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VARGA, KATHERINE YVONNE. Portfolio Optimization with Stochastic Dividends and
Stochastic Volatility. (Under the direction of Tao Pang.)

We consider an optimal investment-consumption portfolio optimization model in which

an investor receives stochastic dividends. As a first problem, we allow the drift of stock

price to be a bounded function. Next, we consider a stochastic volatility model. In each

problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman

equation, which we proceed to prove existence of a classical solution. Our value function

is chosen to maximize the expected total discounted HARA utility of consumption. In

the Verification Theorem, we prove that the solution to the HJB equation is equal to the

value function.
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Chapter 1

Investment with Dividends and Debt

1.1 Introduction

In the classical Merton portfolio optimization problem, an investor distributes his wealth

between a risky asset (e.g., stock) and a riskless asset. The price Pt of the risky asset is

governed by geometric Brownian motion:

dPt
Pt

= µdt+ σdwt,

where µ and σ are the positive constant drift and volatility, respectively, and wt is a

one-dimensional standard Brownian motion. The controls are investment and consumption;

that is, at any time t the investor chooses how much of his wealth to invest and how much

to consume. The goal is to maximize his expected discounted utility of consumption.

Our model is an extension of Merton’s model. We consider an economic unit with

productive capital and liabilities in the form of debt. Investment and consumption controls
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1.1. INTRODUCTION

are chosen to maximize the expected discounted utility of consumption. In particular, we

consider the hyperbolic absolute risk aversion (HARA) utility function

U(C) =
1

γ
Cγ, (1.1)

where γ is a constant parameter such that γ < 1 and γ 6= 0.

As an example in the Merton problem context, the economic unit may be interpreted

as an investor who receives dividends on his investments. The worth of the investor

depends on particular sources of uncertainty. Dividends and stock prices fluctuate over

time, so we allow them to be stochastic.

In this thesis, we diverge from the Merton model which assumes stock price is governed

by geometric Brownian motion. As a first problem, we consider a constant volatility

and allow the drift to be a bounded function of price. Several financial models, such as

the popular Black-Scholes-Merton model for option-pricing, assume for simplicity that

volatility is constant. However, historical data shows that volatility fluctuates over time,

and appears to have a mean-reverting quality [FPS00]. For this reason, in our second

problem we choose an Ornstein-Uhlenbeck (OU) model for a factor process driving the

stock price volatility.

Our work is motivated by similar models for optimal investment and consumption.

Fleming and Pang, in [FP04] and [FP05], assume stock price is governed by geometric

Brownian motion. In [FP04] they allow interest rates to be stochastic, and in [FP05]

they consider stochastic productivity. Hata and Sheu ([HS12a] and [HS12b]) consider

investment in m risky assets and one riskless asset. They allow both the drift and volatility

of price to be stochastic. In [KS06], Kaise and Sheu prove existence and uniqueness of
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1.2. PROBLEM FORMULATION

ergodic type Bellman equations.

There are several extensions to the Merton portfolio optimization problem which

follow the dynamic programming approach. Here we note some other work in the field.

In [BP99] and [FS00], mean returns of securities are explicitly affected by underlying

economic factors. In addition to [FP04], [Pa02] and [Pa04] also allow interest rates to be

stochastic. Some stochastic volatility models are given in [FH03], [FPS00], and [Za01].

In [FH05], [Na15], and [NK11], stochastic interest rates and stochastic volatility are

both incorporated.

1.2 Problem Formulation

Consider an investor who, at time t, owns Nt shares of stock at price per share Pt. The

total worth of investments is given by Kt = NtPt. Then we can write

dKt = NtdPt + PtdNt

= Kt
dPt
Pt

+ Itdt, (1.2)

where It is the investment rate at time t. For example, if dt represents one month and he

decides at time t to invest an additional $1000 per month at a $10 price per share, then

the number of shares purchased will be

dNt =
Itdt

Pt
= 100.

The investor’s debt, Lt, increases with interest payments, investment, and consumption,
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1.2. PROBLEM FORMULATION

and decreases with income. Thus our equation for the change in debt is given by

dLt = (rLt + It + Ct − Yt)dt, (1.3)

where r ≥ 0 is a constant interest rate, Ct is the consumption rate, and Yt is the rate

of income from production. In other words, Yt is the total earned in dividends per unit

time at time t. The total in dividends is proportional to the productivity of capital, or

dividend rate, bt:

Ytdt = btNtdt. (1.4)

The investor’s net worth is given by

Xt = Kt − Lt. (1.5)

We require Xt > 0.

It is worth noting that the model applies to any economic unit with productive capital

and liabilities. For another example, consider a farm on which produce is grown and

then sold for profit. Nt may represent the number of acres of the farm, with Pt being the

property value per acre. Debt increases with property taxes, the purchase of new land,

and consumption, and decreases with income from selling the produce. From here on, we

continue our explanations with the example of the investor.

We consider the dividend rate and stock price to be stochastic. In particular, we allow

the dividend rate to be governed by the following equation:

btdt = bdt+ σdwt, (1.6)
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1.2. PROBLEM FORMULATION

where b, σ > 0 are constants. The general equation for stock price is

dPt
Pt

= µtdt+ σ̃tdw̃t. (1.7)

Here wt and w̃t are one-dimensional standard Brownian motions, which we allow to be

correlated with correlation constant ρ ∈ (−1, 1]. That is,

E[dw̃t · dwt] = ρdt.

We restrict ρ 6= −1 for technical reasons, which will be apparent later. In addition, it

is reasonable to assume that the dividend process and the stock price process are not

perfectly negatively correlated. In Chapters 2 and 3 we place specific conditions on the

drift µt and volatility σ̃t of stock price.

The change in net worth of the investor is given by

dXt = Kt
dPt
Pt

+ Itdt− (rLt + It + Ct − Yt)dt. (1.8)

The controls kt =
Kt

Xt

and ct =
Ct
Xt

are the proportion of wealth invested and the proportion

of wealth consumed, respectively, with initial values k0 = k and c0 = c. Substituting

Lt = Kt −Xt, (1.4), (1.7), and our controls into (1.8), we simplify to obtain

dXt = Xt

[(
b

Pt
+ µt − r

)
kt + (r − ct)

]
dt+

σktXt

Pt
dwt + σ̃tktXtdw̃t. (1.9)

In this thesis we specify certain conditions on the the stock price drift and volatility.

In Chapter 2 we allow the drift to be a bounded function of price, and take the volatility
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1.2. PROBLEM FORMULATION

to be constant. In Chapter 3, we consider a constant µ and a stochastic volatility. In each

case we use the dynamic programming principle to derive the Hamilon-Jacobi-Bellman

(HJB) equation, from which we proceed to prove existence of a classical solution using a

subsolution/supersolution method, and then verify that the solution obtained is equal to

our value function, the maximum expected discounted utility of consumption.
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Chapter 2

Drift as a Bounded Function of Price

In this chapter we suppose the unit price of capital, Pt, satisfies the stochastic differential

equation

dPt
Pt

= µ(Pt)dt+ σ̃dw̃t, (2.1)

where the volatility σ̃ > 0 is constant, and the drift parameter µ is a bounded function

price. That is, we suppose there exists a constant M1 > 0 such that

|µ(Pt)| ≤M1.

Using this particular equation for Pt, we will derive the Hamilton-Jacobi-Bellman equation

in Section 2.1. In Section 2.3, we will prove existence of solution using the particular

subsolution and supersolution obtained in Section 2.2, and in Section 2.4, we will verify

that our solution is equal to the value function.
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2.1. DERIVATION OF THE HJB EQUATION

2.1 Derivation of the HJB Equation

In Chapter 1 we derived a general equation for dXt. We wish to write this equation with

our current specifications. Before doing so, we first introduce introduce a new variable.

Let

λt = log Pt.

For notational purposes, we will now write µ(λt) rather than µ(Pt). Using Ito’s rule with

(2.1), we have

dλt =
1

Pt
dPt −

1

2

1

P 2
t

(dPt)
2

= µ(λt)dt+ σ̃dw̃t −
1

2
σ̃2dt

=
(
µ(λt)−

1

2
σ̃2
)
dt+ σ̃dw̃t,

and so

dλt = µ̃(λt)dt+ σ̃dw̃t, (2.2)

where µ̃(λt) = µ(λt)− 1
2
σ̃2. Note that µ̃ is also bounded:

|µ̃(λ)| ≤ |µ(λ)|+ 1

2
σ̃2 ≤M1 +

1

2
σ̃2 ≡M2. (2.3)

Now we can rewrite (1.9) as

dXt = Xt

[(
be−λt + µ(λt)− r

)
kt + (r − ct)

]
dt+Xt

[
σkte

−λtdwt + σ̃ktdw̃t

]
. (2.4)
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2.1. DERIVATION OF THE HJB EQUATION

Note that we have two state variables, Xt and λt. Let their initial values be given by

X0 = x and λ0 = λ. Recall that our controls kt = Kt/Xt and ct = Ct/Xt are the

proportions of wealth invested and consumed, respectively. We require that they belong

to the admissible control space, Π, as defined below.

Definition 2.1.1. (Admissible Control Space)

The pair (kt, ct) is said to be in the admissible control space Π if (kt, ct) is an R2-

process which is progressively measurable with respect to a (wt, w̃t)-adapted family of

σ-algebras (Ft, t ≥ 0). Moreover, we require that kt, ct ≥ 0, and

Pr

(∫ T

0

k2
t dt <∞

)
= 1, P r

(∫ T

0

ctdt <∞
)

= 1 for all T > 0.

Our goal is to maximize the expected total discounted HARA utility of consumption.

The objective function is given by

J(x, λ, k., c.) = Ex,λ
[∫ ∞

0

e−δt
1

γ
(ctXt)

γdt

]
, (2.5)

which we wish to maximize subject to the constraints (kt, ct) ∈ Π and x > 0, while λ ∈ R.

The parameter δ is a positive discount factor. The corresponding value function is

V (x, λ) = sup
(kt,ct)∈Π

Ex,λ
[∫ ∞

0

e−δt
1

γ
(ctXt)

γdt

]
. (2.6)

Remark 2.1.1. The HARA utility function, as defined in Chapter 1, allows for any

values of γ less than 1, excluding zero. The case of γ = 0 corresponds to the log utility

function. In this thesis, we consider only positive values of the parameter. That is, we
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2.1. DERIVATION OF THE HJB EQUATION

restrict 0 < γ < 1. A natural extension for future work would be to consider negative

values for the parameter.

To get a partial differential equation for V (x, λ), we use the dynamic programming

method. This involves introducing a dummy variable, u, and splitting our integral into

the sum of an integral from 0 to t, and an integral from t to infinity:

∫ ∞
0

e−δt
1

γ
(ctXt)

γdu =

∫ t

0

e−δu
1

γ
(cuXu)

γdu+

∫ ∞
t

e−δu
1

γ
(cuXu)

γdu. (2.7)

We apply a change of variables so that the second integral is rewritten as an integral from

0 to infinity. Then we can write our objective function as follows:

J(x, λ, k., c.) = Ex,λ
[∫ t

0

e−δu
1

γ
(cuXu)

γdu+

∫ ∞
0

e−δ(v+t) 1

γ
(ctvX

t
v)
γdv

]
= Ex,λ

[∫ t

0

e−δu
1

γ
(cuXu)

γdu+ e−δtEXt,λt
∫ ∞

0

e−δv
1

γ
(ctvX

t
v)
γdv

]
. (2.8)

The second line is true because of the tower property of conditional expectations (see

[Et02], Section 2.3), which says that if Fi and Fj are σ-algebras such that Fi ⊆ Fj , then

E[E[X|Fj]|Fi] = E[X|Fi]. (2.9)

In the second term of (2.8), v is treated as a fixed value, and X t
v is a process with initial

value Xt. Therefore we have

J(x, λ, k., c.) = Ex,λ
[∫ t

0

e−δu
1

γ
(cuXu)

γdu+ e−δtJ(Xt, λt, k., c.)

]
, (2.10)
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2.1. DERIVATION OF THE HJB EQUATION

and so

V (x, λ) = sup
(k.,c.)∈Π

J(x, λ, k., c.)

= sup
(k.,c.)∈Π

{
Ex,λ

[∫ t

0

e−δu
1

γ
(cuXu)

γdu

]
+ Ex,λ

[
e−δt sup

(k.,c.)∈Π

J(Xt, λt, k., c.)

]}
.

Note that

sup
(k.,c.)∈Π

J(Xt, λt, k., c.) = V (Xt, λt),

so that

V (x, λ) = sup
(k.,c.)∈Π

{
Ex,λ

[∫ t

0

e−δu
1

γ
(cuXu)

γdu

]
+ Ex,λ[e−δtV (Xt, λt)]

}
. (2.11)

Then

sup
(k.,c.)∈Π

{
Ex,λ

[∫ t

0

e−δu
1

γ
(cuXu)

γdu

]
+ Ex,λ

[
e−δtV (Xt, λt)

]
− V (x, λ)

}
= 0. (2.12)

Working with the expression inside the braces, we divide by t and take the limit as t

approaches zero. By the mean value theorem,

lim
t ↓ 0

Ex,λ
[∫ t

0

e−δu
1

γ
(cuXu)

γdu

]
t

=
1

γ
(cx)γ. (2.13)

We also have that

lim
t ↓ 0

Ex,λ[V (Xt, λt)]− V (x, λ)

t
= AV (x, λ), (2.14)

where A is called the infinitesimal generator of the process (Xt, λt). (See [Ok07], p. 121).
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2.1. DERIVATION OF THE HJB EQUATION

We manipulate the second term of (2.12) and apply (2.14) to get

lim
t ↓ 0

Ex,λ
[
e−δtV (Xt, λt)

]
− V (x, λ)

t

= lim
t ↓ 0

{
e−δt

[
Ex,λV (Xt, λt)− V (x, λ)

]
t

+
e−δtV (x, λ)− V (x, λ)

t

}

=

(
lim
t ↓ 0

e−δt
)(

lim
t ↓ 0

Ex,λV (Xt, λt)− V (x, λ)

t

)
+ V (x, λ)

(
lim
t ↓ 0

e−δt − 1

t

)
= AV (x, λ)− δV (x, λ). (2.15)

To derive the generator, A, we apply Ito’s formula to V (Xt, λt):

dV (Xt, λt) = VxXt

{[(
be−λt + µ(λt)− r

)
kt + (r − ct)

]
dt+ σkte

−λtdwt + σ̃ktdw̃t

}
+ Vλ

[
µ̃(λt)dt+ σ̃dw̃t

]
+

1

2
VxxX

2
t

[
σ2k2

t e
−2λt + 2ρσσ̃k2

t e
−λt + σ̃2k2

t

]
dt

+
1

2
Vλλσ̃

2dt+ Vxλ

[
σ̃2ktXt + ρσσ̃ktXte

−λt
]
dt.

Rearranging and integrating from 0 to t, we get

V (Xt, λt)− V (x, λ) =

∫ t

0

[
Xu

(
be−λu + µ(λu)− r)ku + (r − cu)

)
Vx + µ̃(λu)Vλ

+
1

2
k2
uX

2
u

(
σ2e−2λu + 2ρσσ̃e−λu + σ̃2

)
Vxx

+
1

2
σ̃Vλλ + kuXu

(
σ̃2 + ρσσ̃e−λu

)
Vxλ

]
du

+

∫ t

0

[
σkuXue

−λuVx
]
dwu +

∫ t

0

[σ̃kuXuVx + σ̃Vλ] dw̃u. (2.16)

We assume that E[λmt ] < ∞ and E[Xm
t ] < ∞ for all m > 0, and also that there exists

a constant A > 0 such that |Zλ(λ)| ≤ A, where Z(λ) is defined as a function such that

12



2.1. DERIVATION OF THE HJB EQUATION

V (x, λ) = 1
γ
xγeZ(λ). This will ensure that the last two integrals in (2.16) are martingales.

In Section 2.4, we will prove that these conditions hold for our optimal control policy

(k∗t , c
∗
t ), and solution Z̃(λ, θ).

Taking the expectation in (2.16) causes the last two terms to vanish because they are

martingales. We then divide by t, and take the limit as t approaches zero. This give us

the following equality:

lim
t ↓ 0

Ex,λ [V (Xt, λt)]− V (x, λ)

t
= lim

t ↓ 0

Ex,λ
[∫ t

0

f(Xu, λu)du

]
t

, (2.17)

where

f(Xt, λt) = Xt

(
be−λt + µ(λt)− r)kt + (r − ct)

)
Vx + µ̃(λt)Vλ

+
1

2
k2
tX

2
t

(
σ2e−2λt + 2ρσσ̃e−λt + σ̃2

)
Vxx

+
1

2
σ̃Vλλ + ktXt

(
σ̃2 + ρσσ̃e−λt

)
Vxλ.

Let

q(λt) = σ2e−2λt + 2ρσσ̃e−λt + σ̃2. (2.18)

The left-hand side of (2.17) is equal to AV (x, λ). By the mean value theorem, the

right-hand side is equal to f(x, λ). Therefore, we have that

AV (x, λ) = x
(
be−λ + µ(λ)− r)k + (r − c)

)
Vx + µ̃(λ)Vλ +

1

2
k2x2q(λ)Vxx

+
1

2
σ̃Vλλ + kx

(
σ̃2 + ρσσ̃e−λ

)
Vxλ. (2.19)
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2.1. DERIVATION OF THE HJB EQUATION

We now combine (2.12), (2.13), and (2.15) to get

sup
(k,c)∈Π

{
1

γ
(cx)γ +AV (x, λ)− δV (x, λ)

}
= 0. (2.20)

Substituting (2.19) into (2.20) and simplifying, we get the following dynamic programming

equation for V (x, λ) :

δV =
σ̃2

2
Vλλ + µ̃(λ)Vλ + rxVx + max

c≥0

[
−cxVx +

1

γ
(cx)γ

]
(2.21)

+ max
k≥0

[
(be−λ + µ(λ)− r)kxVx + (σ̃2 + ρσσ̃e−λ)kxVxλ +

k2x2q(λ)

2
Vxx

]
.

Equation (2.21) is the Hamilton-Jacobi-Bellman (HJB) equation for V (x, λ) as defined in

(2.6).

We assume ρ 6= −1. To be more precise, we define a constant −1 < ρ0 < 0 (that may

be arbitrarily close to −1), and require ρ ∈ [ρ0, 1]. Then q(λ) is bounded below by a

positive constant. This is easily seen by looking at two cases, and using the fact that σ, σ̃,

and e−λ are all positive. For ρ ∈ [0, 1],

q(λ) ≥ σ2e−2λ + σ̃2 > σ̃2 > 0.

For ρ ∈ [ρ0, 0),

q′(λ) = −2σ2e−2λ − 2ρσσ̃e−λ = −2σe−λ(σe−λ + ρσ̃).

14



2.1. DERIVATION OF THE HJB EQUATION

Now q′(λ) = 0 when e−λ = −ρσ̃
σ
. Substituting this into the equation for q, we have

qmin = σ̃2(1− ρ2) ≥ σ̃2(1− ρ2
0) ≥ 0.

We see that σ̃2 ≥ σ̃2(1− ρ2
0), and set q0 ≡ σ̃2(1− ρ2

0). Thus q(λ) ≥ q0 for all ρ ∈ [ρ0, 1].

Notice that if we allowed ρ to equal −1, then q would obtain the value zero. We need a

positive lower bound on q for later proofs. It is for this reason that we restrict ρ ∈ [ρ0, 1].

For the non-log HARA utility function, we can show that V (x, λ) is homogeneous in

x with order λ. Using equation (2.4) for dXt, and for any constant ξ > 0, we have

d(ξXt) = ξ · dXt, (2.22)

ξx0 = ξx, (2.23)

and

J(ξx, λ, k., c.) = Ex,λ
[∫ ∞

0

e−δt
1

γ
(ctξXt)

γdt

]
= ξγEx,λ

[∫ ∞
0

e−δt
1

γ
(ctXt)

γdt

]
= ξγJ(x, λ, k., c.).
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2.1. DERIVATION OF THE HJB EQUATION

Then

V (x, λ) = sup
(k.,c.)∈Π

J(x, λ, k., c.)

= sup
(k.,c.)∈Π

xγJ(1, λ, k., c.)

= xγV (1, λ).

We can then write V in the form

V (x, λ) =
1

γ
xγW (λ). (2.24)

Using equation (2.24), we get a reduced DPE for W :

δW =
σ̃2

2
Wλλ + µ̃(λ)Wλ + γrW + max

c≥0

[
− γcW + cγ

]
+ γmax

k≥0

[(
be−λ + µ(λ)− r

)
kW + (σ̃2 + ρσσ̃e−λ)kWλ −

k2

2
(1− γ)q(λ)W

]
.

(2.25)

Let Z(λ) = logW (λ). Then

Wλ

W
= Zλ and

Wλλ

W
= Zλλ + Z2

λ. (2.26)

So the equation for Z is

δ =
σ̃2

2
(Zλλ + Z2

λ) + µ̃(λ)Zλ + γr + max
c≥0

[
− γceZ + cγ

]
+ γmax

k≥0

{[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)Zλ

]
k − k2

2
(1− γ)q(λ)

}
. (2.27)
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2.1. DERIVATION OF THE HJB EQUATION

The maximum over all c ≥ 0 occurs at

c∗ = e
Z(λ)
γ−1 , (2.28)

which gives us

max
c≥0

[
− γceZ + cγ

]
= (1− γ)e

Z
γ−1 .

Using this expression, we simplify (2.27) to get

δ =
σ̃2

2
(Zλλ + Z2

λ) + µ̃(λ)Zλ + γr + (1− γ)e
Z
γ−1

+ γmax
k≥0

{[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)Zλ

]
k − k2

2
(1− γ)q(λ)

}
. (2.29)

The maximum over all k ≥ 0 occurs at

k∗ =

[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)Zλ

(1− γ)q(λ)

]+

, (2.30)

where a+ ≡ max(a, 0). Note that (k∗, c∗) is our candidate for admissible control. In the

Verification Theorem (Section 2.4), we will prove that (k∗, c∗) ∈ Π.

Define

G(λ, p) ≡ max
k≥0

{[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)p

]
k − k2

2
(1− γ)q(λ)

}
, (2.31)

and

Ψ(λ) ≡


(be−λ + µ(λ)− r)2

2q(λ)(1− γ)
if be−λ + µ(λ)− r > 0,

0 otherwise.

(2.32)
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2.1. DERIVATION OF THE HJB EQUATION

Then

G(λ, p) ≥ 0, G(λ, 0) = Ψ(λ), (2.33)

and Equation (2.29) reduces to

δ =
σ̃2

2
(Zλλ + Z2

λ) + µ̃(λ)Zλ + γr + (1− γ)e
Z
γ−1 + γG(λ, Zλ). (2.34)

To prove (2.33), note that

k∗(λ, p) = max

(
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)p

(1− γ)q(λ)
, 0

)
≥ 0.

We can write G as a quadratic in k∗:

G(λ, p) =
[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)p

]
k∗ − (k∗)2

2
(1− γ)q(λ)

= a(k∗)2 + bk∗.

If k∗ = 0, then G = 0.

If k∗ =
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)p

(1− γ)q(λ)
≥ 0, then

G(λ, p) =
−b2

4a

=

[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)p

]2

2(1− γ)q(λ)
≥ 0,
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2.2. SUBSOLUTION AND SUPERSOLUTION

since γ < 1 and q(λ) > 0. So G(λ, p) ≥ 0. Substituting in p = 0 above, we see that

G(λ, 0) = Ψ(λ).

Define

H(λ, z, p) ≡ − σ̃
2

2
p2 − µ̃(λ)p− γG(λ, p)− γr + δ − (1− γ)e

z
γ−1 . (2.35)

Note that H is a continuous function in each variable. Now we can rewrite Equation

(2.34) as

σ̃2

2
Zλλ = H(λ, Z, Zλ). (2.36)

Equation (2.36) is the Hamilton-Jacobi-Bellman equation for Z(λ) corresponding to the

value function (2.6), where V (x, λ) = 1
γ
xγeZ(λ).

2.2 Subsolution and Supersolution

To prove existence of solution to (2.36), we use the method of subsolution/supersolution.

Information on the use of this method can be found in [BSW68], [Pa92], and [Wa98].

Definition 2.2.1. Z(λ) is a subsolution (supersolution) of (2.36) provided that

σ̃2

2
Zλλ ≥ (≤) H(λ, Z, Zλ). (2.37)

In addition, if Ẑ is a subsolution, Z̄ is a supersolution, and Ẑ ≤ Z̄, then we say that

〈Ẑ, Z̄〉 is an ordered pair of subsolution/supersolution.

We wish to identify a particular subsolution and supersolution. In doing so, we will
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2.2. SUBSOLUTION AND SUPERSOLUTION

make use of the following lemma.

Lemma 2.2.1. Ψ(λ), as defined in (2.32), is bounded.

Proof. We first consider the case 0 ≤ ρ ≤ 1. Using the identity

(a+ b)2 ≤ 2a2 + 2b2, (2.38)

and the fact that σ, σ̃, e−λ > 0, we have

Ψ(λ) =
(be−λ + µ(λ)− r)2

2(1− γ)(σ2e−2λ + 2ρσσ̃e−λ + σ̃2)

≤ (be−λ + µ(λ)− r)2

2(1− γ)(σ2e−2λ + σ̃2)

≤ 2b2e−2λ + 2(µ(λ)− r)2

2(1− γ)(σ2e−2λ + σ̃2)
.

By performing some simplifications and applying our upper bound on µ(λ), we get

2b2e−2λ + 2(µ(λ)− r)2

2(1− γ)(σ2e−2λ + σ̃2)
=

b2e−2λσ2 + σ2(µ(λ)2 − r)2

σ2(1− γ)(σ2e−2λ + σ̃2)

=
b2(σ2e−2λ + σ̃2) + σ2(µ(λ)2 − r)2 − b2σ̃2

σ2(1− γ)(σ2e−λ + σ̃2)

=
b2

σ2(1− γ)
+

(µ(λ)− r)2 − b2σ̃2

σ2

(1− γ)(σ2e−2λ + σ̃2)

≤ b2

σ2(1− γ)
+

(M1 + r)2 − b2σ̃2

σ2

(1− γ)(σ2e−2λ + σ̃2)
.

The last step is true because

|µ(λ)− r| ≤ |µ(λ)|+ r ≤M1 + r, r ≥ 0.
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2.2. SUBSOLUTION AND SUPERSOLUTION

If (M1 + r)2 − b2σ̃2/σ2 ≤ 0, then

Ψ(λ) ≤ b2

σ2(1− γ)
. (2.39)

Otherwise, we have

Ψ(λ) ≤ b2

σ2(1− γ)
+

(M1 + r)2 − b2σ̃2

σ2

(1− γ)σ̃2

=
(M1 + r)2

σ̃2(1− γ)
.

Thus, for 0 ≤ ρ ≤ 1,

Ψ(λ) ≤ max

{
b2

σ2(1− γ)
,
(M1 + r)2

σ̃2(1− γ)

}
.

We can get a similar bound if ρ is negative. If ρ0 < ρ < 0, then

ρ(σe−λ − σ̃)2 ≤ 0,

which implies

2ρσσ̃e−λ ≥ ρσ2e−2λ + ρσ̃2.

21



2.2. SUBSOLUTION AND SUPERSOLUTION

Then we have

Ψ(λ) =
(be−λ + µ(λ)− r)2

2(1− γ)(σ2e−2λ + 2ρσσ̃e−λ + σ̃2)

≤ (be−λ + µ(λ)− r)2

2(1− γ)(σ2e−2λ + ρσ2e−2λ + ρσ̃2 + σ̃2)

=
(be−λ + µ(λ)− r)2

2(1− γ)(1 + ρ)(σ2e−2λ + σ̃2)

≤ 2b2e−2λ + 2(µ(λ)− r)2

2(1− γ)(1 + ρ)(σ2e−2λ + σ̃2)

≤ 1

1 + ρ0

max

{
b2

σ2(1− γ)
,
(M1 + r)2

σ̃2(1− γ)

}
.

Let

Ψ̃(λ) ≡ max

{
b2

σ2(1− γ)
,
(M1 + r)2

σ̃2(1− γ)

}
(2.40)

and

Ψ̄ ≡ max

{
Ψ̃,

Ψ̃

1 + ρ0

}
. (2.41)

Then

0 ≤ Ψ(λ) ≤ Ψ̄ <∞, (2.42)

and so we see that Ψ(λ) is bounded.

We now identify an ordered pair of subsolution/supersolution to (2.36).

Lemma 2.2.2. Suppose 0 < γ < 1 and

δ > γr. (2.43)
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2.2. SUBSOLUTION AND SUPERSOLUTION

In addition, define

K1 ≡ (γ − 1) log

[
δ − γr
1− γ

]
. (2.44)

Then any constant K ≤ K1 is a subsolution of (2.36).

Proof. We want to show

σ̃2

2
Kλλ ≥ H(λ,K,Kλ).

Since K is a constant, Kλ = 0 and Kλλ = 0. So we want to show that

0 ≥ − σ̃
2

2
(0)2 − µ̃(λ)(0)− γG(λ, 0)− γr + δ − (1− γ)e

K
γ−1 ,

or

0 ≥ −γΨ(λ)− γr + δ − (1− γ)e
K
γ−1 .

Since K ≤ K1 = (γ − 1) log

(
δ − γr
1− γ

)
, and (γ − 1) < 0, we have

e
K
γ−1 ≥ e

K1
γ−1

= exp

[
log

(
δ − γr
1− γ

)]
=

δ − γr
1− γ

,

and so

−(1− γ)e
K
γ−1 ≤ −(1− γ)

δ − γr
1− γ

= γr − δ.
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2.2. SUBSOLUTION AND SUPERSOLUTION

Therefore

−γΨ(λ)− γr + δ − (1− γ)e
K
γ−1 ≤ −γΨ(λ)− γr + δ + γr − δ

= −γΨ(λ)

≤ 0,

since Ψ(λ) ≥ 0.

Lemma 2.2.3. Suppose 0 < γ < 1 and

δ > γ(r + Ψ̄), (2.45)

where Ψ̄ is defined by (3.27). In addition, define

K2 ≡ (γ − 1) log

[
δ − γ(r + Ψ̄)

1− γ

]
. (2.46)

Then any constant K ≥ K2 is a supersolution of (2.36).

Proof. The proof is similar to the proof of Lemma (2.2.2), but instead we want to show

that

−γΨ(λ)− γr + δ − (1− γ)e
K
γ−1 ≥ 0.

Since K ≥ K2 = (γ − 1) log

(
δ − γ(r + Ψ̄)

1− γ

)
and (γ − 1) < 0, we have

e
K
γ−1 ≤ exp

[
log

(
δ − γ(r + Ψ̄)

1− γ

)]
=

δ − γ(r + Ψ̄)

1− γ
,
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2.2. SUBSOLUTION AND SUPERSOLUTION

and so

−(1− γ)e
K
γ−1 ≥ −δ + γ(r + Ψ̄).

Therefore

−γΨ(λ)− γr + δ − (1− γ)e
K
γ−1 ≥ −γΨ(λ)− γr + δ − δ + γ(r + Ψ̄)

= γ(Ψ̄−Ψ(λ))

≥ 0,

since Ψ(λ) ≤ Ψ̄.

Lemma 2.2.4. Suppose K1 and K2 are defined by (2.44) and (2.46) respectively, (2.45)

holds, and 0 < γ < 1. Then 〈K1, K2〉 is an ordered subsolution/supersolution pair of

(2.36).

Proof. Since Ψ̄ ≥ 0, δ > γ(r + Ψ̄) implies δ > γr, and so

δ − γ(r + Ψ̄) ≤ δ − γr

log

[
δ − γ(r + Ψ̄)

1− γ

]
≤ log

[
δ − γr
1− γ

]
(γ − 1) log

[
δ − γ(r + Ψ̄)

1− γ

]
≥ (γ − 1) log

[
δ − γr
1− γ

]
K2 ≥ K1.

We have that K1 is a subsolution, K2 is a supersolution, and K1 ≤ K2. Thus 〈K1, K2〉 is

an ordered subsolution/supersolution pair of (2.36).
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2.3 Existence of Solution

The following theorem gives existence of a classical solution to (2.36). The result follows

from Lemma 3.8 of [FP04].

Theorem 2.3.1. Suppose K1 and K2 are defined by (2.44) and (2.46) respectively, (2.45)

holds, and 0 < γ < 1. Then (2.36) has a bounded classical solution Z̃(λ) which satisfies

K1 ≤ Z̃(λ) ≤ K2. (2.47)

Proof. By Lemma 2.2.4, we have that 〈K1, K2〉 is an ordered subsolution/supersolution

pair of (2.36). Note that H is strictly increasing with respect to Z. In order to use Lemma

3.8 from [FP04], we need a bound on H in the following form:

|H(λ, z, p)| ≤ C1(p2 + C2), (2.48)

for some constants C1 > 0 and C2 > 0. We start by obtaining such a bound on G(λ, p) :

0 ≤ G(λ, p)

= max
k≥0

{[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)p

]
k − k2

2
(1− γ)q(λ)

}
≤

[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)p

]2
2(1− γ)q(λ)

≤ 2(be−λ + µ(λ)− r)2 + 2(σ̃2 + ρσσ̃e−λ)2p2

2(1− γ)q(λ)

= 2Ψ(λ) +
2(σ̃2 + ρσσ̃e−λ)2

(1− γ)q(λ)
p2. (2.49)

26



2.3. EXISTENCE OF SOLUTION

Consider the coefficient of p2 in the second term of (2.51), and note that it is positive. If

we let y = e−λ, we see that this coefficient is a rational expression involving a quadratic

in y divided by another quadratic in y, where y > 0. The limit as y tends to infinity

(λ→ −∞) of such an expression is a constant. Since q(λ) ≥ q0 > 0, the denominator does

not approach zero as y tends to 0. Therefore this coefficient is bounded above by some

positive constant C̃1:

2(σ̃2 + ρσσ̃e−λ)2

(1− γ)q(λ)
≤ C̃1. (2.50)

Using (2.50) along with (2.42), we have that

0 ≤ G(λ, p) ≤ C̃1p
2 + 2Ψ̄. (2.51)

Now using (2.35), (2.3), (2.51), and (2.47), we get the following bound for K1 ≤ z ≤ K2:

|H(λ, z, p)| ≤ σ̃2

2
p2 + |µ̃(λ)p|+ γG(λ, p) + γr + δ + (1− γ)e

z
γ−1

≤ σ̃2

2
p2 +M2|p|+ γ(C̃1p

2 + 2Ψ̄) + γr + δ + (1− γ)e
K1
γ−1 .

Each term above is a constant or a constant multiple of p2, other than the term M2|p|.

But we can bound this term as well. We use the fact that

(M2 + p)2 ≥ 0 and (M2 − p)2 ≥ 0

imply

−1

2
(M2

2 + p2) ≤M2p and M2p ≤
1

2
(M2

2 + p2),
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respectively. This gives us the inequality

|M2p| = M2|p| ≤
1

2
(M2

2 + p2).

So we have that

|H(λ, z, p)| ≤ C1(p2 + C2), z ∈ [K1, K2], (2.52)

where C1 and C2 are positive constants. Therefore by [FP04], since H is strictly increasing

with respect to Z and we can bound H as in (2.52), (2.36) has a classical solution Z̃(λ)

such that

K1 ≤ Z̃(λ) ≤ K2.

2.4 Verification Theorem

Now that we have existence of a classical solution Z̃(λ) to the HJB Equation (2.36), we

want to show that

Ṽ (x, λ) =
1

γ
xγeZ̃(λ) (2.53)

is equal to the value function defined by (2.6). In effect, we will have maximized the

expected total discounted utility of consumption of an investor whose net worth is given

by (2.4). This so-called “Verification Theorem” is given in Theorem 2.4.4.

Before stating the Verification Theorem, we will need a few results.

Lemma 2.4.1. Suppose 0 < γ < 1 and (2.45) holds. If Z̃(λ) is a classical solution of
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(2.36) which satisfies (2.47), then Z̃λ(λ) is bounded. That is, there exists a constant A > 0

such that

|Z̃λ(λ)| ≤ A. (2.54)

Proof. We know Z̃(λ) is bounded by constants K1 and K2. Since Z̃ is a classical solution

of (2.36), Z̃ ∈ C2. So its first and second derivatives are defined everywhere. For this

reason, we do not need to worry about Z̃λ being undefined anywhere, but we must verify

that Z̃λ is bounded at its local maxima and minima. Such an example where this may

not be true is if Z̃ is oscillatory, with slopes becoming more steep with each oscillation.

Thus to prove that Z̃λ is bounded, it is sufficient to prove that it is bounded at its local

extrema.

Suppose Z̃λ has a local max or min at λ0. Then Z̃λλ(λ0) = 0. Therefore we have

0 =
σ̃2

2
Z̃2
λ(λ0) + µ̃(λ0)Z̃λ(λ0) + γr − δ + (1− γ)e

Z̃(λ0)
γ−1 + γG(λ0, Z̃λ(λ0)).

Since G ≥ 0 and (1− γ)e
Z̃
γ−1 ≥ (1− γ)e

K2
γ−1 = δ − γr − γΨ̄, we have

σ̃2

2
Z̃2
λ(λ0) + µ̃(λ0)Z̃λ(λ0) + γr − δ + δ − γr − γΨ̄ ≤ 0,

or

σ̃2

2
Z̃2
λ(λ0) + µ̃(λ0)Z̃λ(λ0)− γΨ̄ ≤ 0. (2.55)

The left-hand side of (2.55) is a quadratic expression in Z̃λ(λ0). Since the quadratic is

concave up, the only Z̃λ-values that satisfy (2.55) are those bounded between the two
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roots of the quadratic. The roots are given by

r1 ≡
−µ̃(λ0)−

√
µ̃2(λ0)− 2σ̃2γΨ̄

σ̃2
and r2 ≡

−µ̃(λ0) +
√
µ̃2(λ0)− 2σ̃2γΨ̄

σ̃2
, (2.56)

where r1 ≤ r2. We need bounds for Z̃λ that are independent of λ0. Using (2.3), we have

r1 ≥
−M2 −

√
M2

2 − 2σ̃2γΨ̄

σ̃2
≡ r̃1 and r2 ≤

M2 +
√
M2

2 − 2σ̃2γΨ̄

σ̃2
≡ r̃2,

so that

r̃1 ≤ Z̃λ(λ0) ≤ r̃2. (2.57)

Thus Z̃λ is bounded at λ0. Since λ0 was an arbitrary maximum or minimum point of Z̃λ,

Z̃λ is bounded at its maxima and minima. Therefore, Z̃λ is bounded.

Lemma 2.4.2. Suppose 0 < γ < 1 and (2.45) holds. Let Z̃(λ) denote a classical solution

of (2.36) which satisfies (2.47). Define k∗(λ, p) as in (2.30). Then there exist positive

constants Λ1 and Λ2 such that

k∗(λt, Z̃λ) ≤ Λ1, (2.58)

and

e−λtk∗(λt, Z̃λ) ≤ Λ2. (2.59)

Proof. Note that k∗t ≥ 0, so we do not need to bound it in absolute value. We bound
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k∗(λt, Z̃λ) and e−λtk∗(λt, Z̃λ) as follows:

k∗(λt, Z̃λ) =

[
be−λt + µ(λt)− r + (σ̃2 + ρσσ̃e−λt)Z̃λ(λt)

(1− γ)q(λt)

]+

≤
∣∣be−λt + µ(λt)− r + (σ̃2 + ρσσ̃e−λt)Z̃λ(λt)

∣∣
(1− γ)q(λt)

≤ be−λt +M1 + r + (σ̃2 + |ρ|σσ̃e−λt)A
(1− γ)q(λt)

≤ Λ1, (2.60)

and

e−λtk∗(λt, Z̃λ) ≤
e−λt

[
be−λt +M1 + r + (σ̃2 + |ρ|σσ̃e−λt)A

]
(1− γ)q(λt)

≤ Λ2. (2.61)

To justify (2.60) and (2.61), we apply the same reasoning we used for the bound (2.50)

in the proof of Theorem 2.3.1. Let yt = e−λt . Note that (2.60) is the quotient of a linear

expression in yt and a quadratic expression in yt, where yt > 0. Since q(λt) is bounded

below by a positive constant, the limits of (2.60) as λt approach positive and negative

infinity both exist. Therefore the quotient is bounded.

The expression in (2.61) is the quotient of a quadratic in yt by another quadratic in yt,

and it’s limits as λt approaches both positive and negative infinity exist as well. Therefore

(2.61) holds.

Lemma 2.4.3. Suppose 0 < γ < 1 and (2.45) holds. Let Z̃(λ) denote a classical solution

of (2.36) which satisfies (2.47). For the process Xt defined in (2.4), and k∗(λ, p) and
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c∗(λ, p) defined by (2.30) and (2.28), respectively, we have

E[Xm
t ] <∞ (2.62)

for any fixed m > 0.

For a proof, refer to [Pa02] Chapter 1, Lemma 1.1.

We now state our main result.

Theorem 2.4.4. (Verification Theorem) Suppose 0 < γ < 1 and (2.45) holds. Let

Z̃(λ) denote a classical solution of (2.36) which satisfies (2.47). Denote

Ṽ (x, λ) ≡ 1

γ
xγeZ̃(λ). (2.63)

Then we have

Ṽ (x, λ) ≡ V (x, λ), (2.64)

where V (x, λ) is the value function defined by (2.6). Moreover, the optimal control policy

is

k∗(λ, Z̃λ) =

[
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)Z̃λ(λ)

(1− γ)q(λ)

]+

, c∗(λ, Z̃) = e
Z̃(λ)
γ−1 . (2.65)

Proof. Since Z̃ is a classical solution of (2.36), we have

δ =
σ̃2

2
(Z̃λλ + Z̃2

λ) + µ̃(λ)Z̃λ + γG(λ, Z̃λ) + γr + (1− γ)e
Z̃
γ−1 . (2.66)
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We can show that Ṽ is a classical solution of (2.21). From (2.63) we get

Ṽλ = Z̃λṼ , Ṽλλ = (Z̃2
λ + Z̃λλ)Ṽ ,

Ṽx =
γ

x
Ṽ , Ṽxx =

γ(γ − 1)

x2
Ṽ , and Ṽxλ =

γ

x
Z̃λṼ .

Substituting these values into the right-hand-side of (2.21) and simplifying, we get

σ̃2

2
Ṽλλ + µ̃(λ)Ṽλ + rxṼx + max

c≥0

[
−cxṼx +

1

γ
(cx)γ

]
+ max

k≥0

[
(be−λ + µ(λ)− r)kxṼx + (σ̃2 + ρσσ̃e−λ)kxṼxλ +

k2x2q(λ)

2
Ṽxx

]
=
σ̃2

2
(Z̃2

λ + Z̃λλ)Ṽ + µ̃(λ)Z̃λṼ + rγṼ +

(
1

γ
− 1

)(γ
x
Ṽ
) γ
γ−1

+ max
k≥0

[
(be−λ + µ(λ)− r)kγṼ + (σ̃2 + ρσσ̃e−λ)kγṼ Z̃λ +

k2q(λ)

2
γ(γ − 1)Ṽ

]
= Ṽ

{
σ̃2

2
(Z̃2

λ + Z̃λλ) + µ̃(λ)Z̃λ + rγ +

(
1

γ
− 1

)(γ
x

) γ
γ−1

Ṽ
1

γ−1

+ γmax
k≥0

[(
be−λ + µ(λ)− r + (σ̃2 + ρσσ̃e−λ)Z̃λ

)
k − k2

2
(1− γ)q(λ)

]}

= Ṽ

{
σ̃2

2
(Z̃2

λ + Z̃λλ) + µ̃(λ)Z̃λ + rγ + (1− γ)e
Z̃
γ−1 + γG(λ, Z̃λ)

}

= Ṽ δ. (2.67)

Therefore Ṽ is a classical solution of (2.21).
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For any admissible control (kt, ct) ∈ Π, using Ito’s rule for f(t, Ṽ ) = e−δtṼ , we get

d[e−δtṼ (Xt, λt)] = −δe−δtṼ (Xt, λt)dt+ e−δtdṼ (Xt, λt). (2.68)

Applying Ito’s rule to Ṽ , we have

dṼ (Xt, λt) = ṼxdXt + Ṽλdλt +
1

2
Ṽxx(dXt)

2 + Ṽxλ(dXt)(dλt) +
1

2
Ṽλλ(dλt)

2

= ṼxXt

[
(µ(λt) + be−λt − r)ktdt+ (r − ct)dt+ kt(σ̃dw̃t + σe−λtdwt)

]
+ Ṽλ

(
µ̃(λt)dt+ σ̃dw̃t

)
+

1

2
Ṽxx

[
k2
tX

2
t (σ̃2 + 2ρσ̃σe−λt + σ2e−2λt)dt

]
+ ṼxλktXt

(
σ̃2 + ρσ̃σe−λt

)
dt+

1

2
Ṽλλσ̃

2dt

=
[ σ̃2

2
Ṽλλ + µ̃(λt)Ṽλ + rXtṼx − cXtṼx + (be−λt + µ(λt)− r)ktXtṼx

+ ktXt(σ̃
2 + ρσ̃σe−λt)Ṽxλ +

k2
tX

2
t q(λt)

2
Ṽxx

]
dt

+σe−λtktXtṼxdwt +
(
σ̃ktXtṼx + σ̃Ṽλ

)
dw̃t.

The integral form of (2.68) is

e−δT Ṽ (XT , λT )− Ṽ (x, λ)

=

∫ T

0

e−δtdṼ (Xt, λt)−
∫ T

0

δe−δtṼ (Xt, λt)dt

=

∫ T

0

e−δt
[ σ̃2

2
Ṽλλ + µ̃(λ)Ṽλ + rXtṼx − cXtṼx + (be−λ + µ(λ)− r)kXtṼx

+ kXt(σ̃
2 + ρσ̃σe−λ)Ṽxλ +

k2X2
t q(λ)

2
Ṽxx

]
dt−

∫ T

0

δe−δtṼ (Xt, λt)dt

+

∫ T

0

σe−λkXtṼxdwt +

∫ T

0

(
σ̃kXtṼx + σ̃Ṽλ

)
dw̃t. (2.69)
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In (2.67) we have equality when the maximum over all k, c ≥ 0 is obtained. For arbitrary

k, c ≥ 0, we have the following inequality:

δṼ (x, λ) ≥ σ̃2

2
Ṽλλ + µ̃(λ)Ṽλ + rxṼx − cxṼx +

1

γ
(cx)γ + (be−λ + µ(λ)− r)kxṼx

+ (σ̃2 + ρσσ̃e−λ)kxṼxλ +
k2x2q(λ)

2
Ṽxx.

We replace x, λ, k, and c with Xt, λt, kt, and ct, respectively, and rearrange to get

σ̃2

2
Ṽλλ + µ̃(λt)Ṽλ + rXtṼx − ctXtṼx + (be−λt + µ(λt)− r)ktXtṼx

+ (σ̃2 + ρσσ̃e−λt)ktXtṼxλ +
k2
tX

2
t q(λt)

2
Ṽxx ≤ δṼ (x, λ)− 1

γ
(cXt)

γ.

(2.70)

Combining (2.69) and (2.70), we have

e−δT Ṽ (XT , λT )− Ṽ (x, λ)

≤
∫ T

0

e−δt
[
δṼ (Xt, λt)−

1

γ
(ctXt)

γ
]
dt−

∫ T

0

δe−δtṼ (Xt, λt)dt

+

∫ T

0

σe−λtktXtṼxdwt +

∫ T

0

(
σ̃ktXtṼx + σ̃Ṽλ

)
dw̃t

= −
∫ T

0

e−δt
1

γ
(ctXt)

γdt+mT + m̃T , (2.71)

where

mT =

∫ T

0

σe−λtktXtṼxdwt and m̃T =

∫ T

0

(
σ̃ktXtṼx + σ̃Ṽλ

)
dw̃t

are local martingales. They are local martingales because they are martingales on the
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2.4. VERIFICATION THEOREM

closed ball {x2 + λ2 ≤ R2}.

Let us start by proving that mT is a local martingale. It is sufficient to show that

Pr

(∫ T∧τR

0

(σe−λtktXtṼx)
2dt <∞

)
= 1,

where

τR = inf{t > 0;X2
t + λ2

t = R2}.

(See [KS91], p. 146). Since we are restricted to the region {x2 + λ2 ≤ R2} on which Xt

and λt are bounded, we know that Ṽx = Xγ−1
t eZ̃(λt) is also bounded. So there exists a

constant Λ for which

∫ T∧τR

0

(σe−λtktXtṼx)
2dt ≤ Λ

∫ T∧τR

0

k2
t dt.

Recall that (kt, ct) ∈ Π, so that Pr
(∫ T

0
k2
t dt <∞

)
= 1. Then Pr

(
Λ
∫ T∧τR

0
k2
t dt <∞

)
=

1, and so

Pr

(∫ T∧τR

0

(σe−λtktXtṼx)
2dt <∞

)
= 1.

Therefore mT =
∫ T

0
σe−λtktXtṼxdwt is a local martingale.

Similarly, we can show that m̃T is a local martingale. By Lemma 2.4.1, Z̃λ is bounded.

Then Ṽλ = Ṽ Z̃λ(λ) is bounded on {x2 + λ2 = R2}. So there exists a constant Λ such that

∫ T∧τR

0

(
σ̃ktXtṼx + σ̃Ṽλ

)2

dt ≤ Λ

∫ T∧τR

0

(
k2
t + 1

)2
dt

≤ 2Λ

∫ T∧τR

0

k2
t dt+ 2Λ(T ∧ τR).
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Again, since (kt, ct) ∈ Π,

P r

(∫ T∧τR

0

(
σ̃ktXtṼx + σ̃Ṽλ

)2

dt <∞
)

= 1.

So m̃T is a local martingale.

Rearranging equation (2.71) to obtain a bound on Ṽ , we have

Ṽ (x, λ) ≥
∫ T

0

e−δt
1

γ
(ctXt)

γdt+ e−δT Ṽ (XT , λT )−mT − m̃T . (2.72)

Next we replace T with T ∧ τR,

Ṽ (x, λ) ≥
∫ T∧τR

0

e−δt
1

γ
(ctXt)

γdt+ e−δT∧τRṼ (XT∧τR , λT∧τR)−mT∧τR − m̃T∧τR . (2.73)

Since mT and m̃T are local martingales, E[mT∧τR ] = 0 and E[m̃T∧τR ] = 0. So taking the

expectation of both sides gives us

Ṽ (x, λ) ≥ Ex,λ
∫ T∧τR

0

e−δt
1

γ
(ctXt)

γdt+ Ex,λe−δT∧τRṼ (XT∧τR , λT∧τR) (2.74)

≥ Ex,λ
∫ T∧τR

0

e−δt
1

γ
(ctXt)

γdt. (2.75)

The second inequality is true because Ṽ > 0. Now we take the limit as R tends to infinity

and use Fatou’s lemma, which states

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].
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2.4. VERIFICATION THEOREM

So we have

Ṽ (x, λ) ≥ lim
R→∞

Ex,λ
[∫ T∧τR

0

e−δt
1

γ
(ctXt)

γdt

]
≥ Ex,λ

[∫ T

0

e−δt
1

γ
(ctXt)

γdt

]
.

Now, letting T tend to infinity and using Fatou’s lemma again,

Ṽ (x, λ) ≥ lim
T→∞

Ex,λ
∫ T

0

e−δt
1

γ
(ctXt)

γdt

≥ Ex,λ
∫ ∞

0

e−δt
1

γ
(ctXt)

γdt. (2.76)

Since (2.76) holds for any arbitrary values of ct ≥ 0 and kt ≥ 0, we have

Ṽ (x, λ) ≥ sup
(kt,ct)∈Π

Ex,λ
∫ ∞

0

e−δt
1

γ
(ctXt)

γdt

= V (x, λ). (2.77)

Next we must show the reverse inequality, Ṽ (x, λ) ≤ V (x, λ). We start by showing

that (k∗t , c
∗
t ) ∈ Π. First, we note that

k∗(λt, Z̃λ) =

[
be−λt + µ(λt)− r + (σ̃2 + ρσσ̃e−λt)Z̃λ(λt)

(1− γ)q(λt)

]+

and c∗(λt, Z̃) = e
Z̃(λt)
γ−1

are progressively measurable because at every time t their values are known. Second, we

must show that

Pr

(∫ T

0

(k∗t )
2dt <∞

)
= 1 (2.78)
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and

Pr

(∫ T

0

c∗tdt <∞
)

= 1. (2.79)

By Lemma 2.4.2, we have that k∗t ≤ Λ1, and so (2.78) follows. (2.79) follows from the fact

that K1 ≤ Z̃(λ) ≤ K2. Therefore (k∗t , c
∗
t ) ∈ Π.

Using k∗t and c∗t instead of arbitrary kt, ct > 0, we have equality in (2.72):

Ṽ (x, λ) =

∫ T

0

e−δt
1

γ
(c∗tXt)

γdt+ e−δT Ṽ (XT , λT )−m∗T − m̃∗T , (2.80)

where m∗T =
∫ T

0
σe−λtk∗tXtṼxdwt and m̃∗T =

∫ T
0

(
σ̃k∗tXtṼx + σ̃Ṽλ

)
dw̃t.

We wish to show that m∗T and m̃∗T are martingales, so that these terms vanish when

taking the expectation of both sides in (2.80). We will do so by using the fact that

Ex,λ
[∫ T

0

(f(Xt))
2dt

]
<∞ (2.81)

implies that
∫ T

0
f(Xt)dwt is a martingale. Using Lemmas 2.4.1, 2.4.2, and 2.4.3, we have

Ex,λ
[∫ T

0

(
σe−λtk∗tXtṼx

)2
dt

]
= Ex,λ

[∫ T

0

(
σe−λtk∗tXt ·

1

γ
Xγ
t e

Z̃

)2

dt

]

≤ σ2

γ2
Λ2

2e
2K2

∫ T

0

Ex,λ
[
X

2(1+γ)
t

]
dt

< ∞,
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and

Ex,λ
[ ∫ T

0

(
σ̃k∗tXtṼx + σ̃Ṽλ

)2
dt

]
= Ex,λ

[∫ T

0

(
σ̃k∗tXt ·

1

γ
Xγ
t e

Z̃ + σ̃ · 1

γ
Xγ
t e

Z̃Z̃λ

)2

dt

]

≤ Ex,λ
[∫ T

0

2
σ̃2

γ2
(k∗t )

2X
2(1+γ)
t e2Z̃dt

]
+ Ex,λ

[∫ T

0

2
σ̃2

γ2
X2γ
t e

2Z̃Z̃2
λdt

]
≤ 2

σ̃2

γ2
Λ2

1e
2K2

∫ T

0

Ex,λ
[
X

2(1+γ)
t

]
dt+ 2

σ̃2

γ2
e2K2A2

∫ T

0

Ex,λ
[
X2γ
t

]
dt

< ∞.

Therefore m∗T and m̃∗T are martingales. Taking the expectation in (2.80), we obtain

Ṽ (x, λ) = Ex,λ
[∫ T

0

e−δt
1

γ
(c∗tXt)

γdt

]
+ e−δTEx,λ

[
Ṽ (XT , λT )

]
. (2.82)

Since V (x, λ) ≤ Ṽ (x, λ), as shown above, we see that

Ex,λ
[∫ ∞

0

e−δt
1

γ
(c∗tXt)dt

]
≤ Ṽ (x, λ) <∞. (2.83)

This implies that

lim inf
T→∞

Ex,λ
[
e−δT

1

γ
(c∗TXT )γ

]
= 0, (2.84)

which is easily seen with a proof by contradiction. Note that c∗t is bounded below by a

positive constant:

c∗t ≥ e
K2
γ−1 ≡ c > 0.
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Then we have

0 = lim inf
T→∞

Ex,λ
[
e−δT

1

γ
(c∗TXT )γ

]
≥ cγ lim inf

T→∞
Ex,λ

[
e−δT

1

γ
Xγ
T

]
≥ 0,

which implies

lim inf
T→∞

Ex,λ
[
e−δT

1

γ
Xγ
T

]
= 0. (2.85)

Using (2.85) and the fact that eZ̃ ≤ eK2 , we have

lim inf
T→∞

Ex,λ
[
e−δT Ṽ (XT , λT )

]
= 0. (2.86)

Now taking the lim inf of (2.82) as T approaches infinity, we get

Ṽ (x, λ) = lim inf
T→∞

Ex,λ
[∫ T

0

e−δt
1

γ
(c∗tXt)

γdt

]
= Ex,λ

[∫ ∞
0

e−δt
1

γ
(c∗tXt)

γdt

]
, (2.87)

by the monotone convergence theorem. Finally, by (2.87) and the definition of V, we have

Ṽ (x, λ) ≤ V (x, λ). (2.88)

Combining (2.77) and (2.88), we get

Ṽ (x, λ) = V (x, λ).
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In conclusion, we have proved that our solution Ṽ (x, λ) to the HJB equation for V

given by (2.21) is equal to the value function. In effect, we have maximized the expected

discounted HARA utility of consumption.
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Chapter 3

Stochastic Volatility

3.1 Background and Motivation

It is widely accepted that volatilities exhibit random characteristics, which presents

limitations in models that assume a constant volatility for stock prices. One commonly

noted example is the discrepancy between observed option prices and the prices predicted

by the Black-Scholes formula [FPS00]. If observed prices were equal to the Black-Scholes

prices, then the implied volatility would equal the historical volatility. In other words,

the implied volatility would be the same for all derivative contracts. In reality, this is not

the case. Implied volatilities are known to vary with strike price (for a fixed maturity),

creating a volatility smile or smirk. Stochastic volatility models capture this smile/smirk

effect.

Fouque, Papanicolaou, & Sircar discuss further benefits of stochastic volatility models,

including the generation of more realistic return distributions with fatter tails. They also

discuss more difficulties presented by such models, and ways to address the challenges.
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3.1. BACKGROUND AND MOTIVATION

See Chapter 2 of [FPS00] for a detailed discussion.

In this chapter, we return to our stock price equation and now consider a constant

drift and stochastic volatility. That is,

dPt
Pt

= µdt+ σ̃(θt)dw̃t, (3.1)

where µ is constant.

Remark 3.1.1. We assume that µ is constant here because our focus is on the stochastic

volatility condition. A natural extension would be to allow µ to be a bounded function of

λ, (or θ), as in Chapter 2. Note that µ̃, defined in the next section, is a function of θ,

whether or not µ is constant.

We require that the function σ̃(θ) ∈ C1(R), and that it is bounded above and below

by positive constants,

0 < L ≤ σ̃(θt) ≤ U. (3.2)

We also require its derivative to be bounded:

∣∣∣∣dσ̃(θ)

dθ

∣∣∣∣ = |σ̃′(θ)| ≤ Ũ . (3.3)

These conditions result in the Lipschitz continuity of σ̃(θ) and σ̃2(θ).

In addition, we suppose that the volatility is driven by a mean-reverting OU-process.

This captures the tendency of the random volatility to revert back to its invariant, or
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3.2. DERIVATION OF THE HJB EQUATION

long-run, distribution. The driving process is given by

dθt = a(θL − θt)dt+ πdŵt, (3.4)

where a, π > 0, and θL are constants, and ŵt is a one-dimensional standard Brownian

motion.

We proceed as in Chapter 2, using our new equation for Pt. In Section 3.2, we derive

the HJB equation, to which we identify a subsolution/supersolution pair in Section 3.3.

In Section 3.4, we prove existence of a classical solution, and in Section 3.5, we state and

prove the Verification Theorem.

3.2 Derivation of the HJB Equation

Using (3.1), Equation (1.9) can be written as follows:

dXt = Xt

[(
b

Pt
+ µ− r

)
kt + (r − ct)

]
dt+

σktXt

Pt
dwt + σ̃(θt)ktXtdw̃t. (3.5)

Let λt ≡ logPt. Then

dλt = µ̃(θt)dt+ σ̃(θt)dw̃t, (3.6)

where

µ̃(θt) = µ− 1

2
σ̃2(θt). (3.7)
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3.2. DERIVATION OF THE HJB EQUATION

Note that µ̃(θ) is bounded:

|µ̃(θt)| =
∣∣∣∣µ− 1

2
σ̃2(θt)

∣∣∣∣ ≤ |µ|+ 1

2
U2 ≡ M̃. (3.8)

Our equation for dXt becomes

dXt = Xt

[
(be−λt + µ− r)kt + (r − ct)

]
dt+Xt

[
σkte

−λtdwt + σ̃(θt)ktdw̃t

]
. (3.9)

With the introduction of a new stochastic process driving the volatility, we now have

three one-dimensional standard Brownian motions, wt, w̃t, and ŵt. We again allow wt and

w̃t to be correlated with correlation constant ρ ∈ [ρ0, 1] for some constant ρ0 ∈ (−1, 0),

and we suppose ŵt is uncorrelated with wt and w̃t. That is,

E[wt · w̃t] = ρdt, E[wt · ŵt] = E[w̃t · ŵt] = 0.

We wish to maximize the expected total discounted HARA utility of consumption

subject to the constraints (kt, ct) ∈ Π and Xt > 0, while (λt, θt) ∈ R2. The objective

function is

J(x, λ, θ, k., c.) = Ex,λ,θ
[∫ ∞

0

e−δt
1

γ
(ctXt)

γdt

]
, (3.10)

and the corresponding value function is given by

V (x, λ, θ) = sup
(ct,kt)∈Π

Ex,λ,θ
[∫ ∞

0

e−δt
1

γ
(ctXt)

γdt

]
. (3.11)

In the above equations, x, λ, and θ are the initial values of Xt, λt, and θt, respectively.
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3.2. DERIVATION OF THE HJB EQUATION

The discount factor δ > 0 is constant, and γ is the HARA utility parameter. We restrict

γ to the interval (0,1). The admissible control space, Π, is defined in a similar manner as

in Chapter 2, now with the inclusion of our third Brownian motion, ŵt.

Definition 3.2.1. The pair (kt, ct) is said to be in the admissible control space Π if

(kt, ct) is an R2-process which is progressively measurable with respect to a (wt, w̃t, ŵt)-

adapted family of σ-algebras (Ft, t ≥ 0). Moreover, we require that kt, ct ≥ 0, and

Pr

(∫ T

0

k2
t dt <∞

)
= 1, P r

(∫ T

0

ctdt <∞
)

= 1 for all T > 0.

Our 3 state variables are Xt, λt, and θt, given by equations (3.9), (3.6), and (3.4),

respectively.

Using the dynamic programming method, we get the following HJB equation for

V (x, λ, θ) :

δV =
σ̃2(θ)

2
Vλλ +

π2

2
Vθθ + rxVx + µ̃(θ)Vλ + a(θL − θ)Vθ + max

c≥0

[
1

γ
(cx)γ − cxVx

]
+ max

k≥0

{
(by + µ− r)kxVx +

k2x2

2
q(λ, θ)Vxx + kx

(
σ̃2(θ) + ρσσ̃(θ)y

)
Vxλ

}
, (3.12)

where q(λ, θ) = σ2e−2λ + 2ρσσ̃(θ)e−λ + σ̃2(θ). We leave out the details in the derivation

of Equation (3.12) because they are similar to the steps for deriving Equation (2.21) in

Section 2.1.

Restricting ρ ∈ [ρ0, 1], we can show that q(λ, θ) is bounded below by a positive

constant. That is,

q(λ, θ) ≥ q0 > 0. (3.13)
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3.2. DERIVATION OF THE HJB EQUATION

Consider ρ ∈ [0, 1]. We note that σ2e−2λ > 0 and 2ρσσ̃(θ)e−λ ≥ 0. Then

q(λ, θ) > σ̃2(θ) ≥ L2 > 0.

Now consider ρ ∈ [ρ0, 0). The minimum of q in the λ-direction is given by the function

σ̃2(θ)(1− ρ2), which we can then bound below in θ. So we have

q(λ, θ) ≥ σ̃2(θ)(1− ρ2) ≥ L2(1− ρ2
0) > 0.

Since L2 ≥ L2(1− ρ2
0), we set q0 ≡ L2(1− ρ0). Therefore (3.13) holds for all ρ ∈ [ρ0, 1].

The value function V (x, λ, θ) is homogeneous in x with order γ, which allows us to

write it in the following form:

V (x, λ, θ) =
1

γ
xγW (λ, θ). (3.14)

Substituting this form into the DPE for V gives us an equation for W :

δW =
σ̃2(θ)

2
Wλλ +

π2

2
Wθθ + γrW + µ̃(θ)Wλ + a(θL − θ)Wθ + max

c≥0

[
cγ − γcW

]
+ γmax

k≥0

{
(be−λ + µ− r)kW + (σ̃2(θ) + ρσσ̃(θ)e−λ)kWλ −

k2

2
(1− γ)q(λ, θ)

}
.

(3.15)

Let Z = logW. Then

Wλ

W
= Zλ,

Wλλ

W
= Zλλ + Z2

λ,
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Wθ

W
= Zθ, and

Wθθ

W
= Zθθ + Z2

θ .

Substituting these values into (3.15) gives us the following equation for Z:

δ =
σ̃2(θ)

2
(Z2

λ + Zλλ) +
π2

2
(Z2

θ + Zθθ) + γr + µ̃(θ)Zλ + a(θL − θ)Zθ + max
c≥0

[
cγ − γceZ

]
+ γmax

k≥0

{[
be−λ + µ− r + (σ̃2(θ) + ρσσ̃(θ)e−λ)Zλ

]
k − k2

2
(1− γ)q(λ, θ)

}
. (3.16)

The maximum of the expression involving c is obtained at

c∗(λ, θ, Z) = e
Z(λ,θ)
γ−1 , (3.17)

and so

max
c≥0

[
cγ − γceZ

]
= (1− γ)e

Z
γ−1 .

Let

G(λ, θ, p) = max
k≥0

{[
be−λ + µ− r + (σ̃2(θ) + ρσσ̃(θ)e−λ)p

]
k − k2

2
(1− γ)q(λ, θ)

}
.

(3.18)

The maximum occurs at

k∗(λ, θ, Zλ) =

[
be−λ + µ− r + (σ̃2(θ) + ρσσ̃(θ)e−λ)Zλ

(1− γ)q(λ, θ)

]+

. (3.19)

The pair (k∗, c∗) is our candidate for optimal control. Note that if k∗ = 0, then G = 0. If
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k∗ > 0, then

G =
[be−λ + µ− r + (σ̃2(θ) + ρσσ̃(θ)e−λ)p]2

2(1− γ)q(λ, θ)
≥ 0, (3.20)

and so G(λ, θ, p) ≥ 0. We define

Ψ(λ, θ) ≡


(be−λ + µ− r)2

2(1− γ)q(λ, θ)
if be−λ + µ− r > 0,

0 otherwise.

(3.21)

Then

G(λ, θ, 0) = Ψ(λ, θ).

Our simplified equation for Z is

δ =
σ̃2(θ)

2
(Z2

λ + Zλλ) +
π2

2
(Z2

θ + Zθθ) + γr + µ̃(θ)Zλ + a(θL − θ)Zθ

+ γG(λ, θ, Zλ) + (1− γ)e
Z
γ−1 . (3.22)

Let

H(λ, θ, z, p, s) ≡ − σ̃
2(θ)

2
p2− π

2

2
s2− µ̃(θ)p−a(θL−θ)s−γG(λ, θ, p)+δ−γr−(1−γ)e

z
γ−1 .

(3.23)

Then we have

σ̃2(θ)

2
Zλλ +

π2

2
Zθθ = H(λ, θ, Z, Zλ, Zθ), (3.24)

which is our reduced HJB equation for Z(λ, θ) corresponding to the value function (3.11),

where V (x, λ, θ) = 1
γ
xγeZ(λ,θ).
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3.3 Subsolution and Supersolution

In order to prove existence of solution to (3.24), we will use the method of subsolu-

tion/supersolution.

Definition 3.3.1. Z(λ, θ) is a subsolution (supersolution) of (3.24) if

σ̃2(θ)

2
Zλλ +

π2

2
Zθθ ≥ (≤)H(λ, θ, Z, Zλ, Zθ). (3.25)

In addition, if Ẑ is a subsolution, Z̄ is a supersolution, and Ẑ ≤ Z̄, then 〈Ẑ, Z̄〉 is an

ordered pair of subsolution/supersolution.

To identify a subsolution and supersolution to (3.24), we will use the fact that Φ(λ, θ)

is bounded. To prove this, we consider two cases. First, let 0 ≤ ρ ≤ 1. Then

Ψ(λ, θ) =
(be−λ + µ− r)2

2(1− γ)(σ2e−2λ + 2ρσσ̃(θ)e−λ + σ̃2(θ))

≤ (be−λ + µ− r)2

2(1− γ)(σ2e−2λ + L2)

≤ 2b2e−2λ + 2(µ− r)2

2(1− γ)(σ2e−2λ + L2)

=
b2e−2λσ2 + σ2(µ2 − r)2

σ2(1− γ)(σ2e−2λ + L2)

=
b2(σ2e−2λ + L2) + σ2(µ2 − r)2 − b2L2

σ2(1− γ)(σ2e−2λ + L2)

=
b2

σ2(1− γ)
+

(µ− r)2 − b2L2

σ2

(1− γ)(σ2e−2λ + L2)
.
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If (µ− r)2 − b2L2/σ2 ≤ 0, then

Ψ(λ, θ) ≤ b2

σ2(1− γ)
. (3.26)

Otherwise, we have

Ψ(λ, θ) ≤ b2

σ2(1− γ)
+

(µ− r)2 − b2L2

σ2

(1− γ)L2

=
(µ− r)2

L2(1− γ)
.

Thus, if 0 ≤ ρ ≤ 1, then

Ψ(λ, θ) ≤ max

{
b2

σ2(1− γ)
,

(µ− r)2

L2(1− γ)

}
≡ Ψ̃.

We can get a similar bound if ρ is negative. If ρ0 < ρ < 0, then ρ(σe−λ − σ̃(θ))2 ≤ 0

implies

2ρσσ̃(θ)e−λ ≥ ρσ2e−2λ + ρσ̃2(θ),
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and so

Ψ(λ, θ) =
(be−λ + µ− r)2

2(1− γ)(σ2e−2λ + 2ρσσ̃(θ)e−λ + σ̃2(θ))

≤ (be−λ + µ− r)2

2(1− γ)(σ2e−2λ + ρσ2e−2λ + ρσ̃2(θ) + σ̃2(θ))

=
(be−λ + µ− r)2

2(1− γ)(1 + ρ)(σ2e−2λ + σ̃2(θ))

≤ 2b2e−2λ + 2(µ− r)2

2(1− γ)(1 + ρ)(σ2e−2λ + L2)

≤ 1

1 + ρ
max

{
b2

σ2(1− γ)
,

(µ− r)2

L2(1− γ)

}
≤ 1

1 + ρ0

Ψ̃.

Let

Ψ̄ ≡ max

{
Ψ̃,

Ψ̃

1 + ρ0

}
. (3.27)

Then

0 ≤ Ψ(λ, θ) ≤ Ψ̄ <∞. (3.28)

Thus, Ψ(λ, θ) is bounded.

Lemma 3.3.1. Suppose 0 < γ < 1 and

δ > γr. (3.29)

In addition, define

K1 ≡ (γ − 1) log

[
δ − γr
1− γ

]
. (3.30)

Then any constant K ≤ K1 is a subsolution of (3.24).
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Proof. We want to show

σ̃2

2
Kλλ +

π2

2
Kθθ ≥ H(λ, θ,K,Kλ, Kθ)

K is a constant, so all of its derivatives equal 0. This reduces the inequality we are trying

to prove to the following:

0 ≥ −γΨ(λ, θ)− γr + δ − (1− γ)e
K
γ−1 .

Since K ≤ K1 = (γ − 1) log

[
δ − γr
1− γ

]
, and (γ − 1) < 0, we have

e
K
γ−1 ≥ e

K1
γ−1

= exp

[
log

(
δ − γr
1− γ

)]
=

δ − γr
1− γ

.

Then

−(1− γ)e
K
γ−1 ≤ −(1− γ)

δ − γr
1− γ

= γr − δ,

54



3.3. SUBSOLUTION AND SUPERSOLUTION

and

−γΨ(λ, θ)− γr + δ − (1− γ)e
K
γ−1 ≤ −γΨ(λ, θ)− γr + δ + γr − δ

= −γΨ(λ, θ)

≤ 0,

since Ψ(λ) ≥ 0.

Lemma 3.3.2. Suppose 0 < γ < 1 and

δ > γ(r + Ψ̄), (3.31)

where Ψ̄ is defined by (3.27). In addition, define

K2 ≡ (γ − 1) log

[
δ − γ(r + Ψ̄)

1− γ

]
. (3.32)

Then any constant K ≥ K2 is a supersolution of (3.24).

Proof. The proof is similar to the proof of Lemma (3.3.1), but instead we want to show

that

−γΨ(λ, θ)− γr + δ − (1− γ)e
K
γ−1 ≥ 0.
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Since K ≥ K2 = (γ − 1) log

[
δ − γ(r + Ψ̄)

1− γ

]
and (γ − 1) < 0, we have

e
K
γ−1 ≤ exp

[
log

(
δ − γ(r + Ψ̄)

1− γ

)]
=

δ − γ(r + Ψ̄)

1− γ
−(1− γ)e

K
γ−1 ≥ −δ + γ(r + Ψ̄).

Therefore

−γΨ(λ, θ)− γr + δ − (1− γ)e
K
γ−1 ≥ −γΨ(λ, θ)− γr + δ − δ + γ(r + Ψ̄)

= γ(Ψ̄−Ψ(λ, θ))

≥ 0,

since Ψ(λ, θ) ≤ Ψ̄.

Lemma 3.3.3. Suppose 0 < γ < 1 and (3.31) holds. Then 〈K1, K2〉 is an ordered pair of

subsolution/supersolution to (3.24), where K1 and K2 are defined by (3.30) and (3.32),

respectively.

The proof follows from Lemmas 3.3.1 and 3.3.2.

3.4 Existence of Solution

In this section we prove the existence of a classical solution to (3.24):

σ̃2(θ)

2
Zλλ +

π2

2
Zθθ = H(λ, θ, Z, Zλ, Zθ).
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Our method follows the approach used in Section 3 of [HS12a]. We first prove that there

exists a classical solution to the following boundary value problem on the closed ball

B̄R ≡ {(λ, θ) ∈ R2 : λ2 + θ2 ≤ R2},


σ̃2(θ)

2
Zλλ +

π2

2
Zθθ −H(λ, θ, Z, Zλ, Zθ) = 0 on BR,

Z = ψ on ∂BR,

(3.33)

for a particular choice of ψ. Once we have a solution to (3.33) on B̄R for each R, we take

the limit as R→∞ to show existence of solution to (3.24). The details are provided in

the proof of Theorem 3.4.9.

3.4.1 Sufficient Conditions for Existence of Solution to the Bound-

ary Value Problem

We wish to use to prove existence of a classical solution to (3.33), and we use the approach

taken by Hata and Sheu in [HS12a]. We start by introducing the parameter τ ∈ [0, 1]

into our equation:

σ̃2(θ)

2
Zτ
λλ +

π2

2
Zτ
θθ −H(λ, θ, Zτ , Zτ

λ , Z
τ
θ , τ) = 0. (3.34)

Here, H(λ, θ, z, p, s, τ) is equal to H(λ, θ, z, p, s) with γ replaced by τγ :

H(λ, θ, z, p, s, τ) ≡ − σ̃
2(θ)

2
p2 − π2

2
s2 − µ̃(θ)p− a(θL − θ)s− τγGτ (λ, θ, p)

+ δ − τγr − (1− τγ)e

z

τγ − 1 , (3.35)
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where

Gτ (λ, θ, p) = max
k≥0

{[
be−λ + µ− r + (σ̃2(θ) + ρσσ̃(θ)e−λ)p

]
k − k2

2
(1− τγ)q(λ, θ)

}
,

and Gτ (λ, θ, 0) = Ψτ (λ, θ), where

Ψτ (λ, θ) ≡


(be−λ + µ− r)2

2(1− τγ)q(λ, θ)
if be−λ + µ− r > 0,

0 otherwise.

(3.36)

For τ ∈ (0, 1], (3.34) is the HJB equation corresponding to the value function

V τ (x, λ, θ) = sup
(kt,ct)∈Π

Ex,λ,θ
[∫ ∞

0

e−δt
1

τγ
(ctXt)

τγdt

]
. (3.37)

We can consider τ = 0 to be a limiting case of τ ∈ (0, 1]. This corresponds to the

consumption problem for log utility, for which (3.34) has a unique solution given by

(3.111).

The corresponding boundary value problem is


σ̃2(θ)

2
Zτ
λλ +

π2

2
Zτ
θθ −H(λ, θ, Zτ , Zτ

λ , Z
τ
θ , τ) = 0 on BR,

Zτ = τψ on ∂BR.

(3.38)

Theorem 3.4.1 states the sufficient conditions for existence of solution to (3.33).

Theorem 3.4.1. Let α ∈ (0, 1) and R > 0 be fixed. We assume the following conditions:

(a) H(λ, θ, z, p, s, 1) = H(λ, θ, z, p, s).
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(b) σ̃2(θ) ∈ C1,α(B̄R); H(·, ·, ·, ·, ·, τ) ∈ Cα(B̄R × R × R2) for τ ∈ [0, 1], and is con-

sidered as a mapping from [0,1] into Cα(B̄R × R × R2). The functions σ̃2(θ) and

H(λ, θ, z, p, s, τ) are continuous.

(c) ψ ∈ C2,α(B̄R).

(d) There exists a constant M such that every C2,α(B̄R)-classical solution Zτ of (3.38)

satisfies

|Zτ (λ, θ)| < M, (λ, θ) ∈ B̄R,

where M is independent of Zτ and τ .

(e) There are k̄ > 0, c, c̄, such that the following inequalities hold for (λ, θ) ∈ B̄R, |z| ≤

M, η ∈ R2, τ ∈ [0, 1], and arbitrary (p, s):


c

2∑
i=1

η2
i ≤ σ̃2(θ)η2

1 + π2η2
2 ≤ c̄

n∑
i=1

η2
i ,

|H(λ, θ, z, p, s, τ)|+
∣∣∣∣∂σ̃2(θ)

∂θ

∣∣∣∣ ≤ c̄(1 + p2 + s2)k̄/2.

(3.39)

(f) There is an M1 > 0 such that

|Z0
τ (λ, θ)| < M1, (λ, θ) ∈ B̄R,

where Z0
τ (·) is an arbitrary solution of


σ̃2(θ)

2
Zλλ +

π2

2
Zθθ − τH(λ, θ, Z, Zλ, Zθ, 0) = 0 on BR,

Z = 0 on ∂BR.
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where τ ∈ [0, 1].

Then the boundary value problem (3.33) is solvable in C2,α(B̄R).

In order to prove Theorem 3.4.1, we need the following fixed-point theorem from Hata

and Sheu in [HS12a].

Theorem 3.4.2. Let B be a Banach space with norm || · ||B. T is a continuous compact

mapping of B × [0, 1] into B. Assume there exists an M > 0 such that

||ξ||B < M

holds if ξ satisfies

ξ = T (ξ, τ) or ξ = τT (ξ, 0)

for some τ ∈ [0, 1]. Then there exists a ξ ∈ B such that T (ξ, 1) = ξ.

For a proof of Theorem 3.4.2, see Appendix A of [HS12a].

We now prove Theorem 3.4.1. The proof resembles that of Theorem 3.4 in [HS12a].

Proof of Theorem 3.4.1. Consider the following boundary value problem for u:


σ̃2(θ)

2
uλλ +

π2

2
uθθ −H(λ, θ, v, vλ, vθ, τ) = 0 on BR,

u = τψ on ∂BR,

(3.40)

where v is any C1,β(B̄R) function, and τ ∈ [0, 1]. It follows from assumptions (b) and (c)

that (3.40) has a unique solution ũ ∈ C2,αβ(B̄R), by Theorem 6.14 of [GT77].

For all v ∈ C1,β, τ ∈ [0, 1], the operator T is defined by T (v, τ) ≡ ũ. It follows from

assumption (b) that T is continuous and compact.
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If Zτ = T (Zτ , τ), then substituting into (3.40) gives us


σ̃2(θ)

2
Zτ
λλ +

π2

2
Zτ
θθ −H(λ, θ, Zτ , Zτ

λ , Z
τ
θ , τ) = 0 on BR,

Zτ = τψ on ∂BR,

and so (3.38) is satisfied. By assumption (d), there exists a constant M such that

|Zτ (λ, θ)| < M. Then by Theorem 3.4.2, there exists a Z ∈ C1,β(B̄R) such that

T (Z, 1) = Z.

Substituting this into (3.40) gives us (3.33). Hence there exists a solution Z ∈ C2,β(B̄R)

to (3.33).

3.4.2 Using Theorem 3.4.1

The next step is to prove that the conditions in Theorem 3.4.1 hold for our particular

problem. This will ensure existence of solution to the boundary value problem (3.33).

Several results are needed before this can be done. We begin with the following definition.

Definition 3.4.1. Let Ẑ, Z̄ be continuous second order differentiable functions defined

on B̄R. Ẑ is called a subsolution of (3.33) if


σ̃2(θ)

2
Ẑλλ +

π2

2
Ẑθθ −H(λ, θ, Ẑ, Ẑλ, Ẑθ) ≥ 0 on BR,

Ẑ ≤ ψ on ∂BR.
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Z̄ is called a supersolution of (3.33) if


σ̃2(θ)

2
Z̄λλ +

π2

2
Z̄θθ −H(λ, θ, Z̄, Z̄λ, Z̄θ) ≤ 0 on BR,

Z̄ ≥ ψ on ∂BR.

In addition, 〈Ẑ, Z̄〉 is called an ordered pair of subsolution/supersolution if they

also satisfy

Ẑ(λ, θ) ≤ Z̄(λ, θ), (λ, θ) ∈ B̄R.

We can define an ordered pair of subsolution/supersolution to (3.38) in a similar manner.

Lemma 3.4.3. Let τ ∈ (0, 1]. Assume Ẑ, Z̄ are second order continuous differentiable

functions on B̄R and satisfy



σ̃2(θ)

2
Ẑλλ +

π2

2
Ẑθθ −H(λ, θ, Ẑ, Ẑλ, Ẑθ, τ) ≥ 0 on BR,

σ̃2(θ)

2
Z̄λλ +

π2

2
Z̄θθ −H(λ, θ, Z̄, Z̄λ, Z̄θ, τ) ≤ 0 on BR,

Ẑ ≤ Z̄ on ∂BR.

(3.41)

Then Ẑ ≤ Z̄ holds in B̄R.

Proof. Suppose sup
(λ,θ)∈B̄R

(Ẑ − Z̄)(λ, θ) > 0. Since Ẑ ≤ Z̄ on ∂BR, this implies that Ẑ − Z̄

obtains its maximum at (λ0, θ0) ∈ BR. So we have that

(Ẑ − Z̄)λλ(λ0, θ0) < 0, (Ẑ − Z̄)θθ(λ0, θ0) < 0, (3.42)

Ẑλ(λ0, θ0) = Z̄λ(λ0, θ0), and Ẑθ(λ0, θ0) = Z̄θ(λ0, θ0). (3.43)
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By (3.41) we have that, for (λ, θ) ∈ BR,

σ̃2(θ)

2
(Ẑλλ − Z̄λλ) +

π2

2
(Ẑθθ − Z̄θθ)−H(λ, θ, Ẑ, Ẑλ, Ẑθ, τ) +H(λ, θ, Z̄, Z̄λ, Z̄θ, τ) ≥ 0.

Evaluating this inequality at (λ0, θ0) and applying (3.42), we have

H(λ0, θ0, Z̄(λ0, θ0), Z̄λ(λ0, θ0), Z̄θ(λ0, θ0), τ) > H(λ0, θ0, Ẑ(λ0, θ0), Ẑλ(λ0, θ0), Ẑθ(λ0, θ0), τ).

By applying (3.43), this reduces to

−(1− τγ)e
Z̄(λ0,θ0)
τγ−1 > −(1− τγ)e

Ẑ(λ0,θ0)
τγ−1 ,

or Z̄(λ0, θ0) > Ẑ(λ0, θ0), which is a contradiction. Therefore Ẑ ≤ Z̄ on B̄R.

Corollary 3.4.3.1. For τ ∈ (0, 1], the solution Zτ ∈ C2(B̄R) of (3.38) is unique.

Proof. Suppose Z1, Z2 ∈ C2(B̄R) are both solutions of (3.38). Then Z1 = Z2 on ∂BR,

and

σ̃2(θ)

2
(Z2

λλ − Z1
λλ) +

π2

2
(Z2

θθ − Z1
θθ)−H(λ, θ, Z2, Z2

λ, Z
2
θ , τ) +H(λ, θ, Z1, Z1

λ, Z
1
θ , τ) = 0

(3.44)

in BR. Suppose sup
(λ,θ)∈BR

(Z2 − Z1) > 0. Then Z2 − Z1 attains its maximum at some

(λ0, θ0) ∈ BR. Then

(Z2
λλ − Z1

λλ)(λ0, θ0) < 0, (Z2
θθ − Z1

θθ)(λ0, θ0) < 0, (3.45)
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Z1
λ(λ0, θ0) = Z2

λ(λ0, θ0), and Z1
θ (λ0, θ0) = Z2

θ (λ0, θ0). (3.46)

Evaluating (3.44) at (λ0, θ0) and applying (3.46) and (3.45), we arrive at

(1− τγ)e
Z2(λ0,θ0)
τγ−1 > (1− τγ)e

Z1(λ0,θ0)
τγ−1 ,

or Z2(λ0, θ0) < Z1(λ0, θ0), which is a contradiction.

Note that if we assume sup
(λ,θ)∈BR

(Z1−Z2) > 0, we would arrive at another contradiction.

Therefore Z1 ≡ Z2 on B̄R.

We now wish to discuss some properties of the coefficients of the HJB equation (3.24).

Recall from (3.20) that for k∗ > 0, G is defined by

G(λ, θ, Zλ) =
[be−λ + µ− r + (σ̃2(θ) + ρσσ̃(θ)e−λ)Zλ]

2

2(1− γ)q(λ, θ)
≥ 0, (3.47)

or in the trivial case, G ≡ 0 otherwise. Consider the expression for G given above. We

can expand G to quadratic form in Zλ:

G(λ, θ, Zλ) = g2Z
2
λ + g1Zλ + g0, (3.48)

where

g2(λ, θ) =
(σ̃2(θ) + ρσσ̃(θ)e−λ)2

2(1− γ)q(λ, θ)
, g1(λ, θ) =

(be−λ + µ− r)(σ̃2(θ) + ρσσ̃(θ)e−λ)

(1− γ)q(λ, θ)
,

and g0(λ, θ) =
(be−λ + µ− r)2

2(1− γ)q(λ, θ)
. (3.49)
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Remark 3.4.1. Note that |g2|, |g1|, and |g0| are all bounded. We rationalize this by first

applying the bounds (3.2) and (3.13), after which we are left with continuous rational

expressions in λ. The expressions are quotients of quadratic functions of y = e−λ, whose

denominators are bounded below by a positive constant, namely (1− γ)q0. Therefore the

limits as λ tends to infinity and negative infinity exist. Hence |g2|, |g1|, and |g0| are bounded

for all (λ, θ) ∈ R2.

Remark 3.4.2. It follows from (3.48) and Remark 3.4.1 that there exist constants

C̃1, C̃2 > 0 such that

G(λ, θ, p) ≤ C̃1 + C̃2p
2. (3.50)

Remark 3.4.3. The coefficients of (3.24), σ̃2(θ), µ̃(θ), g0(λ, θ), g1(λ, θ), and g2(λ, θ), are

Lipschitz continuous for all (λ, θ) ∈ R. If Z(λ, θ) ∈ C1(B̄R), it follows that H(λ, θ, Z, Zλ, Zθ) ∈

Cα(B̄R × R× R2).

Proof. By (3.2), (3.3), and the definition of µ̃(θ) given in (3.7), we have that

∣∣∣∣ σ̃2(θ)

dθ

∣∣∣∣ and∣∣∣∣dµ̃(θ)

dθ

∣∣∣∣ are bounded for all θ ∈ R, and so the coefficients σ̃2(θ) and µ̃(θ) are Lipschitz

continuous.

The bounds (3.2) and (3.3) also imply that g0, g1, and g2 are Lipschitz continuous.

To see this, we look at the derivatives of g0 with respect to λ and θ. After applying the

bounds on σ̃(θ) and σ̃′(θ), we have that

|(g0)λ|, |(g0)θ| ≤
C4e

−4λ + C3e
−3λ + C2e

−2λ + C1e
−λ + C0

4(1− γ)(q(λ, θ))2
, (3.51)

for some positive constants C4, C3, C2, C1, and C0. Take y = e−λ. Using the same reasoning

as in Remark 3.4.1, this time with a quotient of quartics in y, we see that the partial
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derivatives of g0 are bounded. Thus |Dg0| is bounded, and g0 is Lipschitz continuous. We

use the same reasoning to arrive at the Lipschitz continuity of g1 and g2.

On the ball B̄R, Z(λ, θ) is bounded. Therefore the term e
Z
γ−1 is locally Lipschitz for

(λ, θ) ∈ B̄R. The Lipschitz continuity of the coefficients of H imply that H is locally

Hölder continuous. That is, there exists an α ∈ (0, 1) such that H(λ, θ, Z, Zλ, Zθ) ∈

Cα(B̄R,R,R2).

The next two theorems provide us with bounds on Zτ .

Theorem 3.4.4. Suppose σ̃2(θ) ∈ C1,α(B̄R), ψ is continuous, and let Z̄ be a supersolution

of (3.38) for τ = 1. Suppose that Zτ is a solution of (3.38) with τ ∈ (0, 1]. Then

eZ
τ (λ,θ) ≤ τeZ̄(λ,θ) + (1− τ)f(λ, θ), (3.52)

where f(λ, θ) satisfies



σ̃2(θ)

2
fλλ(λ, θ) +

π2

2
fθθ(λ, θ) + µ̃(θ)fλ(λ, θ)

+ a(θL − θ)fθ(λ, θ)− δf(λ, θ) + 1 = 0 on BR,

f(λ, θ) = 1 on ∂BR,

(3.53)

and is given by

f(λ, θ) =
1

δ
+

(
1− 1

δ

)
Eλ,θ[e−δtR ], (3.54)

where

tR = inf
{
t > 0;

√
λ2
t + θ2

t = R
}
. (3.55)
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Moreover, for 0 < γ < 1,

Zτ (λ, θ) ≥ − log

(
max

{
δ

1− γ
, 1

})
− sup

λ2+θ2=R2

{|ψ(λ, θ)|}. (3.56)

Proof. We first prove inequality (3.56). Let

Ẑτ = − log

(
max

{
δ

1− γ
, 1

})
− sup

λ2+θ2=R2

{|ψ(λ, θ)|}. (3.57)

We will show that Ẑτ is a subsolution of (3.38). Since Ẑτ is a constant function, its

derivatives are equal to zero. Therefore on BR,

σ̃2(θ)

2
Ẑτ
λλ +

π2

2
Ẑτ
θθ −H(λ, θ, Ẑτ , Ẑτ

λ , Ẑ
τ
θ , τ) = τγΨτ (λ, θ)− δ + τγr

+ (1− τγ) exp

[
1

1− τγ
log

(
max

{
δ

1− γ
, 1

})]
exp

 sup
λ2+θ2=R

|ψ(λ, θ)|

1− τγ

,
(3.58)

where Ψτ (λ, θ) is defined in (3.36). Note that Ψτ (λ, θ) ≥ 0, and

exp

 sup
λ2+θ2=R

|ψ(λ, θ)|

1− τγ

 ≥ 1
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because the argument is nonnegative. We reduce (3.58) to the following inequality:

σ̃2(θ)

2
Ẑτ
λλ +

π2

2
Ẑτ
θθ −H(λ, θ, Ẑτ , Ẑτ

λ , Ẑ
τ
θ , τ)

≥ −δ + (1− τγ) exp

[
1

1− τγ
log

(
max

{
δ

1− γ
, 1

})]
≥ −δ + (1− γ) exp

[
log

(
max

{
δ

1− γ
, 1

})]
. (3.59)

Suppose δ ≥ 1− γ. Then the right-hand-side simplifies to

−δ + (1− γ) exp

[
log

δ

1− γ

]
= −δ + δ = 0. (3.60)

Now suppose δ < 1− γ. Then (3.59) simplifies to

−δ + (1− γ) exp [log 1] = −δ + (1− γ) > 0. (3.61)

We also have that Ẑτ ≤ τψ = Zτ on ∂BR. Therefore Ẑτ and Zτ satisfy



σ̃2(θ)

2
Ẑτ
λλ +

π2

2
Ẑτ
θθ −H(λ, θ, Ẑτ , Ẑτ

λ , Ẑ
τ
θ , τ) ≥ 0 on BR,

σ̃2(θ)

2
Zτ
λλ +

π2

2
Zτ
θθ −H(λ, θ, Zτ , Zτ

λ , Z
τ
θ , τ) = 0 on BR,

Ẑτ ≤ Zτ on ∂BR.

(3.62)

Then by Lemma 3.4.3, Ẑτ ≤ Zτ holds in B̄R, which gives us (3.56).

Next we prove (3.52). It is equivalent to show that

1

τγ
(eZ

τ − f) ≤ 1

γ
(eZ̄ − f). (3.63)
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Define

V (x, λ, θ) =
1

γ
xγeZ̄(λ,θ) and V τ (x, λ, θ) =

1

τγ
xτγeZ

τ (λ,θ). (3.64)

Note that

max
c≥0

[
1

γ
(cx)γ − cxVx

]
= (1− γ)e

Z̄
γ−1 · V, and

max
c≥0

[
1

τγ
(cx)τγ − cxV τ

x

]
= (1− τγ)e

Zτ

τγ−1 · V τ .

Now define

V0(x, λ, θ) =
1

γ
(xγeZ̄(λ,θ) − f(λ, θ)) (3.65)

and

V τ
0 (x, λ, θ) =

1

τγ
(xτγeZ

τ (λ,θ) − f(λ, θ)). (3.66)

Since f does not depend on x, we have that (V0)x = Vx and (V τ
0 )x = V τ

x . So

max
c≥0

[
1

γ
(cx)γ − cx(V0)x

]
= (1− γ)e

Z̄
γ−1 · V

and

max
c≥0

[
1

τγ
(cx)τγ − cx(V0)x

]
= (1− τγ)e

Zτ

τγ−1 · V τ .
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Then on BR we have the following:

σ̃2(θ)

2
(V0)λλ +

π2

2
(V0)θθ + rx(V0)x + µ̃(θ)(V0)λ + a(θL − θ)(V0)θ − δV0

+ max
c≥0

[
1

γ
(cx)γ − cx(V0)x

]
+ max

k≥0

{
(be−λ + µ− r)kx(V0)x

+
k2x2

2
q(λ, θ)(V0)xx + kx(σ̃2(θ) + ρσσ̃(θ)e−λ)(V0)xλ

}
− 1

γ

= V

[
σ̃2(θ)

2
(Z̄λλ + Z̄2

λ) +
π2

2
(Z̄θθ + Z̄2

θ ) + γr + µ̃(θ)Z̄λ

+ a(θL − θ)Z̄θ − δ + (1− γ)e
Z̄
γ−1

+ γmax
k≥0

{
(be−λ + µ− r)k +

k2(γ − 1)

2
q(λ, θ) + k(σ̃2(θ) + ρσσ̃(θ)e−λ)Z̄λ

}]

− 1

γ

[
σ̃2(θ)

2
fλλ +

π2

2
fθθ + rxfx + µ̃(θ)fλ + a(θL − θ)fθ − δf + 1

]
= V

[
σ̃2(θ)

2
(Z̄λλ + Z̄2

λ) +
π2

2
(Z̄θθ + Z̄2

θ )−H(λ, θ, Z̄, Z̄λ, Z̄θ, 1)

]
− 1

γ
[0]

≤ 0, (3.67)

since f satisfies (3.53) and Z̄ is a supersolution of (3.38) for τ = 1. We also have
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σ̃2(θ)

2
(V τ

0 )λλ +
π2

2
(V τ

0 )θθ + rx(V τ
0 )x + µ̃(θ)(V τ

0 )λ + a(θL − θ)(V τ
0 )θ − δV τ

0

+ max
c≥0

[
1

τγ
(cx)τγ − cx(V τ

0 )x

]
+ max

k≥0

{
(be−λ + µ− r)kx(V τ

0 )x

+
k2x2

2
q(λ, θ)(V τ

0 )xx + kx(σ̃2(θ) + ρσσ̃(θ)e−λ)(V τ
0 )xλ

}
− 1

τγ

= V τ

[
σ̃2(θ)

2
(Zτ

λλ + (Zτ
λ)2) +

π2

2
(Zτ

θθ + (Zτ
θ )2) + τγr + µ̃(θ)Zτ

λ

+ a(θL − θ)Zτ
θ − δ + (1− τγ)e

Zτ

τγ−1 + τγmax
k≥0

{
(be−λ + µ− r)k

+
k2(τγ − 1)

2
q(λ, θ) + k(σ̃2(θ) + ρσσ̃(θ)e−λ)Zτ

λ

}]

− 1

τγ

[
σ̃2(θ)

2
fλλ +

π2

2
fθθ + rxfx + µ̃(θ)fλ + a(θL − θ)fθ − δf + 1

]
= V τ

[
σ̃2(θ)

2
(Zτ

λλ + (Zτ
λ)2) +

π2

2
(Zτ

θθ + (Zτ
θ )2)−H(λ, θ, Zτ , Zτ

λ , Z
τ
θ , τ)

]
− 1

τγ
[0]

= 0. (3.68)

Suppose that the optimal controls for the above equation are given by k̃ and c̃. Then we

can rewrite (3.68) as

σ̃2(θ)

2
(V τ

0 )λλ +
π2

2
(V τ

0 )θθ + rx(V τ
0 )x + µ̃(θ)(V τ

0 )λ + a(θL − θ)(V τ
0 )θ

−δV τ
0 +

1

τγ
(c̃x)τγ − c̃x(V τ

0 )x + (be−λ + µ− r)k̃x(V τ
0 )x

+
k̃2x2

2
q(λ, θ)(V τ

0 )xx + k̃x(σ̃2(θ) + ρσσ̃(θ)e−λ)(V τ
0 )xλ −

1

τγ
= 0. (3.69)
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The difference between equations (3.67) and (3.68) is the function

g(y) =
1

y
(zy − 1) (3.70)

for z = cx > 0 with y = γ in (3.67) and y = τγ in (3.68). We will show that g is

nondecreasing in y, for fixed z > 0. Differentiating, we obtain

g′(y) =
−zy + 1 + yzy log z

y4
.

Let h(y) = −zy + 1 + yzy log z. Then

h′(y) = yzy(log z)2 ≥ 0 for y > 0.

So g′(y) ≥ 0, which means g(y) is nondecreasing for y > 0. Since τ ∈ (0, 1] and γ ∈

(0, 1), τγ ≤ γ. Therefore

g(τγ) ≤ g(γ), (3.71)

or

1

τγ
((cx)τγ − 1) ≤ 1

γ
((cx)γ − 1). (3.72)

Applying the left-hand-side of (3.68) to V0 and using (3.72), we have the following
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inequality:

σ̃2(θ)

2
(V0)λλ +

π2

2
(V0)θθ + rx(V0)x + µ̃(θ)(V0)λ + a(θL − θ)(V0)θ − δV0

+ max
c≥0

[
1

τγ
(cx)τγ − cx(V0)x

]
+ max

k≥0

{
(be−λ + µ− r)kx(V0)x

+
k2x2

2
q(λ, θ)(V0)xx + kx(σ̃2(θ) + ρσσ̃(θ)e−λ)(V0)xλ

}
− 1

τγ

≤ σ̃2(θ)

2
(V0)λλ +

π2

2
(V0)θθ + rx(V0)x + µ̃(θ)(V0)λ + a(θL − θ)(V0)θ − δV0

+ max
c≥0

[
1

γ
(cx)γ − cx(V0)x

]
+ max

k≥0

{
(be−λ + µ− r)kx(V0)x

+
k2x2

2
q(λ, θ)(V0)xx + kx(σ̃2(θ) + ρσσ̃(θ)e−λ)(V0)xλ

}
− 1

γ

≤ 0 (3.73)

by (3.67). If we evaluate (3.73) at any values of k and c that are less than optimal, the

inequality will still hold. So we evaluate (3.73) at k̃ and c̃ to obtain the following:

σ̃2(θ)

2
(V0)λλ +

π2

2
(V0)θθ + rx(V0)x + µ̃(θ)(V0)λ + a(θL − θ)(V0)θ − δV0

+
1

τγ
(c̃x)τγ − c̃x(V0)x + (be−λ + µ− r)k̃x(V0)x +

k̃2x2

2
q(λ, θ)(V0)xx

+k̃x(σ̃2(θ) + ρσσ̃(θ)e−λ)(V0)xλ −
1

τγ
≤ 0. (3.74)
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Subtracting (3.74) from (3.69) gives us the inequality

σ̃2(θ)

2
(V τ

0 − V0)λλ +
π2

2
(V τ

0 − V0)θθ + rx(V τ
0 − V0)x + µ̃(θ)(V τ

0 − V0)λ

+a(θL − θ)(V τ
0 − V0)θ − δ(V τ

0 − V0)− c̃x(V τ
0 − V0)x + (be−λ + µ− r)k̃x(V τ

0 − V0)x

+
k̃2x2

2
q(λ, θ)(V τ

0 − V0)xx + k̃x(σ̃2(θ) + ρσσ̃(θ)e−λ)(V τ
0 − V0)xλ ≥ 0,

(3.75)

which will be used to show a contradiction later in this proof. Note that (3.75) holds for

x > 0, (λ, θ) ∈ BR.

To prove the estimate in (3.63), we wish to show that for x > 0, (λ, θ) ∈ B̄R,

V τ
0 (x, λ, θ) ≤ V0(x, λ, θ), (3.76)

or

1

τγ
(xτγeZ

τ − f) ≤ 1

γ
(xγeZ̄ − f). (3.77)

We then take x = 1 to get the desired result. We first note that f(λ, θ) > 0. This is easily

seen by rearranging equation (3.54) for f :

f(λ, θ) =
1

δ
+

(
1− 1

δ

)
Eλ,θ[e−δtR ]

=
1

δ

(
1− Eλ,θ[e−δtR ]

)
+ Eλ,θ[e−δtR ].

Since δtR > 0, we have that 0 < e−δtR < 1. Then we see that each term above is greater

than zero, and hence f > 0. Therefore
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− 1

τγ
f < −1

γ
f. (3.78)

On the boundary, Z̄ ≥ ψ. Using (3.71) with z = xeψ/γ, we have that for x > 0, (λ, θ) ∈

∂BR,

V τ
0 =

1

τγ
(xτγeτψ − 1) ≤ 1

γ
(xγeZ̄ − 1) = V0. (3.79)

Note that for x = 0 and τ ∈ (0, 1),

V τ
0 (0, λ, θ) = − 1

τγ
< −1

γ
= V0(0, λ, θ). (3.80)

Now consider large values of x with τ ∈ (0, 1). We can take x to be large enough such

that

1

τγ
xτγeZ

τ ≤ 1

γ
xγeZ̄ .

So this along with (3.78) implies that

V τ
0 < V0 (3.81)

for large x and τ ∈ (0, 1).

Next we prove that V τ
0 ≤ V0 for (λ, θ) ∈ B̄R. Suppose on the contrary that

sup
x>0,|(λ,θ)|≤R

{V τ
0 (x, λ, θ)− V0(x, λ, θ)} > 0. (3.82)

Then the maximum is attained at some (x0, λ0, θ0), where x0 > 0 and |(λ0, θ0)| < R. So
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at (x0, λ0, θ0) we have the following:

V0(x0, λ0, θ0) < V τ
0 (x0, λ0, θ0), (3.83)

(V τ
0 − V0)x(x0, λ0, θ0) = (V τ

0 − V0)λ(x0, λ0, θ0) = (V τ
0 − V0)θ(x0, λ0, θ0) = 0, (3.84)

and D2(V τ
0 − V0) is negative semi-definite at (x0, λ0, θ0), where D2 is the 3 × 3 matrix

operator of second derivatives (the Hessian). That is, for any η ∈ R3,

ηTD2(V τ
0 − V0)(x0, λ0, θ0)η ≤ 0, (3.85)

or in expanded form, for any η1, η2, η3 ∈ R,

(V τ
0 − V0)xx(x0, λ0, θ0)η2

1 + (V τ
0 − V0)λλ(x0, λ0, θ0)η2

2 + (V τ
0 − V0)θθ(x0, λ0, θ0)η2

3

+ 2(V τ
0 − V0)xλ(x0, λ0, θ0)η1η2 + 2(V τ

0 − V0)xθ(x0, λ0, θ0)η1η3

+ 2(V τ
0 − V0)λθ(x0, λ0, θ0)η2η3 ≤ 0. (3.86)

Note that this implies

(V τ
0 − V0)xx, (V τ

0 − V0)λλ, (V τ
0 − V0)θθ ≤ 0 (3.87)

at the point (x0, λ0, θ0) (for any i, set ηi = 1, ηj = 0 for each i 6= j in (3.86)).
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We also note that

q(λ, θ) = σ̃2(θ) + 2ρσσ̃e−λ + σ2e−2λ

≥ σ̃2(θ) + 2ρσσ̃e−λ + ρ2σ2e−2λ

= (σ̃(θ) + ρσe−λ)2. (3.88)

Now we evaluate (3.75) at (x0, λ0, θ0) and apply conditions (3.83) and (3.84). So at the

point (x0, λ0, θ0), we have

σ̃2(θ)

2
(V τ

0 − V0)λλ +
π2

2
(V τ

0 − V0)θθ +
k̃2x2

2
q(λ, θ)(V τ

0 − V0)xx

+ k̃xσ̃(θ)(σ̃(θ) + ρσe−λ)(V τ
0 − V0)xλ > 0. (3.89)

Applying (3.87) and (3.88) to (3.89), we have

σ̃2(θ)

2
(V τ

0 − V0)λλ +
k̃2x2

2
(σ̃(θ) + ρσe−λ)2(V τ

0 − V0)xx

+ k̃xσ̃(θ)(σ̃(θ) + ρσe−λ)(V τ
0 − V0)xλ > 0 (3.90)

at (x0, λ0, θ0). Taking

η1 =
k̃x√

2
(σ̃ + ρσe−λ), η2 =

σ̃(θ)√
2
, η3 = 0

gives us a contradiction to (3.86). Therefore V τ
0 ≤ V0 for (λ, θ) ∈ B̄R. Thus (3.77) holds.
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We take x = 1 in (3.77) to get

1

τγ
(eZ

τ − f) ≤ 1

γ
(eZ̄ − f).

Thus we have proved (3.52).

Theorem 3.4.5. Let τ ∈ (0, 1]. Suppose σ̃2(θ) ∈ C1,α(B̄R), and that Z0
τ is a solution of


σ̃2(θ)

2
Zλλ +

π2

2
Zθθ − τH(λ, θ, Z, Zλ, Zθ, 0) = 0 on BR,

Z = 0 on ∂BR.

(3.91)

Then

− δE[t̄R] ≤ Z0
τ (λ, θ) ≤ log(1 + E[t̄R]), (3.92)

where

t̄R = inf

{
t > 0;

√
λ̄2
t + θ̄2

t = R

}
,

and λ̄t, θ̄t are defined by

dλ̄t = τ µ̃(θ̄t)dt+ σ̃(θ̄t)dw̃t, λ̄0 = λ,

dθ̄t = τa(θL − θ̄t)dt+ πdŵt, θ̄0 = θ.

Proof. Note that

H(λ, θ, Z, Zλ, Zθ, 0) = − σ̃
2(θ)

2
Z2
λ −

π2

2
Z2
θ − µ̃(θ)Zλ − a(θL − θ)Zθ + δ − e−Z .
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Since Z0
τ is a solution of (3.91), we have that

σ̃2(θ)

2
(Z0

τ )λλ +
π2

2
(Z0

τ )θθ

+ τ

[
σ̃2(θ)

2
(Z0

τ )2
λ +

π2

2
(Z0

τ )2
θ + µ̃(θ)(Z0

τ )λ + a(θL − θ)(Z0
τ )θ − δ + e−Z

0
τ

]
= 0

(3.93)

on BR. Subtracting some of the nonnegative terms gives us the following inequality:

σ̃2(θ)

2
(Z0

τ )λλ +
π2

2
(Z0

τ )θθ + τ µ̃(θ)(Z0
τ )λ + τa(θL − θ)(Z0

τ )θ − τδ ≤ 0. (3.94)

Applying Ito’s rule to Z0
τ (λ̄t, θ̄t) and using (3.94), we have that for 0 ≤ t ≤ t̄R,

dZ0
τ (λ̄t, θ̄t) = (Z0

τ )λ

[
τ µ̃(θ̄t)dt+ σ̃(θ̄t)dw̃t

]
+ (Z0

τ )θ

[
τa(θL − θ̄t)dt+ πdŵt

]
+

1

2
(Z0

τ )λλσ̃
2(θ̄t)dt+

1

2
(Z0

τ )θθπ
2dt

=

[
σ̃2(θ)

2
(Z0

τ )λλ +
π2

2
(Z0

τ )θθ + τ µ̃(θ̄)(Z0
τ )λ + τa(θL − θ)(Z0

τ )θ

]
dt

+ σ̃(θ̄t)(Z
0
τ )λdw̃t + π(Z0

τ )θdŵt

≤ τδdt+ σ̃(θ̄t)(Z
0
τ )λdw̃t + π(Z0

τ )θdŵt. (3.95)

In integral form, we write
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Z0
τ (λ̄t̄R , θ̄t̄R)− Z0

τ (λ, θ) ≤
∫ t̄R

0

τδdt+

∫ t̄R

0

σ̃(θ̄t)(Z
0
τ )λdw̃t +

∫ t̄R

0

π(Z0
τ )θdŵt. (3.96)

Taking expectations, we have EZ0
τ (λ̄t̄R , θ̄t̄R) = 0 since Z0

τ = 0 on ∂BR. For 0 < t ≤

t̄R, (λ̄t, θ̄t) ∈ B̄R. So for 0 < t ≤ t̄R, we have that σ̃(θ̄t)(Z
0
τ )λ and π(Z0

τ )θ are bounded.

Thus

E

[∫ t̄R

0

σ̃2(θ̄t)(Z
0
τ )2
λdt

]
<∞ and E

[∫ t̄R

0

π2(Z0
τ )2
θdt

]
<∞.

Therefore
∫ t̄R

0
σ̃(θ̄t)(Z

0
τ )λdw̃t and

∫ t̄R
0
π(Z0

τ )θdŵt are martingales, which gives us

E

[∫ t̄R

0

σ̃(θ̄t)(Z
0
τ )λdw̃t

]
= E

[∫ t̄R

0

π(Z0
τ )θdŵt

]
= 0.

Then (3.102) reduces to

−Z0
τ (λ, θ) ≤ τδE[t̄R].

Since τ ∈ (0, 1], we have

−Z0
τ (λ, θ) ≤ δE[t̄R],

which proves the first inequality in (3.92).

Define

φ(λ, θ) = eZ
0
τ (λ,θ). (3.97)

Then

φλ = φ(Z0
τ )λ, φθ = φ(Z0

τ )θ,
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φλλ = φ((Z0
τ )λλ + (Z0

τ )2
λ), and φθθ = φ((Z0

τ )θθ + (Z0
τ )2
θ).

Now on BR we have

σ̃2(θ)

2
φλλ +

π2

2
φθθ −

1− τ
2φ

(σ̃2(θ)φ2
λ + π2φ2

θ) + τ(µ̃(θ)φλ + a(θL − θ)φθ) + τ(1− δφ)

=
σ̃2(θ)

2
φ((Z0

τ )λλ + (Z0
τ )2
λ) +

π2

2
φ((Z0

τ )θθ + (Z0
τ )2
θ)

− 1− τ
2φ

(σ̃2(θ)φ2(Z0
τ )2
λ + π2φ2(Z0

τ )2
θ)

+ τφ(µ̃(θ)(Z0
τ )λ + a(θL − θ)(Z0

τ )θ) + τ(1− δφ)

= φ

{
σ̃2(θ)

2
(Z0

τ )λλ +
π2

2
(Z0

τ )θθ + τ
[ σ̃2(θ)

2
(Z0

τ )2
λ +

π2

2
φ(Z0

τ )2
θ + µ̃(θ)(Z0

τ )λ

+ a(θL − θ)(Z0
τ )θ

]
− τδ + τe−Z

0
τ

}

= 0. (3.98)

On the boundary, φ = e0 = 1. Therefore φ satisfies



σ̃2(θ)

2
φλλ +

π2

2
φθθ −

1− τ
2φ

(σ̃2(θ)φ2
λ + π2φ2

θ)

+ τ
(
µ̃(θ)φλ + a(θL − θ)φθ

)
+ τ(1− δφ) = 0 on BR,

φ = 1 on ∂BR.

(3.99)

Since the terms
1− τ

2φ
(σ̃2(θ)φ2

λ + π2φ2
θ) and τδφ are nonnegative, we can add them to our

expression to get an inequality:
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σ̃2(θ)

2
φλλ +

π2

2
φθθ + τ

(
µ̃(θ)φλ + a(θL − θ)φθ

)
+ τ ≥ 0. (3.100)

Next, we can apply Ito’s rule to φ(λ̄t, θ̄t) and use the above inequality to obtain

dφ(λ̄t, θ̄t) = φλ

[
τ µ̃(θ̄t)dt+ σ̃(θ̄t)dw̃t

]
+ φθ

[
τa(θL − θ̄t)dt+ πdŵt

]
+

1

2
φλλσ̃

2(θ̄)dt+
1

2
φθθπ

2dt

=

[
σ̃2(θ̄t)

2
φλλ +

π2

2
φθθ + τ µ̃(θ̄t)φλ + τa(θL − θ̄t)φθ

]
dt+ σ̃(θ̄t)φλdw̃t + πφθdŵt

≥ −τdt+ σ̃(θ̄t)φλdw̃t + πφθdŵt. (3.101)

In integral form, we have

φ(λ̄t̄R , θ̄t̄R)− φ(λ, θ) ≥ −
∫ t̄R

0

τdt+

∫ t̄R

0

σ̃(θ̄t)φλdw̃t +

∫ t̄R

0

πφθdŵt. (3.102)

We can again show that the last two integrals are martingales since their arguments are

bounded for 0 < t < t̄R. Taking expectations, these terms vanish and we can rearrange to

get

1− φ(λ, θ) ≥ −τE[t̄R]

eZ
0
τ ≤ 1 + τE[t̄R]

Z0
τ ≤ log(1 + τE[t̄R]),

and then

Z0
τ ≤ log(1 + E[t̄R]),
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since τ ∈ (0, 1]. This proves the second inequality in (3.92).

The following theorem gives us existence of solution to the boundary value problem

(3.33) with ψ = Ẑ, on the closed ball B̄R = {(λ, θ) ∈ R2 : λ2 + θ2 ≤ R2}.

Theorem 3.4.6. Suppose σ̃2(θ) ∈ C1,α(B̄R), (3.24) has an ordered pair of subsolu-

tion/supersolution (Ẑ, Z̄), and Ẑ ∈ C2,β(B̄R) for some β ∈ (0, 1). Suppose further that Z̄

is a supersolution of (3.38) for τ = 1, and Zτ is a solution of (3.38) with τ ∈ (0, 1]. Then

the boundary value problem


σ̃2(θ)

2
Zλλ +

π2

2
Zθθ −H(λ, θ, Z, Zλ, Zθ) = 0 on BR,

Z = Ẑ on ∂BR,

(3.103)

has a unique solution in C2,β(B̄R).

Proof. Notice that (3.103) is equivalent to (3.33) with ψ = Ẑ. We use Theorem 3.4.1

to prove existence of solution. Note that conditions (a), (b), and (c) are automatically

satisfied.

By Theorem 3.4.4, we have inequality (3.52):

eZ
τ (λ,θ) ≤ τeZ̄(λ,θ) + (1− τ)f(λ, θ).

Since τ ∈ (0, 1] and f > 0, we can write

eZ
τ (λ,θ) ≤ eZ̄(λ,θ) + f(λ, θ), (3.104)
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or

Zτ (λ, θ) ≤ log
[
eZ̄(λ,θ) + f(λ, θ)

]
≡ M̄. (3.105)

Also by Theorem 3.4.4, we have the following inequality:

Zτ (λ, θ) ≥ − sup
λ2+θ2=R2

{|Ẑ(λ, θ)|} − log

(
max

{
δ

1− γ
, 1

})
≡M. (3.106)

Note that M and M̄ are independent of both τ and Zτ . Here we take

M ≡ max{|M |, M̄}+ C, (3.107)

where C is any positive constant. Then we have the bound

|Zτ (λ, θ)| < M, (3.108)

where M is independent of τ and Zτ . Hence condition (d) of Theorem (3.4.1) is satisfied.

For condition (e), take c ≡ min{L2, π2} and c̄ ≡ max{U2, π2}. Then for any (η1, η2) ∈

R2,

c(η2
1 + η2

2) ≤ σ̃2(θ)η2
1 + π2η2

2 ≤ c̄(η2
1 + η2

2).
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For the second part of condition (e), we have that for |z| ≤M,

|H(λ,θ, z, p, s, τ)|+ 2σ̃(θ)

∣∣∣∣dσ̃(θ)

dθ

∣∣∣∣
=

∣∣∣∣− σ̃2(θ)

2
p2 − π2

2
s2 − µ̃(θ)p− α(θL − θ)s− γG(λ, θ, p) + δ − γr − (1− γ)e

z
γ−1

∣∣∣∣
+ 2σ̃(θ)

∣∣∣∣dσ̃(θ)

dθ

∣∣∣∣
≤ U2

2
p2 +

π2

2
s2 + M̃ |p|+ A|s|+ γ(C̃1 + C̃2p

2) + δ + γ|r|+ (1− γ)e
M
γ−1 + 2UŪ.

Using the identity |2a| ≤ a2 +1, we can bound the linear terms in |p| and |s| by expressions

of the form C1(1 + p2) and C2(1 + s2), for positive constants C1 and C2. Therefore, for

|z| ≤M and some constant C > 0,

|H(λ, θ, z, p, s)|+ 2σ̃(θ)

∣∣∣∣dσ̃(θ)

dθ

∣∣∣∣ ≤ C(1 + p2 + s2). (3.109)

Thus condition (e) is satisfied, with k̄ = 2.

By Theorem 3.4.5, we have estimate (3.92). Thus

|Zτ
0 (λ, θ)| < M1, (3.110)

where M1 = max
{
δE[t̄R], log(1 + E[t̄R])

}
+ C1, for some constant C1 > 0. So condition

(f) of Theorem 3.4.1 is satisfied.

In (3.38), take ψ ≡ Ẑ. For the τ = 0 case, (3.38) has the unique solution

Zτ
0 = log f, (3.111)

85



3.4. EXISTENCE OF SOLUTION

where f is given by (3.54). Indeed, setting τ = 0 in (3.38) and substituting (3.111) into

the equation satisfied on BR, we obtain

σ̃2(θ)

2

[
− 1

f 2
f 2
λ +

1

f
fλλ

]
+
π2

2

[
− 1

f 2
+

1

f
fθθ

]
+
σ̃2(θ)

2

1

f 2
f 2
λ +

π2

2

1

f 2
f 2
θ

+ µ̃(θ)
1

f
fλ + a(θL − θ)

1

f
fθ − δ +

1

f

=
1

f

[
σ̃2(θ)

2
fλλ +

π2

2
fθθ + µ̃(θ)fλ + a(θL − θ)fθ − δf + 1

]
= 0, (3.112)

by (3.53). On the boundary ∂BR, τR = 0. Then by (3.54) we see that f = 1, and so Zτ
0 = 0

on ∂BR. Therefore Zτ
0 = log f is a solution to (3.38) for τ = 0. Uniqueness can be proven

using a method similar to that in Corollary 3.4.3.1.

This solution for τ = 0 corresponds to the solution of the log utility problem, the case

in which the HARA utility parameter γ is equal to 0. We do not discuss this case in detail

because our focus is on the non-log HARA utility with γ ∈ (0, 1).

By Theorem 3.4.1, (3.103) has a solution in C2.α(B̄R). For τ = 1, (3.38) is equivalent

to (3.33), which is equivalent to (3.103) when ψ = Ẑ. Therefore by Corollary 3.4.3.1, the

solution to (3.103) is unique.

3.4.3 A Uniform Bound for supBR
|DZ|2

Before proving existence of a classical solution to (3.24), we must prove the existence of a

uniform bound for supBR |DZ|
2 for any R. We start with the following result.

Lemma 3.4.7. Let Z(x) ∈ C2(RN), and ai,j(x) ∈ C2(RN) for all i, j ranging from 1 to
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N . Then

N∑
i,j,k=1

Dka
ijDkZDijZ ≤

1

2ε

(
N∑

i,j=1

|Daij|2
)
|DZ|2 +

ε

2
|D2Z|2, (3.113)

where ε > 0 is a small constant.

Proof. By the Cauchy-Schwarz Inequality, we have

∑
i,j,k

Dka
ijDkZDijZ =

∑
i,j

(∑
k

Dka
ijDkZ

)
DijZ

≤
∑
i,j

|Daij||DZ| ·DijZ.

Now using the identity ab ≤ 1
2
(a2 + b2) and simplifying, we get

∑
i,j

|Daij||DZ| ·DijZ =
∑
i,j

1√
ε
|Daij||DZ| ·

√
εDijZ

≤
∑
i,j

(
1

2ε
|Daij|2|DZ|2 +

ε

2
(DijZ)2

)

=
1

2ε

(∑
ij

|Daij|2
)
|DZ|2 +

ε

2

∑
ij

(DijZ)2

=
1

2ε

(∑
ij

|Daij|2
)
|DZ|2 +

ε

2
|D2Z|2.

Theorem 3.4.8. Let ZR̃ be a smooth function satisfying the HJB equation (3.24) in BR̃.
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For each R > 0 and R̃ > 2R, we have

sup
BR

|DZR̃|
2 ≤ CR + C(δ − γr), (3.114)

where C is a nonnegative constant independent of R and R̃, and CR is a constant depending

only on R.

Proof. We write G in its quadratic form,

G(λ, θ, Zλ) = γg2Z
2
λ + γg1Zλ + γg0,

where g2, g1, and g0 are defined in (3.49). Then ZR̃ satisfies

σ̃2(θ)

2
Zλλ +

π2

2
Zθθ +

1

2

(
σ̃2(θ) + 2γg2(λ, θ)

)
Z2
λ +

π2

2
Z2
θ

+ (µ̃(θ) + γg1(λ, θ))Zλ + a(θL − θ)Zθ + γg0(λ, θ) + (1− γ)e
Z
γ−1 = δ − γr

(3.115)

on BR̃. Note that this is the case of be−λ + µ− r ≥ 0. The more simple case of G = 0 (if

be−λ + µ− r < 0) can be proved using the same steps as this proof, so we will not prove

this case explicitly. For simplicity, we drop the subscript R̃ and set Z ≡ ZR̃. Differentiating

(3.115) with respect to λ and θ, we obtain
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σ̃2(θ)

2
Zλλλ +

π2

2
Zθθλ + (σ̃2(θ) + 2γg2)ZλZλλ + γ(g2)λZ

2
λ + π2ZθZθλ

+ (µ̃(θ) + γg1)Zλλ + γ(g1)λZλ + a(θL − θ)Zθλ + γ(g0)λ − e
Z
γ−1Zλ = 0

(3.116)

and

σ̃2(θ)

2
Zλλθ + σ̃(θ)σ̃′(θ)Zλλ +

π2

2
Zθθθ + (σ̃2(θ) + 2γg2)ZλZλθ

+(σ̃(θ)σ̃′(θ) + γ(g2)θ)Z
2
λ + π2ZθZθθ + (µ̃(θ) + γg1)Zλθ

+(µ̃′(θ) + γ(g1)λ)Zλ + a(θL − θ)Zθθ − aZθ + γ(g0)θ − e
Z
γ−1Zθ = 0 (3.117)

respectively. Next, we take the sum of Equation (3.116) multiplied by Zλ, and Equation

(3.117) multiplied by Zθ. Rearranging the result (to a form that will be useful in a later

step), we get

− σ̃
2(θ)

2
ZλλλZλ −

π2

2
ZθθλZλ −

σ̃2(θ)

2
ZλλθZθ −

π2

2
ZθθθZθ

− (σ̃2(θ) + 2γg2)(ZλZλλZλ + ZλZλθZθ)− π2(ZθZθλZλ + ZθZθθZθ)

− (µ̃(θ) + γg1)(ZλλZλ + ZλθZθ)− a(θL − θ)(ZθλZλ + ZθθZθ)

= σ̃(θ)σ̃′(θ)ZλλZθ + γ(g2)λZ
2
λZλ + (σ̃(θ)σ̃′(θ) + γ(g2)θ)Z

2
λZθ

+ γ(g1)λZλZλ + (µ̃′(θ) + γ(g1)θ)ZλZθ − aZθZθ + γ(g0)λZλ + γ(g0)θZθ

− e
Z
γ−1ZλZλ − e

Z
γ−1ZθZθ. (3.118)

89
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Define

Φ ≡ 1

2
|DZ|2 =

1

2
(Z2

λ + Z2
θ ), (3.119)

so that

DλΦ = ZλZλλ + ZθZθλ, DθΦ = ZλZλθ + ZθZθθ, (3.120)

DλλΦ = Z2
λλ + ZλZλλλ + Z2

λθ + ZθZθλλ, and Dθθ = Z2
λθ + ZθZλθθ + Z2

θθ + ZθZθθθ.

Then by (3.118),

− σ̃
2(θ)

2
DλλΦ−

π2

2
DθθΦ− (σ̃2(θ) + 2γg2)ZλDλΦ− π2ZθDθΦ

− (µ̃(θ) + γg1)DλΦ− a(θL − θ)DθΦ

= − σ̃
2(θ)

2
ZλλλZλ −

π2

2
ZθθλZλ −

σ̃2(θ)

2
ZλλθZθ −

π2

2
ZθθθZθ

− (σ̃2(θ) + 2γg2)Zλ(ZλλZλ + ZλθZθ)− π2Zθ(ZθλZλ + ZθθZθ)

− (µ̃(θ) + γg1)(ZλλZλ + ZλθZθ)− a(θL − θ)(ZθλZλ + ZθθZθ)

− σ̃2(θ)

2
(Z2

λλ + Z2
λθ)−

π2

2
(Z2

λθ + Z2
θθ)

= σ̃(θ)σ̃′(θ)ZλλZθ + γ(g2)λZ
2
λZλ + (σ̃(θ)σ̃′(θ) + γ(g2)θ)Z

2
λZθ + γ(g1)λZλZλ

+ (µ̃′(θ) + γ(g1)θ)ZλZθ − aZθZθ + γ(g0)λZλ + γ(g0)θZθ − e
Z
γ−1ZλZλ

− e
Z
γ−1ZθZθ −

σ̃2(θ)

2
(Z2

λλ + Z2
λθ)−

π2

2
(Z2

λθ + Z2
θθ). (3.121)

By Lemma (3.4.7), we have that

σ̃(θ)σ̃′(θ)ZθZλλ ≤
1

4ε
(2σ̃(θ)σ̃′(θ))2(Z2

λ + Z2
θ ) +

ε

4
(Z2

λλ + 2Z2
λθ + Z2

θθ) (3.122)
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Then

(3.121) ≤ 1

4ε
(2σ̃(θ)σ̃′(θ))2(Z2

λ + Z2
θ ) +

ε

4
(Z2

λλ + 2Z2
λθ + Z2

θθ)

+ σ̃(θ)σ̃′(θ)ZλλZθ + γ(g2)λZ
2
λZλ + (σ̃(θ)σ̃′(θ) + γ(g2)θ)Z

2
λZθ + γ(g1)λZλZλ

+ (µ̃′(θ) + γ(g1)θ)ZλZθ − aZθZθ + γ(g0)λZλ + γ(g0)θZθ − e
Z
γ−1ZλZλ

− e
Z
γ−1ZθZθ −

σ̃2(θ)

4
(Z2

λλ + Z2
λθ)−

π2

4
(Z2

λθ + Z2
θθ)

− σ̃2(θ)

4
(Z2

λλ + Z2
λθ)−

π2

4
(Z2

λθ + Z2
θθ) (3.123)

≤ 1

ε
(σ̃(θ)σ̃′(θ))2(Z2

λ + Z2
θ )

+ σ̃(θ)σ̃′(θ)ZλλZθ + γ(g2)λZ
2
λZλ + (σ̃(θ)σ̃′(θ) + γ(g2)θ)Z

2
λZθ + γ(g1)λZ

2
λ

+ (µ̃′(θ) + γ(g1)θ)ZλZθ − aZ2
θ + γ(g0)λZλ + γ(g0)θZθ − e

Z
γ−1 (Z2

λ + Z2
θ )

− σ̃2(θ)

4
(Z2

λλ + Z2
λθ)−

π2

4
(Z2

λθ + Z2
θθ), (3.124)

where the last step uses the fact that

ε

4
(Z2

λλ + 2Z2
λθ + Z2

θθ)−
σ̃2(θ)

4
(Z2

λλ + Z2
λθ)−

π2

4
(Z2

λθ + Z2
θθ)

=
1

4

[
(ε− σ̃2(θ))Z2

λλ + (2ε− σ̃2(θ)− π2)Z2
λθ + (ε− π2)Z2

θθ

]
≤ 0,

for any constant ε such that 0 < ε ≤ min{L2, π2}, and L given by (3.2).

Consider the matrix inequality (tr(AB))2 ≤ Nν2(tr(AB2)), where A and B are N×N

symmetric matrices, A is positive semidefinite, and ν2 is the maximum eigenvalue of A.
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We use this inequality with A =

σ̃2 0

0 π2

 and B =

Zλλ Zλθ

Zλθ Zθθ

 to get

− 1

4

[
σ̃2(θ)Z2

λλ + (σ̃2(θ) + π2)Z2
λθ + π2Z2

θθ

]
≤ − 1

8ν2

(σ̃2(θ)Zλλ + π2Zθθ)
2. (3.125)

So then

− σ̃
2(θ)

2
DλλΦ−

π2

2
DθθΦ− (σ̃2(θ) + 2γg2)ZλDλΦ− π2ZθDθΦ

− (µ̃(θ) + γg1)DλΦ− a(θL − θ)DθΦ

≤ CR|DZ|+ CR|DZ|2 + CR|DZ|3 −
1

8ν2

(
σ̃2(θ)Zλλ + π2Zθθ

)2
in B2R.

(3.126)

We use CR to represent an arbitrary constant depending only on R; C is a nonnegative

constant independent of R and R̃.

Fix arbitrary ξ ∈ BR and let BR(ξ) be an open ball with radius R and center ξ. Let

φ ∈ C∞0 (R2) be a cutoff function such that

0 ≤ φ ≤ 1 in R2, φ(ξ) = 1, φ ≡ 0 in (BR(ξ))c,

|Dφ| ≤ Cφ1/2, |D2φ| ≤ C. (3.127)

Suppose the maximum of φΦ in B̄R(ξ) is attained at (λ0, θ0). By the maximum principle,

at (λ0, θ0) we have

Di(φΦ) = φDiΦ + ΦDiφ = 0,
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and
∑
i,j

Di,j(φΦ)ηiηj ≤ 0,

where the second condition means that the Hessian of (φΦ)(λ0, θ0) is negative semidefinite.

Then at (λ0, θ0), we have
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0 ≤ − σ̃
2(θ)

2
Dλλ(φΦ)− π2

2
Dθθ(φΦ)− (σ̃2(θ) + 2γg2)ZλDλ(φΦ)− π2ZθDθ(φΦ)

− (µ̃(θ) + γg1)Dλ(φΦ)− a(θL − θ)Dθ(φΦ) (3.128)

= − σ̃
2(θ)

2
φDλλΦ− σ̃2(θ)DλφDλΦ−

σ̃2(θ)

2
ΦDλλφ−

π2

2
φDθθΦ− π2DθφDθΦ

− π2

2
ΦDθθφ− (σ̃2(θ) + 2γg2)Zλ(φDλΦ + ΦDλφ)− π2Zθ(φDθΦ + ΦDθφ)

− (µ̃(θ) + γg1)(φDλΦ + ΦDλφ)− a(θL − θ)(φDθΦ + ΦDθφ) (3.129)

= φ

{
− σ̃2(θ)

2
DλλΦ−

π2

2
DθθΦ− (σ̃2(θ) + 2γg2)ZλDλΦ− π2ZθDθΦ

− (µ̃(θ) + γg1)DλΦ− a(θL − θ)DθΦ

}
− σ̃2(θ)

2
ΦDλλφ−

π2

2
ΦDθθφ

− σ̃2(θ)DλφDλΦ− π2DθφDθΦ− (σ̃2(θ) + 2γg2)ΦZλDλφ− π2ΦZθDθφ

− (µ̃(θ) + γg1)ΦDλφ− a(θL − θ)ΦDθφ (3.130)

≤ φ

{
− σ̃2(θ)

2
DλλΦ−

π2

2
DθθΦ− (σ̃2(θ) + 2γg2)ZλDλΦ− π2ZθDθΦ

− (µ̃(θ) + γg1)DλΦ− a(θL − θ)DθΦ

}
+ CRΦ + Cφ1/2Φ3/2 (3.131)

≤ φ

{
CR|DZ|+ CR|DZ|2 + CR|DZ|3 −

1

8ν2

(
σ̃2(θ)Zλλ + π2Zθθ

)2
}

+ CRΦ + Cφ1/2Φ3/2 (3.132)

= φ

{
CR|DZ|+ CR|DZ|2 + CR|DZ|3 −

1

2ν2

[
− 1

2

(
σ̃2(θ) + 2γg2

)
Z2
λ −

π2

2
Z2
θ

− (µ̃(θ) + γg1)Zλ − a(θL − θ)Zθ − γg0 + δ − γr − (1− γ)e
Z
γ−1

]2
}

+ CRΦ + Cφ1/2Φ3/2, (3.133)
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where (3.132) is true by (3.126), and (3.133) follows from (3.115).

Note that there exist 0 < µ1 < µ2 such that

µ1|η|2 ≤ (σ̃2(θ) + 2γg2)η2
1 + π2η2

2 ≤ µ2|η|2 for all (λ, θ), η ∈ R2.

In fact, take µ1 = min{L2, π2} and µ2 = max{U2 + γC̃2}, where C̃2 is the bound of the

coefficient to p2 in (3.50). Then we have

−1

2

(
σ̃2(θ) + 2γg2

)
Z2
λ −

π2

2
Z2
θ − (µ̃(θ) + γg1)Zλ − a(θL − θ)Zθ − γg0

+ δ − γr − (1− γ)e
Z
γ−1

≤ −µ1|DZ|2 + CR|DZ| − γg0 + δ − γr − (1− γ)e
Z
γ−1

≤ −κ|DZ|2 + CR − γg0 + δ − γr − (1− γ)e
Z
γ−1 , (3.134)

where κ > 0 is a constant that depends only on µ1, and the last step follows from the

identity |DZ| ≤ 1
2
(|DZ|2 + 1).

Now we split the problem up into cases. First, consider the case −κ|DZ|2 + CR −

γg0 + δ − γr − (1− γ)e
Z
γ−1 ≥ 0 at (λ0, θ0). Then

κ|DZ|2(λ0, θ0) ≤ CR + δ − γr.

Note that

1

2
|DZ|2(ξ) = Φ(ξ)φ(ξ) ≤ Φ(λ0, θ0)φ(λ0, θ0),
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since (λ0, θ0) is the maximizer of φΦ in B̄R(ξ); and so

κ|DZ|2(ξ) ≤ κ|DZ|2(λ0, θ0)φ(λ0, θ0)

≤ φ(λ0, θ0)[CR + δ − γr]

≤ CR + δ − γr. (3.135)

So in this case, we have

|DZ|2(ξ) ≤ CR +
1

κ
(δ − γr). (3.136)

Next, consider the case −κ|DZ|2 +CR − γg0 + δ− γr− (1− γ)e
Z
γ−1 ≤ 0 at (λ0, θ0). Then
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by (3.134), we obtain

(3.133) ≤ φ

{
CR|DZ|+ CR|DZ|2 + CR|DZ|3 −

1

2ν2

[
− κ|DZ|2 + CR − γg0 + δ − γr

− (1− γ)e
Z
γ−1

]2
}

+ CRΦ + Cφ1/2Φ3/2

= φ

{
CR|DZ|+ CR|DZ|2 + CR|DZ|3

− 1

2ν2

[
κ2|DZ|4 − 2κ|DZ|2

(
CR − γg0 + δ − γr − (1− γ)e

Z
γ−1

)
+
(
CR − γg0 + δ − γr − (1− γ)e

Z
γ−1

)2]}
+ CRΦ + Cφ1/2Φ3/2

≤ φ

{
CRΦ1/2 + CRΦ + CRΦ3/2 − 2κ2

ν2

Φ2

+
2κ

ν2

Φ
(
CR − γg0 + δ − γr − (1− γ)e

Z
γ−1

)]}
+ CRΦ + Cφ1/2Φ3/2

= φ

{
CRΦ1/2 + CRΦ + CRΦ3/2

− 2κ

ν2

Φ
[
κΦ−

(
CR − γg0 + δ − γr − (1− γ)e

Z
γ−1

)]}
+ CRΦ + Cφ1/2Φ3/2,

(3.137)

at (λ0, θ0). If κΦ ≤ CR − γg0 + δ − γr − (1− γ)e
Z
γ−1 = CR + δ − γr, then

κΦ(ξ) = κφ(ξ)Φ(ξ) ≤ κφ(λ0, θ0)Φ(λ0, θ0) ≤ κΦ(λ0, θ0) ≤ CR + δ − γr, (3.138)

so that

|DZ|2(ξ) ≤ CR +
2

κ
(δ − γr). (3.139)
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If CR ≥ Φ(λ0, θ0), we have a similar result:

|DZ|2(ξ) ≤ CR ≤ CR + C(δ − γr), (3.140)

for some nonnegative constant C.

Finally, suppose both κΦ ≥ CR − γg0 + δ − γr − (1 − γ)e
Z
γ−1 = CR + δ − γr and

CR ≤ Φ(λ0, θ0). Then

(3.137) ≤ φ

{
Φ3/2 + CRΦ + CRΦ3/2

}
+ CRΦ + Cφ1/2Φ3/2

≤ C1φΦ2 + C2φ
1/2Φ3/2 + C̃3Φ at (λ0, θ0), C̃3 = C3CR, (3.141)

where C1, C2 and C3 are positive constants independent of R, R̃, and (δ− γr). (3.4.3) uses

the inequality

CRΦ3/2 = CRΦ1/2Φ ≤ 1

2
(C2

RΦ + Φ2),

and the fact that φ ≤ 1.

Let Y ≡ φ(λ0, θ0)Φ(λ0, θ0). Then from (3.4.3) we have

0 ≤ −C1Y
2 + C2Y + C̃3. (3.142)

The quadratic on the right-hand side is concave down. Since the quadratic is greater than

or equal to zero, Y is bounded by the zeros of the quadratic. This, along with the fact
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that Y ≥ 0, implies

φΦ(λ0, θ0) = Y 2 ≤

(
C2 +

√
C2 + 4C1C̃3

2C1

)2

≤ C2
2

2C2
1

+
C2

2 + 4C1C̃3

2C2
1

=
C2

2

C2
1

+
2C3CR
C1

.

Again, we use the fact that |DZ|2(ξ) ≤ φ(λ0, θ0)|DZ|2(λ0, θ0), and we obtain the bound

|DZ|2(ξ) ≤ CR + C.

In each case, we have a bound for |DZ|2 in BR̃ that can be written in the form CR +

C(δ− γr), where CR is a constant depending only on R, and C is a positive constant.

3.4.4 Existence of Solution to the HJB Equation

Finally, we have our existence theorem.

Theorem 3.4.9. Suppose σ̃2(θ) ∈ C1,α(B̄R). Define Ẑ ≡ K1 and Z̄ ≡ K2, where K1 and

K2 are given by (3.30) and (3.32), respectively. Then there exists a solution Z̃ ∈ C2,β(R2)

to (3.24) such that Ẑ ≤ Z̃(λ, θ) ≤ Z̄ for all (λ, θ) ∈ R2.

Proof. By Theorem 3.4.6, there is a unique solution Z l to


σ̃2(θ)

2
Zλλ +

π2

2
Zθθ −H(λ, θ, Z, Zλ, Zθ) = 0 on Bl,

Z = Ẑ on ∂Bl,

(3.143)
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3.4. EXISTENCE OF SOLUTION

for l = 1, 2, 3, .... Since Ẑ and Z l+1 satisfy the following,



σ̃2(θ)

2
Ẑλλ +

π2

2
Ẑθθ −H(λ, θ, Ẑ, Ẑλ, Ẑθ) ≥ 0 ∀ (λ, θ) ∈ R2,

σ̃2(θ)

2
Z l+1
λλ +

π2

2
Z l+1
θθ −H(λ, θ, Z l+1, Z l+1

λ , Z l+1
θ ) = 0 on Bl+1,

Ẑ = Z l+1 on ∂Bl+1,

(3.144)

we see that they satisfy (3.41) with τ = 1. Thus by Lemma 3.4.3,

Ẑ ≤ Zl+1 in B̄l+1.

In particular,

Ẑ ≤ Z l+1 on ∂Bl.

On ∂Bl, we also have Z l = Ẑ. Therefore

Z l ≤ Z l+1 on ∂Bl.

Now we see that Z l and Z l+1 satisfy



σ̃2(θ)

2
Z l
λλ +

π2

2
Z l
θθ −H(λ, θ, Z l, Z l

λ, Z
l
θ) = 0 on Bl,

σ̃2(θ)

2
Z l+1
λλ +

π2

2
Z l+1
θθ −H(λ, θ, Z l+1, Z l+1

λ , Z l+1
θ ) = 0 on Bl,

Z l ≤ Z l+1 on ∂Bl.

(3.145)

By Lemma 3.4.3 again,

Z l ≤ Z l+1 in Bl.
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Thus for any k such that |(λ, θ)| ≤ k, Z l(λ, θ) is nondecreasing in l for l > k, and is

bounded above by Z̄. So by taking l→∞, {Z l(λ, θ)} converges pointwise to some function

Z̃(λ, θ).

By Theorem 3.4.8, we have a uniform bound for |DZ l|2 on B̄R for any R > 0. By

the Arzela-Ascoli Theorem, {Z l} contains a subsequence that converges to a function

Z ∈ C2,β(B̄R) as l →∞. Since {Z l} also converges pointwise to Z̃, then we must have

Z̃ ≡ Z. By (3.109) and (3.114), it follows that Z̃ is a solution to (3.24) on B̄R for any R.

Take R to infinity, and we have that Z̃ is a solution to (3.24) on R2.

3.5 Verification Theorem

In Section 3.4, we proved existence of a classical solution Z̃(λ, θ) to the HJB equation

(3.24). In this section, we prove that Ṽ = 1
γ
xγeZ̃ is equal to the value function (3.11). In

effect, we will have maximized the expected discounted utility of an investor whose net

worth depends on stochastic dividends and stochastic volatility of stock price.

We begin by stating a useful result.

Lemma 3.5.1. Let Z̃(λ, θ) be a classical solution to (3.24) such that K1 ≤ Z̃ ≤ K2,

where K1 and K2 are defined by (3.30) and (3.32), respectively. Define k∗(λ, θ, Z̃λ) and

c∗(λ, θ, Z̃) by (3.19) and (3.17), respectively. For the processes λt, θt and Xt defined in

(3.6), (3.4), and (3.9), we have

E[λmt ],E[θmt ],E[Xm
t ] <∞ (3.146)

for all fixed m > 0.
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For a proof, refer to [Pa02], Lemma 1.1 of Chapter 1.

We now state and prove the Verification Theorem.

Theorem 3.5.2. (Verification Theorem) Suppose 0 < γ < 1 and (3.31) holds. Let

Z̃(λ, θ) denote a classical solution of (3.24) which satisfies K1 ≤ Z̃ ≤ K2. Denote

Ṽ (x, λ, θ) ≡ 1

γ
xγeZ̃(λ,θ). (3.147)

Then we have

Ṽ (x, λ, θ) ≡ V (x, λ, θ), (3.148)

where V (x, λ, θ) is the value function defined by (3.11). Moreover, the optimal control

policy is

k∗(λ, θ, Z̃λ) =

[
be−λ + µ− r + (σ̃(θ)2 + ρσσ̃(θ)e−λ)Z̃λ(λ, θ)

(1− γ)q(λ, θ)

]+

, c∗(λ, θ, Z̃) = e
Z̃(λ,θ)
γ−1 .

(3.149)

Proof. Since Z̃ is a classical solution of (3.24), we have

δ =
σ̃2(θ)

2
(Z̃2

λ + Z̃λλ) +
π2

2
(Z̃2

θ + Z̃θθ) + γr + µ̃(θ)Z̃λ

+a(θL − θ)Z̃θ + (1− γ)e
Z̃
γ−1 + γG(λ, θ, Z̃λ). (3.150)
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Using (3.150) we can show that Ṽ is a classical solution of (3.12). From (3.147) we get

Ṽx =
γ

x
Ṽ , Ṽλ = Ṽ Z̃λ, Ṽθ = Ṽ Z̃θ,

Ṽxx =
γ(γ − 1)

x2
Ṽ , Ṽλλ = Ṽ (Z̃2

λ + Z̃λλ), Ṽθθ = (Z̃2
θ + Z̃θθ)Ṽ , and Ṽxλ =

γ

x
Z̃λṼ .

Substituting these expressions into the right-hand side of (3.12) and simplifying, we get

σ̃2(θ)

2
Ṽλλ +

π2

2
Ṽθθ + rxVx + µ̃(θ)Ṽλ + a(θL − θ)Ṽθ + max

c≥0

{
1

γ
(cx)γ − cxVx

}
+ max

k≥0

{
(be−λ + µ− r)kxṼx +

k2x2

2
q(λ, θ)Ṽxx + kx(σ̃2(θ) + ρσσ̃(θ)e−λ)Ṽxλ

}
=
σ̃2(θ)

2
(Z̃2

λ + Z̃λλ)Ṽ +
π2

2
(Z̃2

θ + Z̃θθ)Ṽ + rγṼ + µ̃(θ)Z̃λṼ + a(θL − θ)Z̃θṼ

+
(1

γ
− 1
)(γ

x
Ṽ
) γ

1−γ
+ max

k≥0

{
(be−λ + µ− r)kγṼ +

k2

2
γ(γ − 1)q(λ, θ)Ṽ

+ kγ(σ̃2(θ) + ρσσ̃(θ)e−λ)Z̃λṼ
}

= Ṽ

[
σ̃2(θ)

2
(Z̃2

λ + Z̃λλ) +
π2

2
(Z̃2

θ + Z̃θθ) + rγ + µ̃(θ)Z̃λ + a(θL − θ)Z̃θ

+ (1− γ)e
Z̃

1−γ + γG(λ, θ, Z̃λ)

]
= Ṽ δ.

Therefore Ṽ is a classical solution of (3.12).

For any admissible control (kt, ct) ∈ Π, using Ito’s rule for f(t, Ṽ ) = e−δtṼ , we get

df = ftdt+ fvdṼ +
1

2
fvv(dṼ )2

d[e−δtṼ (Xt, λt, θt)] = −δe−δtṼ (Xt, λt, θt)dt+ e−δtdṼ (Xt, λt, θt). (3.151)
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3.5. VERIFICATION THEOREM

Using Ito’s rule on Ṽ , we have

dṼ (Xt, λt, θt) = ṼxdXt + Ṽλdλt + Ṽθdθt +
1

2
Ṽxx(dXt)

2 +
1

2
Ṽλλ(dλt)

2 +
1

2
Ṽθθ(dθt)

2

+Ṽxλ(dXt)(dλt) + Ṽxλ(dXt)(dλt) + Ṽλθ(dλt)(dθt)

= Ṽx

[
Xt

[
(be−λt + µ− r

)
kt + (r − ct)

]
dt+ ktXtσe

−λtdwt + ktXtσ̃(θt)dw̃t)
]

+Ṽλ

[
µ̃(θt)dt+ σ̃(θt)dw̃t

]
+ Ṽθ

[
a(θL − θt)dt+ πdŵt

]
+

1

2
Ṽxx

[
k2
tX

2
t (σ̃(θt)

2 + 2ρσσ̃(θ)e−λt + σ2e−2λt)dt
]

+
1

2
Ṽλλσ̃(θt)

2dt

+
1

2
Ṽθθπ

2dt+ ṼxλktXt

[
σ̃(θt)

2 + ρσσ̃(θt)e
−λt
]
dt

=
[ σ̃(θ)2

2
Ṽλλ +

π2

2
Ṽθθ + µ̃(θt)Ṽλ + rXtṼx − ctXtṼx + (be−λt + µ− r)ktXtṼx

+a(θL − θt)Ṽθ + ktXt(σ̃(θ)2 + ρσσ̃(θt)e
−λt)Ṽxλ +

k2
tX

2
t q(λt, θt)

2
Ṽxx

]
dt

+σe−λtktXtṼxdwt +
[
σ̃(θt)ktXtṼx + σ̃(θt)Ṽλ

]
dw̃t + πṼθdŵt.

In integral form,

e−δT Ṽ (XT ,λT , θT )− Ṽ (x, λ, θ)

=

∫ T

0

e−δtdṼ (Xt, λt, θt)−
∫ T

0

δe−δtṼ (Xt, λt, θt)dt

=

∫ T

0

e−δt
[ σ̃(θ)2

2
Ṽλλ +

π2

2
Ṽθθ + µ̃(θt)Ṽλ + rXtṼx − ctXtṼx

+ (be−λt + µ− r)ktXtṼx + a(θL − θt)Ṽθ + ktXt(σ̃(θ)2 + ρσσ̃(θt)e
−λt)Ṽxλ

+
k2
tX

2
t q(λt, θt)

2
Ṽxx

]
dt−

∫ T

0

δe−δtṼ (Xt, λt, θt)dt+

∫ T

0

σe−λtktXtṼxdwt

+

∫ T

0

(
σ̃(θt)ktXtṼx + σ̃(θt)Ṽλ

)
dw̃t +

∫ T

0

πṼθdŵt. (3.152)
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We showed above that

δṼ (Xt, λt, θt) =
σ̃2(θt)

2
Ṽλλ +

π2

2
Ṽθθ + rXtṼx + µ̃(θt)Ṽλ + a(θL − θt)Ṽθ

+ max
ct≥0

{
1

γ
(ctXt)

γ − ctXtVx

}
+ max

kt≥0

{
(be−λt + µ− r)ktXtṼx

+
k2
tX

2
t

2
q(λt, θt)Ṽxx + ktXt(σ̃

2(θt) + ρσσ̃(θt)e
−λt)Ṽxλ

}
. (3.153)

Thus for arbitrary ct, kt ≥ 0,

δṼ (Xt, λt, θt) ≥
σ̃2(θt)

2
Ṽλλ +

π2

2
Ṽθθ + rXtṼx + µ̃(θt)Ṽλ + a(θL − θt)Ṽθ +

1

γ
(ctXt)

γ

− ctXtVx + (be−λt + µ− r)ktXtṼx +
k2
tX

2
t

2
q(λt, θt)Ṽxx

+ ktXt(σ̃
2(θt) + ρσσ̃(θt)e

−λt)Ṽxλ. (3.154)

Then we have

σ̃2(θt)

2
Ṽλλ +

π2

2
Ṽθθ + rXtṼx + µ̃(θt)Ṽλ + a(θL − θt)Ṽθ − ctXtVx + (be−λt + µ− r)ktXtṼx

+
k2
tX

2
t

2
q(λt, θt)Ṽxx + ktXt(σ̃

2(θt) + ρσσ̃(θt)e
−λt)Ṽxλ

≤ δṼ (Xt, λt, θt)−
1

γ
(ctXt)

γ. (3.155)
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Now (3.152) becomes

e−δT Ṽ (XT , λT , θT )− Ṽ (x, λ, θ)

≤
∫ T

0

e−δt
[
δṼ (Xt, λt, θt)−

1

γ
(ctXt)

γ

]
dt−

∫ T

0

δe−δtṼ (Xt, λt, θt)dt

+

∫ T

0

σe−λtktXtṼxdwt +

∫ T

0

(
σ̃(θt)ktXtṼx + σ̃(θt)Ṽλ

)
dw̃t +

∫ T

0

πṼθdŵt

= −
∫ T

0

e−δt
1

γ
(ctXt)

γdt+mT + m̃T + m̂T , (3.156)

where mT =
∫ T

0
σe−λtktXtṼxdwt, m̃T =

∫ T
0

(
σ̃(θt)ktXtṼx + σ̃(θt)Ṽλ

)
dw̃t, and m̂T =∫ T

0
πṼθdŵt are local martingales. That is, they are martingales in the region {x2+λ2+θ2 ≤

R2}.

Rearranging (3.156) to get a bound on Ṽ , we have

Ṽ (x, λ, θ) ≥
∫ T

0

e−δt
1

γ
(ctXt)

γdt+ e−δT Ṽ (XT , λT , θT )−mT − m̃T − m̂T . (3.157)

Since mT is a local martingale, E[mT∧τR ] = E[m0] =
∫ 0

0
σe−λtktXtṼxdwt = 0. Similarly,

E[m̃T∧τR ] = E[m̂0] = 0. Replacing T with T ∧ τR in (3.157) and taking expectations, we

arrive at the following:

Ṽ (x, λ, θ) ≥ Ex,λ,θ
[∫ T∧τR

0

e−δt
1

γ
(ctXt)

γdt

]
+ Ex,λ,θ

[
e−δT∧τRṼ (XT∧τR , λT∧τR , θT∧τR)

]
≥ Ex,λ,θ

[∫ T∧τR

0

e−δt
1

γ
(ctXt)

γdt

]
. (3.158)

The second inequality is true because Ṽ > 0. We let R approach infinity and use Fatou’s

106
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lemma, giving us

Ṽ (x, λ, θ) ≥ lim
R→∞

Ex,λ,θ
[∫ T∧τR

0

e−δt
1

γ
(ctXt)

γdt

]
≥ Ex,λ,θ

[∫ T

0

e−δt
1

γ
(ctXt)

γdt

]
.

Now, letting T →∞ and using Fatou’s lemma again,

Ṽ (x, λ, θ) ≥ lim
T→∞

Ex,λ,θ
[∫ T

0

e−δt
1

γ
(ctXt)

γdt

]
≥ Ex,λ,θ

[∫ ∞
0

e−δt
1

γ
(ctXt)

γdt

]
. (3.159)

Since (3.159) holds for all arbitrary values of (kt, ct) ∈ Π, then

Ṽ (x, λ, θ) ≥ sup
(kt,ct)∈Π

Ex,λ,θ
[∫ ∞

0

e−δt
1

γ
(ctXt)

γdt

]
= V (x, λ, θ). (3.160)

Next we must show the reverse inequality, Ṽ (x, λ, θ) ≤ V (x, λ, θ). We start by showing

that (k∗t , c
∗
t ) ∈ Π. Note that both k∗t and c∗t are progressively measurable because for every

time t their values are determined.

We must show that Pr
(∫ T

0
(k∗t )

2dt <∞
)

= 1 and Pr
(∫ T

0
c∗tdt <∞

)
= 1. If

k∗t = 0, this is trivial. If k∗t > 0,

∫ T

0

(k∗t )
2dt =

∫ T

0

(
be−λt + µ− r + (σ̃(θt)

2 + ρσσ̃(θt)e
−λt)Z̃λ(λt, θt)

(1− γ)q(λt, θt)

)2

dt.

We know that q(λt, θt) ≥ q0 > 0, so the denominator in the above expression does
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not approach zero. This, along with the fact that Z̃λ is well-defined, implies that k∗t is

well-defined for t ∈ [0, T ]. Therefore

Pr

(∫ T

0

(k∗t )
2dt <∞

)
= 1. (3.161)

We also know that c∗t = e
Z̃(λt,θt)
γ−1 is bounded because Z̃ is bounded, so

Pr
(∫ T

0
c∗tdt <∞

)
= 1. Using k∗t and c∗t instead of arbitrary kt, ct > 0, we have equality

in (3.157):

Ṽ (x, λ, θ) =

∫ T

0

e−δt
1

γ
(c∗tXt)

γdt+ e−δT Ṽ (XT , λT , θT )−m∗T − m̃∗T − m̂∗T , (3.162)

where m∗T , m̃
∗
T , and m̂∗T are equal to the expressions for mT , m̃T , and m̂T , respectively,

with arbitrary kt and ct replaced with k∗t and c∗t . These integrals are martingales, so these

terms vanish when the expectation is taken in equation (3.162):

Ṽ (x, λ, θ) = E
[∫ T

0

e−δt
1

γ
(c∗tXt)

γdt

]
+ E

[
e−δT Ṽ (XT , λT , θT )

]
. (3.163)

It is apparent that

E
[∫ ∞

0

e−δt
1

γ
(c∗tXt)dt

]
≤ Ṽ (x, λ, θ) <∞ (3.164)

since V (x, λ, θ) ≤ Ṽ (x, λ, θ), as shown above. This implies that

lim inf
T→∞

E
[
e−δT

1

γ
(c∗TXT )γ

]
= 0, (3.165)

which is easily seen with a proof by contradiction. Note that c∗t is bounded below by a
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positive constant:

c∗t ≥ e
K2
γ−1 ≡ c > 0.

Then we have

0 = lim inf
T→∞

E
[
e−δT

1

γ
(c∗TXT )γ

]
≥ cγ lim inf

T→∞
E
[
e−δT

1

γ
Xγ
T

]
≥ 0,

which implies

lim inf
T→∞

E
[
e−δT

1

γ
Xγ
T

]
= 0. (3.166)

Using this along with the fact that eZ̃ ≤ eK2 , we have that

lim inf
T→∞

E
[
e−δT Ṽ (XT , λT , θT )

]
= 0. (3.167)

Now taking the liminf of (3.163) as T approaches infinity, we get

Ṽ (x, λ, θ) = lim inf
T→∞

E
[∫ T

0

e−δt
1

γ
(c∗tXt)

γdt

]
= E

[∫ ∞
0

e−δt
1

γ
(c∗tXt)

γdt

]
. (3.168)

The second equality is true due to the monotone convergence theorem. Finally, by (3.168)

and the definition of V, we have

Ṽ (x, λ, θ) ≤ V (x, λ, θ). (3.169)
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Combining (3.160) and (3.169), we have

Ṽ (x, λ, θ) = V (x, λ, θ).

In conclusion, we have proved that our solution to the HJB equation is equal to the

value function. In effect, we have maximized the expected discounted HARA utility of

consumption.
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