ABSTRACT

MABE, DAVID MICHAEL. A Bottom-Up SLP Vectorization Pass Starting from Associative Reduction Chains Implemented in LLVM. (Under the direction of James Tuck.)

SIMD instruction set extensions such as ARM NEON and Intel AVX can provide significant performance gains for some applications. Manually coding for these SIMD extensions is difficult and error-prone, so it is beneficial for compilers to generate code for these extensions automatically. However, automatic vectorization for these architectures is difficult, and compilers miss many opportunities. This thesis describes a new vectorization pass based on superword level parallelism within a single block. The new pass runs within the LLVM compiler infrastructure and the Clang C compiler.

The method of vectorization starts at reduction chains within a single basic block and builds tree structures that are used to optimize vector formation based on instruction isomorphism and consecutive memory accesses. I demonstrate the capabilities of the new pass on selected multimedia kernels. I measure a 25% speedup for some kernels and a reduction in code size. I also measured a 1.85% speedup overall for the LAME MP3 Encoder. I also measure the efficiency of the vectorization pass and find that its execution latency is in line with other passes in the LLVM infrastructure.
A Bottom-Up SLP Vectorization Pass Starting from Associative Reduction Chains Implemented in LLVM

by
David Michael Mabe

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science

Computer Engineering
Raleigh, North Carolina
2015

APPROVED BY:

__
Eric Rotenberg

__
Huiyang Zhou

__
James Tuck
Chair of Advisory Committee
DEDICATION

To my parents, Michael and Janet Mabe, for their love and support.
David Mabe was born in North Carolina in 1990. He grew up in Stoneville, NC before moving to Raleigh, NC to attend NC State University. He obtained B.S. degrees in computer and electrical engineering from NC State in 2013. During his M.S. study, he focused on compilers and computer architecture. On May 26, 2015, he defended his M.S. thesis.
ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. James Tuck, for his guidance and advice. I would also like to thank Dr. Eric Rotenberg, Dr. Huiyang Zhou, and my other professors at NC State for their valuable instruction.
TABLE OF CONTENTS

LIST OF FIGURES ... vi

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 VECTORIZATION FOR SIMD EXTENSIONS 3
 2.1 SIMD ISA Extensions ... 3
 2.2 Compiling for SIMD ... 5
 2.3 Loop Vectorization ... 6
 2.4 SLP Vectorization .. 7

CHAPTER 3 VECTORIZATION FROM REDUCTIONS 10
 3.1 Example Kernel .. 10
 3.2 Desired Transformation ... 13

CHAPTER 4 IMPLEMENTATION .. 18
 4.1 Reduction Identification ... 19
 4.2 Vectorizable Tree Construction ... 23
 4.2.1 Tree Structure .. 23
 4.2.2 Group Creation ... 23
 4.2.3 Data-Dependence Restrictions 26
 4.2.4 Auxiliary Data Structures .. 29
 4.3 Vector Formation .. 29
 4.4 Vector Scheduling and IR Generation 30

CHAPTER 5 EVALUATION .. 34
 5.1 Benchmarks ... 34
 5.1.1 Kernel #1 ... 34
 5.1.2 Kernel #2 ... 37
 5.1.3 Kernel #3 ... 40
 5.2 Results .. 41
 5.2.1 Speedup ... 42
 5.2.2 Code Size ... 43
 5.2.3 Compilation Efficiency ... 44

CHAPTER 6 CONCLUSION .. 46
 6.1 Related Work ... 46
 6.2 Final Remarks .. 47

REFERENCES ... 49
LIST OF FIGURES

Figure 2.1	ARM NEON VUZP vector permutation instruction	5
Figure 3.1	Example Kernel	12
Figure 3.2	Example Kernel Vectorized DDG	13
Figure 3.3	Example Kernel ARM Assembly	15
Figure 3.4	Example Kernel Unvectorized LLVM IR	16
Figure 3.5	Example Kernel Vectorized LLVM IR	17
Figure 4.1	Example of Tree Formation with Multiple Groups per Entry with Gathered, Non-Isomorphic Operands	33
Figure 5.1	Kernel Speedup	42
Figure 5.2	Code Size Reductions	43
Figure 5.3	Percentage of Pass Execution Time	44
Single-instruction multiple-data (SIMD) instruction set extensions are common additions to many mainstream processors. These ISA extensions allow a single instruction to operate on multiple data in parallel. Efficiently utilized, SIMD extensions can provide great performance benefits for certain types of code. As these architectures evolve they continue to provide wider data paths and feature a variety of data processing options.

However, compilers continue to struggle to take advantage of these SIMD extensions. Data dependencies, control flow, and scattered memory accesses make efficient vectorization
difficult. Also, manually programming for SIMD extensions using assembly instructions or compiler intrinsics is tedious, error-prone, and not easily portable to other architectures due to ISA heterogeneity. However, it is desirable to take advantage of SIMD extensions not only for their performance benefit, but also for their power benefit, particularly on mobile platforms. For this reason, there is a large body of work concerning automatic vectorization for these ISA extensions, some of which builds off of vectorization techniques originally developed for vector processors such as the Cray supercomputers.

In this thesis I describe a vectorization pass that I implemented in the LLVM compiler infrastructure [4]. I evaluate the results of the pass and show how it can improve the performance of certain types of kernels.

I begin in Chapter 2 by describing SIMD ISA extensions, particularly ARM NEON, as well as loop and SLP vectorization techniques. In Chapter 3 I describe a motivating example for the vectorization pass that I created and the desired transformation that my pass will apply. In Chapter 4 I describe my implementation in the LLVM compiler infrastructure. In Chapter 5 I evaluate results from running my pass on some kernels. In Chapter 6 I conclude and compare my work with previous work.
CHAPTER 2

VECTORIZATION FOR SIMD EXTENSIONS

2.1 SIMD ISA Extensions

SIMD instruction set architecture extensions such as ARM NEON and Intel SSE/AVX allow SIMD instructions to be embedded in the CPU instruction stream. In these ISA extensions, SIMD operations operate on special short vector registers. For ARM and Intel the size of these vector registers range from 128-bit (NEON) to 256-bit (AVX) and 512-bit (upcoming AVX-512). The number of data elements that can be processed simultaneously depends on the size
2.1. **SIMD ISA EXTENSIONS**

CHAPTER 2. **VECTORIZATION FOR SIMD EXTENSIONS**

of the data themselves. For example, the 128-bit ARM NEON registers can simultaneously process 4 32-bit single-precision floats or 16 8-bit integers.

Sometimes data in vector registers needs to be reordered before it is fed to another operation in order to operate on the correct values in the correct lanes. SIMD ISA extensions often provide a large number of unique vector operations, particularly vector permutation operations. Vector permutation instructions may take generic or restricted forms \[10\]. Generic permutation instructions support a shuffle mask that specifies the new ordering for the vector. Restricted permutation instructions have fixed behavior, but can be more efficient due to the simplified behavior and the lack of need to read a shuffle mask register.

ARM NEON provides dozens of vector arithmetic and bitwise operations, vector comparison operations, permutation operations, and vector memory access operations. Vector permutation operations in ARM NEON take on restricted forms with the shuffle pattern built into the instruction opcode. Fig. 2.1 shows an example of the VUZP instruction, which can be used to deinterleave vectors. Additionally special vector load and store operations combine vector memory accesses with interleaving/deinterleaving by stride factors of two, three, and four \[1\].

ARM NEON registers can also be addressed as double-word registers instead of quad-word registers. For example, the the double-word registers \{d4, d5\} map to the quad-word register q2. This is useful when the full quad-word length is not necessary, and is also useful for performing pairwise operations between each half of the quad-word register.
2.2 Compiling for SIMD

The goal of a vectorizing compiler is to combine multiple scalar instructions to execute as a vector instruction. To do so, the compiler must find data-level parallelism in the original code that can be exploited. This data-level parallelism must be formed from independent instructions that can execute concurrently in the same cycle. Additionally, the independent instructions must be isomorphic (i.e. they must have the same opcodes).

Memory aliasing further complicates the compiler’s attempts to statically prove data independence. For example, if the compiler cannot know whether a store and a load are accessing the same memory location, then the compiler must conservatively assume that the load depends on the store. Any instructions feeding the store would be considered in the same dependence chain as instructions using the load result. This would prevent combining any instructions in the dependence chain into the same SIMD operation.

Tradeoffs must be considered when vectorizing operations. Before data can be operated...
on by SIMD operations, it must first be packed into vector registers. After the SIMD operations are complete, data may need unpacking for subsequent scalar operations or memory storage. These packing and unpacking operations create an overhead for the vectorized code. The compiler should reject transformations where the overhead outweighs the benefit.

In attempting to generate code where the vectorization benefit outweighs the packing/unpacking overhead, the compiler can take multiple approaches. One approach is to reduce the overhead of packing and unpacking. For example, the compiler can attempt to load or store only contiguous vectors in memory to remove the overhead of packing. The compiler can also minimize the packing overhead if it can form vectors that require data from memory in a pattern that can be efficiently generated by the architecture's vector permutation operations.

A second approach is to attempt to increase the benefit of paying the overhead. The compiler can attempt to generate a longer chain of SIMD operations that use the same packed data. If several SIMD operations use the same packed data, greater benefit can be realized before unpacking the data.

2.3 Loop Vectorization

Loops tend to lend themselves to SIMD vectorization because of their tendency to perform the same operation on multiple data. The basic goal of loop vectorization is to pack isomorphic instructions from different iterations of the same loop into a vector operation. The number of iterations packed together corresponds to the vectorization factor. The vectorization factor is the number of data elements that can be operated on in a single vector operation, and it is determined by the width of the SIMD architecture and the width of the data type for the operations.
However, loop vectorization can be hindered by several different challenges. One key challenge is inter-iteration data dependencies which prevent scheduling the operations together in the same SIMD vector [6].

One case in which inter-iteration data dependences can be removed is when the data dependence takes the form of a reduction variable [7]. In this case, the reduction operation must be associative, and there must be no uses of partial results. When a reduction loop is vectorized, partial results are accumulated into a vector register, and these partial results must be pairwise reduced after the loop is finished.

The memory access pattern for loops is important for efficient vectorization. The simplest case for vectorization is a memory access pattern with a stride of one, but strided access patterns can be efficiently supported on many architectures [9]. Another issue to consider is memory alignment, particularly with architectures that require it [2]. However, many modern ISAs support unaligned memory accesses, including ARM NEON, although extra performance can be obtained if the alignment is known statically and specified with the instruction [1].

Loop vectorization has traditionally focused on simpler, innermost, single-basic block loops. However, techniques have been developed for dealing with more complicated examples. Techniques for vectorizing outer loops are presented in [8].

2.4 SLP Vectorization

Superword-level vectorization takes a different approach from loop vectorization. Instead of forming isomorphic groups by combining loop iterations, SLP vectorization tries to combine isomorphic instructions inside a single basic block.
SLP vectorization can vectorize straight-line code, but it can also be used to vectorize unrolled loops. This can be advantageous in certain circumstances. For example, sometimes code is already partially manually unrolled by the programmer to perform more efficiently for a particular compiler and architecture and requires loop re-rolling for efficient loop vectorization. It can be the case that the programmer increases the stride distance of memory accesses that were contiguous between loop iterations before manual unrolling. However, SLP vectorization can operate without requiring re-rolling of such a loop [3].

The term SLP vectorization was introduced by Larsen and Amarasinghe. They compare SLP to a restricted form of instruction-level parallelism [3]. ILP techniques allow multiple instructions on multiple data elements to execute simultaneously on hardware. ILP can be dynamically scheduled and exploited by superscalar architectures, but a closer analogue to SLP vectorization is VLIW instruction scheduling. Very-long instruction word architectures allow the compiler to statically generate a valid schedule that will satisfy data-dependence relationships. For example, an instruction that generates a value and another instruction that uses the same value cannot be scheduled in the same VLIW word because the operand to the second instruction will not be available before it is executed.

SIMD instruction set extensions impose similar restrictions on valid schedules. However, due to the "single instruction" facet of the SIMD classification, the additional requirement of instruction isomorphism is imposed.

The compiler pass in [3] begins by packing together memory accesses within a basic block that access adjacent memory locations. Since SIMD instruction set extensions provide vector memory access operations that load from contiguous memory locations, adjacent memory locations provide a natural starting point for vector formation. Without contiguous
memory accesses, packing and unpacking of vector elements is necessary.

After memory accesses are packed together, the def-use chains (for loads) or use-def chains (for stores) are followed to attempt to find additional packs of isomorphic operations that use or feed the memory access pack, respectively. In this way, chains of vector operations feeding each other can be formed to reduce packing and unpacking costs.

The algorithm by Larsen and Amarasinghe makes decisions based on local, greedy heuristics. It does not necessarily generate the vector statements that have the most reuse and lead to the most efficient vector chains. An algorithm published by Liu et al. attempts to make more optimal decisions by considering potential reuse from the entire basic block when forming SIMD groups [5]. This algorithm splits SLP vectorization into two steps: superword statement grouping and superword statement scheduling.

The unordered SIMD groups in Liu et al. are determined by starting with candidate groups formed from independent, isomorphic instructions. Candidate groups may conflict with each other if they contain the same instruction or form dependence cycles. SIMD groups are selected from candidate groups by estimating the reuse across the entire basic block instead of using the simpler, greedy heuristic from Larsen. The statement ordering within SIMD groups is delayed until a later stage. At this point the cost of the vectorization transformation may increase if vector permutation operations must be inserted.
In this chapter I explain the type of kernel targeted for vectorization by my compiler pass and the desired transformation to be performed by my compiler pass.

3.1 Example Kernel

Fig. 3.1 shows an example kernel that my vectorizer targets. The code is based on a kernel from the LAME MP3 encoder. The kernel implements an IIR filter. Each iteration of the
3.1. EXAMPLE KERNEL

CHAPTER 3. VECTORIZATION FROM REDUCTIONS

loop is data-dependent on the previous iteration because the assigned *output becomes output[-1] in the next iteration. Therefore, this kernel is not suitable for loop vectorization.

However, from looking at the data-dependence graph in Fig. 3.1b, it is apparent that data-independent, isomorphic instructions are present in the basic block, making this loop a good candidate for SLP vectorization. Additionally, the loads from the input, output, and kernel arrays are placed to consecutive memory locations, meaning that the vectorizer should be able to generate vector loads, although it needs to also generate vector permutation operations to get the loaded values in the correct vector lanes for the multiplication operations.

Another key problem is that the multiplication operations feed a reduction chain, and each operation in the chain is dependent on the previous operation. If we take this data-dependence chain as is, it will severely inhibit the performance of the generated code because we will be required to unpack every value from the multiplication operations to feed the scalar chain.

However, if we assume that the addition and subtraction reduction chain in Fig. 3.1b are associative, then we can separate the values from the multiplication operations into two groups: the first group is all of the values that contribute positively to the final result, and the other group is all of the values that contribute negatively. Within each group, then we can treat all of the different pairs of multiplies as potential SIMD packs. In Fig. 3.1b, the multiplies that are fed values from input array form the positive group, and those fed by the output group, the negative.

The associativity of the reduction operation allows the vectorizer to generate an efficient vector reduction, finally reducing the value back to the single scalar value to store in *output.
3.1. EXAMPLE KERNEL

CHAPTER 3. VECTORIZATION FROM REDUCTIONS

while (nSamples--)
{
 *output =
 input[0] * kernel[0]
 - output[-1] * kernel[1]
 + input[-1] * kernel[2]
 - output[-2] * kernel[3]
 + input[-2] * kernel[4]
 + input[-3] * kernel[6]
 - output[-4] * kernel[7];
 ++output;
 ++input;
}

(a) Code Listing

(b) Scalar DDG

Figure 3.1 Example Kernel
3.2 Desired Transformation

In this section I will describe the desired transformation in more detail and provide examples at the LLVM IR and ARM NEON levels.

![Example Kernel Vectorized DDG](image)

Figure 3.2 Example Kernel Vectorized DDG

Fig. 3.2 show the desired form of the vector data-dependence graph, where the tildes represent vector permutation operations. The vectorized and unvectorized codes are shown in Fig. 3.3, and the corresponding LLVM intermediate representation (IR) is shown in Fig. 3.4 and Fig. 3.5. The data values in this example are 32-bit floats in quad-word registers. The
permutations shown here can be implemented efficiently in the ARM NEON ISA. First, data can be loaded and deinterleaved in one step using the \texttt{vld2} instruction. The example vectorized ARM assembly in Fig. 3.3b is shown with a \texttt{vld1} instruction followed by a \texttt{vuzp} instruction because this is the assembly that the LLVM backend currently generates instead. Using \texttt{vrev64} instructions, the floats inside each deinterleaved double word can be reversed. Finally, \texttt{vext} instructions can be used to reverse the order of double words inside each quad word. The result is the two deinterleaved and fully reversed quad-word kernel vector registers to be multiplied by input and output in Fig. 3.2.

After vectorization of the loads and multiplication operations, we then want to calculate the final reduction value. Since we have the input values to the reduction in vector registers, and the additive and subtractive reduction inputs are in separate quad-word registers, we can generate vector operations to perform the reduction. We therefore begin with a vector subtraction operation. This is shown on line 15 of Fig. 3.3b.

At this point there are no more quad-word registers that are part of the reduction, so we must pairwise add the resulting vector to generate a scalar value. On ARM NEON we can address the left- and right-half of the quad-word registers as double-word registers to add together both halves into a vector of length two. This is illustrated on line 16 in Fig. 3.3b. A \texttt{vmov} instruction can then be used to place the right half of the double word into the same lane before issuing a final add to get the scalar result. This is shown on lines 17 and 18 of Fig. 3.3b.
3.2. DESIRED TRANSFORMATION

CHAPTER 3. VECTORIZATION FROM REDUCTIONS

(a) Unvectorized ARM Assembly

```assembly
.LBB0_2: @ %while.body
  vldr s8, [r0]
  subs r2, r2, #1
  vldr s10, [r3]
  vldr s12, [r3, #4]
  vldr s18, [r1, #4]
  vmul.f32 d18, d5, d4
  vldr s0, [r0, #4]
  vmul.f32 d17, d6, d9
  vldr s4, [r3, #8]
  vmul.f32 d16, d2, d0
  vldr s16, [r1]
  vldr s6, [r0, #8]
  vsub.f32 d17, d18, d17
  vldr s8, [r3, #16]
  vmul.f32 d18, d17, d6
  vldr s4, [r1, #4]
  vmul.f32 d19, d4, d3
  vldr s6, [r3, #20]
  vldr s2, [r0, #12]
  add r0, r0, #4
  vadd.f32 d16, d17, d16
  vldr s8, [r3, #24]
  vmul.f32 d17, d3, d2
  vldr s0, [r1, #8]
  vsub.f32 d16, d16, d18
  vmul.f32 d18, d4, d1
  vldr s2, [r3, #28]
  vadd.f32 d16, d16, d19
  vsub.f32 d16, d16, d17
  vmul.f32 d17, d1, d0
  vadd.f32 d16, d16, d18
  vsub.f32 d0, d16, d17
  vstr s0, [r1, #8]
  add r1, r1, #4
  bne .LBB0_2

.LBB0_1: @ %while.body
  vld1.64 {d16, d17}, [r12]
  subs r2, r2, #1
  vld1.64 {d18, d19}, [r3]
  vuzp.32 q9, q8
  vld1.64 {d22, d23}, [r0]
  add r0, r0, #4
  vrev64.32 q8, q8
  vrev64.32 q9, q9
  vld1.64 {d20, d21}, [r1]
  vext.32 q8, q8, q8, #2
  vext.32 q9, q9, q9, #2
  vmul.f32 q8, q8, q10
  vsub.f32 q9, q9, q11
  vadd.f32 d0, d16, d17
  vmov.f32 s2, s1
  vadd.f32 d0, d0, d1
  vadd.f32 d0, d16, d17
  vstr s0, [r1, #16]
  add r1, r1, #4
  bne .LBB0_1
```

(b) Vectorized ARM Assembly

Figure 3.3 Example Kernel ARM Assembly
3.2. DESIRED TRANSFORMATION

CHAPTER 3. VECTORIZATION FROM REDUCTIONS

while.body.lr.ph:
arrayidx3 = getelementptr inbounds float* %kernel, i32 1
arrayidx6 = getelementptr inbounds float* %kernel, i32 2
...
arrayidx21 = getelementptr inbounds float* %kernel, i32 6
arrayidx25 = getelementptr inbounds float* %kernel, i32 7
br label %while.body

while.body: ; preds = %while.body.lr.ph, %while.body
input.addr.048 = phi float* [%input, %while.body.lr.ph],
[%incdec.ptr28, %while.body]
nSamples.addr.047 = phi i32 [%nSamples, %while.body.lr.ph],
[%dec, %while.body]
output.addr.046 = phi float* [%output, %while.body.lr.ph],
[%incdec.ptr, %while.body]
dec = add i32 %nSamples.addr.047, −1
0 = load float* %input.addr.048, align 4
1 = load float* %kernel, align 4
mul = fmul fast float %1, %0
arrayidx2 = getelementptr inbounds float* %output.addr.046, i32 −1
2 = load float* %arrayidx2, align 4
3 = load float* %arrayidx3, align 4
mul4 = fmul fast float %3, %2
sub = fsub fast float %mul, %mul4
arrayidx5 = getelementptr inbounds float* %input.addr.048, i32 −1
4 = load float* %arrayidx5, align 4
5 = load float* %arrayidx6, align 4
mul7 = fmul fast float %5, %4
add = fadd fast float %sub, %mul7
...
arrayidx20 = getelementptr inbounds float* %input.addr.048, i32 −3
12 = load float* %arrayidx20, align 4
13 = load float* %arrayidx21, align 4
mul22 = fmul fast float %13, %12
add23 = fadd fast float %sub19, %mul22
arrayidx24 = getelementptr inbounds float* %output.addr.046, i32 −4
14 = load float* %arrayidx24, align 4
15 = load float* %arrayidx25, align 4
mul26 = fmul fast float %15, %14
sub27 = fsub fast float %add23, %mul26
store float %sub27, float* %output.addr.046, align 4
incdec.ptr = getelementptr inbounds float* %output.addr.046, i32 1
incdec.ptr28 = getelementptr inbounds float* %input.addr.048, i32 1
toool = icmp eq i32 %dec, 0
br i1 %toool, label %while.end.loopexit, label %while.body

Figure 3.4 Example Kernel Unvectorized LLVM IR
3.2. DESIRED TRANSFORMATION \hspace{1cm} CHAPTER 3. VECTORIZATION FROM REDUCTIONS

while.body.lr.ph:
\begin{verbatim}
 %arrayidx13 = getelementptr inbounds float* %kernel, i32 4
 br label %while.body

while.body: ; preds = %while.body.lr.ph, %while.body
 %input.addr.048 = phi float* [%input, %while.body.lr.ph],
 [%incdec.ptr.28, %while.body]
 %nSamples.addr.047 = phi i32 [%nSamples, %while.body.lr.ph],
 [%dec, %while.body]
 %output.addr.046 = phi float* [%output, %while.body.lr.ph],
 [%incdec.ptr, %while.body]
 %dec = add i32 %nSamples.addr.047, -1
 %arrayidx20 = getelementptr inbounds float* %input.addr.048, i32 -3
 %bvsvecptr = bitcast float* %arrayidx20 to <4 x float>*
 %bvsloadvec = load <4 x float>* %bvsvecptr, align 8
 %arrayidx24 = getelementptr inbounds float* %output.addr.046, i32 -4
 %bvsvecptr49 = bitcast float* %arrayidx24 to <4 x float>*
 %bvsloadvec50 = load <4 x float>* %bvsvecptr49, align 8
 %bvsvecptr51 = bitcast float* %kernel to <4 x float>*
 %bvsloadvec52 = load <4 x float>* %bvsvecptr51, align 8
 %bvsvecptr53 = bitcast float* %arrayidx13 to <4 x float>*
 %bvsloadvec54 = load <4 x float>* %bvsvecptr53, align 8
 %bvsshufflefrom = shufflevector <4 x float> %bvsloadvec52,
 <4 x float> %bvsloadvec54, <4 x float* <i32 7, i32 5, i32 3, i32 1>
 %bvsshufflefrom55 = shufflevector <4 x float> %bvsloadvec52,
 <4 x float> %bvsloadvec54, <4 x float* <i32 6, i32 4, i32 2, i32 0>
 %bvsbovec = fmul <4 x float> %bvsshufflefrom55, %bvsloadvec
 %bvsbovec56 = fmul <4 x float> %bvsshufflefrom, %bvsloadvec50
 %rvreducedop = fsub <4 x float> %bvsbovec, %bvsbovec56
 %rvpairwisel = shufflevector <4 x float> %rvreducedop,
 <4 x float> undef, <2 x i32> <i32 0, i32 1>
 %rvpairwiselr = shufflevector <4 x float> %rvreducedop,
 <4 x float> undef, <2 x i32> <i32 2, i32 3>
 %rvpairwiseop = fadd <2 x float> %rvpairwiselr, %rvpairwise
 %rvpairwise157 = extortelement <2 x float> %rvpairwiseop, i32 0
 %rvpairwise158 = extortelement <2 x float> %rvpairwiseop, i32 1
 %rvpairwiseop59 = fadd float %rvpairwise157, %rvpairwise158
 store float %rvpairwiseop59, float* %output.addr.046, align 4
 %incdec.ptr = getelementptr inbounds float* %output.addr.046, i32 1
 %incdec.ptr.28 = getelementptr inbounds float* %input.addr.048, i32 1
 %tobool = icmp eq i32 %dec, 0
 br i1 %tobool, label %while.end.loopexit, label %while.body
\end{verbatim}

\textbf{Figure 3.5} Example Kernel Vectorized LLVM IR
The vectorizer is implemented as a compiler pass in LLVM 3.6. The pass is inserted into the LLVM pass manager framework after the in-tree SLP vectorization pass. In this section I will explain the basic working of each stage of my pass's execution.
4.1 Reduction Identification

The vectorizer looks for potential vectorization opportunities by searching for chains of associative operations within a single basic block that form a reduction. It searches each basic block from bottom to top looking for compatible operations that could be the final operation (output) of a reduction chain. It then recursively searches the operands of the compatible instruction for additional compatible instructions that meet the requirements discussed in this section. When compatible operands are found they are added to the chain, and their operands are in turn recursively searched.

When an operand is reached that is not compatible, or which is not in the original basic block, the recursion stops. The incompatible instruction or constant is recorded as an input to the reduction chain. These input values to the reduction chain will be leveraged by the vectorizer in the manner described in the next section.

A key requirement of the associative reduction chain is that the intermediate values have no uses other than the next instruction in the chain. Only the final, fully reduced value may have other uses.

The reduction identification pseudocode is shown in Algorithms 1 and 2.

4.1.0.0.1 Reduction Operations

The vectorizer supports integer and floating-point addition, subtraction, and multiplication. For these operations, it currently support scalar types that correspond to those supported by ARM. Integer types vectorized are 8-, 16-, 32-, and 64-bit integers. Floating-point types vectorized are float (32-bit) and half (16-bit).
Algorithm 1: processBasicBlock()

Input: A basic block, BB

Result: Scalar operations feeding reductions are replaced with vector operations, and vector reduction code is added

for each instruction I in BB in reverse order do

 if I in the set of instructions previously checked by buildReduction() then
 continue;

 if I is not a compatible reduction operation then
 continue;

 $(R\text{Inputs}, R\text{SubInputs}, RB\text{inOps}) \leftarrow \text{buildReduction}(I, \text{false});$

 if $R\text{Inputs} < VF$ && $R\text{SubInputs} < VF$ then
 continue;

 $V\text{Tree} \leftarrow \text{buildTree}(R\text{Inputs});$
 $V\text{SubTree} \leftarrow \text{buildTree}(R\text{SubInputs});$

 if $!V\text{Tree}$ || $!V\text{SubTree}$ then
 continue;

 $\text{Vectors} \leftarrow \text{formVectorsFromGroups}\{V\text{Tree}, V\text{SubTree}\};$

 $(\text{VecR\text{Inputs}}, \text{VecR\text{SubInputs}}) \leftarrow \text{scheduleVectors}(\text{Vectors});$

 generateVectorReduction(I, $\text{VR\text{Inputs}}$, $\text{VecR\text{SubInputs}});$
Algorithm 2: buildReduction()

Input: A binary operator in the reduction, \(BinOp\); Whether \(BinOp\) contributes negatively to the final reduction, \(IsNeg\)

Result: A list of inputs feeding the reduction to this operator, \(RInputs\); A list of inputs feeding the reduction to this operator negatively, \(RSubInputs\); A list of reduction operators feeding the reduction to this operator, \(RBinOps\)

foreach value Def in BinOp.Defs do
 if compatibleForReduction(BinOp, Def) && hasOneUse(Def) then
 RBinOps.insert(Def);
 if isRightOperand(Def) && isSubtract(BinOp) then
 buildReduction(Def, !IsNeg);
 else
 buildReduction(Def, IsNeg);
 else
 if IsNeg then
 RSubInputs.insert(Def);
 else
 RInputs.insert(Def);
4.1. REDUCTION IDENTIFICATION

4.1.0.0.2 Subtraction Support

Subtraction as well as mixed addition/subtraction reduction chains are supported. When the reduction incorporates subtraction, the pass keeps track of which input values to the chain contribute positively and which contribute negatively.

Positive and negative inputs are placed into separate "pools" for vectorization. The vectorizer must vectorize these inputs separately in order to efficiently reduce them later by using vector addition and subtraction without extracting the values. However, the addition and subtraction inputs still form roots to the same tree, allowing my pass to detect loads that should be deinterleaved to each side, such as the example in the previous chapter.

4.1.0.0.3 Floating-Point Associativity

Floating-point support requires the "fast" fast-math flag on the instruction in the LLVM IR, which allows for additional flexibility in reordering floating-point operations that violate the IEEE 754 standard. The ability to change the associativity and ordering of the operations is necessary for this vectorization pass. Additionally, the ARM NEON unit is not IEEE 754-compliant. For example, it flushes denormalized numbers to zero.

The fast-math flags in the LLVM IR are set by the Clang frontend. These can be enabled during compilation by passing compile flags such as "-f-fast-math" and "-funsafe-math-optimizations." The build systems for some programs pass these options to the compiler by default as well.
4.2 Vectorizable Tree Construction

The vectorizer takes the reduction inputs identified in the previous step and attempts to build a bottom-up tree with each node of the tree containing isomorphic instructions. Because the roots are already split between additive and subtractive inputs, and the roots themselves likely consist of different types of instructions that must be split apart, the generated structure is more accurately described as multiple trees, or a forest. The tree enables the pass to estimate the most optimal packing for the reduction inputs. The highest entries in the tree correspond to a longer chain of isomorphic instructions resulting in greater vectorization benefit.

4.2.1 Tree Structure

The vectorizable tree consists of a list of entries. Each entry contains groups, where each group consists of unordered isomorphic instructions that are vectorizable. The tree is built from the bottom up starting from the root groups that correspond to the reduction inputs.

Each group may have a child entry or entries (for binary operations) that correspond to the operands of the group. In each group, the use-def chains of the scalar instructions are followed, and the tree construction process attempts to place the defs of the scalars in the current group into new child entries in the tree.

4.2.2 Group Creation

The new values from the operands of the root instructions are placed into a new child entry, and now the operand values must be sorted into isomorphic groups. New groups are created from child entries when the number of isomorphic and vectorizable instructions are greater
Algorithm 3: buildTree()

Input: The scalar defs from the parent group, Defs; The users in the parent group, $TreeUsers$

Result: A vectorizable tree, $VTree$

(Groups, Gathered) = createGroups(Defs);

foreach group G in Groups do

foreach value V in G do

if !checkDependencies(V, G, $TreeUsers$) then

return NULL;

if G is a group of load instructions then

$VTree$.addLeafNode(G);
break;

if G is a group of commutative binary instructions then

sortDefsByOpcode(G);

for $i = 0$ to num operands in G’s instruction type do

Defs ← operandsAtPosition(G, i);

SubTree ← buildTree($Defs$, G);

if SubTree \neq NULL then

$VTree$.addSubTree(SubTree);

else

return NULL;

end

end

$VTree$.addLeafNode(Gathered);

return $VTree$;
Algorithm 4: createGroups()

Input: The scalar defs feeding the parent group, Defs
Result: List of isomorphic groups, Groups; List of instructions to gather, Gathered

foreach value I in Defs do
 broadcast = false;
 foreach value J in Defs starting at I do
 if I == J then
 Defs.remove(J);
 Gathered.insert(I);
 broadcast = true;
 if broadcast == true then
 continue;
 if isConstant(I) || inTree(I) then
 Gathered.insert(I);
 continue;
 if I is instruction then
 if (basicBlock(I) != Reduction BB) || !vectorizableOp(I) then
 Gathered.insert(I);
 continue;
 Groups[opcode].insert(I);
 foreach group G in Groups do
 if G.size() < VF then
 Gathered.insertAll(G.values());
 Groups.remove(G);
than the minimum vectorization factor for the data type, and the process of forming child entries for the new group recurses.

There are several conditions that may terminate tree growth. When instructions are not vectorizable, or there are not enough isomorphic instructions of a certain type, then those instructions do not form new groups. Also, when the use-def chain reaches instructions outside the current basic block or when it reaches constants, tree growth is terminated. These are considered as values that will be gathered.

Load instructions get placed into new groups in the tree, but they terminate tree growth as well.

The pseudocode for tree building and the group splitting is shown in Algorithms 3 and 4. Example code and the created tree is shown in Fig. 4.1.

4.2.3 Data-Dependence Restrictions

Some restrictions are placed on the structure of the data-dependence graph to simplify the pass and enable efficient vector formation.

4.2.3.0.4 Group Self Dependency

The values within each group are intended as candidates for vector formation. Therefore, it is important that values within a group do not have dependencies on one another. The uses of each value are recursively checked until reaching a reduction operation or beyond the basic block. If another value in the same group is reached, then the group is not formed and the vectorization is cancelled.

Typically, this recursive process quickly terminates at the reduction operations or the end
of the basic block. However, during testing some very large basic blocks with large def-use chain fan-out were discovered. For this reason, a limit on recursion depth was placed at 20 levels deep to prevent excessive run time. If this limit is exceeded, vectorization is cancelled.

4.2.3.0.5 Overlapping Trees

The use-def chains in the vectorizable tree may merge together instead of diverging into new child entries. When a new group is formed and its def-use chains are being traversed, it is checked whether any values entered into the tree other than those in the parent group are reached or whether there are any uses outside the tree that reconverge with the parent entry. If this happens, vectorization is cancelled. If this were not enforced, then the vectorizable tree would not be a tree at all – it would be a more general acyclic graph structure that would complicate vectorization.

The pseudocode for the checks for groups self dependency and overlapping trees is shown in Algorithm 5.

4.2.3.0.6 Broadcast Values

If two users currently in a tree group form a new def group with duplicate values, this is considered a broadcast from the child group. Broadcasted values are similar to the overlapping tree case, but the use-def chain merging is within the same parent group instead of between them. Broadcasted values are supported, but they are removed from any child groups and considered gathered values.
4.2. VECTORIZABLE TREE CONSTRUCTION

Algorithm 5: checkDependencies()

Input: The value to check dependencies for, Value; A list of values in the same operand group as Value, GroupList; The users in the parent group, TreeUsers

Result: Whether the dependencies allow for vectorization

foreach value I in Value.Users **do**

 if basicBlock(I) != Reduction BB **then**

 continue;

 if GroupList.contains(I) **then**

 return false;

 if inTree(I) && !TreeUsers.contains(I) **then**

 return false;

 else

 // call with TreeUsers empty

 return checkDependencies(I, {});

 return true;

4.2.3.0.7 Memory Aliasing

Memory aliasing issues must be considered before load vectors can be formed. Consider a scalar store that is present in the instruction stream between two scalar loads that are candidate for vectorization. If static analysis reveals that the store may alias with either, then the compiler will not know whether there is a WAR hazard with the first load or a RAW hazard with the second. Therefore the compiler will not be able to guarantee a valid schedule for the vector load operation, and the vector formation must be cancelled.

Memory aliasing issues are actually checked during the scheduling phase after vector formation, and at the build tree stage they are assumed not to exist. Currently a naive policy is implemented that considers all accesses as may-alias. In the future the vectorizer should be improved to leverage LLVM’s alias analysis infrastructure.
4.2.4 Auxiliary Data Structures

Several other data structures are constructed during tree formation. Each scalar value in the tree is inserted into two maps. The first maps each value to its group in the tree and is used for the data dependence checks discussed previously. The second maps each value to the root value that it grew from through the use-def chain. Because of the no-overlapping-tree and broadcast restrictions, each value in the tree maps to exactly one root (input to the final reduction chain).

Groups are inserted into a set that is ordered by height from the root vector. This is helpful in the next step where we start attempting to form vectors from the greatest height in the tree to form the longest vector chains possible.

Load instructions within each group are separated into lists based on their base pointer, and a map from base pointer to its loads is created within each group. This is helpful because we later look for consecutive memory accesses only between accesses with the same base pointer to improve efficiency. Also, a structure stores a map from each base pointer to all groups containing a memory access with that base pointer for efficiently checking for interleaving between groups later.

4.3 Vector Formation

After generating the vectorizable tree, the pass has many possible candidates for forming vector operations from each entry group. The vector formation stage decides which operations from each group should be placed in the same vector, and the ordering of the statements within each SIMD superword.
Because each scalar value in the tree maps to a single scalar root, that root and all the values associated with it can be thought of as a virtual lane. Whenever values are packed into a superword, all values in their virtual lanes must either be packed in the same manner, or a vector permutation operation must be planned.

Vectors are formed in three stages. The first stage looks for contiguous load vectors within each group. The second stage looks for contiguous load vectors that can be deinterleaved by a factor of two between two load groups. The third stage simply attempts to generate vector chains from the remaining lanes that will be fed by gathers from scalar operations.

My pass attempts to form vectors corresponding to the groups that reach highest in the tree first. This ensures that generated vectors will have longer vector def-use chains, resulting in more vector operations and more benefit from the packed vectors.

When a vector is formed (e.g. from contiguous loads) other loads in other groups corresponding to the same roots are checked for special patterns than can be vectorized. If the other loads are also contiguous, my pass adds another contiguous vector for scheduling. If the other loads are reversed, my pass adds a contiguous load and a vector permutation instruction for reversal. If the loads are stride two or reversed stride two, they are added to a special list. This list is later checked for strided accesses that can be combined to form contiguous accesses, allowing for the generation of vector load operations with deinterleaving vector permutation operations.

4.4 Vector Scheduling and IR Generation

The vector formation stage chooses vectors and orders superword statements within them. First, memory aliasing issues are checked for as described previously. Then, scheduling
4.4. VECTOR SCHEDULING AND IR GENERATION

The goals for scheduling are to 1) replace scalar IR operations with vector IR operations, 2) make sure that definitions dominate all their uses, 3) create gather operations to place unvectorized inputs to vector operations into, 4) create scatter operations for unvectorized uses of vectorized instructions, 5) create supported vector permutation operations after vector load operations feeding vectors that are strided or reversed, and 6) generate an efficient vector reduction sequence to obtain the scalar result needed.

The approach I take to scheduling the IR is relatively simple. Vector operations are placed after the last scalar operation that they originally contained, ensuring that all definitions are available. Operations that depend on the vector operations, but which themselves are not vectorized, are delayed until after the vector operation is scheduled and inserted into a pending set. When a vector instruction is scheduled its users are checked to see if they are in the pending set. If a user is in the pending set, and it is not waiting on any other operand, then an extractelement instruction is generated for the scalar user, and the scalar user is scheduled with its operand replaced with the extractelement instruction.

When a vector is generated, but its operands do not match another vector nor a permutation communicated from the vector formation stage, its operands must be gathered. The scheduler does this automatically inserting insertelement instructions to build the needed vector operand.

The final step is reducing the vectors together, and the pairwise reducing the vector lanes to the final scalar result. My vectorizer supports multiple sizes of vectors that match up with ARM NEON support. To generate an efficient reduction sequence, all quad words are reduced together before pairwise reduction to double-word vectors. Then, any double-word vectors
that may have been created during the vector formation stage are reduced into the chain. Finally, the double-word vector is pairwise-reduced to a scalar value and any leftover scalars still feeding the reduction are added to form the final reduction value.
4.4. VECTOR SCHEDULING AND IR GENERATION

(a) Tree Structure

while (nSamples--)
{
 *output =
 65 + 14
 + input[0] * kernel[0]
 - output[-1] * kernel[1]
 + input[-1] * kernel[2]
 - output[-2] * kernel[3]
 + input[-2] * 7
 + input[-3] + kernel[6]
 - output[-4] * kernel[7];

 ++output;
 ++input;
}

(b) Code Listing

Figure 4.1 Example of Tree Formation with Multiple Groups per Entry with Gathered, Non-Isomorphic Operands
5.1 Benchmarks

5.1.1 Kernel #1

5.1.1.0.8 Description
The IIR filter kernel is taken from the filterYule() function in gain_analysis.c in the LAME MP3 encoder, and is the basis for the example in Chapter 3.
5.1. BENCHMARKS

It must be noted that this example is slightly modified from the original source. The original source included a small constant in the reduction with a comment indicating that it was intended to prevent slowdown due to floating-point denormalization. However, there was no ‘f’ specifier after the literal constant in the C code, which promoted every operation in the basic block to double-precision floating-point type. On some architectures vectorization would still be possible, but ARM NEON does not support double-precision floating-point math. For this reason I changed the constant to a single-precision floating-point literal value in the C code.

```c
while (nSamples--)
{
    *output = 1e-10f
    + input[0] * kernel[0]
    - output[-1] * kernel[1]
    + input[-1] * kernel[2]
    - output[-2] * kernel[3]
    + input[-2] * kernel[4]
    + input[-3] * kernel[6]
    + input[-4] * kernel[8]
    - output[-5] * kernel[9]
    + input[-5] * kernel[10]
    + input[-6] * kernel[12]
    + input[-7] * kernel[14]
    - output[-8] * kernel[15]
```
+ input[-8] * kernel[16]
- output[-9] * kernel[17]
+ input[-9] * kernel[18]
- output[-10] * kernel[19]
+ input[-10] * kernel[20];

++output;
++input;
}

Loop vectorization of this kernel is inhibited by a loop-carried data dependence in the output array. Each iteration of the loop is used to compute a new element in the output array, which is then used for the calculation of subsequent outputs.

In this example, the kernel array is loop-invariant as used in the larger application (as is the shifting input array). However, the compiler cannot prove this because all of the array pointers are passed as parameters with no guarantees on aliasing. Therefore, every value from every array is loaded on every iteration.

5.1.1.0.9 Transformation

My pass identifies the final addition that is stored to *output as the result of a reduction chain. All values added to the reduction are placed in the additive group, and all values subtracted are placed in the subtractive group.

During vector formation, my pass first identifies the contiguous loads in the groups feeding the left sides of the multiplication operations. For example, output[-10 .. -7] is a contiguous load inside the same load group. Since my pass starts by looking within the same group, the kernel – which is split between the additive and subtractive sides of the tree
is not initially seen as contiguous. However, in the absence of contiguous loads within a group my pass would have continued to search for interleaving between groups.

When contiguous loads such as output[-10 .. -7] are found the vector formation stage begins forming vectors from values in groups that correspond to the load group’s users and the other operands to it’s users (in this example, the kernel operands to the multiply instructions). When this process attempts to form the kernel vector it notes a reversed stride two pattern and adds the potential partial vector to the list of reversed stride two requested vectors. When forming the vectors from input[-10 .. -7] the vectorizer does the same. Finally, when the vectorizer is attempting to match together reversed stride two requested loads it finds the contiguous vector kernel[13 .. 20] and invokes the appropriate machinery to form the vector load and request the appropriate vector permutation instructions to deinterleave and reverse the loaded values to be fed to the multiplication vector operations.

My pass generates 128-bit vector operations for the lanes corresponding to output[-10 .. -7], input[-10 .. -7], output[-6 .. -3], and input[-6 .. -3]. It generates 64-bit vector operations for lanes corresponding to output[-2 .. -1] and input[-2 .. -1]. Finally, the lanes corresponding to input[0] and the literal constant remain as scalars.

My pass then generates vector reduction operations to reduce to the final value as discussed previously.

5.1.2 Kernel #2

5.1.2.0.10 Description

The FIR filter kernel is taken from the vbrpsy_attack_detection() function in psymodel.c in the LAME MP3 encoder.
The source code for the inner loop of this kernel appears to be amenable to loop-style vectorization (NSFIRLEN is a macro constant). Notwithstanding, in my test LLVM’s loop vectorizer did not vectorize this loop at -O3. However, it did unroll the inner loop, leaving an opportunity for my vectorization pass to operate at a single-basic block level on the reduction.

The kernel computes 576 output elements by applying the filter coefficients in the statically defined array fircoef. The filter is applied to the input values passed via function parameter in firbuf.

Each iteration of the outer loop corresponds to a new output element. Each iteration of the inner loop computes a portion of the final sum.

Unlike the previous kernel, each iteration of the outer loop is independent. This makes loop vectorization of the outer loop conceptually possible as well (after unrolling of the inner loop). However, LLVM does not make this transformation at -O3 either.

```
for (i = 0; i < 576; i++) {
    FLOAT sum1, sum2;
    sum1 = firbuf[i + 10];
    sum2 = 0.0;
    for (j = 0; j < ((NSFIRLEN - 1) / 2) - 1; j += 2) {
        sum1 += fircoef[j] * (firbuf[i + j] + firbuf[i + NSFIRLEN - j]);
        sum2 += fircoef[j + 1] * (firbuf[i + j + 1] + firbuf[i + NSFIRLEN - j - 1]);
    }
    ns_hpfsmpl[chn][i] = sum1 + sum2;
}
```
Although the reduction only appears to have additions, this is actually an addition / subtraction mixture in the generated LLVM IR. This is because LLVM performs constant propagation on the fircoef array, and it appears to change the negative coefficients to positive constants and replace some of the floating-point additions with subtraction operations.

5.1.2.0.11 Transformation

Once my pass executes LLVM has performed the constant value propagation and unrolled the inner loop completely. This allows my pass to start at the value operand to the store in the ns_hpfsmpl array.

Everything added to the sum1 and sum2 variables is treated as a reduction input and this forms the roots of the vectorizable tree. Because of the constant value propagation, when the fircoef element is positive the input is added to the addition group, and when fircoef is negative the input is added to the subtraction group.

Most of the inputs, with the exception of the initial assignments to sum1 and sum2, are multiply instructions. Thus, the largest groups at the root level of the tree are the multiply groups. The addition of the two locations in firbuf on the right side of the multiplications form more isomorphic groups in the next level up in the tree.

My vectorizer starts looking for contiguous load chains at the highest levels of the tree and first finds the \(<\text{firbuf}[i + \text{NSFIRLEN} - j - 1], \text{firbuf}[i + \text{NSFIRLEN} - j]>)\ chains. It forces these columns of the tree into vectors and also discovers that the corresponding \(<\text{firbuf}[i + j + 1], \text{firbuf}[i + j]>)\ vectors match the reversed pattern and generate a vector load with a reversal shuffle operation.

A vector addition is generated for the two vectors loaded from firbuf. Constant vector
filter coefficients are generated to feed the vector multiplication of the coefficients with the added firbuf vectors. My pass then generates the vector reduction operations as described previously to add the vectors and to generate the final scalar value to store to the ns_hpfsmpl array.

5.1.3 Kernel #3

This kernel is taken from the window_subband() function in newmdct.c in the LAME MP3 encoder.

5.1.3.0.12 Description

In this kernel the variable s and t form reduction chains. There is more similar code in this kernel, but it is omitted for brevity. The reductions in this kernel have a contiguous loads to the wp array.

```c
for (i = -15; i < 0; i++) {
    FLOAT w, s, t;

    w = wp[-10];
    s = x2[-224] * w;
    t = x1[224] * w;
    w = wp[-9];
    s += x2[-160] * w;
    t += x1[160] * w;
    w = wp[-8];
    s += x2[-96] * w;
    t += x1[96] * w;
```


\begin{verbatim}
5.2. RESULTS

w = wp[-7];
s += x2[-32] * w;
t += x1[32] * w;
w = wp[-6];
...
wp += 18;
x1--;
x2++;}

5.1.3.0.13 Transformation

Because the vector formation stage looks for contiguous loads first, vectors are formed from the inputs that access contiguous locations in the wp array. However, the x1 and x2 array accesses cannot form contiguous vector load or any supported reversed or interleaved pattern. Therefore, separate gather loads must be created for accesses to x1 and x2 to get them in the vector for multiplication with the wp values. Vector multiplies are created and the multiplication are reduced in the manner discussed previously.

Although vector multiplications are created and vector loads are created for the right operands to the multiplies, the average vector chain length is shorter for this kernel than the other kernels, and the loads to x1 and x2 are not vectorized.

5.2 Results

The LAME MP3 encoder was compiled for an ARM Cortex-A8 BeagleBone Black system with ARM NEON. The -ffast-math flag was passed to allow floating-point associativity and the
-O3 flag was passed to allow other optimizers – including the LLVM loop and SLP vectorizers – to run.

5.2.1 Speedup

![Accumulated Kernel Execution Time](image)

Figure 5.1 Kernel Speedup

Timing code was inserted around the kernels in the LAME MP3 encoder. The timing code accumulated the total time for all invocations of the kernels during a single run. LAME was then asked to encode a WAV file to MP3 format five times. The average result from the five runs were averaged. The results of both the baseline case and baseline plus my vectorizer ("Baseline + RV") are shown in Fig. 5.1.
Kernel #1 and kernel #2 show approximately 25% speedup. Kernel #3 shows no speedup. This is probably due to the gathered loads and the shorter average vector chain length.

LAME overall showed a 1.85% speedup in MP3 encoding using default settings.

5.2.2 Code Size

![Code Size Reduction of Enclosing Functions](image)

Figure 5.2 Code Size Reductions

My vectorizer can reduce code size by replacing multiple scalar instructions with SIMD instructions. The functions containing the above kernels were measured using the GNU `nm` utility with and without my vectorization pass. The results are reported in Fig. 5.2.

The entire, statically-lined LAME binary was 1,044,746 bytes in size originally. In total, my
pass reduced the code size by 1,224 bytes to 1,043,522 bytes.

5.2.3 Compilation Efficiency

![Compilation Overhead](image)

Figure 5.3 Percentage of Pass Execution Time

To measure the efficiency of my compiler pass I recompiled in release mode and ran with Clang’s `-ftime-report` option. The generated report shows the measured time for each compiler pass ran by the pass manager.

I collected timing reports for three different source files. The first one included Kernel #1 and a small `main()` function designed to feed it random data. The second is the `gain_analysis.c` file from LAME which includes several other functions in addition to Kernel #1.
The third file, `encoder.c`, also contains a vectorized kernel, but the reduction chain in this example is shorter and the generated tree is smaller.

These results show that my vectorization pass is reasonably efficient and in line with the performance of other LLVM passes.
6.1 Related Work

The algorithm presented by Larsen in [3] starts with consecutive memory accesses and builds vectorized chains. It is based on local, greedy heuristics which may not make good decisions that lead to efficient pack sets, and it does not handle the vector permutations needed to efficiently vectorize the examples in this paper. It also does not consider starting packs from reduction inputs.
6.2. FINAL REMARKS

The work by Liu et al. [5] can generate vector permutations when a group must be reordered during scheduling. However, it would not appear to handle the types of deinterleaving operations needed to support Kernel #1, where the kernel array is deinterleaved and distributed to multiply with the input and output arrays. It also does not consider reductions. However, like my pass it does group potential SIMD operations together first and delay ordering the enclosed SIMD statements until later.

The LLVM SLP vectorizer works in a bottom-up manner, typically starting from contiguous stores and forming vector chains. It also includes some functionality (disabled by default in LLVM 3.6) for vectorizing starting from reduction chains. However, several factors currently prevent it from efficiently vectorizing this kernel. One reason is that it currently only handles addition chains, and no other operations such as subtraction. Another, more fundamental problem is that its bottom-up vectorizer expects to receive the packed roots to begin the vector formation from the bottom. However, unlike with consecutive store chains, it is impossible to determine the best grouping and ordering from the bottom at a reduction. To determine the best grouping and ordering of the input operations to the reduction, it is necessary to determine which loads are feeding which reduction values to reduce the need for vector permutations and packing/unpacking instructions. It is also beneficial to create packs from the reduction values that will have longer vectorizable use-def chains, which my pass is able to do by measuring tree height before making packing decisions.

6.2 Final Remarks

In this thesis I have presented a SLP vectorizer that leverages the associativity of reduction operations to form efficient vector chains. I have qualitatively and quantitatively evaluated
my vectorizer for selected kernels, and I have shown that it can produce speedup and reduction in code size without excessive compilation overhead.

Future work should evaluate this pass on additional applications. The pass can also be adopted to work with store chains as roots as well as reduction operations. Finally, additional benefit is likely obtainable for some kernels by unrolling loops before running my pass to expose more SLP parallelism.
REFERENCES

