0+.01*randn(m,1); q=60;

P=1.e-5*eye(N); W=[];

for kk=1:100; P=P+1.e-5*eye(N);

[U S V]=svd(P); S=U(:,1:q)*sqrt(S(1:q,1:q));

J=zeros(N); J(1:m,m+[1:m])=speye(m);

J(m+[1:m],1:m)=-h0-spdiags(q2,0,m,m);;

J(1:m,:)=J(1:m,:)+dt*J(m+[1:m],:); JJ=speye(N)+dt*J; g1=JJ*S;

tmp=-dt*(h0*u(1:m)+ q2.*u(1:m)); u(m+[1:m])=u(m+[1:m])+tmp;

u(1:m)=u(1:m)+dt*u(m+[1:m]);

P=0*speye(N); P=P+g1*g1’;

Pxz=P*C’; Pzz=R+C*Pxz; L=Pxz/Pzz; z=C*u;

u=u+L*(y(:,kk)-z); u(1:m)=(speye(m)+al*hh)\u(1:m);

u(m+[1:m])=(speye(m)+al*hh)\u(m+[1:m]);

P=P-L*Pxz’; W=[W u]; end

The matlab illustrates that in the case of the potential (4.4.1), the reduced order filter is

implemented in the same manner than the one for the wave speed (4.3.1), to reduce from N =

198 sampling directions to m = 50, 60 and 70. In the third line, once again we calculate Sm =

Σ̃
1
2
mUTm that is obtained by reducing the rank by UmΣ̃mU

T
m using singular value decomposition.

In summary, we can conclude that the reduced order filter with m = 60 gives us a good

estimate of the state u and the velocity v for the wave equation (2.8.1) as shown in Section 4.4.
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4.5 Conductivity equation

The other examples of applications of the reduced order filter is the diffusion and advection

equation. Let u(t, x) be the temperature on the domain Ω. Consider the heat conduction equa-

tion:

ut = ∇ · (σ(x)∇u) +∇(~b(x)u)− c(x)u+ ”noise” in Ω, (4.5.1)

where σ(x) is the conductivity and ~b is a current (field) and c(x) absorption. For example here,

”noise” may represent the statistical fluctuation of media, the uncertainty of media and an un-

modeled components of the conduction process. Suppose that the observations are boundary

measurements, i.e.

y(t) = u(t, x), x ∈ Γ1 ⊃ ∂Ω = boundary of Ω

where Γ1 is a subset of the boundary ∂Ω. We can also have observations as distributional

measurement:

yk(t) =
1

vol(Ωk)

∫
Ωk

u(t, x) dx.

for given sub-domains Ωk of Ω. We must specify the boundary condition for (4.5.1), for example

σ ∂u∂ν + αu = g at Γ1

u = 0 on Γ2 ⊃ ∂Ω \ Γ1.

Our objective is as follows:

(1) Filtering; where we need to estimate the state u(t, x) from observations (all coefficients σ(x),
~b(x) and c(x) are known or perturbed randomly as we did for the wave equation in Section 2.8).

(2) Smoothing; where we estimate the initial condition u0.

(3) Parameter estimation of all the coefficients, knowing the initial condition.

To do so, we need to describe how to construct a proper one step map in time and space

of (4.5.1), i.e., a time and space discretization of equation (4.5.1). Our construction of the one

step map is based on the time splitting method; First for the compute the intermediate un+1/2

by the advection equation:

ut +∇(~b(x)u) = 0 on [tn, tn+1] (4.5.2)

and then

un+1 = (I −∆tA0)−1un+ 1
2

46



where the linear operator A0 is defined by

A0u = ∇ · (σ(x)∇u)− c(x)u.

We use the central difference method for elliptic operator A0 as

Ah0u =
1

h

(
σi+ 1

2
,j

ui+1,j − ui,j
h

− σi− 1
2
,j

ui,j − ui−1,j

h

)

+
1

h

(
σi,j+ 1

2

ui,j+1 − ui,j
h

− σi,j− 1
2

ui,j − ui,j−1

h

)
− ci,jui,j .

where {ui,j} atat node xi,j = (i h, j h) with uniform step size h > 0. Also, see the details in

Quasi-reversal section.
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Chapter 5

Assumed Covariance and Time

Reversal Filter

In Chapter 4, we developed the reduced order method of the Gaussian filter. Despite the re-

duction, it may still be expensive to apply the reduced order Gaussian filter directly to large

scale problems. For example in the case of large scale PDE models like the Navier-Stokes, the

three dimensional wave propagation, we may not be able to use the reduced order Gaussian

filter algorithm directly because it is too expensive. In this Chapter we discuss an alternative to

the reduced order Gaussian filter to a class of dissipative systems based on assumed covariance

filter for filtering and smoothing, especially the time reversal method. The forward-backward

filtering/smoothing algorithm is developed for time reversible dynamics. For the mildly diffu-

sion case the filtering/smoothing is developed based on the quasi-reversible method. We test

the assumed covariance and the time reversal filter and smoothing for the Burgers’ equations

and the diffusion advection equation.

5.1 The assumed covariance and dissipative filter

In this section, we discuss the filtering estimate x̂(t) for (3.1.1) from observations {y(s), s ≤ t}.
To this end, we consider the filter dynamics of the form:

dx̂(t) = f(x̂(t))dt−G(dy(t)−Hx̂(t) dt). (5.1.1)

For example we select Σ and let G = ΣHTR−1, where we assume the following property:

(
f(x1)− f(x2),Σ−1(x1 − x2)

)
≤ ω |x1 − x2|2, (5.1.2)
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with some ω ≤ 0. If we have the observation:

y(t) = Hx(t) + ”noise”. (5.1.3)

then, we obtain the Lyapunov estimate

1
2
d
dt

(
x− x̂,Σ−1(x− x̂)

)
=
(
f(x)− f(x̂),Σ−1(x− x̂)

)
−
(
R−1H(x− x̂), H(x− x̂)

)
+
(
”noise”,Σ−1(x− x̂)

)
.

(5.1.4)

Integration of this estimate in time t yields

1

2

(
x(t)− x̂(t),Σ−1(x(t)− x̂(t))

)
+

∫ t

0
−ω |x− x̂|2 + |H(x(t)− x̂(t))|2R−1

≤ 1

2

(
x(0)− x̂(0),Σ−1(x(0)− x̂(0))

)
+

∫ t

0

(
”noise”,Σ−1(x− x̂)

)
dt.

(5.1.5)

The first term of the right hand side represents the weighted error of x̂(t) and the second term is

the integration dissipation induced by the observations due to the assumed gain G = ΣHTR−1

(ω ≤ 0). The left hand side contains the initial error and also depends on noises in the system

and observations.

In the low dimension case we use the Riccati equation to determine Σ:

AΣ + ΣAT − ΣHR−1HTΣ +Q = 0 (5.1.6)

where A = Jf (x̄) which is the Jacobian of f at a nominal state x̄. In fact, Σ is pre-determined

and we don’t update for filtering (5.1.1). For the linear system (continuous time) G = ΣHTR−1

is the stationary Kalman filter gain. Equivalently for (5.1.1) we have

d

dt
x(t) = f(t, x(t)) + ”noise”, (5.1.7)

which has the dissipative property (5.1.2). In particular if Σ = I, .i.e, G = HTR−1 if we assume

the dissipativity:

(f(x1)− f(x2), x1 − x2) ≤ ω |x1 − x2|2

for (ω ≤ 0), we obtain the Lyapunov estimate

1

2

d

dt
|x− x̂|2 ≤ ω |x− x̂|2 −

(
R−1H(x− x̂), H(x− x̂)

)
+ (noise, (x− x̂))

49



and the corresponding error estimate is

1

2
|x(t)− x̂(t)|2 +

∫ t

0

(
−ω |x− x̂|2 +R−1H(x(t)− x̂(t)), H(x(t)− x̂(t))

)
dt

=
1

2
|(x(0)− x̂(0)|2 +

∫ t

0
(”noise”, (x− x̂)) dt.

5.1.1 Examples of dissipative system

In the case of the Lorenz-96 system (2.7.1)

d

dt
xi = xi−1 (−xi−2 + xi+1)− xi + F

in which

f(x) = xi−1 (−xi−2 + xi+1)− xi + F

and f(x) satisfies the dissipative property (5.1.2) with Σ = I, with periodic boundary conditions

with x0 = xN , x−1 = xN−1, xN+1 = x1.

Next, as we discussed in Section 2.8 the wave equation (2.8.1)

∂2

∂t2
u = c2(x) ∆u− q(x)u in x ∈ Ω

has the first order form

A(u, v) =

 v

c(x)2 ∆u− q(x)u


for the state (u, v). If we define the norm (u, v) ∈ X = H1(Ω)× L2(Ω) by

|(u, v)|2X =

∫
Ω

(
1

c2
|v(x)|2 + |∇u(x)|2

)
dx

Then, it can be shown that

〈A(u, v), (u, v)〉X = 0 for (u, v) ∈ X

where for simplicity we assume q(x) = 0. Thus, the system is conservative.

Other examples are the diffusion-advection equation (4.5.1). In general we consider the

diffusion-advection equation of the form

d

dt
u+A1u = −κA0u (5.1.8)
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where A0 is a non-negative self-adjoint operator on a Hilbert space and (A1 u, u) ≥ 0 as in

Section 5.4. In the case of (5.1.8)

(A1u+A0u, u) ≤ −κ (A0 u, u)

That is, we have a dissipation due to the diffusion term κA0.

5.2 The time reversal filter and forward and backward method

In this section, we discuss the time reversal method for the smoothing, i.e. estimation of the

initial condition x(0) form observations {ys, s ≤ [0, T ]} for (5.1.7). First, we define the time

reversal function z by

z(t) = x(T − t), 0 ∈ [0, T ]

and thus z(t) satisfies

− d

dt
z(t) = f(z(t)) + ”noise”, z(0) = x(T ) (5.2.1)

with the time reversal observation

y(T − t) = Hz(t) + ”noise”. (5.2.2)

Therefore we will apply the assumed gain filter for the time reversal system (5.2.1)-(5.2.2) to

obtain

− d

dt
ẑ(t) = f(ẑ) + G̃(y(T − t)−Hẑ(t)) (5.2.3)

with

ẑ(0) = x̂(T ).

Thus, the observation is used in the time reversal manner. Here assume the system (5.1.7) is

time reversible, i.e., the system (5.2.1) is well-posed as an ODE for z(t) . For example, if we

assume the system is conservative,

(f(x1)− f(x2), x1 − x2) = 0 and f(0) = 0. (5.2.4)

Then, it is time reversible and the same G can be used for the time reversal smoothing (5.2.3)

and the Lyapunov stability (5.1.2) and the performance estimate (5.1.5) apply. Combining the

forward step (5.1.1) for filtering and applying the smoothing by the time reversal (5.2.3), we

obtain the forward and backward smoothing method.
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5.2.1 Conservation law example

An example of conservative system with conservative property (5.2.4) that is time reversible,

we discuss system of conservation laws of the form:

ut + (F (u))x + q(x)u = 0 in Rd, (5.2.5)

where q(x)u is the potential term and F (u) ⊂ Rd is a nonlinear flux. With flux function

F (u) = 1
2u

2 and when q(x) = 0, (5.2.5) becomes the inviscid Burgers’ equation in R :

ut +

(
1

2
u2

)
x

= 0.

We consider the periodic boundary condition on Ω = [0, 1], i.e., u(0) = u(1). In this case we

have u ∈ X = L1(0, 1) space formulation, i.e, we have

I =

∫ 1

0
(F (u1)x − F (u2)x, sign(u1 − u2)) dx = 0.

In fact for u1, u2 ∈ C1(0, 1)

I =
∫
u1−u2>0(F (u1)x − F (u2)x)−

∫
u1−u2<0(F (u1)x − F (u2)x)

=
∑

j 2(±1)F (u1)(xj)− F (u2)(xj) = 0

where u1(xj)− u2(xj) = 0 for a finitely points xj ∈ (0, 1). Thus, we have

|u(t)− û(t)|L1(0,1) +

∫ t

0

p∑
i

|u(t, xi)− û(t, xi)| dt ≤ |u(0)− û(0)|L1(0,1) +

∫ t

0

(”noise”, sign(u1(s))) ds.

Then, we have ∫ 1

0
(F (u1)x − F (u2)x, sign(u1 − u2)) dx = 0

and we have the L1 error estimate

|u1(t)− u2(t)|L1(0,1) ≤ |u1(0)− u2(0)|L1(0,1) +

∫ t

0
(”noise”, sign(s)) ds. (5.2.6)

That is, the Lyapunov estimate (5.1.5) is replaced by L1 estimate (5.2.6).

For multidimensional the system of conservation laws such as Euler gas dynamics and Shallow

water equations [34] is written as

ut + div(~F (u)) = 0, u(0, x) = u0(x) in Rd (5.2.7)
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where ~F is the vector valued flux function and u0 is the initial condition. Equations must be

understood in the distribution sense. For example if we take the volume of (5.2.7) we obtain

the following conservation

d

dt

∫
Ω
u(t, x) dx =

∫
Ω

∂

∂t
u dx = −

∫
∂Ω
~n · ~F (u) ds, (5.2.8)

for all subdomain Ω. There is the PDE theory [7] for showing the existence of weak (distribution)

solution satisfying∫
R

∫
Rd

(−uψt − ~F (u(t, x)) · ∇ψ) dx dt+

∫
Rd
u(t, x)ψ(t, x) dx−

∫
Rd
u0(x)ψ(0, x) dx,

for all ψ ∈ C0
1 (R× Rd).

We apply the proposed filtering and smoothing methods for conservation equation (5.2.7). We

assume the observation process y(t)

y(t) = Hu(t) + ”noise”

For example point-wise observation of u at the observation locations xi ∈ Ω:

Hu = u(t, xi), xi ∈ Ω

for 1 ≤ i ≤ p. The time-reversal filtering and smoothing algorithm consists of the filtering step

d

dt
û(t) + div(f(û)) + γ H∗(y(t)−Hû(t)) = 0 (5.2.9)

forward in time and the smoothing step

d

dt
z(t) + div(f(z)) + γ H∗(y(t)−Hz(t)), z(T ) = û(T ) (5.2.10)

backward in time. Here we used the assumed covariance Σ = γ I.

5.2.2 Numerical test for the forward and backward method using conserva-

tion law

In this section we examine the one dimensional Burgers’ equation Ω = (0, 1)

ut +

(
1

2
u2

)
x

= 0. (5.2.11)
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to test the forward-backward method (5.2.9) and (5.2.10) We use point-wise observations of the

form

yi(t) = u(t, xi) + ”noise”,

at observation points xi ∈ Ω = (0, 1). Next, we describe how to construct the one step map f

in (2.1.1) for conservation law (5.2.5) with q = 0. We use the two steps Lax-Wendroff scheme

(Richtmeyer) [24]

v
n+ 1

2

k+ 1
2

= v
n− 1

2

k+ 1
2

− λ
(
F
(
unk+1

)
− F (unk)

)
un+1
k+1 = unk+1 − λ

(
F

(
v
n+ 1

2

k+ 3
2

)
− F

(
v
n+ 1

2

k+ 1
2

)) (5.2.12)

where λ = ∆t
∆x is the CFL number and F (u) = 1

2u
2 is the flux vector. In term of matlab code

(5.2.12) is concluded in the following matlab.

for k=1:kmax; uu=[u(end);u];

u=u-.5*(uu(2:end).^2-uu(1:end-1).^2); vv(:,k)=u(:); end

Here the second line represent the forward filtering (5.2.9). Here, v
n+ 1

2

k+ 1
2

represents an interme-

diate value of unk in time and space (n means time and k means space).

Now, we conduct the test and present our numerical results for the forward and backward

algorithm (5.2.9)-(5.2.10). Here we pick the initial condition as

u0 = .45(cos(2pix) + 1) + .05

and the initial guess

û0(x) = 1− .5x,

which are depicted in Figure 5.1.(a). We also have λ = 1 and the time and space step size

∆t = ∆x = 0.01. We use the measurements at 3 points

x1 = .33, x2 = .66 and x3 = 1,

and add noise to it over 200 points on the interval (0, T = 2) so

y = y + .05 randn(3, 200)

which is shown in Figure 5.1.(b). Our test is conducted by the forward filtering step (5.1.1)

with initial guess û0(x) and then apply the backward smoothing with

z(0) = û(T ) (T = 2)
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(a) initial estimate (b) noisy observations

Figure 5.1: initial condition and noisy observations for the Burgers’ equation.

In Figure 5.2 (a) shows the filtering estimate û(T ) at T = 2 and Figure 5.2 (b) shows the

smoothing estimate z(T ) of initial condition u0.

(a) foward smoothing (b) forward smoothing

Figure 5.2: forward-backward method for the Burgers’ equation.

Despite the fact that û0(x) was very away from u0(x) and we added significant noise asin

Figure 5.1 (b) to the observations, the forward and backward smoothing method yield a very

good estimate.
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5.2.3 Numerical test for time reversal using the advection equation

Suppose we have the advection equation (3.4.3) of the form

∂u

∂t
+ (au)x + (bu)y = 0, u(0, x) = u0(x) (5.2.13)

where we assume there is no diffusion.We consider that the line observation at Γ

y(t) = u(t, x) + ”noise”, x ∈ Γ.

where y(t) is observed at the observation line Γ depicted in Figure 5.3.
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Figure 5.3: line observation in Γ

Next we define the one-step map (in time and space) f(xk) in (2.1.1) for system (5.2.13),
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We use the two steps Lax-Wendroff by Richtmyer [24, 29] :

v
n+ 1

2

i+ 1
2
,j+ 1

2

= v
n− 1

2

i+ 1
2
,j+ 1

2

− λ
2

[(
(au)ni+1,j+1 + (au)ni+1,j

)
−
(

(au)ni,j+1 + (au)ni,j

)
+
(

(bu)ni+1,j+1 + (bu)ni,j+1

)
−
(

(bu)ni+1,j + (bu)ni,j

)]

un+1
i,j = uni,j − λ

2

[(
(av)

n+ 1
2

i+ 1
2
,j+ 1

2

+ (av)
n+ 1

2

i− 1
2
,j+ 1

2

)
−
(

(av)
n+ 1

2

i+ 1
2
,j− 1

2

+ (au)
n+ 1

2

i+ 1
2
,j+ 1

2

)

+

(
(bv)

n+ 1
2

i+ 1
2
,j+ 1

2

+ (bv)
n+ 1

2

i− 1
2
,j+ 1

2

)
−
(

(bv)
n+ 1

2

i+ 1
2
,j− 1

2

+ (bv)
n+ 1

2

i+ 1
2
,j+ 1

2

)]
(5.2.14)

where xk stands for the velocity ui,j at uniformly nodes over Ω = (0, 1)× (0, 1) and v
n+ 1

2

i+ 1
2
,j+ 1

2

is

an intermediate value of ui,j in time and space.

Now, we present our numerical results for the time reversal algorithm (5.2.1)-(5.2.3) for

(5.2.13). If we let he vector field ~a be defined by

a(x, y) = y − .5 and b(x, y) = .5− x, over Ω = (0, 1)× (0, 1)

which results in the clockwise rotating transformation. Thus, the initial condition u0(x) will

reach to the observation line Γ after some time (i.e., we set T = 3 and 270◦ degree of rotation).

We pick u0 as depicted in Figure 5.4
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Figure 5.4: u0, T = 3.

We conduct tests with ∆t = ∆x = 0.01 and the CFL number λ =
∆t

∆x
= 1. In this case

the time-reversal implies rotating backward in time. That is, our method will demonstrate the

capability of the time reversal filter (in a very transparent manner) by

∂z
∂t − (az)x − (bz)y = 0, z(0, x) = 0

z(t, x) = y(T − t).
(5.2.15)

The following matlab shows the time integration of (5.2.14)

kmax=300;uu=[];for k=1:kmax;

u(j)=u(j)-lmd*(c1*(aa.*v)+c2*(bb.*v));

v=v-lmd*(b1*(a.*u)+b2*(b.*u)); uu=[uu u]; end

where the second and third lines represent the two time steps (5.2.14). We use 50 points on

observation line Γ and 300 time steps (0, 3), T = 3 for observation y, which is shownFigure 5.5.

The figure shows clearly the arrival of the initial condition u0(x) by the rotation,
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Figure 5.5: measurements obtain at line of observation Γ

Now we proceed to the time reversal method (5.2.1)-(5.2.2). The following matlab shows

the time reversal method:

u1=zeros(m^2,1); v1=0*zeros(n^2,1);

uu=[];for k=kmax:-1:1;

u1(i)=yy(:,k);

v1=v1+lmd*(b1*(a.*u1)+b2*(b.*u1));

u1(j)=u1(j)+lmd*(c1*(aa.*v1)+c2*(bb.*v1));

u1(kk)=0;

uu=[uu u1]; end

which is for the time integration of (5.2.14) in backward smoothing to obtain the estimate for

the initial u(0) = u0.
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(a) y with no noise
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(b) û0 time reversal

Figure 5.6: time Reversal for the advection equation no noise in measurements.

First, Figure 5.6.(b), shows what we obtain after applying the time reversal method without

any noise added in the observations (No noise case). In this case we numerically integrated

(5.2.15), which is the backward rotation.

Now we test the time reversal algorithm with noise in observations.

y = y + .1rand(size(y)).

Figure 5.8.(b) shows the time reversal result.
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(b) û0 time Reversal

Figure 5.7: time reversal on advection with noisy measurements.

Now we test the time reversal method with added random perturbation in the vector field

60



~a:

a(x, y) = ā+ .02 (rand(size(a))− .5) and b(x, y) = ā+ .02 (rand(size(a))− .5)

where ā and b̄ where defined above. Figure 5.8 (a) shows the effect of perturbation in the media

in observations y. It show clearly the perturbation of the vector field in observations at Γ. Figure

5.8.(b) illustrates that even with the perturbation of the vector field, using the time reversal

algorithm (5.1.1)-(5.2.3) for (5.2.13), we obtain an excellent estimate of initial condition u0
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(a) y, perturbed ~a
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(b) û0 time reversal

Figure 5.8: time reversal on advection with perturbed vector field ~a.

In summary, we can conclude that time reversal algorithm (5.1.1)-(5.2.3) for the advection

equation (5.2.13) works so well and very efficient and thus an effective algorithm.

5.3 Quasi-reversible

We cannot apply the time reversal (5.2.1)-(5.2.2) method for dynamics with diffusion. For

example for diffusion-advection equation of the form

∂u

∂t
+∇ · (a(x)u) = κ∆u (5.3.1)

where a(x) is a vector field and κ > 0 is a constant conductivity of media. Due to diffusion,

the system (5.3.1) is not time reversible, i.e., backward integration in time is not possible [1].

So, we are interested in the case of mildly diffusion, i.e., κT is sufficiently small where κ > 0

is diffusion constant and T > 0 is the terminal time or the duration of the time reversal. To

perform the back rad integration in time, we will use the quasi-reversal method, which has been

used for the backward heat equation in [23, 28].
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In general, if we consider system dynamics of the form

∂u

∂t
+A1u = κA0u (5.3.2)

where A1 is conservative, i.e., (A1u, u) = 0 and A0 is a negative self-adjoint operator on a

Hilbert space X. Then, we have the dissipative property

1

2

d

dt
|u|2X = −(A1u, u) + κ (A0u, u) = κ (A0u, u). (5.3.3)

Thus, we obtain the estimate

|u(T )|2 = |u(0)|2 + 2κ

∫ T

0
(A0u(t), u(t)) dt. (5.3.4)

This implies that |u(T )| ≤ |u(0)| but, the converse is not true. This means that |u(0)| cannot be

estimated by |u(T )|, i.e., (5.3.2) is not time reversible in general. The quasi-reversal method is

used to make (5.3.2) time reversible for κT sufficiently small. For example, we have a method

that uses the following backward equation for (5.3.2):

ut +A1u = κ A0u− ε(A0u)t, u(T ) = u1 (5.3.5)

for ε > 0 chosen appropriately [1, 6]. That is, z(t) = u(T − t) satisfies the time reversal equation

zt −A1z = −κA0z + ε(A0z)t, z(0) = u1. (5.3.6)

5.3.1 Quasi-reversal algorithm

We consider the time-splitting integration for (5.3.6): first we solve

zt −A1z = 0, z(tn) = zn on [tn, tn+1]. (5.3.7)

and let un+1/2 = z(tn+1), since A1 is conservative, |zn+1/2| = |zn|. Equivalently to (5.3.6)–(5.3.7)

we update zn+1 using the implicit and explicit scheme by

zn+1 − zn+1/2

∆t
= κHzn+1/2 − εH

zn+1 − zn+1/2

∆t
(5.3.8)

where H = −A0 is positive i.e.,

zn+1 = (I + εH)−1(I + κ∆tH + εH)zn+1/2

= zn+1/2 + κ∆t (I + εH)Hzn+1/2.

(5.3.9)
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5.3.2 Stability estimate

Now, we have a stability estimate for {zn} generated by (5.3.7)–(5.3.8):

Theorem

|zn| ≤
(

1 +
κ

ε
∆t
)n
|z0|. (5.3.10)

Proof: From (5.3.9) we have

|zn+1| ≤ |zn+1/2|+ κ∆t max
λ∈σ(H)

λ

1 + ε λ
|zn+1/2|.

Thus,

|zn+1| ≤
(

1 +
κ

ε
∆t
)
|zn+1/2|

Therefore, we obtain estimate

|zn| ≤
(

1 +
κ

ε
∆t
)n
|z0|�

Remark:

From (5.3.10) we have (
1 +

κ

ε
∆t
)n
→ e

κ
ε
t as ∆t→ 0. (5.3.11)

Thus, κT must be sufficiently small.

5.3.3 Error analysis

Now, we discuss the error analysis for uε (5.3.5) to u for the backward equation for (5.3.2):

∂u

∂t
+A1u = κA0u, u(T ) = u1.

We assume A1 = 0 for the sake of simplicity. Since A0 is negative self-adjoint we have the

spectral resolution [35]

−A0φ =

∫
R+

dE(λ)φ (5.3.12)

where E(λ) is projection operators on a Hilbert space X. For example for the case of discrete

spectra

−A0φ =

∞∑
k=1

(φ, ψk)ψk

where (−λk, ψk) are eigen-pairs

A0ψk = −λk ψk, λk ≥ 0
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and {ψk} are orthonormal. We assume that u1 ∈ span{ψk}mk=1. Then by the Fourier method

for u to equation (5.3.2) we have

u(t) =
m∑
k=1

(u1, ψk) e
κλkt ψk (5.3.13)

For (5.3.6)

uε(t) =

m∑
k=1

αk(t)ψk (5.3.14)

where αk(t) satisfies

α̇k = κλkαk(t)− ελkα̇k.

Thus, we have

αk(t) = e
κλk

1+ελk
t
(u1, ψk)

It follows from (5.3.13) and (5.3.14) that

|u(t)− uε(t)|2X =
m∑
k=1

∣∣∣∣e κλk
1+ελk

t − eκλkt
∣∣∣∣ |(u1(t), ψk)|2 (5.3.15)

Therefore, from (5.3.15) we have the worth case estimate

|u(t)− uε(t)|2X = max
λ
|Fλ(t)| |u(t)|2 ∼ ε. (5.3.16)

where

Fλ(t) = e
κλt
1+ελ − eκλt (5.3.17)

= eκλt(e−κλ
εκλt

1+εκλ − 1). (5.3.18)

This estimate also holds for the spectral resolution of −A0.From (5.3.15) and (5.3.16) the quasi-

reversible method works if κT is sufficiently small and thus ε can be smaller than κT to obtain

the accuracy. For example, in the case (5.3.1) we have

A0 = ∆u and A1u = ∇ · (a(x)u)

with u = 0 at boundary ∂Ω. In this case λk,` = (k2 + `2)π2 and

ψk,`(x1, x2) ' sin(kπx1) sin(`πx2)
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for Ω = (0, 1)× (0, 1).

For an alternative quasi-reversal method discussed in [23], (5.3.2) has the form

d

dt
u+A1u(t) = κA0u(t)− εA2

0u(t), u(T ) = u1. (5.3.19)

The stability and error estimate analysis can be performed for (5.3.19) using exactly the same

analysis as above.

5.3.4 Numerical test for quasi-reversible method using the conduction equa-

tion

We tested the quasi-reversal algorithm (5.3.7)–(5.3.8) for the conduction equation (5.3.1) over

Ω = (0, 1)× (0, 1):
∂u

∂t
+∇ · (~au) = κ∆u, u = 0 at boundary ∂Ω. (5.3.20)

We use the two-step integration (5.2.10) for the first step (5.3.7). For the second step (5.3.8)

we use the central difference approximation for Laplacian ∆ by

∆h u =
ui−1,j − 2uij + ui−1,j

∆x2
+
ui,j+1 − 2uij + ui,j−1

∆x2
.

Thus, we have matlab code for the implicit and explicit time splitting (5.3.9). Here is the matlab

that shows the backward operation for the quasi reversal.

uu=[];for k=kmax:-1:1;

u1(i)=yy(:,k);

v1=v1+lmd*(b1*(a.*u1)+b2*(b.*u1));

v1=(q0+ep*h0)\(q0*v1+dt*ka*h0*v1+ep*h0*v1);

u1(j)=u1(j)+lmd*(c1*(aa.*v1)+c2*(bb.*v1));

u1=(q+ep*h)\(q*u1+dt*ka*h*u1+ep*h*u1);

u1(kk)=0;

uu=[uu u1]; end

Here, v1 is the intermediate step zn+ 1
2

and u1 represents zn+1. The third and fifth lines perform

(5.3.7) and the fourth and sixth lines perform (5.3.9).

Now, we describe the problem setup. We let the initial condition u0(x) be the same one as

we had for the time reversal of the advection equation which is depicted in Figure 5.9,
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Figure 5.9: u0.

and we the vector field ~a, the same as in Section 5.2.3

~a = ~y − .5 and ~b = .5− x.

We are going to use κ = .01 and ε = .01 in (5.3.5). As we describe in the time reversal Section

5.2.3, we use the line observation Γ as depicted in Figure 5.3. Recall that Γ is chosen so that

the initial condition u0(x) is transformed by the advection to Γ. Here, we have a diffusion (a

heat conduction term) and (5.3.20) is not time reversible.
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(d) û0, quasi reversal, ε = .01 κ = 0.01

Figure 5.10: time reversal vs quasi reversal method with κ = 0.01 and ε = 0.01.

Figure 5.10 (b) is the result by the time reversal method (5.1.1)-(5.2.3) (i.e. we use (5.2.15)

to estimate the initial condition by zT ). and Figure 5.10 (d) is the result by the quasi-reversal

method (5.3.7)–(5.3.8). This means that using the Quasi-reversible method, in which the diffu-

sion is not disregarded we obtain a better estimate û0(x). Methods is tested for a large diffusion

(κ = .01).

Now we examine the quasi reversal method for the case of a smaller diffusion (κ = .001).

We change ε to examine effectiveness of quasi-reversal method when we have no noise in the

observations as depicted in Figure 5.11.(a). We also test added noise observations case by

y = y + .1rand(size(y))

which is depicted in Figure 5.11.(b).
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(b) y with noise

Figure 5.11: observation obtain for quasi reversal method with κ = .001, ε = .005

In Figures 5.12 (a)–(c) the results for non-noise case are shown with three different

ε = 0.005, 0.002, and 0.001. The corresponding results for noise case are shown in Figures 5.12

(d)–(f).
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(d) û0, κ = .001, ε = 0.005 with

noise

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(e) û0, κ = .001, ε = 0.002 with

noise
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(f) û0, κ = .001, ε = 0.001 with

noise

Figure 5.12: û0 using quasi reversible algorithm with No noise vs with Noise ε updated
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Note that ε = .001 provides the best estimate for non-noise came, which agree with for

error estimate (5.3.14). But with noisy observation ε = .002 is best among three case we tested,

which also agrees with our error estimate (5.3.14).

As shown in our analysis. data must be smooth, so we have to find a way to remove noise

from data and we use the regularization method:

y ← (I + βH)−1y

where H is the time and space negative Laplacian. We use the regularization constant β = 10−3.

The regularized data is depicted in Figure 5.13.(b),
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(b) y regularized

Figure 5.13: y with noise vs regularized noised with κ = .001 and ε = .005

In Figures 5.14.(a)–(c) we show the quasi-reversal results for y regularized.
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(a) û, κ = .001, ε = 0.005 withy

regularized
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(b) û, κ = .001, ε = 0.002 with y

regularized
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(c) û, κ = .001, ε = 0.001 with y

regularized

Figure 5.14: û using quasi reversal results with regularized observations
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Comparing the result Figures 5.12 (d)-(f) without shooting of y for all three selected ε the

one with smoothing data does much better job. Again it agree with our error analysis (5.3.14).

Now test the quasi-reversal method (5.3.7)–(5.3.8) with ε = .01 fixed and varying

κ = .01, .005, .001. The first case with noise y and y regularized. Figure 5.15 shows the

estimated initial conditioned û0.
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(a) û0, ε = .01, κ = 0.01 with
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(c) û0, ε = .01, κ = 0.001 with

noise

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(d) û0, ε = .01, κ = 0.01 with

cleaned noise
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(e) û0, ε = .01, κ = 0.005 with

cleaned noise
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(f) û0, ε = .01, κ = 0.001 with

cleaned noise

Figure 5.15: û0 with quasi reversal and ε = .01 with noise added and regularized

The next test is for the case of randomly perturbed vector field by

a(x, y) = ā+ .02(rand(size(a))− .5) and b(x, y) = ā+ .02(rand(size(a))− .5).

and the corresponding estimates are shown in Figure 5.16. With random perturbation in the

vector rotational field ~a and κ = 10−3, we get an estimate that is close to the initial condition

as depicted in Figure 5.16.(c).
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(a) û0, ε = .01, κ = 0.01
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(b) û0, ε = .01, κ = 0.005
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(c) û0, ε = .01, κ = 0.001

Figure 5.16: û0 with quasi reversal algorithm results and ε = .01 for perturbed vector field ~a

Thus we conclude that the numerical results agree with our error analysis.
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Chapter 6

Parameter Dependent Case

In this Chapter, we consider the parameter dependent discrete dynamics:

xk = f(xk−1, ak−1) + wk

ak = ak−1 + w̃k.

where the parameter in RNp is augmented to the system as random a coefficient by the second

equation. In this case

F (x, a) =

(
f(x, a)

a

)
.

We also consider the mean return model:

ak − ā = γ(ak−1 − ā) + w̃k (6.0.1)

where 0 < γ < 1 and ā is a known mean of ak. It is a time discretization of a SDE

dat = α(ā− at) + σ̃dBt.

In fact we have

at+∆t = e−α∆tat + (1− e−α∆t) ā+

∫ t+∆t

t
et+∆t−sσ dBs

If we let γ = e−α∆t, then we obtain (6.0.1) For such a case

F (x, a) =

(
f(x, a)

γ(ā− a)

)
.
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For (2.5.8) and (2.5.9) CDF compete the central difference components of F (x, a) for the joint

state x̃ = (x, a). The extended Kalman filter uses the Jacobian of the form

F ′ =

(
fx fa

0 I

)
, F ′ =

(
fx fa

0 −γ I

)

For the parameter dependent case it is important to update the state and the parameters jointly,

then we use the assumed covariance update for the predictor step following (2.3.4) as follows:

F ′ΣF ′T =

 fx fa

0 I


 Σxx Σxa

Σax Σaa


 fTx 0

fTa I


=

 fxΣxx + faΣax fxΣxa + faΣaa

Σax Σaa


 fTx 0

fTa I


=

 fxΣxxf
T
x + faΣaxf

T
x + fxΣxaf

T
a + faΣaaf

T
a fxΣxa + faΣaa

Σaxf
T
x + Σaaf

T
a Σaa


where Σxx is the covariance of the state, Σxa = ΣT

ax represents the covariance of the state

knowing the parameter a and finally Σaa is the covariance of the parameter. For CDF case we

use the covariance update for x (with Σ11 = STS or reduced STmSm as factor). We may used

the assumed covariance update of the form:

ai =
f(x̄+ S:,ih, a)− f(x̄− S:,ih, a)

2h

Hii =
f(x̄+ S:,ih, a)− 2f(x̄, a) + f(x̄− S:,ih, a)

h2

Then,

(Σ11)k|k−1 =
m∑
i=1

aia
T
i +

1

2

m∑
i=1

HiH
T
i .

For Σ12 we compute

bi =
f(x̄, ā+ h ei)− f(x̄, ā− h ei)

2h
, 1 ≤ i ≤ Np
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and
(Σ12)k|k−1 =

∑m
i aiUm (Σ12)k−1|k−1

Σ22 = Σ22

For the specific case where F is linear in x:

F (x, a) = A(a)x (6.0.2)

and a→ A(a) is linear, i.e., A(a) are coefficients matrix for the linear dynamics. Then, we have

F ′ =

(
A(a) Ȧx

0 I

)
, F ′ =

(
A(a) Ȧx

0 −γ I

)

where Ȧ is the derivative of the coefficient matrix with respect a.

For example if we consider the second order mass spring system of the form,

ÿ + γẏ + ω2y = noise.

For the first order system for x(t) = (y(t), y′(t)) we have

d

dt
x(t) =

 0 1

−ω2 −γ

x(t)

Since linear in x the Gaussian filter has Hii = 0.

But, if we do the joint covariance for F (x, a) we have the Hessian for cross term ∂2F
∂x∂a = ˙(A).

Also,

a = AST , b = UȦx, H = UȦ

Now, we describe how to ai and Hii in formulae (4.1.2) with the coordinate transform

x = ST s+ x̄

and

F̃ (s) = F (ST s+ x̄).

In fact we have
∂F̃

∂s
= ST

∂F

∂x
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i.e.,

a(k) = ST
∂F (k)

∂x
.

Next, since
∂2F̃

∂si∂sj
= ST

∂2F

∂xi∂xj
S,

we have

H(k) = diag

(
ST

∂2F (k)

∂xi∂xj
S

)
.

6.1 Lorenz equations

In this section we introduce an SDE model for premature dependent dynamics and test the

Gaussian filter in Section 2.4. Consider the Lorenz system as

dx
dt = σ(y − x)

dy
dt = x(ρ− z)− y

dz
dt = xy − βz.

(6.1.1)

It is introduced by by Edward Lorenz. It is an example of 3 dimensional dynamics having chaotic

solutions for certain parameter values and initial conditions. That is, in 1963, Edward Lorenz

developed a simplified mathematical model for atmospheric convection [26]. Here, (x, y, z) rep-

resent the the system state, (two for the stream function and the one for temperature). σ, β

and ρ the system parameters. These parameters are scaled parameters from the atmospheric

convection model, for example σ > 0 is the Prandtl number.

We test the Gaussian filter for the case σ = 10 ρ = 28 (fixed) and β is a random parameter

around β̄ = 8/3. Thus, we estimate state (x, y, z) and a parameter β in model (6.1.1) based on

the observations

y = x(3) + .1sqrt(dt)randn,

which only observes the third component of the state.

We first describe the one-step map f for (6.1.1). The system can be rewritten in the form

of
d

dt
x = A(a)x
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we get

d

dt

 x

y

 =

 σ −σ

ρ− z −1

 ·
 x

y

 (6.1.2)

where

A(a) =

 σ −σ

ρ− z −1


The solution of (6.1.2) is given by x

y

 = eA(a)∆t

 x

y

 .

Now we can find a solution for

dz

dt
= xy − βz

= β

(
xy

β
− z
)
.

since x and y are given, then

zn+1 =
xy

β

(
1− e−β∆t

)
+ e−β∆tzn. (6.1.3)

Thus, we define the one-step map for (6.1.1) as

f(xn, yn, zn) =


eA(a)∆t

 xn

yn


xn+1yn+1

β

(
1− e−β∆t

)
+ e−β∆tzn.

 (6.1.4)

The first two coordinates of (6.1.4) are the frozen coefficients A(a) with z = zn and the last

coordinate is updated by (6.1.3) frozen x = xn+1 and y + yn+1. Here is the matlab that

summarizes the Gaussian Filter for the joint state-parameter estimation for (6.1.1):

MM=M;for kk=1:nmax;

S=chol(P); x=S’*xx+M*ones(1,9);

for k=1:9; A=[-sgm sgm; rho-x(3,k) -1]; f(1:2,k)=expm(A*dt)*x(1:2,k);

bt=x(4,k); s=exp(-bt*dt);
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f(3,k)=(1-s)*f(1,k)*f(2,k)/bt+s*x(3,k); f(4,k)=x(4,k); end

for k=1:4;

g1(:,k)=f(:,2*k+1)-f(:,2*k); g2(:,k)=f(:,2*k+1)-2*f(:,1)+f(:,2*k); end

g1=g1/2/h; g2=g2/h/h;

M=f(:,1); for k=1:4;M=M+.5*g2(:,k); end

P=[0 0 0;0 0 0;0 0 1]; P=c*[P zeros(3,1); zeros(1,3) .01];

for k=1:4; P=P+g1(:,k)*g1(:,k)’+.5*g2(:,k)*g2(:,k)’; end

Pxz=P*H’; Pzz=R+H*Pxz; L=Pxz/Pzz; z=H*M;

M=M+L*(y(:,kk)-z); P=P-L*Pxz’; MM=[MM M]; end

For our numerical test, we let the initial estimate

[x̂; ŷ; ẑ] = [−.2;−.3;−.5] + .1 ∗ randn(3, 1), β̂ = 3.

In Figure 6.1 we show the observation y on [0, T = 10] with ∆t = .01 and the estimated β.

In Figure 6.2 we show the corresponding state estimate.
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Figure 6.1: Observation and β estimation in Lorenz equation.
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Figure 6.2: states estimation in Lorenz equation.

We note that the Gaussian filter estimates accurately for the joint state-parameter estima-

tion. as shown in Figures 6.1 and Figure 6.2.

6.2 Wave Equations

In the study of wave propagation it is very essential to estimate the medium (function) coefficient

from surface observations and far field measurements. Consider the wave equation

∂2

∂t2
u = c2(x)∆u

where u is acoustic pressure for example and most importantly the parameter c(x) > 0 repre-

sents variable wave speed. We also consider

∂2

∂t2
u = ∆u− q(x)u

where q(x) represents the potential.

6.2.1 Joint state and wave speed c(x) estimations

We consider the wave equation
∂2

∂t2
u = c2(x)∆u (6.2.1)

where the wave speed c(x) is given by

a(x) = c(x)2 = .9 + .1 sin(2πx)
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with initial condition

u0(x) = exp(−500 ∗ (x− .2)2) + exp(−500 ∗ (x− .7)2),

which is the sumo of Gaussian centered at .2 and 7.

Details account for the time-space discretization of wave equations and tests for the Gaussian

and the reduced Gaussian filter presented in Chapters 2 and 4. In this section we focus on the

joint-estimation of the displacement u, velocity v and coefficient c(x) for (6.2.1). We use the

observation yk of u at the two points x = .3 and x = .8 (no noise added) and initial estimate

as (u0, 0). and â(x) = .9.

Here is the matlab that shows the details of the reduced order Gaussian filter. Comparing

m = 50 to N = 297.

u=zeros(N,1); u(1:m)=u0; u(ip)=.9;q=50;

P=1.e-4*eye(N); s=rand(m); s=s+s’;P(ip,ip)=eye(m)+.05*s; W=[];

for kk=1:100; P=P+1.e-5*eye(N);

[U S V]=svd(P); S=U*sqrt(S);

J=zeros(N); J(1:m,m+[1:m])=speye(m);

J(m+[1:m],1:m)=-spdiags(u(ip),0,m,m)*h0;

J(m+[1:m],2*m+1:end)=-spdiags(h0*u(1:m),0,m,m);

J(1:m,:)=J(1:m,:)+dt*J(m+[1:m],:); JJ=speye(N)+dt*J; g1=JJ*S;

tmp=-dt*u(ip).*(h0*u(1:m));u(m+[1:m])=u(m+[1:m])+tmp;

u(1:m)=u(1:m)+dt*u(m+[1:m]);

P=0*speye(N); P(ip,ip)=1.e-3*dt*speye(m); P=P+g1*g1’;

Pxz=P*C’; Pzz=R+C*Pxz; L=Pxz/Pzz; z=C*u;

u=u+L*(y(:,kk)-z); u(ip)=(speye(m)+al*hh)\u(ip); P=P-L*Pxz’; W=[W u]; end

For this numerical test we use ∆x = .01 and ∆t = .01 with CFL number λ = 1 and T = 1.

Recall we must use the regularization step for the parameter estimate c(x)2 = a(x) as

an → (I + βH)−1an.

where we adjust β > 0 and β = .001 for our numerical tests.

In Figure 6.3, we show the Gaussian filter (full rank N = 297) results for (û(T ), v̂(T ))

and â(T ) estimates. We iterate our filter algorithm four times and the final estimates (blue) is

close to the truth a(x). Figure 6.4, shows the estimates for the first iterate (with β = 10−3)

and second iterate (with β = 10−5). of our reduced order Gaussian filter with order m = 20

(compared to full rank N = 297).
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Figure 6.3: joint estimation of u, v and c(x) using Gaussian Filter, N = 297
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Figure 6.4: estimation of u, v and c(x) using reduced order filter with m = 20

Based on our tests we conclude that the reduced order Gaussian filter is very effective for the

joint estimation of the state and parameter for (6.2.1), with tuned the regularization constants

β > 0 and order m = 20.
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6.2.2 Joint states and potential q(x) estimations

We consider
∂2

∂t2
u = ∆u− q(x)u (6.2.2)

where the parameter

a(x) = q(x) = .9 + .1 sin(2πx)

represents the potential and the initial condition is

u0(x) = exp(−500 ∗ (x− .2)2) + exp(−500 ∗ (x− .7)2).

Again, detailed account for the time-space discretization of wave equations and tests for the

Gaussian and the reduced Gaussian filter are presented in Chapters 2 and 4. In this section we

focus on the joint-estimation of the displacement u, velocity v and coefficient q(x). We use the

observation yk of u at the two points x = .3 and x = .8 (no noise added) and initial estimate

as (u0, 0). and q̂(x) = .5.

The numerical test is performed in exactly the same manner as in Section 6.2. The regular-

ization step here for q(x) = a(x) is

an → (I + βH)−1an.

Here is the matlab that shows the details of the reduced order Gaussian filter for m = 30.

u=zeros(N,1); u(1:m)=u0; u(ip)=.5; q = 50;

P=1.e-4*eye(N); s=rand(m); s=s+s’;P(ip,ip)=eye(m)+.05*s; W=[];

for kk=1:100; P=P+1.e-5*eye(N);

[U S V]=svd(P); S=U(:,1:q)*sqrt(S(1:q,1:q));

J=zeros(N); J(1:m,m+[1:m])=speye(m);

J(m+[1:m],1:m)=-h0-spdiags(u(ip),0,m,m);

J(m+[1:m],2*m+1:end)=-spdiags(u(1:m),0,m,m);

J(1:m,:)=J(1:m,:)+dt*J(m+[1:m],:); JJ=speye(N)+dt*J; g1=JJ*S;

uu=[0;u(1:m);0]; tmp=dt*(uu(3:n+1)-2*uu(2:n)+uu(1:m))/dx^2-dt*u(ip).*u(1:m);

u(1:m)=u(1:m)+dt*u(m+[1:m])+dt*tmp;

u(m+[1:m])=u(m+[1:m])+tmp;

P=0*speye(N); P(ip,ip)=dt*speye(m); P=P+g1*g1’;

Pxz=P*C’; Pzz=R+C*Pxz; L=Pxz/Pzz; z=C*u;

u=u+L*(y(:,kk)-z); u(ip)=(speye(m)+al*hh)\u(ip); P=P-L*Pxz’; W=[W u]; end
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(a) û, β = 5.10−5

0 10 20 30 40 50 60 70 80 90 100
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

v real
v estimate

(b) v̂, β = 5.10−5

0 10 20 30 40 50 60 70 80 90 100
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

q(x) real
q(x) estimate

(c) q̂(x), β = 5.10−5

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

u real
u estimate
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Figure 6.5: joint estimation of u, v and q(x) using reduced order filter with m = 30

In this test for the wave equations with potential term (6.2.2) we also iterate the reduced

order Gaussian order with tuned β shown in Figure 6.5 with order m = 30. The sates estimate

are very accurate in this case since we have the exact initial condition for the filter and the

potential term is of a much lower oder than the wave speed case (6.2.1). In summary we again

demonstrates the effectiveness of the reduced order Gaussian filter for the joint state-parameter

estimation in wave equation models.
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Chapter 7

Conclusion

We have developed and analyzed very effective filtering and smoothing algorithms. Especially

for a large scale dynamics and PDEs governed systems. The reduced order method enhances

the performance of our proposed Gaussian filter in addition to being an efficient algorithm. The

Lorenz 96 model and the wave equation models we tested for the Gaussian and reduced order

Gaussian filters. For dissipative systems, the alternative method we developed to the reduced

order filter is an assumed covariance filter. For system that are time reversible, we developed

the time reversal filter which used the forward and backward smoothing algorithm. The time

reversal filter algorithm we tested for conservation law and the advection equation. The Quasi

reversal method is used for system with mild diffusion like the conduction-advection equation

which we tested. For the joint estimate of state and parameters, we tested the Lorenz equation

and the wave equations models. In the future we will test on more real world examples like the

Navier-Stokes, the 3-dimensional wave propagation.
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