Abstract

IVY, SAMUEL JAMAL. Classifying the Fine Structures of Involutions Acting on Root Systems.
(Under the direction of Aloysius Helminck.)

Symbolic Computation is a growing and exciting intersection of Mathematics and Com-
puter Science that provides a vehicle for illustrations and algorithms for otherwise difficult to
describe mathematical objects. In particular, symbolic computation lends an invaluable hand
to the area of symmetric spaces. Symmetric spaces, as the name suggests, offers the study
of symmetries. Indeed, it can be realized as spaces acted upon by a group of symmetries or
motions (a Lie Group). Though the presence of symmetric spaces reaches to several other
areas of Mathematics and Physics, the point of interest reside in the realm of Lie Theory. More
specifically, much can be determine and described about the Lie algebra/group from the root
system. This dissertation focuses on the algebraic and combinatorial structures of symmetric
spaces including the action of involutions on the underline root systems.

The characterization of the orbits of parabolic subgroups acting on these symmetric spaces
involves the action of both the symmetric space involution 6 on the maximal k-split tori and
their root system and its opposite —6. While the action of 6 is often known, the action of —0
is not well understood. This thesis focuses on building results and algorithms that enable
one to derive the root system structure related to the action of —f from the root system
structure related to 6. This work involves algebraic group theory, combinatorics, and symbolic

computation.
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CHAPTER

1
INTRODUCTION

1.1 Motivation

Symmetric spaces describe a variety of symmetries in nature and are significant in many
fields of science, with a larger focus and influence in mathematics and physics. In general,
one can think of symmetric spaces as nice spaces acted on by a group, where the group is a
set of symmetries or motions (a Lie group). In Mathematics, these symmetric spaces arise in
areas such as differential geometry, representation theory, number theory, algebraic geometry,
invariant theory, and singularity theory. In physics, symmetric spaces play an intricate role in
integrable quantum field theory, elementary particle physics, and many other areas.

Due to their usefulness in these areas, many scientists utilize a symbolic computation
program to help in tedious calculations of examples and conjecture verification for specific
cases. Because much of the structure of symmetric spaces is very combinatorial in nature, it is
well suited for symbolic computation.

A large portion of the fundamental structure of generalized symmetric spaces is encoded
on the root system, which is a finite set of vectors that characterizes a Lie algebra/group
(an infinite set). By lifting from this finite set to the infinite set, we can perform many of the
calculations on the infinite set (in this case a Lie algebra, Lie group or symmetric space), and



turn many otherwise stringent problems into combinatorially manageable ones.

For Lie algebras, the combinatorial structure on the root system level has been implemented
in several symbolic manipulation packages, including the package LiE written by CAN as well
as the Maple packages Coxeter and Weyl by J. Stembridge. There are also algorithms for Lie
theory in GAP4 and Magma. Due to my interests in Maple, the algorithms introduced in my
work build upon Stembridges Coxeter and Weyl packages.

Symmetric spaces are defined by an involution ¢ of the group G. In the study of these
symmetric spaces, it is important how this involution as well as — acts on the maximal
R-split tori and their root systems. While much is known about the action of 6 on the root

systems, not much is known about the related action of —6.

1.2 The Problem

Let G be a connected reductive linear algebraic group over 4 field k of characteristic not 2. Let
o € Aut(G) be an invlutional k-automorphism of G and H = G” = {g € G|c(g) = g} the set
of fixed points of ¢. Denote the set of kraitional points of G by Gi. We define G/ Hy to be the
generalized symmetric space (k-varieties).

To study the representations of symmetric k-varieties, one must consider the orbits of these
varieties. In particular, we study the orbits of a minimal parabolic k-subgroup P acting on the
symmetric k-variety Gi/Hy. In [22], a characterization of this orbital action is described.

Theorem 1.2.1 ([22]). Let {T;|i € I} be the representatives of Hy-conjugacy classes of o-stable

maximal k-split tori in G. Then

P]k\Gk/H]k = U WGug(Ti)\WHk(Ti)'
iel

As the theorem suggests, it suffices to determine the conjugacy classes of o-stable maximal
k-split tori and understand their associated Weyl groups. However, this task is difficult
calculate in general. Hence the need for algorithms and computer algebra packages that will
perform calculations within symmetric k-varieties.

Nonetheless, there exists a series of correspondences that causes this characterization
to be a bit more manageable. In fact, the determination of these conjugacy classes reduces
to the determination of parabolic subsets A(—w) where w € W(®) is an involution. The
indexing set I, posed in Theorem 2.3.3 can be realized a subposet of diagrams that represent
an ordering of Weyl group conjugacy classes of involutions in W(®). This paper provides a



foundation in creating an algorithm to determine a “top” and “bottom” of a sub-poset and the
possible conjugacy classes that lie in between. To characterize the top and bottom elements
of poset, it suffices to determine maximal involutions in ®(a) N ®(a, ) and the same for the
opposite involution —¢.This will involve the study of quasi R-split tori and their conjugacy
classes. The information of quasi R-split tori and their conjugacy classes is embedding within
(0, 0)-diagrams. In total, there are 171 isomorphy classes of (6, c). In [21], these 171 cases
(in which Theorem 3.1.1 applies), have been listed. In particular, these cases address the
conjugacy classes of quasi IR-split tori in b, while providing the types and maximal involutions
of 5(9,0) N Dy.

In [21], a characterization of these conjugacy classes have been provided. To add to
that characterization, this exposition provides a characterization of the action of opposing
involutions on root systems, and in particular, address the cases that allow for diagram

automorphism to exists within the +1 and —1 eigenspaces relative to the involution.

1.3 Summary of Results

The following result addresses the question of when a diagram automorphism will exists
based on the involution and parabolic subset. The root systems of interest are those of type
Ag, D2[+1 and Eﬁ.

Theorem 1.3.1. Let ® be of type Ay, 0 € Aut(P) an involution and A be a (—0)-basis. Then the
following are equivalent.

(i) Ao(0) is of type r - As.
(ii) Ao(—8) is of type Ay_o,.
(iii) 0" =id
(iv) (—0)* #id
Proof. The result follows from Table ?? and Propositions 5.1.1 and 5.1.2. O

Proposition 1.3.2. Let ® be of type Doy and 6 € Aut(®) be an involution. Suppose Ay () is of
type r - Ay and Ag(0) C Dypyq — Do. Then 6% = id if and only if (—0)* # id.

Proof. 1f 0* = id, then 0 = —wy(0) = —si53---Sp—1. Since Ag(—0) is also of type r- A;,
wo(—0) is also the product strongly orthogonal reflections. Thus, (—0)* = Owy(—60) =
—wo(0)wo(—0) # id. The argument for the converse is the same. This proves the statement. [



Proposition 1.3.3. Let O be of type Doy and 6 € Aut(®) be an involution. Suppose Ag(0) is of
type Dy, (n < 20+ 1). Then 6* = id if and only if (—6)* # id.

Proof. From Theorem 4.3.5, (—60)* = id if and only if Ag(—0) is of type D with even rank if
and only if Ag(0) is of type D with odd rank if and only if wy(0)|Ag(0) # —id if and only if
08 £ id. O
Theorem 1.3.4. Let A and Ay be 6- and (—6)-bases, respective. Let 6* and (—6)* be defined as above.
If @ is of type Ay, Doy 1 and Eg, then 0* = id if and only if (—0)* # id.
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2

PRELIMINARIES AND
RECOLLECTIONS

2.1 Symmetric Spaces

Let G be a connected reductive algebraic group over a field k with characteristic not 2.
Definition 2.1.1. Let 0 € Aut(G). Then ¢ is a k-involution if > = id, o # id and is defined over k.

Definition 2.1.2. Let G be a group and o a k-involution. Then we define the fixed point group of G as
H=G"={geGlog) =g}

From this, we can define a generalized reductive symmetric space as G/ H. Notice that if
we let T : G — G be a map defined as 7(g) = go(g) ! where Q = 7(G) = {go(g) ! | g € G},
then it follows that Q = G/H. Here, Q is called the generalized symmetric variety. If G is
semisimple, then Q is called a semisimple symmetric space.

For a general field k, we denote the set of k-rational points of G (respectively H) as Gk

(respectively H). Thus, the symmetric k-variety Gy /Hj, is isomorphic to Q = {go(g) 1 |g €



Gk}. When k = R, Gr/HR is called a real reductive symmetric space. Though we shall
introduce results for a general field k with characteristic not 2, the focus is on the case when
k=R.

Nonetheless, the study of symmetric spaces is that of both breath and depth. Associated
with G over an algebraically closed field is a natural fine structure of a root system and its
corresponding Weyl group in which both are dependent on a maximal torus of G. When we
move to a field that is not algebraically closed, there arises a second root system and Weyl
group that characterizes the k-structure of group G. This additional root system stems from a
maximal k-split torus A C G with an associated Weyl group along with the multiplicities of
the roots. These two components help in playing a large role in the representation of symmetric

spaces.

2.2 Tori Definitions

As we are considering real symmetric spaces, the understanding of tori is paramount. Hence,

we provide the following definitions.

Definition 2.2.1. A subgroup T C G is called a torus if T is connected, abelian, and consists of

semisimple elements. Moreover, T is a k-torus if it is defined over k.

Definition 2.2.2. Let T C G be a torus and o € Aut(G) an involution. Then T is called o-stable
if o(T) = T. Further, T = T} T; where T, is the connected component of (T N H) and T is the
connected component of {x € T |o(x) = x~'}.

Definition 2.2.3. Let T C G be a torus and o € Aut(G) an involution. Then
1. T is k-split if all elements of T can be diagonalized over k. On the other hand, T is called
k-anisotropic if T has no subtori that are k-split.
2. T is called o-split if o(t) =t~ forall t € T.
3. T is a G-quasi (or H-quasi) k-split torus if T is G-conjugate (or H-conjugate) to a k-split torus.

4. T is called o-fixed if o(t) =t forall t € T.
Note that a torus is called (o, k)-split if the torus is both o-split and k-split. Also for a torus

T, Tt is called the o-stable component and T, is the o-split component. From this definition,

we can consider the following decomposition of a torus.

Theorem 2.2.4. Let T C G be a k-torus. Then T = T,T; where T, N T; is finite and T, is the maximal
anisotropic subtorus and T is the maximal k-split subtorus.



221 Toriin Lie Algebras

Unfortunately, calculations within linear reductive groups (or Lie groups) can be quite com-
plicated. Luckily, we can consider the the Lie algebra that underlies that of a goup G. Here,
studying the structure of our symmetric space is analogous to the structure within the Lie
algebra, called the local symmetric space. Let g = Lie(G) be the Lie algebra of G. By abuse of
notation, we will use ¢ as an involution of g; i.e. ¢ € Aut(g) and ¢? = id. This ¢ is induced by
the o that acts on G and defines the symmetric space. Hence the definitions of a torus T of G
can be translated to the Lie algebra level.

Definition 2.2.5. Let t C g be a torus. Then t is called o-stable if o(t) = t. Further, t = tf ®t;
where tf = (tNh) and t; = {x € t|o(x) = —x}.

For consistency with our notation on the group level, we denote this toral decomposition
in the following manner.

Definition 2.2.6. Let g be a Lie algebra. Then

g=bhDq

where h = {x € g|o(x) = x} and q = {x € g|o(x) = —x}. Here, q is called the local symmetric
space of g relative to o.

In other words, h = Lie(H) (the +1 eigenspace of ¢) and q = Lie(Q) (the —1 eigenspace of
o). Relative to the Killing form, h and g are orthogonal spaces [7]. Note that § is a subalgebra
of g while q is not.

2.3 Orbits of Minimal Parabolic Subgroups Acting on Sym-
metric Spaces

To study the representations of symmetric k-varieties, one must consider the orbits of these
varieties. In particular, we study the orbits of a minimal parabolic k-subgroup P acting on the
symmetric k-variety Gy /Hy.

Definition 2.3.1. A subgroup B C G is called a Borel subgroup if B is connected and a maximal
solvable subgroup.



Definition 2.3.2. A parabolic k-subgroup Py is a connected subgroup that contains a Borel subgroup
and is defined over k.

The orbit of a minimal parabolic k-subgroup Py acting on the symmetric k-variety Gy /Hy
is represented by the double coset Py \ Gy /Hg. Consequently, there are several ways of charac-
terizing this double coset.

1. It can be characterized using the 0-twisted action: i.e. for x,g € G, define g * x :=
gx6(g)~".
2. It can be viewed as the Hy-orbtis acting on the flag variety Gy /Py by conjugation.

3. It can be viewed as the P, x Hy-orbits on G.

4. Tt can be viewed as the set Py \ Gy / Hy of (Pg, Hy)-double cosets in Gy.

All these characterizations are quite similar. Springer characterized these orbits when k
is algebraically closed and the Borel and parabolic subgroups are the same, [6]. Brion and
Helminck, characterized these orbits when k is algebraically closed and P is a general parabolic
subgroup, [[5],[4]]. Matsuki [3] and Rossmann [2] characterized these orbits when k = R and
P is a minimal parabolic R-subgroup. Helminck and Wang characterized these orbits over
general local fields, [22]. The focus of this thesis is on another characterization of these orbit
introduced by Helminck and Wang.

Theorem 2.3.3 ([22]). Let {T;|i € I} be the representatives of Hy-conjugacy classes of o-stable
maximal k-split tori in G. Then

P\Gy/ Hy = U WGk(Ti)\WHk(Ti)‘

iel

As the theorem suggests, it suffices to determine the conjugacy classes of o-stable maximal
k-split tori and understand their associated Weyl groups. To begin, we introduce the definition
of a Weyl group for a torus T of G.

Definition 2.3.4. Let T C G be a torus and H the fixed point group of G. Then the Weyl group of T
with respect to H is
Wi (T) = Nu(T)/Zu(T)

where Ny (T) = {x € H|xTx™ ! C T} and Zy(T) = {x € H|xt = txforallt € T} are the
normalizer and centralizer of T, respectively.

Remark 2.3.5. If T C G is a maximal torus, then T = Z(T) = N(T).



2.3.1 Weyl Group for Toral Lie Algebras

Let g C gl(¢,C) be a complex semismple Lie subalgebra and u be a compact real form of g.
Note that u = Lie(K) where K is compact subgroup of GL(¢,C). Let t be a maximal abelian
subalgebra of u. We can associated the Cartan subalgebra h = t ® it. So define the Weyl group
of g as follows:

W(t) = N(t)/Z(t)

where Z(t) = {A € K|Ada(H) = HforallH € t} and N(t) = {A € K|Adas(H) C
tfor all H € t}.

For w € W(t), let A be the corresponding equivalence class in N(t). Then the action of
W(t) on t is defined as follows. Let H € t. Then w - H = Ad 4 (H). We can extend this action
to the Cartan subalgebra h:i.e. w- H for H € h.

It is typical to view the Weyl group W(t) as the group generated by simple reflections s,
for all simple roots «. Recall that the reflection is defined as follows.

R 1)
(B)=p- T

Proposition 2.3.6. For each root, there exists an element w, € W such that w, -« = —a and
wy - H=H forall H € b with (x, H) = 0.

Proposition 2.3.7. The Weyl group W is generated by elements w, as « rangers over all roots.

2.4 Commuting Pairs of Involutions and Semisimple Sym-
metric Spaces

Since k = IR, we seek to investigate the Hr-conjugacy classes of o-stable maximal R-split
tori. However, the challenge arises when considering the R-split condition. To remedy this,
we must transition to commuting paris of involution over C guaranteeing that the splitting
condition is satisfied.

Suppose Gy is a real semisimple Lie group and gy = Lie(Gy) is the Lie algebra associated
to Go. For an involution o € Aut(Gyp), we have the fixed point group of o denoted (Gy)“.

Definition 2.4.1. Let H C Gy be a closed subgroup with associated Lie algebra b = Lie(H) such that
(G§)° € H C (Go). Then the pair (Go, H) is called a semisimple symmetric pair and (go,h) is a
semisimple locally symmetric pair.



Hence, we obtain the affine (or semisimple) symmetric space Go/H. Likewise if G is
reductive, then we have the reductive symmetric pair (Go, H) and reductive locally symmetric

pair (go, ).

Definition 2.4.2. Let (go,h1) and (go, b2) be semisimple locally symmetric pairs. Then they are
isomorphic if there exists ¢ € Aut(go) such that ¢(go) = go and ¢(h1) = bha.

Definition 2.4.3. Let 6 € Aut(go) be an involution and gy = € & p where ={x € go |, 6(x) = x}
and p = {x € go|0(x) = —x}. If to is a maximal compact subalgebra of go, then 0 is called a Cartan
involution.

Note that by compact we mean that the Killing form is negative definite. Also, we will
refer to ¢ and p as the +1 and —1 eigenspaces of gy with respect to 6. With the following
result, we get that Cartan involutions for real semisimple Lie algebra are unique up to inner
automorphism. On the group Gy, a Cartan involution has a maximal k-anisotropic (compact)

tixed point group. Hence, 0-split implies R-split.

Proposition 2.4.4. Let 01, 6, € Aut(go) be Cartan involutions. Then there exists ¢ € Int(go) such
that 819~ = 6,.

With this, we can determine the involution that commutes with our fixed involution ¢.

Proposition 2.4.5. [1] Let go be a real semisimple Lie algebra with a given involution o. Let 6 be a
Cartan involution. Then there exists ¢ € Int(go) such that 8¢~ commutes with o.

From Proposition 2.4.4, it follows that pf¢ ! is a Cartan involution. By abuse of notation,
we denote this Cartan involution as 6. Hence, we can find a Cartan involution 6 such that
0o = ob.

Corollary 2.4.5.1. Let (go, h) be a semisimple locally symmetric pari with the associated involution o.
Then there exists a Cartan involution 0 of go such that o = ¢6.

We also see that a semisimple locally symmetric pair determines the pair of commuting
involutions. Now we will show that this pair of commuting involutions are involutions of the

complexification of go.

Definition 2.4.6. Let g be a Lie algebra over C and g® be the real Lie algebra. A real form of g is a
subalgebra gy C g® such that each z € g can be uniquely written as z = x + iy with x,y € go. This g
would be the complexification to go. A compact real form w is a real form of g having a negative definite
Killing form.

10



Definition 2.4.7. Let g be the real form of g. Define the mapping T: g — gas T(x +iy) = x — iy
for x,y € go. Then T is called the conjugation map with respect to go having the following properties.

i) t(t(x)) =x
(i) T(x+y)=x+y

(iii) T(cx) = ¢x for some scalar c.

(iv) T([x,y]) = [t(x), 7(y)]

Proposition 2.4.8 ([22]). Let 6 be a Cartan k-involution of g and m C g a 0-stable Lie subalgebra.

Then 0|m is a Cartan involution of m over k.

Theorem 2.4.9 ([24]). Let g be a complex semisimple Lie algebra and 6; € Aut(g) be commuting pairs
of involutions for i = 1,...,n. Then there exists a compact real form u of g, with the conjugation map
T, such that 6,t =t fori =1,...,n.

Corollary 2.4.9.1. Let g be a complex semisimple Lie algebra and 6 € Aut(g) be an involution. Then

there exists a unique 9-stable compact real form of g.

Proof. Let T be the conjugation mapping of the compact real form u. It follows from Theorem
2.4.9, that 0T = 0. As these are linear maps, they share the same eigenspace. Thus, we get
f(u) = u. Set p = 07. Then p is also a conjugation mapping of u. Let g, = {x € g|p(x) = x}.
From Proposition 2.4.8, 0|g, is a Cartan involution. Therefore, g, = un g; Giung,. O

Note that the linear algebra result used in the previous proof is actually a statement of
equivalence; i.e. 0(u) = u if and only if 07 = 76.

For commuting pairs of involutions, order matters. In particular, the order helps to signify
the involution defining the symmetric space with the other being the Cartan involution for
the real form of g. Hence we denote the ordered pair as (6,0) where the first involution
determines the real form (the Cartan involution).

Let u be a (6, 0)-stable compact real form of g with conjugation map 7. Set = 6t and
0 = o7. Then it follows that (gg, o|gr) is a semisimple locally symmetric space corresponding
to (0, 0). Moreover, [14] yields that the isomorphy class of (gg, o|gr) does not depend on a

choice of u.

Remark 2.4.10. Pairs of commuting involutions of g correspond bijectively to pairs of commuting

involutions in Aut(g).

11



The isomorphy of these pairs correspond directly to affine symmetric spaces that are
associated with the semisimple locally symmetric pair.

Theorem 2.4.11 ([24]). The inner (resp. outer) isomorphism classes of the semisimple locally symmetric
pairs (go, h) correspond bijectively to the inner (resp. outer) isomorphsm classes of ordered pairs of

commuting involutions (6,0) of g or Aut(g)°.

Many have studied the structures associated with these semisimple locally symmetric pairs
such as Berget, Cartan, Helminck, Oshima and Sekiguchi. See [21] for further discussion and
notation.

2.5 More on Cartan Involutions

We also get the following results for Cartan involution 6 on the group level. Once again, we

abuse notation for 0.
Lemma 2.5.1. If T is a maximal 0-split k-torus of G, then T is a maximal 8-split torus of G.

Lemma 2.5.2. Let ¢ : G — G be the map defined as ¢(g) = ¢ 10(x) for all g € G. Assume there is
a given involution 6 and that T(Gy) consists of k-split semisimple elements. Then any maximal 0-split
k-torus of G is maximal (6,k)-split.

It follows that o-stable maximal R-split tori of g can be viewed as a (o, §)-stable maximal
R-split tori (or 6-split tori) of g [22].

When discussing the action of the Cartan involution 6 on a reductive group G (or equiv-
alently Lie(G) and the corresponding root system), it is important to address notation.
We denote the general action of 6 as X!(Type, €;) where 6 acts on a root system of type
X = A,B,...,G with rank(X) = a. Moreover, b is the dimension of the (—1)-eigenspace of 6
while €; represents the quadratic element associated when classifying pairs on involutions.
We shall elaborate on the topic of quadratic elements later in the chapter. The following table
shows the type of involutions, their diagram representations, restricted roots and the type of

restricted root systems.
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Table 2.1 Involution Diagrams

6 Type 6-Diagram Ay Dy Type
1 2 -1 1 -1 1
Al O—=0 - --0—0 O—0---0—0 A
1 n 1-1 1
ALl o O e O—o O—O0 - -0—0 A
1 2 14
AIlI, . A
o ; O—0O -+ -0===0
(AIV (p=1)) . BC,
(1<2p<)
s o—oo—/
1 2 (-1
Alll, . ‘ -1
0 oO—0 - -0==0 G
(1=2)
o—O -
BI
1 2 7 p-1  p
(BII (p=1)) O—O0----O—@ - -0==—0 O—O - -O==0 BC,
(1>21<p<
1 2 -1 l -1 l
CI O—O - -O0==<=0 O—O - -O==<=0 C
CIll, 1 4 p—1 P
(1>3) —O0—0 - O—0 - 0=<—9 oO——0 - -O0—=0 BC,
(1<p<30-1)
1 -1 -1
Clly e O e O =<0 O—O0 - -O==0 c
1
(1=2)

13



Table 2.1 — Continued

DI,
(DII (p=1)) LA 1 2 plop B
O O O -O==0 P
(I1>4,1<p<Ii-1)
DI, Dy
(1=4)
DIII, ¢
1 =2 l— _
(l 22) o—O—O0 - Cl 32 777@31 : :[ Cl
DIII, K : »
(1=2) - o oo 9*> OO omed B
2 2
El 3 T4 5 6 1 3 1 5 6 Ee
O—O0—=0 O O—oO0 O—O0
1
Tz 3 4 3
o S O—0O==0—20
EIT ? CT) L,
9*
1
2 2
EIII o—o—i—o—o O==0 B,

14



Table 2.1 — Continued

EIV 1 2

1 2 A
o—-=o0
2 2
EV 1 3 T4 5 6 7 1 3 I4 5 7 E;
O O O O O O O O O O
1 2 3 4 1 2 3
EVI o0—o0 o—e O—O==0—20 E
1 I 2 3
EVII O L 4 @ O O—O==0 Cs
2 2
EvIiL 3 Tz; 5 6 7 8 1 3 TAL 5 6 7 s s
o0—0—0—0—0—0—0 O0—0 O0—0—0—0
4 3 2 1 1 2 3
O—0O—=—0—"-o=0
EVIX K
1 2 3 4 1 2 3
FI O0—0O0—=—0—"-o=O0 O—OCO—=—0—"-oO0 Fy
1
FII o—o—=0 O e Aq
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Table 2.1 — Continued

Gy
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This notation has been adopted from Helminck and corresponds with the notation of Oshima-
Sekiguchi in the following manner. Note that within Table 2.3, we have the following relations.

Helminck Oshima-Sekiguchi Note
A)(Ille), i#€  BCH, il | m=L+1-2p
Bl (I, €;) B m=20+1-2p
Cl (I €;) BC, m=_0—"2p
D} (L, €;) B m=20—2p

17



Table 2.3 Notation for Cartan Involutions

Cartan Helminck Oshima-Sekiguchi g b
Al Al(L &) Aj sl(¢,R) so(0+1—1,i)
All A, (11,€;) Al su*(20+2) sp(l+1—1,i)
AS, (Il e) i # ¢ Cri,i=#1 sull, 0) su(l41—i,i) 4 su(f —i,i) + so(2)
Alll A, (I, €) cry su(l,0) sI(,C) + R
Ab(111,, €) BC;i’;'z’1 su(l—p+1,p) su(l—p+1—i)+su(p—ii)+so(2)
BI B} (Ia, €;) B;’f;l so(20+1—p,p) so(20+1—p—i)+so(p—i,i)
ol Cl(Le)i#¢ Cyl i# e sp(4,R) su(f —i,i) +s0(2)
Ci(Ie) Cypi#t sp(,R) sI((,R) + R
Cl (Il ) BC, sp(€—p,p) sp(€—p—ii)+sp(p—ii)
CII Chy (1T, €) i # ¢ c;? sp(L,0) sp(0 —i,i) +sp(f —1i,i)
ng(llb,eg) C;‘,'i sp(¢,0) sp(¢,C)
D (I, &) B;;l so(20 —p,p) s0(20 —p —i,i) +so(p —1i,i)
DI D{(Iye)i# ¢ D};i#¢ so(£,0) so(€ —1i,i) +so(f —i,i)
D{(Iy, €) D}/i so(£,0) su(¢,C)
DY,(IT,,€;) i # ¢ Cyli# ! s0* (40) su (20 — 2i,2i) +s0(2)
DIIT DS, (111, €0) Cyh s0* (4¢) su*(20) + R

18



Table 2.3 — Continued

DS, (11T, ) BC; ! s0* (40 +2) su* (20 +1 —2i,2i) +50(2)
£l E¢(I,€1) E¢p €6 (6) sp(2,2)
ES(1,€) Ef A €6(6) sp(4,R)
- EX(I1,€1) Fyt e6(6) su(3,3) +5s1(2,R)
EX(I1,eq) Fig e6(2) su(4,2) +su(2)
- E2(II1, ;) B! eo(~14) s0*(10) + s0(2)
E2(II1, &) BCSY! e6(—14) 50(8,2) +s0(2)
EIV E3(IV, €;) A5 4 €6(—26) fa(—20)
E7(V,e1) E},D e7(7) su(4,4)
EV EZ(V,e€) Ej A e7(7) sl(8,R)
EZ(V,e7) El; er(7) su*(8)
- EX(VI,e) Fyt er(_5) s0*(12) +sl(2,R)
EA(VI,ey) Fy er(s) s0(8,4) + su(2)
vl E3(VII,e€) Cyy e7(_25) Co(—26) T 51(2,R)
E3(VII,e) Cyy e7(_25) eo(—14) +50(2)
- E§(VIII, e) ESp eg(s) 50(8,8)
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Table 2.3 — Continued

E§(VIII, eg) Ei: eg(s) 50*(16)
—_— E3(IX,€1) ot es(_24) e7(—25) +51(2,R)
EA(IX, €) Fy eg (o) e7(_5) +su(2)
1 Fy(1e1) Fic faa) sp(3,R) +51(2,R)
Fi(I,e4) Fip faay sp(2,1) +su(2)
FII Fl(Le) BCY, fa—20) s0(8,1)
G G3(ei) Gi 22) sl(2,R) +s1(2,R)
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CHAPTER

3
[-POSET CONSTRUCTION

To apply Theorem 2.3.3, we must classify the Hy conjugacy classes of o-stable maximal k-split tori.
With an associated order, the indexing set I is realized as a poset representing these conjugacy classes

of o-stable maximal k-split tori. See Figure 3.1.

T; with T;” maximal (o, k)-split tori

dim of T;~ decreases

dim of TZ-Jr increases

T; with TZ.Jr maximal in Hy

Figure 3.1 The poset of Hi-conjugacy classes of -stable maximal k-split tori
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In Figure 3.1, each node represents the Hy conjugacy classes of o-stable maximal k-split tori. As
each tori T; can be written as T; = T; T.", each row of the poset corresponds to the dimensions of T;"
and T; . At each level, the tori representatives for that row share the same dimensions for their T;"
and T;” parts. We orient the poset so that the representative tori with a maximal T;  part is on top,
while those with a maximal T;" part are situated in the bottom level. Thus as we transition from top to
bottom, the dimension of T;” decreases and that of T;r increases.

This paper establishes a foundation in creating an algorithm to determine a sub-poset of this I-poset.
In particular, we seek to determine a “top” and “bottom” of this sub-poset and the possible conjugacy
classes that lie in between. But before we delve into that intent and algorithm, more foundation must
be established.

3.1 Py\Gy/Hx Modfication

We continue the usual set up for o-stable maximal k-split tori. Recall § = 6 where 0 is the Cartan
involution. Then gz = t® p would be the Cartan decomposition into its +1 and —1 eigenspaces,
respectively. Similarly, g5 = b @ q is the decomposition into 41 and —1 eigenspaces of o|gg, respectively.
Here, we obtain the correspondence between 6-split (resp. o-split and (6, 0)-split) tori of G and Cartan
subspaces t of p (resp. q and p N q). This provides a realization of semisimple locally symmetric pairs
(go,0) as (0, 0)-stable Cartan subalgebra t of gy such that tNp (resp. tNp and tNp N q) is maximal and
abelian in p (resp. g and p N q).

It follows that pairs of commuting involutions of g correspond bijectively with those of G. By abuse
of notation, we continue to denote the ordered commuting pair as (6, ) for involutions and lifted
involutions of the Lie algebra level.

Let a C g be a o-stable R-split tori. We know there exists an involution 6 such that ¢ = o0 thereby
making a 6-stable. From Corollary 2.4.9.1, there exists (6, 0)-stable compact real form of g. Then the 6
decomposition of a would be a = a; & a,. Note that a; is contained in the compact real form of g.
Yet a being IR-split forces a = a, . Hence o-stable R-split tori can be realized as (6, o)-stable maximal
6-split tori for commuting involutions (6, o).

This observation allows us to modify Theorem 2.3.3. Let H = G and K = GY. Set H* = (H N K)°.
Then H,' is the set k-rational points of H.

Theorem 3.1.1 ([22]). Let K be the fixed point group of 8 and H the k-open subgroup of the fixed point group of
0. Let HY = (HNK)°. Then

P \Gy/H, = | JWg, (Ai)\ Wy (Ai)
icl

where {A; |1 € I} are the representatives of H,' -conjugacy classes of (6, o)-stable maximal k-split tori of G.
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Now it suffices to consider the semisimple locally symmetric space (gg, o|gz) corresponding to

(6,0), and determine the the corresponding maximal (6, 0)-stable 6-split tori.

Proposition 3.1.2 ([22]). Let 0, o € Aut(G) be k-involutions where 0 is a Cartan involution and 60 = o0. Let
H = GY. If two (6, )-stable maximal k-split tori are Hy-conjugate, then they are also H,-conjugate.

Since, we now want to consider (6, )-stable maximal R-split tori (or 0-split tori) of g, we can revisit

the classification theorem introduced by Helminck and Wang.

3.2 Standard Tori & Involutions

Recall we have modified Theorem 2.3.3.

Theorem 3.2.1. Let K be the fixed point group of 6 and H the k-open subgroup of the fixed point group of o. Let
H*™ = (HNK)°. Then

P \Gy/Hy = P\Gy/H} = | W, (Ai)\Wp+ (Ai)
i€l

where {A; |1 € I} are the representatives of H,} -conjugacy classes of (6, o)-stable maximal k-split tori of G.

Our focus for this section will center on this classification within the Lie algebra. Let g = Lie(G).
We denote Qlﬂ(f’g) to be the set of all (0, 0)-stable maximal k-split tori. From Theorem 3.1.1, we now
want the h;"-conjugacy classes and will denote this set as Qlﬂ(f"r) /by . Before finding this , we determine

the h-conjugacy classes of (6, 7)-stable maximal quasi k-split tori. We denote this set as 2(%7) /p.

Definition 3.2.2. Let t C g be a torus. Then t is called a quasi k-split torus if t is g-conjugate with a k-split
torus of g.

This leads to another set of interest for this characterization. Let 918'0 be the set of quasi k-split tori
that are b-conjugate with a k-split torus. Let 2[89’0) /b denote the set of h-conjugacy classes of Ql(()g’a).

To determine the sets Qlu(f’g) /b, A7) 7y and Qlﬂ(f’a) / h]]—(i_ , we use the notion of standard tori and
standard involutions. Consider the natural map 7 : Qlﬂ((g’g) /b — Ql[g)’g) /b that sends each b,/ -conjugacy
classes of a o-stable maximal k-split torus to its h-conjugacy class. Note that the image of 7 is in fact
Ql(()g"T). Hence the h-conjugacy classes of o-stable maximal quasi k-split tori are all h-conjugate to a
o-stable maximal k-split torus. Luckily, this map # is injective when k = IR. So we are able to classify

Ql[g’a) /by by classifying the image and fibers of 77. To help, we start the discussion on standard tori.
Definition 3.2.3. Lef a1, a1 € Qlﬂ(f’a). The pair (a1, a) is called standard if a; C a, and af D az+ . For this,

we say that ay is standard with respect to aj.
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Given a single involution, all elements of QII(; “) and () can be placed in standard position. So by
fixing a € Q(ﬂ(f’a) with a; maximal, we can put a; and a; is standard position with a. When there is no

confusion, we will write a;” instead of (a;); .

Proposition 3.2.4 ([21], Theorem 4.1.4). Let (a1, ap) be a standard pair of (0, 0)-stable R-split (or quasi
R-split) tori of g. Then we have the following conditions:

1. There exists § € Zg(a; @ ay ) such that adg(ay) = a.

2. Ifny = ﬂdgfla(g) and ny, = ada(g) 1, then ny € ng(ay) and ny € ng(ay).

8
3. Let wy and wy be the images of ny and ny in W(ay) and W (ay), respectively. Then w% = w% = e and

(a1)4, = (a2), = ay @ ay which characterizes wy and w.

Remark 3.2.5. From part 3 of Proposition 3.2.4, the involutions wy and 5 are independent of the choice of the
element g € Zg(a; @ ay ) with adg(ay) = a.

This leads to the following definition of standard involutions.

Definition 3.2.6. Let wy and wy be defined as above. Then wy and wy are called the a;-standard involutions of
W(a;) fori=1,2.

Let (6,0) be the ordered commuting pair of involutions of g and h. We mention the results from

various propositions in [22] and [15].
1. (Lemma 11.5) Any maximal 6-split k-torus of g is maximal (6, k)-split.
2. (Proposition 2.14) All maximal (o, k)-split tori are hi-conjugate.
3. (Proposition 11.3 & 11.4) Any 6-stable maximal k-split torus is 0-split.

Theorem 3.2.7. There is only one hr-conjugacy class of (8, c)-stable maximal (o, R)-split tori and one class of

(0, 0)-stable maximal R-split, o-fixed tori.

From the previous theorem, it follows that top and bottom of the I-poset will only consist of one
vertex.

Consequently by fixing a € Qlﬂ(f’g) so that a, is maximal, we can put any torus in 2[](1{9,0) in standard

position with a. Since QII(RQ'O) C 2A09) this observation also holds for 21(¢). That is, any torus in A(0.0)
can be placed in standard position.
Also for some fixed a € anie’g), we can find a torus that is hy-conjugate to a. Hence, we can modify

Proposition 3.2.4

Corollary 3.2.7.1 ([21], Corollary 4.1.7). Let a; be put in standard position with a where a™ is a maximal
(0, R)-split torus of g. Then we have the following conditions:

1. There exists § € Zg(a; @ a+) such that adg(a;) = a.
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2. Ifn=adg 1, then n € ng(a).

3. Let w be the image of n in W(a). Then w* = e and (a)J, = a] @® o™ which characterizes w.

Figure 3.2 Action of g1 and g, on the standard pair in Corollary

3.2.1 Weyl Group Connection for Standard Tori

From Corollary 3.2.7.1, we can associate a Weyl group element w with the torus a € Qlui'a, We call w an
a-standard involution. Now the issue of characterizing H; -conjugacy classes translates to determining

conjugacy of Weyl group elements which are a-standard involutions.

Proposition 3.2.8 ([21]). Suppose aj,a; € Ql%’" are both standard with respect to a. Let wy and wy be the
a1-standard and ap-standard involutions, respectively, in W (a). Then ay and ay are b -conjugate if and only if

wy and wy are conjugate under W (a, hﬁ).

Corollary 3.2.8.1 ([21]). Suppose o}, a, € A% are both standard with respect to a. Let w) and wh be the
aj-standard and o}-standard involutions, respectively, in W (a). Then o} and o, are by-conjugate if and only if

wq and wy are conjugate under W(a, b).

Essentially, these standard involutions define a one-dimensional piece of the (—1)-eigenspace of
o that can be flipped thereby adding a dimension to the (+1)-eigenspace of ¢ acting on the torus.
In fact, we can determine the involution within the Weyl group that performs this flipping action of

eigenspaces.

Theorem 3.2.9 ([26]). Let (a1, ap) be a standard pair of (8, o)-stable R-split (or quasi R-split) tori of g. Then
there exists g € Z(a; @ a5 ) such that w = 0(g)g~' € W(a).

Using the finite set of involutions in W (a, hy;), we can determine which (6, o)-stable maximal quasi
k-split tori are hr-conjugate. A natural next step would be to determine the involutions w € W(a) that
are a;-standard involutions for some a; € Ql](lf’a). Moreover, what would @(a, h;;) and the conjugacy

classes of the involutions in W(a, ) look like?
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3.3 R-Involutions Acting on Root Systems

Fortunately within the study of real symmetric spaces, much of its fundamental structure is encoded
on root systems. With this switch in focus, we take the time to recall background information regarding
root systems. This foundation is adopted from [23]. Let E be a finite dimensional vector space over IR.
With this space, we associate a positive definite symmetric bilinear form (-, -).

To determine maximal (6, o)-stable tori, we consider the root systems of the reductive groups and,

consequently, their associated Lie algebra. We first introduce the notion of a root datum.

Definition 3.3.1. A root datum is a quadruple ¥ = (X, ®, XV, ®") where X, X" are free abelian groups of
finite ranks, in duality by the pairing X x XV — Z denoted by the bilinear form (-, -), ® and ®" are finite
subsets of X and X" with a bijection & — " of ® onto V. If a € O, we define endomorphisms s, and s,v of
X and XV, respectively, by sy (x) = x — (x,«")a and s, (7v) = x — (&, v)a" forall x € X and v € X".

The following two axioms are imposed:
(1) Ifa € ©, then (a,a") = 2.
(2) fa € D, then s,(P) C P, s,v(®V) C DV.

Note that X = X*(T) is considered to be the additively written group of rational characters of the
torus T and XV = X, (T) is the group of rational one-parameter multiplicative subgroups of T; i.e.
XV = Hom(GLq(k), T).

When T C G (resp. t C Lie(G)) is a maximal torus or maximal 6-split torus, the root datum is
guaranteed. We denote ®(T) (rest. O(t)) to be the root system of T (resp. t) with the associated Weyl
group W(T) (resp. W(t)). We continue the abuse of notation and call the involutions acting on the root

system ¢ and o.

Notation 3.3.2. Let ® = ®(T) where T is a maximal torus and ® C X. Let 6,0 € Aut(®) be involutions.
Then we have the following definition.

Xo(0) = {xeX|x—0(x)=0}
Xo(0,0) = {aeX|la—0c(a)—0(a)—0c0(x) =0}
Pyp(0) = {aecPla—0(x)=0}
Py(0,0) = {aePla—o(a)—0(a)—cb(a) =0}
Dy = D/Py(0) = P(a)
Dy, = P/ Dy(6,0)

The restricted root system @y helps in determining the maximal 6-split tori, or equivalently,

maximal R-split tori as we discussed earlier. Moreover for ®, there exists a natural projection map
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mg : @ — Py defined as 7mp(a) = 3 (x —0()). Likewise, we define the natural projection map
Tge: P — P, as my(a) = 1 (0 — () — 0(a) — 0(w)). For a basis A, the basis for @y, is defined as
Doy = 1190 (P — Dp(0,0)) and Ag(8,0) = AND(6,0) for Py(6,0).
Lemma 3.3.3. Let ®y(0), ©o(60,0), Xo(0) and Xo(6, ) be defined as above. Then we have the following.

(i) Xo(0) and ®y(0) are O-stable.

(ii) Dy(0,0) and Xo(0,0) are (0,0 )-stable.

(iii) ®y(0) and Oy (6, ) are closed subsystems of .

3.3.1 Opposing Involutions

When discussing 6-stable maximal k-split tori, we must consider both action of 6 and opposite involution
—id - = —6. We have defined the action of 0 in Notation 3.3.2. Similary, we can define the action of
—0. Hence for a 6-stable maximal quasi k-split torus a C g, let X = X(a) and ® = ®(a). Then we have
the following.

Xo(0) = {xeX|6(x)=x}

Xo(=0) = {xeX|6(x)=—x}

Dp(0) = PNXo(0)

Qy(—0) = PNX(-0)
Dy = D/Dy(0) = (P — Do(6))
Dy = D/Dy(—0) = m_g(®— Py(—0))

We now denote the natural projection from ® to @y as 77y and 77_g as the natural projection from

® to ®_4. Further, we define an order dependent on both involutions.

Definition 3.3.4. Let > be the linear order on ®. The order - is called a 0T -order if it has the property
fxeX, x=0& x ¢ Xo(0), then 0(x) <O0.

The order > is called a 6~ -order if it has the property
fxeX, x>0& x ¢ Xo0), then 6(x) > 0.

A 6" -order on X will be called a f-order on X. Likewise, a §~-order on X is called a (—6)-order on
X. Note that a 6~ order on X is a #-order on X for —6 of (X, ®).

Definition 3.3.5. A basis A C ® with respect to a (£6)-order is called a (+6)-basis of .
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Notation 3.3.6. Let X, Xo(+£6), @, ©o(+6) and P and be defined as above. For a 0-basis A,
* No(0) =AND(0)
* Do =g(A—Do(0))
* Ao(—0) = AN P(—0)

* A pg=1 (A~ Do(-0))

Hence the ordered bases of ®y(+0) and ®.¢ , and are Ag(+0) and Ay , respectively. We extend

this notation on 6 to coincide with that of the commuting involution pair (6, ).

Definition 3.3.7. A linear order - on ® is called a (6, 0)-order if
a €D, a0, anda ¢ y(0,0), then o(w) > 0and 6(a) > 0.

Hence a (6, 0)-order on X includes orders on ®((6, ) and @y,

Definition 3.3.8. A basis A C ® with respect to a (6,0)-order is called a (6, 0 )-basis of P.

3.4 Weyl Group
Recall for a basis A C ®, the Weyl group of ® is defined as W(®) = (s, « € A) where

2(a, B)

(0, )

sa(B) =B — a=p—(apla

We denote the Weyl gorup of ®((0) as Wy(6) = W(Py(6)) C W(P). With the natural projection map
g : X — Xo(0), it follows that X = X/X,(0). Let W1 () = {w € W(®) |w(Xo(0)) = Xo(0)}. Every
w € W1(0) induces an automorphism, denoted 774(w), of Xy where 75(wx) = 79(w)7e(x) for some
X € X. Define Wy = {my(w) |w € W1(0)}. Then W = Wy(0) /Wy (8) (see [19], 2.1.3). This is called the
restricted Weyl group with respect to the action of  on X. It is important to note that Wy may not be a
Weyl group in the sense of Bourbaki [9].

Analogously, we can consider the approach in defining the restricted Weyl group for the ordered

commuting pair (6, 0).

Notation 3.4.1. Let X((0,0), ®o(6,0) and @y, be defined as in Notation 3.3.2. Then we have the following.

Wo(6,0) = W(Po(6,0)) = {w € W(P)|w(Po(6,0)) = Do(0,0)}

Wi(6,0) = {weW(®)|w(Xo(0,0)) = Xo(0,0)}
Xoo = X/Xo(0,0)={xeX|o(x)=0(x) =—x} (with the natural map rtg )
Wer = {mpo(w)|we Wi(6,0)}
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Though Wy, may not be a Weyl group in the sense of Bourbak, we do have the following result.

Proposition 3.4.2. Let G be a reductive group and T C G a maximal k-split torus of G. Let X, Xo(0,0), ®,
Dy(0,0), Py, A, Dy y, Wo(6,0), Wi(6,0) and Wy, be defined as above and A = {t € T | x(t) = e forall x €
Xo(0,0)}. Then

1. Ifwe W(6,0), then w(A) is a (6, 0)-basis.
2. Givenw € W1(0,0), w € Wy(0,0) if and only if 7ty (w) = 1 if and only if 7t (w)Dg s = Dy
3. Woo = Wi(6,0)/Wo(6,0)

4. Wy(0,0)/Wy(8,0) = Ng(A)/Zg(A) where Ng(A) and Zg(A) are the normalizer and centralizer of
A in G, respectively.

Remark 3.4.3. When A is a maximal k-split, 6-split or (6, k)-split torus, then @y, is a root system with Weyl
group Wy .

3.41 Weyl Group Conjugate

Let E be the Euclidean space. For w € W(a), let E(w,{) C E be the eigenspace of w with eigenvalue .

In particular, we will focus on cases when { = £1; i.e.,, E(w, £1) = {a € E |w(a) = +a}.
Lemma 3.4.4. Let 0 € Aut(®) such that 6> = id. Then E(6,+1) and E(6, —1) are orthogonal spaces.

Proof. Leta € E(6,+1) and g € E(6, —1). Then («,B) = (6(«x),0(B)) = (&, —B) = —(a, B) where (-, )

is the Aut(®)-invariant symmetric bilinear form associated with ® . Hence (&, ) = 0. O

We can determine the conjugacy classes of involutions w € W(a) with E(w, —1) C E(¢c — 1) and
wo = cw. This follow from the fact that a/ is a maximal (¢, R)-split torus and a;, C a, . Each such
w € W(a) yields a subset of a basis A of ®. Let ® = ®(a) and W = W(a) = W(P(a)).

The conjugacy of A-standard involutions can be restricted to the conjugacy of their corresponding

parabolic subsets.

Definition 3.4.5. Let A be a basis of .

(a) Two subsets A1, Ay C A are called Aut(®)-conjugate if there exists ¢ € Aut(®) such that ¢(A1) = Ay. If
@ € W(®), then Ay and Ay are W (D)-conjugate.

(b) An involution w € W is called A-standard if A is a (—w)-basis of ® (i.e. E(w, —1) N A = Ao(—w)).

(c) Two involutions 61, 6, € Aut(®) are called Aut(®)-conjugate (resp. W(D)-conjugate) if there exists
@ € Aut(®) (resp. w € W(D)-conjugate) such that pb1p~! = 0 (resp. wh w™! = 6,).

Proposition 3.4.6. [26] Let A C ® be a basis and w1, wy be A-standard involutions in W. Then wq,wy are

W-conjugate (resp. Aut(®)-conjugate) if and only if A(wy), A(wy) are W-conjugate (resp. Aut(P)-conjugate)
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Definition 3.4.7. Let w € W be an involution. Then we have the following.

(a) w is a maximal involution if E(w, —1) is maximal; i.e. w is the longest involution of W with respect to the
basis A.

(b) wis a o-maximal involution of W if E(w, —1) C E(0, —1) and w is a maximal involution of W (o).

Proposition 3.4.8 (Proposition 2.11, [26]). Let w € W be a maximal involution. Then we have the following.
1. There is a basis A C ® such that w is the opposition involution of W with respect to A.

2. All involutions w € W with E(w, —1) maximal are conjugate.

Definition 3.4.9. Let A be a (—0)-basis of ® and wy a fixed 6-maximal involution of W(80) which is A-standard.
An involution w € W is called (A, wy)-standard if w is A-standard and A(w) C A(wy).

Corollary 3.4.9.1 ([26]). Let 6 € Aut(®) be an involution, A a (—0)-basis of ®, wy € W(0) a 0-maximal
involution, which is A-standard. If wy, wy € W are (A, wy)-standard involutions, then wy, wy are W-conjugate

(resp. Aut(®)-conjugate) if and only if A(wy) and A(w,) are W-conjugate (resp. Aut(®)-conjugate).

From this corollary, we find that the classification of the conjugacy classes of w € W(a) with
E(w,—1) C E(co,—1) actually reduces to studying parabolic subsets of ®y(—wy) where wy is a -
maximal involution in W (a). Helminck provides a characterization of parabolic subsets in the following

proposition.

Lemma 3.4.10 ([26]). Let ® be irreducible and w € W an involution. Then ®y(—w) is of type r - A1 + Xy
where either Xy = @ or one of By({ > 1), Co(¢ > 1), Dyy(¢ > 1), E, Eg, Fy, or Gy. Here, v - A} =
A1+ A+ - -+ Aq (v times).

Let @ be irreducible and w € W an involution. The conjugacy of involutions (and consequently
that of the parabolic subsets) is based on looking at orthogonal components Ay(w) and Ag(—w). The
interpretation of these classes can be described within a diagram.

Denote W as the set of W-conjugacy classes of involutions in W. Define an order > on W so that
for for [wq], [wa] € W we have [w;] > [w] if and only if A(w;) C A(wy) for some representatives w; of
[w;](i = 1,2). This order allows us to construct this diagram, I-poset. These diagrams are denoted as
L(Py(—w)). Some of the diagrams L£(®P) are provided within the following table. For more context,
see [26].

30



Table 3.1 Diagrams of W(®) Conjugacy Classes

A= 1) L(A) = £5(A}) = Aln) with n = [51]

A(”)' o—©0—o0- - - - -0—0—0

B (1 >2) — £*(B;) = B(l)

B(Z): % % B(6): %
G (1=3) L(CG) = L(G) =B(I)
Dy (1> 2) D(2l) L*(Dy) = D*(21)

L(Dy) =
D(4): % D(8): % D*(8): etc.
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Table 3.1 — Continued

Dojq (1 >2) L(Dyyy1) = L*(Dy41) = D*(21)
Es L(Ee) = L*(Eg) = A(4)
E, L(E;) = £*(E;) = E(7)
E(7): o—o—@—o—o
Es L(Es) = L*(Es) = E(8)
E(8)3 Q—O—O—@—O—O—Q
E L(Fy) = L*(Fy) = F(4)
Go
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Note that the I poset, mentioned earlier in this chapter is contained in the poset of all involutions
L(®P). By identifying the a;-standard involutions in W(a), we are able to employ the diagram and
describe the conjugacy classes of the tori a; and ay. So for a; and ay-standard involutions wy, w, € W(a),

there is the correspondence
a; Ca, < Oy, 2 Gy,

Hence given representatives of these conjugacy classes,

[al] < [az] <~ [wl] < [ZUQ] < E(wl,—l) D) E(w2,—1)
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CHAPTER

4

CHARACTERIZATION OF
PARABOLIC SUBSETS OF THE ROOT
SYSTEM

4.1 Quasi R-split Tori and Singular Involutions

We have described the connection between standard tori and Weyl group elements. In particular, for
each torus in standard position, we can determine a Weyl group involution. Hence the conjugacy of
these o-stable maximal k-split tori translates to the conjugacy of the associated standard involutions.

We can determine which Weyl group elements are related to standard tori, H-conjugacy classes
(resp. h-conjugacy classes), and Hg-conjugacy classes (resp. hi-conjugacy classes) for k-split and quasi
k-split tori.

Definition 4.1.1. Let a € 299, w € W(a) and g, = Z(a}). Then w is called o-singular if the following
hold.

2. ow = wor

3. o|lgw, gw) is k-split

34



4. [gw, 9w| N'h contains a maximal quasi k-split torus of [gw, 9w

A root o € ®(a) is called o-singular if the corresponding reflection s, € W(a) is o-singular. Or equivalently, if

(95, 0s,] € b then a is o-singular with o(a) = +a.

Proposition 4.1.2. Let a € Qll((e’a) with a; maximal. Then there is a one to one correspondence between the
W (a, h)-conjugacy classes of a;-standard involutions in W(a) and the W (a, b)-conjugacy classes of o-singular

involutions in W(a).

This proposition provides an avenue of addressing the original problem of classification. We now
need to consider involutions in W(a) and determine if they are o-singular involutions. We can obtain
much information from the 0-diagram where 6 is the Cartan involution; i.e., determining ®(a) when
projected to the (—1)-eigenspace. Note that ®(a) = @y and ®(a,a, ) = ®(a) N D(a, ).

Lemma 4.1.3. Let a € Ql](lf’a) with a; a maximal (o, R)-split torus of g and w € W(a) where w? = e. Then

the following are equivalent.
1. wis o-singular
2. ay, Ca,

Corollary 4.1.3.1. Let « € ®(a) such that o(a) = *u«. Then « is a o-singular root if and only if x €
P(a) N P(ay ).

Theorem 4.1.4. Let a € Qlﬁf’a) with a; a maximal (o, R)-split torus of g. Then there is a one to one correspon-
dence between the W (a)-conjugacy classes of o-singular involutions in W(a) and W (a)-conjugacy classes of

elements in W(a,a; ) = W(P(a,a;)).

Given an ordered commuting pair (6,0), ®(a) and W(a) can be determined from the 0-diagram.
By restricting o to ®(a), we can find the roots of the maximal o-split torus in ®(a). Using Table 3.1, we
can determine the conjugacy classes of elements in W(a, a, ) C W(a). These maximal involutions in

W (a, a, ) provides a location within the poset of W(a) to derive the structure of classes.

Definition 4.1.5. Let a be a 6-stable maximal quasi k-split torus of g with ® = ®(a) and « € P a 0-singular

root. Then we have the following.
* w is called complex relative to 0 if 6(x) = .
* w is called real relative to 0 if 6(x) = —a.

e w is called imaginary relative to 6 if 0(a) = w.

The complex roots provide a means of determine maximality for a f-stable maximal quasi k torus

of g.

35



Proposition 4.1.6. Let a be a 6-stable maximal quasi k-split torus of g with ® = ®(a) and « € O a 6-singular

root. Then we have the following.
1. a™ is maximal if and only if ®(a) has no real roots.
2. a~ is maximal if and only if ®(a) has 0-singular roots.

3. Ifa € ®(a) where 6(a) = —a, then a is real.

These 0-singular roots provide the capability of moving within the I-poset. In particular, we are
able to move step by step through the poset using, at each step, a real or §-singular imaginary root of a

maximal torus that corresponds to that node.

Corollary 4.1.6.1 ([25]). Let a € QLI(RQ’V) with a; a maximal (o, R)-split torus of g and w € W(a) where

w2

= e. Then we have the following.
1. Every involution in W(a) N W (a, ) is o-singular.

2. Let a € ®(a). Then w is o-singular if and only if a is a real root.

4.2 Conjugacy of Maximal R-split Tori

Now from the previous section, there is a way to determine the h-conjugacy classes of (6, 0)-stable
maximal quasi R-split tori. Recall that this avenue was pursued to eventually determine hr-conjugacy

classes of (6, 0)-stable maximal R-split tori. We shall discuss this connection and classification now.

Definition 4.2.1. Let (0, 0) be the usual ordered commuting pair of involutions. Then the ordered pair (6, 00)

is called the associated pair.

It is obvious that the associated pair commutes and (c6)? = id. We borrow the diagram from [15]
and [12] to elaborate on the relationship between the original pairs we have discussed and these new

associated pairs.

a ad yd
gg: h; < associated — ((g,’g 0)) < dual — ((gg 9’12))
) )
dual associated
4 {
(?;: 2‘;) < associated — ((?j ’;];)) < dual — ((?: (j,,(?))

Figure 4.1 Associated and Dual Pairs
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From [21] and [24], a list of associated pairs for each original pair is described. These associated pairs
aid in our effort to preserve R-splitness while yielding much information on maximal 8-split (R-split)
tori within H”. As we maintain 6-splitness, we now consider the projections onto the (—1)-eigenspaces
of 6, o and ¢6.

With the focus turning to ¢0, note that a new torus (from this involution) is produced. Nonetheless,
we mimic the actions described above for the quasi case. We now consider the action of ¢ on the
restricted root system @y to find the ¢6-split part inside the 6-split torus. Thus, we shall denote the
maximal R-split torus for (6,00) as m. Then m_, is maximal c6-split. It also follows that while being
f-split m_, is equivalent to the maximal torus mj} C b.

This provides more information on the structure within the poset. In particular, we are able to
determine a “top” (maximal o-split torus inside a 8-split) and “bottom” (maximal o-fixed torus inside a
0-split) to the sub-poset within the larger poset. We can calculate the number of levels in between once
we know the ranks of our “top” and “bottom” conjugacy class representative. We will call the difference
in rank of a (6, 0)-stable maximal (o, R)-split torus and a (6, o)-stable maximal R-split, o-fixed torus

the singular rank.

Lemma 4.2.2 (10). Let m and a be defined as above. Then
singular rank = dim(a; ) + dim(m_,) — dim(a)

Luckily, much of the process used in the quasi R-split torus case can be translated and applied to

that of R-split tori.

Definition 4.2.3. Let a € QlI(If’U) and w € W(a). Then w is called (6, 0)-singular if the following hold.

2. ow = wo
3. the involutions o||gw, 9w) and o6|[gw, gw| are k-split

A root & € ®(a) is called (0, 0)-singular if the corresponding reflection s, € W(a) is (0, 0)-singular.

Proposition 4.2.4. Let w € W(a) be an involution. Then w is a (6, 0)-singular involution if and only if w is

an a;-standard involution for some a; € 91;(;7'9)

Proposition 4.2.5. Lef a € Ql,(ce’v) with a; a maximal (o, R)-split torus of g. Then there is a one to one

correspondence between the b -conjugacy classes of Qll((e’a) and the W(a, b,")-conjugacy classes of (6, 0)-singular
roots of W(a).

Hence, we build on the understanding and calculation of s-singular involutions and roots. Conse-

quently, the only condition of interest becomes 00|[gw, gw] is k-split.
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Recall that all o-singular roots are contained in ®(a, a; ). So (6, 0)-singular involutions can be found
in W(a). It follows that we can realize ®y as the root system of a maximal 6-split torus and @y, as
that of the maximal (o, R)-split torus. Now with the associated pair (0, cf) we can find (6, 0)-singular
(resp. (6, 00)-singular) roots in @y N Py, (resp. Py N Dy »4). To determine the conjugacy classes within
W(®y NPy, ), we start with the following lemmas.

Lemma 4.2.6. Let wy, be a maximal (6, 0)-singular involution in W(®g N @y ;). Every (0, 0)- involution in

W(®p N Dy,,) is conjugate under W(a, by) with a (0, 0)-singular involution w satisfying a,, C a,,

Wm*
Lemma 4.2.7. Let wy, be a maximal (0,0)-singular involution in W(®y N ®g,) and w a (6, 0)-singular

involution in W(®g N Py ;) with a,, C ag, . Then w - wy, is a (0, 0)-singular involution in W(Py N Dy ).

Recall m is a (6, o)-stable maximal R-split torus of g and m; is maximal. Let m be in standard
position with respect to a. Let A(m) be a (—0)-basis of ®(m). We know this induces an order on ®¢(c).
Denote wy (o) as the longest element in W(®y(c)). Then wy () (P (m)) = o(®(m)). Let Y C O(0)
such that Y D (). Then we can realize wy(c) as an element in Y, say @y(c). Let w(c) be a maximal

involution in W (a, a; ) such that ag () C 0

o)’ Then w,, = w(0) - Wo(c) is a maximal (6, 0)-singular

involution. So by the equation, it suffices to determine ®((¢) and o-maximal involutions.
Proposition 4.2.8. Let wy and wy be (6, 0)-singular involutions. Then the following are equivalent.

1. wy and wy are conjugate under W(a, b;").

(
(a7, ;).
(
(

2. wq and wy are conjugate under W

3. wy and wy are conjugate under W(a, gyp).

4. wq and wy are conjugate under W(a, , gop)-
Remark 4.2.9. [21]

Case 1 There are no (6, 0)- or (6, 00)-singular roots. This arises when ®(a,a, ) = @ or ®(m,m_,) = . An
empty interestion means there are no candidates to flip a one-dimensional piece from o-split to the portion
fixed by o. Further if there are no (6, 0)-singular roots then the singular rank is 0, we can conclude there

is only one hy-conjugacy class of o-stable maximal R-split tori in g. This occurs in 18 of the 171 cases.

Case 2 [10] Suppose the singular rank is r. Let ®(a,a, ) = r- Ay or ®(m,m_y) = r- Ay. Then all (6, 7)-stable
involutions w with ag, C ag, are (0, 0)-singular. Though wy, being of type r - Ay and (0, ¢)-singular
must be verified, ®(t) will be of type By, Cy, Dy, E, (r = 6,7 or 8), Fy or Gy in most cases. These conjugacy

classes will not split.

Case 3 Suppose the singular rank is r. Let ®(a, a, ) or ®(m,m_,) be of type By, C;, Dy, E; (r = 6,7 0r 8), F4
or Gy. Then all involutions in the poset are (6, U)—singulur if wy, is of type B;, Cy, Dy, E; (r = 6,7 or
8), Fy or Gy. It is possible that these involutions will split in W (a, by). For cases when ®(t) = X; + X;
where X = A, B,C,BC, D or E, the roots will split. When this happens, the singular rank could be less

than the maximal rank in ®(a,a, ) or ®(m,m_,).
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4.3 Characterization of 0 on 0-basis of ®

Definition 4.3.1. Let A C  be a base. Then there exists a unique Weyl group element, wy, such that
wo(A) = —A called the longest element of A.

Lemma 4.3.2. Let t C g be a 6-stable maximal torus, A a 6-basis of ®(t). Then 6 = —id - 0* - wy(0) where
wo(0) is the longest element of ®y(0) with respect to a 0-ordered basis Ny (0) and 6* is a Dynkin diagram
automorphism of ®(t).

From this Lemma, we get the characterization of 6 on a 6-basis of ®. Note that 6* € Aut(X, ®, A, Ay(0))
where Aut(X,®,A,A¢(0)) = {¢ € Aut(X,P) | ¢(A) = Aand $p(Ap(0)) = Ap(0)}. So 6 = —id - 6* -
wo(0) is called a characterization of 6 on its (+1)-eigenspace. Similarly, 6 = (—6)* - wo(—0) is the
characterization of 6 on a (—6)-basis. This is called a characterization of 6 on its (—1)-eigenspace.

In fact, this Dynkin diagram automorphism must be an involution.

Proposition 4.3.3.

id
0% =
{ Dynkin diagram automorphism of order 2

Definition 4.3.4. Let «, B € ®. Then a and B are said to be strongly orthogonal if (x, ) = 0and a + B ¢ P.
Then we have the following characterization of involutions in W.

Theorem 4.3.5 ([26]). Let 6 € Aut(®), 6% = id and let A be a (—6)-basis of . If we write = (—60)*w(6),

then the following are equivalent.
(i) 6 € W(D)
(ii) 0 = sy, - -~ 5q, Where ay, ..., a0 € P(0) are strongly orthongoal
(iii) (—0)* =id
(iv) —id € W(P(0)) = W(0)
(v) There irreducible components of ®o(—0) are of type A1, By, Cy, Doy (€ > 2), E7, Es, Fy, or Gy.

This discussion on the characterization of 6 on its +1 and —1-eigenspaces lends itself to the

determination of the existence of 6* and (—0)*.

Theorem 4.3.6. Let Ay and A, be 0- and (—6)-bases, respective. Let 0% and (—6)* be defined as above. If ® is
irreducible, then 6* = id if and only if (—6)* # id.

We will prove this theorem in Chapter 5.

Definition 4.3.7. Let 0 = id and A be a basis of ®. Then 0*(A) = —id - wy(id) is called the opposition
involution of A. For this case, we will write id*(A) for 6*(A) or simply id*.
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4.4 The Index of 0

The action of 6 on a root datum ¥ can be described by an index. These indices help to determine the
fine structure of restricted root systems and essentially that of the symmetric variety G/H.

From [16], we get the following result.

Proposition 4.4.1. Let X, Xo(0), ®, ©o(0), Oy, etc. be defined as above. Let A, A’ be 6-bases of ®. Then we
have the following

(i) A= N ifand only if Ny(8) = A)(6) and Ay = N.
(i) If Ng = DNy, then there exists a unique w' € Wo(®) such that A = w'A.

Definition 4.4.2. Let ¥ be a semisimple root datum and 6 € Aut(Y) be an involution. If A is a (—6)-basis,
then the quadruple (X, A, Ay(0),0%) is called the index of 0 where 6 = —id - 6% - wy(6).

Definition 4.4.3. Let ¥ be a root datum and 61, 0, € Aut(®) be involutions. Let Ay and A, be 6, and
6, bases. Then two indices (X, Ay, Ag(61),07) and (X, Ay, Ao(62),05) are said to be W(P)-isomorphic (resp.
Aut(®)-isomorphic) if there exists w € W(®) (resp. ¢ € Aut(P)) which maps (A1, Mo(61)) to (Az, Ao (62))

and satisfies w07 w1 = 05 (resp. g0i ¢! = 03). When not confusing, we will only use the term isomorphic.

For two f-bases A and A/, the corresponding indices (X, A, Ag(0),6%) and (X, A", Aj(6),6*) may not
necessarily be isomorphic. Nevertheless, this isomorphism occurs when @y is a root system with Weyl

group Wi.

Lemma 4.4.4 ([24], 2.13). Let Y be a semisimple root datum and 0 € Aut(Y) be an involution such that @y is
root system with Weyl group Wy. Let A and A' be two 0-bases of @. Then (X, A, Ag(0),0%) and (X, A', A (6),6*)

are isomorphic.

Proof. Consider Wy. From Proposition 4.4.1, there is a unique w € Wy (6) such that w(A) = A’. It also
follows that w(Ag(0)) = A((6). Let 67 = 6*(A) and 05 = 6*(A’). We want to show that there exists
@ € W(®) such that w61 = 65.

Recall that wy(0) and wj () are the longest Weyl group elements with respect to Ay and A,

respectively. So wwy(6)w~! = w{(6). By using the characterization of 6 on A, we get

whjw ! = w(—id-wy(0)-0)w
= —id-w- w(())w*@
= —id-w,(0)60
= 6’5
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Lemma 4.4.5. Let 61, 0, € Aut(®) be involutions and Ay(61), Ao(62) C A. If (X,A1,A0(61),607) and
(X, A2, No(62),65) are isomorphic, then 01 and 6, are W (®)-conjugate.

Proof. Letw € W(®) be so that w(A1) = Ay and w(Ag(61)) = Ag(62). Then wwy(6;)w ™! = wy(h>) and
w07 wl = 65. Since Ay and A; are 61 and 60, bases, respectively, we have the characterizations of 6; and

6, on their respective bases. Therefore,

whw ! w(—id - 05 - wy(61))w !
= (e —id-w ) (w0 - w ) (w- wo(6r) - w )
= —id- 05 -wy(62)
= 6

O

As in the works of Helminck, Tits and Satake, we adopt the diagrammatic representation of the
index of 6. Here, nodes that represent roots in A () are colored black within the ordinary Dynkin
diagram of 6, along with the indication the action of 6* on A — Ay(6) by arrows. We denote this

representation as D(0).

Proposition 4.4.6. Let 01,0, € Aut(®) be involutions. If Ay(61) and Ag(6,) are W(P)-conjugate such that

whw ! = 6y, then we have the following.

(i) wmw?!

= 71y for projections maps 1t1 and 7o corresponding to 61 and 0y, respectively.
(ii) Ag, and Ag, are W(P)-conjugate.
Proof. Let w € Aut(®) be so that w(Ag(01)) = Ag(62) and wbw~! = 6,. For (i), let & € ®. Then

wm () = w B (a — 601 (oa))] = % (w(ew) — why () = % (w(a) — 6w (w)) = mw(w).

For (ii), it suffices to show that @y, and ®y, are W(®P)-conjugate. So for a € @,

w(Py, ) = wrry (P — Po(61)) = maw (Y — (1)) = 72(P — Po(62)) = Dy,
O

If the conditions hold from the previous proposition, we say that Ag(6;) and Ag(6,) are W(P)-
semi-isomorphic, denoted Ag(61) ~ Ag(62) . Analogously if (i) and (ii) are satisfied, Ag, and Ay, are

W (®)-semi-isomorphic.

Proposition 4.4.7. Let 61, 6, € Aut(®P) be involutions and Ng(01), Ao(62) C A. If Ag(61) =~ Ag(62) and
A, =~ Ny,, then the 01-basis A and 0,-basis Ay are W (P)-conjugate.
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Proof. Let -1 and - be the 6; and 6, orders, respectively. We define the positive roots as @ = {« €
@ |a ; 0} for i = 1,2. It suffices to show that ®;” and ®; are W(®)-conjugate. Let w € W(P) be so
that w(Ag(61)) = Ag(02) and wo;w ™! = ;. Take & € Aq. If & € Ag(6y), then w(a) =5 0. If & & Ag(61),
then 711 (a) € Ap, and wrty (a) > 0. Therefore, w(®;) = ;. O

Theorem 4.4.8. Let 01, 6, € Aut(®) be involutions and Ay(601), Do(62) C A. If Ag(61) =~ Ao(62), then the
two indices (X, A1, Ag(61),07) and (X, Ay, Ao(62),05) are isomorphic.

Proof. It suffices to show that 6] and 6; are W(®)-conjugate. Note that with linear orders -1 and >,

we can characterize the involutions 61 and 6, as 6; = —id - 6] - wy(61) and 6, = —id - 0; - wy(6,). Hence
whw ! = 6,
w (—id - 07wy (01))w™ = —id- 65 -wy(6s)
(w-—id-w ) (w0 - w N (w-wy()w™ ) = —id-05 wy(6)
—id-w-0jw - wy(6) = —id- 05 wy(6)
w-iw !l = 65
O]

From the previous two propositions, we gather that conjugacy of indices simply rely on that of

there 6-fixed subsets.

4.5 Diagrams of (6,0)

When classifying maximal (6, 0)-stable R-split tori, we rely on the root system structure obtained by
restricting to ¢ and 6 to their common —1-eigenspaces. We identify ®y (resp. ®p ;) as the projection
onto the —1-eigenspace of 6 (resp. 6 and o). Note that different involutions will produce different

systems.

Remark 4.5.1. Let A bea (6, 0)-basis of ®, wy(0), wo(6) € Wy(8, 0) be involutions such that wy(c)(Ao(0)) =
—Ao(0) and wy(0)(Ao(0)) = —Ao(0). Then we have the following.

1. The characterization of 0 and o on a (0, 0)-basis:

0 = —id-0-w(6)

ot = —id-o-wy(o)

2. wo(o), wo(0), 6%, o* and —id commute.
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Dynkin diagram automorphism of order 2

This remark follows from results in Section 4.3, [24] and from the following result.
Lemma 4.5.2. All Weyl group elements commute with —id.

Proof. Let w € W(®). We use the fact that w is a linear transformation. So for x € X,

—id(w(x)) = w(=x) = w(=id(x)).
O

Proposition 4.5.3 ([16], Proposition 5.26). Let ¥ be semisimple root datum and assume the pair (6,0) acts on

(X, ®). The following are equivalent.
1. (X,®) has a (6,0)-order.
2. ®y(6,0) = D) NPy(h).
3. If &1 C Py(0,0) is an irreducible component, then &1 C Py(0) or 1 C Py(6H).
The (6, 0)-order is completely determined by the #-index and o-index.

Definition 4.5.4. Let A be a (0, 0)-basis of ®. Then the sextuple (X, A, Ao(0), Ag(0),0",0%) is called the
(0, 0)-index where 0* = —id - 0 - wy(0) and 0* = —id - 0 - wy (7).

We will call the diagram representation associated with the (6, 0)-index the (6, 0)-diagram. Similar
to the #-diagram, we color black the vertices of the ordinary Dynkin diagram that represents roots
in Ag(60,0). For vertices that lie in Ag(c) — (Ag(c) N Ag(6)), we label with 6. For vertices that lie in
Ao(0) — (Ag(0) NAp(0)), we label with 0. We indicate the actions of diagram automorphisms ¢* and
6* with arrows if 0* # id and 0* # id.

From the (6, 0)-index, we can obtain information on both the 6- and c-indices. The converse is also

true. Consider the following example.

Example 4.5.5. Let 0 be of type AILI, and o of type AII acton on Af““‘ %"he 9/_”1‘1 o diagrams are as follows.

1 2 . ¢
0 : e—0O0—e  O—e o v I I I

Thus, the (8, 0)-diagram would be:
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Definition 4.5.6. Let S = (X, A, Ag(0), Ag(0),0",0%) be the (0, 0)-index. Then S is called irreducilbe if A is
not the union of two mutually orthogonal 0*- and o*-stable non-empty subsets A1 and A;. S is called absolutely

irreducible if A is connected.

Note that S is irreducible if and only if Ay, is connected.

If S is absolutely irreducible, then denote the action of the pair (6,0) on ® as XZ’p (type 6, type o)
where ¢ = rank(X), p = rank(A;) and q = rank(Ag). For example, A%%H(H, I11,) represents ® of
type Agei1, 0 is of type AIll, and ¢ is of type AII with Ay = 2¢ and A, = 2/ + 1. This is indeed the

notation of the (6, 0)-diagram mentioned in the above example.

4.5.1 Quadratic Elements & Multiplicities

As mentioned in Section 2.5, quadratic elements help in the classification of (6, c)-diagrams.

Definition 4.5.7. Let t C g be a (,0)-split torus and € € t. Then € is called a quadratic element if €2 € Z(g),

the centralizer of g.

When using quadratic elements within the classification of commuting pairs of involutions, it
follows that commuting involutions ¢ and cInt(e) are two different involutions. A more detailed
explanation of quadratic elements can be found in [24]. Nonetheless, it is a point of interest to consider
the action of cInt(e) on ®(t). This is largely due to the observation from Helminck that there exists a
quadratic element € such that the commuting pairs (61,01) and (cInt(e), ) are isomorphic; i.e. there
exists ¢ € g such that Int(g)oiInt(¢~!) = ¢ and Int(g)6;Int(¢~!) = olInt(e) [[24], Chapter 5]. These

elements can be described by using a basis of ®(a) for a C t.

Definition 4.5.8. For all A € ®(a), define

®(A) = {n € D(1) [aa = A} = {a € (V) | mp(w) = 1)

Definition 4.5.9. Let a C t be a (0, 0)-stable R-split tori with a; maximal. For A € ®(a), let m(A) = |D(A)].
We call m(A) the multiplicity of A.

For all A € ®(a), let g(a,A) = {x € g|[h,x] = A(h)x forall h € a}. Hence 06(A) = 60 (A) and
o8(g(a,A)) =00(g(a,A)). Let

g(a,)t)gtla = {xe€g(a,A)]|bc(x) =*x}
mE(A,00) = dim(g(a,/\)g,tﬂ)

Now we can also realize the multiplicity of A as

m(A) = dim (g(a,A)) = m™ (A, 00) +m™ (A, 00).
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The signature of A is the pair (m™ (A, 00),m™ (A, 600)).

Remark 4.5.10. If € € a is a quadratic element and A € ®(a) is such that A(e) = —1, then m*(A,00) =
m~ (A, 00Int(€)) and m= (A, 00) = m™ (A, 0cInt(€))

From this remark, standard pairs can be defined using the signature of A.

Definition 4.5.11. The ordered commuting pair (0,0) is called a standard pair if m™ (A, 00) > m~ (A, 60) for
any maximal (0, o)-split torus a of g and any A € P(a).

So in addition to quadratic elements, the classification of symmetric spaces and their representation
heavily relies on the fine structure of the restricted root system with multiplicities and Weyl groups.

The multiplicities of A for the different types of Cartan involutions can be found in [7] and [24].

4.5.2 Isomorphy Classes of (6,0)

Definition 4.5.12. Two (6, 0)-indices (X, A, Ag(01),Mo(61),07,07) and (X, N, Aj(02), Ay(62), 05,05 ) are
said to be isomorphic if there exists w € W(®) which maps (X, A, Ao(c1), Mo (61)) onto (X, A, Aj(02), Ay (62)
and satisfies

whiw ' =65 and wojw ! =0}

The isomorphy classes of (6,0) can be represented by (6, 0)-diagrams. On the Lie algebra level, if g
is simple, then there are 88 types of local symmetric spaces and the (6, 0)-diagrams are called absolutely
irreducible. If g is not simple, then there are 83 types of local symmetric spaces and the (6, c)-diagrams
are irreducible, but not absolutely irreducible. In [21], these 171 cases (in which Theorem 3.1.1 applies),
have been listed. In particular, these cases address the conjugacy classes of quasi R-split tori in h, while
providing the types and maximal involutions of ® g, N ®y. As this is relevant to the focus of this

paper, that table is provided below.
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Table 4.1 Classification of A7) /H+

Type max.
Type (6, Di 0, Type @ Di P
ype (6,0) iagram (6,) ype Do fagram |y Dy, NPy involution
D(A) DA A7) Py NPy
20+1,0 1 L 1 14 )
Ayenr” (LII) o O o -O—o Az O o O —o Z id
{—1,40— 1 20—-1 1 2 20-2 20-1
Ay HaL D) o O o O—o Az oO—0 - -0—0 Az 0 A
204041 1 2 1 2 21w
Agpr (ULT) o O o O —e Az O0—O0---0—0 Ay (- Ay
1 2 (-1 1 2 /-1
¢ ¢
o* Ay {-A /- A
A2V, 11T, €) I I I 26-1 I I I 1 1
1 2 20—1
2t 1 2 21 o
0* C . C C
Aigf[;_l(lllb/ 1,60) I I I 20 o—-:0C -O0==0 20 20
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Table 4.1 — Continued

12 ¢
. 11 1 2 2 2041
20414041 0 Corq1 O—O - -O==0 Corq1 Cor1
AZHASY (T, T, )
1 -1 1 2 -1
3 3 oO—O---
I ] ra A
0—1,2¢ v 20—1 1 - Aq
AL I, e)
o O o AN
o—o—tl i 1 2 -1 ¢
(4 o o H,,,
202041 o I I I I I I Ay - Aq - Ay
A2 (11, 111 OI OI I
1 -1
O —eo ) é
1 -1 ¢
- o C o O o O —e=<0 t-A £-A
AL (100, 11, eg) I I I I I 2 ! !
[ ] 0
1 -1 ¢
.9 O .6'” d
1 ‘
o C O o £-A t-A
A2 (1) I I I I I I ), 2641 O==e 1 1

4041
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Table 4.1 — Continued

o—o---
14
o* Aoy
AZTVL I, €) I I I 2

o—o0--
¢
0* C
AL, Ley) I I I ‘

A31(Le) O—0 - -0—0 A
1 -1
o e
¢
* A
201,20 20—1
A4£—1 (II,IIIb,€Q) I I I
o O o -
1 -1
T e et
20,20—1 v b
ALY (110, 11, €)
_ 1 20-1
AY (I, ep) o O o -O—e Az

48



Table 4.1 — Continued

—_
N
=
=
+
—_

1 2 P ptl
o—cyo—ce»e—aé\ b e o—a
Lp ]
AUP(1,111,) o o o A, . * oA pAr
1<2p</{ ® ‘
0
o—oo—&ewe—oe/ S S e oo
1 2 p o ptl
p L L -1
APA(ITT, 1) e | BC, N S BC, BCy
1<2p<t )
Al(Lep) 1 2 -1 ¢ 4 1 2 -1 ¢ A 1. A,
1 <2p <t O—=0 - ---0—0 ¢ O—O0 - -0—0 ¢ 2
1 P
42PN g1 o ’ B 1 2 p o dentit
ar’1 (o, I0) : Cap O =0 identity
1<4dp <4l ®
¢ O & O —o—¢
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Table 4.1 — Continued

1 p
0 0
2p,20 o ’ 1 2 p o
A4g+1(111ur11) . BCzp o—O - =20 @ 1dent1ty
1<4p <4l ®
0 0 4
- O o< o2 popd
v YA o—oo—ta—o\
20—1,2 * ,
Ay, T IIL) v : Ay 1 - ® A p- A
1<4p<4L+2 ® 6
v v 0 O—Oo—ta—o/
o« o o < o2 pid
v R G -N O—OO—G%—O\
20,2 * ,
Ay (L) 7 : Ay o * ra p-Al
1<4p<4l+2 ° 5
v g 0 O—Oo—t4—o/
l 1 20—-1 1 2 -1 l
Ageia (I, €p) o O o O e Ay o—0 - -0—0 Ay L5 A
1<2p<l+1
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Table 4.1 — Continued

O—0O -
l
L0 o ¥ 1 2 -1 l
Ay (I1y, ) 7 &% I I Ce O—O - -O=<=0 Ce Ce
O—=O -
1 p
APP(111,,€
¢ e ep) o * 1 2 pL oy
1<p<? BC, OO - O BC, BC,
0<i<p-—-1 ®
(4 (o4 0
1 2 4
. O—O - O—e e
Ayl (I, 111, €) b & 12 P y
l<p<t ’ Ce O—0 O0—e - e<—e Cp Cp
0§i§p—1 O—QO—&G )
1 2 4
APE (1L, 111, ¢;) c
201U La, 111y, €; ‘e 1 2 p1 p
1<p<{( I"&GI I I I BCp O—0 - -0==0 BCp BC)p
0§i§p—1 O—C}O—Gg -

51



Table 4.1 — Continued

1 2 q
ATP(111,, 111, €;) ®
¢ o+ &0 : BC ! 2 P ¢ BC BC
1<p<qg<3(l+1) i 7 O—0 - O—e e==e P P
0<i<p

O—=0 - e —6

1 2 q
APU(IT1,, 111, €) ° 1
¢ 0*&o* : BC ! 2 P P BC BC
1§p<q§%(€+1) ‘ p Oo—OC - -0==0 p P
0<i<p /

O—=0 - .

; 1 2 1 2 p=1 p

By (Lo, €:) O—0 - e e==e By O—0 -+ -0==0 By By
BIY (I, I, €;)

1 2 q 1 2 4 q
l<sp<qg=<t Oo—O - e e—=e By O—O0 O—e e—==e By By
0<i<yp

1 2 q 1 2 p-1 o p
B} (Lo, Ia, &) O—O0 - e e==e By O—O - -0==0 By By
C/P(1,11,) ! c ) ) 4 A
(2p <) 0 o0 b ‘ o 0 o O o o=<e ! Py
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Table 4.1 — Continued

cPi(11,, 1) 1 p 12 p o pel
(2p < 0) o O o O o o< BCy O—0 - -0==0 BCy BCp
Ci(Lep) 1 2 1 g c 1 2 1 g c c
O—O -+ --O=<=0 ¢ O—O -+ -O==<=0 ¢ ¢
(2p <)
1 /-1 V4 1 /-1
Car (1, 1Ty, €9) e O e O =<0 C e O o O =<0 t- A C- A
020 1 /-1 14 1 2 (-1 l
Cy (11, T, €9) O —e O—e=<=0 Co O—0 - -O=<=0 C Ce
00 1 (-1 l 1 2 (-1 l
Cyy (I1y, €0) e O o O &=<0 C O—0 - -O==0 C C
1 /-1 V4 1 /-1
Cor' (L Iy, ) o O O—e==O Co o O e O—e=<o0 - A Ay
0,20 1 (-1 l 1 2 (-1 l
Cy (I, I, ) e O e O <O C O—0 - -O==0 C C
020 1 2 2u-1 1 2 21 2w
Co* (I ep) O—0O -+ -O=<=0 Co O—0O -+ -O==0 Cy Ca
’ 1 P 1 2 p-1 p
CyP (s, €p) O o O—e =< BCy O—0 - -0==0 BCy BCy
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ClP (11, 114, €7)

Table 4.1 — Continued

1 2 P

1 p q BC BC BC
1<p<q<yl o0 o O o0 e=<e ! S A e P P
(0<i<p)
CP(11,,11,, €) 1
v ar ar*1 1 2 p p

1 p q BC - BC BC
1<p<q<yl o0 O oo e=<e P OO0 P P
0<i<p)
Cof (I, T, €) ) ) c 127 c c
0<i<p-—1 e O e O o o<o ¢ O—O0 --O—e - == p p
1<p<li
0§l§p—1 ® O o - O ‘0”7‘::.‘7 P O—O Oio p 14
1<p<lI
DI (Ia, I, ) 1 p B 1 2 p B B
1<p<g<t-1 & O—0- 06— 0 q O—O0---O0—e -0 p p
0<i<p-1)
Dglq(lurla,ei) 1 4 B 1 2 p—1 4 B B
1<p<qg<t-1 oC---O0—e-- 06— P oO—0 - -O0==0 P p

(0<i<p-1)
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L,
D, (Iy, L, €;)

Table 4.1 — Continued

1 P v 1 P
0<i<p-1 C--O—@ - Dy C--O—@ - D, D,
1<p<t o
¥4
D} (Ia, Iy, €7) 1 P ! 1 2 plop
0<i<p-1 oo By O—0 - -0==0 By By
0§p<£ (.
! 0 1 2 2p
Dy (Il da) g L o 2 o o Co O—0O -O—e =<9 Cop Cop
(1<2p<f—1)° v 0
2p,0 s 1 2
D3¢ (o, 111,) og—é—tgé—o—& By o O O e==0 P4 p-Ai
(1<2p<20—1) v
‘

Dy; (11, €p) o« O o C OO ot Ce Ce
(1<2p<i—1)

04 1 2p o 1 2 2p
Dyti(Ily o) o & o .. o o . o ¢ BC, O—O - O—e =<9 BCyp BCzp
Q<2p<t ° ’
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Table 4.1 — Continued

2p,¢ 1 P 7 1 2 P
D25+1(I“'1Hb) e—O—o O—0—e - o* Bayp &—0O -6—0O - ->=0 p- Al p- A
(1<2p<20)
¢
DY, (111 1 L2 gl C BC
2i1 Iy, €p) o O o - o &P BC, O—0O - -O==0 BC, ¢
(1<2p<¥)
20
1 20— 1 2 20—-1 20
C C C
l 20
DA (111, Iy, e0) & O % ) 2 O—0 =0 2
l l
1 =1 1 —1
) D '—O—.,,, KA E'A
D21, I, e0) & O & O 2 1 1
0
20
1 20— 1 2 20—-1 20
Dy (Il e) o0 @ Ca O—0O - -Oo==0 Co Car
l
1 -1 1 2 -1 l
Dy (Il Iy €r) @O @ 0@ Ce O—O - -0===0 C C
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Table 4.1 — Continued

¢ 1
20,0 1 (-1 1 él:
DZK (Ih,IILZ,é’g) .(9 O tGO '9 sz [ O o - £A1 £A1
]
20—1 20—1
20,20 1 2 20-3 20— 1 2 20-3 22—
Dy (I, €r) O—O - Dy oO—o0 - Dy Dy,
20 20

l
1 2 -1 l
Dyfiy (1, Iy) o—é—&@—<> BC, O—0 - -O0==0 BC, BC,

l l
0 0 0 0 0 0
20 2/

1 2 20-2 20— 1 2 20-2 20—

D2+120+1 o—O0 - Dy q o—O0 - Dy yq Dopiq
2041 (I, €0) (+1 0+1
1 p
p.p e O——@ - 1 2 p-1 p
Dy (L, p) < By O—0 -+ -0==0 By By
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Table 4.1 — Continued

1 1
TZ 5 4 Tz 3 4
52'4(1/11&0) o—O0—0—0—0 Es oO—O0—0O0—0—o0 Dy Dy
o* o
1
1 2 3 4
EZ5(I1,1, €p) o0 UZ é é Ey O—O0==0—0 Ly Fy
I
9*
ES*(I,1V) f E I % id
6 1/ 1 2 6 1 2 1
o—e; ) —e—O oO—e e—O
EX%(1V,1) I A SO A A
6 ’ 1 2 2 o——=0 2 1
O—&—& e O
[
1 1
EZ*(I1,1V) O—e——0 O F L —— =) A Aq
I |
6*
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Table 4.1 — Continued

. I—C
EZ*(IV, II) o—¢&

(4 (4 O A2
S T
0-*
1
2 3 4
ES*(I,11,€) o0 T o0 Es o
0.*
1
46 2 3 4 1
E6I (II, 1,61) O O O 'e) Fy O—OC———0—"-=0
t +— 1t
6*
2 2
6,6
E¢” (1 €:) 1 3 4 5 6 Ee 1 3 4 5 6
O O O O O O O O
1
6,2 I 2 ! I
Eé’ (I,III) O ‘9 ) '6 O E6 O ® ®
S S S [
U.*
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Table 4.1 — Continued

26 2 1 2
E6’ (III, I) O - - - 0 BC, C—==0 BC, BC,
t t—}+ f
6*
1
42 T 2 1 2
E; (I1,111,¢€p) O o ; o, '®) Fy O—eo——e—O 2-Aq 2-Aq
b t—+ f
0* &o*
1
EX*(111,11, € T_. 2 BC S,
6 4Ly 0) O .J - - O 2 Oo—==0 BGC, BC,
b t—+ f
o &0*
1
29 2 1 2
E6, (III,ei) O ® T_. 'e) BC, OC——==0 BC, BC,
b t——+ f
o &0*
1
42 I 2 1 2
E;~(II,111,€7) o o e ® F, O—e——=e—O Cy )
b t—+ f
0* &o*

60



Table 4.1 — Continued

1
2
E2A(1I1, 11, ¢;) o—e L o BC, B, B,
S S
0" &0*
1
44 Tz 3 4 1
Ey"(11,€;) o o0—o0 F, O0—0==0—0 E F
b t— 4
o &0*
0
1
EZ*(II1,1V) BC, Ay Ay
S
9*
EZ*(IV,I1I) I—c As Ay Aq
S
0.*
1
Eé’Z(IV,El) I 2 Ay o—=oO As Aq
@ L O
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Table 4.1 — Continued

[ )
]
E;A(V, V1, ep) 1 2 3 4 E; 1 2 Tg 4 F, K
O O O O .e O O O @ Oo—e
o
47 ” 1 2 3 4
E;* (VL V,e) 1 2 3 4 Fy O—CO==—0—20 Fy Fy
O O ) ) "7
®
EZ3(V,VII) 1 2 3 E; 1 I 2 3 Cs Cs
o—e—6 O0—0 o—e e OO
EX(VII, V) 1 I 2 3 C S
7 , 3 O—0O==0 Cs Cs
o—e—e O—0
EX (VI VII ; 2
7 (VLVILe) 1 2 F, O—e—=>=e—0 Cy C,
O—6—¢ o—=9
EXA(VII, VI L2
7 VI e) 1 2 G O—O—==e G, C,
O—e—=¢ o—9,
0
EZA(V,VIe) 12 Ta 4 E; 1 2 T3 4 K E
OO0 o—e oO—0—0—e—0—e

62



Table 4.1 — Continued

EXA(VI,e)i= 1 2 3 4
1 2 3 4 Fy O—C—=—=—0—=o0 Fy Fy
1,4 @ O O O L J
17 4 1 2 3 4
E;* (VL V,e€) 1 2 3 4 Fy O—CO==—0—20 Fy Fy
O O O e
2 2
EX(V,e),i=
127 1 3 4 6 7 E7 1 3 4 5 6 7 E7 E7
i O O O O O O O O O O O
0
EX(V,VILe) 1 2 3 E; 1 2 3 Cs Cs
O .9 ) O O O @ @ O O
37 v 3 2
EJ*(VILV,e) 1 2 3 Cs O—0O==0 Cs Cs
o—e—8 0—0
24 1 2
E7’ (VII, VI) 1 2 Cs Oo—C=—0 G G
o—e—¢ o—e
EX3(VI,VII) 1 I 2 E G, G, G,
(@ L ) O L]
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Table 4.1 — Continued

3 2 1
EX(VII,e3) 1 I 2 3 Cs O—O===0 Cs Cs
O @ @ @ O
Iﬂ
8.4 4 3 2 1 Esg A I s ; Dy Dy
Eg*(VIII, IX,e9) O o ) —&—O—O0—0 O @ ° o
IJ E ! 5 FE FE
4 3 2 1 O—O0==0—0
Eg8(IX, VIII, &) O—e e e 0O —0—0 ! ! !
Eg*(IX,€),i = L2
5" (IX, ), 4 I 3 2 1 Fy O—O0==0—20 Fy E
1,4 oO—e &—O O O
Ig
84 4 3 2 1 Eg . I 3 ) Dy Dy
Eg*(VIII, IX, €1) o—w®; —o—O—O O o ° ° o o
Ir E 1 2 E E
4 3 2 1 4 O—OC——0—"-20 4 4
E(IX,VIILer) O—@ @ —8—O—O0—O0
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Table 4.1 — Continued

2

E3*(VI11,e5) 1 3 5 6 7 8 Es Eg Eg

0—0 O—O—O—0 1 4 5 6 8

o O—0—0 o
F/N(ILID) L = ) K o= O Ay Ay
FA(IL ) o —eo——0 O BC, BC, Ay

FH(1e),i =

4 (1/41:) 0O O=="0 O Fy O—OCO—=—0—"-oO0 Fy Fy
G (1,€1) O==0 G, O==0 G, G,
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4.6 Characterization of Parabolic Subsets

Recall from Subsection 3.4.1 that conjugacy classes of involutions w € W(a) with E(w, —1) C E(6, —1)
and wf = 6w determine subsets of a basis A} C ®(w). These subsets are called parabolic subsets. Recall
from Lemma 3.4.10, we have a foundation in considering these subsets of the basis Ayg(—w) for some
involution w € W.

To continue in the classification of conjugacy classes in the Weyl group and the discussion of
parabolic subsets, we must consider orthogonal complements of the basis Ag(—w). Let Y C ® be a
subset. Recall that (-, -) is the symmetric bilinear form on E and is also Aut(®)-invariant. Define the
orthogonal subset of Y as Y+ = {a € ® | (a,8) =0 forall B € Y}

Let R(t) = span, {®(t)} for some torus t of g. Then R(t) is considered to be the root lattice of ®(t).
With this, we can realize the Euclidean space E as E = R(t) ®z R. Likewise, ®* = {a € E| (&, 8) =
0forall p € E}.

Lemma 4.6.1. Y is closed subsystem of ®.

Proof. Leta, € Y. Then (a,7) = (B,7) = 0 for all ¥ € & Since (-, ) is bilinear, (« + 8,7) = 0. This
proves the statement. O
Lemma 4.6.2. Let w € W be an involution and Ay(—w) be a basis of ®o(—w). Then

1. @g(~w)*t = Ao(~w)*

2. @o(—w)*" = @p(w)
Proof. For statement (1), recall 4.4.1. Then Ag(—w) = AN ®o(—w). Hence Ag(—w)t = (AN Do(—w))*" =
AL N qDo(—Zl))L = @0(—ZU)L.
For statement (2), note that ®y(—w) C E(w, —1) and ®¢(w) C E(w,1). From 22, ®y(—w)+ C E(w,1).

So for a € ®p(—w)*, w(a) = & and Py(—w)+ C Po(w). Now let & € ®y(w) and f € Py(—w). Then
(a,B) = (w(a),w(B)) = (0, —B) = — (&, B). Thus, («, B) = 0. This proves the statment. O

Lemma 4.6.3 ([26]). Let @ be irreducible and A a basis of ®. Also, let w € W be w A-standard involution and
A be an irreducible component of Ag(—w). Then ® (A1) is given in Table ??.

Note that in Table ??, the subsystems A_;, Ag and D; are considered to be an empty subsystem of
D.

66



Table 4.2 Table of Irreducible Components of Ag(—w)

Type ® Type Aq Type Af Type ®  Type A Type Ay
Ay Ay Ao Es Ay E7
(£>1) Dy D,
By Aq A1+ By_» Dg 2-Aq
(£>2) By (k<) By E; A
Cy Aq A1+Cys Eg @
(ﬁ > 2) Cx (k < ﬁ) Co—_k Fy Aq (Sl’lOT’t) B3
Dy Aq A1+ Dy_» Aq (long) Cs
({>4) Dy (2k<?) Dy B, B,
E6 A1 A5 B3 A1 (ShO?’t)
Dy %) Cs Aq (long)
E; Aq De Fy @
Dy 3-A Ga A1 (short) Aq (long)
De Aq Aq (long) A1 (short)
E; %) G @

Lemma 4.6.4 ([26],7.9). Let ® be irreducible and w € W an involution. Then ®o(—w)* is of type r - Ay + X
where Xy = @ or X, is irreducible.
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Table 4.3 Root System Types for w € W(®)

Type ®  Type A(w) Type A(w)*
Ap(n >2) r- Ay 0<2r<n+1 Ao
By(n>2) r-Ai1+By 0<k+2r<n r-A+B, o
Co(n>2) r-A1+C 0<k+2r<n r-A1+Cy ko
Dy(n>4) r-A1+Dy 0<2k+2r<n r-A1+D, 2 o

E¢ r- A 0<r<3 (4—1")-141
Dy @
E; A De
2-Aq A1+ Dy
3-A; Dy
4- A
4. Ay 3-A
Dy 3-A;
A1+ Dy 2-Aq
Dg Aq
E; @
Eg Aq E7
2-Aq De
3-A; A1+ Dy
4. Ay 4- Ay
D, D,
A1+ Dy 3-A
De 2. A
E; Aq
Eg @
Fy A1 (short) Bs
A1 (long) Cs
2- Ay 2- A
B> B,
Bj A1 (short)
Cs A1 (long)
Fy @
Gy A1 (short) A1 (long)
A1 (long) A1 (short)
G @
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CHAPTER

5

ACTIONS OF OPPOSING
INVOLUTIONS ON ROOT SYSTEMS

For this chapter we will consider 8 € Aut(®) where 62 = id. We denote the opposite involution of 6
as —id - 6. Helminck has provided characterizations of parabolic subgroups dependent on w € W(®)
and A which is a (—w)-basis. We build on this characterizations introduced in Chapters 3 and 4 now
consider any involution 6.

We continue the notation from introduced in Section 3.3.1. Further, we provide more results

involving parabolic subsets.

Lemma 5.0.1. Let ®, ®y(+0) and ¢ be defined as above. Then we have the following.
1. 69 Nod = CD()(—G).
2. ®y(0) = do(—6)".

Proof. (1) Let a € ®,. Then there exists € ® such that 7(8) = (B —6(B)) = a. So —0(x) =
—0(L(B—0(B))) = —30(8) + 1B = L(B—6(B)) = . Hence a € By(—0).
Let & € ®g(—0). Then —0(ax) = a which implies that « — () = 2. Since 4(a — 0(a)) = a, then
m(a) = a. Thus & € Oy

(2)This follows from Lemma 4.6.2. O
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These relations provide a correspondence between the § and —6-diagrams. It will also aid in
producing an algorithm in determine one diagram from that of the opposing involution. Moreover,
these relations coupled with the Helminck’s tables of parabolic subsets help in determine these
diagrams. What is left to be determined is whether these diagrams will have a diagram automorphism.

From Theorem 4.3.5, we are given that there does not exist a diagram automorphism when
the irreducible components of ®(—0) are of type Ay, By, Cy, Dyy (¢ > 2), Ey, Eg, Fy, or Gy for a
(—6)-basis of @ and 6 = (—6)*w(6). Note this result also hold for a 6-basis with 6 characterized as
0 = —id - 0*wy(0) and the irreducible components of same type are within ®(6). Thus, the focus shifts
to consider root systems in which the irreducible component is of type Ay, Dy, 1 and Es. We shall
address these cases individually.

Throughout the subsequent sections, we will use the following result from Humphreys.

Lemma 5.0.2 (Humpreys). Let ® be irreducible. Then all roots of the same length are conjugate under W(®).

In other words, all roots of the same length create a single orbit under W(P).

5.1 Parabolic Subsets of Type Ay

Proposition 5.1.1. Let ® be irreducible, § € Aut(®) so that 0> = id and Ay(0) C A where A is a (—06)-basis.
If Ao(0) is of the type Ay for v > 2, then 6* # id.

Proof. Let Ag(0) = {ay, a2, ..., ar} where (a;,a;) = 0if [i —j| > 1 and 0 otherwise. With A, we have
the characterization 60* = —id - 6 - wy(6). From Bourbaki, wy(0)(«;) = —a,,1_; for all i < r,[9]. So
0*(a;) = ay1_; and hence 0%|Ag(0) # id. Therefore, 6* # id. O

Proposition 5.1.2. Let ® be irreducible, § € Aut(®) so that 0> = id and Ny(0) C A where A is a (—0)-basis.
If Ao(0) is of the type r - Aq for r > 2, then 0% = id.

Proof. With A, we have the characterization 6* = —id - 0 - wy(0). Let Ag(0) = {a1, a2, ..., ar} where
(aj, ;) = 0 for all i # j. It follows that wp(0) = s152 - - s, where s; = s4; . So 8*|Ag(0) = id. Since
Wy = W(D)/Wy(D), wy(0)|Ag = id. Recall ®y C ®y(—0). Hence 0|Ag = —id. So 6*|Ag = id. This

proves the statement. O

Notice from the two previous propositions that we did not address the cases when » = 0, 1. Here,

we find that both outcomes can occur; i.e. 0* = id or 68" # id.

Proposition 5.1.3. Suppose ® be irreducible of type Ay, E¢ or Dy, 1 and 0 € Aut(P) so that 6> = id. Let
Ao(6) C A where A is a 0-basis. If Ag(0) = @ or Ay, then 6% = id if and only if (—6)* # id.
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Proof. Suppose Ag(0) = @. If 0* = id, then 6 = —id and wy(0) = id. So Ag(—0) is of type Ay, Dyyiq
or Eg. In any of these cases, wy(—6) # id. Hence (—0)* = 0wy(—6) # id. Since these statements are
equivalent, the converse holds.

Now suppose Ag(0) = A;. If 0% = id, then 0 = —w((0) = —s, for Ag(0) = {a}. If P is of type Ay,
Ao(—0) is of type A 5. Hence wo(—0) # id and therefore, (—0)* = 0w —0) = —sqwp(—0) # id. Since
these statements are equivalent, the converse holds.

O

Lemma 5.1.4. Suppose ® is of type Ay and A C @ a 6-basis. Let 6 € Aut(®) so that 0> = id and Ay (0) is of
type Aq. Then 6* = id.

Proof. This statement follows from the fact that 6* € Aut(X, ®, A, Ag(0)). O

Theorem 5.1.5. Let ® be of type Ay, 0 € Aut(®) an involution and A be a (—6)-basis. Then the following are

equivalent.
(i) Ao(0) is of type r - Aq.
(ii) Ao(—0) is of type Ay_o;.
(iii) 0" =id
(iv) (—0)* # id

Proof. The result follows from Table ?? and Propositions 5.1.1 and 5.1.2. O

5.2 Parabolic Subsets of Type Dys1

Let A be the basis of the root system of type Dy. Then A = {ay,...,ap_1,a,}. Denote the subset

{0‘271/ D%} as DZ'

Lemma 5.2.1. Let ® be of type Dy, (n > 5) and 6 € Aut(®P) be an involution. If Ay(0) is of type D, then
Ao (0) is not W(®)-conjugate to any subsystem of type 2 - Aq.

Before the proof of this Lemma, we make the following observation.

Lemma 5.2.2. Let 01,0, € Aut(P) be involutions. Then Ag(01) and Ay(0,) are W(D)-conjugate if and only
if Mo (61)" and Ng(62)+ are W(®)-conjugate.

Proof. This follows from Proposition 4.4.6 and Lemma 5.0.1. O

Lemma 5.2.1. Let Ag = {a1, a2} be of type D, and A = {1, B2} of type 2 - A;. Suppose that they are
W (®)-conjugate. By Lemma 5.2.2, Ay and (Af))* are W(®)-conjugate. However from Table 2?2, Ay is
of type Dy_, and (A))* is of type 2A1 + D;_4, which is impossible. O
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The previous Lemma and proof are also used in [26] to prove a more general case.

Lemma 5.2.3 ([26],7.15). Let ® be irreducible of type D, (¢ > 4), A a basis of ® and let wq, wy be A-standard
involutions of ®. If Ag(—wy ) is of type r - Ay and Ag(—wy) is of type (r —2) - A1+ Dy (r > 2), then Ao(—wy)
and No(—wy) are not Aut(®)-conjugate.

See [26] for more results concerning Aut(®P)-conjugacy within ® of type D,.

Proposition 5.2.4. Let ® be of type Dy and 6 € Aut(P) be an involution. Suppose Ag(0) is of type r - Ay. If
there exists & € Ay(0) such that « € Dy, then 60* = id.

Proof. Let A = {ay,...,ay_1,a;} be the base of Dy. We use induction on r. Suppose r = 1. We can
assume Ag(0) = {ay}. Since 8* € Aut(Ag(0)), 0* = id. Assume this holds for Ag(0) = {B1,B2,---,Br-1}
of type (r —1) - A; where B,_1 = ay. Let A be of type r - A; and containing Ag(6). Then 6*|Ay(0) = id
which implies that 6*|A{.

O

Corollary 5.2.4.1. Let ® be of type Dy and 6 € Aut(®) be an involution. If Ag(0) is of type Dy, then 8% = id.

Proposition 5.2.5. Let @ be of type Dyyyq and 0 € Aut(P) be an involution. Suppose Ao(0) is of type r - Aq
and Ay(0) C Doy 1 — Dy. Then 6% = id if and only if (—6)* # id.

Proof. If 6* = id, then 6 = —wy(0) = —s153---Spp_1. Since Ag(—0) is also of type r- A1, wo(—0) is
also the product strongly orthogonal reflections. Thus, (—0)* = 6wy (—0) = —wo(0)wo(—0) # id. The

argument for the converse is the same. This proves the statement. O

Proposition 5.2.6. Let @ be of type Dyy 1 and 6 € Aut(®) be an involution. Suppose Ay () is of type Dy,
(n <204 1). Then 0* = id if and only if (—0)* # id.

Proof. From Theorem 4.3.5, (—6)* = id if and only if Ag(—0) is of type D with even rank if and only if
Ao (6) is of type D with odd rank if and only if wg(6)|Ag(8) # —id if and only if 68 # id. O

5.3 Parabolic Subsets of Type Eq

Let @ be of type Es. For this section, we take different approach to determine if the diagram automor-
phisms exist for opposing involutions. As @ is or finite rank, it is not as tedious to consider each rank
of the paraboilic subset individually; i.e. |Ag| =0,1,2,3,4,5 and 6.

We start with the usual set up. Let A be a (—6)-basis of ® and 6 = (—0)*wy(—6). Let D(£6) denote

the diagram representation for +0.
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Rank 0,4,6 It follows that wy(—6) = id and 6 = (—6)*. By Proposition 5.1.3, if (—60)* = id, then 6* # id
and 6 = id. Hence Ay(6) = Eg. The following is a representation of the opposing diagrams. Note

this representation also addresses the rank 6 case.
2

p<_e>;g>,iT4Sg<_>p<e):..I..

If (—0)* # id, then 6 ¢ W(®P). Hence from Table 22, Ay(0) is of type D4. Then we have the

following representation. Note this representation also addresses the rank 4 case.

[ J
own

— D(G):Cl) . I

Rank 1,5 It follows that wy(—0) is a simple reflection and 6 = (—60)*wy (). By Proposition 5.1.3, if
(—0)* =id, then 6* # id and 0 = s, € W(®P) for & € Ag(—0). Since 6 is a A-standard involution,
Ap(0) is of type As. Thus we get the following representation. Note this representation also

addresses the rank 5 case.

If (—6)* # id, then 6 ¢ W(®P). Hence from Table ??, Ay(0) is of type 3 - Aj. Thus we get the

following representation. Note this representation also addresses the rank 3 case.
2

D(—Q) : O O — 'D(Q) :

1 3 4 5 6

Rank 2 It follows that wy(—6) is a product of two simple orthogonal reflections and 6 = (—0)*wy(—6).
By Theorem 4.3.5, (—0)* = id, then 6* # id and 0 = wy(—6) € W(®). Due to the condition that
6* # id, Table ?? cannot be applied to determine Ay(f); this contradicts Theorem 5.1.5. Luckily,
the parabolic subset can be derived from the extended Dynkin diagram of E¢. From Lemma 5.0.2,
any two roots can be chosen to represent the two orthogonal reflections; say a1 and & the highest

root. Then the set of roots orthogonal to &y and & is {a4, a5, a6 }. This set is of type As. See Figure
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h!

Figure 5.1 Eg Example: a7 and & and {ay, a5, a6} are fixed

[
C

[ X3
[ X

2.

Thus we get the following representation. Note this representation also addresses the rank 3 case.

1 Ts 4 f
D(-0): o—e oo = DO): o—e O
t t~—w4 1
Theorem 5.3.1. Let ® be of type Eg, 6 € Aut(®) an involution and A be a (-20)-basis. Then we have the
following.

(i) If Ag(0) is of type r - Ay, then 8% = id if and only (—6)* # id.

(ii) If Ao(—0) is of type Ay, then 0" = id if and only (—0)* # id.

(iii) If Aog(—0) is of type Dy, then 0% = id if and only (—0)* # id.
With the conclusion of this section, we are now able to prove the following.

Theorem 5.3.2. Let Ay and A, be 0- and (—6)-bases, respective. Let 8% and (—0)* be defined as above. If ® is
of type Ay, Dyyq and Eg, then 0* = id if and only if (—0)* # id.

Proof. The result is immediate from Theorem 5.1.5, Propositions 5.2.6, 5.2.5 and this section. O

Corollary 5.3.2.1. Let A and Ay be 6- and (—8)-bases, respective. Let 6* and (—8)* be defined as above. Then
D is of type Ay, Dy 1 and Eg if and only if the opposition involution id* is nontrivial.

Remark 5.3.3. If Y, is of type By, Cy, Ey, Eg, F> and Gy, then 6* = (—0)* = id.

The I-posets have been determined for this case

5.4 Further Results: Parabolic Subsets

For this we section, we seek to provide further results for parabolic subsets of type r - A1 + X,. By
change of notation, we will denote the type of Ag(6;1) as r - Agl) + Yé(l) and similarly for A(6,) where
Yg can be of type A3 (T = 0), A5 (7’ = 0), Bg (f Z 2), Cé (f Z 2), Dg (f Z 4), Eé, E7, ES/ F4 and Gz.

But first, we consider the following propositions regarding parabolic subsets of type r - A;.
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Lemma 5.4.1 ([26],7.10). Let ® be irreducible, A a basis of ® and w € W a A-standard involution. Let
A1 = {a} be an irreducible component of Ag(w) of type Ai. Assume that the diagram of ® contains a sub
diagram of the form:

Kkr1

aq %) Ak—1 Xk a1 %) Xk—2 k-1 @k
o—0 - O—0O - o o—&o—i—&

with oy an endpoint, oy = o and a1 ¢ A(w). Then there exists ¥ € W such that r(A(w)) C A and r(a) = ay.

Proposition 5.4.2. Let ® be irreducible, A a basis of ® and w € W a A-standard involution. Let A1 =
{B1,B2,---,Br} be an irreducible component of Ag(w) of type r - Ay. Assume that the diagram of ® contains a
sub diagram of the form:

X4+1

oy o Kk—1 Ok a1 @ Xk—2 Ok—1 @k
o—0 O0—C - o O—QO—i—Q

with ay an endpoint, oy = By and a1 & A(w). Then there exists p € W such that p(Ag(w)) C A and

p(A1) = {aq,a3,..., 00511} for some s.

Proof. We shall use induction on r. The base step is simply Lemma 5.4.1. Suppose A; = {«, B}. Consider
the subdiagram only containing aq and « where & = a and a1 ¢ Ag(w). Then by Lemma 5.4.1, there
exists p € W(®) such that p1(Ag(w)) C A and p1(«) = a3. Now consider the subdiagram containing
a3 and B where a3 is the endpoint within subdiagram. Let f = a1 with ky > k. Then ay, 1o € Ag(w).
So by Lemma 5.4.1, there exists pp € W(®) such that p(Ag(w)) C A and py(B) = a3. Continue
this process for each subsequent root in A; in which &y, is the endpoint for some s, B; = a;, and
g, +1 & Ag(w). For B;, the size of the subdiagram should be minimal. If B, is the other endpoint and
&y_p = B,_1, then we are done. If not, then apply Lemma 5.4.1 to the remaining subdiagram of type

Ay. Set p = prpy_1 - - - p2p1. This satisfies the two conditions. O

As the proof suggest, Proposition 5.4.2 allows for the rearranging of black nodes. In other words,
all parabolic subsets of type r - A1 with r # 2 are W(®)-conjugate. So for A} =r1 - Ay and Ay =1y - Ay,

we write w(rq - Aj) = ry - Ay to represent the rearranging of the r black vertices of r1 - Aj to rp - Aj.

Proposition 5.4.3. Let 01,0, € Aut(®) be involutions and Ay(61), Ag(62) C A be of type r - Ay + Yy where
Y, is of type By, Cy or Dy. If Ag(601) and Ay (6;) are W (D)-conjugate for some w € W(®), then w € W(Y(gl)L).

Proof. From the assumption w (r . A§1)> =r- Agz) and w (Yem) = Yg(z). So there exists wy € W (Yéz))

such that wlw]Y[gl) = id. Then w; (Y[SZ)L) = Z(z)L = Yr(lz_)e D A1(12—)€—1 Dr- Agz)‘ So w <r~A§2)> =
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r A§2) and ww(Ap(61)) = Ag(62). Hence wy| (%AP) — id Note w(YZ(l)> — (V) = wy (v®).
So w|Y£1) = id. Therefore, w € W(yf(l)l)_

Corollary 5.4.3.1. Let Ay(61), Ao(62) C A be of type r- A1 + Yy where Yy is of type By, Cy or Dy. If
w(Ao(61)) = Ao(62) for some w € W (D), then Y/,(U = Yéz).

Theorem 5.4.4. Suppose A1, Ay C D be 61 and 6y-bases, respectively. Let Ay(61) and Ay(62) be of the same
type r - Ay + Y. Then the two indices (X, Ay, Ao(61),67) and (X, Ay, Ag(62), 05 ) are isomorphic.

Proof. Note from 4.4.8, it suffices to show that Ag(61) and Ay(6,) are W(P)-semi-isomorphic. Let
rank(Ao(601)) =rank(Ag(62)) = m. We show this by considering different values of m. First, we consider
the special cases where m = 0 and m = 1. From the bases, we obtain the characterizations of 6; and 6,

as 0y = —id - 07 -wy(61) and 6, = —id - 05 - wy(6,), respectively.

Set m = 0. Then Ay(61) = Ap(62) = @. It follows that wy(61) = wy(6z) = id. Let w € W(P) be
such that w(Ap(61)) = Ao(62). If there are no diagram automorphisms for A; and A, then
6, = 0, = —id. From 4.5.2, whw ! = 6,. Thus, Ag(01) ~ Ag(6-).
Now suppose 65, 63 # id. Notice that Ag(61)+ = Ag, = Ay and Ag(62)" = Ap, = A,. Then there
exists 0 € W(®) such that (A1) = Aj. It follows that (f()fcfl = 03. Therefore, (X, A1, Ag(61),67)
and (X, Ay, Ao(62),65) are isomorphic.

Set m = 1. Let Ag(61) = {a} and Ay(62) = {B}. Although the parabolic subgroups can be of type A;
or Yj, it suffices to only consider the case when ||a|| = ||B]|. If ||«|| # ||B]|, then the resulting
bases cannot share an isomorphy class. Since the roots have the same length, there exists
w € W(®) such that w(a) = B and hence w(Ag(61)) = Ao(02). Note wy(61) = s, and wy(62) = sp.

From [Humphreys” Lemma 9.2], wsw 1

= sg. If there are no diagram automorphisms, then
6 = —id-sy and 0, = —id -sg. By 45.2, whw~! = 6,. Thus, the parabolic subgroups are
W (®)-semi-isomorphic.

Now suppose 67, 05 # id. Then we need only consider the cases where ® is of type A, E¢ or
Dopy1-

Claim: w®y, = Pg,.

Let y € ®y, . Since @g(61)+ = Py, (x,7) = 0. Recall that the inner product is Aut(®)-invariant.
Hence (a,7) = (w(a),w(7)) = (B, w(y)) = 0. So w(y) € Ayg(62)F = Pp,. Thus wdy, C Py,.

Since w is injective and rank(Pg, )=rank(Py,), this proves the claim.
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It follows from the claim that wGi‘w’l = 0. Therefore,

whw ! = (w-—id-w ) (w-0; w ) (w-s,-w )

= —id(w-6] ~w*1)sﬁ
= —id- 9; . Slg
= 0.

Set m > 1. We consider three subcases.

Case 1: Suppose Yy = @. Thenm =r. Let Ag(61) = {ay,...,a,;} and Ag(62) = {B1,...,Br}. Then

wo(01) = Su; - -+ s, and wo(02) = sp, - - - 5p,. Since all roots have the same length, there exists
w € w(®P) such that w(a;) = B; for all i < r. So w(Ag(61)) = Ag(62) and wwy(6;)w ™! =
wo(62). If @ is not of type D, then 0] = 05 = id from 5.1.2. Thus, wdyw 1 = 6,. Therefore,
Ao (61) ~ Ao(62).
If ® is of type Dy, then we know from 5.2.4 that the diagram automorphism is dependent
on where the black dots are in D,,. If there exists a subset of Ay(61) of type D, but not in
Ao(62), then the two parabolic subgroups are not of the same conjugacy class. If so, then
07 = 05 = id and wOjw~! = ;. Therefore, Ag(61) ~ Ag(62) if both parabolic subgroups
contain a subset of type D;. If both do not, then either 6] = 6; = id or 67,05 # id. If
the first holds, then we are done. So we assume the latter. Since Ay(671), Ag(62) C Ay—2,
07|A0(6;) = id for i = 1,2. Well w(D,) = Dy, so it follows that wd;jw™! = 5. Thus,
Ap(61) =~ Ag(62) if both parabolic subgroups do not contain a subset of type D,.

Case 2: Suppose r = 0. Then Ay(61) and Ag(6,) are both of type Y;, assuming Y;, # D,,. From
Prop, there are no diagram automorphisms for both +1-eigenspaces. Since W(Y;,) =
Aut(Ym), woiw ™t = id = 0} for all w € W(Y;,). Also, there exists ¢ € W(Y,,) such that
a(Ag(61)) = Ag(62). Hence, owy(61)0~ = wy(62). So, 7810~ = 6. Therefore, Ay(0;) ~
Ag(62). Now assume Yy, = Dy, Let {a1, a0} C Ag(61) and {B1, B2} C Ao(62) be of type D,.
Since there exists w € W(Dy,) such that w(Ay(61)) = Ag(62), then w(ag) = B1 and w(ay) =
B> without loss of generality. Note 67 |(A; — {a,a2}) = id and 65|(Ay — {B1,B2}) = id. So
woiw 1 (B;) = 05(B;) for i = 1,2 which implies that wo;w~1(y) = 65(y) for all ¥ € A,.
Hence, Ag(01) ~ Ag(62).

Case 3: Suppose r # 0 and Yy, # 0. From 5.4.5, there exists w € W(®) such that w(A(61)) =
Ao(62). So wwy(61)w ™! = wy(62), w(r- Ar) = Ay and w(Yy) = Y,. From 22, 07 |(r- A1) = id

for i = 1,2. Then the result follows from Case 2.

O

Corollary 5.4.4.1. Let ® be irreducible and 6 € Aut(®) an involution. If Ag(0) C A is of type r - Ay + Y, and
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Y, # @, then Y, determines the existence of a diagram automorphism.
Proof. It follows from the proof of Theorem 5.4.4 and Proposition 4.3.5. O

Corollary 5.4.4.2. Let ® be irreducible and ®y(0;) is of the type r; - A1 + Y, (i = 1,2) where either Y, = @ or
one of By(£ > 1), Cy(¢ > 1), Dyy(¢ > 1), Ey, Eg, Fu, or Gy. If there exists w € W such that ®y(61) = Py (62),

then w leaves Y, invariant and w(ry - A1) =12 - Ay.

Proposition 5.4.5. Let ® be irreducible and 61,0, € Aut(®) be involutions. Suppose Ao (61), Ao(62) C A are
of type r - Ay + Y. Then there exists a w € W(®) such that w(Ay(61)) = Ao(62).

Proof. If Y, = @, then there exist k such that r - A} C Ay. Hence, the result follows from ??. If r = 0,
then we first consider the rank(Y;) where Y/ is of type By, C; or Dy. Let £ = 2. Then Ag(61) = {a1, a2}
and Ag(62) = {B1, B2} Since ||aq|| = B1]|, there exists w € W(P) such that w(a;) = 1. Well,

(w1, 82) = (w(a1), wlaa)) = (Br,w(w2)) = (B1, P2)

implies that w(ay) = Bo. Hence w(Ag(01)) = Ag(62). For £ > 2, note that Y, D Ay_4. So from 5.0.2, there
exists w' € W(®) such that '’ <A£1_)1> = Aéz_)l where A;i_)l represents the type of Ay(6;) for i =1,2.
From the base case, we see that if w'(a;_1) = B,_1 then w'(ay) = B;. Thus, w'(Ag(61)) = Ap(62). Notice
for the other types of Y, there exists k such that Ay C Y;. Then there exists w” € W(®) such that
w” (Algl)) = AI(CZ). It follows from a similar argument of Y, that w’” (Ag(61)) = Ag(62). Thus for the
case where Y, # @ and r # 0, we consider A; C r - A; + Yy where g is of maximal value. So for there
exist o € W(®) such that ¢ (A,sl)) = A(Z), and the result follows.

q
O

5.5 Quasi R-split Characterization for Opposing Involu-
tions Example

The results from this chapter can be applied to the classification for quasi R-split tori. In [21], a complete
table of this classification with the types of (6, ¢)-diagram, ®(a) = ®p, Py 9 NPy = P(a,a, ) and the
maximal involution of ®, g N ®g. This paper contributes the diagrams of the maximal o-split torus
inside a 6-split (0|®y), maximal 0-split torus inside a o-split (0P, ) and the diagrams of their opposing
involutions. A complete list is provided within Appendix A.

Recall the Example 4.5.5. Let 0 be of type AII and o of type AIIl, acton on Ay11. The 6 and o

diagrams are as follows.
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o—=o0 -
1 2 . !
v —O—e --O—e 0 o
O—0 -
Thus, the (6, 0)-diagram of type Aiﬁgfl (I11y,11,€p) would be:
1 -1
&% '
JEEN
0 0 0

The restricted root systems relative to 8 and o are below.

_ 1 2 (-1 ya 1 2 20—1 2/
D : O—0 - -0=<=0 D, : O—0 - -0—0

Now we can determine the action of +60 and +0¢ on these restricted root systems.

¢
0| Py : —O0—e --O—e==0 —0| Py : O e O =<0

S
*

-~
<
-~
~

—

~

|
—_

0|D, : —0| D, : e—O—e  O—=e

A detailed list of the actions of +¢ and £6 on quasi R-split tori have been provided in Appendix
A. This list is an adaption of the classification tables that addresses the 171 isomorphy classes provided
in [21].
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APPENDIX

A

COMPLETE TABLES ON THE ACTION
OF OPPOSING INVOLUTIONS ON
QUASI R-SPLIT TORI
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20+1,¢ 20-1,40-1 2040+1
Type (6,0) A5, NI IT) A7, NI Ay T
(0, 0)-Diagram 1 ¢ 1 201 1 20
o o O—e e—O—e  O—e e—O0—e O—e
0| Dy 1 ¢ 1 2 20-2 20-1 1 2 21
—O—o  -O—e O—O0----0—O oO—O0----0—0
T 2 1 T 2 1
oo - oo - 1 2 -1 ¢
LD el ] Dol T
oo =1 1 1]
oo *—o oo o
0| P, 1 2 20 2041 1 20-1 1 20
T 2 7 T 2 201 T 2 2
Wl LD el DD el DR
_9|®(7
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Type (6,0)

A2V TTL, €0)

Aigi}?_l (IIIb/ I/ 60)

AL A1, 1, €)

1 2 L

(6, 0)-Diagram

1 2 20—-1

T

. ﬁ b3

:
P

1 2
o* I I

1 2 [4
o* I I

1 2 20 2041

0"(139
—0"@9 1 (-1
o O o ° o e=-9 *—¢ =0
1 2 20-1 1 2 £
I I I : I I I g
o+ 6
0|®, 1 2 -1
O—O OO o—oO - Oo—0 -
_9|®, 1 20-1 1 ¢
*—o e=-9 o—O0—eo O—e &—O—& -O0—o
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20—1,2¢ 20,2041 2020—1
Type (6,0) AL, VI Iy, €) AL NI, 1T AL TN 1L, 1 ep)
1 /—1
1 -1 ¢ 1 -1
IR I Esatastanan)
(0,0) Diagram ff AT LDl ]
7 ’ (8 (7777 (8 .G—O—.e"" ]
1 2 /-1
o—-:0O - 1 2 /-1 l
Ny B
o *
| Py ‘TI I I 1 -1 ¢
—0| Py 1 -1 1 ¢ 1 -1 ¢
1 2 /—1
o—O0 - ,
1] ]
0|y 1 -1 ¢ 1 -1 ¢
—0| D 1 -1 ¢ 1 -1 ¢ 1 (-1
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20+1,2¢ 20—1,0 £20—1
Type (6,0) AP (1, 11) A5, (L1, ep) Ay (1, 1e)
1 2 /-1 1 2 /-1
1 -1 14 o—-=0---
¢ —O— & o ¢ - l
worpagam| *] | 1 1] Do "L 1] | ]
O o s O—O -+ O—O---
1 2 /-1
SN
| Py 1 -1 ‘ 12 1y
e—O0—e O—e—0O=—e o—0--- O—O - -O===0
—(7‘@9 1 /—1 ¢ 1 /-1
1 2 /-1 1 2 /-1
1 2 -1 ¢ o—=O0 - oO—=0 -
BN EN NN
0|, SN
—0|®, 1 1 -1 1 -1
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201201 20-1,2¢ 20201
Type (0,0) | A2 N(Le) | ALP(ILIIL, €) AL N1, 11, €)
1 7—1 1 —
R ' R ’
(6,0)-Diagram | 1 2 20-2 201 ”*I I I I » ”*I I I I »
S lo C 8 - o (4 o (4
1 71
¢
48N
| Py 1 2 20-2 201 1 -1 ,
T 2 (1
¢
] 1]
—0| Py 1 (-1 1 = (
o o O O—e o O e O —e=<O
9|¢0’ 1 2 202 20—1] 1 /-1 / 1 /-1 ¢
T 2 1
¢
] 1]
—0| P, 1 -1 ‘ 1 -1 ‘
N N — O o O @0
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7p p.t
001 AL I Ay (11,1
Type (6,0) Ay (1L e) 1£§ (Zp SHE) 1%(2}7 aﬁ E)
12 p optl 1 2 p ptl

AT

)

0

S5

(6, 0)-Diagram 1 20-1 9 o o >
1 2 p ptl
. *
a :
| Do 1 2 20-2 201 . 12
1 2 -1
¢
(—0)*1 I I
—0’|q)9 2 p
0|D 1 2 20-2 201 12 plop 1 2 7
o O O ----O==20 o—-0----0—e - -0—=—0
1 2 (-1
¢
—6|®, L2

0 O -O—@ - -0——0
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/ 2p20—1 2p,20
Type (6,0) AE(I'GP) Ay (I11,,1I) A4£+1(IIIQ,II)
1<2p </ 1<4p <4 1<4p <4
T 14 T P
&—O—& - & &
0* o* 9
(0,0)-Diagram | 1 2 ¢-1 ¢ A /‘
O O-----O0——O .—HB ) . .9 O .97” 4
0| Dy 1 2 -1 ¢ 1 p—1 p 1 p-1 p
S o N o O o O @0
T 2
—0) :
°
—(7"¢9 -1
o—ta—o/ Q—é—t %—oig o—cl)—& g—rm
12 7 é_é P
o+ * o+ *
0| P, 1 2 -1 ¢ s
SRR A AN
T 2
) :
—0|® ¢
’ o—ra—/ 3—0—2& ro—ﬁ—o— e i—o—zt —O—ﬁ—O' 0
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20—-12p 20,2p oy
Type (6,0) Ay UL ) Ay (I1 111,) Ay (I €p)
1<4p <4l+2 1<4p<4l+2 1<2p</i+1
1 p 1 P
e—O0—eo O—o—@ e O e O —o o
o ) . 4
(6, 0)-Diagram ¢ 1 201
oa—o—rao—o—o/ e—O—e O—e—4¢ e—O—@ - O—e
1 2 p ptl 1 2 p ptl
- o ’
| Do / ¢ 1 2 -1
T 2
r | | |/?
(—0) ;
o
—0'|(I)9
2 P 7 2 P .
9|q>¢7 1 p—1 1 p—1 p 1 2 20-2 20-1
T 2
—0|D, -1 -1 .
1 P 1 P P /
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p.p Lp
00 Ay (IHarep) Azg,1(lnbz 111, €;)
Type (6,0) | Az—1(ITTp€0) p<l+1-2p 0 p42i<2p
0<i<p-1
1 2 p pHl
12 201 Tt
oO—->=0-- 1 2 14
. o ® ot &0
(6, 0)-Diagram I I I I ﬁ I I I
& o—-=o0--- o—&o—t&—o/ O—e 6 —@
oDy 1 2 -1 g 1 2 plop 1 2 P 0
—0’|<I>9 1 2 ptl L
*—o - o=<—e o—o o9 O— OO -o—<—w
0|P, 1 2 21 1 2 p 1 2 plop
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7, 7, 7,
Tvoe (6 Azgp_l(llfblflfa,Gi) Azgp_l(HIerI_a,Gi) Azgp_l(HIbz‘Hlazei)
ype (6,0) p<{l—p+2i<Vt p<l+p-2i</{ C+p-2i<p
0<i<p-1 0<i<p-1 0<i<p-1
T2 P T2 P T2 7
o 30 o 30 ]
(6,0)Diagram | |4 || ] et 1] et 1]
O & () O & (] O 9 (]
| Py 1 2 p ¢ 1 2 p ¢ 12 p ¢
—0| Dy 1 2 ptl ¢ 1 2 pfl ¢ 1 2 pfl ¢
0], 1 2 p1op 1 2 p1 op 1 2 plop
_9‘¢U
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4 ¥4 4
Aby (11, 111, €;) ALy (11, 111, €;) ASy (111, 111, €;)
Type (6, 0) (—p+2i<p p<l—p+2i<t p<Ll+p-2i<t
0<i<p-1 0<i<p-1 0<i<p-1
1 2 P 1 2 p 1 2 P
oo P T T T D b [T T D b [T T D
o 0'”70' 28 o 0'”7(7 [ ”O—’V”r(f [
TPy 1 2 p-lop 1 2 p-lop 12 p-loop
—0’|q)9
0| Dy 1 2 P 1 2 P 1 2 P
—6|®; 1 2 ptl 1 2 ptl 1 2 ptl
O—O0----O—e0 - -e==—0 O—0--O—e - -e==» O—0 - -O—0----e==—0
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AP (1L, 111, €;)

AV (111, 111y, €))
q—p+t2i<p<gq

AVP(111,, 111y, €;)
p<qg<qg—p+2
g—p+2<i(l+1)

Type (6,0) (+p—2i<p 1
< < =
0<i<p-1 1—’9(0<<‘71.—<2;§§+1) 1<p<q<i(t+1)
- (0<i<p)
o ® ®
SHEN i>'
BN

(0,0)-Diagram

o|Dy 1 2 plop 1 2 P q 1 2 7 q

—0| Dy 1 2 ptl q 1 2 ptl q
*—O - 0—0 O—=O0 - --O—0 - -06—>=0 O—0 -O—0 - -06—=0

G‘q)zr 1 2 P 1 2 p=1 p 1 2 p=1 p
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Type (6,0)

ATP(111,, 111y, €;)
g<l+1—qg+p—2i
(+1—q+p—2i<3({+1)
1<p<q<3(l+1)

AV (111, 111, €))

p<l+l-gq+p-2i<gq

1<p<qg<i(t+1)

AVP (111, 111, €))
C+1—-q+p—-2i<gq
1<p<qg<i(+1)

(0, 0)-Diagram

. 0<i< 0<i<
0<i<p-—-1 =17 (0= P)
1 2 p ptl g 1 2 p p+tl g 1 2 p ptl g
o—=0C--- ) O—=0C--O0—@ - O—=0C - --O—@ -

o|Pg 1 2 q 1 2 P q 1 2 P q
—0| Py 1 2 ptl q 1 2 pt+l q 1 2 pt+l q
0|®, 1 2 p-1 p 1 2 p-1 p 1 2 p1 op
O—O - -0==0 O—O - -O==0 O—O - -O0==0
_9|q)(7
o o o9 o o o9
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AP, 111, €)

AVI(11,, 111, €))
p<q-—p+2i<i(l+1)

AVI(111,, 111, €))
g<l+1—qg+p—2i
(+1—q+p—2i<3(f+1)

Type (6,0) : <q—P+<2i@P ) . na
Sp<qg=;+ Sp<g=s;+ 1< <lp+1
<i< <i< —P<q,—§(+)
0<i<p 0<i<p (0<i<p)
1 2 p ptl g 1 2 p ptl g 1 2 p ptl g
o &0 , o* &0 * o &0 ,
(0, 0)-Diagram ¢ ¢ ¢
TPy 1 2 p-1 p 1 2 p-1 p 1 2 p1 p
O—O -+ -0==0 O—O - -0===0 O—0----0==0
—0| Dy
0| s 1 2 p 1 2 1 2 7
—0|®, 1 2 pHl 1 2 pt+l 1 2 ptl
O—O0---O—e - -0==e O—O0 - --O—e - -0==0 O—O0---O—e----0==e
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AV, 111, €) AV (111, 111,, €;) ByP (I, €;)
Type (6, 0) p<l+1—g+p—-2i<qg | l+1—q+p-2i<p<g p<Ll—p+2i
1<p<g<z(l+1) 1<p<qg<3(0+1) 1<p<t
0<i<p 0<i<p 0<i<p)
P T Léé_”iliﬂ\
0" &0 : 0" &0 ,
(6, 0)-Diagram ¢ ¢
& o—=OC o—&ga{f—/ o—o0 o—&g&a—o/ o—ég—&m

| Py 1 2 p-lop
—0"@9
0|, 12 7 1 2 P 12 ptop
—0|®, 1 2 ptl 1 2 ptl
O—O0---O—e-----e==e O—O0--0—e ---e==» *—o =90
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Type (6,0)

BZ’p(Ia, ILII Gi)
g—p+2i<p<qg
1<p<g<V?t
(0<i<p)

BZ,p (Iﬂl Iﬂ/ Gi)
g<q-p+2i<t
l<p<qg<t
(0<i<p)

BZIP (Iaz Ia; ei)
g<24+1—q+p—2i</{
1<p<g<t?¢
(0<i<p)

(0, 0)-Diagram

0’|CI)9

—0’|(D9

2 p+1

0|,

0| D,
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B (14, o, €:) BI7 (1o, Lo, €1) B} (1o, Lo, €1)

Type (8, 0) p<2+1—g+p-2i<qg | 22+1—-gq+p—-2i<p g—p+2i<p<g
1<p<qg<?t 1<p<g<Vt 1<p<g<Vt
0<i<p) 0<i<p) (0<i<p)

(6,0)-Diagram 1 2 7 g 12 q 12 q

| Do 1 2 7 q 1 2 7 q 12 p by
O—=0 --O—e -0 O—0O---O—@ -9 o—=0C----C===0

—0| Dy 1 2 ptl q 1 2 ptl q

0| D, 12 p-1op 1 2 ploop 1 2 P q

—6|®¢ 1 2 ptl q
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Bglq(lﬂ/ I, 61') Bflq(lar I, €i) Bg’q(Ig, 1, 61')
Type (6,0) p<q-pt2ist q<2+1—q+p—2i<l | p<2+1—gq+p—2i<g
1<p<g<Vt 1<p<qg</t 1<p<g<Vt
(0<i<p) (0<i<p) (0<i<p)
(6,0)-Diagram | | , 9 1 2 P q 1 2 p q
o—-0C- O—Ga%a:ﬁ. o—-0- 'O—Gg' 'ﬁ':>:. O—(}O—Ga%a:ﬁ.

| Py 1 2 pl p 1 2 p1 p

—0| Dy

0|®, 1 2 q 1 2 7 q 1 2 P q
O—O0 -O—e - -0==e O—O0 - -O—e----e==e O—O0-O0—e - -0==0

_9|q>0 1 2 ptl q 1 2 ptl q 1 2 ptl q
O—O0-O0—e --e==e O—O0 - -O—e - O—0 - -O0—e - -0==»
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Bé]rq (Ia/ Ia/ €i)

' £, p.l
Type (6,0) | 2+1—qg+p—2i<p C,7(1,11,) Cr (1L, 1)
1<p<qg<t (2p < ¥0) (2p <)
0<i<p)
(0, 0)-Diagram 1 a2 p g ) ) . .

N zr”‘a 0 b ) 0 4 o o C 4
| Py 12 plop 1 p 1 2 plop
—U"(Dg 1 p
0|, 12 7 q 12 -1 . ,

—0| Py 1 2 ptl q 1 p
O—O0 - -O—e - -e==e *—o o0 ~ O @ O—0O--O=0
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20,0 0,20
Type (6,0) (op < ) Gy (1, 11y, €9) Cy, (11,1, €9)
(6,0)-Diagram | 1 2 (-1 ¢ 1 01 ¢ 1 (-1
0O O - - -O==0 .—H9 ), ~%>—.i:06, o O o - O o
| Py 1 2 -1 ¢ 1 01 ’ 1 2 -1
—0| Py 1 -1 i
0| D, 1 2 (-1 1 2 -1y 1 -1
_9’®g—
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24 20,0 0,20
Type (6,0) Cyy (Ip, €0) Gy (I, 11y, €¢) Cyy (1, 1,ep)
(0, 0)-Diagram 1 -1 ) - , . 1
0 0 0 o v o
o| Py 2 -1 1 -1 . 12 -1
—o|®s 1 -1 ¢
0|P, 2 (-1 1 2 -1 1 -1
—0[®, 1 -1
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CyP (1, €;) CyP (11, Iy, €;)
Type (0,0 20,20 p<{-2p+1 g—p+2i<p
ype (6,0) Cy° (1 €0) 1< p<le l<p<g<ic

(0<i<p) (0<i<p)

(6, 0)-Diagram

0"(199

1 2 20-1 2 1 2 p q

O—0 - 0===0 O—0 - -0===0 OO O e
—0| Py 1 2 ptl q

oo o= L S —— O—O0 - -O—@ - -0==—0
0|P, 1 2 2u-1 1 2 p-1 p 1 2 p-1 p
—0| D,
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CrP (11, 11y, €;)
p<q<q—p+2i§%€

CrP (11, 11, €;)
g<l—q+p—2i<it

Type (6,0)
1<p<q<it 1<p<qg<it
0<i<p) (0<i<p)
(0, 0)-Diagram 1 p p+1 q 1 P p+1 q
o|Po 1 2 p q 1 2 p q
e O—0 - O—e o=
—0|Pg 1 2 ptl q 1 2 ptl q
O—O0 O - -8==0 O—O O -0==—0
0|P, 1 2 p1op 1 2 p-1 p
: O,,, [m> )—(F,,,(Ii()
_9|q)(7
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TP )
C<f (f”’fl”z’f;) CIP (1L, [Ty )¢ —q+p—2i < p
Type (6,0) p=q+p 1‘7 1< p<qg<le
1§P<qug (0<i<p)2
0<i<p) ==
(0, 0)-Diagram 1 p 1 ] ) , pi1 .
o—O—@- O—.—&g ‘—'6—’ =0 6—O—©0 {)—’—&9' H—’G == ]
| Po 1 2 P q 1 2 » q
o—-=o0C -O0—e- -0—=—0 o—-=0C -O0—e- -0—=—0
—0|Pg 1 2 ptl q 1 2 ptl q
o—-=o0 -O0—e- -0—=—0 o—-=0C -O0—e- -0—=—0
0|, 12 plop 12 pl oy
—0|®,
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CP (11, 11y, €1) Cy(11,, 11, €;)
Type (6,) q—p+2<p p<q—p-+2i<3l
1<p<qg<gyt 1<p<qg<it
(0<i<p) (0<i<p)
(6, 0)-Diagram 1 p p+1 q p p+1 q
o—O0—@ - O0O—0—0 - 0—0—0 -0—=—0 o—O—@& "{)—Q—Ga" %—0—&0 =0

0| Dy 1 2 p-lop
—0'|CI)9
0|, 1 2 p q 1 2 q
() () ,,() .,,‘i‘ () (),,() .,,,.i.
_9|q>(7 1 2 ptl q 1 2 ptl q
oO—O0 - O—e@- - -e==e
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Cy (11, 11, €;)
g<l—q+p—2i< il

Cl (1o, 1y, €;)
p<l—qg+p—-2i<qg

Type (6,0)
1<p<q<it 1<p<qg<it
(0<i<p) (0<i<p)
(0, 0)-Diagram 1 p p+1 q 1 P p+1 q
*—O—& O—O—&a %—QU—& =0 o—O—@ O—O—&U %—0—&0 -—=—0

0| Dy 12 plop 1 2 plop

—U"(Dg

0|D, 1 2 7 q 1 2 p q
O—O0 - -O—e0 - -0==0 O—O0 - -O—e@ - -e==e

—0|®, 1 2 ptl q 1 2 ptl q
O—O0 - -O—0 - -0==0 O—O0 - -O—@ - -0==—0
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Cg,q(lla/ Ilar.ei> Cﬁ’ep(llb,l.la,ei)
Type (0,0) b—q+p=2i<p C—p+2i<p
1<p<qg<i 0<i<p-1
(0<i<p) (l<p<?
(6, 0)-Diagram 1 . 1 g »

| Py 12 plop s p ,
—0|®y 2 pHl ¢
o—O - 06—0 O—0O - O0—@ - 0=—0
0|®, 1 2 p q 1 2 p-1 p
O—O---O—e -0 o——0G--- =0
—0|D, 1 2 ptl q
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6/
C,f (Iy, 11, €;)

é,
Cyf (11y, 114, €;)

Type (6,0) p<l-pt2i<t p<l+p-2i<t
0<i<p-1 0<i<p-—-1
(1<p<? (1<p<¥)
(6, 0)-Diagram ) » ) ,

7| P 1 2 P ¢ 1 2 P ¢
O—O0 O—e- - -o=<=e N A
_0-|¢9 1 2 p+1 Y, 1 2 P+1 ’
O—0O O—e - -e=<=e OO O e
9|q)(7 1 2 p—1 14 1 2 p—1 p
—0|®,




Cyf (11, 11, €) CP (1, 1y, ;)
Type (6,0) (+p=2i<p C—p+2i<p
0<i<p-1 0<i<p-—-1
(1<p<¥ (1<p<¥)
p

(6, 0)-Diagram

U’lCPg

—Ulcbg

0| D,

— 0],
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7
Ch (11, 11y, €;)

¥4
ng (IIg, IIb/ 61‘)

p§g+p—2i<€

Type (6, 0) p<t-prast '
0<i<p-1 it
(<p=0) Herst
(6, 0)-Diagram ! 4 = : :
g’|CI>9 1 2 p—1 p 1 2 p—1 p
—0| Dy —=0
9|q)(7 1 2 p 1 2 I —=—9
oo, L g p+l 1 2 ptl
O—0-O—e - -e==e o
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CP (1, 1y, ;) D} (14, Lo, €1)

Type (6, ) (+p—-2i<p q—p+t2i=<p
0<i<p-1 1<p<g<i-1

(1<p<? (0<i<p-1)

(0,0)-Diagram

| Py 1 2 p-lop
O—0 - -0===0 O—0O  O—e - e==e
—0| Py 1 2 ptl q
o—o o9 O—0 -O—e - --e==e
—0|D, 1 2 ptl
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DZ/V (ILZ/ ILZ/ Gi)

Dz’p(la/ Ia/ €i)
g<2l—q+p—-2i</t

Type (6,0) p?i<q—]ﬂ+2i§€
<p<g<i-1 1<p<g<t-1
0<i<p-1) 0<i<p-1)
1 2 p ptl p+2 ¢ 1 2 p p+tl p+2 g

(6, 0)-Diagram

o|®g 1 2 r q 12 p q
O—O0 -O—e - -e==e O—O0 - -O—e8 - --0==e
—0| Dy 1 2 ptl q 1 2 ptl q
O—0 O—e - -e==e O—O0 --O—e - -e==e
0|®, 1 2 p1 p 1 2 p1 p
_9|®¢7
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DZ/V (ILZ/ ILZ/ Gi)

Dz’p(la/ Ia/ €i)
20—q+p—-2i<p

Type (0,0) P§12<€—6]+P—2i<q
<p<g</i-1 1<p<g<t-1
0<i<p-1) 0<i<p-1)
1 2 p ptl p+2 ¢ 1 2 p p+tl p+2 g

(6, 0)-Diagram

o|®g 1 2 r q 12 p q
O—O0 -O—e - -e==e O—O0 - -O—e8 - --0==e
—0| Dy 1 2 ptl q 1 2 p q
O—0 O—e - -e==e O—0 --O—e - -e==e
0|®, 1 2 p1 p 1 2 p1 p
_9|®¢7
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Type (6,0)

Dz’q (Ia/ Ia/ €i)
p<q—p+2<Vt
1<p<qg<i—1

0<i<p-1)

(0, 0)-Diagram

1 2 p p+l p+2 g

0| Dy

O—O0 - -0==0

—0‘|d)0

0|,

_9|q)g

1 2 ptl q
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Dg’q (ILZ/ ILZ/ Gi)

Df’q(lar Ia/ €i)
p<2—q+p—-2i<q

Type (6, 0) q§12<£—q+p—2i<£
<p<g<i-1 1<p<g<t-1
0<i<p-1) 0<i<p-1)
1 2 p ptl p+2 ¢ 1 2 p p+tl p+2 g

(6, 0)-Diagram

[ [ 28

28 [ (o4

0| Dy 1 2 p1 p 1 2 p1 op
OO OO OO OO
—0| Dy
0|, 1 2 7 q 1 2 p q
O—O - -O—e0 - -e==e O—=O0----O—e---0==e
_9|q>0 1 2 ptl q 1 2 ptl q
O—O0 - -O—e- - == O—O0---0—e ==
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D?r[i (Ia/ Ia/ ei)
20—q+p—-2i<p

Type (6,0) (—p+2i<p
1<p<qg<i-1 1<p</
0<i<p-—-1) 0<i<p-1)

1 2 p ptlp+2 g 1P d

(6, 0)-Diagram OGO e oO—e -

0
1 r
(T|CI)9 1 2 p q o----O0—e -
O—O - O—e -e==e
even odd
—0| Py 1 2 ptl q 2 P
O—0 - -O—e o0 1 l-p 1 l=p
O -O—e - O--Oo—e -« (—9)
0| Do 1 2 q 1 2 p-lop
—0|D 1 2 pHl q
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Dy (I, I, €;) D/ (I, I, €;)
Type (0,0) p<Ll—p+2i</{ p<_l+p-2i<{t
1<p<?t 1<p<?t
0<i<p-—-1) O<i<p-1)
1 p 4 1 p 0
(6, 0)-Diagram O -O—@ - o O_.9<
0 G
o L. NI
o|® peven p odd p even p odd
—0|Py
t—p 1 Ly . 1 l-p 1 Lty .
O----O—e o O—*<>) 0H< OH<>)
0|P, 1 2 pl p 1 2 p-1 p
—0|®,
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e 0 e 2piay
<p< <p<
0<i<p—-1) (0<i<p-1)
1 p 0 1 P 7
(6, 0)-Diagram OO o o
1 p
| Py O --O—e - 1 2 p-1 p
OO OO
ol p even p odd
—0 [Py o o o9
1 E_p 1 Kfp * -
O O—@ o-----o—e-----& (—9)
1 P
o——0 - -O0=—0
oo, p even p odd
(S —— L ep 1 t—p
oO—e - oo—e & (—¢)
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Type (6,0)

DZ,E(Ib/Ialei)
p<l—p+2i<Vt
0<p<t?¢
(0<z<p—1

Dglg(lazlbrei)
p§£+p—21<£
0<p<?¢
(0<1<p—1

(6, 0)-Diagram

R

1
OO—O<

1 2 p-1 p

1 2 p-1 p

0"@9
—0’|q>9
1 p 1 P
oo, o ST
ole, — ot — o
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. 14
Type (6,0) l+p=2i<p DY, (111, 1,)
0<p</ (1<2p<0-1)
O<i<p-—-1)
1 p v
(6, 0)-Diagram oo oa—é—tgif—o—&gg—<e

| Dy 1 2 plop 1 2 2 ¢

—0|®g 1 2 2pH1 0
17

0| s OO 1 2p-1 2p

dd
—0|®, A Z - ] 2p-1 2p
l—p —p e O e O o—=0
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Type (6,0)

DY (1, 111,)
(1<2p<20-1)

(6, 0)-Diagram

1
.—O—G O—H

U‘CDG 1 2 [4 1 2 -1 14
—0| Py 1 2 p
0| Dy 1 2 12 (-1
—0| Dy 1 2 ptl

O—0 - -O—0 - -0==0 *—0 =0
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Type (6,0)

72
ng.f1 (IHb/ Ia)

(1<2p<£

2p,0
D57 (1o, 111y)

(1<2p<2£—1

(6, 0)-Diagram

1
.—O—& %)—Q—&

1

TPy 1 2 4p ¢ 1 2 p
—0'|q)9 1 2 4p+1 l 1 2 14
0|P, 1 4p-1 4p 1 2 P
—0| Dy 1 4p—1 4p 1 2 ptl
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Type (6,0) Doy (111p, €p) 2040 200
e (1 I 2p < 20) Dy (111a, Iy, €0) D5, (I, 111, €o)
1 (=2 - 1 ) o—
(6, 0)-Diagram o« o o 0o 3 o oo s
1 ) -
7|®e 1 2 1 1 2 20-1 2 0o
|cp 1 -2 —
—0|Pyg — O o
1 (-2 /—
9‘@0 1 2 -1 Y o—0O0—e - 1 ) -1 .
O—O - -0==0 OO Ot
1 -2 -
—0|®@, -~ O o
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20,20 £,2¢ 20,0
Type (6,0) Dy~ (111, €p) Dy (111, 1y, €¢) D5, (I, 111,, €¢)
20 7 7
_ 1 202 20— 1 -2 - 1 -2 -
(0,0)-Diagram | &—O0—=e - ¢—Oo—&-- ; & O & d
Ca 0
7
1 -2 -
0| Py 1 2 201 2w 1 2 -1 ¢ —O0—eo -
7
1 -2 -
—0|®y 0o
7
1 -2 -
0|®, 1 2 21 2 O —e - 1 2 -1
OO OO OO OO
7
1 -2 -
—0|®, o~ O o
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20 02041 20410
Type (91(7) D%(Ib/eé) D2€+1 (IIIb;Ib) D2€—|—1 (Ib,IIIb)
201
¢ ¢
' 1 2 203 20— . 1 ) .
(0,0)-Diagram [O—0O--+- o — O o 9*:) o« o o U*>
201
¢
1 2 20-3 26— ) .
(7‘@9 O—O 1 2 /—1 Y . o*
20 O—O----0==0
7
1 -1
—0| Py oo .
oo oo
20—-1
¢
1 2 20-3 26— . 1
0|, o0 *—O0—e - 0 1 2 -1y
2 O—0 - -0==0
27T 7
1 2 20—-3 20— 1 /—1
—0|P, o—oO - I
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D} (I, €p)

Type 9[0’ 20+1,204+1 6,4
ype (0,0) | D3, T (1, ep) b1 oy ES*(I,11,€9)
1
2
1 p o G-
1 2 20—2 20— O O
(0,0)-Diagram [O—0O- - " OO ' ! , T
0*
1
2 T
2 3 4
1 2 20-2 20— o0—0 o0
(T’q)g o—-=0C--- . 1 2 p—1 T A A T
ay O—O -+ -0==0 =
—0| Dy *o—o - 1 I 2
oo o= O—o O
27
1 2 20—2 20—
0| D, O—0O - . 1 2 p-l 2 3 4
1l o0—o0---0==0 O0—0==0—0
—0|®, o ¢ 2 3 4
oo o9 e, S
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Type (6,0) EZ°(11,1,€) ES*(I,1V) EX(1V, 1)
1
Tz 3 4
O O O 0 [
(0, 0)-Diagram t R } 1 2 1 I 2
0" 0 0 () O .LT A .7 O
| Dy 1 2 3 4 é—o—I—o—é 1 2
O—C——0—"=>0 o—o0
1
Tz 3 4
O O O O *—o
—0o| Dy 1 2 3 4 I S L
oo o - ;
(=)
1
2 3 4
O0—o0 O0—O \ ¢
0|y i L } 1 2 1 2
o o—-o0 O ® ® L 4 O
1
@)
2 3 4
O O O O O
_G‘CDU 1 2 1 2 T I T
o—o
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Type (6,0) ES*(I1,1V) EX4(1V, IT) ESH(1,I1,¢p)
1
0 (4
1 1 2 3 4
. 0 0 0 o o v ® o O O ~ O O
(0, 0)-Diagram . £y . v t \ \ f
o* o* o*
1
Tz 3 4
O @ O O O
0’|¢'9 1 O O T A 4 T
—0|®Py 1 1 I 2
O —O @ L @ O
0| o (13_0 1 2 3 4
o—0—0 O O—O0——0—"-o=0
%
—0|®, 1 2 3 4
e—O O *—0—0 0
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Type (6,0) EZ°(I, 1, €) E®(I,€) ES*(I,111)
1 1
2
Tz 3 4 2
(6, 0)-Diagram } A } 1 4 5 6 S i
O O O O
0" =
2
O
o| Py 12 3 4 1 4 5 6 1 2
O—C==0—20 O O—O0—=0 Oo==0
—0| Py 1 2 3 4 booe 1 2
o— 06— 0 . o—=0
(—0)
1
2 3 4 2
O O O O
0|P, t I } 1 T4 5 6 1 2
I O O O O C—=0
S D SR S .t
—=e
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Type (6,0) Eg°(I1L,T) ESO(1ep) EX2(11, 111, )
1 1
2
2 2
j ML 7 oo T o« O
(0, 0)-Diagram t | S } 1 4 5 6 ! I }
o © O—0—=20 oo
(0
2
O
o| Py 12 1 4 5 6 1 2
C—==0 O O O O O—e——=e—O
—0|®Py 1 2 I i 1 2
*—o - O—e==—0
(—0)
1
O—o—f—o—é §
0|P, t I } 1 T4 5 6 1 2
I O O O O Oo—=—0
: Q—O—I—O—C
—0|D, 1 3 S S S S 1 2
—=e
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Type (6,0)

EZ*(I11,11,€)

2
. [ o [ O
(6, 0)-Diagram b £ |t by bt bt
0*&o™ 0% &o™ 0*&o™
7| Py 12 12 1 2
Oo—==0 Oo—==0 OCo=—=0
—0| Py 1 2 1 2 12
—=e —e —=e
0| D, 1 2 1 2 1 2
O—e——e—O Oo==0 Oo==0
—0|D, 1 2 12 1 2
O—e==—0 —e —=e
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Type (6,0) EZ*(I1,111,¢€7) EZ*(I11,11,¢€7) Eg*(I1,e4)
1 1 1
2 2 Tz 3 4
O O O O
(6, 0)-Diagram t Yyt foolt N : ) by
0" &o™ 0% &o™ 0*&o™
| Dy 1 2 12 1 2 3 4
O—e——e—O Oo—==0 O—C——0C0—"=20
—0| Py 1 2 1 2 1 2 3 4
O—e==—20 o—=e o—eo—=0o o
0|P, 1 2 1 2 1 2
Oo—==0 O—eo——e—O O—eo——e—O
—0|D, 12 1 2 1 2
o—=o O—e—==—0 O—e==—0—0
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Type (6,) EZA(I1,€) EZ*(I11,11,¢€7) EAA (11, e4)
1 1 1
2 2 Tz 3 4
. 0 0 0 4 4 4 ~ ~ O O
(6, 0)-Diagram bt IR yooy ) b
0" &o™ 0% &o™ 0*&o*
| Dy 1 2 12 1 2 3 4
O—e——e—O Oo—==0 O—C——0C0—"=20
—0| Py 1 2 1 2 1 2 3 4
O—e==—0—0 —=e o—eo—=0o o
0|P, 1 2 1 2 1 2 3 4
Oo—==0 O—eo——e—O O—OC——0C0—"=20
—0|D, 1 2 1 2 1 2 3 4
*—=o O—e—==—0 o—eo—=o o
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Type (6,0) E2*(II1,1V) E*(IV, IIT) EZ*(IV,eyq)
0 (4
1 1
(0, 0)-Diagram £t b Rt I ’
o s O ® L O
| Do 1 oO—0O 1 2
——0 * o—O
—0| Dy 1 1
=0 e—O o o
. ) (—o)*
e O 1 1 2
7 i o——0 o—-0
O =0 o o
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74 4,7 7,3
Type (6,0) EZ*(V, VI, e) E;7 (VI V,e) EZ”(V,VII)
G " L
(6,0)-Diagram | 1 2 3 4 1 2 3 4 1 2 3
O—O—0—8—0—8 [0—0 o e 0
°
TPy 1 2 Is 4 1 2 3 4 1 2 3
O L O @ O——O0——0—"=20 O @ L 4 @ O O
°
—0| Py 1 I 2 3 1 2 3 4 12 3 4
o—e OO o—o—=9o o oO—O0—0O—e—0—e
0|P, 1 2 3 4 12 L 4 1 2 3
O—O0——0—"=20 O O @ O L J Oo—O0==0
—0|®, 1 2 3 4 1 I 23
o9 o o—e &—0—O *—eo—=<9
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Type (6,0) EX(VII, V) EF(VI VI e) EXA(VIL VI, e)
(0,0)-Diagram | 1 I 2 3 |1 I 2 I 2
oo oo O lo—e—o e e J
| Py 3 2 1 2 1 2
O—C==0 O—e==—0 O—O—==e
—0| Dy 1 2 1
*—eo=—9 O—e—=——0 O—e==e
0|P, 1 I 2 3 1 2 1 2
O L ® O O Oo—C0C=—0 O—e——=e—O
—0|®, 1 2 T:& 4 1 1 2
o—oO o—O—e O—e==e O—e==—0
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74 44 44
Type (6,0) EZ*(V, VI, er) E;* (V1 e) EZ* (V1 ey)
®
(6,0)-Diagram |1 2 3 4 1 2 3 4 2 3 4
o—o—o—=e o (O O—e—o0 O O
°
0| Dy 1 2 3 4 1 2 3 4 1 2 3 4
O O O @ ® O—OC——0—"20 O—C—=—=—0—"-=0
°
—0| Py 1 2 3 1 2 3 4 1 2 3 4
O—eo—0—o o) o9 o o—o—0 o
0| D, 1 2 3 4 1 2 3 4 1 2 3 4
O—O0==0—20 O—O==0—20 O—O0==0—0
—0| D, 1 2 3 4 1 2 3 4 1 2 3 4
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Type (6,0)

E;’7(V, 61)

EZ3(V,VILe)

(6, 0)-Diagram |1 13 5 6 7 |1 3
o 3 e O O—0—0—0 |[0—e—0—@ o)
2
O [ ]
oDy 1 2 3 4 13 4 5 6 7 |1 2 3
O—C——0—"-=>0 O O O O O O ® | ® O O
2
° °
—0| Dy 1 2 3 4 1 3 4 5 6 71 2 3 4
D —— S ) o—9o o o o o O O—e—0—e
2
° o) °
0|, 12 3 4 13 4 5 6 7 (1 2 3 4
oO—0—0O—e—0O0—e |0—0—0—0—0—0|0—0—0O—e—0—=e
2
° ° °
—0|®, 1 2 3 |1 3 4 5 6 7 |1 2 3
O—e o e 00O 6—0 0 0o o e O—e e e OO
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Type (0,0)

EX/(VILV,e)

E;’7(V, €2)

s S
XS

(8, 0)-Diagram |1 3 |1 3 5 6 7|1 3 6 7
O - - O |O O O O |O O O O

2 2

O O
0| Dy 3 2 1 13 4 5 6 71 3 4 5 6 7
O—C==0 O O O O |O O O O O

2 2

° °
—0|®Py 13 4 5 6 7|1 3 4 5 6 7
*—eo=-9 o o o o o 0 06 0o 0o o o o

2 2

® ©) ©)
0| D 1 2 3 |1 3 4 5 6 7|1 3 4 5 6 7
O—e—e—e —0O0—0 |[0—O0—0—0—0—0 |[0—=O O—O0—=0

2 2

° ° °
—0|®, 12 3 4 13 4 5 6 7|1 3 4 5 6 7
O—O0—0—0—0O—0 6—0—0 000 06— 6 0 0 o
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Type (6,0)

EXA(VILVI)

(6, 0)-Diagram

| Py 1 2 1 2 3 2 1
—0| Py 1 1

0| P, 1 1 2 3 2 1
—0| D, 1 1 . oo
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Type (6,0) EX(VIILer) Eg*(VIIL IX, &) Es”(IX, VIII, €)
(6, 0)-Diagram | 1 I 2 3 ' 3 2 ’ 32
° —0O0—O
0 0 0 o o o
| Py 3 2 1 30 2 12 3 4
O—O—==0 O—O0——0—"=0
—0| Py 3 9 1 2 3 4
o—0—="9 *—0——0—0
0| P, 3 2 1 1 2 3 4 3 2
Oo—OC0==0 O—O0——0—"=20
—0| D, 1 2 3 4 3 2
*—eo—=—9 o—eo—o—0
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44 8,4
Type (6,0) Eg*(IX, €4) Eg*(IX, €1) ESA(VIIL IX, e)
(6, 0)-Diagram s s 0 .,
0 0 0
| Py 2 3 4 2 3 4 s o
O—O0——0—"=20 O—O0——0—"=20
—0| Py 2 3 4 2 3 4 s
o9 o o—eo—=9o o
0| P, 2 3 4 2 3 4 1 2 3 4
O—O0——0—"=20 O—O0——0—"=20 O—C——0—"-0
—0|®, 2 3 4 2 3 4 1 2 3 4
= S R S e S
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4,8 8,8 4,1
Type (8, 0) EX(IX, VIII, e;) ESB(VIII, ) FHY(1,10)
2
(6, 0)-Diagram . 3 2 13 T4 5. 6 7 8 1
- - - O O O O O *——0 O
2
©)
0| Dy 1 2 3 4 13 4 5 6 7 8 1
O—OC——0—"=20 O O O O O 0——@ O
2
°
—0|®Py 1 2 3 4 1 3 4 5 6 7 8
*o—eo—=0o o o—9o 9o o o o o O
2
o
0|P, 3 9 13 4 5 6 7 8
O—O0—O0—0—0—0—=0 O
2
°
—0|D, 3 9 13 4 5 6 7 8
o o o o o o o °
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14 44 44

Type (6,0) F, (1L 1) Fy (I, e4) Fy (1 e1) Go*(I,€)
(0,0)-Diagram 1 |1 2 4 2 3 4 12
*——0 O |O O O | O0—C——0—"=0 Oo===0
0| Dy 1 2 4 2 3 4 12
O O—C—0C0—"70O |[O—"0C=—=0—"=20 o==0
—0|®y 12 4 2 3 4 1 2
° o—eo—=9o o —=e—0 oo
0|P, 1 |1 2 4 2 3 4 12
*—=—0 O |O O O |O—OC—=——0—"=20 Oo===0
—0|®, 1 2 4 2 3 4 1 2
o o—eo—=0 o —=e—0 oo
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