
ABSTRACT

BURCH, TIFFANY MICHELLE. Supersolvable Leibniz Algebras. (Under the direction of Dr.
Ernest Stitzinger.)

Malcev algebras and Leibniz algebras are generalizations of Lie algebras. Classical theo-

rems in Lie algebra have found extensions to Malcev algebras. It is the purpose of this work

to extend some of the Lie and Malcev algebra results, particularly supersolvable results, to

Leibniz algebras. In particular, results about lower semi-modular algebras, supersolvable

projectors, theta-pairs, two-recognizeable properties, and triangulable properties will be

discussed.
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Chapter

1

Introduction

Lie algebras emerged as a result of Lie Groups. Sophus Lie developed the theory of Lie groups

in the nineteenth century when working with differential equations [9]. Lie discovered his

theory on transformation groups could be applied to the theory of differential equations [2].

As Lie groups were studied in the twentieth century, mathematicians such as Cartan, Weyl,

and Borel began to generalize the topic to other areas of mathematics (algebraic topology,

Lie algebras, etc.) [24].

Lie algebras have been extensively explored over the past 100 years. Throughout this
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Chapter 1. Introduction

exploration, a number of known properties, theorems, and results have emerged. A related

area of interest involves the behavior of Lie algebra generalizations and their properties.

Anatoly Maltsev generalized Lie algebras to Malcev algebras in 1955 [21] and Jean-Louis

Loday generalized Lie algebras to Leibniz algebras in 1993 [20].

Lie groups and Lie algebras have become powerful tools in the fields of applied mathe-

matics and physics in studying differential equations, perturbation theory, and dynamical

models [9]. Studying the generalizations of Lie algebras allows algebraists to better under-

stand the original concepts in Lie groups and Lie algebras. These generalizations satisfy the

defining properties of a Lie algebra but contain at least one structural difference. My research

looks at a particular generalization, Leibniz algebras, to see if certain Lie algebra results hold

true in the Leibniz algebra case.

Every Lie algebra satisfies the conditions of a Leibniz algebra. However, an algebra can be

Leibniz but not Lie. In a Lie algebra, the product, [x , y ], is skew-symmetric if [x , y ] =−[y ,x ].

This property is not assumed in Leibniz algebras. (In a matrix Lie algebra, the product is

defined as [A, B ] = A B − BA.) This distinction is why the interest in extending Lie algebra

results to Leibniz algebras has emerged. While it is already known that Lie’s Theorem, Engel’s

Theorem, and Levi’s Theorem for Lie algebras have analogues in Leibniz algebras [15], a

number of other Lie algebra results remain to be studied.

In the past five years, North Carolina State University’s mathematics department has been

extending Lie algebra concepts to Leibniz algebras. The concept of supersolvability is one Lie

algebra property of particular interest in Leibniz algebras. Supersolvability can be roughly

thought of as the algebra of upper triangular matrices. Supersolvable Lie algebra properties

were studied and applied to Malcev algebras by Stitzinger [28]. Since Malcev algebras are a
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Chapter 1. Introduction

generalization of Lie algebras, the question of whether the same properties would translate

to another Lie algebra generalization emerged.

Following the format of Stitzinger [28], I have made progress in finding conditions involv-

ing left multiplication which are equivalent to supersolvability. From these results I have been

able to extend structure properties of supersolvable Lie algebras to supersolvable Leibniz

algebras. These results include supersolvable projectors, theta pairs, and 2-recognizeability.
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Chapter

2

Preliminaries

In order to investigate the idea of supersolvability, we need to have a basic understanding of

Lie algebra and Leibniz algebra properties. I will present the relevant definitions and results

as stated by Demir [15] and Misra [22]. However, I will use the notation of Barnes [7]where

the bilinear map

[ , ] : L× L→ L

representing multiplication is presented without brackets. Thus [x , y ]will be presented as

x y .
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Chapter 2. Preliminaries

Definition 2.0.1. A (left) Leibniz algebra L is an F-vector space equipped with a product

satisfying the Leibniz identity

a (b c ) = (ab )c +b (a c ) for all a ,b , c ∈ L.

Definition 2.0.2. A linear transformation δ : L→ L is a derivation of L if

δ(x y ) =δ(x )y +xδ(y ) for all x , y ∈ L.

Thus the left multiplication operator is a derivation. A (right) Leibniz algebra can be

defined as a vector space equipped with a bilinear multiplication such that the right multipli-

cation operator is a derivation [15].

When referring to a Leibniz algebra, I will be using the definition of a (left) Leibniz algebra

as opposed to a (right) Leibniz algebra. Thus I will denote left and right multiplication of L by

x ∈ L as

Lx (a ) = x a and Rx (a ) = a x for all a ∈ L.

As previously mentioned, every Lie algebra is a Leibniz algebra. However, any Leibniz

algebra that contains an element a such that a 2 6= 0 is not a Lie algebra. Leibniz algebras

of dimension greater than one which are generated by one element are simple examples of

Leibniz algebras that are not Lie. They are called cyclic.

Definition 2.0.3. An algebra L = 〈a 〉where a 2 = a a , . . . , a n = a a n−1, a a n =α1a + · · ·+αn a n

is called cyclic.
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Example 2.0.4. Consider the two-dimensional algebra with basis {a , a 2}where

a a 2

a a 2 a 2

a 2 0 0

L is cyclic and is a simple example of a Leibniz algebra that is not Lie.

Definition 2.0.5. Leib(L) =span{a 2|a ∈ L}

In [6], Leib(L) is shown to be an ideal.

Definition 2.0.6. Let I be a subspace of L.

1. I is a subalgebra if I I ⊆ I .

2. I is an ideal of L, I / L, if LI ⊆ I and I L ⊆ I .

The sum and intersection of two ideals of a Leibniz algebra is an ideal, as in Lie algebras.

However the result does not hold true for the product of two ideals [15].

Definition 2.0.7. Let I / L.

L/I = {x + I |x ∈ L}

is called the quotient Leibniz algebra.
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Definition 2.0.8.

1. The left center of L is

Z l (L) = {x ∈ L |x a = 0 for all a ∈ L}.

2. The center of L is

Z (L) = {x ∈ L |x a = 0= a x for all a ∈ L}.

Definition 2.0.9. Let S be a subset of L.

1. The left centralizer of S is

Z l
L(S) = {x ∈ L |x s = 0 for all s ∈S}.

2. The centralizer of S is

ZL(S) = {x ∈ L |x s = 0= s x for all s ∈S}.

If S is an ideal of L, then the left centralizer and the centralizer are also ideals in L.

Definition 2.0.10. The series of ideals

L ⊇ L(1) ⊇ L(2) ⊇ . . . where L(1) = LL, L(i+1) = L(i )L(i )

is called the derived series of L.

Definition 2.0.11. L is solvable if L(m ) = 0 for some integer m ≥ 0.
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As in Lie algebras, the sum and intersection of two solvable ideals of a Leibniz algebra is

solvable and the unique maximal solvable ideal containing all solvable ideals of L is called

the radical of L, denoted rad(L) [15].

Definition 2.0.12. The series of ideals

L ⊇ L1 ⊇ L2 ⊇ . . . where Li+1 = LLi

is called the lower central series of L.

Definition 2.0.13. L is nilpotent if Lm = 0 for some integer m .

As in Lie algebras, the sum and intersection of two nilpotent ideals of a Leibniz algebra is

nilpotent and the unique maximal nilpotent ideal of L is called the nilradical of L, denoted

nil(L) [15]. For our purposes, nil(L)will also be denoted by N (L).
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Chapter

3

Supersolvable

3.1 Background

The idea of supersolvability was first explored in groups with the hope that it would provide

more insight into groups than just studying solvability. A group G is supersolvable if every

homomorphic image H 6= 1 of G contains a cyclic normal subgroup different from 1 [3]. A

number of properties for supersolvable groups have been presented by Deskins and Venske

[31].
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3.1. Background Chapter 3. Supersolvable

The idea was then extended to Lie algebras with a slight change in the definition. A Lie

algebra is supersolvable if it has an ascending chain of ideals whose factors are of dimension

one [18]. A number of properties for finite dimensional supersolvable Lie algebras have been

presented by Barnes [6] and Barnes and Newell [5].

From the study of supersolvablility in groups and Lie algebras, a natural transition is to

explore the idea in Lie algebra generalizations. Following the work of Stitzinger [28], I will

explore properties of supersolvable Leibniz algebras.

Definition 3.1.1. A Leibniz algebra L is supersolvable if there is a chain

0= L 0 ⊂ L 1 ⊂ . . .⊂ L n−1 ⊂ L n = L

where L i is an i -dimensional ideal of L.

Example 3.1.2. Consider an algebra with basis elements {a , a 2, a 3, . . . , a n}where

a a j = a j+1 for j = 1, . . . , n −1 and a a n = 0

a i a j = 0 for i = 2, . . . , n ; j = 1, . . . , n

The algebra is clearly Leibniz but not Lie since a 2 6= 0. The algebra is also supersolvable since

0= L 0 ⊂ L 1 = {a n} ⊂ L 2 = {a n−1, a n} ⊂ . . .⊂ L n−1 = {a 2, . . . , a n} ⊂ L n = {a , . . . , a n}= L.
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3.2 Supersolvable Results

Lemma 3.2.1. L∗0(a ) is a subalgebra of L for all a ∈ L.

Proof. Let a ∈ L. Suppose that L a has the minimum polynomial

m (x ) =π1(x )d 1 . . .πk (x )d k

where πi (x ) is linear for i ≤ s and nonlinear for i > s .

Then

πi (x ) = (x − c i )d i for i ≤ s .

Let L∗c i
for i ≤ s and L∗πi

for i > s be components in the primary decomposition of L a acting

on L. Let

L∗0(a ) = L∗c1

⊕

. . .
⊕

L∗cs
and L∗1(a ) = L∗πs+1

⊕

. . .
⊕

L∗πt

and

m1(x ) = (x − c1) . . . (x − cs ).

Both L∗0(a ) and L∗1(a ) are invariant under L a by the general theory of linear transformations.

Notice that m1(L a ) acts nilpotently on L∗0(a ) since

m1(L a )d i y = (L a − c1I )d i . . . (L a − cs I )d i y = 0 for y ∈ L∗c i

due to the terms on the right hand side of the equation commuting. Hence m1(L a )m a x (d i ) = 0
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3.2. Supersolvable Results Chapter 3. Supersolvable

on L∗0(a ). Also

gcd(m1(x ),πi (x )d i ) = 1=m1(x )u (x )+πi (x )v (x ) for some u (x ), v (x ).

Let z ∈ L∗πi
Then

z = I z = (m1(L a )u (L a )+πi (L a )d i v (L a ))z =m1(L a )u (L a )z .

If m1(L a )z = 0 , then I z = z = 0. Hence z = 0. Therefore m1(L a ) is non-singular on each L∗πi

for i > s and m1(L a ) is non-singular on L∗i (a ). Let x ∈ L∗c i
and y ∈ L∗c j

. Then, using the Leibniz

identity for derivations,

L a − ((c i + c j )I )d i+d j (x y ) =
d i+d j
∑

k=0

�

d i +d j

k

�

(L a − c i I )k x (L a − c j I )d i+d j−k y = 0

gives that x y ∈ L c i+c j .

It will also be useful to know how the derived algebra, L2, acts on minimal ideals of L.

Lemma 3.2.2. Let A be an ideal of L such that dim(A) = 1. Then L2 ⊆CL(A).

Proof. Let x , y ∈ L and a ∈ A with x a =αx a . Since A is a minimal ideal of L, then either

a x =−αx a or a x = 0 for all x ∈ L.

Then

(x y )a = x (y a )− y (x a ) = x (αy a )− y (αx a ) =αxαy a −αyαx a = 0

12
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or

(x y )a = 0.

Therefore L2A = 0. Similarly,

a (x y ) = (a x )y +x (a y ) = (−αx a )y +x (−αy a ) =αxαy a −αyαx a = 0

or

a (x y ) = 0.

Therefore AL2 = 0. Thus L2 ⊆CL(A)

Lemma 3.2.3. L2 is nilpotent if L is supersolvable.

Proof. Use induction on the dimension of L. Let A be a minimal ideal of L. Then L2 ⊆CL(A) by

Lemma 3.2.2. Now let A ⊆ L2. By induction, (L/A)2 is nilpotent because (L/A) is supersolvable.

However, (L/A)2 = (L2+A)/A. Thus there exists a k such that ((L2+A)/A)k = 0. Therefore

(L2+A)k ⊆ A for some k . Then

(L2)k+1 ⊆ (L2+A)k+1 = (L2+A)(L2+A)k ⊆ (L2+A)A = 0.

Thus L2 is nilpotent.

It is now possible to find a characterization of supersolvable Leibniz algebras in terms of

L∗0(a ) = L. Since Lie’s theorem does not hold in algebraically closed fields of prime character-

istic, the following result requires nilpotency of L2 in order to obtain supersolvability.

Theorem 3.2.4. L is supersolvable if and only if L2 is nilpotent and L∗0(a ) = L for all a ∈ L.

13
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Proof. ” =⇒ ” Suppose L is supersolvable. Then L2 is nilpotent by Lemma 3.2.3. Let v1, . . . , vn

be a basis for L such that 〈v1, . . . , vs 〉 is an ideal in L for each s . Then the characteristic

polynomial for L a is the product of linear factors and the result holds.

” ⇐= ” Suppose the conditions hold for L. Use induction on the dimension of L. It is sufficient

to show that each minimal ideal has dimension one. Let A be a minimal ideal of L. Then

AL2+ L2A Å L and is contained in both L2 and A. Since A is minimal, either AL2+ L2A = 0 or

AL2+ L2A = A. If AL2+ L2A = A, then

A = AL2+ L2A = (AL2+ L2A)L2+ L2(AL2+ L2A).

Repeating the process shows that the term never becomes 0. This contradicts the fact that L2

is nilpotent. Hence AL2+ L2A = 0 and AL2 = 0= L2A. Since

0= (x y )a = x (y a )− y (x a ),

it follows that Lx L y = L y Lx on A. Since A is a minimal ideal of L, either Rx =−Lx for all x ∈ L

or Rx = 0 for all x ∈ L when Rx acts on A. Hence all Rx , L y commute on A. That is

Rx L y =−Lx L y =−L y Lx = L y Rx

or

Rx L y = 0= L y Rx

and

Rx Ry = Lx L y = L y Lx =Ry Rx

14
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on A. Since L∗0(a ) = L, L a can be triangularized on A as can Ra since Ra = −L a or Ra = 0.

Since all L a , Ra can be triangularized on A and they commute, they can be simultaneously

triangularized on A. Hence there is a common eigenvalue z where A = 〈z 〉. Thus dim(A) = 1

and induction on L/A yields L supersolvable.

It is interesting to note that Theorem 3.2.4 provides a version of Lie’s theorem for Leibniz

algebras over algebraically closed fields of prime characteristic. In Lie algebras, Lie’s theorem

does not hold in this case. At characteristic 0, L is solvable if and only if L2 is nilpotent thus

giving the desired result. However, at prime characteristic, L solvable does not imply that L2

is nilpotent. Thus the result holds for algebraically closed fields of prime characteristic as

long as L2 is nilpotent.

The following theorem follows from a result in both Lie and Malcev algebras as well as in

group theory. It is part of a general theory of Schunck classes developed by Barnes in [7]. In

particular, the Leibniz algebra result shows that the class of supersolvable Leibniz algebras is

a saturated formation. According to Barnes [7], a classX is saturated if A / L, B /A, B ⊆Φ(L)

and A/B ∈X , then A ∈X .

Definition 3.2.5. The Frattini ideal of L, Φ(L), is the largest ideal that is contained in the

intersection of all maximal subalgebras of L. The intersection is called the Frattini subalgebra.

Theorem 3.2.6. Let Φ(L) be the Frattini ideal of L and B be an ideal contained in Φ(L). If L/B

is supersolvable, then L is supersolvable.

Proof. Let x ∈ L. Since L/B = L̄ is supersolvable, L̄2 is nilpotent by Lemma 3.2.3. Hence

L2/(L2 ∩ B ) is nilpotent and L2 is nilpotent. Since B is an ideal in Φ(L), L∗1(x )⊆ B for all x ∈ B .

Since L̄ is supersolvable, L∗1(x ) ⊆ B ⊆ Φ(L). Hence L∗0(x ) +Φ(L) = L for all x ∈ L. L∗0(x ) is a

15
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subalgebra of L by Lemma 3.2.1, which forces L∗0(x ) = L. Therefore L is supersolvable by

Theorem 3.2.4.

3.3 Structure Results

The following results are structure results on solvable Leibniz algebras. Similar structure

results hold for groups as well as for Lie algebras. In particular, this next result corresponds

to a famous result in group theory by B. Huppert stating that a finite group is supersolvable if

and only if each of its maximal subgroups has prime index. [26].

Theorem 3.3.1. Let L be a solvable Leibniz algebra. Then L is supersolvable if and only if all

maximal subalgebras of L have codimension one in L.

Proof. ” =⇒ ” Suppose L is supersolvable and let B be a maximal subalgebra of L. Let A

be a minimal ideal of L. By induction on the dimension of L, if A ⊆ B , then every maximal

subalgebra B/A of L/A has codimension one. Thus B has codimension one in L and the

result holds. If A 6⊆ B , then A+ B = L. Since L is solvable, A is abelian and A ∩ B = 0. Since L

is supersolvable and A is a minimal idea of L, dim(A) = 1. Therefore the result holds.

” ⇐= ” Suppose the condition holds. Let A be a minimal ideal of L. If A is contained

in the Frattini subalgebra of L, then L/A is supersolvable by induction on the dimension

of L and A ⊆Φ(L). Thus L is supersolvable by Theorem 3.2.6. If some maximal subalgebra

N has A 6⊆ N , then A 6⊆ Φ(L) since A is not in the Frattini subalgebra of L. Thus L = A +N

and A ∩N is an ideal of L contained in A since A is abelian. Thus A ∩N = 0 due to A being

a minimal ideal. Thus dim(A) = 1. Then L/A is supersolvable by induction. Therefore L is

supersolvable.
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Theorem 3.3.2. Let L be a solvable Leibniz algebra. Then L is supersolvable if and only if all

chains of subalgebras of L have the same length.

Proof. ” =⇒ ” If L is supersolvable, then Theorem 3.3.1 gives the desired result that all chains

have length equal to the dimension of L.

” ⇐= ” Suppose that all chains of subalgebras of L have the same length. In a solvable

Leibniz algebra, refining the derived series allows us to add components to the chain giving a

chain of length equal to the dimension of L. By the assumption, all maximal subalgebras of L

will be composed of chains of subalgebras of equal length. Thus all maximal subalgberas will

have codimension one in L. Therefore the result holds by Theorem 3.3.1.

This next result is similiar to Theorem 3.3.1. However, it follows the variation of Huppert’s

result proved by O. U. Kramer where a finite solvable group G is supersolvable if and only if,

for every maximal subgroup M of G , either F (G )⊆M or M ∩ F (G ) is a maximal subgroup of

F (G ), where F (G ) is the Fitting subgroup of G [30]. In the Leibniz algebra version, the largest

nilpotent ideal of L, N (L), will be used in place of the Fitting subgroup of G .

Theorem 3.3.3. Let L be a solvable Leibniz algebra. Then L is supersolvable if and only if for

every maximal subalgebra B of L, either N (L) ⊆ B or B ∩N (L) is a maximal subalgebra of

N (L).

Proof. ” =⇒ ” Let L be supersolvable and B be a maximal subalgebra of L. Then codimL(B ) =

1 by Theorem 3.3.1. If N (L)⊆ B , the result follows. Thus suppose N (L) 6⊆ B . Then L = B+N (L)

implies that L/B = (B+N (L))/B ∼=N (L)/(B∩N (L)). Therefore 1= codimL(B ) = codimN (L)(B∩

N (L)). Hence B ∩N (L) is maximal in N (L) and the result holds.
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3.3. Structure Results Chapter 3. Supersolvable

” ⇐= ” Suppose that L satisfies the condition for every maximal subalgebra. Consider

the Frattini ideal, Φ(L)Ã L. Since L is a solvable Leibniz algebra, N (L/Φ(L)) =N (L)/Φ(L) =

Asoc (L/Φ(L))where the abelian socle of L, Asoc (L/Φ(L)), is the union of all abelian minimal

ideals of L/Φ(L) [8]. Hence L/Φ(L) satisfies the condition on the subalgebras. If Φ(L) 6= 0, by

induction L/Φ(L) is supersolvable. Thus L is supersolvable by Theorem 3.2.6.

Suppose that Φ(L) = 0. Then Asoc (L) =N (L) =ZL(Soc (L))where the socle of L, Soc (L), is

the union of all minimal ideals of L and is the direct sum of some of these minimal ideals [8].

Hence N (L) =H1+ . . .+HR , where Hi is a minimal ideal that is abelian for each i . Then each

Hi is complemented by a maximal subalgebra Bi and N (L) =N (L)∩ L =N (L)∩ (Hi + Bi ) =

Hi +(Bi ∩N (L)). By assumption, Bi ∩N (L) is a maximal subalgebra of N (L). Since N (L) is a

nilpotent ideal, Bi ∩N (L) is an ideal of N (L). Thus 1= codimN (L)(Bi ∩N (L)) = dim Hi . Hence

L2 ⊆CL(Hi ) by Lemma 3.2.2. Thus L2 ⊆∩r
i=1CL(Hi ) =C . Therefore C Ã L and C =CL(N (L)).

Suppose C 6⊆N (L). Then (C +N (L))/N (L) contains a minimal ideal D/N (L) where Dn+1 ⊆

N (L)n for n = 1,2, . . . . Hence D is nilpotent, which is a contradiction. Thus L2 ⊆ C ⊆ N (L)

and we see that L2 is nilpotent.

Suppose B is a maximal subalgebra of L. If N (L)⊆ B , then L2 ⊆ B . Thus B is an ideal in

L and B will have codimension one in L. If N (L) 6⊆ B , then L = B +N (L). Thus codimL(B ) =

codimN (L)(B∩N (L)) = 1, since B∩N (L) is maximal in N (L) by assumption and N (L) is a nilpo-

tent ideal. Since all maximal subalgebras of L have codimension one in L, L is supersolvable

by Theorem 3.3.1.
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Chapter

4

Supersolvable Extensions

4.1 Lower Semi-Modular

In [31], Humphreys and Johnson present results where the lattice of subgroups is lower

semi-modular. The following results show that similar properties hold for subalgebras of

Leibniz algebras.

Definition 4.1.1. An algebra L is called lower semi-modular if for every pair of subalgebras

A, B such that A is a maximal subalgebra of 〈A, B〉, the algebra generations by A and B , A ∩ B
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is a maximal subalgebra of B .

Lemma 4.1.2. The following are equivalent:

1. L is lower semi-modular.

2. For every pair H , K of subalgebras of L such that H and K are maximal in 〈H , K 〉, it

follows that H ∩K is maximal in both H and K .

Proof. Suppose L is lower semi-modular and H is maximal in 〈H , K 〉. Then H ∩K is maximal

in K . If K is also maximal in 〈H , K 〉, then K ∩H is maximal in H . Thus the result holds.

Assume (2). Let A and B be subalgebras of L with A maximal in 〈A, B〉. Choose a maximal

subalgebra B1 of 〈A, B〉which contains B . Thus B ⊂ B1 ⊂ 〈A, B〉. Then 〈A, B〉= 〈A, B1〉. Hence

A ∩ B1 is maximal in both A and B1 by assumption. Now choose a maximal subalgebra B2 of

B1 containing B such that 〈A∩B1, B2〉= B1. Thus B ⊂ B2 ⊂ B1 ⊂ 〈A, B〉. Using the assumption,

(A∩B1)∩B2 = A∩ (B1∩B2) = A∩B2 is maximal in both B2 and A∩B1. Continuing the process

yields a maximal chain

B = Br ⊂ . . .⊂ B2 ⊂ B1.

Then A ∩ Br = A ∩ B is a maximal subalgebra of Br = B . Thus L is lower semi-modular.

Theorem 4.1.3. Let L be a solvable Leibniz algebra. Then L is supersolvable if and only if L is

lower semi-modular.

Proof. ” ⇐= ” Suppose L is lower semi-modular. By using induction on the dimension of

L, it can be shown that all maximal chains of L have the same length. In that case, L will be

supersolvable by Theorem 3.3.2. Let L = L 0 ⊃ L 1 ⊃ . . .⊃ L r = 0 and L =N0 ⊃N1 ⊃ . . .⊃Ns = 0
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be two maximal chains. By Lemma 4.1.2, L 1 ∩N1 is maximal in both L 1 and N1. Let t be the

length of a maximal chain of length t + 1 from L 1 to 0. By induction, L 1 is supersolvable,

hence all maximal chains have the same length in L 1. Thus t +1= r −1. Similarly, t +1= s −1

and r = s . Hence L is supersolvable.

” =⇒ ” Suppose L is supersolvable and let A be a minimal ideal of L. Then L2 ⊆CL(A) by

Lemma 3.2.2 and CL(A) is an ideal of L of codimension either 0 or 1. By Lemma 4.1.2, it is

enough to show that if H and K are maximal subalgebras of 〈H , K 〉, then H ∩K is maximal in

H and in K . Since L is supersolvable, any subalgebra of L is also supersolvable. Thus it can

be assumed that H and K are maximal in L.

Suppose A ⊆ H . If A ⊆ K as well, then by induction, (H ∩K )/A is maximal in H/A and

K /A. Thus the desired result holds.

Suppose A 6⊆ K . Then A+K = L and A ∩K = 0. Hence 1= codimL(K ). Also H = L ∩H =

(A +K )∩H = A + (K ∩H ). Thus codimH (K ∩H ) = 1 and K ∩H is maximal in H . Since L is

supersolvable, codimL(H ) = 1. Therefore codimL(H ) + codimH (H ∩ K ) = 2 = codimL(K ) +

codimK (H ∩K ). Therefore codimK (H ∩K ) = 1 and H ∩K is maximal in K .

Now suppose the neither H nor K contains a minimal ideal of L. Since CL(A) is an ideal

of L, H ∩CL(A) = 0= K ∩CL(A). Hence CL(A) = A. But dim(A) = 1 since A is a minimal ideal

of L. Thus codimL(CL(A)) is either 0 or 1. In the first case, dim L = 1 and the result holds. In

the second case, dim H = dim K = 1 and H ∩K is maximal in both H and K .
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4.2 Supersolvable Projectors

Supersolvable projectors can be discussed for solvable Leibniz algebras following the theory

ofF−projectors in Lie algebras [4] and Cartan subalgebras of Malcev algebras [27].

Definition 4.2.1. A subalgebra H of L is called a supersolvable projector if H is supersolvable

and if K is a subalgebra of L such that H ⊆ K ⊆ L and J Å K such that K /J is supersolvable,

then K =H + J .

Lemma 4.2.2. Let H be a supersolvable projector of the solvable Leibniz algebra L. Then

1. If H ⊆U, then H is a supersolvable projector of U.

2. If N Ã L, U/N is a supersolvable projector of L/N and H is a supersolvable projector of

U, then H is a supersolvable projector of L.

Proof. Part (1): Suppose H ⊆U . Choose K ⊆U . Clearly H is a supersolvable projector of U .

Part (2): The result is trivial if dim L = 0. Use induction over the dimension of L. Suppose

H ⊆ K ⊆ L, K0 Å K , and K /K0 is supersolvable. Then K +N ⊇ H +N = U and U/N is a

supersolvable projector of (K +N )/N . But (K +N )/N ∼= K /(N ∩K ) and therefore (U ∩K )/(N ∩

K ) is a supersolvable projector of K /(N ∩K ). Since H is a supersolvable projector of U ∩K , if

K ⊂ L, then H is a supersolvable projector of K by induction and H +K0 = K . Suppose K = L.

Since L/(K0+N ) is supersolvable, U/N +(K0+N )/N = L/N and so U +N +K0 = L. Since

N ⊆U , U+K0 = L. Therefore U/(K0∩U )∼= L/K0 is supersolvable. This implies H+(K0∩U ) =U

and H +K0 =U +K0 = L.

Theorem 4.2.3. Each solvable Leibniz algebra contains supersolvable projectors.
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Proof. Suppose L is a minimal counter example and let A be a minimal ideal in L. Then

there exists A ⊆U such that U/A is a supersolvable projector of L/A. Suppose U 6= L. Then

there exists a supersolvable projector H of U and the result follows from part (2) of Lemma

4.2.2. Therefore let U = L. Hence L/A is supersolvable. If A ⊆Φ(L), then L is supersolvable by

Theorem 3.2.6 and the result holds.

Suppose that A 6⊆Φ(L) and that A is complemented in L by B . Hence B ∼= L/A is super-

solvable. Let D Å L such that L/D is supersolvable. Then L/(D ∩A) is supersolvable. Since L

is not supersolvable, D ∩A 6= 0. A is a minimal ideal of L, so A ⊆D. Thus D ∩A = A. Hence

D + B = A + B = L and B is a supsersolvable projector of L.
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4.3 Theta Pairs

In [25], Salemkar, Chehrazi, and Niri use properties of maximal θ -pairs to characterize

solvable and supersolvable Lie algebras. In a similar manner, I will extend the properties to

Leibniz algebras by making use of previously stated supersolvable properties.

Definition 4.3.1. Let M be a maximal subalgebra of L. A pair (A, B ) of subalgebras of L is

said to be a θ -pair for M if it satisfies the following conditions:

1. B is an ideal of L contained in A

2. B ⊆M and A 6⊆M

3. A/B contains properly no nonzero ideal of L/B .

Definition 4.3.2. If A is an ideal of L, then the pair (A, B ) is called an ideal θ -pair for M .

Definition 4.3.3. A θ -pair (A, B ) for M is said to be maximal if M has no θ -pair (C , D) such

that A ⊂C .

The following lemmas and propositions follow the Lie algebra results as presented in [25]

and the proofs will therefore be omitted. In the statements, θ (M ) will denote the set of all

θ -pairs for a maximal subalgebra M .

Lemma 4.3.4. Let L be a Leibniz algebra, M a maximal subalgebra of L and I Å L with I ⊆M .

1. If (A, B ) is a (ideal) θ -pair for M and I ⊆ B, then (A/I , B/I ) is a (ideal) θ -pair for M/I .

Conversely, if (A/I , B/I ) is a (ideal) θ -pair for M/I , then (A, B ) is a (ideal) θ -pair for M .

In particular, (A, B ) is a maximal member in θ (M ) if and only if (A/I , B/I ) is a maximal

member in θ (M/I ).
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2. If (A, B ) is an ideal θ -pair of M , then θ (M ) contains an ideal maximal θ -pair (C , D)

such that (A, B )⊆ (C , D) and A/B ∼=C/D.

Definition 4.3.5. For a subalgebra B of L, let BL, the core (with respect to L) of B , be the

largest ideal of L contained in B .

Lemma 4.3.6. Let L be a Leibniz algebra, M a maximal subalgebra of L and (A, B ) an ideal

maximal θ -pair for M . Then B =M L .

Lemma 4.3.7. Let L be a non-simple Leibniz algebra over a field F of characteristic zero. If L

has an abelian maximal subalgebra, then L is solvable.

Proposition 4.3.8. LetX be a class of Leibniz algebras which is closed under taking subalge-

bras and quotient Leibniz algebras. Let M be a maximal subalgebra of a Leibniz algebra L and

I an ideal of L with I ⊆M . If (A, B ) is a maximal θ -pair of M such that A/B ∈X , then there

exists a maximal θ -pair (A1/I , B1/I ) of M/I such that (A1/I )/(B1/I )∼= A1/B1 ∈X .

Proposition 4.3.9. Let M be a maximal subalgebra of a Leibniz algebra L and I an ideal of

L with I ⊆M . If (A, B )∈ θ (M ) is a maximal member such that A ∩M = B, then there exists a

maximal member (A1/I , B1/I )∈ θ (M/I ) such that (A1/I )∩ (M/I ) = B1/I .

The following proposition was proved in [8].

Proposition 4.3.10. Let L be a Leibniz algebra with Φ(L) = 0. Then Asoc (L) =N (L).

Now that the preliminaries are established, it is possible to characterize solvable and

supersolvable Leibniz algebras using properties of θ -pairs.

Theorem 4.3.11. The following properties of a Leibniz algebra L are equivalent:
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1. L is solvable.

2. For each maximal subalgebra M of L and every ideal θ -pair (A, B ) for M , A/B is solvable.

3. For each maximal subalgebra M of L and every ideal maximal θ -pair (A, B ) for M ,

CL/B (A/B ) 6= 0.

4. Assuming the field F to be of characteristic zero, for each maximal subalgebra M of L,

there exists a maximal θ -pair (A, B ) for M such that A/B is abelian.

Proof. (1) =⇒ (2)

Since L is solvable, A, B ⊆ L are solvable. Thus A/B is solvable.

(2) =⇒ (3)

Let M be a maximal subalgebra of L and (A, B ) be an ideal θ -pair for M . By part (2) of Lemma

4.3.4, there exists an ideal maximal θ -pair (C , D) for M such that A/B ∼=C/D . By assumption,

C/D is a solvable ideal of L/D. Thus (C/D)2 is an ideal of L/D which is properly contained

in C/D since it is solvable. Thus C/D is abelian which implies A/B is abelian. Therefore

CL/B (A/B ) 6= 0.

(3) =⇒ (1)

Suppose that L is simple. If M is a maximal subalgebra of L, then (L,0) is an ideal maximal

θ -pair for M . Thus Z (L) =CL(L) 6= 0. This is a contradiction since L is not abelian. Thus L is

non-simple.

Let L be a minimal counter example so that anything smaller than L must be solvable.

By Lemma 4.3.4 and induction on the dimension of L, all proper quotient algebras of L are

solvable. If L has two minimal ideals N1 and N2, then L/N1 and L/N2 are solvable by the last

statement and N1 ∩N2 = 0. Therefore L is solvable.
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Instead, assume that L has a unique minimal ideal N and note that L/N is solvable. If

N ⊆ Φ(L), then L/Φ(L) is solvable and hence L is solvable by [6]. If N 6⊆ Φ(L), there exists a

maximal subalgebra M of L such that M L = 0 and L =N +M . But N is a minimal ideal so N

is simple or abelian. Clearly, (N ,0) is an ideal maximal θ -pair for M . Then by assumption,

CL/0(N /0) =CL(N ) 6= 0. Thus N must be contained in CL(N ) and therefore be abelian, thus

solvable. Then L/N solvable and N solvable imply that L is solvable.

(1) =⇒ (4)

Since L is solvable, there exists a series of ideals in L, L = L 0 ⊇ L 1 ⊇ L 2 ⊇ . . .⊇ L n = 0, such

that L i−1/L i is an abelian minimal ideal of L/L i for i = 1, . . . , n . This refinement of the derived

series takes ideals inside the chain of ideals. Let M be a maximal subalgebra of L. Then for

some k ≥ 1, L k ⊆M but L k−1 6⊆M . Thus (L k−1, L k ) belongs to θ (M ) by the definition of a

θ -pair. If (L k−1, L k ) is a maximal θ -pair for M , then the result holds.

Instead, suppose that (L k−1, L k ) ⊆ (A, B ) for some maximal θ -pair (A, B ) ∈ θ (M ). Then

L k−1 6⊆ B since B = A∩M . This results follows from the definition of a θ -pair where B ⊆ A∩M ,

by definition, and A ∩M ⊆ B since B ⊆M , B /A, and A 6⊆M . Since (L k−1+B )/B is an ideal of

L/B contained in A/B , the definition of a θ -pair implies that L k−1+ B = A. Therefore A Å L

and A/B ∼= L k−1/(L k−1 ∩ B ) is a homomorphic image of the abelian Leibniz algebra L k−1/L k .

(4) =⇒ (1)

Let L be a minimal counter example with N a minimal ideal of L. Then the quotient Leibniz

algebra L/N satisfies the assumption by Proposition 4.3.8. Thus L/N is solvable and we may

assume that N is the unique minimal ideal of L. If N ⊆ Φ(L), then N is nilpotent and L is

solvable. But this is a contradiction since letting L be a minimal counter example implies

that L is not solvable.
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Instead, suppose that L =N +M for some maximal and core-free subalgebra M of L. By

the assumption, there exists a maximal θ -pair (K ,0) in θ (M ) such that K /0= K is abelian.

Clearly, N 6⊆ K . Choosing H to be a subalgebra of L such that K is a maximal subalgebra of H

yields that H is solvable by Lemma 4.3.7. If HL = 0, then (H , 0)∈ θ (M ). Thus K =H , which is

a contradiction. Therefore, H contains N and thus L is solvable. But this is a contradiction

since L was assumed to be a minimal counter example.

Theorem 4.3.12. A Leibniz algebra L is supersolvable if any one of the following conditions

hold:

1. For any maximal subalgebra M of L and each maximal θ -pair (A, B ) for M ,

Z (L/B ) 6= 0.

2. For any maximal subalgebra M of L and each maximal θ -pair (A, B ) for M ,

dim (A/B ) = 1.

3. For any maximal subalgebra M of L and each maximal θ -pair (A, B ) for M ,

Φ(L/B ) 6= 0.

4. L has a supersolvable maximal subalgebra M such that N (L) 6⊆M and θ (M ) contains

an ideal maximal member (A, B )with dim (A/B ) = 1.

5. L has a supersolvable maximal subalgebra M such that N (L)∩M is a maximal subalge-

bra of N (L).

Proof. Assume (1). If L is simple, then (L,0) is the only θ -pair in L. Thus Z (L) = 0, which

contradicts our assumption. Thus L is not simple. If L is nilpotent, then L is supersolvable as

desired. Therefore, assume that L is a minimal counterexample such that L is neither simple
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nor nilpotent. If N is a minimal ideal of L, then L/N is supersolvable by induction. If K is

another minimal ideal of L, then L/N × L/K is supersolvable. Since L is isomorphic to a

subalgebra of L/N × L/K , L is supersolvable. Hence N is the unique minimal ideal of L.

Let M be a maximal subalgebra of L and suppose that M L = 0. Then (N ,0) is a maximal

θ -pair of M . Thus Z (L/0) 6= 0 by the hypothesis. Then L =M +Z (L) and by the lower cen-

tral series, L2 = M 2 is an ideal of L in M . Thus M 2 = 0 or M . If M 2 = 0 for some M , then

L2 =M 2 = 0. Thus L is abelian hence nilpotent hence supersolvable, which is a contradiction.

If M 2 =M for all M , then L2 =M 2 =M so that M is an ideal of L and N is contained in M .

Hence N is in Φ(L). Thus L is supersolvable by Theorem 3.2.6, a contradiction to the minimal

counterexample claim.

Assume (2). If L is simple, then (L,0) is the only θ -pair in L and dim(L) 6= 1, which con-

tradicts our assumption. Thus L is not simple. Assume L is a minimal counterexample such

that L is not simple. Let N be a minimal ideal of L such that (N , 0) is an ideal maximal θ -pair

for some maximal subalgebra M of L. Then dim(N ) = 1 by assumption. Using Lemma 4.3.6

and induction on the dimension of L, L/N is supersolvable. Thus L is supersolvable.

Assume (3). If L is simple, the only θ -pair is (L,0). Then Φ(L/0) = Φ(L) = 0, which is a

contradiction. Thus L is not simple. Suppose L is a minimal counterexample such that L is

not simple. By Lemma 4.3.6 and induction on the dimension of L, L has a unique minimal

ideal N and L/N is supersolvable. Suppose that for some maximal subalgebra M of L, (N , 0)

is an ideal maximal θ -pair for M . Then Φ(L/0) = Φ(L) 6= 0 by assumption. Since the unique

minimal ideal is contained in every ideal, N ⊆Φ(L) and L is supersolvable by Theorem 3.2.6.
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Assume (4). Let L be a minimal counterexample and N be a minimal ideal of L. If N is

not contained in M , then L/N is a homomorphic image of M . Thus L/N is supersolvable.

If N ⊆M , then B +N is a proper ideal of A +N . Since (A +N )/(B +N ) is a homomorphic

image of A/B , it follows that dim((A+N )/(B+N )) = 1 since dim(A/B ) = 1 by assumption and

N ⊆ B . Hence Lemma 4.3.4 establishes the pair (A/N , B/N ) is a maximal member in θ (M/N )

such that dim((A/N )/(B/N )) = 1 since (A, B ) is a maximal member in θ (M ), by assumption.

Therefore, the quotient algebra L/N is supersolvable by part (2) of Theorem 4.3.12.

It remains to show dim(N ) = 1. Without loss of generality, assume that N is the unique

minimal ideal of L. Since M is a maximal subalgebra with N (L) 6⊆M , L =M +N (L). Thus

M supersolvable yields that M/(N (L)∩M ) is supersolvable and therefore solvable. Since

L/N (L)∼=M/(N (L)∩M ), L/N (L) is solvable. This implies that L is solvable and Asoc(L) =N .

If N ⊆Φ(L), since L/N is supersolvable, then L is supersolvable by Theorem 3.2.6. Therefore

assume that Φ(L) = 0. Then N (L) = Asoc (L) =N by [8]. Since N (L) 6⊆M , N is not contained

in M . Thus M L = 0 which implies that B = 0 since B is an ideal contained in M . Thus

dim(A) =dim(A/B ) = 1. Since N ⊆ A, dim(N )=1.

Assume (5). If L is solvable, the result holds by Theorem 3.3.3. M supersolvable yields that

M/(N (L)∩M ) is supersolvable and therefore solvable. Since M∩N (L) is a maximal subalgebra

of N (L) by assumption, L =M+N (L). Thus L/N (L) is a homomorphic image of M/(N (L)∩M )

and therefore solvable. Therefore, L is solvable and the result holds by Theorem 3.3.3.
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5

Two-Recognizeable

5.1 Background

In Lie algebras, as well as in groups, it is possible to classify certain classes as 2-recognizeable.

In particular, solvable, strongly solvable, and supersolvable are classes deemed 2-recognizeable

in these areas. By working with fields of characteristic 0 or algebraically closed fields of char-

acteristic greater than 5, it possible to show the same classes are 2-recognizeable in Leibniz

algebras.
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Definition 5.1.1. A property of algebras is called n-recognizeable if whenever all the n gener-

ated subalgebras of algebra L have the property, then L also has the property.

Thus a property is 2-recognizeable if when all 2 generated subalgebras have the property,

the algebra itself has the property. Engel’s theorem shows that nilpotentcy is 2-recognizeable

in both Lie algebras and Leibniz algebras. Since this work focuses on supersolvable Leibniz

algebras, it is natural to explore whether supersolvability is 2-recognizeable in Leibniz al-

gebras. Due to supersolvability’s connection to solvability and strong solvability, these two

classes can also be explored.

In [11] and [23], solvability, strong solvability, and supersolvability are shown to be 2-

recognizeable within Lie algebras taken over a field of characteristic 0 or an algebraically

closed field of characteristic greater than 5. Similar group results are shown in [12] and [13].

These results will now be extended from the Lie algebra papers to Leibniz algebras.

5.2 Method One

The following work uses the ideas presented by Moneyhun and Stitzinger in [23]. Consider

first the property of solvability for Leibniz algebras.

Theorem 5.2.1. Solvability is 2-recognizeable for Leibniz algebras over a field of characteristic

0 and over algebraically closed fields of characteristic greater than 5.

Proof. Let L be a minimal counterexample. Simple Leibniz algebras are Lie algebras and

there are no Lie algebra counterexamples, as shown in [23]. Thus, L is not simple. If N is a

proper ideal of L, then the hypothesis holds in N and L/N . Hence, both are solvable and the

result holds.
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Definition 5.2.2. A Leibniz algebra whose derived algebra is nilpotent is called strongly

solvable.

In [11] and [23], strong solvability for Lie algebras over the fields mentioned in Theorem

5.2.1 is shown to be 2-recognizeable in the class of solvable Lie algebras. Similar results can

be extended to Leibniz algebras using Theorem 5.2.1.

In [23], the authors show that the Lie algebra is strongly solvable if and only if en (x , y ) = 0

for all x and y and almost all n , where en (x , y ) = Ln
x y (x ). A similar method will be employed

here. However, f n (x , y ) = Ln
x y (y )will also be used in order to address the lack of symmetry in

Leibniz algebras.

Theorem 5.2.3. Let L be a solvable Leibniz algebra. Then L is strongly solvable if and only if

en (x , y ) = 0 and f n (x , y ) = 0 for almost all n and all x , y ∈ L.

Before proving the theorem, two lemmas will be discussed. These lemmas are used in the

proof of the theorem.

Lemma 5.2.4. Suppose that L is generated by x and y . Suppose that en (x , y ) = f n (x , y ) = 0 for

almost all n. Then Lx y is nilpotent acting on L.

Proof. Let u ∈ L. Then u is a linear combination of elements of the form z = z s (. . . (z 2z 1) . . .)

where each z j = x or y . Since Lx y is a derivation,

Lt
x y (z ) =

∑

Li s
x y (z s )(Li s−1

x y (z s−1) . . . (Li 2
x y (z 2)Li 1

x y (z 1)) . . .)where i s + . . .+ i 1 = t .

For t = (n −1)s +1, at least one of the terms is 0. Since L is finite dimensional, L has a basis

made up of terms of the form z , and Lx y to a power takes each to 0. Thus Lx y is nilpotent on

L.
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Definition 5.2.5. A solvable Leibniz algebra is called primitive if it has a unique minimal

ideal, A, which is its own left centralizer and is complemented.

While all complements of A are conjugate in Lie algebras, [6] shows the complement is

unique if L is Leibniz but not Lie. The following lemma illustrates this result for our purposes.

It will also be useful to let L 0(x ) and L 1(x ) for x ∈ L denote the Fitting 0 and 1 component of

Lx acting on L.

Lemma 5.2.6. Let L be a solvable, primitive, Leibniz algebra, which is not a Lie algebra,

such that L is not strongly solvable but all proper subalgebras and quotients of L are strongly

solvable. Let A be the unique minimal ideal of L. Then the complement of A in L is unique.

Proof. Let B be a complement of A in L and b ∈ B∩L2. Under the conditions L 1(b )⊂ A, hence

L 0(b ) is a supplement of A in L. If L 0(b ) = L for all such b , then L2 is nilpotent, a contradiction.

Hence B = L 0(b ) for some b . If C is another complement to A in L, then C = L 0(c ) for some

c ∈ C ∩ L2. Then c = b + a for some a ∈ A and b ∈ B ∩ L2. Since a ∈ A =Leib(L), Lb = L c .

Hence B = L 0(b ) = L 0(c ) =C .

Proof of Theorem 5.2.3. If L2 is nilpotent, then the condition clearly holds. For the converse,

suppose that L is a minimal counterexample. Let A be a minimal ideal of L. The hypothesis

holds in L/A, hence (L/A)2 is nilpotent and each Lx y to some power takes L to A. If B is

another minimal ideal of L, then L2 = (L/A ∩ B )2 is nilpotent, a contradiction. Hence A is

the unique minimal ideal in L. Furthermore, if A ∈ Φ(L) , then (L/A)2 is nilpotent, which

gives that L2 is nilpotent, a contradiction. Hence, Φ(L) = 0, and A is complemented in L

by a subalgebra B as shown in [8]. Thus, L is primitive. Since A is unique, A is its own left

34



5.2. Method One Chapter 5. Two-Recognizeable

centralizer. We may assume that L is not a Lie algebra, for the result is known in that case

[23]. Then A = Leib(L) [8]. Then B is the unique complement of A.

The set S = {x y |x , y ∈ L}∪ L(2) is a Lie set whose span is L2, where L(2) = [L2, L2]. We will

show that L s is nilpotent on L for all s in S. Then, using [10], L2 is nilpotent. Note that L s

is nilpotent for all s ∈ L(2) since this ideal of L is nilpotent by induction on L2. Let U be the

subalgebra generated by x , y ∈ L. If U = L, then Lx y is nilpotent on L by Lemma 5.2.4. If

U +A 6= L, then by induction U 2 ⊂ (U +A)2 is nilpotent. Then a power of Lx y takes L to A,

and a further power takes L to 0. Hence, Lx y is nilpotent on L.

Suppose that L = A+U . Since we have taken care of the case that U = L and A ∩U is an

ideal of L, U is a complement of A in L. Let a ∈ A, a 6= 0, and take V to be the subalgebra

generated by x and y +a . Since x , y = (y +a )−a ∈V +A, it follows that L = A+U = A+V .

Then V ∩A = 0 or A since V ∩A is an ideal of L contained in the minimal ideal A. If V ∩A = 0,

then using Lemma 5.2.6, U =V since U is the unique complement of A in L. Since y and y +a

are in V =U , a is also, a contradiction. Hence V = L. By Lemma 5.2.4, Lx (y+a ) acts nilpotently

on L. Each s in the Lie set T = (x (y +a ))∪L(2) has L s nilpotent on L. Since x y = x (y +a )−x a

is in the span of T , it follows that Lx y is nilpotent on L. Now every s in the original Lie set S

has L s acting nilpotently on L. Hence, L2 acts nilpotently on L and L2 is nilpotent.

Corollary 5.2.7. In solvable Leibniz algebras, strong solvability is 2-recognizeable.

Proof. Let x and y be in L. The subalgebra, H , generated by x and y , has H 2 nilpotent. Thus,

Lx y acts nilpotently on H . Hence, en (x , y ) and f n (x , y ) are 0 when n ≥ dim H . Therefore, the

conditions of the theorem are satisfied, and L2 is nilpotent.

It is possible to extend this corollary to larger classes.
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Theorem 5.2.8. For Leibniz algebras over fields of characteristic 0 or algebraically closed fields

of characteristic greater than 5, strong solvability is 2-recognizeable.

Proof. Suppose the base field of the algebra is of characteristic 0 or it is algebraically closed

of characteristic greater than 5. Then solvability of all two generated subalgebras yields

solvability of the algebra, as seen in Theorem 5.2.1. Thus, if every two generated subalgebra

has a nilpotent derived algebra, then all two generated subalgebras are solvable, and hence,

L is solvable. Therefore, for the stated fields, if all two generated subalgebras are strongly

solvable then the algebra is solvable and Corollary 5.2.7 gives that the algebra is strongly

solvable.

It is now possible to address the supersolvable case.

Corollary 5.2.9. Supersolvability is 2-recognizeable in the class of solvable Leibniz algebras.

Proof. Suppose that all two generated subalgebras are supersolvable. Then they are strongly

solvable, and thus, so is L. Let a ∈ L. For any b in L, let H be the subalgebra generated by

a and b . Then a satisfies the condition in Theorem 3.2.4 in H . This extends to L, yielding

L∗0(a ) = L. Hence, L is supersolvable.

Again, the result can easily be extended to larger classes to obtain the following theorem.

Theorem 5.2.10. For fields of characteristic 0 or algebraically closed fields of characteristic

greater than 5, supersolvability is 2-recognizeable.

While the focus up to this point has been on whether a property is 2-recognizeable, it is

worth mentioning that the class of abelian-by-nilpotent Lie algebras is 3-recognizeable. This

class is not 2-recognizable, as shown in [23], using the split extension of a Heisenberg Lie
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algebra, L, spanned by x , y and z with x y = z , and a one dimensional space spanned by a

semi-simple derivation D of L with D(x ) = x , D(y ) = y and D(z ) = 2z .

It is possible to extend the result to show that the class of abelian-by-nilpotent Leibniz

algebras is 3-recognizable.

Definition 5.2.11. LetX andY be two classes of algebras. An algebra L is said to beX -by-Y

if L has an ideal I ∈X such that L/I ∈Y

Thus, for abelian-by-nilpotent,X represents the class of abelian Leibniz algebras andY

represents the class of nilpotent Leibniz algebras.

Define d k (x , y , z ) = (Lk
z (x ))(L

k
z (y )). Let L be a Leibniz algebra such that d k (x , y , z ) = 0 for

all x , y , z ∈ L and almost all k . Then (L 1(z ))(L 1(z )) = 0 and L 1(z ) is an abelian ideal in L.

Theorem 5.2.12. Over an infinite field, the following are equivalent:

1. L is abelian-by-nilpotent

2. d k (x , y , z ) = 0 for all x , y , z ∈ L and all k > dim L.

Proof. (1) clearly implies (2).

Assume (2). Let L be a Leibniz algebra such that d k (x , y , z ) = 0 for all x , y , z ∈ L and almost

all k .

Let H be a Cartan subalgebra of L. Then H is the Fitting null component, L 0(z ), of L z for

some z ∈H by Theorem 6.5 in [6], and H is nilpotent. Furthermore, the condition gives that

(L 1(z ))(L 1(z )) = 0 and L 1(z ) is an abelian ideal in L. Hence, the result holds.

Theorem 5.2.13. The class of abelian-by-nilpotent Leibniz algebras over infinite fields is

3-recognizeable.
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Proof. Suppose that all three generated subalgebras of L are abelian-by-nilpotent, and let

H be generated by x , y and z . Condition (2) of Theorem 5.2.12 holds for these x , y and z .

Therefore, condition (2) holds in general in L, and L is abelian-by-nilpotent.

5.3 Method Two

There is an alternative way to prove that the property of being strongly solvable is 2-recognizeable

within the class of solvable Leibniz algebras. The alternative makes use of ideas presented by

Bowman, Towers, and Varea in [11].

Definition 5.3.1. LetX be a class of Leibniz algebras. A Leibniz algebra L is almost X if L

does not belong toX , but every proper subalgebra of L is inX .

Note that calling L almost X is the same as saying that L is minimal non-X .

Proposition 5.3.2. Let L be a solvable Leibniz algebra such that Φ(L) = 0, and let A be a

minimal ideal in L. Then the following hold:

1. L has a unique minimal ideal A.

2. There exists a maximal subalgebra B of L such that L = A ⊕ B.

3. C l
L(A) = A.

Proof. Since L is solvable, it must have a minimal ideal, call it A. Suppose that B 6= A is

another minimal ideal of L. Then (L/B )2 is nilpotent. Consider the homomorphism

Π : L→ L/A × L/B
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which maps x 7→ (x +A,x + B ). The kernel of Π is A ∩ B . Then L/(A ∩ B ) is isomorphic to an

algebra contained in L/A×L/B . Since A and B are both minimal ideals, A∩B is an ideal. Also,

since both A and B contain it, A ∩ B = 0. Thus L/(A ∩ B ) = L, which is not strongly solvable,

and hence is a contradiction. Therefore A must be the unique minimal ideal of L.

Since Φ(L) = 0, A is not contained in Φ(L). Hence, there is a maximal subalgebra B of L

such that A is not contained in B . Thus A+B = L. Then A∩B = 0 since A is abelian. Therefore

L = A ⊕ B .

Next, consider the map

λ : L→De r (A)

which maps x 7→ λx , where λx (y ) = x y for all x ∈ L and y ∈ A. Notice that λ is a homomor-

phism. The image of λ is equal to the set of left multiplications by elements of L that act on

A, or De r (A). Hence, I m (λ) is a Lie algebra. In particular, it is the Lie algebra of derivations

of A. Since A is abelian, K e r (λ) = {x ∈ L |x a = 0 ∀a ∈ A}, which is the left centralizer of A

in L, C l
L(A). Since C l

L(A) is the kernel of a homomorphism, it is an ideal in L.

Now, B ∩C l
L(A) is an ideal in L. To see this, consider the following.

Let x ∈ B ∩C l
L(A) and let y ∈ B . Consider a ∈ A. Then

(y x )a = y (x a )−x (y a ) = 0,

since y a ∈ A. Thus, y x ∈ B ∩C l
L(A). Similarly, x y ∈ B ∩C l

L(A).

Next, let y ∈ A. Then

(y x )a = 0= y x ,

since y ,x ∈ A and A is abelian. Therefore, y x ∈ B ∩C l
L(A). Similarly, x y ∈ B ∩C l

L(A).
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Now, B ∩C l
L(A)⊆ B . There are no ideals of L contained in B , since A is not contained in

B . Thus, B ∩C l
L(A) = 0. Hence, C l

L(A) = A.

Theorem 5.3.3. Let L be a solvable Leibniz algebra with Φ(L) = 0 such that L is almost strongly

solvable (or minimal non-strongly solvable). Then F has characteristic p > 0 and L = A⊕ B is

a semidirect sum, where A is the unique minimal ideal of L, dim A ≥ 2, A2 = 0, and B is of one

of the following two types:

• Type I: B =M ⊕〈x 〉 is a semidirect sum, where M ⊆ B is a minimal ideal of B such that

M 2 = 0,

or

• Type II: B is the three-dimensional Heisenberg algebra.

Proof. Let L be a solvable Leibniz algebra that is Φ-free, i.e. Φ(L) = 0, and let L be almost

strongly solvable. This means that L is minimal non-strongly solvable; i.e. L2 is not nilpotent,

but for every proper subalgebra S of L, S2 is nilpotent.

Clearly, char F= p > 0. This is a result of [17] stating that every solvable Leibniz algebra

over a field of characteristic 0 is strongly solvable.

Since Φ(L) = 0, L = Asoc (L)⊕ B , where B is a Lie algebra that is isomorphic to De r (L) [8].

Now, Asoc (L) is equal to the sum of all minimal abelian ideals of L. However, by Proposition

5.3.2, L has a unique minimal ideal A. Thus Asoc (L) = A. Therefore A is abelian and L = A⊕B .

Let M be any maximal ideal of B that contains B 2. Note that for any maximal ideal M of

B , B 2 must be contained in M since L/M abelian and L solvable imply that L2 ⊆M . Hence,

B/M is abelian. Thus, (B/M )2 = 0 and B 2 ⊆M . Note that B 2 is nilpotent since B is a proper

subalgebra of L. Thus B is strongly solvable.
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Now consider A +M . A +M is properly contained in L since M 6= B . Also, A +M is an

ideal in L, and therefore, (A +M )2 is nilpotent.

Let N (L) denote the nilradical of L. Then M 2 ⊆ (A+M )2 ⊆N (L). Since Φ(L) = 0, N (L) =

Asoc (L) = CL(Soc (L)) by [8]. Now, CL(Soc (L)) = CL(Asoc (L)) since every minimal ideal is

abelian because L is solvable. Hence, M 2 ⊆ A =CL(Asoc (L)) =CL(A). Then M 2 ⊆ A ∩ B = 0.

Thus, M is abelian.

Since B 2 ⊆M and B is a solvable Lie algebra, B/M is abelian. Thus M has codimension 1

in B . Thus, B =M ⊕〈x 〉 for x ∈ B , x /∈M .

Let C =CM (x ). Suppose that CM (x ) =M . Then m x = x m = 0 for each m ∈M . Then

B 2 = (M + 〈x 〉)2 ⊆M 2+M 〈x 〉+ 〈x 〉M + 〈x 〉〈x 〉= 0.

If B 2 = 0, then

L2 = (A ⊕ B )2 ⊆ A2+A B + BA + B 2 ⊆ A

since A2 = B 2 = 0. A is abelian, and hence, L2 is nilpotent, which is a contradiction. Thus,

C 6=M . Therefore C is properly contained in M .

Let I ⊂ M be an ideal of B that is properly contained in M . Then A + I is an ideal of

L. AI = A(A + I ) and I A = (I +A)A are both ideals of L as well, as shown by the following

multiplications.

Let l ∈ L, a ∈ A, i ∈ I . Since L = A ⊕ B , first let l ∈ A.

• l (a i ) = (l a )i +a (l i )∈ AI .

• (a i )l = a (i l )− i (a l ) = a (i l )∈ AI .
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• l (i a ) = (l i )a + i (l a ) = (l i )a ∈ I A.

• (i a )l = i (a l )−a (i l ) = a (i l ) = 0∈ I A.

Now let l ∈ B .

• l (a i ) = (l a )i +a (l i )∈ AI .

• (a i )l = a (i l )− i (a l ) = 0∈ AI .

• l (i a ) = (l i )a + i (l a )∈ I A.

• (i a )l = i (a l )−a (i l ) = i (a l )∈ I A.

From Proposition 5.3.2, CL(A) = A. Thus AI = A = I A whenever I 6= 0. For AI , and

similarly for I A, is certainly contained in A. Suppose that AI = 0 for I 6= 0. Then I ⊆C r
L(A).

Thus CL(A)∩ I 6= 0, and A∩ I 6= 0. However, I ⊂M ⊂ B , and A∩B = 0, which is a contradiction.

Consider such an ideal, D 6= 0 of B that is properly contained in M . Then AD = A =DA,

from above, and D〈x 〉=D B ⊂M is an ideal of B .

To show that D〈x 〉=D B = BD, note that

D B =D(M ⊕〈x 〉) =DM +D〈x 〉=D〈x 〉

since DM ⊂M 2 = 0. Since D and B are both Lie algebras, D B = BD . D B is an ideal of B since

D is an ideal of Lie algebra B .

Since A+D+ 〈x 〉 is a proper subalgebra of L, (A+D+ 〈x 〉)2 is nilpotent by the assumption.

However,

(A +D + 〈x 〉)2 = A2+AD +A〈x 〉+DA +D2+D〈x 〉+ 〈x 〉A + 〈x 〉D + 〈x 〉〈x 〉= A +D〈x 〉.
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Thus A +D〈x 〉 is nilpotent.

Consequently, A(D〈x 〉) 6= A and (D〈x 〉)A 6= A. For if either A(D〈x 〉) or (D〈x 〉)A is equal to

A, then (A +D〈x 〉)2 = A, and hence, (A +D〈x 〉) is not nilpotent, which is a contradiction.

Therefore C is the unique largest ideal of B strictly contained in M . Either C = 0 or C 6= 0.

The results are trivial if C = 0.

Thus, suppose that C 6= 0. Let {c1, . . . , cr } be a basis for C , and let y ∈M such that y /∈C .

Set

s1 = y , s2 = x y , s3 = x (x y ), s4 = x (x (x y )),

and so forth. There is an n ≥ 1 such that {c1, . . . , cr , s1, . . . , sn} is linearly independent, but

{c1, . . . , cr , s1, . . . , sn , sn+1} is not. Then write

sn+1 = x sn =µ1c1+ . . .+µr cr +λ1s1+ . . .+λn sn .

For brevity, denote c =
r
∑

i=1

µi c i .

Now, consider T = 〈c , s1, . . . , sn 〉. T is clearly contained in M and is an ideal of B by

construction, for M T ⊆M 2 = 0 and x T ⊆ T since x c = 0 and x s j is a linear combination of

other xk . If c = 0, then 〈s1, . . . , sn 〉 is properly contained in M . Then T is properly contained

in M , which implies that T ⊆C . Hence, x T = 0. However, x T = x 〈s1, . . . , sn 〉 6= 0 since at least

s2 = x s1 6= 0. This is a contradiction. Thus, c 6= 0.

Consider x T = x 〈c , s1, . . . , sn 〉. Now x T 6= 0, so T is not contained in C . Thus, T = M .

Note that dim T = n +1, which must be equal to dim{c1, . . . , cr , s1, . . . , sn}. Hence, r = 1, and

dimC = 1. Thus, we can represent C = 〈c 〉.

Now, we claim that Φ(B ) = C . Note that Φ(B ) is a nilpotent ideal of B that is strictly
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contained in every maximal subalgebra of B by Theorem 6.1 of [29]. In particular, Φ(B )(M .

Recall that the only ideals of B strictly contained in M are C and 0. Thus, Φ(B )⊆C .

Moreover, C ⊆Z (B ) where Z (B ) = {l ∈ L
�

�l B = 0}. Then 0 6= B 2 ⊆M by definition of M

gives that C ⊆ B 2. Now, Z (B )∩ B 2 ⊆ Φ(B ). For suppose Z (B )∩ B 2 is not contained in φ(B ).

Then there is some maximal subalgebraM of B such that Z (B )∩ B 2 is not contained inM .

Then L = (Z (B )∩ B 2)+M . Consider two elements of L, l and l 1. Each has the form of b +m ,

where b ∈Z (B )∩ B 2 ⊆ B and m ∈M .

l l 1 = (b +m )(b1+m1) =m m1 ∈M ∈

Thus, L2 ⊆M ∈. Now,

Z (B )∩ B 2 ⊆ B 2 ⊆ L2 ⊆M ∈ ⊆M ,

which is a contradiction. Therefore, Z (B )∩ B 2 ⊆φ(B ).

Thus, C ⊆Z (B )∩ B 2 ⊆φ(B ). Therefore C =φ(B ).

Now assume first that n = 1. Then s1 = y ∈ M , y /∈ C , but s2 = x s1 = x y is a linear

combination of c and s1. So s2 = c +λ1s1.

Suppose that λ1 6= 0. Then 〈c +λ1s1〉 is an ideal of B .

x (c +λ1s1) = x c +λ1x s1 = x c +λ1s2,

which is equal to

x c +λ1(c +λ1s1) =λ1(c +λ1s1).

But C = 〈c 〉 6= 〈c + λ1s1〉 ⊂ M , which contradicts the fact that C is the unique ideal of B
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contained in M .

Thus, λ1 must be 0. Then x s1 = x y = c , and the following multiplications hold.

x x = 0 y x =−c c x = 0

x y = c y y = 0 c y ∈M 2 = 0

x c = 0 y c ∈M 2 = 0 c c = 0

Hence, B is the three-dimensional Heisenberg algebra.

Assume now that n ≥ 2.

If λ1 6= 0, then

K =⊕n
i=2〈s i 〉⊕ 〈c +λ1s1〉+ 〈x 〉

is a maximal subalgebra of B . Since 〈c 〉=Φ(B ) and Φ(B ) is properly contained in K , since K is

a maximal subalgebra of B , 〈c 〉 is properly contained in K . However, 〈c 〉 is properly contained

in K if and only if λ1 = 0, which is a contradiction.

If λ1 = 0, then

sn+1 = x sn = c +λ2s2+ . . .+λn sn .

Now let

K =⊕n
i=2〈s i 〉⊕ 〈c 〉⊕ 〈x 〉.

K is a subalgebra of B . Consider

B K = (M ⊕〈x 〉)K =M K + 〈x 〉K .

The following are true:

• M s i ∈M 2 = 0,
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• Mc ∈M 2 = 0,

and

• M = 〈c , s1, . . . , sn 〉. c x = 0.

• Also, if m =⊕n
i=1νi s i , then m x is some linear combination of s2, . . . , sn , which is con-

tained in K . Hence, M x ⊂ K .

• Also, x s i = s i +1⊆ K for i = 1, . . . , n −1, and x sn = sn+1 ∈ K ,

• x c = 0 by definition,

and

• x x = 0 since B is a Lie algebra.

Thus, B K ⊆ K , and similarly, K B ⊆ K . Thus K is an ideal of B . Then K 2 is also an ideal of

B . Now, K 2 is properly contained in M since s1 ∈M , but s1 /∈ K 2. Thus, K 2x = 0 since K 2 ⊂M .

Therefore K 2 =C or K 2 = 0 since K 2 is contained in CM (x ) and dimC = 1. However, K 2 6= 0

since if n = 2, then s3 = x s2 = c 6= 0, and hence, c ∈ K 2. Thus, K 2 =C .

Now, A +K is an ideal in L. To see this, consider

L = A ⊕ B = A ⊕M ⊕〈x 〉= A ⊕〈s i 〉ni=1⊕〈c 〉⊕ 〈x 〉.

Consider a + s j + c +x ∈ K . First, let l ∈ A. Then

l (a + s j + c +x ) = l a + l s j + l c + l x .
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Now, l a = 0 since l ∈ A, and A is self-centralizing. Also, l s j , l c , l x ∈ A since A is an ideal in L.

Thus,

l (a + s j + c +x )∈ A ⊆ A +K .

Next, let l = sk for some k = 1, . . . , n . Then

l (a + s j + c +x ) = l a + s j + l c + l x .

Now, l a ∈ A since A is an ideal in L, and l s j , l c ∈M 2 = 0. Since l x is a linear combination of

other sh for h = 2, . . . , n and c , l x ∈ K . Thus,

l (a + s j + c +x )∈ A +K .

Now, let l = c . Then l a ∈ A since A is an ideal in L. Also, l s j ∈M 2 = 0, l c = c c = 0 since B

is a Lie algebra, and l x = c x = 0 since c kills x . Thus,

l (a + s j + c +x )∈ A ⊆ A +K .

Finally, let l = x . Then x a ∈ A since A is an ideal in L. Also, x s j ∈ K as above, x c = 0, and

x x = 0. Thus,

l (a + s j + c +x )∈ A +K .

Hence, L(A +K )⊆ A +K . Similarly, (A +K )L ⊆ A +K .

AK is also an ideal of L and AK is certainly contained in A. To verify, take a k ∈ AK .
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First, let l ∈ A. Then

l (a k ) = (l a )k +a (l k )∈ AK

since l a = 0, and l k ∈ K . Also,

(a k )l = a (k l )−k (a l )∈ AK

since k l ∈ K and a l = 0.

Now, let l ∈ B . Then

l (a k ) = (l a )k +a (l k )∈ AK

since l a ∈ A and l k ∈ K . Also,

(a k )l = a (k l )−k (a l )∈ AK

since k l ∈ K , and a l ∈ A.

If L is a Lie algebra, then K A = AK , so (a k )l ∈ AK . If L is a Leibniz algebra that is not Lie,

then A =Leib(L), and left multiplication by any element of A yields 0. Hence, a l = 0, and

(a k )l = a (k l )∈ AK .

Thus, AK is an ideal in L.

K A is also an ideal in L. Note that K A is contained in A.

First, let l ∈ A. Then

l (k a ) = (l k )a +k (l a )∈ K A
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since l k ∈ K and l a = 0. Also,

(k a )l = k (a l )−a (k l )∈ K A

since k l ∈ K and l a = 0.

Next, let l ∈ B . Then

l (k a ) = (l k )a +k (l a )∈ K A

since l k ∈ K and l a ∈ A. Also,

(k a )l = k (a l )−a (k l )∈ K A

since a l ∈ A and k l ∈ K .

As before, if L is a Lie algebra, then AK = K A, and (k a )l ∈ K A. If L is a Leibniz algebra

that is not Lie, then A =Leib(L), and a l = 0. Hence, k (a l )−a (k l ) = k ∗0−0= 0∈ K A.

Thus, K A is also an ideal in L.

Since A is self centralizing and K is not contained in A, AK 6= 0. Similarly, K A 6= 0. Thus

AK = K A = A.

Now, A+K is properly contained in L since s1 /∈ K , but s1 ∈ L. Hence, (A+K )2 must be

nilpotent. Notice,

(A +K )2 = A2+AK +K A +K 2 = A +K 2 = A + 〈c 〉.

Now, 〈c 〉A = A〈c 〉= A since A〈c 〉 and similarly, 〈c 〉A, is an ideal in L, A〈c 〉 6= 0, and A〈c 〉 ⊆ A.
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Then

(A + 〈c 〉)2 = A2+A〈c 〉+ 〈c 〉+ 〈c 〉〈c 〉= A.

Thus, A + 〈c 〉= (A +K )2 is not nilpotent, which is a contradiction.

Hence, the n ≥ 2 case is not possible.

Theorem 5.3.4. Within the class of solvable Leibniz algebras, the property of being strongly

solvable is 2-recognizeable.

Proof. Let L be a solvable Leibniz algebra which is a minimal counterexample to the claim.

In other words both of the following statements hold:

1. All 2-generated subalgebras of L are strongly solvable while L is not strongly solvable.

2. All proper subalgebras of L are strongly solvable. This follows from the fact that given a

proper subalgebra A of L, every 2-generated subalgebra of A is a 2-generated subalgebra

of L and is therefore strongly solvable. Thus A is strongly solvable.

Clearly, char F = p > 0 since all Leibniz algebras over fields of characteristic 0 are strongly

solvable.

Let A 6= 0 be a minimal ideal in L. Then all 2-generated subalgebras of L/A are strongly

solvable. Then L/A is strongly solvable since dim L/A < dim L, which is a minimal counterex-

ample. Then (L/A)2 is nilpotent. Also, (L/A)2 = (L2+A)/A is nilpotent.

Consider Φ(L), the Frattini ideal of L. If A ⊆φ(L), then L2+A is nilpotent, and hence, L2

is nilpotent. Thus Φ(L) = 0. It follows by Theorem 5.3.3 that L = A ⊕ B is a semidirect sum,

where A is the unique minimal ideal of L, dim A ≥ 2, A2 = 0, and B is either Type I or Type II

as defined in the theorem.
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It will be shown that in either case, L is 2-generated. This will be a contradiction since

L is not strongly solvable, but every 2-generated subalgebra of L is strongly solvable. This

contradiction will allow us to conclude that no such minimal counterexample exists, and the

theorem holds.

1. Case I

Let B =M ⊕〈x 〉 be a semidirect sum, where M ⊆ B is a unique minimal idea of B such

that M 2 = 0. Also, L = A⊕ B , with A a unique minimal abelian ideal, Leib(L). The goal

is to show L is 2-generated.

Let b ∈M , with b 6= 0. Allow b to generate the ideal

S = 〈b ,xb ,x (xb ), . . . 〉= 〈b1,xb1 =b2,xb2 =b3, . . . ,xbn−1 =bn 〉.

Then S ⊆ B . However, the only ideal of B is M . Thus S =M .

If xb1 = 0, then B is abelian. Thus n > 1. Since n > 1, the smallest ideal that contains

b =b1 is M .

Assume there exists no a 1 ∈ A such that b2a 1 6= 0. Then b2 ∈ Z l
L(A) = A. However,

b2 ∈ A ∩ B = 0 and b2 6= 0. Thus there exists such an a 1 ∈ A. Let T = 〈x , a 1+b1〉. The

claim is that T = L, and thus L is 2-generated.

T is composed of the following elements:

• x (a 1+b1) = a 2+b2 ∈ T

• x (a 2+b2) = a 3+b3 ∈ T

...
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• x (a n−1+bn−1) = a n +bn ∈ T

• (a 2+b2)(a 1+b1) = a 2a 1+a 2b1+b2b1+b2a 1 =b2a 1 6= 0∈ T

Note since A and M are abelian, a 2a 1 = 0= b2b1, and left multiplication by A yields

a 2b1 = 0.

Thus b2a 1 ∈ T and in A. From above, a i +b i ∈ T , and x ∈ T. Multiplying these elements

together yields elements of the forms:

• x (b2a 1)∈ T

• (a i +b i )(b2a 1) =b i (b2a 1)∈ T.

Repeating this process yields

• x (x (b2a 1))∈ T

• x (b i (b2a 1))∈ T

• (b j +a j )(x (b2a 1)) =b j (x (b2a 1))∈ T

• (b j +a j )(b i (b2a 1)) =b j (b i (b2a 1))∈ T .

Continuing in this manner it is clear that for all t ∈ T,x t ∈ T, and (a i +b i )t ∈ T . Thus

A ⊆ T , and a ∈ T. Since b i ∈ T and x ∈ T , we have B ⊆ T as well. Thus L = A ⊕ B = T .

Therefore L is 2-generated as desired.

2. Case II

Let B be the three-dimensional Heisenberg algebra. B is Lie, and B = 〈x , y , z 〉 with

x y = z =−y x . Therefore B is 2-generated by x and y . It is also known that L = A ⊕ B ,

with A =Leib(L). The goal is to show that L is 2-generated.
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Assume there does not exist an a ∈ A such that x a 6= 0. Then x a = 0 and x ∈C l
L(A) = A.

This is a contradiction since x /∈ A,x ∈ B. Therefore there must exist such an a ∈ A with

x a 6= 0. Let T = 〈x , y +a 〉. The claim is that T = L, and thus L is 2-generated.

T is composed of the following elements:

• x (y +a ) = x y +x a = z +x a ∈ T

• x (z +x a ) = x z +x (x a ) = x (x a )∈ T

• (y +a )(z +x a ) = y z + y (x a )+a z +a (x a ) = y (x a ) = y (z +x a )∈ T

• (z +x a )(z +x a ) = z z + z (x a )+x a (z )+x a (x a ) = z (x a ) = z (z +x a )∈ T

From above, the element x a ∈ A with x a 6= 0, and now x a ∈ T. The smallest ideal that

contains x a is the span{u r (u r−1(. . . (u 1(x a ))))}, with u i ∈ L.

If u i = a ∈ A for some 1≤ i ≤ r , then u r (. . . (a (. . . (u 1(x a )))) = 0 due to the left multipli-

cation of an element in A. Thus u i = x , y , or z . Then

• x (x a )∈ T

• y (x a )∈ T

• z (x a )∈ T ,

so the smallest ideal containing x a is in T . A was defined to be minimal, so A ⊆ T . Thus

a ∈ T and x , y ∈ T implies B ⊆ T . Therefore, L = A⊕ B = T . Therefore L is 2-generated

as desired.

Now, the aim is to extend Theorem 5.3.4 to nearly all finite-dimensional Leibniz algebras.
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Theorem 5.3.5. Let L be a finite-dimensional Leibniz algebra over an algebraically closed field

of characteristic 0 or p > 5. If every 2-generated subalgebra of L is strongly solvable then L is

strongly solvable.

Proof. Let M be a Leibniz algebra such that every 2-generated subalgebra is strongly solvable

and such that any Leibniz algebra N , with dim N < dim M which has every 2-generated

subalgebra strongly solvable, is strongly solvable.

If there exists a proper nonzero ideal I in M , then I and M/I have dimension less than

M and are therefore strongly solvable by the assumption. Thus I and M/I are solvable. This

implies that M is solvable. Then by Theorem 5.3.4, M is strongly solvable.

If there is not a proper nonzero ideal I in M , then M is a simple Lie algebra. In character-

istic 0, all Lie algebras are 2-generated [19]. Consider the case when the underlying field F

has characteristic p > 5. Since M is a simple Lie algebra over F and every subalgebra of M is

solvable, it follows that M is either s l (2) or some W (1, n ) [32]. But s l (2) and W (1, n ) are each

2-generated. Thus M is 2-generated. But then M is strongly solvable by the assumption.
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Chapter

6

Triangulable

6.1 Background

Simultaneous triangulation of the set of linear transformations in a representation of a Leib-

niz algebra will now be considered. A necessary condition is that the minimum polynomials

of the linear transformations are the products of linear factors. If the linear transformations

commute, then this condition is also sufficient. Lie’s theorem, and its extension to Leibniz

algebras, is a generalization of this result, a result that is field dependent. It is possible to find

55



6.2. Results Chapter 6. Triangulable

a condition on the action of L on M which is necessary and sufficient for the simultaneous

triangulation of the linear transformations in the representation. If, for each x ∈ L, the left

multiplication of x on M is nilpotent, then it is shown in [10] that each right multiplication is

also nilpotent and L acts nilpotently on M . Then L is said to be nil on M .

It can also be useful to have a condition on the action of L on M which guarantees

simultaneous triangulation when extending to the algebraic closure, K , of the field of scalars,

F. This property will be called triangulable, borrowing from Bowman, Towers, and Varea

[11]. Thus a Leibniz algebra L over a field F is triangulable on module M if the induced

representation of K ⊗ L on K ⊗M admits a basis such that the representing matrices are

upper triangular. It is possible to find a condition that is equivalent to being triangulable.

This condition is independent of the field. Lie’s theorem is a consequence of the result. The

condition is on the action of L on M although triangulable refers to action that is over K .

As an application, it is possible to consider to what extent an algebra is triangulable if all

2-generated subalgebras have the property. Thus the property of being 2-recognizable will

again be explored.

6.2 Results

Let M be a module for the Leibniz algebra L. Let left and right multiplication by x ∈ L

be denoted by Tx and Sx , respectively. If Tx is nilpotent, then Sx is also nilpotent and a

generalization of Engle’s theorem holds; that is, L acts nilpotently on M ( see [10]). Define L

to be nil on M if this property holds. If I is an ideal of a Leibniz algebra L, then I is nil on L if

and only if I is nilpotent. It will be shown that L is triangulable on itself if and only if L2 is

nilpotent.
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Lemma 6.2.1. Let B be an irreducible submodule of the L-module M such that dim(B ) = 1.

Then L2 ⊆CL(B ) = {a ∈ L|a B = 0= B a }.

Proof. Let x , y ∈ L, b ∈ B with xb =αx b where αx is a scalar. Then

(x y )b = x (y b )− y (xb ) = x (αy b )− y (αx b ) =αxαy b −αyαx b = 0.

Since B is irreducible, it follows that b (x y ) = 0 ([6]). Hence L2 B = B L2 = 0 and the result

holds.

Theorem 6.2.2. Let L be a Leibniz algebra and M be an L-module. There is a basis for M

such that the representing matrices are in upper triangular form if and only if the linear

transformations in the representation have minimum polynomials with all linear factors and

L2 is nil on M .

This gives

Corollary 6.2.3. Let L be a Leibniz algebra over an algebraically closed field and M be an

L-module. There is a basis for M such that the representing matrices are in upper triangular

form if and only if L2 is nil on M .

Proof of Theorem 6.2.2. The condition on the minimum polynomials is equivalent to being

able to triangulate all the linear transformations. Suppose also that L2 is nil on M . Then Tx ,

and hence Sx , is nilpotent for all x ∈ L2 (see [10]) and L2 acts nilpotently on M by Engel’s

theorem. Let B be an irreducible submodule of M . It is enough to show that dim(B ) = 1 for

then the result will follow by induction. Since the submodule B L2+ L2 B is contained in B ,
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B L2+ L2 B is 0 or B . If the latter holds, then

B = B L2+ L2 B = (B L2+ L2 B )L2+ L2(B L2+ L2 B ) = . . . ,

which is never 0, a contradiction. Hence B L2+ L2 B = 0 and B L2 = 0= L2 B . Therefore,

0= (x y )b = x (y b )− y (xb )

for all x , y ∈ L, b ∈ B . Hence x (y b ) = y (xb ) and Tx Ty = Ty Tx . Since B is irreducible, either

Sx = 0 for all x ∈ L or Sx =−Tx for all x ∈ L [6]. Then either

TxSy =−Tx Ty =−Ty Tx =Sy Tx

or

TxSy = 0=Sy Tx

on B and

SxSy = Tx Ty = Ty Tx =Sy Sx

or

SxSy = 0=Sy Sx

on B . Hence all Tx , Sy commute on B . Thus these transformations are simultaneously trian-

gulable on B . Hence dim(B ) = 1 and the result holds in this direction.

Suppose that there is a basis for M such that all the transformations are triangulable

on this basis. Then there is a one dimensional submodule B such that L2 B = 0 = B L2 by
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Lemma 6.2.1. L2 is nil on M/B by induction and hence on M . Since each transformation is

triangulable, the minimum polynomials have linear factors.

Now, these results can be stated when L is acting on itself.

Theorem 6.2.4. Let L be a Leibniz algebra over an algebraically closed field. Then L is super-

solvable if and only if L is strongly solvable.

Proof. L is supersolvable if and only if L is triangulable on itself. By Corollary 6.2.3, this is

equivalent to L2 being nil on L which in turn is the same as L2 being nilpotent. The last

statement is the definition of strongly solvable.

The general case looks like the following.

Theorem 6.2.5. L is triangulable if and only if L2 is nil on L.

Proof. Let L∗ = K ⊗ L where K is the algebraic closure of the base field for L. If L2 is nil on

L, then L2 is nilpotent as is (L2)∗ = (L∗)2. Hence L∗ is supersolvable by the last result and L is

triangulable by definition. The converse holds by reversing the steps.

As mentioned in the previous chapter, a property is n-recognizeable in a class of algebras

if whenever all n generated subalgebras have the property, then the algebra has the property.

The concept when n = 2 has been considered in groups, Lie algebras and Leibniz algebras for

classes that are solvable, supersolvable, nilpotent and strongly solvable (see [12], [14], [23]). A

version of this has also been considered for triangulable Lie algebras in [11]. It is considered

as an application of the result here.

Theorem 6.2.6. In the class of solvable Leibniz algebras, the property of being triangulable is

2-recognizeable.
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Proof. Let N be a 2-generated subalgebra of L. Since N is triangulable, N 2 is nil on N and,

thus, N is strongly solvable. Therefore L is strongly solvable by [14] and L2 is nil on L. Then,

using Theorem 6.2.5, L is triangulable.

The result can be extended from solvable algebras to all algebras in characteristic 0, again

using a result in [14].

Corollary 6.2.7. For Leibniz algebras over a field of characteristic 0, the property of being

triangulable is 2-recognizeable.

Proof. Let L be a minimal counterexample. Simple Leibniz algebras are Lie algebras. Simple

Lie algebras are 2-generated, hence L is triangulable. If I is a proper ideal in L, then all

2-generated subalgebras of I and L/I are strongly solvable by Theorem 6.2.5 and I and L/I

are strongly solvable by Theorem 3 of [14] and L is solvable. The result holds by Theorem

6.2.6.
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