
ABSTRACT

COONLEY, BRETT WILLIAM. Sequential Programming for PDE Constrained Optimizations.
(Under the direction of Kazufumi Ito.)

Sequential Progamming (SP) is a method for solving PDE constrained optimizations. These

include many applications of practical importance, especially optimal control problems, such

as the optimal control of fluid flow governed by the incompressible Navier-Stokes equations.

The Sequential Programming (SP) method is guaranteed to converge to an optimizer of a PDE

constraint problem under proper conditions. A hallmark of the method is that there is no line

search needed for the damped update involved in sequential iterations.

In this thesis we discuss the theory for the Sequential Programming (SP) method. We

introduce the (basic) SP method for constrained optimization and analyze its convergence and

convergence rate using the Lagrange multiplier theory. The Lagrange multiplier theory is the

basis for developing the necessary optimality condition for a given PDE constraint optimization

and developing solvers for the SP method. The necessary optimality condition is of the form of

a saddle point problem for the primal and dual variables. Existence of Lagrange multipliers for

the necessary optimality system is based on the constraint qualifications, i.e., the regular point

condition. Non-smoothness in the cost and constraints is treated as a variational inequality for

the optimality condition. We make comparisons with the projected gradient method and SQP

method, and show that SP is the middle ground between the two methods. It is a very effective

method for a large scale optimal control problem. Specifically, we introduce and analyze the

iterative method for the inequality constraint case and non-smooth cost functional based on

the semi-smooth Newton method.
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Chapter 1

Introduction

In this thesis we consider constraint optimization problems in Hilbert spaces. Optimization is

one of the key components for mathematical modeling of real world problems and the solu-

tion method provides an accurate and essential description and validation of the mathematical

model. Optimization problems are encountered frequently in engineering and sciences and have

widespread practical applications. An appropriately chosen cost functional is minimized sub-

ject to constraints. For example, the constraints are in the form of equality constraints and

inequality constraints. We also discuss a class of non-smooth optimizations. A non-smooth op-

timization method is a very basic modeling tool and enlarges and enhances the applications

of the optimization method in general. For example in imaging/signal analysis the sparsity

optimization is used by means of L1 and TV norm regularization.

A sequential algorithm based on Sequential Programming (SP) is developed and analyzed for

the constraint optimization. Especially, we consider the optimal control problem for ODEs and

PDEs and inverse problems and structural design problems. Sequential Programming (SP) is a

method for solving constrained optimization problems and uses a linearization of the equality

constraints. Sequential Programming is shown to be a middle ground between other solution

methods. Specifically, we compare the SP method to the gradient method and SQP (Sequential

Quadratic Programming) and show that SP remedies drawbacks of each method.

In particular, the gradient method can be very slowly convergent for systems that are stiff

and highly nonlinear. SP remedies this by linearizing the equality constraint and solving the

resulting saddle point problem [29, 7, 25, 53, 46]. The SQP (Sequential Quadratic Program-

ming) method [29, 42, 32, 33, 62] solves a sequence of optimization subproblems, each of which

optimizes a quadratic model for the Lagrangian functional, e.g., [29], subject to a linearization

of the constraints. If the problem has only equality constraints, then the method is equiva-

lent to applying Newton’s method to the first order optimality conditions [48, 67, 29] or the

Karush-Kuhn-Tucker conditions if we use the exact Hessian. Like for the Newton method the
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objective function and the constraints are assumed to be twice continuously differentiable for

the SQP method. SQP is quadratically convergent but requires a consistent quadratic model

to the Hessian of the Lagrangian and globalization methods for a stable implementation.

It is a distinctive feature that SP does not rely directly on the Hessian information of the

Lagrange functional and thus it can be used for non-smooth problems and in many problems

of practical interest. It can avoid instabilities due to possible indefiniteness of the Hessian of

the Lagrange functional during the iteration.

The SP method is guaranteed to converge to an optimal solution with (very improved)

linear rate under appropriate conditions. In fact, we show that the necessary optimality for

the original constraint optimization is a perturbation of the one for the SP constraint problem.

In general, the convergence is dependent on the error between the equality constraint and its

linearization and the curvature error of the Lagrange functional.

Each SP method requires a (nonlinear) saddle point solver for a linear equality constraint.

We develop the fixed point iterate method for the saddle point problem based on the (linear)

primal solver and the adjoint equation solver and the optimality condition. That is, it involves

exactly the same as in a step in the gradient method for the constraint optimization. But we

use it as an inner loop for the saddle point problem. As a consequence SP requires much fewer

gradient-like steps in total.

The plan of the presentation is as follows. In Chapter 2 we present the basic optimization

theory for constrained and unconstrained optimizations. We discuss the existence of optimizers

(Section 2.2.1) and formulate the necessary optimality as a variational inequality (Section 2.2.2).

The Lagrange multiplier theory (Section 2.3) is the basis for developing the necessary opti-

mality condition for a given PDE constraint optimization [8, 29] and developing solvers for the

SP method. The necessary optimality condition is of the form of a saddle point problem for

the primal and dual variables. Existence of Lagrange multipliers for the necessary optimality

system is based on the constraint qualifications, i.e., the regular point condition [48, 67, 29].

Non-smoothness in the cost and constraints is treated as a variational inequality for the opti-

mality condition.

In Chapter 3 we introduce the (basic) SP method for constrained optimization and analyze

its convergence and convergence rate using the Lagrange multiplier theory (Section 3.4.1).

Comparison with the projected gradient method and SQP is detailed and we discuss pros and

cons. Also, we develop and analyze a second order SP method (Section 3.4.2). The second order

information of the Lagrange functional is incorporated by a sequential difference of derivatives

of the Lagrange functional instead of the quadratic model for the Hessian of the Lagrange

functional.

In Chapter 4 we discuss solvers of the saddle point problems for each SP step. The fixed

point problems are formulated for SP as well as for the second order variant and for non-
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smooth problems. We use the damped fixed point iterate for the resulting fixed point problem

and thus develop a sequential method for a general class of constrained optimizations using

the SP framework. As a specific example the fixed point problem for the control variables is

developed for the optimal control problem as a reduced order method and we use the conjugate

gradient method for a well-conditioned fixed point problem (Section 3.6.1). It is a very effective

method for a large scale optimal control problem. Specifically, we introduce and analyze the

iterative method for the inequality constraint case and non-smooth cost functional based on

the semi-smooth Newton method (Section 4.4).

We are most interested in applying the SP method to solve the optimal control problems and

PDE constrained optimizations. For PDE constraint optimization, we consider three specific

problems and develop implementations for them based on SP. First, we develop the inverse

medium (coefficient control) for the elliptic equations (Section 2.2.4). We also consider the

moving damping actuator problem (Section 4.3.1). This is an optimization problem for a wave

equation with moving damping, i.e., we formulate the optimal control problem for determining

the optimal path of dampers with prescribed damping distribution.

Finally, we consider the control of fluid flow [22, 19, 29] governed by the incompressible

Navier-Stokes equations. We present the Navier-Stokes theory in Chapter 5, and discuss the

weak form of the equality constraint and define the weak solution to the constraint (Section

5.1.3). Then, we formulate the weak form of the necessary optimality condition (Section 5.2)

and develop a discretization in time and in space (Section 5.4) for the solution of the controlled

Navier-Stokes problem.

In Chapter 6 we develop the time integration method for the dynamical system. It is essential

to have an efficient (few number of unknowns) but accurate (high order approximation) method.

We use the Runge-Kutta-Gauss time integration [10] (Section 6.1.2) and develop an effective

saddle point solver for SP applied to the resulting finite dimensional constraint optimization.

In Chapter 7 we present specific examples to demonstrate the applicability of the SP method

for the constrained optimization. First, we show how to apply SP for the finite dimensional opti-

mal control problem. We use the Lorenz attractor system as a test example. Second, we consider

a non-smooth coefficient optimal control problem in elliptic equations. The third problem is the

moving damping actuator control problem. They represent the constrained minimization with

technical difficulties (challenge) and show the feasibility of the SP method. Also, we present an

open loop simulation for our proposed numerical method for Navier-Stokes control systems.
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Chapter 2

Optimization Theory

In this chapter we introduce a class of constrained optimization problems and develop the corre-

sponding Lagrange multiplier theory. Our motivation is PDE constrained optimization problems

such as the incompressible Navier-Stokes control problem for fluid flow and the moving damp-

ing actuator problem. We develop the necessary tools to solve constrained optimizations which

involves the generalized Lagrange multiplier theory for constrained optimizations including

equality and inequality constraints. Algorithmically, we cast the necessary optimality system as

a saddle point problem with primal and dual variables. Also, there is the necessity to develop

the necessary optimality for non-smooth optimization problems. We develop the necessary opti-

mality as a variational inequality. It contains PDE constrained optimization and the inequality

constraint problem and non-smooth optimization. Concrete examples and applications of the

multiplier theory are presented.

2.1 Constrained Optimization

In general most problems of interest can be cast in the following form. We discuss the constrained

optimization of the form

min F (y) subject to E(y) = 0, G(y) ≤ 0 and y ∈ C, (2.1)

where C is a closed convex subset of a Banach space X, and F : X → R is a functional over C.
E : X → Y is an equality constraint taking values in a Banach space Y , and G : X → Z is an

inequality constraint with ordered (≤) Banach space Z.

The cost functional F may not be continuously differentiable in general, but we assume E

and G are continuously Fréchet differentiable. An important class of constrained optimizations
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we discuss is for the pair (x, u) on the product space X × U of the form

min F (x) +H(u) subject to E(x, u) = 0, u ∈ C, (2.2)

where C is a closed convex subset of U . This is the “control form” of equality constrained

optimization. Problems of the form (2.2) are important for applications such as the control

problem and the inverse medium problem as discussed in Section 2.2.4. Without any difficulty

(y = (x, u), G = 0, C := X × C) one can relate (2.2) with a specific case of (2.1).

For (2.2) we have y = (x, u) in the product space X × C and thus E(y) = E(x, u) = 0 and

u ∈ C, i.e., we have a constraint set for u only. In applications x denotes the state x ∈ X with

state space X and u denotes the design, medium, or control variable u ∈ U with parameter

space U . The equality constraint E(x, u) = 0 defines an equation between the state x ∈ X and

the control variable u ∈ C. We often assume that given u ∈ C the equation E(x, u) = 0 has a

unique solution x = x(u) ∈ X. That is, the state x is implicitly a function of u by the equality

constraint. Thus, we define the composite cost functional J(u) = F (x(u), u), and minimize J

over u ∈ C only. The cost functional is in general not necessarily separable, i.e., F (y) = F (x, u).

In addition, F and H are not necessarily continuously differentiable. For example

F (y) =

∫
Ω

(f(x(ω)) + h(u(ω))) dω,

where f : Rn → R and h : Rm → R are lower semicontinuous functions.

It is essential to analyze solutions to the equality constraint E(x, u) = 0. For example, if

E(x, u) = 0 is the incompressible Navier-Stokes equation (5.3), we must be concerned with the

well-posedness (feasibility) of the PDE constraint. That is, a solution to the PDE constraint

must exist in order for the minimization of the cost functional to be performed. Uniqueness of

solutions to the constraint must also be addressed.

2.2 Unconstrained Non-smooth Minimization

In this section we discuss unconstrained minimization of the form

min F (x) over x ∈ C, (2.3)

which is the specific case of (2.1) without equality or inequality constraint. First, we discuss

the existence of minimizers to (2.3). We then derive the necessary optimality condition in the

form of a variational inequality for all x ∈ C.
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2.2.1 Existence of Minimizers

Existence of minimizers to F uses the Weierstrass theorem in Banach spaces [66]. Suppose C
is compact and F is lower semicontinuous. Then (2.3) has a minimizer x∗ ∈ C. In general, we

assume F is weakly sequentially lower semicontinuous, i.e.,

F (x) ≤ lim inf F (xn)

for all weakly convergent sequences (xn) to x in X or for all weakly-star convergent sequences

(xn) to x in X = Y ∗. Assume either F is coercive on C, i.e.,

F (x)→∞ as |x| → ∞, x ∈ C,

or C is bounded. In fact, let η = infx∈C F (x) and xn ∈ C be a minimizing sequence, i.e.,

F (xn) is decreasing and limn→∞ F (xn) = η. If X is reflexive there exists a weakly convergent

subsequence (xnk
) to x̄ ∈ C and since is F is weakly sequentially lower semicontinuous

η = lim
nk→∞

F (xnk
) ≥ F (x̄) ≥ η,

which implies F (x̄) = η, and x̄ is a minimizer. If X = Y ∗ we use the weak-star topology.

In the case of (2.1) we assume that F,E,G are weakly continuous, i.e., for yn ∈ C converging

weakly to y ∈ C

F (yn)→ F (y), E(yn) weakly converges to E(y), G(yn) weakly converges to G(y).

Then the above arguments show the existence of minimizers to (2.1).

2.2.2 Necessary Optimality

The necessary optimality for unconstrained minimization (2.3) is of the form of a variational in-

equality. There are two types of variational inequality to cover the case where F is differentiable

and the case where F can be decomposed into a differentiable part and convex part.

Theorem 2.1. (Variational inequality of first kind) If F is Gateaux differentiable at a mini-

mizer x∗ ∈ C, i.e.,

F ′(x∗)(d) = lim
t→0

F (x∗ + td)− F (x∗)
t

exists for all directions d ∈ X, then the necessary optimality for (2.3) is

F ′(x∗)(x− x∗) ≥ 0 for all x ∈ C. (2.4)
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Proof. If x∗ ∈ C is a minimizer of (2.3), then

0 ≤ F (x∗ + t (x− x∗))− F (x∗) (2.5)

for all x ∈ C and t ∈ [0, 1] where we use the convexity of C. The Gateaux derivative of F at x∗

in the direction of x− x∗ is

F ′(x∗)(x− x∗) = lim
t→0

F (x∗ + t (x− x∗))− F (x∗)
t

= lim
t ↓ 0

F (x∗ + t (x− x∗))− F (x∗)
t

≥ 0

where we used the minimality condition (2.5) to obtain the inequality.

Example Consider the minimization in R2 of a differentiable function F : R2 → R:

minF (x1, x2) over C = [0, 1]× [0, 1].

If a minimizer (x∗1, x
∗
2) is on the right boundary, x∗1 = 1 and 0 < x∗2 < 1, the necessary optimality

is
∂F

∂x1
≤ 0,

∂F

∂x2
= 0.

This follows since we have direction x1 − x∗1 ≤ 0 for all x1 ∈ [0, 1], so the derivative in x1

must be negative to satisfy (2.4). Similarly, if a minimizer is on the top boundary, x∗2 = 1 and

0 < x∗1 < 1, the necessary optimality is

∂F

∂x1
= 0,

∂F

∂x2
≤ 0.

Next we consider the case

F = F0 + F1, (2.6)

where F0 is differentiable and F1 is convex on C, i.e.,

F1(tx1 + (1− t)x2) ≤ tF1(x1) + (1− t)F1(x2)

for all x1, x2 ∈ C and t ∈ [0, 1].

Theorem 2.2. (Variational inequality of second kind) Let F = F0+F1 where F0 is differentiable

and F1 is convex on C. Assume x∗ ∈ C is a minimizer of (2.3). The necessary optimality

for (2.3) is given by

F ′0(x∗)(x− x∗) + F1(x)− F1(x∗) ≥ 0 for all x ∈ C. (2.7)
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Proof. Since F1 is convex,

F1(x∗ + t (x− x∗))− F1(x∗) ≤ t (F1(x)− F1(x∗))

for all x ∈ C and t ∈ [0, 1]. Thus for t ∈ (0, 1] we have

0 ≤ F (x∗ + t(x− x∗))− F (x∗)
t

=
F0(x∗ + t(x− x∗))− F0(x∗) + F1(x∗ + t(x− x∗))− F1(x∗)

t

≤ F0(x∗ + t(x− x∗))− F0(x∗)
t

+ F1(x)− F1(x∗).

Letting t→ 0 we obtain (2.7).

This encompasses a great deal of examples and applications (e.g., see Section 2.2.4). In the

next two sections we introduce two problems for which the theorems work.

2.2.3 Deconvolution Problem

In this section we discuss the case of non-smooth cost functional F (y) in (2.1). For example,

consider the deconvolution problem for the convolution K defined by

y(x) = Ku(x) =

∫
Ω
k(x, ω)u(ω) dω

where Ω is a bounded open subset of Rd and u(ω) represents an image and k ≥ 0 is a convolution

kernel, i.e., K is a convolution operator on L2(Ω). The deconvolution problem is to determine

u from observation y, where y may contain an additive noise.

It is a very ill-posed problem since K is compact and thus the variational formulation is

used to construct a robust and accurate reconstruction u from y. The variational formulation

is

min F (u) =
1

2
|Ku− y|2 +

∫
Ω

(α
2
|(∇u)(ω)|2 + β |u(ω)|

)
dω (2.8)

subject to pointwise constraint u(ω) ∈ Ũ , a closed convex set in Rm. The first term in (2.8) is

the least squares fitting (a fidelity) and the last two terms are for regularizations on u. The first

regularization term is to regularize variation of u in terms of the gradient ∇u and the second

regularization term is for L1 sparsity measure of u. Parameters α > 0 and β > 0 are Tikhonov

regularization parameters [29]. The second regularization term is not smooth on H1(Ω).
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2.2.4 Inverse Medium Problem

Also, consider an inverse medium problem. Consider the equation for (y, u) ∈ H1
0 (Ω)× L2(Ω)

−∆y + u y = 0 in Ω,
∂y

∂ν
= g at boundary ∂Ω (2.9)

for equality constraint E(y, u) = 0, where u is the absorption coefficient and g is an applied

current at the boundary ∂Ω. We observe the voltage z = y at the boundary ∂Ω. The inverse

medium problem is to determine u from the observation z. The problem is very ill-posed and

we use a variational formulation

min F (y) +H(u) =
1

2

∫
∂Ω
|y − z|2 ds+

∫
Ω

(
α

2
|(∇u)(ω)|2 + β |u(ω)|) dω (2.10)

subject to the equality constraint (2.9) and the inequality constraint u ≥ 0 pointwise. Thus we

consider the constrained minimization of the form (2.2):

min F (y) +H(u) subject to E(y, u) = 0, u ∈ C.

The necessary condition (system for (y∗, u∗, λ)) is given by

F ′(y∗) + Ey(y
∗, u∗)∗λ = 0

〈Eu(y∗, u∗)∗λ, u− u∗〉+H(u)−H(u∗) ≥ 0 for all u ∈ C.
(2.11)

Similarly, the SP step (e.g., see in Chapter 3) has

F ′(y+) + Ey(y, u)∗λ = 0

〈Eu(y, u)∗λ, u+ − u〉+H(u+)−H(u) ≥ 0 for all u ∈ C,
(2.12)

which is a variational inequality for (y+, u+, λ).

2.3 Lagrange Multiplier Theory

In this section we discuss the Lagrange multiplier theory for the constrained optimization (2.1).

The multiplier theory is essential for analyzing, developing algorithms, and solving (2.1). The

Lagrange multiplier theory is the basis of the Sequential Programming method developed in

Chapter 3.

We describe the Lagrange multiplier theory for the optimization problems (2.1). Define the
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Lagrange functional

L(y, λ, µ) = F (y) + 〈λ,E(y)〉+ 〈µ,G(y)〉, (2.13)

for y ∈ X, λ ∈ Y ∗, and µ ∈ Z∗, where Y ∗ and Z∗ are the (strong) dual spaces of Y and Z,

respectively. The idea of the multiplier theory is that one can state the necessary optimality

condition for a minimizer y∗ ∈ X by stating there exists a multiplier λ ∈ Y ∗ (for simplicity we

assume equality constraint only and C = X) such that

Ly(y
∗, λ) = 0, E(y∗) = 0,

i.e.,  F ′(y∗) + E′(y∗)∗λ

E(y∗)

 = 0, (2.14)

which is a system of equations for (y∗, λ). Most algorithms for determining a minimizer y∗ use

the saddle point system (2.14) for (y∗, λ) as in Section 3.6.

For the general case (2.1), we introduce the constraint qualifications in terms of the regular

point condition at a minimizer y∗ ∈ C:

0 ∈ int

{(
E′(y∗)(y − y∗)
G′(y∗)(y − y∗)−K +G(y∗)

)
: y ∈ C

}
, (2.15)

where K is the closed convex (negative) cone defined by

K = {z ∈ Z : z ≤ 0} ,

and we assume F,E,G are C1.

It follows from [48, 29] that the following necessary optimality holds at y∗ ∈ C. Assuming

the regular point condition (2.15) at a minimizer y∗, there exist Lagrange multipliers λ ∈ Y ∗,
µ ∈ Z∗ such that the necessary optimality holds

(F ′(y∗) + E′(y∗)∗λ+G′(y∗)∗µ, y − y∗) ≥ 0 for all y ∈ C

E(y∗) = 0

G(y∗) ≤ 0, µ ≥ 0, 〈µ,G(y∗)〉 = 0.

(2.16)
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2.3.1 Equation Form of Complementarity Condition

In this section we write the complementarity condition, the condition in (2.16)

G(y∗) ≤ 0, µ ≥ 0, 〈µ,G(y∗)〉 = 0, (2.17)

as an equation. Let Z = L2(Ω). That is, we claim that (2.17) is equivalent to

µ = max(0, µ+ cG(y)) (2.18)

where c > 0 is arbitrary, and the max operation is pointwise.

Note that if µ+ cG(y) > 0 then from (2.18) we have

µ = µ+ cG(y) =⇒ G(y) = 0 and µ > 0.

If µ+ cG(y) ≤ 0, then

µ = 0 and G(y) ≤ 0.

This means (2.18) is equivalent to (2.17).

Also (2.17) is the basis for the primal-dual active set method for the inequality constraint

optimization (2.1). That is, given a current iterate (y, µ) define the active set

A = {ω ∈ Ω : (µ+ cG(y))(ω) > 0},

and the inactive set

I = {ω ∈ Ω : (µ+ cG(y))(ω) ≤ 0}.

According to the above discussion, the next iterate (y+, µ+) satisfies

µ+ = 0 on I and G(y+) = 0 on A.

We state the primal-dual active set method for the quadratic programming

min
1

2
(Ay, y)− (b, y) subject to Gy ≤ c

where A is a positive self-adjoint operator on a Hilbert space X.

Primal-Dual Active Set Method

1. Initialize µ1 = 0, and y1 by Ay1 = b.
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2. Define the active and inactive sets at the kth iterate

Ak = {ω ∈ Ω : (µk +G(yk))(ω) > 0},

Ik = {ω ∈ Ω : (µk +G(yk))(ω) ≤ 0}.

3. Solve for (yk+1, µk+1):

µk+1 = 0 on Ik and G(yk+1) = 0 on Ak,

and

Ayk+1 +G∗µk+1 = b.

4. Check convergence. Otherwise, set k = k + 1 and return to Step 2.

The convergence of the primal-dual active set method has been investigated [27].

2.4 Optimal Control Problem

In this section we discuss the optimal control problem as an example of contrained optimization

(2.2). We derive the necessary condition for an optimal control using the Lagrange multiplier

theory. The necessary optimality condition is the form of a two point boundary value problem

(i.e., a special case of the saddle point problem (2.14) in Section 2.3). The optimal control

problem (Bolza form) is to find an admissible control in Uad that minimizes the cost functional

(performance criterion). The optimal control problem is an important example of constrained

optimization with control.

The optimal control problem (Bolza form) is

min

∫ T

0
f0(t, x, u) dt+ g(x(T )) (2.19)

subject to the dynamical constraint

d

dt
x(t) = f(t, x(t), u(t)), x(0) = x0 ∈ Rn (2.20)

and the control constraint

u(t) ∈ U, a closed convex set in Rm, a.e. in [0, T ].

The variable x ∈ X = H1(0, T ;Rn) is the state and u ∈ L2(0, T ;Rm) is the control. U is the
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pointwise constraint set for u. The functional f0(t, x, u) is for a running cost, and g is for a

terminal cost. The function f : R+ × Rn × U → Rn is the dynamical model. Uad = {u ∈
L2(0, T ;Rm) : u(t) ∈ U} is the set of admissible controls. Thus, the first term of (2.19) is a

running cost and the second term is a terminal cost at t = T .

First, we have a well-posedness assumption on (2.20), i.e., for existence and uniqueness of

solutions and the continuity of the solution map (x0, u) ∈ Rn × L1(0, T ;U)→ x = x(t, x0, u) ∈
C(0, T ;Rm). In order to have well-posedness of the optimal control problem we introduce the

the following sufficient conditions (see also Section 6.1.1).

1. The set of admissible controls is integrable, i.e.,

Uad =
{
u ∈ L1(0, T ;Rm) : u(t) ∈ U

}
.

2. There exists a solution to the control dynamics (2.20), and there exists a solution to the

optimal control problem (2.19) subject to (2.20) and u ∈ Uad.

3. Assume the following for ω-dissipativeness in x (2.21) and for control growth (2.22):

(f(t, x, u)− f(t, y, u), x− y) ≤ ω |x− y|2 for all u ∈ U (2.21)

and moreover that either U ⊂ Rm is bounded or that f0(t, 0, u) ≥ c1 |u|2 and

(f(t, x, u), x) ≤ ω |x|2 + c2 |u|2 (2.22)

for constants ω, c1, c2 > 0 independent of x, y ∈ Rn and u ∈ U .

4. Define the Hamiltonian H : R+ ×Rn ×Rm ×Rn → R

H(t, x, u, λ) = f0(t, x, u) + 〈λ, f(t, x, u)〉.

For each fixed t, x, λ assume H admits a unique minimizer over u ∈ U denoted by Ψ(x, λ).

5. Assume that f0, g, and f are C1 with f0 and g bounded from below.

Now let

E(x, u) = f(t, x, u)− d

dt
x(t), u ∈ C = U.

Then (2.19)–(2.20) is a special case of the control form of constrained optimization problem

(2.2) with X = H1(0, T ;Rn)× L2(0, T ;Rm).

The optimal control problem (2.19)–(2.20) is widely used in the general area of sciences and

engineering and it is a cornerstone of mathematical modeling sciences in the mid to last century.
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It contains the Lagrange problem (running cost only) and the Mayer problem (terminal cost

only).

2.4.1 Necessary Optimality

In this section we derive the necessary optimality by the Lagrange multiplier theory for the

optimal control problem (2.19)–(2.20).

First, we have the Lagrange functional

L(x, u, λ) =

∫ T

0
f0(t, x, u) dt+ g(x(T )) +

∫ T

0
(f(t, x, u)− d

dt
x(t), λ(t)) dt. (2.23)

Thus,

Lx(x, u, λ)(h) =
∫ T

0 (f0
x(t, x, u), h(t)) dt+ (g′(x(T )), h(T )) +

∫ T
0 (fx(t, x, u)h(t)− d

dth(t), λ(t)) dt

Lu(x, u, λ)(v) =
∫ T

0 (f0
u(t, x, u), v(t)) dt+

∫ T
0 (fu(t, x, u)v(t), λ(t)) dt.

By integration by parts

Lx(x, u, λ)(h) =

∫ T

0

(∫ T

t
(fx(s, x, u), λ(s)) + f0

x(s, x, u) ds− λ(t) + g′(x(T )),
d

dt
h(t)

)
dt.

Thus Lx(x, u, λ)(h) = 0 for all h ∈ H1
0 (0, T ;Rn) implies

λ(t) = g′(x(T )) +

∫ T

t
(fx(s, x, u), λ(s)) + f0

x(s, x, u) ds,

which implies λ ∈ H1(0, T ;Rn) is absolutely continuous and the Lagrange multiplier λ(t) for

the equality constraint E(x, u) = 0 satisfies the adjoint equation

− d

dt
λ(t) = fx(t, x, u)tλ+ f0

x(t, x, u), λ(T ) = g′(x(T )).

From Lu(x, u, λ)(v − u) ≥ 0 for all v ∈ Uad it follows that for an optimal pair (x∗, u∗)

H(t, x∗, u∗) ≤ H(t, x∗, v) for all v ∈ Uad,

where H is the Hamiltonian defined by

H(t, x, u) = f0
u(t, x, u) + (λ, fu(t, x, u)).
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In summary we have the necessary optimality as a system of equations for (x∗, u∗, λ):

d

dt
x∗(t) = f(t, x∗, u∗), x(0) = x0

− d

dt
λ(t) = fx(t, x∗, u∗)tλ+ f0

x(t, x∗, u∗), λ(T ) = g′(x∗(T ))

H(t, x∗, u∗) ≤ H(t, x∗, v) for all v ∈ U.

(2.24)

If U = Rm and f0 is C1 then the optimality condition (the last equation in (2.24)) for u is

equivalent to

f0
u(t, x∗, u∗) + fu(t, x∗, u∗)tλ = 0, (2.25)

which is equivalent to (H(t, x∗, u∗), λ) = a constant. But, in general the optimality condition

reduces to

u∗(t) = Ψ(t, x∗, λ).

Thus the necessary optimality system (2.24) becomes the so-called two point boundary value

problem for (x∗, λ):

d

dt
x∗(t) = f(t, x∗, u∗), u∗(t) = Ψ(t, x∗(t), λ(t)) and x(0) = x0

− d

dt
λ(t) = fx(t, x∗, u∗)tλ+ f0

x(t, x∗, u∗), λ(T ) = g′(x∗(T )).

(2.26)
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Chapter 3

Sequential Programming Method

and Theory

In this chapter we introduce the Sequential Programming method for solving constrained op-

timization problems (2.1) and (2.2). There are many popular methods for the nonlinear pro-

gramming which has equality and inequality constraints. For example, we have the projected

gradient method for constrained minimization and the SQP (Sequential Quadratic Program-

ming) method. All of the methods use the Lagrange calculus and result in iterative methods

that converge to a minimizer. The gradient method involves the two steps, i.e., the primal

equality constraint solver and the adjoint equation solver for the multiplier λ, and then deter-

mines a gradient of the composite cost functional by evaluating a derivative of the Lagrange

functional (2.13). We compute the gradient and use it for the projected gradient step, which

requires a line search algorithm. SQP uses a quadratic model for the Lagrange functional and

solves the necessary optimality system (2.14) for (y, λ) by Newton-like method. Thus, it involves

the curvature information of the Lagrange functional and a system solver. For convergence the

gradient method in general requires a line search algorithm [48, 29].

Our proposed method, i.e., the Sequential Programming (SP) method, is a middle ground

between the gradient method and SQP. The SP method involves a sequence of linearized equality

constraint optimizations, i.e., we linearize the equality constraint at the current iterate and then

solve the optimization problem (no change in cost) subject to the linearized constraint. We must

have a good solver for the resulting saddle point problem for the linearized equality constraint

problem. We develop specific methods for the saddle point problems in various cases, inequality

constraint and non-smooth cost. We also describe its implementation in detail. The SP method

is very flexible for adapting to cases with non-smoothness and inequality constraints.

We analyze the convergence and convergence rate of the SP method. The basic SP method

is of the first order with a good convergence rate. SP is guaranteed to converge under certain
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conditions that we describe in Section 3.4.1. We also introduce the second order variant of SP

in Section 3.4.2. In summary the SP method opens up the possibility for the large scale and

non-smooth optimization problems. First we introduce the Lagrange calculus method.

3.1 Lagrange Calculus

The Lagrange multiplier theory described in Section 2.3 is the basis for most of the constrained

optimization algorithm. In this section we discuss the so-called Lagrange calculus for the equality

constrained optimization

min F (x) +H(u) subject to E(x, u) = 0, u ∈ C (3.1)

over (x, u) ∈ X × U . Define the Lagrangian

L(x, u, λ) = F (x) +H(u) + 〈λ,E(x, u)〉.

We assume the equation E(x, u) = 0 has a continous solution branch x = Φ(u) in a neighbor-

hood of (x̄, ū). Then we define the composite cost functional

J(u) = F (Φ(u)) +H(u) on u ∈ U. (3.2)

The Lagrange calculus evaluates the implicit derivative of F (x) + H(u) by the Lagrange mul-

tiplier theory.

Theorem 3.1. (Lagrange) Let (x̄, ū) be a solution to E(x, u) = 0. Assume Ex(x̄, ū) : X → Y

has a bounded inverse. Then there exists a C1 solution branch x = Φ(u) to E(x, u) = 0 in a

neighborhood of (x̄, ū). Assume multiplier λ ∈ Y ∗ satisfies the adjoint equation

Ex(x̄, ū)∗λ+ F ′(x̄) = 0. (3.3)

Then
∂

∂u
J(ū) = Lu(x̄, ū, λ) = H ′(ū) + Eu(x̄, ū)∗λ. (3.4)

Proof. By the implicit function theorem [66] there exists a C1 solution x = Φ(u) in a neighbor-

hood of (x̄, ū). By the chain rule (dot denotes differentiation with respect to u)

∂

∂u
J(ū)(u̇) = F ′(x̄)(ẋ) +H ′(ū)(u̇)

where

Ex(x̄, ū)(ẋ) + Eu(x̄, ū)(u̇) = 0. (3.5)

17



From the adjoint equation (3.3) and (3.5)

F ′(x̄)(ẋ) = −〈λ,Ex(x̄, ū)(ẋ)〉 = 〈λ,Eu(x̄, ū)(u̇)〉,

which implies the implicit derivative (3.4).

Remark If (x∗, u∗) is a minimizing pair for (3.1), it follows from the Theorem 3.1 that (x∗, u∗, λ)

satisfy the necessary optimality system:

E(x∗, u∗) = 0

Ex(x∗, u∗)∗λ+ F ′(x∗) = 0

H ′(u∗) + Eu(x∗, u∗)∗λ = 0.

In general, we have

Corollary 3.1. Assume u→ H(u) is convex on C. If u∗ ∈ C is a minimizer of (3.1), then

H(u)−H(u∗) + 〈λ,Eu(x∗, u∗)(u− u∗)〉 ≥ 0 for all u ∈ C. (3.6)

Proof. For u ∈ C and t ∈ (0, 1), let ut = ū+ t v with v = u− ū and xt = Φ(ut). Then, we have

0 = 〈λ,E(xt, ut)− E(x̄, ū)〉 = 〈λ,Ex(x̄, ū)(xt − x̄) + Eu(x̄, ū)(ut − ū)〉+ o(|t|), (3.7)

and from the adjoint equation

F ′(x̄)(x− x̄) = −〈λ,Ex(x̄, ū)(x− x̄)〉. (3.8)

Thus, from (3.7)–(3.8)

J(ut)− J(ū) = F (xt)− F (x̄) +H(ut)−H(ū) = F ′(x̄)(xt − x̄) +H(ut)−H(ū) + o(|t|)

= 〈λ,Eu(x̄, ū)(ut − ū)〉+H(ut)−H(ū) + o(|t|),

and

lim
t→0

J(ut)− J(ū)

t
≤ 〈λ,Eu(x̄, ū)(u− ū)〉+H(u)−H(ū)

for all u ∈ C. If we let ū = u∗, then we obtain the optimality condition (3.6).

Remark In the proof of the Corollary 3.1 it suffices to assume xt = Φ(ut) exists for E(xt, ut) = 0
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and the adjoint equation (3.8) has a solution λ and the following estimates hold:

F (xt)− F (x̄)− F ′(x̄)(xt − x̄) = o1(|t|)

〈λ,E(xt, ut)− E(x̄, ū)− Ex(x̄, ū)(xt − x̄)− Eu(x̄, ū)(ut − ū)〉 = o2(|t|).

Of course, if F is twice differentiable at x̄ and E is twice differentiable at (x̄, ū), then the Remark

follows under the assumption of the implicit function theory.

3.2 Gradient Method

One can apply the implicit (Lagrange) calculus described in Section 3.1 for the gradient method

for the constrained minimization (3.1).

Algorithm (Projected Gradient Method)

1. Pick u1 ∈ C and let k = 1.

2. Solve E(xk, uk) = 0 for xk, given uk.

3. Solve the adjoint equation Ex(xk, uk)
∗λk + F ′(xk) = 0 for λk.

4. Evaluate the gradient gk = H ′(uk) + Eu(xk, uk)
∗λk.

5. Perform a line search for stepsize α > 0

uk+1 = ProjC(uk − α gk).

6. Check convergence. Otherwise set k = k + 1 and return to Step 2.

The gradient method consists of forward solution for xk given uk ∈ C and adjoint solution for

λk (given uk and xk) and line search in α > 0 for update uk+1. It is convergent under conditions

of sufficient descent [3, 65] but the convergence may be very slow. For example, we consider the

unconstrained minimization of F (x) = 1
2 |Ax − b|2Rn for x ∈ Rn. The convergence rate is given

by 1− 1
ρ where ρ > 1 is by the square of the condition number of A (i.e., the ratio of the largest

and smallest singular values of A). If the condition number is large we have no convergence

practically. Thus, we may apply the preconditioned gradient Pgk so that the condition number

is improved [13]. For example the preconditioning can be done by an incomplete Newton’s

method and we can utilize the the inner loop of SP as a preconditioner.
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3.3 Sequential Quadratic Programming (SQP)

The Sequential Quadratic Programming involves a sequence of quadratic constrained problems.

Let L be the Lagrangian for (2.1) with y = (x, u) and cost F (x) +H(u):

L(x, u, λ, µ) = F (x) +H(u) + 〈λ,E(x, u)〉+ 〈µ,G(x, u)〉.

We make a quadratic model for L(x, u, λ, µ) in (x, u). For example, we use the second order

Taylor approximation at (xc, uc, λc, µc) as

L = L(xc, uc, λc, µc) + (∇L(xc, uc, λc, µc), δy) +
1

2
(L′′(xc, uc, λc, µc)δy, δy), (3.9)

where δy = (x− xc, u− uc), and we linearize the constraints

Ec(x, u) = E(xc, uc) + Ex(xc, uc)(x− xc) + Eu(xc, uc)(u− uc) = 0

Gc(x, u) = G(xc, uc) +Gx(xc, uc)(x− xc) +Gu(xc, uc)(u− uc) ≤ 0.

(3.10)

Each SQP step solves the quadratic programming:

minL(x, u, λc, µc)

subject to the linearized constraints (3.10) and the quadratic model (3.9) over (x, u), with u ∈ C.
By the Lagrange multiplier theory (2.16)–(2.18) we obtain the system for (x+, u+, λ+, µ+)

E(xc, uc) + Ex(xc, uc)(x− xc) + Eu(xc, uc)(u− uc) = 0

F ′′(xc)(x− xc) + F ′(xc) + Ex(xc, uc)
∗λ+Gx(xc, uc)

∗µ = 0

H ′′(uc)(u− uc) + Eu(xc, uc)
∗λ+Gu(xc, uc)

∗µ = 0

µ = max(0, µ+ c̃Gc(x, u)).

(3.11)

The SQP update for each component is

u = ProjC(uc + α (u+ − uc))

x = xc + α (x+ − xc)

λ = λc + α (λ+ − λc)
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with a stepsize α > 0 (determined by a line search). In the case of equality constraint alone,

(3.11) reduces to

E(xc, uc) + Ex(xc, uc)(x− xc) + Eu(xc, uc)(u− uc) = 0

F ′′(xc)(x− xc) + F ′(xc) + Ex(xc, uc)
∗λ = 0

H ′′(uc)(u− uc) + Eu(xc, uc)
∗λ = 0,

(3.12)

which is equivalent to Newton’s method applied to the necessary optimality conditions (2.14)

on (x, u, λ):

∇L(x, u, λ) = 0,

where the ∇ is the derivative with respect to every component (x, u, λ). Moreover (x+−xc, u−
uc, λ− λc) is the preconditioned gradient (Newton direction) since

L′′(xc, uc, λ)(x+ − xc, u− uc, λ− λc) +∇L(x+ − xc, u− uc, λ− λc) = 0.

Pros: (3.12) is a linear saddle point problem for (x, u, λ). If SQP converges, it converges quadrat-

ically under proper conditions. But also we can check the type of constrained problems in terms

of L′′(x∗, u∗, λc).

Cons: We must solve the linear system for (x, u, λ). The system is symmetric, but can be

indefinite for L′′(xc, uc, λc). We have to compute the second derivative L′′(xc, uc, λc). It is not

globally convergent in general (we must do a line search α > 0).

Remedy of Cons: We use BFGS for sequential approximations of L′′(xc, uc, λc). If Deniss-

More condition is satisfed it is super-linear convergence. One can use incomplete Newton step

solver or the Newton step is performed by regularized least squares

min |L′′(xc, uc, λc)(x− xc, u− uc, λ− λc) +∇L(xc, uc, λc)|+
β

2
|(x− xc, u− uc, λ− λc)|2

for a proper choice of β > 0.

We now introduce the Sequential Programming (SP) method and will show that it may

remedy many aspects of the drawbacks of SQP and the gradient method.
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3.4 Sequential Programming

Sequential Programming (SP) is a method to solve the constrained minimization

min F (y) subject to E(y) = 0, y ∈ C, (3.13)

which can include an inequality constraint by letting C = {y ∈ X : G(y) ≤ 0}. We linearize the

equality constraint at the current iterate yc ∈ C, i.e., the tangent equation

E′(yc)(y − yc) + E(yc) = 0.

We may use the Broyden update for the Jacobian E′ [42, 9]. Then, we solve the sequence of

linearized equality constraint problems:

min F (y) subject to E′(yn)(y − yn) + E(yn) = 0, y ∈ C. (3.14)

The necessary optimality condition for (3.14) is the form of the saddle point problem:

(F ′(y+) + E′(yn)∗λ, y − y+) ≥ 0, y ∈ C

E′(yn)(y+ − yn) + E(yn) = 0.

(3.15)

Let y+ be a solution to (3.14) at the nth iterate. We update the current iterate yn with a

damped update

yn+1 = yn + α (y+ − yn), (3.16)

where α ∈ (0, 1] is selected. In the initial steps of SP update we relax α to adjust the quadratic

errors of the linearization; see our analysis of convergence in Section 3.4.1. Note that under-

damping also keeps iterates in the convex set C.

3.4.1 Convergence

In this section we present the convergence analysis of the SP method. Suppose y∗ ∈ C is a

solution to the original problem (3.13). Then y∗ is a solution to the perturbed problem of

(3.14):

min F (y) subject to E′(yn)(y − yn) + E(yn) = ∆2, y ∈ C (3.17)

where

∆2 = E(yn)− E(y∗) + E′(yn)(y∗ − yn) ∼ O(|yn − y∗|2).
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In fact, the necessary optimality system for (3.13)

(F ′(y∗) + E′(y∗)∗λ∗, y − y∗) ≥ 0, y ∈ C

E(y∗) = 0

can be written alternatively as

(F ′(y∗) + E′(yn)∗λ∗ − (E′(yn)∗ − E′(y∗)∗)λ∗, y − y∗) ≥ 0, y ∈ C

E′(yn)(y∗ − yn) + E(yn) = E′(yn)(y∗ − yn) + E(yn)− E(y∗),

which is a perturbation of the necessary optimality system for (3.14), i.e.,

(F ′(y∗) + E′(yn)∗λ∗ −∆1, y − y∗) ≥ 0, y ∈ C

E′(yn)(y∗ − yn) + E(yn) = ∆2

(3.18)

with perturbation (∆1,∆2) given by

∆1 = (E′(yn)∗ − E′(y∗)∗)λ∗

∆2 = E(y∗)− E(yn)− E′(yn)(y∗ − yn).

That is, the necessary optimality system for the original problem (3.13) is a perturbation of the

necessary optimality system for the linearized equality constraint problem (3.14). Recall the SP

step for (3.14)

(F ′(y+) + E′(yn)∗λ+, y − y+) ≥ 0, y ∈ C

E′(yn)(y+ − yn) + E(yn) = 0.

(3.19)

Combining (3.19) with (3.18) we obtain

(F ′(y+)− F ′(y∗) + E′(yn)∗(λ+ − λ∗) + ∆1, y
+ − y∗) ≥ 0, y ∈ C

E′(yn)(y+ − y∗) = ∆2.

Assume the Lipschitz continuity of solution y+ − y∗ with respect to perturbations ∆1 and ∆2:

|y+ − y∗| ≤M1 |∆1|+M2 |∆2|. (3.20)
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That is, the solution y∗ (and y+) is a function of the perturbation (∆1,∆2). Then, for the

damped update

yn+1 = yn + α(y+ − yn), α ∈ (0, 1],

we have by (3.20)

|yn+1 − y∗| ≤ (1− α)|yn − y∗|+ α|y+ − y∗| ≤ (1− α)|yn − y∗|+ α(M1 |∆1|+M2 |∆2|).

That is,

|yn+1 − y∗| ≤ (1− α+ αM̃1)|yn − y∗|+ αM̃2|yn − y∗|2. (3.21)

Thus, rate (1 − α + αM̃1) < 1 if M̃1 < 1. The best convergence rate is achieved with α = 1,

but we need to bound the quadratic term by adjusting α ∈ (0, 1), i.e., we may need to choose

α < 1 so that αM̃2|yn− y∗|2 is dominated by the first order error. Thus, for small perturbation

(∆1,∆2), the SP iterates yn+1 converge to the optimal solution y∗ with linear rate.

For example, we estimate M̃1 for the case where C = X and F (y) = 1
2(Qy, y). Then the

necessary optimality condition for SP is
Qy + E′(yn)∗λ = 0

E′(yn)(y − yn) + E(yn) = 0.

Define

Gn =

 Q E′(yn)∗

E′(yn) 0

 .

Then

Gn

 y+ − y∗

λ+ − λ∗

 =

 −∆1

∆2

 . (3.22)

Let En = E′(yn), δy = y+ − y∗, and δλ = λ+ − λ∗. Then (3.22) is written
Q(δy) + E∗n(δλ) = −∆1

En(δy) = ∆2.

(3.23)

We solve the first equation of (3.23) for increment δy:

δy = Q−1(−∆1 − E∗n(δλ)), (3.24)
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substitute into the second equation of (3.23):

−EnQ−1∆1 −∆2 − EnQ−1E∗n(δλ) = 0,

and solve for increment δλ:

δλ = −(EnQ
−1E∗n)−1(EnQ

−1∆1 + ∆2). (3.25)

Then combining (3.24) and (3.25) we obtain

y+ − y∗ = δy = −Q−1∆1 +Q−1E∗n(EnQ
−1E∗n)−1(EnQ

−1∆1 + ∆2).

Thus,

|y+ − y∗| ≤ |Q−1∆1 −Q−1E∗n(EnQ
−1E∗n)−1EnQ

−1∆1|+ |Q−1E∗n(EnQ
−1E∗n)−1∆2|.

Observe that

P = Q−1 −Q−1E∗n(EnQ
−1E∗n)−1EnQ

−1

is the projection operator onto ker(En) (one can easily verify EnP = 0). Thus,

y+ − y∗ = Projker(En) ∆1 +Q−1E∗n(EnQ
−1E∗n)−1∆2.

We assume

|Projker(En) ∆1| ≤ γ |yn − y∗|.

Then we have

|yn+1 − y∗| ≤ γ |yn − y∗|+ c |yn − y∗|2,

which shows (3.21).

In many applications one can show that γ < 1. Moreover, the rate of convergence of the SP

method is on the order of

1− α+ αγ = 1 + α(γ − 1),

which can be less than 1 (contractive) if γ < 1.

Remarks (1) Suppose F ′(y∗) is small, e.g., the small residual case for the target optimization

F (y) = 1
2 |y − ȳ|2 where ȳ is the desired state and thus γ < 1.

(2) If the constraint E is nearly linear in the direction of λ∗, then |(E′(y∗)∗ − E′(yn))λ∗| is

sufficiently small and γ < 1.

(3) Consider the case when E(y) = Ax+ f(x) + Bu. Suppose A is self-adjoint, positive and f
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is monotone Lipschitz, then one can estimate γ using PDE analysis.

3.4.2 Second Order Sequential Programming Method

In this section we introduce the second order version of SP (Sequential Programming) to achieve

the quadratic convergence. In order to obtain a second order method it is necessary to incor-

porate the term (E′(yn)∗ − E′(y∗)∗)λ∗ to the update [31]. Thus we consider

min F (y) + 〈λn, E(y)− (E′(yn)(y − yn) + E(yn)) 〉

subject to E′(yn)(y − yn) + E(yn) = 0 and y ∈ C.
(3.26)

Observe that the term 〈λn, E(y)−(E′(yn)(y−yn)+E(yn))〉 can be understood as approximation

to 1
2〈λn, E′′(yn)(y − yn, y − yn)〉.
The necessary optimality condition for (3.26) is given by

(F ′(y+) + (E′(y+)∗ − E′(yn)∗)λn + E′(yn)∗λ∗, y − y+) ≥ 0 for all y ∈ C

E′(yn)(y∗ − yn) + E(yn) = 0.

(3.27)

When compared to (3.15) this is the saddle point problem involving the linearized equation

where the term (E′(y)∗ − E′(yn)∗)λn is added. The necessary optimality condition (3.18) to

(3.17) can be expressed to follow the structure of (3.27) as
(F ′(y∗) + (E′(y∗)∗ − E′(yn)∗)λn + E′(yn)∗λ∗ −∆1, y − y∗) ≥ 0 for all y ∈ C

E′(yn)(y∗ − yn) + E(yn) = ∆2,

(3.28)

where

∆1 = (E′(y∗)∗ − E′(yn)∗)(λn − λ∗) and ∆2 = E′(yn)(y∗ − yn) + E(yn)− E(y∗). (3.29)

Observe that there is now a (λn − λ∗) term in the perturbation ∆1. This gives

∆1 ∼ O(|yn − y∗| |λn − λ∗|) and ∆2 ∼ O(|yn − y∗|2).

The update according to (3.26) results in the following algorithm, which is locally quadratically

convergent.

Algorithm (Second Order Sequential Programming)
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1. Choose (y0, λ0). Set n = 0.

2. Given (yn, λn), solve the saddle point problem (3.27) for (y+, λ+).

3. Update (yn+1, λn+1) = (yn, λn)+α ((y+, λ+)−(yn, λn)). Iterate until convergence criterion

is satisfied.

3.4.3 Fixed Point Formulation of Saddle Point Problem

Consider the case

E(x, u) = E0(x) +Bu.

Then the saddle point problem (2.14) for SP step is written in stepwise:

x+ = xn − (E′0(xn))−1(Bu+ + E0(xn))

λ = −(E′0(xn))−∗F ′(x+)

u+ = Ψ(p) = argminu∈C{H(u) + (u, p)}, p = B∗λ

(3.30)

where u+ = Ψ(B∗λ) solves the optimality condition:

H(ũ)−H(u+) + (B∗λ, ũ− u+) ≥ 0 for all ũ ∈ C.

Thus, we obtain the fixed point formulation for u+ ∈ C

u+ = Ψ(B∗λ), (3.31)

where given u+, λ = λ(u+) is determined by the first two equations of (3.30). If H(u) = 1
2(u,Ru)

we have

u+ = ProjC(−R−1B∗λ).

We use the nonlinear CG or CR method, Section 3.6.2, for (3.31). The specific case is developed

as the reduced order CG method in Section 3.6.1.
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3.4.4 Second Order Version

Suppose F (y) = 1
2(y,Qy) and C = X. Then the saddle point problem (2.14) for (y+, λ) is

written in stepwise as

y+ = Q−1((E′(y+)∗ − E(yn)∗)λn − E′(yn)∗λ = 0

λ = −(E′(yn)Q−1E′(yn)∗)−1(E(yn) + E′(yn)∗(yn +Q−1(E′(y+)∗ − E(yn)∗)λn).

(3.32)

That is, y+ is a fixed point of

y+ = −Q−1((E′(y+)∗ − E(yn)∗)λn + E′(yn)∗λ) (3.33)

where λ = λ(y+) is determined by the second equation of (3.32). We use the damped fixed

point update

yn+1 = α y+ + (1− α)yn, (3.34)

where α > 0 is selected such that it becomes a contraction mapping for (3.33).

3.4.5 Non-smooth Cost Case

Consider cost functional

F (y) =
1

2
(y,Qy) + F1(y)

where F1 is differentiable but not necessarily C1. The saddle point problem (2.14) for (y+, λ) is

y+ = Q−1(−F ′1(y+)− E′(yn)∗λ) = 0

λ = −(E′(yn)Q−1E′(yn)∗)−1(E(yn) + E′(yn)∗(yn) +Q−1E′(yn)F ′1(y+)).

(3.35)

That is, y+ is a fixed point of

y+ = −Q−1(F ′1(y+) + E′(yn)∗λ) (3.36)

where λ = λ(y+) is determined by the second equation of (3.35). We use the damped update

yn+1 = α y+ + (1− α) yn.

Again, α > 0 is selected such that it becomes a contraction mapping for (3.36).
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3.4.6 Properties

Recall the necessary optimality system at a minimizer y∗ ∈ C:

〈F ′(y∗) + E′(y∗)∗λ, y − y∗〉 ≥ 0, y ∈ C, E(y∗) = 0.

If we linearize the equality constraint at the current iterate yn, we obtain

〈F ′(y+) + E′(yn)∗λ, y − y+〉 ≥ 0 y ∈ C, E′(yn)(y+ − yn) + E(yn) = 0.

This is exactly the necesary optimality system for the SP method (3.19):

min F (y+) subject to E′(yn)(y+ − yn) + E(yn) = 0, y+ ∈ C.

Thus, the SP method is a partial linearization method of the necessary optimality system

compared to the SQP method which fully linearizes the system (3.12). Also, we can use the

quadratic model for F ′(y+) ∼ F ′(yn) + Q(y+ − yn). Then it becomes SQP method with no

quadratic model for E(y). Moreover, we describe the second order SP method to treat the E(y)

term sequentially. Thus, SP is indeed the middle ground.

3.5 Bilinear Control Problem and Partial SQP

Consider the specific case of (2.2), i.e., the coefficient control of the form

minF (y) +H(u) subject to Ay +B(u) y = b, u ≥ 0

where u is control, design variable and medium coefficient. For example, u ≥ 0 is the absorption

coefficient in the diffusive medium Ω for the dynamical constraint

−∆y + u(x)y = f, x ∈ Ω. (3.37)

Consider the following medium identification problem. Find u ≥ 0 from the boundary obser-

vation of ȳ at ∂Ω with Neumann boundary condition ∂
∂νu = 0. The problem is formulated

as

min |y − ȳ|2∂Ω +

∫
Ω

(
α

2
|∇u|2 + β |u|) dω

subject to (3.37). Similary, the coefficient control problem is to minimize

min |y − yd|2Ω +

∫
Ω

(
α

2
|∇u|2 + β |u|) dω
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subject to (3.37), where yd is the desired diffusive field. For material design problem with

respect to u we select a proper design performance as a cost functional. Thus, inverse medium,

coefficient control, and material design problems are formulated the same but with different

cost functional F (y). A feature of the bilinear control problem is that the second derivative of

a bilinear term such as (Bu)y is a constant B. Thus computing and using the second derivative

information (as is done for SQP) is affordable and can enhance the solution method. This results

in the partial SQP method.

Consider the bilinear control problem with E(x, u) = Ex + f(x) + (Bu)x = 0, where f(x)

may be nonlinear. The necessary optimality for the SP step is

Ex+ f ′(xc)(x− xc) + f(xc) + (Buc)(x− xc) + (Bu)xc = 0

Qx+ (E + f ′(xc))∗λ+ (Buc)λ = 0

u = − 1
α (B∗λ)xc.

Partial SQP uses the second derivative of the bilinear term (Bu)x and results in the following

saddle point problem:

Ex+ f ′(xc)(x− xc) + f(xc) + (Buc)(x− xc) + (Bu)xc = 0

Qx+ (E + f ′(xc))∗λ+ (Buc)λ+ (Bu)λc = 0

αu+B∗(λxc + λc x) = 0.

Note that SQP would also include the second derivative term for f(x), which can be expensive.

Partial SQP remedies this by only doing SQP for the bilinear term.

3.6 Saddle Point Solver

In this section we discuss solvers for each SP step for determining y+ ∈ C that minimizes

F (y) subject to E′(yn)(y − yn) + E(yn) = 0, y ∈ C

at the nth iterate yn ∈ C. We use the necessary optimality condition (3.15)
F ′(y+) + E′(yn)∗λ = 0

E′(yn)(y+ − yn) + E(yn) = 0,

(3.38)
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which is a saddle point problem for (y+, λ). Thus, we describe solution methods to solve the

saddle point problem (3.38) for (y+, λ) in various cases.

3.6.1 Reduced Order CG

In order to solve the saddle point problem (3.38) for SP we have an efficient algorithm, especially

for large scale problems. In this section we introduce the reduced order method based on the

conjugate gradient (CG) method. Consider the specific case for (2.2)

E(x, u) = E(x) +Bu, F (x) +H(u) =
1

2
((Qx, x) + (Hu, u))

where B ∈ L(U,X) and thus E is linear in u. Q and H are positive self-adjoint operators on X

and U , respectively. The saddle point problem (3.38) for SP at the current iterate (xn, un) is

E′(xn)(x+ − xn) + E(xn) +Bu+ = 0

Qx+ + E′(xn)∗λ = 0

Hu+ +B∗λ = 0,

(3.39)

where the triple (x+, u+, λ) is unknown. Now we describe how to reduce this system to a system

just for u. From the first equation of (3.39)

x+ = E′(xn)−1(−Bu+ + E′(xn)xn − E(xn)), (3.40)

and from the second equation

λ = −E(xn)−∗Qx+. (3.41)

Thus, from the third equation we obtain the reduced order equation for u+

(H +B∗E′(xn)−∗QE′(xn)−1B)u+ = B∗E′(xn)−∗QE′(xn)−1(E′(xn)xn − E(xn)). (3.42)

Notice that

L = (H +B∗E′(xn)−∗QE′(xn)−1B)

is a positive self-adjoint operator on U , and moreover H is coercive and B∗E′(xn)−∗QE′(xn)−1B

is compact. Thus, we use the conjugate gradient (CG) method to solve (3.42) for u+. That is,

we have reduced the size of the system to solve from a system for (x+, u+, λ) to a single equation

in u+. This can be advantageous especially for dealing with large scale problems.
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Remarks (1) System (3.42) for u+ is linear and well-posed, i.e., the condition number of L is

not large.

(2) We do not need to use a preconditioner for solving system (3.42) since it is well-conditioned.

(3) The CG step requires we evaluate B∗E′(xn)−∗QE′(xn)−1Bu given u ∈ U , which involves

the forward solution for x+ by (3.40) followed by the adjoint solution for λ by (3.41).

(4) Thus, each CG step is identical to the gradient step described in Section 3.2, except that

the forward equation is linear for SP. Comparatively, the gradient method solves the nonlinear

equation E(x+, un) = 0 for x+ given un.

(5) We apply the “hot” start CG (i.e., we initialize the CG step by the previous iterate un). A

few iterates of CG works practically since an SP solution sequence (xn) is assumed convergent

and L depends on x Lipschitz continuously.

(6) In summary, SP is very efficient because it is equivalent to CG, we do not need to precondi-

tion L, and we can use the “hot” start to proceed immediately from the previous iterate. Thus,

the total number of CG steps needed is possibly much less than the number of steps needed for

the gradient method to converge.

3.6.2 Preconditioned Conjugate Residual (CR) Method

In this section we introduce the preconditioned conjugate residual method for solving equations

of the form F (x) = Ax−b = 0. We present a method for the case where F is nonlinear. To solve

the nonlinear equation F (x) = 0 by the conjugate residual method, we make the identification

of F (x) with Ax− b so that we can approximate the quantity Ark that is need to compute the

Cauchy stepsize. That is, since the derivative of Ax − b is A, we deduce that F ′(x) ≈ A and

thus Ark can be approximated by F ′(x)(rk), the Gateaux derivative of F at x in the direction

rk. Since F is truly nonlinear, we approximate the derivative by the secant. Recall the saddle

point problem for minimizing F (y) subject to E(y) = 0, with x = (y, λ)

F (x) =

(
F ′(y) + E′(y)∗λ

E(y)

)
= Ax =

(
Q E∗

E 0

)
x = RHS

where A is self-adjoint but indefinite. The (preconditioned) CR method is the iterate method

(like CG) with conjugate directions {pk} satisfying (Apk, Apj) = 0, j < k. It is based on the

descent algorithm for
1

2
|Ax− b|2 =

1

2
(AAx, x)− (Ab, x) + const.

Algorithm (Nonlinear Conjugate Residual Method)
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1. Calculate sk for approximating Ark by

sk = F (xk + rk)− F (xk).

2. Update the direction by

pk = rk − βk pk−1, βk =
(sk, qk−1)

(qk−1, qk−1)
.

3. Calculate

qk = rk − βk qk−1.

4. Update the solution by

xk+1 = xk + αk pk, αk =
(rk, sk)

(qk, qk)
.

5. Calculate the residual

rk+1 = F (xk+1).

Remarks (1) The operator A may be indefinite for the CR method. Thus, it is a good iterative

solver (like CG) for problems with system matrix that is not necessarily positive definite.

For example, the saddle point problem for the incompressible Navier-Stokes control problem

described in Section 5.3 has this property.

(2) The CR method has computational complexity on the order of the CR method [57]. CR is

not the same as CG applied to the normal equations. Thus we do not lose performance due to

the condition number of A being squared.

3.6.3 Inequality Case

We consider the constrained optimization problem with inequality constraint, i.e.,

min J(x) subject to Gx ≤ c, y ∈ C (3.43)

with C = {x ≤ 0}, or C = box, e.g., ai ≤ xi ≤ bi component-wise, or C = {Gx ≤ c} (affine

constraint) with G : X → Z. The necessary optimality condition for (3.43) is

J ′(x) +G∗µ = 0

µ ≥ 0, Gx ≤ c, (µ,Gx− c) = 0.

(3.44)
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That is, at least one of µ and Gx− c is zero coordinate-wise. Or equivalently

µ = max(0, µ+ β (Gx− c)).

Thus, we have an equation form of the necessary optimality (3.44) for (x, µ)

J ′(x∗) +G∗µ = 0

µ = max(0, µ+ β (Gx− c)).
(3.45)

First, the primal-dual equation is the necessary condition for (x, µ). From the complementarity

condition: if µ+β (Gx−c) ≥ 0, then µ = µ+β (Gx−c) and Gx = c, otherwise if µ+β (Gx−c) <
0, then µ = 0 (and Gx < c). Thus, given (x, µ), define active and inactive index sets:

A = {k : µ+ β (Gx− c) ≥ 0}

I = {i : µ+ β (Gx− c) < 0}.

Now, we define the primal-dual active set method for SP.

Algorithm (Primal-Dual Active Set Method for SP)

1. Select x0 and µ0.

2. Define the active and inactive index sets:

An = {k : µn + β (Gxn − c) ≥ 0}

In = {i : µn + β (Gxn − c) < 0}.

3. Solve system for (xn+1, µn+1)

J ′(xn+1) +G∗µn+1 = 0

Gx = c on Ak, µn+1 = 0 on Ik.
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Remarks (1) If J ′(x) = Ax− b and G = I and c = 0, then one can solve the system (3.45) by

the partition of the coordinate by the active and inactive indices:

AIIxI = bI

xA = 0, µA = bA −AAIxI .

This is the reduced system for xI we need to solve.

(2) The primal-dual active method is trying to find the active indicies for Gx ≤ c sequentially

based the complementarity condition (2.18) for (x, µ).

(3) In general we need to solve A G′A

GA 0


 xn+1

µn+1
A

 =

 b

cA


where GA = G on A.

(4) If J ′ is nonlinear we may use the linearization

J ′(xn+1) ∼ H(xn)(xn+1 − xn) + J(xn).

(5) It is equivalent to solving the linear equality constrained problem

J(x) subject to GAx = cA.

3.7 Comparison to Gradient Method and SQP

Recall the projected gradient method in Section 3.2 for the (control form) equality constrained

minimization (2.2):

min F (x) +H(u) subject to E(x, u) = 0, u ∈ C.

The method consists of forward solve E(xn, un) = 0 for xn given un ∈ C. Next, solve the

adjoint equation F ′(xn) + Ex(xn, un)∗λ = 0 for λ given un and new xn from the forward step.

Then, compute the gradient by the implicit Lagrange calculus gn = Eu(xn, un)∗λ+H ′(un). The

projected gradient step is

un+1 = ProjC(un − α gn),
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for selected stepsize α > 0. The corresponding SP step involves solving the saddle point problem

for (x+, u+, λ)

Ex(xn, un)(x+ − xn) + Eu(xn, un)(u+ − un) + E(xn, un) = 0

F ′(x+) + Ex(xn, un)∗λ = 0

u+ = ProjC(un − α (Eu(xn, un)∗λ+H ′(u+) ) ).

(3.46)

Recall in Section 3.6.1 we consider the case E(x, u) = E(x) +Bu and F (x) = 1
2(Qx, x) and the

reduced order conjugate gradient method. Each step of the CG method is exactly the same as for

the gradient method, except the forward solution step is linear and well-posed CG application,

guaranteed to converge, and “hot start” is employed to reduce the number of inner loop iterates

and overall number of iterates for the SP method. In summary, the total number of gradient

iterates for the gradient method should be compared to the number of SP steps (outer loop)

times the number of CG steps (inner loop).

In general, we use the Newton-like method for (3.46) or the alternating direction method in

Section 4.4. Especially, the alternating direction method is very similar to the gradient step. The

difference is we solve the saddle point problem for the linearized equality constraint problem

and we iterate the inner loop and then update the solution by the SP update.

In summary, we use an inexact solution for each SP saddle point problem and “hot start.”

Now, we compare SP to SQP. In section 3.4.6 we state that SP is a partial SQP method that

involves the linearization of the equality constraint. SP does not use the second derivatives of

the Lagrangian and can avoid the ill-posed system for the SQP step. But, we need to solve the

saddle point problem for each SP step. We introduce the Newton-like method for the saddle

point solver and it is closely related to the semi-smooth Newton method (Section 4.4).

Thus we have stated that SP is a middle ground between the gradient method and SQP. SP

combines both methods, utilizing the pros of the gradient and Newton’s method. SP is regarded

as a preconditioner for the gradient step, i.e., we use an inexact solution for each sequence of

saddle point problem with gradient-like iterates.
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Chapter 4

Applications of SP

In this chapter we describe concrete applications and provide a more detailed account of the

SP method case by case. That is, each case needs a specific discussion on how to apply the

generic SP method (3.14) and how to solve each SP step. Thus, each section in this chapter is

very independent and demonstrates different aspects of the SP method.

4.1 Optimal Control Problem

The optimal control problem is introduced in Section 2.4 and recall the necessary optimality

condition is a saddle point problem (2.26). The SP step is given as

d

dt
x+ = fx(t, xn, un)(x+ − xn) + fu(t, xn, un)(u+ − un) + f(t, xn, un)

− d

dt
λ = fx(t, xn, un)∗λ+ f0

x(t, x+, u+)

u+ = Ψ(t, x+, λ),

(4.1)

where u+ = Ψ(t, x+, λ) is implicitly a function of x+ and λ by the optimality condition

fu(t, x+, u+)∗λ+ f0
u(t, x+, u+) = 0.

If f0(t, x, u) = 1
2(Qx, x) + h(u), then f0

x(t, x+, u+) = Qx+. Moreover, if h(u) = 1
2(Ru, u)

and f(t, x, u) = f(x) +Bu, then

Ru+ = −B∗λ.
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In this case (4.1) becomes the linear saddle point problem

d

dt
x+ = fx(xn)(x+ − xn) + f(xn) +Bu+

− d

dt
λ = fx(xn)∗λ+Qx+

Ru+ = −B∗λ,

and the reduced order CG method discussed in Section 3.6.1 can be used as a saddle point

solver.

In general, we have

h(u)− h(u+(t)) + fu(t, xn, un)(u− u+(t)) ≥ 0 for u ∈ U,

where u+ ∈ C = {u+(t) ∈ U, a.e. t ∈ (0, T )}. Thus, we must use the method presented for

non-smooth problems as in Section 2.2. For the fully nonlinear case (especially with f0) we try

to use the preconditioned CR method as described in Section 3.6.2 to solve the saddle point

problem for the SP step (4.1).

4.2 Ill-posed Inverse Problem

Many inverse problems are formulated as follows:

min
1

2
|K(u)− y|2Y +

∫
Ω

(h(u) +
α

2
|∇u|2) dω (4.2)

where K : X → Y is a compact nonlinear map and y ∈ Y is given data. Since the Jacobian K ′

is compact, the inverse of K ′ is unbounded. Thus, we need to use the regularization method,

for example those in (2.8) or (2.10), e.g., with h(u) = β
2 (|u|+ |u|2).

Often, K(u) is determined by the equality constraint E(x, u) = 0 and K(u) = x. In this

case, we use the formulation (2.2), i.e.,

min F (x) +H(u) subject to E(x, u) = 0, u ∈ C.

Or, we use the implicit Lagrange calculus (3.2) to compute F (K(u)) with respect to u. The SP

method in terms of Gauss-Newton minimizes

1

2
|K ′(un)(u+ − u) +K(un)− f |2 +

∫
Ω

(h(u+) +
α

2
|∇u+|2) dω,
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and the SP step solves

K ′(un)∗(K ′(un)(u+ − u) +K(un)− f) + h(v)− h(u+) + α (v − u+) ≥ 0, v ∈ C. (4.3)

For non-smooth case of h as in Section 2.2 we use a sequential linearization method for

solving (4.3). The method uses a linear equation solver and the linearization K ′(un) and may

be costly, but is a very effective method as a full Newton method. Otherwise, we use the equality

constraint formulation discussed above.

4.3 Semilinear Control Problem

In this section we discuss a semilinear control problem of the form

d

dt
x(t) = A0x(t) + f(x(t)) +B0u(t) + (B1u)x(t), x(0) = x0, (4.4)

where A0 is a nonnegative self-adjoint operator on a Hilbert space X and B0, B1 ∈ L(U,X).

Thus, we have the linear control B0 u and the bilinear control (B1u)x in this control model.

Assume that A0 ∈ L(V, V ∗) where V is a closed subspace of X and define a symmetric bounded

quadratic form on V × V by

−σ(x, y) = 〈Ax, y〉V ∗×V .

That is,

dom(A) = {x ∈ V : |σ(x, y)| ≤ c |y| for all y ∈ V }.

Assume f : V → V ∗ is weakly continuous and

〈f(x1)− f(x2), x1 − x2〉 ≤ ω |x1 − x2|2X .

It can be proven [63, 64] that (4.4) has a weak solution

x(t) ∈W (0, T ) = {x ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V )}

given u ∈ C = {u ∈ L2(0, T ;U) : u ∈ Û} with a closed convex set Û in U and the initial

condition x(0) = x0 ∈ X.

Consider the optimal control problem on the finite time horizon [0, T ]

min J(x, u) =

∫ T

0
(`(x(t)) + h(u(t))) dt+ g(x(T )) (4.5)

subject to (4.4) and u ∈ C. The incompressible Navier-Stokes control problem in Section 5.1 is
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a concrete example of such an optimal control problem. Under an appropriate condition (e.g.,

see Section 2.2.1) there exists an optimal pair (x∗, u∗) ∈ W (0, T ) × C to problem (4.5). Let

E : W (0, T )→ L2(0, T ;V ∗) be defined by

〈E(x, u), φ〉 =

∫ T

0
〈 d
dt
x(t)−A0x(t)− f(x(t))−B0u(t)− (B1u)x(t), φ(t)〉 dt.

Then, (4.4)–(4.5) is a specific case of (2.3). The necessary optimality is given by

d

dt
x∗(t) = A0x

∗(t) + f(x∗(t)) +B0u
∗(t) + (B1u

∗)x∗(t), x∗(0) = x0

− d

dt
λ(t) = A0

∗λ(t) + f ′(x∗(t))∗λ(t) + (B1u
∗)∗λ(t) + `′(x∗(t)), λ(T ) = g′(x∗(T ))

h′(u∗(t)) +B0
∗λ(t) + (B1x

∗)∗λ(t) = 0.

(4.6)

In general we have the optimality condition u∗ = Ψ(x∗, λ), e.g., see Section 2.4.1. The SP

method solves

min J(x+, u+), u+ ∈ C (4.7)

subject to the linearized equality constraint

d

dt
x+ = A0x

+ + f ′(xn)(x+ − xn) + f(xn) +B0u
+ + (B1(u+ − un))xn + (B1un)x+. (4.8)

Thus, for each SP step, given (xn, un) we solve the saddle point problem for update (x+, u+, λ)

d

dt
x+ = A0x

+ + f ′(xn)(x+−xn) + f(xn) +B0u
+ + (B1(u+−un))xn + (B1un)x+, x+(0) = x0

− d

dt
λ = A0

∗λ+ f ′(xn)∗λ+ (B1un)∗λ+ `′(x+), λ(T ) = g′(x+(T ))

h′(u+) +B0
∗λ+ (B1xn)∗λ = 0,

where u+ = Ψ(xn, λ).

Remark In general we also consider the semilinear dynamics of the form

d

d
x(t) = Ax+ F (x) +B0u(t) +B1u(t)x(t) (4.9)

where A is the infinitesimal generator [29] of semigroup S(t) on X and F : X → X is locally

Lipschitz. We will discuss the moving actuator control for the damped wave equation, which is
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of the form (4.9), in Section 4.3.1. The mild (weak) solution x(t) ∈ X [29] to (4.9) is given by

x(t) = S(t)x(0) +

∫ t

0
S(t− s)(F (x(s)) +B0u(t) + (B1u(s))x(s) ) ds.

One can derive the corresponding necessary optimality (4.6) and SP method (4.7)–(4.8) in

exactly the same manner.

We have the SP step for (x+, u+) is written as

d

dt
x+(t) = Ax+ + F ′(x)(x+ − x) + F (x) +B0u

+ + (B1(u+ − u))x+ (B1u)x+, x+(0) = x0

− d

dt
λ(t) = A∗λ+ F ′(x)∗λ+ (B1u)∗λ+ `′(x), λ(T ) = G′(x+(T ))

u+(t) = Ψ(x+(t), λ(t)).

Here, the adjoint equation for λ is understood in the mild solution form

λ(t) = G′(x+(T )) +

∫ T

t
S∗(s− t)(F ′(x+)∗λ(s) + (B1u)∗λ(s) + `′(x+(s)) ) ds.

For example we consider an optimal control problem

min

∫ T

0

∫
Ω

(
|∇y|2 + |yt|2

)
dx+ |u(t)|2 dt (4.10)

subject to

ytt = ∆y + f(y) +B(u(t)) yt (4.11)

where f is a Lipschitz function on R (e.g., f(y) = sin(y) for the sine-Gordon equation, in the

study of crystal dislocations [18]).

For the moving actuator control via location u(t) of an actuator (see Section 4.3.1) we have

(B(u)φ)(x) = exp(−|x− u|
2

2σ2
)φ(x).

Define the velocity v = ∂
∂ty. The first order form for x = (y, v) ∈ X = H1(Ω)×L2(Ω) of (4.11)

is given as (4.9) with

A =

 0 I

−∆ 0

 , F (y, v) =

 0

f(y)

 , B(u) =

 0

b(u)v

 .
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It is known [29] that A generates the group S(t) on X.

Next, we consider the stationary case, i.e.,

min `(x) + h(u), u ∈ C

subject to

E(x, u) = A0x+ f(x) +B0u+ (B1u)x = 0.

Recall the coefficient control problem and inverse medium problem in Section 2.2.4 in which

(B1u)x = u(ω)x(ω), ω ∈ Ω.

The SP step for the stationary case solves the system

A0x
+ + f ′(xn)(x+ − xn) + f(xn) +B0u

+ + (B1(u+ − un))xn + (B1un)x+ = 0

A0
∗λ+ f ′(xn)∗λ+ (B1un)∗λ+ `′(x+) = 0

h′(u+) +B0
∗λ+ (B1xn)∗λ = 0

for the update (x+, u+, λ).

For example we have X = L2(Ω) and u ∈ L2(Ω̃) where Ω̃ is a subset of domain Ω ⊂ Rd

(represents a locally supported control region) and

A0 = ∆, f(x) = |x|, and B0u = χ
Ω̃
.

In such problems we discretize the equality constraint in space ω ∈ Ω and apply the SP algorithm

for the discretized problem (see Chapter 6) with

(A0)h, fh(xh), (B0)h, (B1)h

the corresponding finite rank operators.

4.3.1 Moving Damping Actuator Control Problem

Now we revisit specifically the moving damping actuator control problem introduced in Section

4.3 to discuss more details. That is, consider the constrained optimization with PDE constraint
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given by the damped wave equation

ytt +
s∑
i=1

γi(wi)yt = ∆y,
d

dt
w(t) = u(t) (4.12)

where wi is the location of the ith actuator and γi ∈ L1(Ω) is its damping distribution, e.g.,

Gaussian γi(w) = exp(− |x−w|2
2σ2 ). Thus γ(w(t)) yt =

∑s
i=1 γi(wi)yt represents damping by the

actuators.

The cost to minimize is the standard wave energy plus a penalty for movement of the

actuators, i.e.,

min F (y) +H(u) =

∫ T

0

(∫
Ω

(|∇y|2 + |yt|2) dx+ α |u(t)|2
)
dt (4.13)

where u(t) = ∂w
∂t is the velocity control of the location of actuators.

The first order differential form for the system (4.12) is a system for (y, v, w)

d

dt

 y

v

 = A(w)

 y

v

 ,
d

dt
w = u (4.14)

where (y, v) ∈ X, v = d
dty, and A(w) is a linear operator on X = H1(Ω)× L2(Ω) defined by

A(w)

 y

v

 =

 v

∆y − γ(w)v

 =

 0 I

∆ −γ(w)


 y

v

 ,

given w ∈ (Rd)m, with domain

domA(w) = {(y, v) ∈ X : v ∈ H1
0 (Ω) and −∆y + γ(w)v ∈ L2(Ω)}.

An optimal control problem for the system (4.12)–(4.13) is the optimal actuator problem

min

∫ T

0

1

2

(
|∇y|2L2 + |yt|2L2

)
dt+

∫ T

0

α

2
|u|2 dt+

β

2
|w(T )− w̄|2 (4.15)

over admissible controls u, where w̄ is a desired location for actuators (at terminal time T ).

Note that (4.15) may be written for the first order differential form (4.14) as

min

∫ T

0

1

2

(
|∇y|2 + |v|2

)
dt+

∫ T

0

α

2
|u|2 dt+

β

2
|w(T )− w̄|2,
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where v = yt.

To formulate the saddle point problem for SP we need to linearize the system (4.14). The

only nonlinear term is −γ(w)v, which we linearize at wc, vc, i.e.,

−γ(wc)vc − γ′(wc)vc(w − wc)− γ(wc)(v − vc) = −γ′(wc)vc(w − wc)− γ(wc)v.

Thus each SP step (3.38) solves the following saddle point system for (y+, v+, w+, λ, µ):

d

dt

(
y+

v+

)
= A(wc)

(
y+

v+

)
+ Ȧ(w+ − wc)

(
yc

vc

)
,

d

dt
w+ = u+

− d

dt
λ = A(wc)

∗λ+

(
∇y
v

)
, − d

dt
µ = −γ′(wc)vc∗µ

αu+ + µ = 0,

where

Ȧ =

 0 0

0 −γ′(wc)

 .

Next we describe the solution method for the SP step (3.38). We use the conjugate gradient

method for solving each step of SP and the gradient gn is computed as follows. Given the

current un, solve

dwn

dt
= un, wn(0) = w0

dyn

dt
= A(wc)y

n + Ȧ(wn − wc)yn, yn(0) = y0

− d

dt
λn = A(wc)

∗λn +

(
∇yn
vn

)
, λn(T ) = 0.

d

dt
µn = −γ′(wc)vc∗µn, µn(T ) = β (wn(T )− w̄).

Then compute the gradient

gn = αun + µn.

Then, we use the nonlinear gradient updates (3.46) for SP. In general it has the following

44



(moving actuator problem) form

dy

dt
= A(w)y,

d

dt
w = u

where A(w) is a closed operator on a Hilbert space X and w is the location of actuators in

the domain Ω. The problem is to optimize a class of cost functionals defined for (y, w, u) with

respect to velocities u and initial locations w(0).

4.4 Non-smoothness in SP

Consider the non-smooth constrained optimization of the form

min F (x) +H(u) subject to E(x, u) = 0

where u → H(u) is convex but not necessarily C1. The convex constraint u ∈ C is a specific

case by

H(u) =


0 u ∈ C

∞ u /∈ C.

For the case of inequality constraint Gu ≤ c we let C = {u ∈ U : Gu ≤ c}. The saddle point

problem for (x, u) is given by

Ex(x, u)∗λ+ F ′(x) = 0

−Eu(x, u)∗λ ∈ ∂H(u)

(4.16)

where the subdifferential [12] ∂H(u) of H at u is defined by

∂H(u) = {p ∈ U∗ : H(v)−H(u) ≥ (p, v − u) for all v ∈ U}.

Thus, the second equation of (4.16) is a set valued equation. In order to obtain an equivalent

equation form, we define the Yosida-Moreau approximation of H [30, 29], given c > 0 and

µ ∈ U∗
Hc(u, µ) = inf

v∈U
{H(v) +

c

2
|u− v|2U + (µ, u− v)U∗×U}.

It is based on the equivalent formulation of (2.2)

min F (x) +H(v) +
c

2
|u− v|2 + (µ, u− v)
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subject to

E(x, u) = 0, u = v.

It is shown in [29] that u→ Hc(u, µ) is differentiable with

〈H ′c(u, µ), h〉 = 〈c (u− v) + µ, h〉 for all h ∈ U

where

v = argminv∈U{H(v) +
c

2
|u− v|2U + (µ, u− v)U}

and u→ H ′c(u, µ) is Lipschitz continuous. Most importantly, we have the equation form

Eu(x, u)∗λ+ µ = 0

µ = H ′c(u, µ)

(4.17)

is equivalent to the second condition in (4.16).

For example, consider the L1 cost

H(u) =

∫
Ω
|Λu|1 dx

where Λ on U is a closed linear operator. Then, (4.17) is equivalent to

Eu(x, u)∗λ+ Λ∗µ = 0

µ(s) =
µ+ β Λu

max(1, |µ+ β Λu|) almost all s ∈ Ω.

The SP step solves the following system for (x+, u+, λ, µ):

Ex(xc, uc)(x
+ − xc) + Eu(xc, uc)(u

+ − uc) + E(xc, uc) = 0

Ex(xc, uc)
∗λ+ F ′(x+) = 0

Eu(xc, uc)
∗λ+ µ = 0

µ = H ′c(u
+, µ).

(4.18)

Now, we introduce methods for solving (4.18).
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4.4.1 Alternating Direction Iterate Solver

We introduce the so-called alternating direction method for solving (4.18).

1. Given u+ ∈ C solve for x+

Ex(xc, uc)(x
+ − xc) + Eu(xc, uc)(u

+ − uc) + E(xc, uc) = 0.

2. Solve the adjoint equation for λ

Ex(xc, uc)
∗λ+ F ′(x+) = 0.

3. Given v and µ update u+ by

Eu(xc, uc)
∗λ+ c (u+ − v) + µ = 0.

4. Update v+ by

v+ = argminv{H(v) +
c

2
|u+ − v|2 + (µ, u+ − v)}.

5. Update µ+ by

µ+ = µ+ c (u+ − v+).

6. Repeat steps by resetting the variables by (u+, v+, µ+) until convergence.

Remarks (1) If the method converges, u+ = v+ and µ+ ∈ ∂H(u+).

(2) The method works even if H is not necessarily convex.

4.4.2 Newton-like Solver

Now we introduce a Newton-like solver for (4.18). Consider the viscous version with α > 0 for

H(u) given by

H(u) =

∫
Ω

(α
2
|u(s)|2 + β |u(s)|

)
ds,

where U = L2(Ω). Consider the minimization over u ∈ R of u→ (p, u) + α
2 |u|2 +β |u|. We have

the necessary optimality condition

αu+ p+ β = 0 if u > 0

αu+ p− β = 0 if u < 0,

47



and
u = −p+β

α > 0 ⇐⇒ p < −β

u = −p−β
α < 0 ⇐⇒ p > β.

(4.19)

Thus, u is given by (4.19) if |p| > β, and otherwise u = 0 if |p| < β. In summary,

−Eu(xc, uc)
∗λ ∈ ∂H(u+) (4.20)

is equivalent to

if |Eu(xc, uc)
∗λ| < β, then u+ = 0

if |Eu(xc, uc)
∗λ| ≥ β, then u+ = −p± β

α
, p = Eu(xc, uc)

∗λ

where all operations are pointwise.

Numerically, we solve (4.20) using the penalty method. Let P be the diagonal operator

defined by

Pii = 108 if |Eu(xc, uc)
∗λc| ≤ β and otherwise zero.

We define the linearized equation for the Newton update for (x+, u+, λ):

Ex(xc, uc)(x
+ − xc) + Eu(xc, uc)(u

+ − uc) + E(xc, uc) = 0

Ex(xc, uc)
∗λ+ F ′(xc)(x+ − xc) + F (xc) = 0

Eu(xc, uc)
∗λ+ αu+ + Pu+ + β sign(uc) = 0.

After solving this system, we take the projection step:

|Ex(x+, u+)∗λ| ≤ β =⇒ u+ = 0.

4.4.3 Inequality Constraint

Consider the inequality constraint problem

min F (x) +H(u) subject to E(x, u) = 0, u ≤ 0
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i.e., C = {u ≤ 0}. As we discussed in Section 4.4, we have the necessary optimality

Ex(xc, uc)(x
+ − xc) + Eu(xc, uc)(u

+ − uc) + E(xc, uc) = 0

Ex(xc, uc)
∗λ+ F ′(x+) = 0

Eu(xc, uc)
∗λ+ µ = 0

µ = max(0, µ+ βu+).

(4.21)

We can apply the alternating direction method in Section 4.4 for solving this saddle point

problem. Now we introduce a Newton-like solver for (4.21).

The complementarity condition (last equation of (4.21)) is equivalent to

µ+ β u+ > 0⇒ µ+ = µ+ βu+

µ+ β u+ ≤ 0⇒ µ+ = 0,

where all operations are pointwise.

Numerically, we solve (4.21) using the penalty method. Let P be the diagonal operator

defined by

Pii = 108 if µ+ β u+ > 0 and otherwise zero.

We define the linearized equation for the Newton update for (x+, u+, λ, µ):

Ex(xc, uc)(x
+ − xc) + Eu(xc, uc)(u

+ − uc) + E(xc, uc) = 0

Ex(xc, uc)
∗λ+ F ′(xc)(x+ − xc) + F (xc) = 0

Eu(xc, uc)
∗λ+ αu+ + Pu+ + max(0, µc + β uc) = 0.

After solving this system, we take the projection step:

µ+ β u+ > 0 =⇒ u+ = 0.
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Chapter 5

Optimal Control of Navier-Stokes

System and SP

In this chapter we first introduce the controlled Navier-Stokes and the basic Navier-Stokes

theory, i.e., existence of solutions, the Hodge decomposition, and the time integration by the

second order implicit and explicit scheme. Then, we derive the necessary optimality condition

based on the Lagrange multiplier theory and formulate the SP method for this problem. Also,

we develop a specific space discretization method for the Navier-Stokes equations.

5.1 Navier-Stokes Control Problem

The Navier-Stokes equation describes fluid flow in a compressible medium. The equations arise

from the two laws of conservation of mass and conservation of momentum. Conservation of

mass is given by
∂ρ

∂t
+ div(ρu) = 0, (5.1)

where ρ = ρ(t, x) is the mass density, and u = u(t, x) is the velocity of the fluid over domain Ω

in Rd. Conservation of momentum is given by

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∆u+ f, (5.2)

where p is the pressure, µ is the viscosity of the medium, and f is the applied force vector. The

quantity in brackets is the Lagrangian derivative (or total derivative or material derivative) of

the velocity, i.e.,
Du

Dt
=

(
∂u

∂t
+ u · ∇u

)
.
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It is the rate change of the velocity along the flow. It comes from taking the time derivative of

u = u(t, x(t)) (a function of two variables—time t and position x(t), with u(t) = d
dtx(t)). Thus,

we have
d

dt
u(t, x(t)) =

∂u

∂t
+ u · ∇u =

Du

Dt
,

coordinate-wise, i.e.,

(u · ∇u)j = u · ∇uj .

For example, a two-dimensional flow u = (u1, u2) in spacial coordinates x1, x2 has

u · ∇u =

 u1 u1
x1 + u2 u1

x2

u1 u2
x1 + u2 u2

x2

 =

 u · ∇u1

u · ∇u2

 .

In order to complete the compressible Navier-Stokes equation (5.1)–(5.2) we equip the equation

of state

p = p(ρ),

e.g., p(ρ) = 1
γρ

γ . If ρ is a constant, the mass conservation is equivalent to the divergence-free

condition for u:

div u = ∇ · u = 0.

The divergence-free condition implies the volume under a divergence-free vector field is con-

served. The incompressible Navier-Stokes system is written as

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∆u+ f, ∇ · u = 0, (5.3)

where the gradient term ∇p balances the momentum equation for the divergence-free condition

div u = 0. We may say the Stokes equation is the “massless” version of the Navier-Stokes

equation, i.e.,

∇p = µ∆u+ f, ∇ · u = 0. (5.4)

The Stokes equation (5.4) is the time-independent Navier-Stokes equation, and thus finds sta-

tionary (time-independent) flows u.

Now, we consider the control problem for the incompressible Navier-Stokes system (5.3) in

which the applied force f is induced by control inputs v(t), (e.g., magnetic, thermally induced),

i.e.,

f(t, x) = Bv(t) =
m∑
k=1

bk(x) vk(t)

for a finite number of control variables vk, 1 ≤ k ≤ m with control distributions bk(x).
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For injection or sucking control

n · u(t, x) =
m∑
k=1

b̃k(x) vk(t)

where n is the outward normal vector at the boundary ∂Ω and b̃k(x) is the kth control distri-

bution on ∂Ω.

Define the stress tensor S by

S = 2µ ε+ p I

where ε is the linear strain defined by

ε =
1

2
(∇u+∇ut), where εij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Then, the incompressible Navier-Stokes equation (5.3) can be written as

ρ
Du

Dt
+ Div(S) = f.

The Navier boundary condition (proposed by Navier in 1823, see [49, 6, 50]) asserts that the

velocity on the boundary should be proportional to the tangential component of the normal

stress, i.e.,

(S · n)τ + κu = 0, n · u = 0, (5.5)

where (S · n)τ is the tangential components of the normal stress and κ is a constant of propor-

tionality. Thus, the Navier boundary (control) condition is given by

(S · n)τ + κu =

m∑
k=1

b̃k(x) vk(t), n · u = 0,

where b̃k(x) is the kth control distribution on the boundary ∂Ω.

5.1.1 Stokes Theory

In this section we discuss the variational formulation of (5.4). Consider the constrained opti-

mization

min J(u) =
1

2

∫
Ω

(
1

2
∇u : ∇u− f · u) dx

subject to the divergence-free condition

∇ · u = 0
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over the vector field u ∈ X = H1
0 (Ω)d. Note that ∇u is in Rd×d and we use the Frobenius

products of ∇u. Thus,
∫

Ω∇u : ∇u dx is the Dirichlet norm of u. Here, we assume the no-slip

condition

u = 0 at boundary ∂Ω.

Using the Lagrange multiplier theory,

L(u, λ) =
1

2

∫
Ω

(
1

2
∇u : ∇u− f · u) dx+ (λ,∇ · u),

and

Lu(u, λ)(h) = (∇u,∇h) + (λ,∇ · h)− (f, h) = 0 for all h ∈ X, ∇ · u = 0 in Ω,

which is the weak form of the Stokes equation. By integration by parts (Green’s formula),

(∇u,∇h) = 〈−∆u, h〉

(λ,∇ · h) = 〈−∇λ, h〉.

Thus, we obtain the strong form of the Stokes equation

−∆u−∇λ = f, ∇ · u = 0,

with Lagrange multiplier equal the negative pressure, i.e., λ = −p.

5.1.2 Hodge Decomposition

Every vector field can be uniquely decomposed into the sum of a gradient field and a divergence-

free vector field, i.e., given a vector field f on a domain Ω there exists a scalar function p and

a vector field w such that

f = ∇p+ w, (5.6)

where divw = 0, and n · w = 0 on the boundary ∂Ω. Moreover, the gradient field ∇p and the

vector field w are orthogonal in the L2 sense:∫
Ω
∇p · q dx = 0.

Since w is divergence-free, if we take the divergence of both sides of (5.6) we obtain

div f = ∆p, with
∂p

∂ν
= n · ∇p = n · f on ∂Ω. (5.7)
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Boundary value problem (5.7) has a unique solution p (up to an additive constant) provided∫
Ω div f dx =

∫
∂Ω n · f ds, which is guaranteed by the divergence theorem [11]. Then, we obtain

w by (5.6), i.e.,

w = f −∇p.

Note that w is divergence-free and satisfies the boundary condition n · w = 0 on ∂Ω follows

since p satisfies (5.7).

The Hodge decomposition (5.6) is a very useful tool for solving the incompressible Navier-

Stokes equation (5.3) since it allows us to eliminate the pressure term ∇p when we cast the

weak form of the equality constraint:

(E(u, v), λ) =

∫ T

0
[(ut, λ) + (u · ∇u, λ) + ν(∇u,∇λ)− (Bv, λ)] dt = 0.

5.1.3 Weak Solution of Navier-Stokes

In this section we discuss weak solutions to the Navier-Stokes equation (5.1)–(5.2). Let V be

the divergence-free subspace of H1
0 (Ω)d:

V = {u ∈ H1
0 (Ω)d : ∇ · u = 0}.

Let H be the completion of V with respect to L2(Ω)d, i.e.,

H = {u ∈ L2(Ω)d : ∇ · u = 0, n · u = 0 at boundary ∂Ω}.

We define the trilinear form b on V × V × V by

b(u, v, φ) =

∫
Ω

(u · ∇v, φ) dx, u, v, φ ∈ V,

the quadratic form on V × V by

a(u, φ) =

∫
Ω
ν (∇u,∇φ) dx,

and the control form c(v, λ) is defined by

c(v, φ) = 〈Bv, φ〉, for v ∈ U and φ ∈ V.

For example, for the distributed control

〈Bv, φ〉 =

∫
Ω

∑
k

bk(x)vk φ(x) dx,
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and for the Navier control at the boundary

〈Bv, φ〉 =

∫
∂Ω

∑
k

b̃k(x)vk φ(x) dsx.

An H-valued function u(t) ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) is a weak solution to (5.1)–(5.2) if

for φ ∈ V , u = u(t) satisfies

〈∂u
∂t
, φ〉V ∗×V + b(u, u, φ) + a(u, φ) = c(v(t), φ). (5.8)

It is shown [63, 64] that for given u(0) ∈ H and f(t) ∈ L2(0, T ;V ∗) there exists a unique

weak solution u(t) ∈ L2(0, T ;V ) ∩ C(0, T ;H) ∩ H1(0, T ;V ∗) in the two dimensional case and

u(t) ∈ L2(0, T ;V )∩L∞(0, T ;H)∩W 1,4/3(0, T ;V ∗) (may not be unique) in the three dimensional

case. We refer to [63, 64] for more facts on the solutions to (5.8).

An important property used in the existence proof of weak solutions is the conservation

property of the convective term:

b(u, v, w) + b(u,w, v) = 0, b(u, v, v) = 0

for u ∈ H and w, v ∈ H1(Ω)d. In fact,

b(u, v, w) + b(u,w, v) =

∫
Ω
u · ∇(w · v) dx = 0

by the divergence theorem. In detail, we have

b(u, v, w) + b(u,w, v) =

∫
Ω

(u · ∇v) · w + (u · ∇w) · v dx

and by the chain rule

u · ∇(w · v) = u · (∇w · v +∇v · w) = (u · ∇w) · v + (u · ∇v) · w.

By the divergence theorem,∫
Ω
u · ∇(w · v)dx =

∫
∂Ω

(n · u) (w · v) ds+

∫
Ω

div(u) (w · v) dx = 0,

where we used the properties n · u = 0 on ∂Ω and div u = 0.

Letting φ = u in (5.8) we obtain energy identity

1

2

d

dt
|u|2H + a(u(t), u(t))− 〈f(t), u(t)〉V ∗×V = 0 a.e. in t ∈ (0, T )
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if u ∈ H1(0, T ;V ∗) [63, 64] and

1

2
|u(t)|2H +

∫ t

0
a(u(s), u(s)) ds =

1

2
|u(0)|2H +

∫
〈f(s), u(s)〉V ∗×V ds. (5.9)

Note that

〈f(s), u(s)〉V ∗×V ≤
1

2
|f(s)|2V ∗ +

1

2
|u(s)|2V .

(This follows from the Cauchy-Schwarz inequality 〈f, u〉 ≤ |f | |u| and the inequality identity

0 ≤ (|f | − |u|)2 = |f |2 − 2|f | |u|+ |u|2.) Thus we have the a priori estimate

|u(t)|2H +

∫ t

0
a(u(s), u(s)) ds ≤M (|u(0)|2H +

∫ t

0
|f(s)|2V ∗ ds)

for some constant M > 0.

For the control problem we assume B ∈ L(U, V ∗). Then, for all u(0) ∈ H and u ∈ L2(0, T ;U)

the equation (5.8) has a weak solution.

5.1.4 Optimal Control Problem for Incompressible Navier-Stokes Flow

In this section we discuss the Navier-Stokes optimal control problem:

min

∫ T

0
`(u(t)) + h(v(t)) dt+ g(u(T )) (5.10)

subject to
∂u

∂t
+ u · ∇u+∇p = ν∆u+Bv, ∇ · u = 0, (5.11)

over admissible controls

Vad = {v ∈ L2(0, T ;U), v(t) ∈ K a.e.}

where K is a closed convex set in U . Here the performance cost ` must be chosen so that the

desired property of flow u is met. For example,

`(u) =

∫
Ω̃
|∇ × u|2 dx

where ω(x) = (∇×u(x)) is the vorticity and Ω̃ is a subset of domain Ω, i.e., we try to minimize

the circulation on subdomain Ω̃. Another example is tracking to a desired flow ū, i.e.,

`(u) = |u− ū|2V .
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For the control cost h(v), we assume v → h(v) is lower semicontinuous, but may not be differ-

entiable.

We consider next the existence of optimal controls to (5.10)–(5.11). We need to show the

weak continuity of weak solution u as a function of control v since the cost functional is weakly

sequentially lower semicontinuous, i.e., if vn ∈ L2(0, T ;U) weakly converges to v, then (at least

one) corresponding solution un to (5.11) converges weakly to u in L2(0, T ;V ). It can be shown

that weak continuity holds if dim(U) = m, or K is a compact set.

5.2 Optimality System

In this section we derive the necessary optimality for the optimal control problem (5.10)–(5.11).

We assume we normalize the equations with respect to mass density, i.e., we set ρ = 1 and thus

the pressure p is replaced by p/ρ, and the viscosity µ is replaced by ν = µ/ρ. We first show

how to derive the adjoint equation for the adjoint variable λ in the the Navier-Stokes equation.

Define the Lagrange functional for (5.10)–(5.11):

L(u, v, λ) = F (u) +H(v) + (E(u, v), λ)

where

(E(u, v), λ) =

∫ T

0

[
〈∂u
∂t
, λ〉+ b(u, u, λ) + a(u, λ)− c(v, λ)

]
dt.

The Fréchet derivative of L with respect to u is given by

Lu(u, v, λ)(h) = 〈F ′(u), h〉+

∫ T

0
〈∂h
∂t
, λ〉+ b(u, h, λ) + b(h, u, λ) + a(h, λ) dt (5.12)

in the direction of h ∈W0(0, T ) where

W0(0, T ) = {h ∈ H1(0, T ;V ∗) ∩ L2(0, T ;H) : h(0) = 0}.

The Fréchet derivative with respect to control v of L is given by

Lv(u, v, λ)(w) = 〈H ′(v), w〉+

∫ T

0
−c(w, λ) dt (5.13)

in the direction of w ∈ L2(0, T ;U).
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We derive the strong form of the adjoint equation for λ as follows. By the divergence theorem

a(h, λ) = 〈−ν∆λ, h〉

b(u, h, λ) = (u · ∇h, λ) = (u1h1
x1 + u2h1

x2 , λ
1) + (u1h2

x1 + u2h2
x2 , λ

2)

= −((u1λ1)x1 + (u2λ1)x2 , h
1)− ((u1λ2)x1 + (u2λ2)x2 , h

2)

b(h, u, λ) = (h · ∇u, λ) = (h1u1
x1 + h2u1

x2 , λ
1) + (h1u2

x1 + h2u2
x2 , λ

2)

= (λ1u1
x1 + λ2u2

x1 , h
1) + (λ1u1

x2 + λ2u2
x2 , h

2).

Thus,

(u · ∇h, λ) + (h · ∇u, λ) = (B(u)∗λ, h)

where

B(u)∗λ =

 −(u1λ1)x1 − (u2λ1)x2 + λ1u1
x1 + λ2u2

x1

−(u1λ2)x1 − (u2λ2)x2 + λ1u1
x2 + λ2u2

x2

 .

In conclusion the adjoint equation for λ is

−∂λ
∂t

+B(u)∗λ+∇q + F ′(u) = ν∆λ, λ(T ) = g′(u(T )), (5.14)

where q ∈ L2(Ω) is the corresponding pressure for the adjoint equation. Assume (u∗, v∗) is an

optimal pair and assume λ is the solution to (5.14) with u = u∗. It follows from (2.25) that the

optimality condition for v∗ is

H ′(v∗) +B∗λ = 0

if H is differentiable. In general (if H is convex) the optimality condition is given by

H(v)−H(v∗(t)) + 〈B(v − v∗(t)), λ(t)〉 ≥ 0 (5.15)

for all v ∈ K, a.e. in (0, T ). In summary, we have the necessary optimality system (5.11)–(5.14)–

(5.15) for (u∗, v∗, λ).

5.3 SP for Navier-Stokes Control

The linearized equality constraint E′(x)(x+ − x) + E(x) = 0 for x = (u, v) is given by

〈∂u
+

∂t
, φ〉+ b(u, u+ − u, φ) + b(u+ − u, u, φ) + b(u, u, φ) + a(u+, φ) = 〈Bv+, φ〉
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for all φ ∈ V and a.e. in (0, T ). Thus the saddle point problem for the SP update (u+, v+) is

written as
∂

∂t
u+ + u+ · ∇(u+ − u) + u+ · ∇u+∇p = ν∆u+ +Bv+

− ∂

∂t
λ+B(u)∗λ+ F ′(u+) = 0, λ(T ) = g′(u(T ))

H ′(v+) +B∗λ = 0

(5.16)

if K = U and H is differentiable. In general the last equation is

H(v)−H(v∗(t)) + 〈B(v − v∗(t)), λ(t)〉 ≥ 0

for all v ∈ K. Thus we have the necessary optimality written for the SP step for the incom-

pressible Navier-Stokes control problem.

5.4 Numerical Methods

We consider a 2-dimensional step flow for the incompressible Navier-Stokes system. Step flow

includes channel flow and cavity flow, see Figure 5.1. We first partition domain Ω ⊂ R2 into

square cells. Each cell is h×h where h = ∆x = ∆y is the meshsize. We use a staggered grid with

pressure p located at the center of each cell, and velocity u = (u1, u2) located at the corners of

each cell. Staggering the data is necessary for the method to work, which has been discovered

experimentally [48, 29].

✲ x1

✻

x2

0 1 2 3 4

0

1

2

Step flow

Channel flow

Cavity flow

Figure 5.1: Two-dimensional staggered grid for step flow with h × h square cells, h = 1/4.
Pressure nodes × at cell centers and velocity nodes • at cell corners.
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In order to develop an SP algorthim for the Navier-Stokes control problem we introduce a

numerical integration in space and for solutions to (5.10)–(5.11).

5.4.1 Gradient of Pressure

First we describe how to discretize ∇p on the grid (Figure 5.1) for the Navier-Stokes equation

(5.11). We use the volume integral on Ω̂ij = [xi − h
2 , xi + h

2 ]× [yj − h
2 , yj + h

2 ], i.e.,

∫
Ω̂ij

∇p dω =


∫

Ω̂ij
px dx dy

∫
Ω̂ij

py dy dx

 =


∫ yj+h

2

yj−h
2

(p(xi + h
2 , y)− p(xi − h

2 , y)) dy

∫ xi+h
2

xi−h
2

(p(x, yj + h
2 )− p(x, yj − h

2 )) dx

 .

We use the trapezoidal rule [66]∫ b

a
f(x) dx =

f(b) + f(a)

2
(b− a) +

(b− a)3

12
f ′′(c), c ∈ [a, b]

to evaluate the line integrals and we obtain the second order approximation of ∇p:

∇hp =


pi+ 1

2
,j+ 1

2
+ pi+ 1

2
,j− 1

2
− pi− 1

2
,j+ 1

2
+ pi− 1

2
,j− 1

2

2h

pi+ 1
2
,j+ 1

2
+ pi− 1

2
,j+ 1

2
− pi+ 1

2
,j− 1

2
+ pi− 1

2
,j− 1

2

2h

 ,

where pi+ 1
2
,j+ 1

2
is the pressure at the pressure node located at position (xi + h

2 , yj + h
2 ) on the

grid. Notice that we place the gradient of p at the velocity node, which is the center of the

subdomain Ω̂i,j (see Figure 5.2).

5.4.2 Divergence of Velocity

Second we describe how to discretize the incompressibility ∇·u on the grid (Figure 5.1) for the

Navier-Stokes equation (5.11). We use the volume integral on cell Ωij = [xi, xi+h]× [yj , yj +h],

i.e.,∫
Ωij

∇ · u dω =

∫
∂Ωij

n · u ds

=

∫ yj+h

yj

(
u1(xi + h, y)− u1(xi, y)

)
dy +

∫ xi+h

xi

(
u2(x, yj + h)− u2(x, yj)

)
dx.
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pi− 1
2
,j+ 1

2
pi+ 1

2
,j+ 1

2

pi− 1
2
,j− 1

2
pi+ 1

2
,j− 1

2

+−

(px)i,j

pi− 1
2
,j+ 1

2
pi+ 1

2
,j+ 1

2

pi− 1
2
,j− 1

2
pi+ 1

2
,j− 1

2

+

−

(py)i,j

Figure 5.2: Gradient term ∇p = (px, py) located at i, j grid node.

We use the trapezoidal rule to evaluate the line integrals and we obtain the second order

approximation of ∇ · u:

∇h · u =
u1
i+1,j+1 + u1

i+1,j − u1
i,j+1 − u1

i,j

2h
+
u2
i+1,j+1 + u2

i,j+1 − u2
i,j+1 − u2

i,j

2h
,

where ui,j = (u1
i,j , u

2
i,j) is the velocity at the grid node located at position (xi, yj), see Figure 5.3.

Thus, we place the divergence of u at the center of the cell (which is the pressure node).

Note that ∇h · = −(∇h)∗, i.e., the divergence approximation is the dual of the (negative)

gradient approximation. This is not surprising since we have, in general,∫
Ω

(div u)f =

∫
∂Ω

(n · u)f −
∫

Ω
u · ∇f, (5.17)

for all vector fields u and scalar functions f . If n · u = 0 on ∂Ω, then (5.17) reduces to∫
Ω

(div u)f = −
∫

Ω
u · ∇f,

which is equivalent to

〈div u, f〉 = 〈u,−∇f〉,

and implies that the divergence is the dual of the negative gradient.
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u1i+1,j+1

u1i+1,j

u1i,j+1

u1i,j

+− +

u2i+1,j+1

u2i+1,j

u2i,j+1

u2i,j

+

−

Figure 5.3: Divergence term div u = u1
x + u2

y located at i, j pressure node.

5.4.3 Convective Term

For the convective term note that for u ∈ V and φ ∈ H1(Ω) we have

J1 =

∫
Ω̂ij

u · ∇φdx =

∫
∂Ω̂ij

n · (uφ) ds

=

∫ yj+h
2

yj−h
2

(u1φ)(xi +
h

2
, y) dy −

∫ yj+h
2

yj−h
2

(u1φ)(xi −
h

2
, y) dy

+

∫ xi+
h
2

xi−h
2

(u2φ)(x, yj +
h

2
) dx−

∫ xi+
h
2

xi−h
2

(u2φ)(x, yj −
h

2
) dx,

where Ω̂ij = [xi − h
2 , xi + h

2 ]× [yj − h
2 , yj + h

2 ]. By the trapezoidal rule we obtain

J1 ≈ h
((u1

i+1,j + u1
i,j

2

)(φi+1,j + φi,j
2

)
−
(u1

i−1,j + u1
i,j

2

)(φi−1,j + φi,j
2

))

+ h

((u2
i,j+1 + u2

i,j

2

)(φi,j+1 + φi,j
2

)
−
(u2

i,j−1 + u2
i,j

2

)(φi,j−1 + φi,j
2

))
.

Thus we obtain the second order approximation of u · ∇u:

u · ∇hu =

 u · ∇hu1

u · ∇hu2

 ,
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where

u · ∇hu1 =
1

4h

(
(u1
i+1,j + u1

i,j)
2 − (u1

i−1,j + u1
i,j)

2
)

+
1

4h

(
(u2
i,j+1 + u2

i,j)(u
1
i,j+1 + u1

i,j)− (u2
i,j−1 + u2

i,j)(u
1
i,j−1 + u1

i,j)
)

u · ∇hu2 =
1

4h

(
(u1
i+1,j + u1

i,j)(u
2
i+1,j + u2

i,j)− (u1
i−1,j + u1

i,j)(u
2
i−1,j + u2

i,j)
)

+
1

4h

(
(u2
i,j+1 + u2

i,j)
2 − (u2

i,j−1 + u2
i,j)

2
)
.

Figure 5.4 depicts the computation u · ∇φ on the grid, where φ = u1 or u2.

i, j

i, j+1

i−1, j i+1, j

i, j−1

+−

+

−

Figure 5.4: Convective term u · ∇φ (with φ = u1 or u2) located at i, j grid node.

5.4.4 Diffusion Term

For the diffusion (Laplace) term −∆u we have

J2 = −
∫

Ω̂ij

∆u dx = −
∫
∂Ω̂ij

n · ∇u ds =


−
∫
∂Ω̂ij

n · ∇u1 ds

−
∫
∂Ω̂ij

n · ∇u2 ds

 .
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For φ = u1 or u2 we have

−
∫
∂Ω̂ij

n · ∇φds = −
(∫ yj+h

2

yj−h
2

∂φ

∂x1
(xi +

h

2
, y) dy −

∫ yj+h
2

yj−h
2

∂φ

∂x1
(xi −

h

2
, y) dy

+

∫ xi+
h
2

xi−h
2

∂φ

∂x2
(x, yj +

h

2
) dx−

∫ yj+h
2

yj−h
2

∂φ

∂x2
(x, yj −

h

2
, y) dx

)
.

We use the midpoint rule∫ b

a
f(x) dx = f

(
a+ b

2

)
(b− a)− (b− a)3

24
f ′′(c), c ∈ [a, b]

and the second order central difference

∂φ

∂x1
(xi +

h

2
, y) ≈ φ(xi + h, y)− φ(xi, y)

h

to obtain

J2

h2
≈


4u1

i,j − u1
i+1,j − u1

i−1,j − u1
i,j+1 − u1

i,j−1

h2

4u2
i,j − u2

i+1,j − u2
i−1,j − u2

i,j+1 − u2
i,j−1

h2

 = −(∆hu).

Thus we place the Laplace term −∆u at the i, j grid node (see Figure 5.5).

φi,j

φi,j+1

φi−1,j φi+1,j

φi,j−1

+−
+

φi,j

φi,j+1

φi−1,j φi+1,j

φi,j−1

+

−

Figure 5.5: Diffusion (Laplace) term −∆u = (−∆u1,−∆u2) located at i, j grid node. (φ = u1

for −∆u1 and φ = u2 for −∆u2.)
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5.4.5 Second Order Implicit–Explicit Time Integration Method

In this section we introduce the second order implicit-explicit time integration method for the

resulting approximation dynamics from Sections 5.4.1—5.4.4:

d

dt
ui,j + (u · ∇u)h +∇hp = ν∆hu+ fi,j , ∇h · u = 0. (5.18)

For the control problem we have fi,j = Bvi,j where v is the control and B is the input matrix

(see Section 5.1). To integrate (5.18) in time we use an implicit scheme for the Stokes part and

an explicit scheme with two-step method for the convective part. Given current velocities un

and pressure pn, as well as previous velocities un−1 (for use in computing the convective term),

we update un+1 and pn+1 by solving
un+1 − un

∆t
− ν∆h

(
un+1 + un

2

)
+

3

2
(un · ∇hun)− 1

2

(
un−1 · ∇hun−1

)
+∇hpn+1 = f

∇h · un+1 = 0.

(5.19)

Equivalently we solve

(
I − ν

2
∆t∆h

)
un+1 + ∆t∇hpn+1 = un +

ν

2
∆t∆hu

n

−3

2
∆t (un · ∇hun) +

1

2
∆t
(
un−1 · ∇hun−1

)
+ ∆t f

∇h · un+1 = 0.

This uses the Crank-Nicolson method for the Stokes operator and the two-step explicit scheme

for the convective term. It is the second order Adams-Bashforth two-step method for approxi-

mating the convective term using the previous two terms.

In general, a linear multistep method is an algorithm to approximate solutions to ODEs

dx

dt
= Ax+ f(x) (5.20)

where A is a matrix and f is nonlinear but quadratic. Assume A is very stiff. (5.19) corresponds

to
xn+1 − xn

∆t
= A

(
xn+1 + xn

2

)
+

3

2
f(xn)− 1

2
f(xn−1).
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It is based on

x(tn+1)− x(tn) =

∫ tn+1

tn

(Ax(t) + f(x(t)))dt

=
1

2
A(x(tn+1) + x(tn))∆t+

(
3

2
f(xn)− 1

2
f(xn−1)

)
∆t+O(∆t3).

Thus, the resulting discretized (in time and space) optimal control problem is

min
N∑
n=1

(
`(
un + un−1

2
) + h(vn−

1
2 )

)
∆t+ g(uN )

subject to (5.19). The SP method involves solving the saddle point problem:

un+1 − un
∆t

− ν∆h

(
un+1 + un

2

)
+

3

2
(un · ∇hun)− 1

2

(
un−1 · ∇hun−1

)
+∇hpn+1 = Bvn

∇h · un+1 = 0.

−λ
n − λn−1

∆t
− ν∆h

(
λn + λn−1

2

)
+

3

2
B(un)∗λn − 1

2
B(un−1)∗λn−1 +∇qn + `′(un) = 0

h′(vn) = B(un)∗λn,

where u0 is given, and λnN = g′(uN ).
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Chapter 6

Discretization in Time and Space

In this chapter we discuss how to discretize PDE constraint problems in time and space. We

then apply the SP (Sequential Programming) method described in Chapter 3 to the discretized

problem to find an approximate solution to the original constrained problem.

Let xh ∈ C be a solution to the discretized problem:

min F (xh) +H(u) subject to Eh(xh, u) = 0, uh ∈ C. (6.1)

Eh : X×C → Y represents a family of discretized problems for h > 0. Eh is stable and consistent

in the following sense. Assume that Eh(xh, u) = 0 given u ∈ C has a solution xh, and there

exists a solution x to E(x, u) = 0 given u ∈ C, such that xh → x in X. Let (x∗h, u
∗
h) be an

optimal pair for (6.1). Then for any ε > 0 there exists h > 0 such that

F (x∗h) +H(u∗h) ≤ F (x) +H(u) + ε for all u ∈ C.

Suppose there exists a weakly convergent subsequence of u∗h to u∗ ∈ C and F and H are weakly

sequentially lower semicontinuous, then for all ε > 0

F (x∗) +H(u∗) ≤ F (x) +H(u) + ε for all u ∈ C,

and (x∗, u∗) is an optimal pair for the original contrained problem. Therefore, under the stability

and consistency condition the solution pair (x∗h, u
∗
h) approximates the optimal pair (x∗, u∗) for

the constrained optimization (2.3).

One can also argue the strong convergence and the convergence rate based on the well-
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posedness and convergence analysis of the SP method in Section 3.4.1, i.e., we assume

Gh =

 Q (Eh)x
∗

(Eh)x 0


is uniformly invertible in h > 0 (sufficiently small).

Next we introduce the time integration method for controlled ODEs by the Runge-Kutta-

Gauss method and the space discretization method for the incompressible Navier-Stokes control

system.

6.1 Application of SP for Optimal Control Problem

In this section we introduce the Runge-Kutta-Gauss method for high order integration in time

of the saddle point problem for the optimal control problem. We show how to implement the

method for the discretized two point boundary value (TPBV) problem.

6.1.1 High Order Discretized Problem

In this section we discuss the optimal control problem (2.19)–(2.20) described in Section 2.4:

min

∫ T

0
(`(x(t)) + h(u(t)) dt+ g(x(T )) (6.2)

subject to
d

dt
x(t) = f(x(t), u(t)), x(0) = x0, u(t) ∈ U, (6.3)

where U is a constraint set in Rm for control u(t).

We introduce the high order time integration based on the s-stage Runge-Kutta-Gauss

method which is of 2s order, and the corresponding Gauss quadrature rule for the cost func-

tional. The method enables us to develop the time decomposition method and we need much

fewer control variables. We apply the Lagrange multiplier method for the resulting constrained

optimization and derive the necessary optimality condition. It turns out it is exactly the same

as applying the Runge-Kutta-Gauss method for the TPBV (two point boundary value) prob-

lem (2.24).

For the well-posedness of (6.2)–(6.3) we assume the following. The set of admissible controls

is integrable, i.e.,

Uad =
{
u ∈ L1(0, T ;Rm) : u(t) ∈ U

}
,

and (1) existence of solutions to control dynamics (6.3), and (2) existence of solution to the
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optimal control problem (6.2) subject to (6.3) and u ∈ Uad.
We also assume the following for ω-dissipativeness in x (6.4) and for control growth (6.5):

(f(x, u)− f(y, u), x− y) ≤ ω |x− y|2 for all u ∈ U, (6.4)

and moreover that either U ⊂ Rm is bounded or that h(u) ≥ c1 |u|2 and

(f(x, u), x) ≤ ω |x|2 + c2 |u|2 (6.5)

for constants ω, c1, c2 > 0 independent of x, y ∈ Rn and u ∈ U . Also we assume that for each

(x, p) ∈ Rn ×Rn the Hamiltonian

u→ h(u) + p · f(x, u)

admits a unique minimizer over U denoted by Ψ(x, p). Finally we assume that `, h, g and f

are sufficiently smooth with ` and g bounded from below.

6.1.2 Runge-Kutta-Gauss Method

In this section we introduce the Runge-Kutta-Gauss method for the time integration of the two

point boundary value problem (2.24).

We divide the horizon [0, T ] into N uniform intervals [(k − 1) ∆t, k∆t], k = 1, . . . , N , with

N∆t = T . Let qi, 1 ≤ i ≤ s be the s-point Gauss-Legendre quadrature points of [−1, 1] and

define qk,i = (k − 1)∆t+ qi+1
∆t , the Gauss points on the subhorizon [(k − 1) ∆t, k∆t]. First, we

use the Gauss quadrature rule for the cost functional:

min JN (uN ) =

N∑
k=1

s∑
i=1

wi (`(xk,i) + h(uk,i)) ∆t+ g(xN ), (6.6)

where

uN = {col(uk,1, . . . , uk,s)}, 1 ≤ k ≤ N,

with uk,i = u(t) at the time point t = qk,i. Thus, we have control vector at the nth iterate un

of size msN , where m is the number of controls, s is the number of stages on each subinterval,

and N is the total number of subintervals on [0, T ]. That is, the total number of unknowns

is msN , which implies we have limited the number of unknowns. Number of stages s dictates

accuracy on each subinterval and N dictates accuracy on the entire time horizon. Since the

RKG method is 2s order we have accuracy in time based on (∆t)2s = ( TN )2s. Thus we control

the overall accuracy of the method by balancing the size of s and N together.

The implicit s-stage Runge-Kutta-Gauss (RKG) approximation uses on each interval the
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piecewise polynomial approximation xN,s(t) of x(t) which is continuous but not C1:

xN,s(t) =
s−1∑
k=0

αkLk

(
2
t− (k − 1

2)∆t

∆t

)
, t ∈ [(k − 1)∆t, k∆t].

The method is given by 

xk − xk−1

∆t
=

s∑
j=1

wj f
k,j

fk,j = f(xk,j , uk,j)

xk,i = xk−1 + ∆t
∑s

j=1 ai,jf
k,j

(6.7)

where xk are unknown states at nodes (terminal points of each subinterval) and xk,i are unknown

states at the Gauss points. Here (cj , wj), 1 ≤ j ≤ s is the Gauss-Legendre quadrature rule and

the Butcher tableau is given by

ai,j =

∫ ci

0
Lj(t) dt, Lj(t) =

∏
k 6=j

t− ck
cj − ck

. (6.8)

Thus, xk,j approximates the value x(t) at t = qk,j , 1 ≤ k ≤ N, 1 ≤ j ≤ s and {xk,j}1≤j≤s
satisfies the system of nonlinear equations, i.e., the second and third equations of (6.7). Given

xk−1, we solve the nonlinear system, i.e., the second and third equations of (6.7), for the

intermediate values xk,i, then update xk by the first equation of (6.7).

For example, s = 1 coincides with the implicit midpoint rule, and for s = 2 we have

xk − xk−1

∆t
= w1 f

k,1 + w2 f
k,2

fk,1 = f(xk,1, uk,1), fk,2 = f(xk,2, uk,2)

xk,1 = xk−1 + ∆t (a11f
k,1 + a12f

k,2), xk,2 = xk−1 + ∆t (a21f
k,1 + a22f

k,2)

where

A =


1
4

3−2
√

3
12

3+2
√

3
12

1
4

 , w =


1
2

1
2

 , c =


3−
√

3
6

3+
√

3
6

 .

In summary we have the discretized optimal control problem: minimize (6.4) subject to (6.5)

over uN = {col(uk,1, . . . , uk,s)}Nk=1 in U .
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6.1.3 Necessary Optimality for Discretized Control Problem

In order to derive the necessary optimality condition we define the Lagrange functional for

(6.4)–(6.5) by

L(xk, uk,·, fk,·; pk, pk,·) =

N∑
k=1

s∑
i=1

wi (`(xk,i) + h(uk,i)) ∆t+ g(xN )

+
N∑
k=1

[
s∑
i=1

wi (f(xk,i, uk,i)− fk,i)pk,i +

(
−x

k − xk−1

∆t
+

s∑
i=1

wi f
k,i

)
pk

]
∆t.

(6.9)

Applying the Lagrange multiplier theory with (6.9), it can be shown that the necessary opti-

mality condition for (6.6)–(6.7) is given by

xk − xk−1

∆t
=

s∑
j=1

wj f
k,j

fk,j = f(xk,j , uk,j)

xk,i = xk−1 + ∆t
s∑
j=1

ai,jf
k,j



−p
k − pk−1

∆t
=

s∑
j=1

wj g
k,j

gk,j = fx(xk,j , uk,j)tpk,j + `x(xk,j)

pk,i = pk + ∆t

s∑
j=1

a(s+1)−i,(s+1)−jg
k,j

uk,j = Ψ(xk,j , pk,j), 1 ≤ k ≤ N, 1 ≤ j ≤ s

(6.10)

with x0 = x0 and pN = gx(xN ). Note that (6.9) could be obtained by applying the RKG

method to the two point boundary value problem for x and p, but we derived it by the Lagrange

multiplier theory and variational formulation (2.16).
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6.1.4 Discretized Saddle Point Problem for SP

In this section we discretize the saddle point problem (6.10) for applying the SP method. We

discretize (6.10) for SP with increments in x, p, f , and g:

∆xk = xkn+1 − xkn, ∆xk,i = xk,in+1 − xk,in , ∆fk,j = fk,jn+1 − fk,jn ,

∆pk = pkn+1 − pkn, ∆pk,i = pk,in+1 − pk,in , ∆gk,j = gk,jn+1 − gk,jn ,

where the superscript denotes the time step and the subscript denotes the SP step.

∆xk = xkn+1 − xkn, ∆xk−1 = xk−1
n+1 − xk−1

n

implies

∆xk −∆xk−1

∆t
=

s∑
j=1

wj(f
k,j
n+1 − fk,jn ).

fk,jn+1 = f(xk,jn+1, u
k,j
n+1) ≈ fx(xk,jn , uk,jn )(xk,jn+1 − xk,jn ) + fu(xk,jn , uk,jn )(uk,jn+1 − uk,jn ) + f(xk,jn , uk,jn )

fk,jn = f(xk,jn , uk,jn )

implies

fk,jn+1 − fk,jn = fx(xk,jn , uk,jn )(xk,jn+1 − xk,jn ) + fu(xk,jn , uk,jn )(uk,jn+1 − uk,jn ).

xk,i = xk−1 + ∆t
s∑
j=1

ai,jf
k,j

implies

∆xk,i = xk,in+1 − xk,in = (xk−1
n+1 − xk,in ) + ∆t

s∑
j=1

ai,j(f
k,j
n+1 − fk,jn ).
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Thus we have the discretized saddle point problem for (6.10):

∆xk −∆xk−1

∆t
=

s∑
j=1

wj∆f
k,j

∆fk,j = fx(xk,jn , uk,jn )∆xk,j + fu(xk,jn , uk,jn )∆uk,j

∆xk,i = ∆xk−1 + ∆t

s∑
j=1

ai,j∆f
k,j



−∆pk −∆pk−1

∆t
=

s∑
j=1

wj ∆gk,j

∆gk,j = fx(xk,j , uk,j)t∆pk,j

∆pk,i = ∆pk + ∆t

s∑
j=1

a(s+1)−i,(s+1)−j∆g
k,j .

(6.11)

6.1.5 Saddle Point Solver and Preconditioner

Next we discuss our method for solving the saddle point problem (6.11). We define the unknown

vector y = col{col((xk,1, · · ·xk,s, xk), (pk−1, pk,1, · · · , pk,s))}Nk=1 ∈ (Rn(s+1) × Rn(s+1))N . Then

(6.10) is a sparse system of nonlinear equations for y, i.e., the Jacobian J of equation (6.10) is

a block tri-diagonal matrix with bandwidth 2n(s+ 1). The diagonal block of J has the form

Jk,k =

[
Ak S

Q −Atk

]

where Ak, Qk, S ∈ Rn(s+1)×n(s+1) are defined by

Ak =
I

∆t
+

[
A

w

]
diag([fx(xk,1), · · · fx(xk,s)])

Qk = −
[
A

w

]
diag(`x(xk,i))

S =
1

β

[
A

w

]
BBt.
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We solved the system (6.10) by Newton method in our calculations of the optimal control

{uk,i}. The preconditioner P for system (6.11) (matrix J) is defined by P = diag(J−1
k,k) where

diag(Jk,k) is the diagonal block matrix with entry Jk,k.

Remarks (1) If we apply the Newton method for nonlinear system (6.10) the Jacobian is

similar to J except

Qk = −
[
A

w

]
diag({`xx(xk,i) + pk,i fxx(xk,i)}sk=1)

which adds the indefinite term (2nd term) for Qk.

(2) In this sense P is the diagonal Newton preconditioner.

(3) It is an advantage of the SP method compared to Newton’s method for (6.10).
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Chapter 7

Concrete Examples and Numerics

In this chapter we present specific examples to demonstrate the applicability of the SP method

for the constrained optimization. First, we show how to apply SP for the finite dimensional

optimal control problem. We use the Lorenz attractor system as a test example. Second, we

consider a non-smooth coefficient control problem in elliptic equations. The third problem is the

moving damping actuator control problem. They represent the constrained minimization with

technical difficulties (challenge) and show the feasibility of the SP method. Also, we present an

open loop simulation for our proposed numerical method for Navier-Stokes control systems.

7.1 Lorenz Attractor With Control

In this section we discuss the optimal control of the Lorenz attractor. This is a benchmark

problem for contrained optimization with equality constraint governed by an ODE. The control

enters linearly into the system dynamics (we add it to the third component of state). Our

purpose is to use this benchmark problem (Lorenz system) to illustrate our general purpose

optimal control solver based on SP. Moreover, we show how the RKG method discussed in

Section 6.1.2 is implemented for the two point boundary value problem.

The general Lorenz system (without control) takes the form

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz,

where σ, ρ, β > 0 are system parameters [45]. When ρ > 1 there are three equilibria

(0, 0, 0), (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1).
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The two nonzero equilibria are stable [59] if and only if

ρ < σ
σ + β + 3

σ − β − 1
, (7.1)

which can occur only when σ > β + 1. The stability is local stability (since the system is

nonlinear) based on the eigenvalues of the linearization at an equilibrium.

In fact, the origin loses stability due to a pitchfork bifurcation [61] that occurs at parameter

value ρ = 1. Thus, the origin is not a stable equilibrium. For the “interesting” cases (i.e.,

when there are three equilibria) there are two possibilities: (1) the origin is not stable, and

the other two equilibria are stable, (2) all three equilibria are not stable. The two additional

equilibria lose stability through a Hopf bifurcation [61] that occurs when ρ = σ σ+β+3
σ−β−1 . Orbits

are still attracted towards these equilibria, but spiral out from them. For this reason we see the

well-known butterfly shape associated with the Lorenz attractor in this case.
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Figure 7.1: Lorenz attractor with parameters σ = 4, ρ = 50, β = 1 exhibits a butterfly shape.

We consider the specific problem with σ = 4, ρ = 50, β = 1 on a finite time horizon [0, T ],

with change of coordinates x = x1, y = x2, and z = x3 + 50 (the third coordinate is shifted

down by −50.) Thus, our specific Lorenz system (with control) is

dx1

dt
= 4(−x1 + x2),

dx2

dt
= x1x3 − x2,

dx3

dt
= x1x2 − x3 − 50 + u, (7.2)

where u(t) ∈ Uad = {u ∈ L2(0, T ;R) : |u(t)| ≤ M a.e. t ∈ [0, T ]}. The three equilibria (for

the uncontrolled system) are e1 = (0, 0,−50), e2 = (7, 7,−1), and e3 = (−7,−7,−1). The first
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equilibrium e1 is not stable, and the two additional equilibria e2 and e3 are also not stable,

which follows from (7.1) for our choice of parameters:

ρ = 50 > 16 = σ
σ + β + 3

σ − β − 1
.

The controlled Lorenz dynamics (7.2) may be written for ~x = (x1, x2, x3) as

d~x

dt
= A(~x) +Bu, where A(~x) =

 −4x1 + 4x2

x1x3 − x2

x1x2 − x3 − 50

 , B =

 0

0

1

 . (7.3)

Linearization of the Lorenz system involves the derivative of A(~x), i.e.,

A′(~x) =

 −4 4 0

−x3 −1 −x1

x2 x1 −1

 . (7.4)

We evaluate A′(~x) at each of the three equilibria e1, e2, e3 and check the eigenvalues of the

linearized system matrix. Explicitly we have

A′(e1) =

 −4 4 0

50 −1 0

0 0 −1

 A′(e2) =

 −4 4 0

1 −1 −7

7 7 −1

 A′(e3) =

 −4 4 0

1 −1 7

−7 −7 −1


and we have computed the eigenvalues of the A′(ei) at each equilibrium

Equilibrium Eigenvalues of A′(ei)

e1 = (0, 0,−50) −16.7215, 11.7215, −1.0000

e2 = (7, 7,−1) −6.6887, 0.3443 + 7.6477i, 0.3443− 7.6477i

e3 = (−7,−7,−1) −6.6887, 0.3443 + 7.6477i, 0.3443− 7.6477i

None of the equilibria is stable since not all real parts of eigenvalues are negative [23]. However,

orbits are attracted to one of the equilibria e2 or e3 due to the negative real eigenvalue −6.6887,

but repelled in a slow outward spiral due to the pair of imaginary eigenvalues with positive real

part 0.3443 ± 7.6477i. This behavior is consistent with the butterfly shape observed in Figure

7.1.
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Our goal is to steer the system to one of the equilibria e2 or e3 by control, and we choose

to target the equilibrium e2 = (7, 7,−1). We design a cost functional for this purpose:∫ T

0

1

2
|x|2 +

β

2
|u|2dt+

c

2
|x(T )− xtarget|2, (7.5)

with (Tikhonov) regularization parameters β, c > 0. The first term is the standard quadratic

regularization cost of the state. The second term is for L2 regularization (a fidelity) of the

control. The last term is a targeting cost for the desired (target) state xtarget = (7, 7,−1). Thus,

(7.2)–(7.5) is a specific case of the optimal control problem described in Section 2.4 with

f0(t, x, u) =
1

2
|x|2 +

β

2
|u|2, and g(x(T )) =

c

2
|x(T )− xtarget|2.

The parameters β > 0 and c > 0 must be chosen for our purpose. We offer a parameter study

in Section 7.1.3.

7.1.1 Implementation of Controlled Lorenz Problem

In this section we discuss our implementation for the optimal control problem (7.2)–(7.5). We

have a very good solver based on the SP method for the two point boundary value (TPBV)

problem (2.26) which is the necessary optimality system for this problem. Our implementation

is in MATLAB and called Tpbdry.m. We explain the code Tpbdry.m in detail in Section 7.1.4,

but start by showing how to use Tpbdry.m to solve (7.2)–(7.5).

To run Tpbdry.m we specify the number of stages s which we denote by m, the number of

subintervals N denoted by nt, and the terminal time T :

m=5; nt=20; T=5; dt=T/nt;

We set flag idx to 0 to compute the Gauss point quadrature and weights, imax is for the number

of inner SP loops, beta corresponds to 1/β where β is the coefficient for the control cost, c is

the coefficient for the targeting cost, and al is α corresponding to the damped update in the

outer SP loop.

idx=0; imax=1; beta=1; c=1; al=.7;

We set our initial condition x(0) = x0 and run the two point boundary value problem solver:

x0=[1 1 1]’; Tpbdry;

The output is vector y containing the state vectors x = (x1, x2, x3) and adjoint vectors λ at the

Gauss points and endpoints of each subinterval. Thus y has size 2n(s+ 1)× nt where n = 3 is

the system dimension (i.e., the number of components of state).
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We extract the state at each time point (Gauss points and endpoints of each subinterval)

using the indices for state ix, adjoin the initial condition x0, and reshape so that each state is

a column:

xxx=[x0;y(ix)]; xxx=reshape(xxx,3,mp1*nt+1);

Thus, we can plot the orbit of x0 (by control) over [0, T ]:

plot3(xxx(1,:),xxx(2,:),xxx(3,:)); grid on

Since we set imax to 1 we did one SP step. To repeat the process we set flag idx to 1 so that

the code Tpbdry does not recompute the Gauss points and weights (we can reuse them). Now,

running Tpbdry again uses the update y from the first iteration and outputs the next damped

update:

idx=1; Tpbdry;

Thus we obtain a sequence of damped updates y1, y2, y3, . . .. Figure 7.2 shows the orbit of x0

for 10 iterations. We can see the iterations converging to a limit (bold curve).
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Figure 7.2: Iterates x1, . . . , x10 by Tpbdry.m for the controlled Lorenz system. Parameters
β = 1, c = 1 over time horizon [0, 5] with 5 stages and 20 subintervals, targeting equilibrium
(7, 7,−1) with initial condition x0 = (1, 1, 1) and damping parameter α = .7.
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We can implement the TPBV solver for other choices of damping parameter α, control cost

parameter β, and targeting cost parameter c with the following MATLAB script:

m=5; nt=20; T=5; dt=T/nt; idx=0; imax=1; beta=1; c=1; al=.7;

x0=[1 1 1]’; Tpbdry; xxx=[x0;y(ix)]; xxx=reshape(xxx,3,mp1*nt+1);

plot3(xxx(1,:),xxx(2,:),xxx(3,:)); grid on;

idx=1; Tpbdry; xxx=[x0;y(ix)]; xxx=reshape(xxx,3,mp1*nt+1);

hold on; plot3(xxx(1,:),xxx(2,:),xxx(3,:))

for i=1:8, Tpbdry; xxx=[x0;y(ix)]; xxx=reshape(xxx,3,mp1*nt+1);

plot3(xxx(1,:),xxx(2,:),xxx(3,:)) end

Parameters α, β, c may be changed in the first line of code.

The output vector y of Tpbdry also contains the adjoint vector λ which we use to determine

the control u by the optimality condition:

u = − 1

β
Btλ.

We extract u from λ with

ppp=y(ip); pT=xxx(:,end)-[7 7 -1]’; pT=c*pT;

ppp=[ppp;pT]; ppp=reshape(ppp,3,mp1*nt+1);

uuu=-beta*ppp(3,:);

Here ip is the index for the adjoint components of y at the Gauss points and initial (left)

endpoints of each subinterval. We compute the terminal condition λ(T ) = g′(x(T )) and adjoin

to λ in the second line. Since our input matrix is B = (0, 0, 1)t we can form the product Btλ

by just picking off the third component of the adjoint at each time point, which we do in the

third line. In Figure 7.3 we plot the sequence of controls u1, . . . , u10 corresponding to states

x1, . . . , x10 from Figure 7.2. We can see the iterations converging to a limit (bold curve).

Remark Notice in Figure 7.3 that the optimal control u∗ (i.e., the limit of the SP updates ui)

does not appear to be very smooth. This is because we have found a finite dimensional (vector)

approximation of what should be a function u(t). We can achieve a better result by increasing

the number of stages s or total number of subintervals N . In Figure 7.4 we exhibit the effect

when N is increased from 20 to 40 and 80 (i.e., the N is doubled each time). Alternatively,

we can take the vector approximation and fit with a polynomial interpolate (e.g., a Legendre

interpolating polynomial).
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Figure 7.3: Controls u1, . . . , u10 corresponding to states x1, . . . , x10 in Figure 7.2.
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Figure 7.4: Control u after 10 iterations for varying number of subintervals N = 20, 40, 80.
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7.1.2 Cost and Convergence Study

In this section we discuss how to compute the cost (7.5) and analyze the convergence rate of

SP iterates. We study the effect on cost and convergence of varying the number of stages s and

subintervals N .

Recall the cost functional (6.6) for the RKG time integration method, i.e.,

JN (uN ) =
N∑
k=1

s∑
i=1

wi (`(xk,i) + h(uk,i)) ∆t+ g(xN ), (7.6)

where uN = {col(uk,1, . . . , uk,s)}Nk=1. We obtain state x = (xk,i) and control u = (uk,i) as

described in Section 7.1.1, and then compute the cost (7.6) as follows.

First, we compute the state cost, i.e., the term involving `(xk,i):

x=y(ii); x=reshape(x,3,m*nt); x=x.*x; x=x(1,:)+x(2,:)+x(3,:);

x=reshape(x,m,nt)*ones(nt,1); l=.5*w’*x;

Then, we compute the control cost, i.e., the term involving h(uk,i):

p=y(jj); p=reshape(p,3,m*nt); u=p(3,:).*p(3,:);

u=reshape(u,m,nt)*ones(nt,1); h=.5*beta*w’*u;

Lastly, we compute the terminal cost g(xN ):

g=y(i0); g=g(end-2:end); g=g-[7 7 -1]’; g=.5*c*g’*g;

Then the total cost JN (uN ) is given by

J=dt*(l+h)+gg;

We examine the effect on the cost of varying the number of stages s and number of subin-

tervals N . To make a fair comparison we require that sN = 100, i.e., the total number of

unknowns is the same for each choice of s and N . Also we use the same parameter values

β = 1, c = 1, α = .7, T = 5 for each. In Table 7.1 we compute the cost for various choices of s

and N and observe the cost over 10 iterations.

We can also judge how well we targeted the desired state xtarget = (7, 7,−1) by computing

|x(T )− xtarget|2:

xT=gg/(.5*c);

In Table 7.2 we compute |x(T )− xtarget|2 for various choices of s and N with sN = 100 for 10

iterations.
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Table 7.1: Cost JN (uN ) for varying numbers of stages s and subintervals N over 10 iterations.

s = 1 2 4 5 10 20
N = 100 50 25 20 10 5

1
2
3
4
5
6
7
8
9
10

872.4280
714.6322

2675.7616
2055.9682
6203.1047
3600.2891
3156.8460
2640.8438
2036.8921
2035.2123

377.9610
419.9762
456.1193
460.3020
454.8385
452.7456
452.1051
451.9125
451.8547
451.8373

303.6741
362.5071
435.5630
460.3399
455.9088
453.1277
452.2196
451.9428
451.8595
451.8344

295.0073
353.6355
439.4228
464.9749
457.4785
453.6627
452.4364
452.0631
451.9507
451.9170

282.0225
344.6961
447.1956
465.6503
457.6720
453.7255
452.3974
451.9856
451.8608
451.8232

282.1531
364.6363
428.8027
445.9826
450.6510
451.7035
451.9780
452.0562
452.0794
452.0863

Table 7.2: Computation of |x(T ) − xtarget|2 for varying numbers of stages s and subintervals
N over 10 iterations.

s = 1 2 4 5 10 20
N = 100 50 25 20 10 5

1
2
3
4
5
6
7
8
9
10

132.6040
7.9952
7.7708

27.4051
333.4218
156.4473
127.7013
294.6828
162.5837
68.1464

13.3909
1.2650
0.4418
0.6731
0.5682
0.5168
0.5003
0.4954
0.4938
0.4934

3.2982
0.3652
0.5654
0.7348
0.6653
0.6062
0.5851
0.5785
0.5765
0.5758

2.9440
0.4968
0.6684
0.8996
0.7764
0.6964
0.6692
0.6607
0.6582
0.6574

3.0459
0.1814
0.7336
0.7954
0.6497
0.5909
0.5720
0.5662
0.5645
0.5640

8.2824
1.3819
1.2955
0.9113
0.8652
0.8517
0.8477
0.8464
0.8461
0.8460
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Now, we examine the convergence rate of iterations by varying the (damping) stepsize α > 0

for the damped update yn+1 = yn + α(y+ − yn). We compute the relative error between state

iterates, i.e., errn+1 = |xn+1−xn|/|xn| where xn is the state component of iterate yn = (xn, λn).

We fix s = 5 and N = 20 and compute the relative errors for the choices α = .1, .3, .5, .7, and

.9 over 10 iterations (see Table 7.3).

Table 7.3: Relative error errn+1 = |xn+1−xn|/|xn| between state iterates for varying (damping)
stepsizes α = .1, .3, .5, .7, .9 over 10 iterations, with s = 5 stages and N = 20 subintervals.

α = .1 .3 .5 .7 .9

err1

err2

err3

err4

err5

err6

err7

err8

err9

0.0346
0.0329
0.0316
0.0308
0.0303
0.0300
0.0299
0.0298
0.0295

0.1019
0.1021
0.1028
0.0984
0.0896
0.0787
0.0668
0.0546
0.0431

0.1968
0.2078
0.1845
0.1450
0.0979
0.0568
0.0301
0.0154
0.0077

0.3344
0.3586
0.2996
0.1589
0.0541
0.0168
0.0051
0.0015
0.0005

0.4948
0.5831
1.0196
0.4842
0.5036
0.4391
0.3755
0.1654
0.0443

We compute the rate of decrease in (relative) error between iterations by taking the ratio of

the current error and the previous error, i.e., rn = errn+1/errn. This is the rate of convergence

of the SP implementation. According to the data in Table 7.4, the convergence rate of our SP

implementation Tpbdry.m is on the order of 1 − α, which verifies the convergence analysis of

the SP method discussed in Section 3.4.1.

7.1.3 Parameter Study for Controlled Lorenz Problem

In this section we discuss the effects of varying parameters β and c for the control cost and

targeting cost (7.5). We also examine changing the terminal time T . We fix parameters s = 5

stages, N = 20 subintervals, and α = .7 for all tests in this section.

First we examine the effect of varying the control authority parameter β, which penalizes

the control cost. Figure 7.5 exhibits the orbit of x0 (by control) and corresponding control u for

three choices β = 1, 1
10 ,

1
100 after 10 iterations. We see that a small β (e.g., β = 1

100) penalizes the

cost (7.5) less for having a control. Thus, the control u can be larger (in norm) and have more

influence over the state dynamics. What we see is the corresponding orbit of initial condition x0

being steered to the target equilibrium more quickly in a more direct path. Conversely, a large
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Table 7.4: Convergence rates rn = errn+1/errn corresponding to iterates in Table 7.3 for
varying (damping) stepsizes α = .1, .3, .5, .7, .9 over 10 iterations.

α = .1 .3 .5 .7 .9

r1

r2

r3

r4

r5

r6

r7

r8

0.9513
0.9622
0.9738
0.9839
0.9911
0.9948
0.9952
0.9932

1.0022
1.0067
0.9571
0.9111
0.8784
0.8486
0.8177
0.7883

1.0562
0.8875
0.7862
0.6754
0.5795
0.5301
0.5109
0.5041

1.0724
0.8353
0.5303
0.3404
0.3113
0.3032
0.3009
0.3002

1.1784
1.7486
0.4748
1.0402
0.8719
0.8552
0.4405
0.2681

β (e.g., β = 1) penalizes the cost more for having a control, and control u must be smaller,

and has less influence on the state dynamics. Thus, we see the orbit of x0 being steered to the

target more slowly in a less direct path.

For the case β = 1
100 (rightmost Figure 7.5) notice that the control u is effectively zero after

time t ≈ 1.25 (i.e., after about one fourth of the terminal time T = 5). We deduce that we

should be able to effectively steer x0 to the target equilibrium in a shorter time, i.e., over a

shorter time horizon, since most of the controlling is done in the first quarter of the given time

horizon. We test this by varying the terminal time T = 5 to T = 2 and to T = 1 in Figure 7.6.

Note that we focus on the controls u only since the corresponding trajectories were found to

be the same practically. That is, we were able to effectively steer initial state x0 to the target

state xtarget by each of the controls in Figure 7.6.

Finally, we explore the effect of changing the target authority parameter c. We use β = 1

over time horizon [0, 5] with 10 iterations, and vary parameter c = 1
10 to c = 1 and c = 10 (see

Figure 7.7). Observe that a small c (e.g., c = 1
10) penalizes the cost (7.5) less for the state at

terminal time x(T ) being far from the target xtarget, i.e., |x(T )−xtarget|2 may be large. Indeed,

we see in Figure 7.7 that the trajectory of x0 is still spiraling around the target equilibrium by

terminal time T . On the other hand, a large c (e.g., c = 10) puts a strong penalty on missing the

target, and thus the trajectory of x0 has almost spiraled to the target equilibrum by terminal

time T . In fact, we have computed |x(T )− xtarget|2 for each c = 1
10 , 1, 10 as 1.9256, 0.5741, and

0.0190, respectively, which confirms our analysis.

7.1.4 The Code Tpbdry.m

In this section we discuss our MATLAB implementation Tpbdry.m for the Lorenz attractor

system with control (7.2)–(7.5). The code is a direct implementation of the saddle point solver
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Figure 7.5: Orbit of x0 = (1, 1, 1) and corresponding control u for varied control authority
parameter β = 1, 1

10 ,
1

100 . (Other parameters α = .7 and c = 1, over time horizon [0, 5].)
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Figure 7.6: Effect on control u of varying terminal time T = 5, 2, 1.
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Figure 7.7: Effect on orbit of x0 of varying target authority parameter c = 1
10 , 1, 10.
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described in Section 6.1.5. We first present the code Tpbdry.m in full.

% Tpbdry.m

if idx==0; n=3; mp1=m+1; n0=mp1*n*nt; n1=m*n*nt; n2=2*n0;

mn=m*n; mn1=mp1*n; mn2=2*mn1;

x=1:1:m-1; x=x./sqrt((2*x+1).*(2*x-1));

j=diag(x,1)+diag(x,-1); [u x]=eig(j); x=diag(x); [x i]=sort(x);

u=u(:,i); w=u(1,:).^2; w=w’; x=.5*(x+1);

for i=1:m; yy=x(i)-x; yy(i)=x(i); a(i,i)=sum(1./yy);

for j=1:i-1; z=x(j)-x; z(j)=x(j); s=-real(exp(sum(log(yy./z))));

a(i,j)=s/z(i); a(j,i)=1/s/yy(j); end; end; a=inv(a);

y=[7 7 -1]’*ones(1,mp1); y=y(:); y=[y;0*y]*ones(1,nt); y=y(:);

a1=[a;w’]; a1=kron(a1,speye(n)); a1=kron(speye(nt),a1);

a2=[w’;a(m:-1:1,m:-1:1)]; a2=kron(a2,speye(n)); a2=kron(speye(nt),a2);

j=reshape(1:1:n2,mn2,nt); ix=j(1:mn1,:); ip=j((mn1+1):mn2,:);

ii=j(1:mn,:);jj=j((n*(m+2)+1):mn2,:); i0=j(mn+1:mn1,:);j0=j(mn1+1:mn1+n,:);

j=1:1:n1; i1=j(1:n:n1); i2=j(2:n:n1); i3=j(3:n:n1);

d=zeros(n1,1); d1=d; d2=d; d3=d; d4=d; d5=d; d6=d; d7=d; d8=d;

d(i1)=7*ones(m*nt,1); d(i2)=d(i1); d(i3)=-ones(m*nt,1);

q0=speye(n1); d3(i3)=ones(m*nt,1); bb=beta*spdiags(d3,0,n1,n1);

J0=speye(n2)/dt; J0(ix,jj)=a1*bb; e=kron(ones(mp1,1),speye(n));

a0=kron(speye(nt),e); e=e/dt;

for i=2:nt; J0(ix(:,i),i0(:,i-1))=-e; J0(ip(:,i-1),j0(:,i))=-e; end;

i00=i0(:,nt); i0=i0(:,1:(nt-1)); j0=j0(:,2:nt); j00=ip(:,nt);

J0(j00,i00)=-c*e; ix=ix(:); ip=ip(:); ii=ii(:); jj=jj(:); i0=i0(:); j0=j0(:);

w1=ones(n,m)*spdiags(w,0,m,m); w1=w1(:)*ones(1,nt); w1=w1(:);

w2=w*ones(1,nt); w2=w2(:); end

for iout=1:imax; J=J0;

yy=y(ii); x1=yy(i1); x2=yy(i2); x3=yy(i3);

g(i1)=4*(-x1+x2); g(i2)=-x2-x1.*x3; g(i3)=x1.*x2-x3-50;

f(ix)=(y(ix)-a0*[x0;y(i0)])/dt-a1*(g’-bb*y(jj));

d1(i1)=x2; d2(i1)=-x3; d2(i2)=x1;

d3(i1)=-4*ones(nt*m,1); d3(i2)=-ones(nt*m,1); d3(i3)=d3(i2);
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d4(i2)=-d3(i1); d4(i3)=-x1;

tmp=spdiags([d1 d2 d3 d4],-2:1,n1,n1);

J(ix,ii)=J(ix,ii)-a1*tmp; J(ip,jj)=J(ip,jj)-a2*tmp’;

f(ip)=(y(ip)-a0*[y(j0);c*(y(i00)-[7 7 -1]’)])/dt-a2*(tmp’*y(jj)+y(ii)-d)

z=y(jj);

d1(i1)=-z(i2); d6(i1)=z(i3); d7(i2)=z(i3); d8(i3)=-z(i2);

qq=q0+spdiags([d1 d6 d7 d8],[-2 -1 1 2],n1,n1);

J(ip,ii)=J(ip,ii)-a2*qq; gg=-J\f’;

y=y+al*gg; end

Now we explain aspects of the code in detail. Recall from Section 7.1.1 we must first specify the

number of stages s denoted by m, and number of subintervals N denoted by nt, and terminal

time T . If flag idx = 0 we compute dimensions for the problem:

if idx==0; n=3; mp1=m+1; n0=mp1*n*nt; n1=m*n*nt; n2=2*n0;

mn=m*n; mn1=mp1*n; mn2=2*mn1;

The system dimension is n = 3, i.e., the number of components of state. mp1 = m + 1 is the

number of stages plus one, which is for the number of time points on each subinterval, plus

one for the endpoint of the subinterval. n0 is the total number of unknowns for state for all

stages and subintervals, including endpoints. n1 is the total number of unknowns for all stages

and subintervals, excluding endpoints. n2 is the total number of unknowns for both state and

adjoint. mn is the number of components of state (or adjoint) at all stages of a subinterval.

mn1 is the number of components of state (or adjoint) at all stages and the endpoint of a

subinterval. mn2 is the total number of unknown components for both state and adjoint at all

stages, including endpoints, for all subintervals.

We also need to compute the Gauss points and weights for the RKG method:

x=1:1:m-1; x=x./sqrt((2*x+1).*(2*x-1));

j=diag(x,1)+diag(x,-1); [u x]=eig(j); x=diag(x); [x i]=sort(x);

u=u(:,i); w=u(1,:).^2; w=w’; x=.5*(x+1);

for i=1:m; yy=x(i)-x; yy(i)=x(i); a(i,i)=sum(1./yy);

for j=1:i-1; z=x(j)-x; z(j)=x(j); s=-real(exp(sum(log(yy./z))));

a(i,j)=s/z(i); a(j,i)=1/s/yy(j); end; end; a=inv(a);

The matrix a is the Runge-Kutta matrix and w are the weights for the Gauss quadrature. We

use a and w to form a1 for the forward solution of state and a2 for the backward solution of

adjoint:
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y=[7 7 -1]’*ones(1,mp1); y=y(:); y=[y;0*y]*ones(1,nt); y=y(:);

a1=[a;w’]; a1=kron(a1,speye(n)); a1=kron(speye(nt),a1);

a2=[w’;a(m:-1:1,m:-1:1)]; a2=kron(a2,speye(n)); a2=kron(speye(nt),a2);

y sets an initial iterate y0 for SP. The form of matrices a1 and a2 is important to relate to the

RKG method, i.e., a1 includes the Runge-Kutta matrix a and weights w in order to set up the

discretized system (6.11) for the state variable:

∆xk −∆xk−1

∆t
=

s∑
j=1

wj ∆fk,j

∆fk,j = fx(xk,j , uk,j)∆xk,j + fu(xk,j , uk,j)∆uk,j

∆xk,i = ∆xk−1 + ∆t

s∑
j=1

ai,j∆f
k,j .

Note that for SP we use the linearized state dynamics, i.e., given current state iterate xn = (xk,in ),

k = 1, . . . , s+ 1, where xk,s+1
n = xk+1

n

fk,i = f(xk,i, uk,i) = A′(xk,in )(xk,i − xk,in ) +A(xk,in )− 1

β
BBtpk,i

where we used the optimality condition u = − 1
βB

tλ to eliminate u as a function of λ = p,

and A(x) and A′(x) are the matrices defined in (7.3)–(7.4). Similarly, a2 is set up to solve the

discretized system (6.11) for the adjoint.

We set up index counters for components of state, denoted ix, and components of adjoint,

denoted ip.

j=reshape(1:1:n2,mn2,nt); ix=j(1:mn1,:); ip=j((mn1+1):mn2,:);

ii=j(1:mn,:);jj=j((n*(m+2)+1):mn2,:); i0=j(mn+1:mn1,:);j0=j(mn1+1:mn1+n,:);

j=1:1:n1; i1=j(1:n:n1); i2=j(2:n:n1); i3=j(3:n:n1);

i1, i2, i3 are for extracting the first, second, or third components of state or adjoint. Next, we

form d for the targeting cost, and bb for the input matrix B = (0, 0, 1)t:

d=zeros(n1,1); d1=d; d2=d; d3=d; d4=d; d5=d; d6=d; d7=d; d8=d;

d(i1)=7*ones(m*nt,1); d(i2)=d(i1); d(i3)=-ones(m*nt,1);

q0=speye(n1); d3(i3)=ones(m*nt,1); bb=beta*spdiags(d3,0,n1,n1);

Finally, we form the system matrix of (6.10):
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J0=speye(n2)/dt; J0(ix,jj)=a1*bb; e=kron(ones(mp1,1),speye(n));

a0=kron(speye(nt),e); e=e/dt;

for i=2:nt; J0(ix(:,i),i0(:,i-1))=-e; J0(ip(:,i-1),j0(:,i))=-e; end;

i00=i0(:,nt); i0=i0(:,1:(nt-1)); j0=j0(:,2:nt); j00=ip(:,nt);

J0(j00,i00)=-c*e; ix=ix(:); ip=ip(:); ii=ii(:); jj=jj(:); i0=i0(:); j0=j0(:);

w1=ones(n,m)*spdiags(w,0,m,m); w1=w1(:)*ones(1,nt); w1=w1(:);

w2=w*ones(1,nt); w2=w2(:); end

This completes the overhead for flag idx = 0.

Next we have the solve step, which includes the forward solve for state and backward solve

for adjoint. The forward solve involves

for iout=1:imax; J=J0;

yy=y(ii); x1=yy(i1); x2=yy(i2); x3=yy(i3);

g(i1)=4*(-x1+x2); g(i2)=-x2-x1.*x3; g(i3)=x1.*x2-x3-50;

f(ix)=(y(ix)-a0*[x0;y(i0)])/dt-a1*(g’-bb*y(jj));

The controlled Lorenz dynamics (7.2) are given by g, where x1, x2, x3 are components of state.

Next we compute and use the derivative of the state dynamics:

d1(i1)=x2; d2(i1)=-x3; d2(i2)=x1;

d3(i1)=-4*ones(nt*m,1); d3(i2)=-ones(nt*m,1); d3(i3)=d3(i2);

d4(i2)=-d3(i1); d4(i3)=-x1;

tmp=spdiags([d1 d2 d3 d4],-2:1,n1,n1);

J(ix,ii)=J(ix,ii)-a1*tmp; J(ip,jj)=J(ip,jj)-a2*tmp’;

f(ip)=(y(ip)-a0*[y(j0);c*(y(i00)-[7 7 -1]’)])/dt-a2*(tmp’*y(jj)+y(ii)-d)

The matrix tmp corresponds to (7.4).

Lastly, we insert the Q matrix which appears in the quadratic state cost 1
2(Qx, x):

z=y(jj);

d1(i1)=-z(i2); d6(i1)=z(i3); d7(i2)=z(i3); d8(i3)=-z(i2);

qq=q0+spdiags([d1 d6 d7 d8],[-2 -1 1 2],n1,n1);

J(ip,ii)=J(ip,ii)-a2*qq; gg=-J\f’;

y=y+al*gg; end

Thus the system matrix J is formed, and the right hand side f. We solve for increments (∆x,∆λ),

the result is gg. Finally we compute the damped update y, which includes both the state x and

the adjoint λ, i.e., y = (x, λ).
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7.2 Coefficient Optimal Control in Elliptic Equations

We consider the non-smooth constraint optimization as in Section 4.3:

min

∫
Ω

1

2
|y − yd|2 dω +

∫
α

2
|u|2 + β|u|

subject to

−ε∆y + f(y) + uy = f0, y = 0 at ∂Ω,

where u(x) ∈ L2(Ω) is the coefficient control (bilinear term) and yd is the desired state in L2(Ω).

We let α = 1× 10−5, β = 5× 10−5, ε = .1 and

yd = (−∆ + diag(u0))−1f0, f0 = sin(π(x1 + x2)),

where u0 = 1 + sin(π(x1 + x2)). We initialized with u = ones and y = (−∆ + diag(u))−1f0. We

tested for the different nonlinear functions

f(y) = |y|, −y3, and − exp(y)

which represent several challenges, i.e., we must adjust a damping weight α in (3.16) according

to the difficulty of the original optimization problem. For example, we set α = .3 for the last

example f(y) = − exp(y) for good convergence of the method. The first example f(y) = |y| is

not C1. For the second example f(y) = −y3, the solution may blow up without control. The

last problem with f(y) = − exp(y) is harder because, first we made ε = .01 very small, the

exponential function is highly nonlinear, and the solution to the equality constraint may blow

up without control. This is a model for explosion.

The following MATLAB code performs SP (s = 0) and partial SQP (s = 1) for f(y) = |y|.

n=100; m=n-1; dx=1/n;

h=ones(m,1); h=n^2*spdiags([-h 2*h -h],-1:1,m,m);

h=kron(speye(m),h)+kron(h,speye(m));

[x y]=meshgrid([dx:dx:1-dx]); f0=sin(pi*(x(:)+y(:))); u0=1+sin(pi*(x+y));

f=(h+spdiags(u0(:),0,m^2,m^2))\f0;

u=ones(m^2,1); y=(.1*h+spdiags(u,0,m^2,m^2))\f0; p=0*u; uu=0*u;

s=0; al=.7; bt=1.e-6;

H=.1*h+spdiags(sign(y)+u(:),0,m^2,m^2);

b=bt*ones(m^2,1); k=find(abs(y.*p)<5*bt); b(k)=1.e8;

A=[speye(m^2) s*spdiags(p,0,m^2,m^2) H;

s*spdiags(p,0,m^2,m^2) spdiags(b,0,m^2,m^2) spdiags(y,0,m^2,m^2)];
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A=[A; H spdiags(y,0,m^2,m^2) zeros(m^2)];

tmp=A\[f-y-H*p;-b.*u-5*bt*sign(u)-y.*p;f0-.1*h*y-abs(y)-y.*u];

y=y+al*tmp(1:m^2); u=u+al*tmp(m^2+1:2*m^2); p=p+al*tmp(2*m^2+1:3*m^2);

norm(tmp(m^2+[1:m^2]))/norm(u)

k=find(abs(y.*p)<5*bt); u(k)=0;

This uses exactly the algorithm in Section 4.4. For example, the last line in the code does the

projection.

The following figures summarize our findings. We use the monitoring index

|un+1 − un|
|un|

which is used for determining the convergence of the SP algorithm and the convergence rate

along the norm of equation error, i.e., the error in the necessary optimality. For example, for

the case of fidelity = 1 (on the left columns) the rate is less than .3.

Figure 7.8: Optimal control u satisfying |un+1−un|
|un| < 10−7 for f(y) = |y| (top row) and f(y) =

−y3 (bottom row) for increasing fidelity 1, 10, 100 (left to right).

As the fidelity weight increases, the number of iterates required for convergence increases,

and we have to adjust α accordingly. The number of iterates required for convergence was 15,

25, 40, respectively. The sparsity of the control u is significantly observed in the figure.
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Figure 7.9: Optimal control u, target state yd, and fidelity y − yd, for f(y) = − exp(y).

For the case of f(y) = − exp(y) we terminated our iterates after 100 iterations, with moni-

toring index = .005. Note that the scale on the third plot in Figure 7.9 is very small. That is,

the magnitude of the fidelity y − yd is less than .05 pointwise.

7.3 Moving Damping Actuator Control Problem

In this section we revisit the moving damping actuator problem introduced in Section 4.3.1.

The following MATLAB file performs the SP method.

m=2*50; dx=1/m; x=0:dx:1; n=99; xx(n,1:100)=.3;

x0=[[1 .5 .25 zeros(1,46)]’;[1 .25 zeros(1,47)]’];

xx=[[x0;.3] xx]; xx=.5*(xx(:,1:100)+xx(:,2:101));

h=pi^2*[1:49].^2; h=spdiags(h’,0,49,49);

N=100; T=2; dt=T/N; J=zeros(99);

J(1:98,1:98)=.5*dt*[zeros(49) eye(49); -h zeros(49)];

e=ones(N,1); d=spdiags([-e e],-1:0,N,N); c=1; bt=1; %c=100; al=.5; bt=10;

JJ=kron(d,speye(n)); JA=0*JJ; u=c*ones(N,1); f=zeros(2*n*N,1);

b=[zeros(98,1);1]; BB=-c*dt*kron(speye(N),b*b’);

e=ones(N,1); d=spdiags([e/4 e/2 e/4],-1:1,N,N); q=zeros(n);

q(1:98,1:98)=[h 0*h; 0*h bt*speye(49)]; QQ=-dt*kron(d,q);

for k=1:N; w=xx(n,k); b0=exp(-500*(x-w).^2)/5; bp=1000*(x-w).*b0;

ff=real(fft(b0,200));gg=real(fft(bp,200));

for i=1:49;for j=i:49;t=.5*(gg(j-i+1)-gg(j+i+1));

s=.5*(ff(j-i+1)-ff(j+i+1)); D(i,j)=s; D(j,i)=s; Dp(i,j)=t; Dp(j,i)=t;end;end,

x2=xx(50:98,k); J(50:98,50:98)=-.5*dt*D; J(50:98,99)=-.5*cc*dt*Dp*x2;

k1=[(k-1)*n+1:k*n]; JA(k1,k1)=J; if k>1; JA(k1,k1-n)=J; end;

f(k1)=cc*dt*[zeros(49,1);w*Dp*x2;0]; end; JJ=JJ-JA; H=[JJ -BB; -QQ -JJ’];

f(1:98)=f(1:98)+x0+.5*dt*[zeros(49) eye(49); -h -D]*x0; f(n)=.3;
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y=H\f; xx=reshape(y(1:n*N),n,N); pp=reshape(y(n*N+[1:n*N]),n,N);

xx=[[x0;.3] xx]; xx=.5*(xx(:,1:100)+xx(:,2:101));

b0 is the damping distribution of actuators, and y contains the state and adjoint, i.e., y = (x, λ).

7.4 Tests for Numerical Method for Controlled Navier-Stokes

System

In this section we present our tests for the numerical method, Section 5.4, for the controlled

Navier-Stokes system for the cavity flow. The following MATLAB file performs the implicit-

explicit method (5.18)–(5.19) in Section 5.4.5.

%------------ Implicit-Explicit for Navier-Stkes systems

n=100; m=n-1; e=ones(m,1); h=spdiags([-e 2*e -e],-1:1,m,m);

h=kron(speye(m),h)+kron(h,speye(m)); h=n^2*h;

d1=spdiags([e e],-1:0,n,m)’; d2=spdiags([-e e],-1:0,n,m)’;

b1=kron(d2,d1); b2=kron(d1,d2); b1=n*b1; b2=n*b2;

dx=1/n; [x y]=meshgrid([dx:dx:1-dx]);

f1=y.*sin(pi*x); f2=x.*sin(pi*y);

H=[h 0*h b1; 0*h h b2; b1’ b2’ -1.e-10*speye(n^2)];

H(1:m^2,1:m^2)=speye(m^2)+.005*dt*h; %mu=.01; .005=mu/2

H(m^2+[1:m^2],m^2+[1:m^2])=speye(m^2)+.005*dt*h;

u=zeros(m); v=u; bu=u; bv=v; o1=u; o2=v; f=u; g=v;

uu=zeros(n+1); vv=uu;

xx=H\[u(:)-.005*dt*h*u(:)-dt*(1.5*bu(:)-.5*o1(:))+dt*(f1(:)-f(:));

v(:)-.005*dt*h*v(:)-dt*(1.5*bv(:)-.5*o2(:))+dt*(f2(:)-g(:));zeros(n^2,1)];

o1=bu; o2=bv;

u=reshape(xx(1:m^2),m,m); v=reshape(xx(m^2+[1:m^2]),m,m);

t=2:n;uu(t,t)=u; vv(t,t)=v;

u1=(uu(t,2:end)+uu(t,1:n))/2;v1=(vv(t,2:end)+vv(t,1:n))/2;

u2=(uu(2:end,t)+uu(1:n,t))/2;v2=(vv(2:end,t)+vv(1:n,t))/2;

t1=u1.^2;t2=v2.*u2;bu=t1(:,2:n)-t1(:,1:m)+t2(2:n,:)-t2(1:m,:);

t3=u1.*v1;t4=v2.^2;bv=t3(:,2:n)-t3(:,1:m)+t4(2:n,:)-t4(1:m,:);

bu=n*bu; bv=n*bv; mesh(v);

%----- 4th order convection

s=spdiags([-e e],[-1 1],m,m);
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s1=kron(s,speye(m)); s2=kron(speye(m),s);

e=ones(m,1); ss=spdiags([e 4*e e]/6,-1:1,m,m);

s1=kron(s,ss); s2=kron(ss,s);

s1=n*s1/2; s2=n*s2/2;

u=reshape(xx(1:m^2),m,m); v=reshape(xx(m^2+[1:m^2]),m,m);

bu=s1*(u(:).^2)+s2*(u(:).*v(:));

bv=s1*(u(:).*v(:))+s2*(v(:).^2);

The first part is to set up the Stokes operator H for the square domain. The implicit-explicit

method (Section 5.4.5) corresponds to the line

xx=H\[u(:)-.005*dt*h*u(:)-dt*(1.5*bu(:)-.5*o1(:))+dt*(f1(:)-f(:));

v(:)-.005*dt*h*v(:)-dt*(1.5*bv(:)-.5*o2(:))+dt*(f2(:)-g(:));zeros(n^2,1)];

(f1, f2) is a body force and (f, g) is a potential force. We use ∆x = 1/100, ∆t = .01, Re = 100.
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Chapter 8

Summary and Conclusion

The contribution of this dissertation is primarily the exposition of the theory behind the Se-

quential Programming (SP) method for solving constrained optimizations. The method itself

is straightforward: to solve a constrained optimization problem, solve a sequence of linearized

equality constraint optimizations and do a damped update for convergence. The convergence

of the sequence of damped updates to an optimizer of the original problem is shown using the

perturbation analysis of Alt and Robinson [2, 55], i.e., the necessary optimality condition for

the original constrained optimization is a perturbation of the necessary optimality condition for

the SP step. Thus, for small perturbations (often happens in applications) the SP method is

guaranteed to converge. In fact, the relaxation parameter α for the damped update is chosen in

(0, 1], and a line search is not needed. Specific algorithms for SP are presented for various types

of constraint optimizations. In general, the saddle point problem for the SP step lends itself

to a fixed point iterate formulation. Thus, for convergence we require only that the relaxation

parameter α be chosen such that the fixed point iteration is a contraction. A second order

variant of Sequential Programming is described to reveal to the reader how the method can be

extended and improved. Throughout, the Lagrange multiplier theory is a fundamental tool for

the development and analysis of the SP method.

In Chapter 2 we introduced the constrained optimization problem in its general form (2.1)

and in the control form (2.2). The control form is particulary important since many applications

take this form. We derived the necessary optimality for constrained optimization problems by

the Lagrange multiplier theory (Section 2.3). In general the necessary optimality system is a

saddle point problem, and in the case of the optimal control problem it is the form of the two

point boundary value problem (2.26).

In Chapter 3 we discussed methods for solving constrained optimizations and the saddle

point problem. The focus was on the Sequential Programming (SP) method. We showed SP to be

a middle ground between the gradient method and SQP (Sequential Quadratic Programming).
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Most importantly, we established the convergence analysis for the SP method (Section 3.4.1)

which strongly supports the use of SP over other methods like the gradient method and SQP.

In Chapter 4 we examined specific cases for SP and discussed how to treat different aspects of

the SP method. We showed how to formulate an ill-posed problem as a variational problem and

solve the resulting minimization by SP. We discussed the semilinear control problem (Section

4.3) which involves the linearization of a bilinear term and relates to the moving actuator control

problem. We discussed non-smoothness that can appear in the cost or constraint and how to

handle a subdifferential inclusion by the Yosida-Moreau approximation (Section 4.4).

In Chapter 5 we introduced the Navier-Stokes theory and outlined an optimal control prob-

lem for the controlled flow of an incompressible fluid on a step. We developed numerical methods

for the evaluation of the gradient, divergence, convective, and diffusion terms that appear in

the incompressible Navier-Stokes equations. We introduced the second order implicit-explicit

time integration (Section 5.4.5) for the solution of the discretized problem for the controlled

Navier-Stokes problem.

In Chapter 6 we discussed the time and space discretization of PDE constraint problems.

We developed the high order discretized problem and introduced the higher order Runge-Kutta-

Gauss time integration method (Section 6.1.2).

In Chapter 7 we discussed concrete examples for the implementation of the SP method. We

introduced the Lorenz attractor system and provided an analysis of the Lorenz dynamics. We

exhibited our implementation for the solution of the controlled Lorenz system which included

the use of the Runge-Kutta-Gauss time integration introduced in Chapter 6. We performed a

parameter study (Section 7.1.3) to show how different parameters affect the resulting solution

by the SP method.

In conclusion, the Sequential Programming (SP) method is a very effective method for

solving constrained optimizations. The convergence of the SP method is a hallmark of the

method in that there is no line search in relaxation parameter α > 0 for the damped update

of iterations, we just pick α ∈ (0, 1]. The method is guaranteed to converge to an optimal

solution of the original constrained optimization (Section 3.4.1). It is a distinctive feature that

SP does not rely directly on the Hessian information of the Lagrange functional and thus it can

be used for non-smooth problems (Section 4.4) and in many problems of practical interest. It

can avoid instabilities due to possible indefiniteness of the Hessian of the Lagrange functional

during the iteration. As a specific example the fixed point problem for the control variables is

developed for the optimal control problem as a reduced order method (Section 3.6.1) and we

use the conjugate gradient method for a well-conditioned fixed point problem. The resulting

SP method, with inner CG loop, is a very effective method for a large scale optimal control

problem.

97



REFERENCES

[1] Alt, W. and K. Malanowski. “The Lagrange-Newton method for nonlinear optimal control

problems.” Comput. Optim. Appl., Vol. 2, 1993, pp. 77–100.

[2] Alt, W. “Lipschitzian perturbations in infinite optimization problems.” In Mathematical

Programming with Data Perturbations II, A.V. Fiacco, ed., Lecture Notes in Pure and

Appl. Math., Vol. 85, Marcel Dekker, New York, 1983, pp. 7–21.

[3] Armijo, Larry. “Minimization of functions having Lipschitz continuous first partial deriva-

tives.” Pacific J. Math., Vol. 16, No. 1, 1966, pp. 1–3.

[4] Bartle, Robert G. The Elements of Integration and Lebesgue Measure. John Wiley & Sons,

2014.

[5] Barzilai, Jonathan and Jonathan M. Borwein. “Two-point step size gradient methods.”

IMA Journal of Numerical Analysis, Vol. 8, 1988, pp. 141–148.

[6] Bellout, H., J. Neustupa, and P. Penel. “On the Navier-Stokes equation with boundary

conditions based on vorticity.” Math. Nachr. 269-270, 2004, pp. 59–72.

[7] Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods. Academic

Press, Paris, 1982.

[8] Biegler, L.T., O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders,

eds. Real-Time PDE-Constrained Optimization. SIAM, Philadelphia, 2007.

[9] Broyden, C.G. “A class of methods for solving nonlinear simultaneous equations.” Math-

ematics of Computation, Vol. 19, No. 92, October 1965, pp. 577–593.

[10] Butcher, John C. Numerical Methods for Ordinary Differential Equations. John Wiley,

2003.

[11] Chorin, Alexandre J. and Jerrold E. Marsden. A Mathematical Introduction to Fluid Me-

chanics. Springer-Verlag, New York, 1993.

98



[12] Clarke, F.H. et al. Nonsmooth Analysis and Control Theory. Springer, New York, 1998.

[13] Concus, P., G.H. Golub, and G. Meurant. “Block preconditioning for the conjugate gradient

method.” SIAM J. Scl. Stat. Comput., Vol. 6, No. 1, January 1985.

[14] Dai, Yu-Hong and Roger Fletcher. “Projected Barzilai-Borwein methods for large-scale

box-constrained quadratic programming.” Numerical Analysis Report NA/215, September

2013.

[15] Ekeland, I. and R. Temam. Convex Analysis and Variational Problems. North-Holland,

Amsterdam, 1976.

[16] Ekeland, I. and T. Turnbull. Infinite Dimensional Optimization and Convexity. The Uni-

versity of Chicago Press, Chicago, 1983.

[17] Fortin, M. and R. Glowinski. Augmented Lagrangian Methods: Applications to Numerical

Solutions of Boundary Value Problems. North-Holland, Amsterdam, 1983.

[18] Frenkel, J. and T. Kontorova. “On the theory of plastic deformation and twinning.”

Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 1, 1939, pp. 137–149.

[19] Fursikov, A.V., M.D. Gunzburger, and L.S. Hou. “Boundary value problems and opti-

mal boundary control for the Navier-Stokes systems: The two-dimensional case.” SIAM J.

Control Optim., Vol. 36, 1998, pp. 852–894.

[20] Glowinski, R. Numerical Methods for Nonlinear Variational Problems. Springer-Verlag,

Berlin, 1984.

[21] Glowinski, R., J.L. Lions, and R. Tremoliers. Numerical Analysis of Variational Inequali-

ties. North-Holland, Amsterdam, 1981.

[22] Gunzburger, M.D. Perspectives of Flow Control and Optimization. SIAM, Philadelphia,

2003.

[23] Hale, Jack. Ordinary Differential Equations. Wiley, 1969.

99



[24] Hestenes, Magnus R. and Eduard Stiefel. “Methods of conjugate gradients for solving

linear systems.” Journal of Research of the National Bureau of Standards, Vol. 49, No. 6,

December 1952.

[25] Hestenes, M.R. Optimization Theory: The Finite Dimensional Case. John Wiley and Sons,

New York, 1975.

[26] Hestenes, M.R. “Multiplier and gradient methods.” J. Optim. Theory Appl., Vol. 4, 1968,

pp. 303–320.

[27] Hintermuller, M., K. Ito, and K. Kunisch. “The primal-dual active set strategy as a semis-

mooth Newton method.” SIAM J. Optim., Vol. 13, 2002, pp. 865–888.

[28] Ito, K. and F. Kappel. Evolution Equations and Approximations. World Scientific, River

Edge, NJ, 2002.

[29] Ito, K. and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Ap-

plications. Advances in Design and Control, SIAM, Philadelphia, 2008.

[30] Ito, K. and K. Kunisch. “The augmented Lagrangian method for equality and inequality

constraints in Hilbert space.” Math. Programming, Vol. 46, 1990, pp. 341–360.

[31] Ito, K. and K. Kunisch. “An augmented Lagrangian technique for variational inequalities.”

Appl. Math. Optim., Vol. 21, 1990, pp. 223–241.

[32] Ito, K. and K. Kunisch. “Augmented Lagrangian-SQP-methods in Hilbert spaces and ap-

plication to control in the coefficients problems.” SIAM J. Optim., Vol. 6, 1996, pp. 96–125.

[33] Ito, K. and K. Kunisch. “Augmented Lagrangian-SQP methods for nonlinear optimal con-

trol problems of tracking type.” SIAM J. Control Optim., Vol. 34, 1996, pp. 874–891.

[34] Ito, K. and K. Kunisch. “Augmented Lagrangian methods for nonsmooth convex optimiza-

tion in Hilbert spaces.” Nonlinear Anal., Vol. 41, 2000, pp. 573–589.

100



[35] Ito, K. and K. Kunisch. “An active set strategy based on the augmented Lagrangian

formulation for image restoration.” MZAN Math. Model Numer. Anal., Vol. 33, 1999, pp.

1–21.

[36] Ito, K. and K. Kunisch. “Optimal control of elliptic variational inequalities.” Appl. Math.

Optim., Vol. 41, 2000, pp. 343–364.

[37] Ito, K. and K. Kunisch. “Optimal control.” In Encyclopedia of Electrical and Electronic

Engineering, J. G. Webster, ed., 15, John Wiley and Sons, New York, 1999, pp. 364–379.

[38] Ito, K. and K. Kunisch. “Semi-smooth Newton methods for variational inequalities of the

first kind.” MZAN Math. Model. Numer. Anal., Vol. 37, 2003, pp. 41–62.

[39] Ito, K. and K. Kunisch. “The primal-dual active set method for nonlinear optimal control

problems with bilateral constraints.” SIAM J. Control Optim., Vol. 43, 2004, pp. 357–376.

[40] Ito, K. and K. Kunisch. “Semi-smooth Newton methods for state-constrained optimal

control problems.” Systems Control Lett., Vol. 50, 2003, pp. 221–228.

[41] Kanzow, C. “Inexact semismooth Newton methods for large-scale complementarity prob-

lems.” Optim. Methods Softw., Vol. 19, 2004, pp. 309–325.

[42] Kelley, C.T. and E.W. Sachs. “Solution of optimal control problems by a pointwise pro-

jected Newton method.” SIAM J. Control Optim., Vol. 33, 1995, pp. 1731–1757.

[43] Kreyszig, Erwin. Introductory Functional Analysis with Applications. Wiley, New York,

1978.

[44] Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations.

Springer-Verlag, New York, 1971.

[45] Lorenz, E.N. “Deterministic nonperiodic flow.” J. Atmos. Sci., Vol. 20, 1963, pp. 130–141.

[46] Luenberger, David G. Optimization by Vector Space Methods. John Wiley and Sons, 1969.

101



[47] Luenberger, David G. “The conjugate residual method for constrained minimization prob-

lems,” SIAM J. Numer. Anal., Vol. 7, No. 3, September 1970.

[48] Maurer, H. and J. Zowe. “First and second-order necessary and sufficient optimality condi-

tions for infinite-dimensional programming problems.” Math. Programming, Vol. 16, 1979,

pp. 98–110.
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Appendix A

Analysis of the RKG Method

In this appendix we introduce the fundamental properties of the RKG method and conclude

with a stability analysis of the method.

The first property of the RKG method is the collocation property. It follows from [23] that

the Runge-Kutta-Gauss method satisfies the collocation property:

xk − xk−1 = P (tk−1 + ∆t)− P (tk−1) = ∆t

∫ 1

0

s∑
i=1

Li(s)f
k,i ds

xk,i = P (tk−1 + ci ∆t),

i.e., P (tk−1 + σ∆t) is a polynomial of degree s and satisfy the collocation property:

d

dt
P (tk−1 + ci ∆t) = fk,i = f(xk,i, uk,i) (A.1)

for 1 ≤ i ≤ s.
It is also known [23] that the Runge-Kutta-Gauss method is of 2s order. This fact follows

from the collocation property and the fact that the Gauss-Legendre quadrature rule is exact

for polynomials of degree up to 2s− 1. In fact, from (A.1) there exists a polynomial p of degree

s such that

d

dt
P (tk−1 + t) = f(tk−1 + t, P (tk−1 + t)) + p(t) ζ(t) +O(|t|2s+1), 0 ≤ t ≤ ∆t,

where ζ(t) = Πs
i=1 (t− ci ∆t). It thus follows that

d

dt
(P (tk−1 + t)− x(tk−1 + t)) = J(t)(P (tk−1 + t)− x(tk−1 + t)) + p(t) ζ(t) +O(|t|2s+1)
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where

J(t) =

∫ 1

0
f ′(x(tk−1 + t) + σ (P (tk−1 + t)− x(tk−1 + t))) dσ.

Let U(t, σ) be the fundamental matrix solution to
d

dt
x(t) = J(t)x(t) and define q(t) = U(tk −

t, tk−1)p(t), 0 ≤ t ≤ ∆t. If

q(t) =
s∑
i=0

qi t
i +O(|t|s+1), 0 ≤ t ≤ ∆t,

then

|P (tk)− x(tk)| = |U(tk, tk−1)(P (tk−1)− x(tk−1))|+ |
∫ tk

tk−1

U(tk−s, t)p(s)ζ(s) ds|+O(|∆t|2s+2)

= eω1∆t |P (tk−1)− x(tk−1)|+ |
∫ 1

0
qs σ

sΠs
i=1(σ − ci) dσ| |∆t|2s+1 +O(|∆t|2s+2).

Here we used the fact that the Gauss-Legendre quadrature rule is exact for polynomials of

degree up to 2s− 1. Therefore the Runge-Kutta-Gauss method is of 2s order.

Next, we present the stability analysis. The stability analysis of Runge-Kutta methods can

be found in [29, 66] for the dissipative system, i.e., ω = 0. We give a self-contained stability

analysis for the control dynamics (6.3) and we relate our result to those in [29, 66]. Let x̄ =
xk+xk−1

2 . We start with the case of s = 2, i.e.,

xk − xk−1 = ∆t (f(x̄− α fk,2, u1) + f(x̃+ α fk,1, u2)),

where α =
√

3
6 ∆t, and thus by taking the inner product of this with x̄

1

2
(|xk|2−|xk−1|2) =

∆t

2
[(f(xk,1, uk,1), xk,1)+α (fk,1, fk,2)+(f(xk,2, uk,2), xk,2)−α (fk,1, fk,2)]

=
∆t

2
[(f(xk,1, uk,1), xk,1) + (f(xk,2, uk,2), xk,2)],

(A.2)

where we used the fact that

xk + xk−1

2
=
xk,1 + xk,2

2
+
α

2
(fk,2 − fk,1).

Now we are interested in generalizing (A.2) for the general case of s.

There are several steps required to analyze the stability of the RKG method. We have a

number of lemmas to develop the results.
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Lemma A.1 For s ≥ 1

s∑
i=1

wi (f(xk,i, uk,i),
xk + xk−1

2
) =

s∑
i=1

wi (f(xk,i, uk,i), xk,i), (A.3)

and
1

2
(|xk|2 − |xk−1|2) = ∆t

s∑
i=1

wi (f(xk,i, uk,i), xk,i).

Proof: Let x̄ = xk+xk−1

2 . It follows from (A.1) and the fact that the Gauss-Legendre quadrature

rule is exact for polynomials of degree up to 2s− 1 that

∆t

s∑
i=1

wi (fk,i, xk,i − x̄) = ∆t

∫ 1

0
(P ′(tk−1 + σ∆t), P (tk−1 + σ∆t)− x̄) dσ

=
1

2
(|P (tk−1 + ∆t)|2 − |P (tk−1)|2)− (P (tk−1 + ∆t)− P (tk−1), x̄) = 0,

since xk = P (tk−1 + ∆t) and xk−1 = P (tk−1). Hence

s∑
i=1

wi (f(xk,i), x̄) =
s∑
i=1

wi [(fk,i, xk,i)− (fk,i, xk,i − x̄)]

=
s∑
i=1

wi (fk,i, xk,i).�

From (A.3) we have the following lemma.

Lemma A.2 Let A = (ai,j) ∈ Rs×s be defined by (6.8). Then

C = W (A− 1

2
ewt) is skew-symmetric (A.4)

where W is the diagonal matrix with diagonal (w1, w2, . . . , ws) and e = col (1, 1, . . . , 1).

Proof: We consider the scalar equation
d

dt
x(t) = f(t) with ∆t = 1 and let fi = f(ci), 1 ≤ i ≤ s.

Then (6.7) is equivalent to

y = x e+Af and x̂ = x+ w · f.

It thus follows from (A.3) that for f ∈ Rs and x ∈ R

(W (Af + x e), f)Rs = (Wf, x̄)Rs = (w · f) (
1

2
(w · f) + x).
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Thus (WAf, f) = 1
2 |w · f |2 for all f ∈ Rs. �

Lemma A.2 implies the algebraic stability [23], i.e., the matrix B defined by

B = WA+AtW − wwt

is nonnegative. In fact from Lemma A.2 we have B = C+Ct = 0. It is shown that the algebraic

stability implies that the method is BN-stable, i.e., for any stepsize ∆t > 0 the method generates

contractive numerical solutions, provided that all ci, 1 ≤ i ≤ s are distinct (nonconfluent).

From Lemma A.1 and (6.3) we have

1

2
(|xk|2 − |xk−1|2) = ∆t

s∑
i=1

wi (ω |xk,i|2 + c2 |uk,i|2).

So, we establish the estimate for
∑s

i=1wi |xk,i|2 in what follows. The collocation property (A.1)

implies that A−1 exists and

(A−1x)i =
dQ

dt
(ci) (A.5)

where Q is the polynomial of degree s satisfying Q(0) = 0 and Q(ci) = xi, 1 ≤ i ≤ s. In fact

we have

(A−1)i,j =
ci
cj

1

cj − ci
Π`6=i,j

ci − c`
cj − c`

for i 6= j

(A−1)i,i =
1

ci
+
∑
` 6=i

1

ci − c`
for 1 ≤ i ≤ s.

(A.6)

From (6.7) y = col(xk,1, . . . , xk,s) satisfies

A−1(y − col(xk−1, . . . , xk−1)) = ∆t col(f(xk,1, uk,1), . . . , f(xk,s, uk,s)). (A.7)

We show that (A.7) has a unique solution. To this end we need the following lemma on the

property of matrix A.

Lemma A.3 Let P be the diagonal matrix with diagonal Pi,i =
√

(1− ci)c−1
i , 1 ≤ i ≤ s. Then

we have

PA−1W−1P−1 = Λ + S

where Λ is the positive diagonal matrix with diagonal Λi,i =
1

2

1

ci(1− ci)wi
, 1 ≤ i ≤ s, and S

is skew-symmetric.
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Proof: From (A.5)

(PA−1W−1P−1)i,j = (
d

dt
Qj)(ci)(pjwj)

−1Qi(ci)pi

=
s∑
`=1

(
d

dt
Q̃j)(c`)(p`)

2w`Q̃i(c`)

(A.8)

where Q̃i = (piwi)
−1Qi and Qi is the polynomial of degree s satisfying Q(0) = 0 and Qi(cj) =

δi,j . We set

pi =

√
(1− ci)c−1

i , 1 ≤ i ≤ s.

Since

(1− t) d
dt
Qj(t)

Qi(t)

t
is a polynomial of degree 2s− 1

and
d

dt
(Qj(t)

Qi(t)

t
) =

d

dt
Qj(t)

Qi(t)

t
+
d

dt
Qi(t)

Qj(t)

t
− Qi(t)

t

Qj(t)

t
,

thus it follows from (A.8)

(PA−1W−1P−1)i,j + (PA−1W−1P−1)j,i =

∫ 1

0
(1− t) (

d

dt
Q̃j(t)

Q̃i(t)

t
+
d

dt
Q̃i(t)

Q̃j(t)

t
) dt

=

∫ 1

0
(Q̃i(t)

Q̃j(t)

t
+ (1− t)Q̃i(t)

t

Q̃j(t)

t
dt = 0

if i 6= j and

(PA−1W−1P−1)i,i =
1

2

∫ 1

0
(Q̃i(t)

Q̃i(t)

t
+ (1− t)Q̃i(t)

t

Q̃i(t)

t
dt =

1

2

1

ci(1− ci)wi
.�

Now we state the stability theorem.

Theorem A.1 Assume that (6.4)–(6.5) hold. Then system (A.7) has a unique solution y =

col (xk,1, . . . , xk,ss) ∈ Rsn and we have

s∑
i=1

wi |xk,i|2 ≤ c3 |xk−1|2 + c4∆t
s∑
i=1

wi |uk,i|2 (A.9)

for some c3, c4 ≥ 0 and ∆t > 0 sufficiently small.

Proof: Define ψ = col (ψ1, . . . , ψs) ∈ Rsn by ψi = piwi x
k,i, 1 ≤ i ≤ s. Then (A.7) is equiva-
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lently written as

PA−1(W−1P−1ψ − col(xk−1, . . . , xk−1))

= ∆t col(p1 f((p1w1)−1 ψ1, u
k,1), . . . , ps f((psws)

−1 ψs, u
k,s))

(A.10)

where P is the diagonal matrix as defined in Lemma A.3. Define the function Φ : Rns → Rns

by

Φ(ψ) = PA−1W−1P−1ψ −∆t col(p1 f((p1w1)−1 ψ1, u
k,1), . . . , ps f((psws)

−1 ψs, u
k,s)).

Then by (6.5) and Lemma A.3 we have

(Φ(ψ(1))− Φ(ψ(2)), ψ(1) − ψ(2)) ≥
s∑
i=1

(
1

2ci(1− ci)
− ω∆t)

1

wi
|ψ(1)
i − ψ

(2)
i |2

provided that (W−1P−1Ψ(1))i, (W−1P−1Ψ(2))i ∈ BR for 1 ≤ i ≤ s. For ∆t ωR < mini
1

2ci(1−ci) ,

Φ is dissipative and thus the solution to (A.7) is unique and continuously depends on

col(uk,1, . . . , uk,s). Moreover by taking the inner product of (A.10) with ψ it follows from (6.5)

that

s∑
i=1

(
1

2ci(1− ci)
|xs,i|2 − αi (xs,i, xk−1))wip

2
i ≤ ∆t

s∑
i=1

(ω |xs,i|2 + |us,i|2)wip
2
i (A.11)

where α = A−1e. Thus for ∆t > 0 sufficiently small there exists c3, c4 such that (A.9) holds. �

We state the following convergence theorem.

Theorem A.2 Assume that (6.4)–(6.5) hold, Ψ is locally Lipschitz continuous, and ω∆t <

mini
1

2ci(1−ci) . Then for uN = {col(uk,1, . . . , uk,s)}Nk=1 with
∑N

k=1

∑s
i=1wi h(uk,i) ∆t being uni-

formly bounded in N there exists a unique xN = {col(xk,1, . . . , xk,s, xk)}Nk=1 in BR for some

R > 0, satisfying the constraint (6.7). Also, xN continuously depends on uN . For each N

there exists an optimal solution uN to (6.6)–(6.7) and associated primal and adjoint states

xN = {col(xk,1, . . . , xk,s, xk)}Nk=1, pN = {col(pk,1, . . . , pk,s, pk−1)}Nk=1 such that (6.10) holds. Let

ũN denote the piecewise polynomial defined by

ũN (tk−1 + σ∆t) =

s∑
i=1

uk,i Li(σ) (A.12)
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on (tk−1, tk), 1 ≤ k ≤ N and x̃N and p̃N be the piecewise polynomial functions defined by

x̃N (tk−1 + σ∆t) = xk−1 + ∆t

∫ σ

0

s∑
i=1

fk,i Li(s) ds

p̃N (tk − σ∆t) = pk + ∆t

∫ σ

0

s∑
i=1

gk,s+1−i Li(s) ds.

(A.13)

Then the sequence (x̃N , ũN , p̃N ) in H1(0, T ;Rn)×L2(0, T ;Rm)×H1(0, T ;Rn) has a convergent

subsequence as ∆t → 0 and for every cluster point (u, x, p), u ∈ U is an optimal control of

(6.2)–(6.3) and (u, x, p) satisfies the necessary optimality condition (6.10).

Proof: It follows from (6.5), (A.3) and Lemma A.4 that there exist constants c5, c6 ≥ 0

(independent of 0 < ∆t ≤ h̄) such that

|xk|2 ≤ (1 + c5∆t)|xk−1|2 + c6∆t
s∑
i=1

wi |uk,i|2. (A.14)

If U is bounded, then by assumption c2 = 0 and thus c6 = 0. If U is unbounded by assumption

(6.5),
∑N

k=1

∑s
i=1wi |uk,i|2 ∆t is bounded uniformly in N if the corresponding cost satisfies

JN (uN ) ≤ JN (0) ≤ J̄ . Hence |xk|, |xk,i| ≤ R, 1 ≤ i ≤ s for 1 ≤ k ≤ N and some R > 0. Note

that the adjoint equation for (pk,i, pk−1) is equivalently written as

pk−1 = pk + ∆t

s∑
i=1

wi [fx(xk,i, uk,i)tpk,i + `x(xk,i)]

PA−1(W−1P−1ξ − col(pk, . . . , pk))

= ∆t P col(fx(xk,s, uk,s)tξ1 + `x(xk,s), . . . , fx(xk,1, uk,1)tξs + `x(xk,1))

where ξi = (piwi)
−1 pk,(s+1)−i, 1 ≤ i ≤ s. Since (6.4) implies that (fx(x, u)p, p) ≤ ω |p|2 for

x ∈ BR and u ∈ U , it follows from the above arguments leading to (A.3) and Lemma A.4 that

|pk−1|2 ≤ (1 + c5∆t)|pk|2 + c6∆t

s∑
i=1

wi |`x(xk,i)|2

and thus |pk−1|, |pk,(s+1)−i|, 1 ≤ i ≤ s are uniformly bounded in 1 ≤ k ≤ N . Since Ψ is locally

Lipschitz continuous, it follows that |uk,i|, 1 ≤ i ≤ s are uniformly bounded in 1 ≤ k ≤ N .
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Since
d

dt
x̃N (tk−1 + ci ∆t) = fk,i = f(xk,i, uk,i)

− d

dt
p̃N (tk − ci ∆t) = gk,i = fx(xk,i, uk,i)tpk,i + `x(xk,i, uk,i),

|dx̃N
dt

(t)|+ |dp̃N
dt

(t)| ≤M, a.e. in (0, T ).

Using Lipschitz continuity of Ψ again, we find that |dũN
dt

(t)|∞ is uniformly bounded as well.

By the compactness of Lipschitz continuous sequences in L2(0, T ) there exists a subsequence N̂

such that (x̃N̂ , ũN̂ , p̃N̂ ) converges to (u∗, x∗, p∗) in L2(0, T ;Rn × Rm × Rn) and pointwise a.e.

in (0, T ). From (6.10) and (A.1)

x̃N (t) = x0 +

∫ t

0
fN (s) ds

where

fN (tk−1 + σ∆t) = ∆t

∫ σ

0

s∑
i=1

fk,i Li(s) ds

on (tk−1, tk). By Lebesgue’s dominated convergence theorem we find that x∗ coincides with

the solution x(t;u∗) to (6.3) associated with u∗. For v ∈ L2(0, T ;Rm) let vN be the piecewise

constant approximation of v defined by vk,i = 1
N

∫ tk
tk−1

v(t) dt , 1 ≤ i ≤ s, 1 ≤ k ≤ N . Then

JN (uN ) ≤ JN (vN ) for all admissible controls v

and x(t; vN ) → x(t; v) as N → ∞. Thus by the Lebesgue dominated convergence theorem

J0,x0(u∗) ≤ J0,x0(v) for all admissible controls, i.e., (u∗, x∗) is an optimal pair. It is not difficult

to argue that the triple (u∗, x∗, p∗) satisfies the necessary optimality (6.10). �

The following theorem establishes the convergence rate.

Theorem A.3 Suppose that the sequence (ũN (t), x̃N (t), p̃N (t)) defined by (A.12)–(A.13) con-

verges to the triple (u(t), x(t), p(t)) that satisfies TPBV problem (2.26) as N → ∞. Assume

that (x(t), p(t)) ∈ C2s+1(0, T : R2n). Then there exists a constant M (independent of N) such

that

|(x̃N (t)− x(t), p̃N (t)− p(t))| ≤M |∆t|2s, t ∈ [0, T ].
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Proof: It follows from the collocation property (A.1) and (6.10) that

d

dt
x̃N (tk−1 + ci ∆t) = fk,i = f(xk,i, uk,i)

− d

dt
p̃N (tk−1 + ci ∆t) = gk,i = fx(xk,i, uk,i)tpk,i + `x(xk,i)

ũN (tk−1 + ci ∆t) = uk,i = Ψ(xk,i, pk,i), 1 ≤ k ≤ N, 1 ≤ i ≤ s

with x̃N (0) = x0 and p̃N (T ) = gx(x̃N (T )). Thus if ζ(t) = Πs
i=1 (t − ci ∆t), then there exist

polynomials p = {col(p
(1)
k , p

(2)
k )}Nk=1 of degree s such that

d

dt
x̃N (tk−1 + t) = f(x̃N (tk−1 + t), ũN (tk−1 + t)) + p

(1)
k (t) ζ(t) +O(|t|2s+1),

− d

dt
p̃N (tk−1 + t) = fx(x̃N (tk−1 + t), ũN (tk−1 + t))tp̃N (tk−1 + t))

+`x(x̃N (tk−1 + t)) + p
(2)
k (t) ζ(t) +O(|t|2s+1)

ũN (tk−1 + t) = Ψ(x̃N (tk−1 + t), p̃N (tk−1 + t)),

for 0 ≤ t ≤ ∆t. For the simplicity of our discussion we assume that f(x, u) = f(x) + Bu and

h(u) = β
2 |u|2. Thus if e1(t) = x̃N (tk−1 + t)− x(tk−1 + t) and e2(t) = p̃N (tk−1 + t)− p(tk−1 + t),

then
d

dt

(
e1(t)

e2(t)

)
= Hk(t)

(
e1(t)

e2(t)

)
+

(
p

(1)
k (t)

p
(2)
k (t)

)
ζ(t) +O(|t|2s+1) (A.15)

for 1 ≤ k ≤ N and 0 < t < ∆t, and e2(T ) = Ge1(T ). Here

G =

∫ 1

0
g′(x(T ) + σ (x̃N (T )− x(T )) dσ

and

Hk(t) =

 Ak(t) − 1
βBB

t

−Qk(t) −Ak(t)t


with

Ak(t) =

∫ 1

0
f ′(x(tk−1 + t) + σ (x̃N (tk−1 + t)− x(tk−1 + t))) dσ
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and

Qk(t) =

∫ 1

0
`′(x(tk−1 + t) + σ (x̃N (tk−1 + t)− x(tk−1 + t))) dσ.

If we define the matrix functions A(t), Q(t) by A(t) = Ak(t) and Q(t) = Qk(t) on (tk−1, tk],

by the Riccati transformation we have e2(t) = P (t)e1(t) + r(t) where the symmetric matrix

P (t) ∈ Rn×n satisfies

d

dt
P (t) +At(t)P (t) + P (t)A(t)− 1

β
P (t)BBtP (t) +Q(t) = 0, P (T ) = G,

and r(t) ∈ Rn satisfies r(T ) = 0 and

d

dt
r(tk−1 + t) + (Ak(t)−

1

β
BBtP (t))tr(t) + (P (tk−1 + t)p

(1)
k (t) + p

(2)
k (t)) ζ(t) +O(|∆t|2s+1)

for 1 ≤ k ≤ N and 0 < t < ∆t. As we argued in Section 2.2, using the fact that the Gauss-

Legendre quadrature rule is exact for polynomials of degree up to 2s− 1, there exist constants

ω1 and M1 such that

|r(tk−1)| ≤ (1 + ω1∆t)|r(tk)|+M1 |∆t|2s+1.

Hence |r(0)| ≤ M̃ |∆t|2s for some constant M̃ (independent of N). Since e1(0) = 0 we have

|e2(0)| = |r(0)|. Since (A.15) is a system of ODEs it thus follows from the same arguments

applied to (A.15) that |e1(t), e2(t))| ≤ M |∆t|2s for some constant M (independent of N and

∆t). �
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