
ABSTRACT

ANTONELLI, TIMOTHY DAVID. Population Dynamics Models for Wolbachia and its Host,
the Dengue Vector Aedes aegypti . (Under the direction of Alun Lloyd and Fred Gould.)

Dengue remains an important mosquito-borne disease in many tropical and subtropical

regions around the world. Controlling its primary vector, Aedes aegypti, has proven difficult,

and attention has turned to developing novel control strategies. One such strategy is to release

Ae. aegyti that have been infected with the bacterium Wolbachia. Wolbachia is able to spread in

a population and has been shown to block the replication of dengue virus within the mosquito.

Mathematical models are a useful tool in determining whether and how quickly Wolbachia is

expected to spread. In this thesis, multiple models for Wolbachia and Ae. aegypti dynamics are

developed and analyzed.

With an ordinary differential equation model for a well-mixed insect population, we examine

the interactions of density-dependent population dynamics and changes in the proportion of

Wolbachia-infected individuals. Due to maternal inheritance of Wolbachia and its ability to

manipulate host reproduction, population genetic models are typically used to model changes

in the frequency of Wolbachia in a population. Because changes in frequency occur on the

same time scale as ecological processes, we instead develop a model that incorporates mosquito

population dynamics, and we show how changes in mosquito population size can affect the

spread of Wolbachia. In particular, the frequency threshold that must be exceeded for Wolbachia

to spread depends on the size of the population relative to its carrying capacity. We find that

suppressing the population prior to release lowers the frequency threshold, making it easier for

Wolbachia to spread.

Developing this work further with a reaction-diffusion model, we examine how Wolbachia

may spread spatially. We find that density dependence affects how quickly Wolbachia spreads in

space and depends on whether it acts on the per capita emergence rate of new adults or the per

capita death rate. We also examine the effects of stochastic dynamics and spatial heterogeneity



in a metapopulation model that simulates mating and dispersal. Here we find that spatial

heterogeneity consistently slows spread of Wolbachia, and that the effect of stochasticity on

spread depends on whether the fitness cost of Wolbachia is low or high.

We carry out an experiment for Ae. aegypti growth in Iquitos, Peru, where we monitor the

immature life stages of individual mosquitoes over time. With a Markov chain model, we derive

the likelihood of parameter values and use Bayesian methods to analyze the data. We find that

the amount of time that water accumulates debris in the field increases the average amount of

food in a container and that the presence of food, rather than quantity or quality, determines

immature growth rates. Blocking containers by house explains little of the variation in growth

rates, indicating that containers within a house do not tend to be similar in their suitability for

Ae. aeypti growth.

We demonstrate the various ways in which mathematical models can provide meaningful

insights into Wolbachia and Ae. aegypti dynamics. By combining theoretical and experimental

results, we aim to paint a clearer picture of what to expect in field releases of Wolbachia in

order to develop the most efficient strategies for suppressing pest populations like Ae. aegypti.
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Chapter 1

Introduction
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1.1 Background

Dengue is a mosquito-borne viral disease that affects nearly 390 million people each year (Bhatt

et al., 2013). The disease can present a wide variety of symptoms ranging from fever, rash and

severe joint pain to internal hemorrhaging and death. It is endemic in many dense urban tropical

regions where containers with standing water serve as larval development sites for Ae. aegypti,

the principal vector of the virus. Female Ae. aegypti adults are highly anthropophilic, meaning

they prefer to take bloodmeals from humans rather than other warm-blooded animals, which

contributes to transmission of the disease. There is currently no licensed vaccine or treatment

for dengue, and so control efforts have mainly focused on controlling the mosquito population.

However, traditional control methods such as insecticide and reduction of larval habitats have

had limited success in controlling the disease (Morrison et al., 2008).

Recently, there has been interest in developing novel technologies, such as releasing geneti-

cally modified mosquitoes or mosquitoes that have been infected with the maternally-inherited

bacterium Wolbachia (Gould et al., 2006). These strategies require an anti-pathogen effect as

well as a gene drive mechanism that allows the gene or bacterium to spread through the pop-

ulation despite any fitness cost caused by its insertion. Wolbachia accomplishes both of these

by directly blocking transmission of the dengue virus (Walker et al., 2011) and by manipulat-

ing host reproduction through a phenomenon called cytoplasmic incompatibility (CI), by which

most to all offspring fail to develop when Wolbachia-infected males mate with wild-type females

(Werren, 1997). In other words, wild-type females become partially sterile in the presence of

Wolbachia-infected males, such thatWolbachia-infected females may give rise to more offspring

on average. Since the bacterium is only passed from mother to offspring, this can cause the

overall frequency of Wolbachia infection, i.e. the fraction of infected individuals, to increase in

a population over time.

When the insertion of Wolbachia causes a fitness cost to the host, e.g. by reducing average

lifespan or number of eggs laid, then there is a critical frequency of infection that must be

exceeded before the driving effect of cytoplasmic incompatibility outweighs the fitness cost,
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such that the frequency of Wolbachia increases until it is established in the population. Below

this threshold, the fitness cost causes wild-type hosts to outcompete Wolbachia-infected hosts,

and the frequency of Wolbachia is expected to decrease over time, which will eventually result in

extinction. Determining this threshold is critically important for efforts to replace wild disease-

carrying mosquito populations with those less competent to vector disease.

Mathematical models can be a useful tool in assessing the feasibility of various vector con-

trol strategies, whether the goal is population replacement, as with Wolbachia, or population

suppression, as with the release of insects with a lethal gene (Fu et al., 2010). While many pre-

vious models for Wolbachia dynamics have been developed, few have included the interactions

of population dynamics (e.g. logistic growth) with population genetics (e.g. the frequency of an

allele in a population). Population dynamics models for Ae. aegypti have also been developed,

but field data needed to parameterize them is still lacking.

1.2 Outline

In this dissertation, I develop and analyze mathematical models for Wolbachia and Ae. aegypti

dynamics, with the goal of bettering predictions for dengue control efforts. In Chapter 2, I

explore how density dependence in population dynamics affects predictions for the spread of

Wolbachia in a well-mixed population, and I compare results to both frequency-only and other

density-dependent models. In Chapter 3, I incorporate the model from Chapter 2 into a reaction-

diffusion model, which also accounts for spatial spread of Wolbachia. I compare the results for

this simple model to a simulation model with both one-dimensional and two-dimensional spatial

spread, which incorporates spatial heterogeneity in Ae. aegypti habitat as well as stochastic

population dynamics. In many cases, these models give predictions regarding whether and

how quickly Wolbachia will spread that are different from previous models, and I attempt to

generalize under what conditions results differ and in what way. In both Chapters 2 and 3, I

show when density dependence helps spread of Wolbachia and when it inhibits spread, which

has implications for optimizing release strategies.
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In Chapter 4, I emphasize the importance of parameterizing models for Ae. aegypti with

field data. I develop and perform an experiment for Ae. aegypti larval growth in Iquitos, Peru.

I then construct a framework using a continuous-time Markov chain (CTMC) model that can

be used to obtain maximum likelihood estimates for development and mortality rates, as well

as make statistical inferences about larval growth in Iquitos by incorporating two Markov chain

Monte Carlo (MCMC) algorithms: Metropolis sampling and Gibbs sampling. This work can be

used to inform future experiments for Ae. aegypti dynamics in dengue-endemic regions, and

may be applied more generally to other life-stage CTMC models.

1.3 Other work

In addition to my dissertation work, I also had the privilege of working with several Ph.D.

students from various disciplines on the many multi-faceted issues surrounding the use of genetic

engineering to control dengue. As part of an NSF IGERT grant (IGERT-1068676), we looked

not only at the feasibility of these technologies, but the ethical and social implications of their

use. Together, we wrote an introductory chapter to a book on the genetic control of malaria

and dengue, which has been accepted for publication. This chapter is attached in Appendix F.

Note that we contributed equally to this work and all authors are listed alphabetically by last
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Chapter 2

Eco-evolutionary feedback in models

for Wolbachia and other gene drive

strategies1

1. The content of this chapter has been submitted for publication: Antonelli T, Robert MA, Lloyd AL. Eco-
evolutionary feedback in models for Wolbachia and other gene drive strategies.
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ABSTRACT

Mathematical models for the spread of Wolbachia can be broadly categorized into those that

neglect population dynamics and those that include population dynamics. Those that neglect

population dynamics, i.e. frequency-only models, have been important in developing theoret-

ical insights such as the existence of a frequency threshold under certain conditions and the

traveling wave solution of Wolbachia spatial spread. Those that include population dynamics

have shown that age-structure, delay due to larval stage, and density-dependent population

growth can affect whether this frequency threshold is an accurate predictor of the eventual fate

of Wolbachia (establishment or extinction). We focus on the latter type of model and show

how only two effects are required to cause the invasion threshold to depend on population size:

density-dependent growth and a lifespan-shortening strain of Wolbachia. In this way, we isolate

key factors that, when present, necessitate the inclusion of population dynamics in developing

accurate models. The mathematical simplicity of our approach allows for equilibrium and sta-

bility analysis, enabling us to quantify these effects, as well as generalize to other species and

gene drive systems, such as underdominance.
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2.1 Introduction

There is considerable interest in modeling the dynamics of Wolbachia to determine the condi-

tions under which Wolbachia is predicted to become established in a population. Several deter-

ministic models have been developed to examine the effects of imperfect maternal transmission

(i.e. infected females produce some uninfected offspring), incomplete cytoplasmic incompati-

bility (CI) (i.e. mating between infected males and uninfected females produce some viable

offspring), and fitness costs on the predicted spread of Wolbachia in a single well-mixed popu-

lation. The majority of these models neglect changes in population size (Barton, 1979; Caspari

and Watson, 1959; Fine, 1978; Rasgon, 2008; Schofield, 2002; Schraiber et al., 2012; Turelli and

Hoffmann, 1991). While neglecting population size is a common simplifying assumption in pop-

ulation genetics, it assumes that evolutionary and ecological processes occur on different time

scales. Recently, however, there has been increasing awareness of the interaction between ecol-

ogy and evolution in systems that exhibit “rapid” evolution (Sanchez and Gore, 2013; Schoener,

2011), which Hairston et al. (2005) defines as “a genetic change occurring rapidly enough to

have a measurable impact on simultaneous ecological change.” Wolbachia, though a heritable

bacterium rather than gene, fits this description because the frequency-dependent selection for

Wolbachia-infected insects (an evolutionary process) depends critically on its ability to induce

CI, which affects the average growth rate of the population (an ecological process). Thus, these

two forces are inherently tied in an eco-evolutionary feedback loop that may cause non-intuitive

results not captured by frequency-only models.

Some models of Wolbachia include population dynamics, but they either do not compare

their results to frequency-only models (Chan and Kim, 2013; Farkas and Hinow, 2010; Keeling

et al., 2003), or they are highly detailed and thus less amenable to analysis or generalizations

about other species or genetic systems (Hancock et al., 2011). Keeling et al. (2003) derive a

system of equations to track numbers of infected and uninfected individuals using a linearly

increasing density-dependent per capita death rate, but they do not examine how such density-

dependent mortality affects spread, and focus instead on multiple strains and spatial dynamics.
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Farkas and Hinow (2010) use a similar model, but do not specifically look at the effect of

density dependence on the invasion threshold. Hancock et al. (2011) determine that density-

dependent mortality can have a number of effects on the spread of Wolbachia, such as impacting

the number of mosquitoes needed to be released and when to release them (either when the

population is expanding or decreasing). They were able to perform certain analyses, such as

how the frequency threshold depends on their model parameters, including a constant rate of

immigration, but they also showed how simulation results disagreed with analytical results for

release strategies that involve a large perturbation from the population equilibrium. Although

they attribute differences between analytical and simulation results to density dependence, their

model includes many other features, such as age-structure and delay due to time spent in the

larval stage, and so the direct effect of density dependence is difficult to isolate. In order to

answer the question of the effect of density dependence on the spread of Wolbachia and to

generalize to other species and genetic systems, we believe that the simplest model that can

reproduce these effects is preferable. Such a model can bridge the gap between frequency-only

models, which are less biologically relevant, and highly detailed, system-specific models, which

are difficult to analyze mathematically.

In this chapter, we aim to elucidate the impact of density dependence on the spread of

Wolbachia by comparing two simple continuous-time models: a population dynamics model

that includes density dependence and a recent frequency-only model (Schraiber et al., 2012). We

first construct a population dynamics model for Wolbachia-infected and uninfected individuals.

Next, we describe the mathematical implications of assuming a constant population size and

show how this reduces the model to Schraiber et al.’s (2012) model. We then explore various

release scenarios and demonstrate how results from the frequency-only model differ from the

population dynamics model. Finally, using the example of underdominance, we show that the

inclusion of density dependence may affect predictions for other gene drive systems that typically

rely on frequency-only models.
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2.2 Models

We adapt an ordinary differential equation model from Keeling et al. (2003), in which population

size can vary. We assume a constant sex ratio of 1:1, such that we need only track females.

Wolbachia is not expected to skew the sex ratio in a population of Ae. aegypti : although it has

an asymmetric effect on the fecundity of different mating pairs based on sex and infection status,

the resulting offspring are expected to be equal numbers males and females, independent of the

cytoplasmic compatibility of their parents. However, Wolbachia is known to cause feminization

of males in other species (Werren, 1997), so this assumption will need to be assessed for each

host species in question.

We consider both Wolbachia-infected adult females, I(t), and uninfected adult females,

U(t), in a population that is regulated by intraspecific competition in the larval stage. We do

not model immature dynamics explicitly, but instead use the adult population as a proxy by

considering the emergence rate of new adults, b(N), to be a decreasing function of the total

adult female population size, N(t) = I(t) + U(t). Like Keeling et al. (2003), we neglect the

delay in density dependence due to time spent in the larval stage (see Hancock et al. 2011 and

Zheng et al. 2014 for more detailed models that incorporate developmental delay). We assume

that adult females experience a constant per capita death rate d and that Wolbachia may cause

an additional per capita death rate D in infected females. We further assume that Wolbachia

may cause a reduction in the number of eggs laid, such that the average rate at which infected

females lay eggs relative to uninfected females is 1 − sf , where 0 ≤ sf ≤ 1 (sf = 0 indicates

infected females lay eggs at the same rate as uninfected females). To incorporate CI, we assume

that the viability of offspring from matings between infected fathers and uninfected mothers is

1 − sh, where 0 < sh ≤ 1 (sh = 1 represents complete CI.) As in Schraiber et al. (2012), we

assume perfect maternal transmission of Wolbachia. The parameters are summarized in Table
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Table 2.1: Parameters in frequency-only model (Schraiber et al. 2012) and population dynamics
model.

Notation

Description Population Dynamics
Model

Schraiber et al. (2012)

Per capita emergence rate of
uninfected adults when no in-
fected individuals are present

b(N) b

Per capita emergence rate of
infected adults

b(N)(1− sf ) bi

Per capita death rate of in-
fected adults

d+D di

Per capita death rate of unin-
fected adults

d du

Reduction in birth rate due to
CI

sh sh

Total fitness cost of Wolbachia
infection

sT =
sfd+D

d+D
1− du

di

bi
b

2.1. Our model consists of the coupled differential equations in Eq. 2.1:

dI

dt
=
(
b(N)(1− sf )− (d+D)

)
I (2.1a)

dU

dt
=

(
b(N)

(
1− sh

I

I + U

)
− d
)
U. (2.1b)

Our model differs from that of Keeling et al. (2003) in that we consider a constant per

capita death rate d and instead incorporate density dependence into the emergence rate, b(N),

in order to model competition in the larval stage rather than the adult stage. For an analysis

of other forms of density dependence, including the one assumed by Keeling et al. (2003), see
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Appendix A.

In order to study the relationship between the frequency of Wolbachia and population size,

we use the quotient rule to rewrite the model in terms of the frequency of Wolbachia p = I/N

and total female population size N (see Appendix A).

dp

dt
= p(1− p)

(
b(N)(shp− sf )−D

)
(2.2a)

dN

dt
=
(
b(N)(1− sfp− shp(1− p))− (d+Dp)

)
N. (2.2b)

If we were to assume a constant population size (i.e. dN/dt = 0), then Eq. 2.2 would imply

that

b(N) =
d+Dp

1− sfp− shp(1− p)
. (2.3)

Thus, the emergence rate would then be independent of N and would initially increase in p. This

is likely not characteristic of natural populations, in which we expect density-dependent effects

to act equally on infected and uninfected mosquitoes in the larval stage (i.e. independent of p)

and, by definition, to depend on population size N . Yet this is what is required mathematically

to maintain a constant population size in the model. To see that this is an implicit assumption

in Schraiber et al’s (2012) model, we can substitute Eq. 2.3 into Eq. 2.2b and recover their

model (Eq. 2.4). Parameters for our population dynamics model are described and listed with
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corresponding parameters from the Schraiber et al. (2012) model in Table 2.1.

dp

dt
=

shd p(1− p)(p− p̂)
1− sfp− shp(1− p)

(2.4a)

p̂ =
1

sh

sfd+D

d+D
(2.4b)

Their model is therefore a specific case of the model we present in Eq. 2.2, in which the emergence

rate is artificially inflated at intermediate frequencies of Wolbachia to compensate for fewer

births due to CI.

We specify a new emergence rate that depends only on population size and not on the

frequency of infected mosquitoes. For simplicity, we assume a per capita emergence rate that

decreases linearly with population size and satisfies the following properties: b(0) = b0 and

b(K) = d, where b0 > d, and K is the carrying capacity of the wild-type population. We

further assume that the emergence rate is non-negative, since a negative emergence rate is not

biologically meaningful. Thus, the formula for the emergence rate is

b(N) =


b0

(
1− N

K

)
+ d

N

K
, 0 ≤ N <

b0K

b0 − d

0, N ≥ b0K

b0 − d
.

(2.5)

2.3 Results

2.3.1 Single Release

We first compute the basic reproductive number for both infected (RI) and uninfected (RU )

individuals, defined as the average number of female offspring that a female adult produces

when there is no density dependence and no CI. The average lifespan of an individual with

per capita death rate d is 1/d, and the average number of female offspring that a single female
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produces is the emergence rate, b, multiplied by the average lifespan. Thus,

RI =
b0(1− sf )

d+D
, RU =

b0
d
. (2.6)

If we assume that the effects of Wolbachia on survival and fecundity are multiplicative, then we

can define the total fitness cost as sT = 1−wvwf , where wv = d/(d+D) is the relative lifespan

of infected females and wf = (1− sf ) is the relative fecundity of infected females. Thus,

sT = 1− d

d+D
(1− sf ) =

sfd+D

d+D
. (2.7)

With the density-dependent emergence rate in Eq. 2.5, the system in Eq. 2.2 has six equi-

libria, the coordinates and stability of which are summarized in Table 2.2 and depicted in

Figure 2.1. Note that, although p is undefined when N = 0, we analyze the model behavior

around these points because solutions can exist arbitrarily close to N = 0. Also, note that

the absolute size of the population is not important. Rather, the current fraction of carrying

capacity is all that is needed for analysis, and so our results generalize to any population size,

provided the population is large enough so that a deterministic model is appropriate.

Equilibria 2, 4, and 6 correspond to those seen in frequency-only models, where equilibrium

4 is the frequency threshold, and equilibria 2 and 6 represent the Wolbachia-free and Wolbachia-

established equilibria, respectively. However, as noted by several population dynamics models

(Hancock et al., 2011; Zheng et al., 2014), the dynamics are not governed by frequency alone.

We are able to identify the range of initial conditions that lead to establishment when p is less

than the threshold predicted by frequency-only models, as well as initial conditions that lead

to extinction when p is greater than the threshold predicted by frequency-only models. The

fate of Wolbachia depends on both initial frequency and initial population size according to

the curvature of the separatrix of the system (solid line in Figure 2.1). In Figure A.7, we show

how the strength of density dependence affects the degree of this curvature. If the invasion

threshold were independent of population size, the separatrix would be a vertical line in p-N
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Table 2.2: Equilibria (p∗, N∗) and stability conditions for population dynamics model.
Entries in bold represent biologically relevant conditions that are assumed throughout and
depicted in Figure 1. Stability conditions were found by analyzing the Jacobian evaluated at
each point. See Appendix A for detailed stability analysis.
†: A necessary but not sufficient condition for stability.
††: A sufficient but not necessary condition for instability.

p∗ N∗ Stable Unstable

1. 0 0 RU < 1 RU > 1

2. 0 K RU > 1 RU < 1

3.
1

sh

(
sf +

D

b0

)
0 RI < 1† RI > 1††

4. sT
sh

(
1−R−1

I

1−R−1
U

)
K RI < 1,†

sh < sT

RI > 1,††

sh > sT

5. 1 0 RI < 1† RI > 1††

6. 1

(
1−R−1

I

1−R−1
U

)
K RI > 1,

sh > sT

RI < 1,
sh < sT

space. Under the assumption of perfect maternal transmission, most previous models determine

the frequency threshold to be p̂ = sT /sh, which corresponds to equilibrium 4 (Chan and Kim,

2013; Farkas and Hinow, 2010; Jansen et al., 2008; Rasgon, 2008; Schofield, 2002; Schraiber

et al., 2012; Turelli and Hoffmann, 1991). According to our population dynamics model, this is

an underestimate when releasing infected adults into a population that is at carrying capacity.

This is because the released adults will cause the population to temporarily exceed carrying

capacity, and the true invasion threshold will be greater than the quantity sT /sh, as seen by

the monotonic increase of the invasion threshold in p.
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Figure 2.1: p-N phase plane of the population dynamics model for an adult insect population
invaded by a Wolbachia strain. The intrinsic per capita emergence rate is b0 = 1 day−1 and
the per capita death rate is d = 0.1 day−1. We assume perfect maternal transmission, a 10%
fitness cost to fecundity (sf = 0.1), complete CI (sh = 1), and an additional per capita death
rate due to infection D = 0.2 day−1. The total fitness cost of infection is sT = 0.7, and the
basic reproductive numbers are RI = 3 and RU = 10. The dashed line represents the N -
nullcline (where dN/dt = 0), the dotted line represents the p-nullcline (where dp/dt = 0), filled
circles represent stable equilibria, and unfilled circles represent unstable equilibria. The solid line
represents the invasion threshold, which separates the phase space into initial conditions that
result in Wolbachia extinction (unshaded region) and initial conditions that result in Wolbachia
establishment (shaded region). Parameter values are chosen for illustrative purposes.

On the other hand, the quantity sT /sh overestimates the frequency threshold for a popula-

tion that has been suppressed below carrying capacity, as seen by the invasion threshold curving

toward the left when N < K. Hancock et al. (2011) describe similar results in a population

dynamics model when there is a seasonally varying carrying capacity. In a situation where the

carrying capacity increases and the population level expands, e.g. a surge of new adults during

a raining season, the required frequency of infected insects to release into the environment to
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cause establishment of Wolbachia is decreased. In contrast, if the population is declining fol-

lowing a decrease in carrying capacity, a higher frequency of infected insects must be released.

Although we do not explicitly incorporate a seasonally varying carrying capacity, one could an-

alyze the effect by considering a population near the threshold, say equilibrium 4 in Figure 2.1.

If carrying capacity is doubled, then equilibria 2, 4, and 6 move up vertically in N , while their

p-coordinates remain the same, according to Table 2.2. The nullclines and separatrix also get

stretched vertically. Thus, the population would momentarily be half the distance to the p-axis

lower in phase space once the phase plane was rescaled to the new carrying capacity. This would

make it easier to spread. Likewise, if the carrying capacity were decreased, the population would

be relatively higher on the phase plane and it would be more difficult to spread, according to

the curvature of the separatrix.

Although we cannot determine an analytical expression for the separatrix, we can quantify

the effect of population size on the threshold in terms of relevant parameters. One measure

of the degree to which population size affects the invasion threshold is the difference in the

p-coordinates of equilibria 3 and 4, because the separatrix connects the two. This difference is

represented by Eq. 2.8:

δ =
D

shb0
(RI − 1) . (2.8)

Thus, the dependence of the frequency threshold on population size is unique to lifespan-

shortening strains of Wolbachia (i.e. D > 0). This is also the case for other types of density

dependence (see Appendix A), and it agrees with Hancock et al. (2011) who show that the

difference between emergence in an expanding versus declining population is more pronounced

when the relative lifespans of infected individuals is lower, though they do not analyze the

case of no lifespan-shortening. In our model, if we assume that D = 0, then the separatrix

in Figure 2.1 is a vertical line at p̂ = sT /sh, which indicates that the invasion threshold is

independent of population size, as assumed by frequency-only models. However, even though
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the predicted fate of Wolbachia is the same for both types of models when D = 0, density

dependence may still affect the transient dynamics (see Figures 2.2C and 2.2D). In addition to

depending on D, the effect of density dependence on invasion threshold also depends on various

density-dependent parameters and fitness costs, which is explored further in Appendix A.

To further illustrate the differences between our population dynamics model and frequency-

only models, we consider the time-series solutions in Figure 2.2, where we compare predictions

from our model to those of Schraiber et al. (2012) for two different release scenarios: single

release into a population at carrying capacity (Figures 2.2A and 2C) and single release into

a population that has been suppressed to 10% of carrying capacity (Figures 2.2B and 2.2D).

Although these release scenarios explicitly violate the constant population size assumption made

by frequency-only models, we include the comparison to illustrate the potential hazard of using

such models to approximate realistic scenarios. Our results show that frequency-only models

can underestimate the frequency threshold for release into a population at carrying capacity and

overestimate the frequency threshold in suppressed populations for lifespan-shortening strains

of Wolbachia (Figures 2.2A and 2.2B), and that density dependence can affect how quickly the

system approaches equilibrium for non lifespan-shortening strains (Figures 2.2C and 2.2D).

2.3.2 Multiple Releases

We have until now considered a single release of infected insects by considering the initial

condition (p0, N0) following release. We now consider the effect of splitting the same number

of insects into multiple releases. We first consider the simplest model of Wolbachia with and

without two features: CI combined with fecundity cost and density-dependent growth. We

compare how releasing IT total individuals split into M releases spaced τ days apart affects

Wolbachia’s ability to spread in all four possible combinations of the presence/absence of these

two effects. Using the simplest model possible allows us to construct analytical arguments—

detailed in Appendix B—as to whether single or multiple releases are better in each scenario.

The results are summarized in Table 2.3, where we compare the infection frequency after the
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Figure 2.2: Differences in population dynamics model (solid lines) and frequency-only model
(dashed lines) for the frequency of Wolbachia following a single release of Wolbachia-infected
females into a population at carrying capacity (A & C) and into a population that was sup-
pressed to 10% of carrying capacity prior to release (B & D) Frequency thresholds (gray lines)
are estimated numerically for the population dynamics model and determined analytically for
the frequency-only model (threshold is the same for both models in C and D). Wolbachia is
assumed to cause a 10% fecundity cost and 67% survival cost (sf = 0.1, D = 0.2 day−1) in A
and B, and a 70% fecundity cost and 0% survival cost (sf = 0.7, D = 0) in C and D, such that
the total fitness cost is 70% in all cases. Initial frequencies are A) 0.8, B) 0.6, and C) & D) 0.4,
0.6 and 0.8. For all cases, b0 = 1 day−1, d = 0.1 day−1 and sT = 0.7.
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final release for multiple releases (pm) and single release (ps). Analysis was possible in all cases

except when both effects were present.

Table 2.3: The difference between infection frequency after final release for both single release
(ps) and multiple releases (pm) of the same total number of infected individuals with the pres-
ence/absence of two effects: CI + fecundity cost and density dependence. Analytical results
are possible for all cases except when both effects are present, as described in Appendix B. In
this last case, whether single or multiple release is better in terms of increasing the infection
frequency depends on the number of releases, the time between releases, the fecundity cost, and
the total number of released insects.

Density Dependence

CI + Fecundity Cost No Yes

No A) pm = ps B) pm > ps

Yes C) pm < ps D) pm < ps or pm > ps

In this simplified model with density dependence, CI, and fecundity cost (case D in Ta-

ble 2.3), whether multiple or single release is better depends on the values chosen for other

parameters, such as the time between releases and the total number of released insects. We

demonstrate some of these scenarios in Appendix B. We differ slightly with the conclusions

made by Hancock et al. (2011) as seen in their Figure 2. They state that multiple releases are

more efficient when lifespan-shortening is great, and that single releases are equally efficient

when lifespan-shortening is small. We demonstrate contradictions with our model to show that

whether single or multiple is better in each of these cases depends on the specific parame-

ter values being assumed. Hancock et al. (2011) do state that “the extent of the advantage

[of multiple release in the case of high lifespan-shortening] depends on the precise number of

introductions and the length of the gap between them” (p. 328). They further suggest some

ambiguity when they state that, in the case of low lifespan-shortening, “a single introduction

is an efficient means of achieving Wolbachia spread” (p. 328) while their Figure 2B shows the

opposite to be true (this is discussed in more detail in their Appendix B).
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Our goal is to show that it is difficult to make any broad conclusions in the case of single

versus multiple release. Even with far fewer interacting effects, we can produce a variety of

results depending on how we choose parameter values. This is the main advantage of analysis:

we can pinpoint these important regions of parameter space. When we were unable to provide

meaningful analysis, we simulated various scenarios to demonstrate that it is more complicated

than it appears at first glance, and we thus caution against making overreaching statements

regarding the direct effects of any of these factors. Certainly density dependence plays a role,

as we have demonstrated elsewhere in this chapter, but it is clearly not the whole picture.

2.3.3 Underdominance

The effect of neglecting population dynamics may also be seen in other genetic systems. As

an example, we demonstrate the impact of population dynamics on underdominance, which

occurs in a diploid population when heterozygotes (Aa) have lower fitness than either homozy-

gote genotype (AA or aa) (Hartl and Clark, 1989). Underdominant systems, like Wolbachia,

are bistable, and have an allele-frequency threshold that determines which allele will become

established in the population (Barton and Turelli, 2011). For this reason, underdominance has

also been proposed as a possible gene drive strategy (Curtis, 1968; Davis et al., 2001; Sinkins

and Gould, 2006). We construct a population dynamics model similar to Eq. 2.1 with a density-

dependent emergence rate for adults of all three genotypes, and compare to a frequency-only

model developed using the Moran process (Moran, 1958; Schraiber et al., 2012; see Appendix

C). The results for the frequency of allele A (pA) over time are shown for a single release of AA

adults into a population of wild-type aa adults at carrying capacity (Figure 2.3A) and into a

population of aa adults that was suppressed to 10% of carrying capacity prior to release (Figure

2.3B). Phase portraits can be found in Appendix C.

As in the Wolbachia model, the frequency-only model underestimates the frequency thresh-

old for a single release into a population at carrying capacity and overestimates the frequency

threshold for a single release into a suppressed population, once we include density-dependent
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Figure 2.3: Differences in population dynamics model (solid lines) and frequency-only model
(dashed lines) for the frequency of allele A versus time for a single release of AA adults into a
population of aa adults at carrying capacity (A & C) and a population of aa adults that was
suppressed to 10% of carrying capacity prior to release (B & D). Parameter values are chosen
(for illustrative purposes) to be sfAa = 0.4, sfAA = 0.1, svAa = 0.8, svAA = 0.3 (A & B) and
sfAa = 0.5, sfAA = 0.2, svAa = svAA = 0 (C & D), where sf is the fecundity fitness cost and
sv is the survival fitness cost of each genotype. Gray lines represent the invasion threshold for
each model, which are the same for both models in C & D. Initial frequencies are A) 0.7, B)
0.625 and C) & D) 0.4, 0.6, and 0.8. For all cases b0 = 1 day−1 and d = 0.1 day−1.
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population dynamics and differing per capita death rates. The overestimate in the latter case

is less dramatic for the case of underdominance, as the frequency threshold for a suppressed

population is close to that predicted by the frequency-only model. Also like Wolbachia, we find

that the threshold for both models is identical when the per capita death rates are equal across

genotypes (i.e. svAa = svAA = 0), and the model simplifies enough to solve for the threshold

analytically (Eq. 2.9), which is a well-known result for frequency-only models (Li, 1955):

p̂ =
sfAa

2sfAa − sfAA
. (2.9)

As was the case in Wolbachia, density dependence still affects the transient dynamics, though

to a lesser degree than in Wolbachia (compare parts C and D in Figures 2.2 and 2.3).

2.4 Discussion

We have shown how incorporating a simple form of density dependence into continuous-time

models for the spread of Wolbachia can cause qualitative differences in their predictions. While

others have demonstrated that population dynamics impact the spread of Wolbachia (Hancock

et al., 2011; Zheng et al., 2014), our model is the first to explicate the link to frequency-only

models, as shown by the coupled p-N Eq. 2.2 and the derivation of Schraiber et al’s (2012)

model by assuming constant population size in our model. In addition, while previous studies

have highlighted density dependence as inhibiting spread in a well-mixed population (Hancock

et al., 2011), we demonstrate a release scenario (single release into a suppressed population) in

which density dependence actually facilitates spread of Wolbachia or an underdominant gene

(Figures 2.2B and 2.2B). In these cases, the population’s return to carrying capacity can help

drive the novel heritable factor, which is a conclusion that cannot be reached in models that

neglect population dynamics.

The idea of suppressing the population prior to release is not new. This so-called “crash and

release” strategy has the advantage of requiring fewer released individuals to achieve a desired
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frequency (Jacups et al., 2013). However, we have shown how the frequency threshold itself

may decrease for lifespan-shortening strains of Wolbachia when the population is suppressed.

This lends more support to the crash and release strategy for lifespan-shortening strains of

Wolbachia, although we admit that the magnitude of this effect is likely small compared to

the increase in initial frequency caused by releasing the same number of individuals into a

suppressed population.

Zheng et al. (2014), using a model that had density-dependent mortality instead of emer-

gence, also showed that the invasion threshold may depend on population size. They provide

formulas for upper and lower bounds on the threshold as a function of infected population size

(see their Eq. 2.11), which approach a constant frequency threshold when per capita mortality

in infected and uninfected individuals is the same. We provide an alternative way to quan-

tify how the invasion threshold depends on population size (Eq. 2.8) and show how the extra

mortality in infected individuals critically affects this threshold. We also show this result to

be robust across different forms of density dependence, so long as density-dependent mortal-

ity interacts with Wolbachia-induced mortality, and that it occurs in underdominance as well

(see Appendices A and C). Like Zheng et al. (2014), we find that the situation is reversed if

Wolbachia causes a survival advantage (D < 0), as has been demonstrated in some infections

(Dobson et al., 2004). That is, releasing into a population at carrying capacity decreases the

invasion threshold, whereas suppressing the population prior to release increases the threshold,

as predicted by the relative positions of equilibria 3 and 4 in Figure 2.1 when δ < 0.

Another important result is that current frequency-only models underestimate the true

frequency threshold when performing a single release into a population at carrying capacity.

This is especially true when the total fitness cost of Wolbachia is high, because the predicted

frequency threshold will also be high. In order to achieve the frequency threshold p̂ with a single

release into an uninfected population at carrying capacity K, one must release p̂K/(1 − p̂)

infected mosquitoes. This becomes prohibitively large at high frequency thresholds, and the

initial population size following release, N0 = K/(1 − p̂), would cause the frequency threshold
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to be greater than sT /sh as predicted in most frequency-only models (at least when D > 0, as

in Figure 2.1). Of course, one way to mitigate this effect is to perform multiple releases with

the same total number of released infected adults. This allows the population to respond to a

smaller perturbation before the next cohort is released, and Hancock et al. (2011) showed this

to facilitate spread of Wolbachia in their population dynamics model of Ae. aegypti.

The result that large releases increase the threshold is intuitive if we consider, in our example

of density-dependent emergence, that the emergence rate is zero for large populations. That is,

adults die until the population decreases to a level at which new adults can emerge. During

this time, if infected adults experience a greater per capita death rate than uninfected adults

(D > 0), then the proportion of infected individuals (p) will decrease over time. Thus, the

“effective” initial frequency, once new adults begin to emerge, is less than the frequency at

release, which Alphey and Bonsall (2014) also showed in their model for homing endonuclease

gene drive. However, the result that suppressing the population can help drive a selfish gene

is more difficult to intuit, likely arising from the complicated feedback between evolutionary

and ecological dynamics. The potential for such non-intuitive results stresses the importance

of including interactions between ecology and evolution in mechanistic models for gene drive

strategies.

Because single-release strategies involve such drastic perturbations to population size, fre-

quency models are expected to be inaccurate in these cases. However, as previously mentioned,

Wolbachia itself is expected to decrease population size as it spreads. This is especially true

when infected and uninfected adults are near equal numbers and there is a large decrease in

the emergence rate due to CI. We believe this will be particularly important when modeling

spatial spread of Wolbachia. We agree with Schraiber et al. (2012) that “the long-term spatial

dynamics [of Wolbachia] depend on the local dynamics” (p. 28), which is why we attempted to

develop a more accurate model for the local dynamics based on population dynamics. Previ-

ous models for the spatial spread of Wolbachia in a homogeneous environment show a traveling

wave of infection that approaches a constant speed, but they model frequency only (Barton and
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Turelli, 2011; Schofield, 2002; Schraiber et al., 2012; Turelli and Hoffmann, 1991). The greatest

amount of CI, and thus population reduction, will occur at the traveling wavefront, and the

wave speed may be affected by various ecological effects that are neglected by frequency-only

reaction-diffusion models. We believe a population dynamics model, such as the one we have

proposed here, that includes the possibility of lifespan-shortening effects, can be incorporated

into a reaction-diffusion equation to provide a more accurate and complete picture of the spatial

spread of Wolbachia, and may still be sufficiently simple to allow for meaningful analysis. Al-

though Chan and Kim (2013) provide a reaction-diffusion model with the same form of density

dependence we assume here, it does not include lifespan-shortening effects, and thus results in

a constant frequency threshold (see their Figure 1). Hancock and Godfray (2012) developed a

density-dependent model for the spatial spread of Wolbachia and found that stronger density

dependence helped spatial spread and spatial heterogeneity inhibited spread. This was based on

only one form of density dependence, and we believe their results can be expanded to include

stochastic dynamics and other forms of density dependence, like we explore in a non-spatial

setting in Appendix A.

Limitations to our model include the assumption of perfect maternal transmission of Wol-

bachia, which we made in order to simplify the analysis. Although maternal transmission has

been shown to be perfect in Ae. aegypti (Hoffmann et al., 2014; Walker et al., 2011) and near

perfect in Drosophila simulans (Turelli and Hoffmann, 1991), this will need to be assessed for

each host species and strain of Wolbachia in question. Hancock et al. (2011) include the pos-

sibility of imperfect maternal transmission in a more detailed model but set the default value

of its rate of occurrence to 1%. Because they do not compare to the case of perfect maternal

transmission, it is difficult to know how it affects the results. We feel that including it for the

sake of completeness does not justify the subsequent decrease in mathematical tractability when

accepted values for its rate of occurrence are near zero. As long as the frequency of maternal

transmission is high, our model should provide a good approximation to the dynamics. Also,

when considering release into a suppressed population, Eq. 2.8 is only one attempt to quantify
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the potential benefit of prior population suppression. At small population numbers, random

events may determine the outcome, such that one might prefer a stochastic model rather than

a deterministic model to determine the probability of invasion. Jansen et al. (2008) developed

a stochastic model for the spread of Wolbachia, but it assumes a constant population size, and

thus would have to be expanded in order to capture the potential effects of density dependence.

Finally, while we have demonstrated the effect of a specific form of density dependence (linear

decrease in per capita emergence rate), our results show qualitative agreement across a number

of forms of density dependence (see Appendix A). The exact form of density dependence to be

used will depend on the population, however, and empirical studies into the governing dynamics

will be crucial for developing more accurate models.

It is worth questioning the modeling paradigm of assuming a constant population size in

density-dependent systems, especially when modeling changes in mean fitness or the release of

large numbers of individuals. We have shown that a single frequency threshold for gene drive

systems, such as Wolbachia and underdominance, may not exist when considering the interplay

between evolutionary and ecological dynamics, and we encourage more wide-scale adoption

of an eco-evolutionary modeling framework. This will be especially important for developing

more accurate models for global health applications that seek to replace disease-carrying vector

populations using these strategies.
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Chapter 3

The effects of density-dependent

population dynamics, spatial

heterogeneity, and stochasticity on

the spatial spread of Wolbachia
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ABSTRACT

Frequency-only models have provided important insights for the spatial spread of Wolbachia

such as the existence of a traveling wave and its dependence on dispersal and fitness param-

eters. In order to determine how Wolbachia spreads in the field, however, it is important to

understand how various complexities in natural populations cause deviations from theoretical

predictions that are based on simplifying assumptions such as constant population size. We

develop two models to examine the effects of density-dependent growth, spatial heterogeneity

in habitat, and stochasticity in population dynamics on the predicted spread of Wolbachia. We

develop a reaction-diffusion model that can incorporate various forms of density dependence

and a metapopulation model that allows for stochasticity in mating and dispersal as well as

heterogeneity in patch sizes. We find that the effect of density dependence on the wave speed

depends on whether it acts on the per capita emergence rate or the per capita death rate, with

density dependence on the death rate making Wolbachia less likely to spread and slowing the

wave speed when it does. We also find that spatial heterogeneity has a greater slowing effect

in one-dimensional spread than two-dimensional spread and that stochasticity decreases wave

speed when fitness cost is low but increases wave speed when fitness cost is high. Understanding

the interaction of these effects is important for determining whether and how quickly Wolbachia

will spread in a variety of host populations and environments.
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3.1 Introduction

Dengue is a mosquito-borne virus that is estimated to infect approximately 390 million people

each year (Bhatt et al., 2013). Infection with the virus can cause a wide range of symptoms,

including fever, rash, joint pain, and rarely, internal hemorrhaging and death. There is no cure

or vaccine for dengue, so controlling the disease requires controlling its primary vector, Aedes

aegypti (WHO, 2014). However, traditional control methods such as insecticide and reduction

of larval habitats have had very limited success in controlling the disease (Morrison et al., 2008).

Recently, there has been interest in developing novel vector control technologies, such

as releasing genetically modified mosquitoes or mosquitoes that have been infected with the

maternally-inherited bacterium Wolbachia (Gould et al., 2006). These strategies seek to either

reduce the vector population or to replace it with one that is less able to transmit disease. Pop-

ulation replacement strategies require an anti-pathogen effect as well as a drive mechanism that

allows the gene or bacterium to spread through the population despite a fitness cost (so-called

“super-Mendelian” inheritance, Sinkins and Gould 2006). Wolbachia accomplishes both by di-

rectly blocking transmission of the dengue virus (Walker et al., 2011) and by manipulating host

reproduction through a phenomenon called cytoplasmic incompatibility (CI). CI causes most

to all offspring of Wolbachia-infected males and wild-type females to fail to develop (Werren,

1997). In other words, wild-type females become partially sterile in the presence of Wolbachia-

infected males, so Wolbachia-infected females may give rise to more offspring on average. Since

the bacterium is only passed from mother to offspring, this can cause the overall frequency of

Wolbachia infection, i.e. the fraction of infected individuals, to increase in a population over

time.

If Wolbachia infection causes a fitness cost to its host, e.g. by reducing average lifespan

or number of eggs laid, then there is a critical frequency of infection that must be exceeded

before the amount of cytoplasmic incompatibility outweighs the fitness cost, such that the

frequency of Wolbachia increases until it is established in the population (it will reach 100%

under perfect maternal transmission). Below this threshold, the fitness cost causes wild-type
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hosts to outcompete Wolbachia-infected hosts, and the frequency of Wolbachia is expected to

decrease over time to extinction. Determining this threshold is thus critically important for

predicting the fate of Wolbachia when released into a population.

Mathematical models can be a useful aid in predicting the frequency threshold for Wol-

bachia invasion as well as the most efficient release strategies. Previous frequency-only models

have shown that, when Wolbachia is perfectly maternally transmitted, the expected frequency

threshold is equal to the total fitness cost (the number of offspring from Wolbachia-infected

adults relative to wild-type adults when non-interacting) divided by the degree of CI (the pro-

portion of offspring from matings between Wolbachia-infected males and wild-type females that

are inviable) (Turelli and Hoffmann, 1991; Schofield, 2002; Jansen et al., 2008; Rasgon, 2008;

Schraiber et al., 2012; Chan and Kim, 2013). However, density-dependent population dynamics

can cause different outcomes from those predicted by models that track infection frequency

rather than numbers of individuals (Antonelli et al., 2015, Chapter 2 of this dissertation; Han-

cock et al, 2011).

Partial differential equation models known as reaction-diffusion models are often used to

model spatial spread in ecology (Volpert and Petrovskii, 2009). They were first used to describe

the spatial spread of an advantageous gene, which was found to have a traveling wave solution

with speed depending on the fitness and dispersal parameters (Fisher, 1937; Kolmogorov et al.,

1937; Fife, 1979). Stokes (1976) expanded this analysis to include other reaction terms that

lead to slower traveling waves. He referred to these slower waves as “pushed” because the entire

wavefront drives their advancement, as opposed to Fisherian “pulled” waves, which are driven

only by the leading edge. Barton (1979) showed that an underdominant system, i.e. one in

which heterozygotes are at a selective disadvantage to either homozygote, can produce stable

“hybrid zones” of heterozygotes that act as barriers to gene flow and move as pushed waves.

Turelli and Hoffmann (1991) used a similar reaction-diffusion model to describe the spatial

spread of Wolbachia in Drosophila simulans in California but found that it underestimated

the observed wave speed when realistic values for the dispersal distance were used. Lewis and
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Kareiva (1993) used a similar model for a species invasion with an Allee effect, or a negative

effect of low population density on the net per capita growth rate, e.g. difficulty finding a mate.

Wolbachia is similar to both underdominance and the Allee effect in that all three possess a

frequency threshold that must be exceeded locally for spread to occur, and the traveling waves

for their reaction-diffusion equations all have pushed waves as asymptotic solutions. Schofield

(2002) extended the spatial Wolbachia model to include imperfect maternal transmission which

he showed to further underestimate the observed wave speed in D. simulans, concluding that

a Gaussian dispersal kernel was not appropriate, favoring a more leptokurtic, or “fat-tailed”,

dispersal kernel.

The potential to use Wolbachia to control dengue increased when it was stably introduced

into Ae. aegypti (McMeniman et al., 2009). Barton and Turelli (2011) expanded on the reaction-

diffusion model of Wolbachia to look at two-dimensional spatial spread, critical release sizes and

immigration, although they assumed weak CI (many viable offspring from matings between in-

fected males and uninfected females) in their model because it allowed for an analytical solution

of the wave speed. Schraiber et al. (2012) derived a model for strong CI (few viable offspring

from matings between infected males and uninfected females), which is more appropriate for Ae.

aegypti, and showed that when there is no fecundity cost, a traveling wave is produced when the

frequency threshold p̂ is less than approximately 1/2, which agrees with earlier approximations

(Turelli and Hoffmann, 1991; Barton and Turelli, 2011).

It remains an open question how population dynamics may affect the spatial spread of

Wolbachia. Recently, Hancock and Godfray (2012) developed a density-dependent model with

spatial heterogeneity in larval habitat quality and found that strong density dependence in-

creases wave speed while spatial heterogeneity decreases wave speed. We expand upon their

work by developing a reaction-diffusion model that can incorporate many different forms of

density dependence, allowing us to examine the generalizability of their results. We further use

this model to compare different release strategies in which the population is manipulated prior

to release, affecting the probability that a traveling wave will be produced. Finally, we develop
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a metapopulation model in order to examine the effect of spatial heterogeneity and stochastic

population dynamics. We also demonstrate how results can differ from one-dimensional spatial

models like Hancock and Godfray (2012) when modeling two-dimensional spread.

3.2 Models

3.2.1 Reaction-diffusion model

We consider a bounded region in one-dimensional space x ∈ [−L,L] to represent an area of

interest for Wolbachia invasion, such as the width of a city where Wolbachia-infected insects

are to be released. In our analysis we only consider timespans over which the traveling wave of

infection does not reach the boundaries x = ±L, in order to avoid boundary effects. We model

the density of Wolbachia-infected females I(x, t) and wild-type females U(x, t) at point x and

time t with the coupled reaction-diffusion equations in Eq. 3.1:

∂I

∂t
=

(
(1− sf ) b(N)− d(N)

w

)
I + λ

∂2I

∂x2
(3.1a)

∂U

∂t
=
(

(1− shp) b(N)− d(N)
)
U + λ

∂2U

∂x2
, (3.1b)

where λ = σ2
d/2 is known as the diffusion coefficient, which relates to the variance σ2

d of the

insect’s dispersal kernel. This model is similar to one used by Chan and Kim (2013), but rather

than specify the form of density-dependence we consider different forms with the generalized

density-dependent functions b(N) and d(N). These represent the per capita emergence and

death rates of wild-type adults (when no Wolbachia is present), which depend on total pop-

ulation density N = I + U . We will consider time in units of days and non-dimensionalize

space to be relative to the standard deviation of dispersal in one day, which is equivalent to

setting λ = 1/2. The reaction terms on the left represent the local population dynamics. The
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parameter sf is the fitness cost to fecundity caused by Wolbachia infection (e.g. sf = 0.5 means

that Wolbachia-infected females lay half as many eggs per unit time as wild-type females).

The parameter w is the relative lifespan of Wolbachia-infected females compared to wild-type

females (e.g. w = 0.5 means that Wolbachia-infected females live half as long as wild-type

females). The parameter sh represents the degree of CI, and the variable p = I/(I + U) is the

local frequency of Wolbachia infection. We assume perfect maternal transmission of Wolbachia,

which is consistent with lab experiments (Walker et al., 2011). Parameters are listed in Table

3.1 and are equal to their default values throughout unless otherwise specified.

This model is in contrast to “frequency-only” models (Barton and Turelli, 2011; Schraiber

et al., 2012), which neglect population dynamics and track only one variable, the frequency of

infection p, across space and time. Throughout, we will compare and contrast our results to

analytical and numerical results previously obtained for frequency-only models.

Ae. aegypti experience density-dependent growth via intraspecific competition for food in

the aquatic larval stage (Gilpin and McClelland, 1979; Dye, 1982). The most natural way to

incorporate this into our model is to consider that the per capita emergence rate of new adults

decreases with increasing population density. This neglects the delay in density dependence

due to development time in the larval stage. We also consider density-dependent growth via an

increase in per capita death rates with increasing population density, which is a another common

way to model density dependence (Keeling et al., 2003; Farkas and Hinow, 2010; Zheng et al.,

2014). We examine both linear changes in per capita growth rates, which is the commonly-used

logistic growth, as well as nonlinear changes. Real systems will likely exhibit some combination

of both types of density dependence, and the functional form will largely depend on the specific

environment, so it is helpful to isolate the effects of each these components on the predicted

wave speed.

The four forms of density dependence that we investigate are summarized in Table 3.2 and

Figure 3.1, where b0 and d0 are the wild-type per capita intrinsic emergence and mortality

rates, i.e. the rates at low densities which yield the greatest net per capita growth rate. We
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Table 3.1: Parameters for reaction-diffusion model

Parameter Description Default Units

b0 Intrinsic per capita emergence rate
0.1 – 2
(varies)

day−1

d0 Intrinsic per capita death rate
0.005 – 0.1

(varies)
day−1

K
Female carrying capacity density of
wild-type population

10 adult

L
Half the total length of the spatial
domain

100 -

R Radius of release area 10 -

p0
Initial frequency of Wolbachia
infection after release

0.5 – 0.9
(varies)

-

q
Fraction of carrying capacity to
which wild-type population is
suppressed prior to release

0.1 -

sf Fitness cost to fecundity
0 – 0.5
(varies)

-

sh
Degree of cytoplasmic
incompatibility

1 -

w
Relative lifespan of
Wolbachia-infected adults

0.5 – 1
(varies)

-

β Strength of density dependence
0.5 – 4
(varies)

-
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Table 3.2: Four forms of density-dependent per capita growth rates to be substituted into
Eq. 3.1 to examine the effects of different forms of density dependence on the traveling wave
solution of Wolbachia spatial spread. N = I +U is the total population density at a given time
and place, b0 and d0 are the per capita intrinsic growth rates of wild-type individuals, K is
the wild-type carrying capacity, and β > 0 is a density-dependent parameter that controls the
strength of density dependence in type 4.

b(N) d(N)

1. Linear decrease in
emergence

max

{
b0 −

N

K
(b0 − d0) , 0

}
d0

2.
Nonlinear
decrease in
emergence

b0

(
d0

b0

)N/K
d0

3. Linear increase in
death

b0 d0 +
N

K
(b0 − d0)

4. Nonlinear
increase in death

b0 d0 +

(
N

K

)β
(b0 − d0)

modify the equation in type 1 to ensure that the growth rate is non-negative. The reason

we do not incorporate the β parameter for nonlinear decrease in emergence (type 2) is that

the stipulation that the emergence rate be non-negative limits the values of β that would be

biologically realistic. K is the wild-type density carrying capacity. Notice that K only appears

in the ratio N/K. Thus, we can non-dimensionalize by considering population size relative

to carrying capacity, and then our results apply for any K. We include it as a parameter,

even though its value does not affect the results, so that the biological interpretation is more

apparent. In order to compare different forms of density dependence, we assume that the per

capita death rate for wild-type adults at carrying capacity, d(K), is the same across all forms.

This means that the average generation time of wild-type adults at carrying capacity, which

is the reciprocal of per capita death rate, is also the same. Introduced Wolbachia-infected

adults may have shorter or longer generation times at the Wolbachia-established equilibrium,

depending on the fitness cost of Wolbachia and form of density dependence.

35



0 K

0

d0

d0/w

b0(1 − sf )

b0 b
U

d
U

b
I

d
I

A)

N 0 K

0
d0

d0/w

b0(1 − sf )

b0
b

U

d
U

b
I

d
I

B)

N

0 K

0
d0

d0/w

b0(1 − sf )

b0

b
U

d
U

b
I

d
I

C)

N 0 K

0
d0

d0/w

b0(1 − sf )

b0
b

U

d
U

b
I

d
I

N

D)

Figure 3.1: Graphs of the four forms of density dependence in Table 3.2. A) linear decrease
in emergence rate, B) nonlinear decrease in emergence rate, C) linear decrease in death rate,
and D) nonlinear increase in death rate with β = 1.5. Blue lines represent wild-type per capita
growth rates and red lines represent Wolbachia-infected per capita growth rates. Blue circles
represent wild-type or infection-free equilibria and red circles represent Wolbachia-endemic
or infected equilibria. Fitness costs are exaggerated for display purposes, as many of these
parameter combinations would not permit spatial spread.

We consider the “strength of density dependence” to be represented by how quickly the

wild-type population returns to carrying capacity following a perturbation. We note that this

definition is not entirely satisfactory, however, because the rate at which the population returns

to carrying capacity depends on the size of the perturbation. For our definition we consider small
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perturbations, and so this rate is represented by the slope of the net per capita growth rate

evaluated at N = K. “Strong” density dependence may return slowly however if the system is

perturbed far enough away from equilibrium—and vice-versa for “weak” density dependence—

when the per capita growth rates are nonlinear (as is the case in Figure 3.1B and D). To our

knowledge, there is no general consensus regarding the appropriate definition (see Herrando-

Pérez, 2012 for the various uses of the term “density dependence” itself). We consider the

nondimensionalized slope dr/dx|x=1 where r = b(x) − d(x) and x = N/K, as a measure of

the strength of density dependence, which is analogous to the slope of the (non-horizontal)

blue lines in Figure 3.1. This quantity is equal to b0 − d0 for the first three types of density

dependence and β(b0 − d0) for the last form.

3.2.2 Metapopulation Model

As a point of comparison, and to incorporate two-dimensional spread, stochastic population

dynamics and spatial heterogeneity in habitat quality, we develop a discrete-time model for the

spatial spread of Wolbachia in a metapopulation of adult insects, where we model males and

females explicitly in order to incorporate stochasticity in the sex ratio over space and time.

We begin with a one-dimensional array of M patches. We consider discrete time in units of

generations. Insects undergo local population dynamics based on the frequency of Wolbachia

infection in each patch, and then a certain fraction disperse to nearest neighboring patches on

either side (if not on the boundary, discussed below). An example with release of Wolbachia-

infected Ae. aegypti into the central patch is shown in Figure 3.2.
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Figure 3.2: Schematic of one-dimensional spread of Wolbachia-infection in Ae. aegypti fol-
lowing complete Wolbachia infection in the central patch. Each generation, mosquitoes mate
randomly, lay eggs, and a certain fraction of adults disperse to either of two nearest-neighboring
patches. Wolbachia infection spreads locally if the frequency of infected adults is greater than
the frequency threshold determined by CI and fitness cost.

In the deterministic version, i.e. solutions are uniquely determined by the initial conditions,

each patch begins with Ki adults, where Ki is the carrying capacity of patch i prior to the release

of Wolbachia. The center C patches are seeded with only Wolbachia-infected adults while all

other patches contain only wild-type adults (half male, half female). Each female mates with a

randomly selected male from the same patch and lays E eggs if uninfected and (1−sf )E eggs if

infected, where sf is the fecundity cost of Wolbachia. Only a fraction 1−sh of eggs laid by wild-

type females and fertilized by Wolbachia-infected males hatch due to CI, where sh is the degree

of CI as in the previous section. The frequency of Wolbachia infection in the next generation,

pi(t + 1), is determined by the ratio of Wolbachia-infected eggs (laid by Wolbachia-infected

females) to the total number of eggs that hatch. The number of Wolbachia-infected adults in
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the next generation (prior to dispersal) is then pi(t+ 1)Ki (half male and half female) and the

number of wild-type adults is (1− pi(t+ 1))Ki (half male and half female). Finally, a fraction

α of adults, independent of sex or infection status, disperse equally to neighboring patches on

both sides. This simulates a random walk, which approaches diffusion as the distance and time

between steps go to zero (Codling et al., 2008). The entire process then repeats for the next

generation. Because this version is deterministic, all numbers can be fractional, reflecting the

average or expectation of the dynamics. That is, if a patch has 20 adults and α is 0.1, then 1

adult (0.5 male and 0.5 female) will travel to the patch on the left and 1 adult (0.5 male and 0.5

female) will travel to the patch on the right. Adults that would disperse outside the boundary

remain in the current patch.

We also consider a stochastic version of this model, in which we only have discrete numbers

of insects. In the stochastic version, the number of eggs that hatch is drawn from a Poisson

distribution with mean E if both parents are wild-type, (1−sf )E if laid by a Wolbachia-infected

female, and E(1− sh) if laid by a wild-type female and fertilized by a Wolbachia-infected male.

We assume perfect maternal transmission, so any egg laid by a Wolbachia-infected female gives

rise to a Wolbachia-infected insect. We then sample Ki individuals to hatch from the available

eggs using a binomial distribution with probability 1/2 to determine if the offspring is male or

female. The infection frequency pi(t + 1) is then updated to the resulting fraction of infected

individuals. Finally, each adult disperses with probability α, and its destination is chosen at

random from the nearest neighboring patches.

In both the deterministic and stochastic frameworks, the carrying capacities for each patch

are drawn from a negative binomial distribution with mean µK and standard deviation σK . We

choose the negative binomial distribution because it provides non-negative patch sizes that are

overdispersed, meaning the variance is greater than the mean. This allows for very large patch

sizes, which may be rare but have a large impact on the dynamics. Because we examine a whole

range of σK values, we use the regular binomial distribution as an alternative when σ2
K < µK ,

which is underdispersed. We vary the parameter σK as a measure of spatial heterogeneity in
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habitat quality in order to determine its effect on the traveling wave of Wolbachia infection.

Finally, we expand the model to incorporate two-dimensional spatial spread by considering

a grid of M x Q patches. In order to compare to the one-dimensional model, we release into C

central columns and measure the linear wave speed to either side. The main difference in the

two-dimensional model is that insects can migrate to any of four nearest-neighboring patches

(up, down, left, right), and that the wave is more likely to be able to get around unusually

large patches that are difficult to invade. The movement parameter α is set to twice as much

in the two-dimensional model to account for having twice as many neighbors. This way, the

same fraction are emigrating in the horizontal direction in both the one- and two-dimensional

settings. We do this because the horizontal spread of “columns” of infection is the most direct

extension of the one-dimensional model. In this case, the horizontal component of spread over

time is the analogous wave speed to compare to the one-dimensional model.

Parameters for the metapopulation model are summarized in Table 3.3. Parameters are set

to their default values unless specified otherwise.

3.3 Results

3.3.1 Reaction-diffusion Model

All results for the reaction-diffusion model were obtained using the PDE solver pdepe in Matlab

version 8.3, which solves parabolic and elliptic PDEs using the Galerkin discretization method

provided by Skeel and Berzins (1990). We also hand-coded a finite difference approximation

using the Crank-Nicolson method (Crank and Nicolson, 1996), and we found similar results.

The advantage to using pdepe is that it automates tuning the discretization parameters to

ensure convergence, which can be tedious. It was thus easier to use pdepe, taking advantage of

the fact that the reaction-diffusion equation is a parabolic PDE, to solve the equation for many

different initial conditions and forms of density dependence.
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Table 3.3: Parameters for metapopulation model

Parameter Description Default Units

α
Fraction that emigrate each
generation

0.1, 0.2 -

C
Number of patches or columns
into which Wolbachia-infected
adults are released

9 -

E
Number of eggs females lay each
generation

50 -

Ki
Total carrying capacity in patch
i

20 adult

M Number of houses in x direction 100 house

Q Number of houses in y direction 20 house

sf Fitness cost to fecundity
0 – 0.5
(varies)

-

sh
Degree of cytoplasmic
incompatibility

1 -

w
Relative lifespan of
Wolbachia-infected adults

0.5 – 1
(varies)

-

µK
Mean of distribution from which
Ki are drawn

20 adult

σK

Standard deviation of
distribution from which Ki are
drawn

0 – 35
(varies)

adult
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Release strategies

Even if p̂ < 1/2, an initial release of Wolbachia-infected adults must exceed a spatial threshold

for a traveling wave to be produced. This is related to the problem of determining a critical patch

size, which has been extensively studied in population ecology (Skellam, 1951; Kierstad and

Slobodkin, 1953) and population genetics (Slatkin, 1973; Nagylaki, 1975). If the initial release

radius is too small, then the newly introduced individuals may be swamped by immigrating

wild-type individuals, such that the infection dies out before getting a chance to establish and

produce a traveling wave. Lewis and Kareiva (1993) determined the critical radius for two-

dimensional spread of a population with an Allee effect, which has similar bistable dynamics to

Wolbachia.

We consider the spatial threshold, or “critical bubble,” for one-dimensional spread of Wol-

bachia, which represents the unstable equilibrium at which the forces of CI, fitness cost, and

diffusion exactly cancel. If the initial spatial profile p(x, 0) is everywhere less than the spatial

profile of this bubble, then Wolbachia will go extinct. If p(x, 0) is everywhere greater than

the spatial profile, then a traveling wave of Wolbachia infection will be produced (Barton and

Turelli, 2011). Determining this critical bubble is difficult even for the frequency-only model,

and an analytic solution may not exist (Barton and Turelli, 2011). Rouhani and Barton (1987)

determined the critical bubble for a similar bistable genetic model. The integral of this bubble,

or “total frequency,” is

T (γ) = log

( √
γ(γ + 3)

3− γ − 3
√

1− γ

)
, (3.2)

where γ = 2
(

1
2 − p̂

)
and p̂ = (1 − w(1 − sf ))/sh is the frequency threshold predicted by the

frequency-only model (Barton and Turelli, 2011). However, Barton and Turelli (2011) found

this to overestimate the minimum total frequency for the Wolbachia model. In particular, they

found that a traveling wave could be produced for a fewer total number of released insects if

they were released at the same frequency across a distance of 2R (a “top-hat”-like initial spatial
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profile) where 2Rp0 < T (γ).

Density-dependent population dynamics complicate the initial transient dynamics further,

and so we explore a number of release scenarios numerically: 1) release of Wolbachia-infected

females into a wild-type population at carrying capacity in order to achieve an initial infection

frequency p0, 2) release of Wolbachia-infected females into a wild-type population that has

been suppressed to a fraction q of carrying capacity in order to achieve initial frequency p0,

and 3) release of the same number of Wolbachia-infected females as in the first strategy into

a population that has been suppressed locally to a fraction q of carrying capacity. The first

strategy is the most straightforward in that it requires it no intervention prior to release.

However, it is the least likely out of the three to result in Wolbachia establishment. The second

strategy requires fewer females (a fraction q) to be released but requires some intervention prior

to release in order to suppress the population. The resulting infection frequency is the same as in

the first strategy, and so differences in density-dependent effects will determine how it is better

or worse than the first strategy. The last strategy involves the same number of released females

as the first strategy, but the resulting initial frequency p′0 = p0/(p0 + q(1− p0)) will be higher

than in the other two strategies since the released individuals will make up a greater proportion

of the total population. The population suppression in the last two strategies only occurs in

the release area. The results are shown in Figs. 3.3-3.5. We keep the Wolbachia-infected per

capita death rate at the Wolbachia-infected equilibrium constant across all forms of density

dependence, such that the generation time of infected individuals at carrying capacity is the

same across all forms of density dependence. This allows us to attribute differences in results

to the form of density dependence rather than differences in parameter values.

We see from Figures 3.3 and 3.4 that the effect of a given release strategy on the spatial

spread of Wolbachia depends on the form of density dependence that governs the host popula-

tion. The effect of these forms of density dependence on the local frequency threshold, i.e. the

threshold in a non-spatial, well-mixed population, are examined in Chapter 2 and Appendix A.

From Figures 2.1 and A.3, we see that both forms of density dependence lower the frequency
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Figure 3.3: Space-time plots of infection frequency for a release radius of 5, p0 = 0.5, w = 0.7
and type 1 density dependence (linearly decreasing per capita emergence rate). Release into
carrying capacity (A, B) fails to produce a traveling wave while releasing into a population
suppressed by 90% to achieve p0 (C, D) and with the same number of individuals as in the first
strategy (E, F), produce traveling waves. Frequency is shown on the left and the population
size relative to wild-type carrying capacity is shown on the right. With this form of density
dependence, Wolbachia has a negligible impact on the population size as Wolbachia spreads.
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Figure 3.4: Space-time plots of infection frequency for a release radius of 11, p0 = 0.5, w = 0.7
and type 3 density dependence (linearly increasing per capita death rate). Release into carrying
capacity (A, B) produces a traveling wave while releasing into a population suppressed by 90%
to achieve p0 (C, D) fails to produce a traveling wave. Releasing into a population suppressed
by 90% with the same number of individuals as in the first strategy (E, F) produces a traveling
wave and does so more quickly than release into carrying capacity (A, B). Frequency is shown
on the left and the population size relative to wild-type carrying capacity is shown on the right.
With this form of density dependence, Wolbachia has a significant impact on the population
size.
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threshold for suppressed populations, indicating that suppressing the population prior to release

should increase the chance of Wolbachia establishment. However, the latter form of density de-

pendence, increasing death rate, has a lower population level at the infected equilibrium. Thus,

when Wolbachia becomes established inside the release area, there are fewer insects to disperse

outside the region and propagate the wave. Thus, the uphill gradient in population number

offsets the local decrease in frequency threshold for this type of density dependence. This is

the reason for the differences in Figures 3.3 and Figures 3.4 (A & C), where the efficiency of

the release strategy depends on the form of density dependence. The combined strategy of sup-

pressing the population but then releasing the same number of insects as would be required to

achieve the initial frequency p0 in a population carrying capacity appears to always be better

than either of the other two strategies in producing a traveling wave (Figures 3.3 and 3.4 (E &

F).

The critical patch sizes for the density-dependent Wolbachia model are shown in Figure

3.5 for various forms of density dependence and release strategies. The critical patch radius is

determined by releasing individuals at a density to achieve p0 into an area of length 2R and

determining the minimum R that allows for spread (recall that in the third release strategy the

number of individuals is the same as in the first release strategy but the initial frequency is

higher than p0). These are compared to the analytic prediction Rcrit = T (γ)/(2p0) where T (γ)

is defined in Eq. 3.2. Although the analytical prediction is for an infinite spatial domain, we

chose L large enough relative to the critical release radius such that boundary effects should

not affect the results.

In contrast to what Barton and Turelli (2011) found for the frequency-only model, we

find Eq. 3.2 to provide an underestimate for the critical patch radius (black dashed lines in

Figure 3.5) for the density-dependent model for all but the highest release frequencies. Only

the first two release strategies (blue triangles and red circles) correspond to the p0 values on the

x-axis in Figure 3.5, although they necessarily contain different numbers of released individuals,

since the second (red circles) is into a population suppressed by 90%. The third release strategy
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Figure 3.5: The critical patch radius R needed to obtain a traveling wave of Wolbachia infection
for a strain that causes a 30% reduction in lifespan (sf = 0, w = 0.7) with four types of density
dependence: A) linear decrease in per capita emergence rate, B) nonlinear decrease in per capita
emergence rate, C) linear increase in per capita death rate, and D) nonlinear increase in per
capita death rate. Wolbachia-infected adults are released into a central patch of length 2R to
achieve an initial frequency of p0 (in all but the third release strategy). Release strategies are:
release into a wild-type population at carrying capacity to obtain p0 (blue triangles), release
into a wild-type population suppressed to 10% of carrying capacity to obtain p0 (red circles),
and release into a wild-type population suppressed to 10% with the same number of mosquitoes
as in the first strategy, i.e. to obtain p0 when the population is at carrying capacity (yellow
squares). The dashed line represents the analytical prediction for the frequency-only model
[derived from Eq. 3.2]. The jaggedness is due to the spatial discretization and we expect these
curves to be smooth for continuous space.

47



(yellow squares) is shown on the same graph in order to show the direct effect of suppressing

the population while releasing the same number of individuals, even though the resulting initial

frequency p′0 = p0/(p0 +q(1−p0)) > p0. Thus, the blue and red curves are for the same released

number of individuals, showing that it is clearly better in all four forms of density dependence

to suppress the population prior to release.

In Figures 3.5C and 3.5D, suppressing the population to achieve the same p0 is not an

efficient strategy because the resulting fewer total individuals in the release area are more

easily swamped by the wild-type individuals outside the region (red triangles indicate a greater

minimum release radius than blue triangles for all p0). However, in Figures 3.5A and 3.5B, there

is a tradeoff between reducing the local frequency threshold by suppressing the population and

releasing a greater number of individuals (blue triangles and red circles intersect). While in

the non-spatial model it is always better to suppress the population, we believe this is offset

in this instance for high values of p0 in the spatial model because releasing greater numbers

of insects means more can disperse outside the release area (Antonelli et al., 2015, Chapter 2

of this dissertation). The results in the spatial model thus show a more complicated tradeoff

between decreasing the local invasion threshold due to density dependence and increasing the

total number of individuals that can disperse.

The release strategies depicted in Figure 3.5 affect the transient dynamics and whether or

not a traveling wave will be produced. Once a traveling wave is produced, it will have the same

asymptotic wave speed for all release strategies because the wave speed is governed by the

fitness and dispersal parameters rather than initial conditions. In measuring wave speed for the

next section, we thus use the third release strategy with a high p0 to give the population the

best possible chance to produce a traveling wave.
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Asymptotic wave speed

The predicted wave speed for the frequency-only model is approximately

c ≈ σd
√
shdI

(
1

2
− p̂
)
, (3.3)

where σd =
√

2λ is the standard deviation of adult dispersal in one day, and dI is the per capita

death rate of Wolbachia-infected adults (Stokes, 1976; Barton, 1979; Turelli and Hoffmann,

1991; Barton and Turelli, 2011; Schraiber et al., 2012). While in previous models dI is constant,

in some forms of density dependence we present here, dI varies with population density. When

applicable, we consider dI = dN (KI)/w, the Wolbachia-infected per capita death rate at the

Wolbachia-established equilibrium, for the approximation of wave speed, where the Wolbachia-

established equilibrium population density KI solves dN (KI)/w = (1− sf )bN (KI).

We measure wave speed numerically by determining the position of a frequency contour

over time (see any of the color contours in Figures 3.3 and 3.4: A, C or E). When the contour

corresponding to p = 0.9 is increasing linearly in space with respect to time, we consider this

to be the asymptotic wave speed. The results for wave speed for different forms of density

dependence are shown in Figs. 3.6 - 3.7.
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Figure 3.6: The asymptotic wave speed of the reaction-diffusion model for a lifespan-shortening
strain of Wolbachia with four different types of density dependence: A) linear decrease in per
capita emergence rate, B) nonlinear increase in per capita emergence rate, C) linear increase in
per capita death rate, D) nonlinear increase in per capita death rate. The predicted frequency
threshold p̂ = 1 − w(1 − sf ) was changed by maintaing zero fecundity cost (sf = 0) and
adjusting the relative lifespan of Wolbachia-infected females w. Colors represent strength of
density dependence, controlled by increasing b0 = 0.25, 0.5, 1, 2 for A and B, decreasing d0 =
0.04, 0.02, 0.01, 0.005 for C, and increasing β = 0.5, 1, 2, 4 for D. The order from weakest to
strongest is (bottom to top) violet triangles, orange circles, yellow squares, black x’s. Otherwise,
b0 = 1, d0 = 0.1. The dashed line is the prediction by the frequency-only model [Eq. 3.3].
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Figure 3.7: The asymptotic wave speed of the reaction-diffusion model for a non-lifespan-
shortening strain of Wolbachia with four different types of density dependence: A) linear de-
crease in per capita emergence rate, B) nonlinear increase in per capita emergence rate, C)
linear increase in per capita death rate, D) nonlinear increase in per capita death rate. The
predicted frequency threshold p̂ = 1 − w(1 − sf ) was changed by maintaing zero fitness cost
to survival (w = 0) and adjusting the fecundity cost of Wolbachia-infected females sf . Colors
represent strength of density dependence, controlled by increasing b0 = 0.25, 0.5, 1, 2 for A and
B, decreasing d0 = 0.04, 0.02, 0.01, 0.005 for C, and increasing β = 0.5, 1, 2, 4 for D. The order
from weakest to strongest is (bottom to top) violet triangles, orange circles, yellow squares,
black x’s. Otherwise, b0 = 1, d0 = 0.1. The dashed line is the prediction by the frequency-only
model [Eq. 3.3].
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3.3.2 Metapopulation model

Wave speed for the metapopulation model was measured by considering the total number of

patches invaded over time and performing linear regression on the portion where the asymptotic

wave speed was assumed to be reached. This portion was from 5% of patches beyond the release

patches to 90% of patches, which was selected to exclude both the initial transient dynamics

and the dynamics at the boundary x = ±L from the analysis. In this region, the number of

invaded patches over time was roughly linear, and represents two times the average wave speed

since the wave propagates in both directions. Thus, we use linear regression to estimate the

slope to determine the average wave speed, as shown in Figure 3.8.

The wave speed depends strongly on fitness cost, spatial dimension, spatial heterogeneity,

and stochasticity in population dynamics, as seen in Figure 3.9. For each value of patch size

standard deviation σK , we run the model 100 times with different spatial configurations, chosen

by drawing the size of each patch from either the negative binomial or binomial distribution

with mean µK and standard deviation σK and determine the resulting wave speed. The variance

in wave speed across replicates thus depends on the variance in spatial configurations for the

deterministic model and the variance in spatial configurations and population dynamics in the

stochastic model.

In Figure 3.9 we see that increased spatial heterogeneity in patch carrying capacity decreases

the average speed at which a wave of Wolbachia infection travels through the metapopulation.

This agrees with results from a previous deterministic one-dimensional model (Hancock and

Godfray, 2012) and previous analytic results (Barton, 1979; Nagylaki, 1975; Barton and Turelli,

2011), although we also look at the effect of stochastic population dynamics and two-dimensional

spatial spread. In a one-dimensional array of patches, the deterministic model predicts a faster

wave speed than the stochastic model when the fitness cost is low. This is likely because, when

the fitness cost is low, the deterministic model consistently produces enough Wolbachia-infected

individuals that disperse into neighboring populations to exceed the frequency threshold. The

stochastic model produces the same number on average, but varies across replicates. The repli-
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Figure 3.8: Number of patches invaded over time for A) stochastic 1-D, B) deterministic 1-
D, C) stochastic 2-D and D) deterministic 1-D settings with Wolbachia causing 90% relative
fitness (c = 0.9), complete cytoplasmic incompatibility, sh = 1, horizontal movement parameter
α = 0.1, and patch size standard deviation σK = 5. The orange (light) points mark the region
used for linear regression to determine wave speed, which avoids regions with transient dynamics
or boundary effects. The width of the plots in C and D are due to the number of invaded patches
for each of the 20 rows at each time point.
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Figure 3.9: Average wave speed (solid lines) +/- one standard deviation across 100 replicates.
Each replicate contains patches with carrying capacities drawn randomly with mean µK = 20
and standard deviation σK (drawn independently for each replicate) and is run with determin-
istic (blue, dark) or stochastic (red, light) population dynamics.
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cates in which the stochastic model underproduces end up nearer the frequency threshold, and

these replicates are disproportionately penalized because frequency dynamics are much slower

near the threshold. Thus, even when the frequency threshold is 0 (top row of Figure 3.9), such

that a traveling wave is inevitable, its progress is slowed considerably more when a stochastic

event underproduces than it is sped up when a stochastic event overproduces, and the net result

is an average decrease in wave speed relative to the deterministic model.

The stochastic two-dimensional model also produces a slower wave speed on average than

the deterministic model when there is no fitness cost (top right of Figure 3.9). However, in a

spatially homogeneous environment (σK = 0), the stochastic model wave speed approaches that

of the deterministic model, unlike in the case of one-dimensional spread. We expect this is due

to “slower” rows receiving extra Wolbachia-infected immigrants from more quickly spreading

neighboring rows, which speeds up the overall invasion wavefront. However, it is not immediately

clear in that case why the difference between stochastic and deterministic predictions becomes

more pronounced as σK increases.

3.4 Discussion

It may be possible to exploit certain aspects of density-dependent population dynamics to

further the chance that Wolbachia will spread in a population. In particular, for all the forms of

density dependence examined here, we find that suppressing the population prior to the release

of a fixed number of Wolbachia-infected mosquitoes increases the chance of a stable wave of

Wolbachia infection traveling through space. There are both population genetics (frequency)

and population dynamics (density) effects here. We found previously with a non-spatial model

that suppressing the population prior to release of a lifespan-shortening strain of Wolbachia

causes not only a lower critical release number but also a lower critical release frequency. That

is, the frequency threshold itself is lowered when a lifespan-shortening strain is released into a

suppressed population. This effect does not appear as strong in the spatial model, as evidenced

by the blue triangles and red circles in Figure 3.5. In fact, suppressing the population prior to
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release when density dependence acts on the per capita death rate appears to raise the critical

frequency required in the release patch (red circles), although it still lowers the critical number

(yellow squares). This is likely because the decrease in the local frequency threshold is offset

by the disproportionate effect of wild-type immigrants from outside the release area when the

population in the release area is small. This may be mitigated by suppressing a larger area than

the release area, thus reducing the ability of wild-type immigrants to flood the release area

before a traveling wave has been produced.

Density dependence also affects the asymptotic speed that a traveling wave reaches, de-

pending on how strong it is, and whether it acts on the per capita emergence or death rate.

In general, the stronger density dependence, the higher the wave speed. Figs. 3.6 and 3.7 indi-

cate that density dependence may actually increase the wave speed beyond the frequency-only

prediction when density dependence acts on the emergence rate. This result agrees with what

Hancock and Godfray (2012) found with a model that included density-dependent larval mortal-

ity, which is most analogous to the decrease in per capita emergence rate in our simpler model.

However, it appears to only occur when fitness cost is low and not at all when density depen-

dence acts on the death rate. With density-dependent mortality, the wave speed approaches the

frequency-only prediction but never exceeds it (Figure 3.6D and 3.7D). One potential reason

for these differences is that the Wolbachia-established equilibrium population density is more

sensitive to the fitness parameters. For the same parameters, the Wolbachia-established equi-

librium population densities are higher when density dependence acts on the emergence rate

than on the death rate. This does not explain the difference in wave speeds when there is no

fitness cost, however, because the population density at the Wolbachia-established equilibrium

is equal to K for both types of density dependence.

One reason for the difference in wave speeds when there is no fitness cost may be that, at

the traveling wave front, the most CI and thus population suppression occurs. When density

dependence affects the emergence rate, this decrease in population density at the wavefront

causes the rate of emergence of new adults to increase. This may speed up the increase in
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frequency in both space and time, especially when density dependence is strong. On the other

hand, when density dependence affects the death rate, adults at the traveling wave front expe-

rience increased lifespans, slowing the replacement of wild-type with Wolbachia-infected adults.

Note that we have also used the per capita death rate at the Wolbachia-established equilibrium

as the approximation for the frequency-only wave speed (dashed lines in Figs. 3.6 and 3.7),

which is only experienced by adults once the traveling wave has passed. A more appropriate

approximation may be to use the per capita death rate corresponding to the population density

at the front of the traveling wave, i.e. the trough where mixing causes CI to reduce the popula-

tion density to a local minimum. We do not know of a way to determine this population density

analytically, although it could be determined numerically. The effects of density dependence do

not appear to depend on whether the fitness cost of Wolbachia is to longevity (Figure 3.6) or

fecundity (Figure 3.7). This is an interesting contrast to the non-spatial results in Antonelli et

al. (2015, Chapter 2 of this dissertation), in which lifespan-shortening was necessary to observe

any difference in the invasion threshold.

Hancock and Godfray (2012) showed how spatial heterogeneity slowed wave speed and strong

density dependence increased wave speed. We have shown how the effect of strength of density

dependence generalizes to other forms of density dependence (linear/nonlinear decrease in per

capita emergence rate and linear/nonlinear increase per capita death rate). In short, “stronger”

density dependence does increase wave speed. However, the wave speed relative to analytic

predictions and the critical patch size both depend on the form of density dependence. We show

how wave speed can exceed that of the frequency-only prediction when density dependence acts

on the emergence rate (Figure 3.6) but not when it acts on the death rate (Figure 3.7), in which

case the analytic approximation always overestimates the wave speed. Furthermore, while our

results agree with Hancock and Godfray (2012) that spatial heterogeneity consistently slows

spread, we show how the degree to which it slows spread depends on one- or two-dimensional

spread, stochasticity and fitness cost (Figure 3.9).

Jansen et al. (2008) analyzed the stochastic spread of Wolbachia in a non-spatial model
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with constant population size N , and Barton and Rouhani (1991) performed a similar analysis

on a model of underdominance, but both analyze the probability of establishment for small

introductions; thus, it is difficult to compare to our results for large releases to theirs. We find,

overall, that stochastic dynamics create slower spread than predicted by deterministic models

when fitness cost is low, and faster than predicted by deterministic models when fitness cost is

high.

While the relative differences have important implications for spread of Wolbachia infection

in the field, it is important to note that all the predicted wave speeds are rather slow for practical

purposes even when fitness cost of Wolbachia is low, as has been previously noted (Schraiber

et al., 2012). However, while previous models have focused on some of the constraints of using a

lifespan-shortening strain (Schraiber et al., 2012), we demonstrate that it may be equally useful

as a non-lifespan-shortening strain. The asymptotic wave speed does not appear to be strongly

affected by whether the Wolbachia strain is lifespan-shortening (Figure 3.6) or not (Figure 3.7)

so much as it depends on the type and strength of density dependence.

We have shown how density dependence, stochasticity in population dynamics, and spatial

heterogeneity affect the spread of Wolbachia. Density dependence may either help or hurt the

spread of Wolbachia, depending on where in the life cycle of the insect in question it acts.

Stochasticity in population dynamics can decrease the average spread in a one-dimensional

spatial environment, although it can prevent wave barriers in highly heterogeneous environ-

ments when there is a fitness cost. Stochasticity may also increase average wave speed in

two-dimensional environment where patches can benefit from neighbors in which invasion of

Wolbachia is more successful by chance.

Understanding the contributions of all three factors will be important for selecting the best

strains of Wolbachia and release strategies based on their effects on host fitness and the host’s

population dynamics. While frequency-only models have provided useful approximations and

valuable theoretical insights, we have expanded here on how density dependence, stochastic-

ity and spatial heterogeneity cause deviations from theoretical predictions, in hopes of better
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informing how Wolbachia may spread when intentionally released for global health strategies.
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Chapter 4

Bayesian inference for Aedes aegypti

immature growth in field containers

in Iquitos, Peru
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ABSTRACT

Aedes aegypti larvae often develop in field containers with standing water in which detritus

accumulation is thought to support microorganisms that serve as a food source; however, the

relationship between detritus accumulation and larval nutrition remains unclear. We performed

an experiment in Iquitos, Peru to determine the effect of detritus accumulation in water-filled

containers on Ae. aegypti larval growth. We developed three versions of a stochastic model for

the progression of Ae. aegypti through its life stages and used continuous-time Markov chain

theory to derive the likelihood of field parameter values given observed larval trajectories.

Using Bayesian model selection, we determined the best version of the model: this contains

different development rates among larval instars when food is present, the possibility that food

is depleted, and increased mortality under starvation conditions. We estimated the posterior

distributions of parameters governing development, mortality and rate of food depletion, and

we used the last to infer the distribution of food accumulation in buckets left out for varying

lengths of time. We found that immature dynamics were primarily determined by the presence

or absence or food, regardless of quantity. While older water had more food on average, water as

new as two days in the field was able to support larvae through third and fourth instars, and the

average development rate when food was present was the same for old and new water. Despite a

slight increase in average food accumulation for containers left in the field for longer periods of

time, there is a large amount of variance indicating that all the factors that contribute to food

accumulation are yet to be uncovered. This warrants further study into the elusive mechanisms

of food accumulation in the field, which play a crucial role in vector ecology, but are still

incompletely understood.
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4.1 Introduction

Dengue is a mosquito-borne viral disease that affects nearly 390 million people each year (Bhatt

et al., 2013). The disease can present a wide variety of symptoms ranging from fever, rash and

severe joint pain to internal hemorrhaging and death. It is endemic in many tropical regions

where it is transmitted primarily by one species of mosquito, Aedes aegypti. Ae. aegypti is an

efficient vector in dense urban environments due in part to female adults’ preference for feeding

on humans and the larvae’s ability to develop, pupate, and emerge in a variety of artificial

containers that collect standing water (Ponlawat and Harrington, 2005; Scott et al., 2000).

There is currently no vaccine or treatment for dengue, and so control efforts revolve around

controlling the vector population.

Mathematical models can be a useful tool in assessing the feasibility of various vector control

strategies, especially novel techniques involving the release of genetically modified mosquitoes

that seek to either suppress the native population or replace it with a population less able

to transmit the disease (Gould et al., 2006). In order to make accurate predictions, detailed

knowledge of Ae. aegypti ecology in dengue-endemic regions is crucial.

A number of models for Ae. aegypti dynamics have been previously developed. Gilpin and

McClelland (1979) developed a deterministic model based on laboratory studies for changes in

larval weight and available food, in which mosquitoes pupate once both a minimum development

time and weight have been reached. The portion of the model corresponding to pupation is often

referred to as the “window model” because larval weight, when plotted versus time, must cross a

rectangular “pupation window” before larvae are expected to pupate (Carpenter, 1984; Gimnig

et al., 2002; Romeo Aznar et al., 2014). The more detailed models CIMSiM (Focks et al., 1993)

and Skeeter Buster (Magori et al., 2009) were later developed for Ae. aegypti dynamics, and

both incorporate the Gilpin and McClelland (1979) equations for growth in the immature stages

and the window model for pupation.

Romeo Aznar et al. (2014) recently criticized the window model for being descriptive rather

than theoretical. They propose a multi-compartment model for the time to pupation in which
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the waiting times in each compartment are exponentially distributed. This is similar to the com-

partmental model that Gilpin and McClelland (1979) initially considered, in which compart-

ments corresponded to observable life stages: eggs, four aquatic larval stages known as instars,

which are separated by molts of the exoskeleton, the pupal stage, and the adult stage. Gilpin

and McClelland (1979) ultimately dismissed the instar model, however, due to its inability to

account for “weight, larval age and food density” (p. 365). Romeo Aznar et al. (2014) address

this last issue by considering that compartments can be either of two types: food-sensitive or

food-independent. The transition rates out of the food-sensitive compartments depend on food

availability whereas the rates out of food-independent compartments do not. This is an im-

portant next step in incorporating food dynamics into a compartmental model; however, the

compartments do not appear to correspond to anything biological, serving rather as a mathe-

matical convenience, and the number of compartments becomes a free parameter that can be

used to better fit the data. Thus, we find their model to also be more descriptive (statistical)

than theoretical (mechanistic). While both types of models are useful, we believe a mechanistic

model in which the compartments correspond to observable states is preferable in terms of

understanding the biological dynamics and making predictions.

We propose a model for immature Ae. aegypti growth like the one that Gilpin and Mc-

Clelland (1979) originally proposed, in which compartments correspond to instars and pupae.

With such a model, we can obtain more information than just time to emergence by observing

each larva’s progression through the various stages over time over time. This model also has

the advantage of tracking instars, which are easily determined in the field with a microscope,

rather than “dry weight”, which requires that larvae be sacrificed to measure. While Gilpin

and McClelland’s (1979) preliminary model did not incorporate food dynamics, an important

component of the overall dynamics, we can include them by considering transition probabilities

conditioned on the availability of food in the larval habitat.

We performed an experiment in Iquitos, Peru to determine immature Ae. aegypti growth

in the field. Rather than control the amount of food in containers, we allowed containers to
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accumulate detritus in the field for controlled periods of time. Liver powder, yeast/protein

mixtures or fish food are typically used for food in the lab, but it is difficult to know what this

corresponds to in the field. The different durations of accumulation time we refer to throughout

as “water age.” By observing the life histories of larvae placed in those containers and comparing

them to our model we are able to estimate development and mortality rates and infer food

levels in those containers. We use Bayesian model selection to determine the best-fit version

of the model, and we use Markov chain Monte Carlo (MCMC) to approximate the posterior

distribution of parameters governing immature dynamics, which was then used to infer the

distribution of food in containers in Iquitos.

4.1.1 Materials and Methods

Experimental Setup

Iquitos, Peru is a city with a population of approximately 350,000 situated in the Amazonian

rainforest. Dengue has been endemic in the city since the 1990s when the virus was thought to

have been reintroduced following reinvasion of Ae. aegypti in the 1960s (Morrison et al., 2010).

The dynamics of both dengue and Ae. aegypti have been studied in Iquitos for over a decade,

and control efforts are ongoing, but epidemics of the disease continue to occur roughly annually

(Morrison et al., 2004, 2010; Stoddard et al., 2014). Skeeter Buster, a detailed stochastic model

of Ae. aegypti was parameterized to simulate the mosquito population’s dynamics in Iquitos

with the goal of better understanding the effect of various control efforts (Magori et al., 2009).

This has proved difficult in part because of the lack of understanding about food accumulation

in containers and how it impacts larval growth. Xu et al. (2010) found that Skeeter Buster was

particularly sensitive to parameters governing larval dynamics, and Walsh (2011) found that

the model was unable to predict larval survival and the distribution of instars within containers

in Tapachula, Mexico when parameterized using local weather data. We chose Iquitos as a site

where a model of larval instars and a simple field experiment could help elucidate an important

but still poorly understood process.
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We set up a randomized complete block design with subsampling that used ten houses as

blocking factors, two levels of water age within each house, and five replicates within each water

treatment (see Figure 4.1). Ten houses in the northern region of Iquitos, Peru were selected,

and two four-gallon buckets were placed in the open outside each house and filled with tap

water from that house. The first bucket in each house (treatment A) was left to accumulate

debris for five weeks and was visited every two to three days to remove any mosquito eggs,

larvae or pupae. The second bucket in each house (treatment B) was left to accumulate detritus

for two days. While the specific relationship between the accumulation of detritus in containers

and larval nutrition is still not entirely understood, higher accumulation is thought to support

a greater quantity of microorganisms on which mosquito larvae feed (Merritt et al., 1992;

Ponnusamy et al., 2008). These two treatment levels approximate extremes for containers in

the field that are found to have water standing for varying lengths of time, and thus serve as

a proxy for different food levels, since food is not controlled. At the end of the accumulation

phase, all twenty buckets (two from each house) were transported to the laboratory. Buckets

were covered with plastic wrap to prevent spillage during transport.

In the laboratory, the sides of each bucket were scraped with a wooden stirrer in order to

free any attached organic matter such as algae or detritus, and the water was stirred in order to

evenly distribute the organic matter. Once the water was well mixed, five 15-mL Falcon conical

centrifuge tubes (Fisher Scientific, Houston, Texas) were filled with 13 mL of water from each

bucket, as depicted in Figure 4.1.

Ae. aegypti eggs were identified and collected using a paper towel from household containers

at various sites in Iquitos. Paper towel strips containing eggs were then placed together in a tap

water bath at ambient outdoor temperature (∼ 26o C) and left overnight to hatch. All larvae

used in the experiment hatched within 12 hours of each other. One neonate larva, selected

at random, was placed into each of the 100 centrifuge tubes representing all house-treatment-

replicate combinations (10 houses × 2 treatments × 5 replicates), as shown in Figure 4.1.

The reason for isolating larvae was to be able to uniquely identify the life history of each larva.
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Figure 4.1: The hierarchical structure of the experiment. Old (A) and new (B) water treatments
are blocked by houses, and there are five immature replicates for each bucket.

This, however, neglects the effects of intraspecific competition in field containers which typically

contain multiple larvae at a time. Competition among Ae. aegypti larvae for food in containers

plays an important role in larval growth (Barbosa et al., 1972; Dye, 1982; Walsh et al., 2011),

and its effect on population dynamics in Iquitos warrants further attention, but it was beyond

the scope of the present study.

Centrifuge tubes containing larvae were stored upright in polystyrene blocks placed outdoors

on a surface 1m above ground. They were left uncapped in order to allow gas exchange between

water and air, simulating field conditions, and were covered with mosquito netting to prevent

oviposition or predation. Evaporation was minimal, but each centrifuge tube was replenished

with drinking water (Agua de Mesa Tropical, Iquitos) each day to maintain a constant volume

of 13 mL without affecting detritus content.

4.1.2 Data Collection

Individuals were removed from each centrifuge tube daily using a disposable pipette and placed

in a drop of cold water on a microscope slide in order to slow their movement. Each individual’s

life stage (first instar, second instar, third instar, fourth instar, or pupa) was recorded using a
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Zarbeco MiScope handheld digital microscope (Zarbeco, Randolph, New Jersey) and afterward

they were returned to the centrifuge tube. The pipette was rinsed with bottled water between

each observation to avoid transferring any organic material between centrifuge tubes. Life stages

and mortality were recorded at 24-hr intervals for 18 days, which was found to be a sufficient

length of time for all individuals to either emerge or die in a previous laboratory experiment

using the same methods (data not shown). While both laboratory and field experiments have

shown that Ae. aegypti can survive in immature stages under starvation conditions for up to

forty days (Gilpin and McClelland, 1979; Southwood et al., 1972), we considered that this would

be rare and chose instead to maximize the accumulation time of buckets in treatment A given

the time constraint of the entire experiment. Adult mosquitoes were sacrificed upon emergence

to prevent the risk of dengue transmission.

4.1.3 Data Processing

During the accumulation phase, one of the buckets was accidentally emptied, and so all data

from that house were discarded. Thus, we considered only 9 houses in our final analysis. Also,

three larvae were accidentally injured during observation, so the data following those points

were discarded.

Ae. aegypti immature development rates increase approximately linearly with temperature

in the range 15-32oC (Gilpin and McClelland, 1979). We obtained data for the daily minimum

and maximum air temperature in Iquitos over the course of our experiment (NCDC, 2015),

and we used an approximation by Focks et al. (1993) to convert air temperature to water

temperature. We determined that the water temperature was between 23.9oC (SD: 0.75oC)

and 30.9oC (SD: 0.49oC). Assuming that temperature varied sinusoidally between these two

extremes each day, and because we observed life stages at 24-hr intervals, this means that the

inferred growth rates are equivalent to those at a constant water temperature of 27.4oC. Thus,

in order to compare to Ae. aegypti immature development at temperature T , one would need

to multiply our results by the conversion factor (T − 13.4oC)/(27.4oC− 13.4oC), where 13.4oC
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is the critical temperature determined by Gilpin and McClelland (1979) at which the linearly

extrapolated development rate hits zero.

4.2 Model

We use a continuous-time Markov chain (CTMC) to model the changes in life stage of an

individual over time (Figure 4.2). Each individual starts as a newly hatched first instar (1) and

then progresses through the immature stages, first to fourth instar (1-4) and pupa (5), until

reaching either of two absorbing states, adulthood (6) or death (7). The times at which each

individual transitions as well as the state to which it transitions are stochastic, with probabilities

determined by rates ri and µi.

r1 r2 r3 r4 r5

µ1 µ2 µ3 µ4 µ5

7(Death) 

1 2 3 4 5 6

Figure 4.2: Continuous-time Markov chain for immature Ae. aegypti growth. An individual
transitions from its current state to any of the possible next states indicated by arrows. The
next state and time of transition are stochastic, occurring with probabilities determined by
transition rates (arrow labels). States are first through fourth instars (1-4), pupa (5) and adult
(6).

We consider three versions of this model, which contain either three or four parameters.

Having more parameters will enable us to better fit the model to our dataset but runs the risk

of overfitting the data. We used the Bayesian deviance information criterion (DIC) to determine

the best model to use given our dataset as it both selects for models that better fit the data,
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and penalizes them for having extra parameters.

In the first version of this model, when food is available, all development rates r are assumed

to be the same and all mortality rates µf are the same. This implies that the expected duration

in each life stage is the same, which may not be the most biologically realistic assumption, since

Ae. aegypti are expected to spend more time in the fourth instar and pupal stage (Christophers,

1960), but it reduces the complexity of the model, which facilitates analysis and implementation

in Bayesian routines. When food is depleted, we assume the development rate becomes zero,

and the mortality rate for all stages assumes a new value, µv.

The second version is the same as the first, except that we assume that the mortality rate

is zero when food is available. Thus, larvae develop until food is depleted, at which point they

starve until they die.

The third version is the same as the second, with no mortality when food is available, except

that there are two different developments rates: one for the first three instars, r1, and one for

fourth instars and pupae, r2. This is meant to reflect the expected difference in time spent in

the later stages. We again assume that all development rates become zero and the mortality

rate becomes nonzero when food is depleted.

In all three versions, we model the transition from food-available conditions to starvation by

assuming each container has an initial amount of food that is depleted as the mosquito develops

and is not replenished. We assume that the waiting time until food runs out in each container

is an exponentially distributed random variable with rate parameter λ, such that the average

waiting time until food runs out is 1/λ. Thus, we expect containers with greater amounts of

food to have lower values of λ. This neglects any changes in the depletion rate as larvae grow,

but it is a first step in including food dynamics.

4.2.1 Model analysis

We consider the stochastic process {X(t), t ≥ 0}, where X(t) is the stage of an individual

at time t (Cox and Miller, 1965). Thus, X(t) can take on values {1, 2, . . . , 7}. We write the
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transition probabilities for each of the three models as

Pij(t, t+ ∆t) = Pr{X(t+ ∆t) = j |X(t) = i}, i, j = 1, 2, . . . , 7. (4.1)

Eq. 4.1 indicates that the probability of observing an individual in state j at time t+ ∆t, given

that it is observed in state i at time t can be summarized as an element (in the ith row and

jth column by convention) of a 7 × 7 matrix. The elements of this matrix, P , known as the

transition matrix, depend on both time t and the interval of observation ∆t. Its elements are

probabilities and therefore must be between 0 and 1. We can intuitively solve for some of the

elements; for example, we know that individuals cannot regress from one stage to any previous

stage so Pij = 0 for all i > j. Also, both the adult stage and death are so-called absorbing

states in this model, meaning once an individual enters them, it cannot leave. This implies that

P66 and P77 are equal to one. We can solve for the rest of the elements of P for each model

using the forward Kolmogorov equations (see Appendix D).

Given observations ~x = (x0, x1, x2, . . . , xn) at equally spaced observation times ~t = (0, ∆t,

2∆t, . . . , n∆t), we can thus derive the likelihood of our model parameters ~θ, which is equal to

the joint probability of the observed transitions:

L(~θ | ~x) = p(~x | ~θ) = Px0x1(0,∆t)Px1x2(∆t, 2∆t) · · ·Pxn−1xn

(
(n− 1)∆t, n∆t

)
, (4.2)

where ~θ = (r, µf , µv, λ) for model 1, (r, µv, λ) for model 2, and (r1, r2, µv, λ) for model 3.

To determine the treatment means of the parameters, we consider the linear mixed-effects

model

log θij = νiθ +Hjθ + εijθ (4.3)

for each of the rates θ in the model, i.e. log rij = νir +Hjr + εijr, logµv,ij = νiµv +Hjµv + εijµv ,

and so on. Here, i = A, B represents the treatment and j = 1, . . . , 9 represents the house. We are

most interested in the treatment means νiθ, but also include random effects due to the house into

which the treatments are blocked. We assume Hjθ ∼ N (0, σ2
Hθ) and εijθ ∼ N (0, σ2

εθ). Thus, the
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statistical model is comprised of both fixed effects ~φ = (νAr, νBr, σ
2
Hr, σ

2
εr, . . . , νAλ, µBλ, σ

2
Hλ, σ

2
ελ)

and random effects ~ψ = (H1r, . . . ,H9r, . . . ,H1λ, . . . ,H9λ). We model the logged rates log θij be-

cause all rates in the model must be non-negative. We back-transform them once analysis is

complete in order to interpret them biologically.

Using Bayes’ rule, we can write the posterior distribution, i.e. the conditional probability

distribution given the data, of all the parameters ~Θ = (~θ, ~φ, ~ψ):

p(~Θ | ~x) ∝ p(~x | ~Θ) p(~Θ),

∝ p
(
~x | ~θ

)
p
(
~θ | ~φ, ~ψ

)
p
(
~ψ | ~φ

)
p
(
~φ
)

(4.4)

where the constant of proportionality simply ensures that the posterior is a proper distribution

in ~Θ and thus integrates to one over the entire parameter space. Since we can solve for the

likelihood function p
(
~x | ~θ

)
for each of the three models (Eq. 4.2), we can use Markov chain

Monte Carlo (MCMC)1 to sample from the posterior distribution, given prior distributions of

the fixed effects p
(
~φ
)
. The terms p(~θ | ~φ, ~ψ ) and p(~ψ | ~φ ) come from Eq. 4.3 and the assumption

Hjθ ∼ N (0, σ2
Hθ), εijθ ∼ N (0, σ2

εθ), respectively. We evaluate Eq. 4.4 at many points using

a combination of Metropolis and Gibbs sampling to estimate the posterior distribution (see

Appendix E).

4.3 Results

4.3.1 Data summary

The life stage trajectories for each individual are shown in Figure 4.3. Barring a few exceptions

like 5A (house 5, old water) and perhaps 6A, the life history of the individual appears to be

well determined by the initial condition of the water, which is the same for all five replicates

1Note that the Markov chain in Monte Carlo sampling (MCMC) is not the same as the Markov chain in our
Ae. aegypti immature growth model (CTMC). In the former, the Markov chain is over the continuous parameter
space, and in the latter, the Markov chain is over the discrete state-space of the various life stages.
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(although they are isolated). There appears to be some blocking effect in house 5, i.e. both

buckets do slightly better than average for their treatment, but none for house 2. 2A was

the only treatment that gave rise to adult Ae. aegypti, but 2B provided poorer than average

conditions for larval growth.

We also find a high amount of mortality for treatment A. From Figure 4.3 we see that

treatment A allowed for greater development on average than treatment B, but the majority of

individuals in treatment A still died as second or third instars. Ae. aegypti fared surprisingly well

in water that was only left to accumulate detritus for two days (B). Larvae were able to survive

for roughly ten days, and some grew to third and fourth instars. It is extremely unlikely that

larvae possess enough reserves upon hatching to survive this long, let alone molt two to three

times, which requires an increase in mass. Previous lab experiments raising larvae in drinking

water (in Iquitos) and tap water with no food added (in the lab) resulted in all first instars

dying within 24-48 hrs (data not shown). This suggests containers with standing water in Iquitos

start with a suitable baseline of food to sustain Ae. aegypti larvae. Even when isolated after

two days so that no more detritus can accumulate, microorganisms appear abundant enough

to sustain Ae. aegypti through several stages of development in small amounts of water. Thus,

containers in the field with relatively new water and more water per larva may house Ae. aegypti

larvae until more detritus can accumulate, providing more suitable conditions for pupation and

emergence. In the lab, Ae. aegypti have been found to survive up to 40 days without food and

then pupate once food is added (Gilpin and McClelland, 1979).

4.3.2 Model Selection

We use the deviance information criterion (DIC) as a measure of how good a fit the model is

to the data with a penalty for a greater “effective number of parameters.” In contrast to the

frequentist Akaike information criterion (AIC), which penalizes for actual number of parame-

ters, the inclusion of prior distributions in Bayesian inference tends to reduce the amount of

overfitting. Therefore, effective number of parameters is used as a more appropriate measure
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Figure 4.3: The distribution of life stages in water from each bucket. Each row within the
18 panels represents one of the five individuals exposed to water from that treatment. N/A
values are where individuals that were accidentally injured during observation were removed
from analysis.
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of model complexity (Gelman et al., 2013). DIC values for the three models we considered are

summarized in Table 4.1. We calculated the average value across several MCMC chains and

report the MCMC error as 2 times the standard error of the mean. Models with lower DIC

are preferable and any difference greater than about 7 is considered substantial (Spiegelhalter

et al., 2002). We find substantial differences in DIC values (∆DIC) that indicate model 3 is

the best model out of the three that we considered for our Iquitos data. We thus consider only

model 3 for the rest of our results.

Table 4.1: DIC values for the three model versions

Model Description
Number of
Parameters

DIC ∆DIC

1.
Background mortality, one
development rate

4 1125.11± 0.73 42.4

2.
No background mortality, one
development rate

3 1121.19± 0.32 38.5

3.
No background mortality, two
development rates

4 1082.73± 6.3× 10−4 0

4.3.3 MCMC results

We developed a function in MATLAB v. 8.3 to implement the hybrid Gibbs-Metropolis algo-

rithm detailed in Appendix E. An initial “burn-in” period is run to allow time for the chains to

converge to the posterior distributions. The posterior distributions of the four rate parameters

(r1, r2, 1/µv and 1/λ) are shown in Figure 4.4. We use 1/µv as a measure of “starvation resis-

tance,” similar to Arrivillaga and Barrera (2004), which represents the average amount of time

an individual survives once food is depleted. We use 1/λ, which is the expected waiting time

until food runs out, as a proxy for the amount of food in a container (a constant depletion rate

would imply that twice the waiting time means there was twice as much food in the container).

The mean acceptance ratio was 0.249 (SD: 0.0037).
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Figure 4.4: Posterior distributions for treatment means (dark = old water, light = new water)
of the model parameters. 500,000 MCMC points were sampled following a burn-in of 2,000.
Note the difference in horizontal scales.
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The convergence diagnostics for each of the rate parameters are shown in Figures 4.5-4.8.

Despite significant autocorrelation in some of the rate parameters, especially r2, the Gelman-

Rubin statistics indicate convergence to the true posterior distribution.
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Figure 4.5: Convergence diagnostics for log r1. Five chains of 500,000 points were run with ran-
domly selected starting values and a burn-in period of 2,000 points. Gelman-Rubin statistics,
R̂, indicate convergence when less than 1.1. Autocorrelation functions (ACF) show the `-lag
autocorrelation for each parameter, averaged across the five chains. The effective sample size
(ESS) represents the approximate number of independent samples based on all `-lag autocor-
relation values (approximated using the first 2,000 `-lag values). The 1-lag autocorrelation is
displayed as p(1).

We chose flat priors for all parameters except for log r2, as shown in Figure 4.9. We deter-
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Figure 4.6: Convergence diagnostics for log r2. Five chains of 500,000 points were run with ran-
domly selected starting values and a burn-in period of 2,000 points. Gelman-Rubin statistics,
R̂, indicate convergence when less than 1.1. Autocorrelation functions (ACF) show the `-lag
autocorrelation for each parameter, averaged across the five chains. The effective sample size
(ESS) represents the approximate number of independent samples based on all `-lag autocor-
relation values (approximated using the first 2,000 `-lag values). The 1-lag autocorrelation is
displayed as p(1).
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Figure 4.7: Convergence diagnostics for logµv. Five chains of 500,000 points were run with
randomly selected starting values and a burn-in period of 2,000 points. Gelman-Rubin statis-
tics, R̂, indicate convergence when less than 1.1. Autocorrelation functions (ACF) show the
`-lag autocorrelation for each parameter, averaged across the five chains. The effective sample
size (ESS) represents the approximate number of independent samples based on all `-lag auto-
correlation values (approximated using the first 2,000 `-lag values). The 1-lag autocorrelation
is displayed as p(1).
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Figure 4.8: Convergence diagnostics for log λ. Five chains of 500,000 points were run with ran-
domly selected starting values and a burn-in period of 2,000 points. Gelman-Rubin statistics,
R̂, indicate convergence when less than 1.1. Autocorrelation functions (ACF) show the `-lag
autocorrelation for each parameter, averaged across the five chains. The effective sample size
(ESS) represents the approximate number of independent samples based on all `-lag autocor-
relation values (approximated using the first 2,000 `-lag values). The 1-lag autocorrelation is
displayed as p(1).
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mined there was not enough data for fourth instars and pupae to accurately estimate log r2,

especially in treatment B. We left the parameter in the model, however, because its inclusion

resulted in a lower DIC than the other models which omitted the parameter. The fourth instar

and pupal stage for Ae. aegypti have been shown to last an average of 2 days in the lab when

food is abundant (Christophers, 1960). This corresponds to an average r2 of 0.5 For variance

parameters, we used an inverse-gamma prior with a = 0.01, b = 0.01, and for rate parameters

other than log r2 we used a normal prior with µ = 0, σ2 = 100. . We thus chose a normal prior

for log r2 with µ = log(0.5), σ2 = 10, which facilitated convergence to the posterior distribution

without imposing too much prior information. These priors along with the marginal posterior

distributions of logged rates are shown in Figure 4.9

The posterior estimates for the house-to-house variance σ2
Hθ and the error variance σ2

εθ are

shown in Table 4.2. The uncertainty in the posterior estimates of the variance parameters was

too high to determine whether or not there was a blocking effect on buckets in the same house.

Table 4.2: Mean and 2.5th and 97.5th percentiles of posterior distributions for variance param-
eters

Parameter p0.025 p̄ p0.975

σ2
Hr1

0.0094 0.107 0.158

σ2
εr1 0.0094 0.0937 0.3591

σ2
Hr2

0.0227 14.74 114

σ2
εr2 0.0197 18.10 156.5

σ2
Hµv

0.0096 0.1239 0.5522

σ2
εµv 0.0081 0.0755 0.3142

σ2
Hλ 0.0155 0.4551 1.966

σ2
ελ 0.0553 0.7008 2.306

Water age in containers does not appear to have much of an effect on the development rate
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of immatures. The posterior mean r̄1A is 0.63 day−1 with symmetric 95% credible interval—

meaning r1A has an equal chance of being above or below the interval—(0.39, 0.93) day−1. The

estimate for r1B is similar: r̄1B = 0.63 day−1 with symmetric 95% credible interval (0.36, 1.0)

day−1. Based on the posterior means of r1 we expect first through third instars to spend 1.7

(1.1, 2.6) days in old water and 1.7 (1.0, 2.6) days in new water on average, which is longer

than lab estimates of 1 day at 28oC (Christophers, 1960).

Water age does appear to affect the amount of food in a container, as inferred by the average

time to its depletion 1/λ (bottom right of Figure 4.4, A: 6.62 (2.77, 14.6) days, B: 2.08 (0.085,

4.32) days. However, there is considerable overlap in the marginal posterior distributions for 1/λ,

and even water that is only two days old has enough food to accommodate larvae. Containers in

the field therefore likely start out with more food than is currently assumed by detailed models

like Skeeter Buster. Currently, tap water in Iquitos is non-potable and could potentially host a

number of micro-organisms that may provide a suitable habitat for Ae. aegypti, even when the

water is relatively fresh.

Older water appears to slightly increase resistance to starvation (1/µv) according to Figure

4.4, A: 9.85 (5.80, 16.1) days, B: 7.55 (4.77, 11.5), although again there is considerable overlap.

We would expect an increase in starvation resistance for older containers if greater amounts of

food in a container led to greater lipid reserves, allowing immatures to survive longer during

starvation. This is included in the model by Gilpin and McClelland (1979), and was hypothesized

to be the reason that Arrivillaga and Barrera (2004) observed greater starvation resistance in

third instars exposed to higher food levels.

There is too much uncertainty in the estimates for r2 to make any conclusions regarding

the effect of age of water on this development rate, A: 3.05 (0.00214, 6.12) day−1, B: 8.08

(2.99× 10−4, 13.1) day−1. This is likely because there was insufficient data on the development

of fourth instars and pupae, although the DIC indicated that model 3 was a better enough fit

to the data to justify the parameter’s inclusion.
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4.4 Discussion

Our analysis shows that Ae. aegypti immature dynamics in food-scarce containers in Iquitos are

determined almost entirely by the presence or absence of food, rather than quality or quantity.

Despite a lack of understanding of what exactly constitutes food in containers, our model is

able to infer the relative amount of food in containers with a CTMC that switches rates once

food in a container is depleted. Development rates of immature Ae. aegypti in the field do not

appear to depend on the amount of food, and they were equivalent for containers in the field

for two days and five weeks. Starvation mortality rates showed a slight dependence on water

age, suggesting increased food availability allows for a greater accumulation of lipid reserves on

which the immature can survive once food is depleted.

Surprisingly, water left outdoors for only two days was capable of producing third and

fourth instars, even after preventing further accumulation of detritus in the container. Detailed

container models for Ae. aegypti, such as CiMSIM (Focks et al., 1993) and Skeeter Buster

(Magori et al., 2009), that assume little to no food in containers initially and regular food input

(e.g. daily) should be reassessed when modeling Iquitos in order to capture the high amount of

variation observed in the field.

We also remark that there was a lower amount of survival than expected across all containers:

only five of the ninety individuals survived to emergence. While some field studies report similar

survival proportions (Seawright et al., 1977; Southwood et al., 1972), Walsh et al. (2011) found

that survival in field containers was closer to 60%. We allowed treatment A containers to

accumulate detritus in the field for up to five weeks and removed any mosquitoes found during

the accumulation phase that could deplete food resources and contribute to delayed density

dependence (see Walsh et al., 2013), so we expected larval survival to be closer to this proportion.

This discrepancy may be due to the lower amount of water volume per larva used in this

experiment. While 13 mL of water was sufficient to ensure close to 100% survival in an earlier

lab experiment used to test this setup (data not shown), it is clear that food levels available

in the field are much lower than those used in the lab. The low water volume per larva could
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approximate high larval density conditions in the field if we assume that larvae in a container

compete equally for food. Then we could consider that each larva has an effective volume of food

available. For example, Seawright et al. (1977) found 4.3% survival in a field container that had

7 L of water and 500 larvae, which amounts to 14 mL of water per larvae. However, our results

are more variable: rather than finding 5.6% survival in all containers we find 100% in one and 0

in 17, for an average of 5.6%. The greater variability among containers than within containers

suggest that the probability of emergence is largely determined by food accumulation, and it

is the food accumulation that is highly variable rather than the life stage trajectories of each

larva within a container.

By using DIC to assess the suitability of several CTMC models, we were able to narrow

down the most important components of immature dynamics in the field: food-present and food-

absent regimes, stochastic waiting time until food depletion, and distinct development rates for

early and late immature stages. Although Gilpin and McClelland (1979) found there to be some

background mortality (death even in food-abundant conditions), we found that it was not a

necessary parameter in our model for Iquitos, and that including background mortality did not

provide a better enough fit to the data to justify the extra parameter.

The fact that water age affected amount of food in the containers (lower right panel of

Figure 4.4) but not growth rates agrees with Gilpin and McClelland (1979), who noted that

larval weight trajectories were “independent of food density and larval number” (p. 368). In

other words, as long as there is food present, Ae. aegypti tend to consume at their maximum

efficiency. The switch to starvation conditions likely happens abruptly as we have modeled it

here (see Appendix D). In the field, however, food may be replenished and the transition rates

may switch back to a food-present regime. This could be incorporated into our model, given a

better understanding of how often food in containers is replenished in the field.

Although it is difficult to parameterize with field data, we feel that the Gilpin and McClel-

land (1979) equations for food and larval weight are a good model for what is occurring in

the field, with the availability of food dictating the overall dynamics. Although they initially
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assume that the food consumption rate depends on the amount of food available, they conclude

that this rate saturates at a very low level. We believe it is somewhat simpler in that the con-

sumption rate is constant regardless of the quantity of food. Rather, it is only the presence or

absence of food that determines the dynamics. Otherwise, we should see a difference in r1 for

treatment A and treatment B, considering that the posterior distributions for λ indicate that

treatment A contains more food on average.

A major drawback to the model by Gilpin and McClelland (1979) is that it is difficult

to obtain weight data directly, although it could be inferred from length measurements (see

Christophers, 1960). We believe the CTMC immature stage model developed here can track the

same process and be more easily informed with immature stage trajectories, which are directly

observable in the field. More work should be done, however, to determine the relationship

between the expected waiting time until food is depleted and the initial amount of food in a

container. It may be possible to use a less dispersed random variable such as a gamma random

variable to help link the time of switching to the initial amount of food in the container. However,

a better understanding of the functional form of food depletion over time will be necessary to

convert depletion time to initial food level.

Future work includes modifying the CTMC model to include further biological complexities.

For example, the current model assumes that the duration of each life stage is exponentially

distributed, which is likely not the case. Exponential waiting times are a necessary component

of the CTMC model because it preserves the memoryless property of a Markov chain. However,

we can add a chain of hidden states within stages to decrease the dispersion of the waiting

time, which then becomes a gamma-distributed random variable. This technique has been used

with epidemic models to decrease the variance in the infectious period (Anderson and Watson,

1980; Lloyd, 2001) and has been recently proposed for Ae. aegypti larval dynamics (Romeo

Aznar et al., 2014). The disadvantage is that the hidden states are not observable, and so the

likelihood may be more difficult to derive, though it may still be possible with hidden Markov

model theory.
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A future experiment should include a larger volume for individual mosquitoes to account

for the typically low levels of food in the field. It should also be designed to observe larvae for a

longer period of time, up to forty days. This can help estimate the starvation resistance and how

it varies across containers in the field. This was not feasible in our experiment given the time

allotted to the food accumulation phase, but we note that several immature Ae. aegypti had

neither died nor emerged at the end of the experiment, so potentially important information

about the maximum starvation time was discarded.

We have provided a simple CTMC model for immature Ae. aeygpti growth in containers in

Iquitos that has led to new insights. Further field experiments on Ae. aegypti ecology will be

necessary to determine the various interactions of food accumulation in buckets, larval growth

and density dependence, in order to develop more accurate models. Likewise, both simple and

complex models can help identify sources of variation and uncertainty that can inform future

experimental design. This iterative process will be necessary in understanding Ae. aegypti ecol-

ogy to the level of detail required to effectively control vector populations and suppress dengue

transmission in endemic regions.
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Appendix A

Eco-evolutionary dynamics of

Wolbachia : Effect of different forms

of density dependence
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We start with a more general form of the equations for I, the number of Wolbachia-infected

females, and U , the number of wild-type females (Eq. 2.1):

dI

dt
= (bi − di)I (A.1a)

dU

dt
=

(
bu

(
1− sh

I

I + U

)
− du

)
U. (A.1b)

We define p, the frequency of Wolbachia, to be p = I/(I + U) and N to be the total female

population size N = I + U . We can then find dp/dt using the quotient rule and dN/dt as the

sum of Eq. A.1a and Eq. A.1b.

dp

dt
=

(I + U)dIdt − I
(
dI
dt + dU

dt

)
(I + U)2

(A.2a)

dN

dt
=
dI

dt
+
dU

dt
(A.2b)

Substituting in Eq. A.1 and simplifying yields the system of equations in Eq. A.3, which is a

more general form of Eq. 2.2 in Chapter 2.

dp

dt
= p(1− p)

(
bi − bu(1− shp)− (di − du)

)
(A.3a)

dN

dt
=
(
bip+ bu(1− p− shp(1− p))− (dip+ du(1− p))

)
N. (A.3b)

Per capita emergence and death rates bi, bu, di, du may all be functions of N (we have omitted
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function notation, e.g. bi(N), for readability). If one assumes density dependence acts only on

the death rate, then there must be Wolbachia-induced mortality, i.e. di 6= du, in order for the

equations to be coupled, due to the di − du term in Eq. A.3a. In addition, density-dependent

mortality must interact with Wolbachia-induced mortality. If, for example, di(N) = du(N) +α,

rather than di(N) = du(N)(1+α), then the dependence on N will cancel out and the equations

will not be coupled (see Sections A.2 and A.3).

Even if density dependence acts only on the emergence rate, as we have assumed in Chapter

2, so long as the difference in emergence rates scales with density dependence, i.e. bi(N) =

(1 − sf )bu(N), then in order for the invasion threshold to depend on N , we must still have

di 6= du. Otherwise, bu will factor out of Eq. A.3a and total population size will affect the

time course of invasion (see Figs. 2.2C and 2.2D) but not the invasion threshold itself, which

will reduce to p̂ =
sf
sh

. The coupling between p and N is what ultimately causes the invasion

threshold to depend on N , and will thus depend on the specific form of density dependence

assumed.

To illustrate this, we take a more detailed look at four forms of density dependence. We

begin with the type assumed in the text, linear decrease in per capita emergence rate (Section

A.1). We then examine two forms of linearly increasing per capita death rate: one in which

density-dependent mortality interacts with Wolbachia-induced mortality (Section A.2), and

one in which the two types of mortality act independently (Section A.3). Finally, we look at a

nonlinear form of density-dependent per capita mortality (Section A.4).

A.1 Linear decrease in per capita emergence rate

We focus first on the type of density dependence assumed in Chapter 2, linear decrease in per

capita emergence rate with population size. That is,
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Table A.1: Per capita density-dependent emergence and death rates for the type of density
dependence assumed in Chapter 2.

I U

b(N) (1− sf )

(
b0

(
1− N

K

)
+ d

N

K

) (
b0

(
1− N

K

)
+ d

N

K

)
d(N) d+D d

The rates are depicted graphically in Figure A.1:

0 K

0

d0

d0/w

b0(1 − sf )

b0 b
U

d
U

b
I

d
I

N
Figure A.1: Per capita density-dependent emergence and death rates for the type of density
dependence assumed in Chapter 2. Stable equilibria (filled circles) for all infected (red) or all
uninfected (blue) individuals occur where per capita emergence and death rates intersect.
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If we substitute the per capita growth rates from Table A.1 into Eq. A.3 and solve for

dp/dt = 0 and dN/dt = 0, we get the six equilibria in Table 2.2. For stability analysis, we

evaluate the Jacobian at each of the six equilibria. To make the analysis simpler, we make

the change of variables x = N/K, such that x is the population number relative to carrying

capacity, without loss of generality.

1.

J =

 − sf b0 −D 0

0 b0 − d

 , (A.4)

which has eigenvalues

λ =

 −sf b0 −D

b0 − d

 . (A.5)

The second eigenvalue is positive, provided RU > 1, which we assume to be true. Thus,

the equilibrium is unstable.

2.

J =

 −sf d−D 0

−d (sf + sh)−D −b0 + d

 , (A.6)

which has eigenvalues

λ =

 −sf d−D

−b0 + d

 . (A.7)

As long as RU > 1, both eigenvalues are negative, indicating a stable equilibrium. Thus,

RU > 1 is necessary to have a stable wild-type population to begin with.

3.

J =

 −(sf b0+D)(−b0 sh+sf b0+D)
b0 sh

(sf b0+D)(−b0 sh+sf b0+D)(b0−d)D

b0
3sh2

0 b0 (1− sf )− (d+ D)

 , (A.8)
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with eigenvalues

λ =

 (sf b0+D)(b0 (sh−sf )−D)
b0 sh

b0 (1− sf )− (d+ D)

 . (A.9)

The second eigenvalue is positive when RI > 1, which we assume throughout, and which

is necessary for equilibria 4 and 6 to be positive in N (provided RU > 1). Thus, RI > 1

is sufficient for equilibrium 3 to be unstable.

4. The Jacobian evaluated at equilibrium 4 and its eigenvalues are too unwieldy to reproduce

here, but the determinant simplifies to Eq. A.10.

∆ =
sT

sh(1− sf )
(RI − 1) (sT − sh) (A.10)

A saddle occurs wherever the determinant is negative, which occurs when sh > sT and

RI > 1. We must assume the former for the p-coordinate to be less than one, and we

already assume the latter for both equilibria 4 and 6 to be positive in N . Thus, wherever

equilibrium 4 exists and is biologically meaningful, it is unstable, and more specifically,

a saddle.

5.

J =


b0(sf − sh) +D 0

0 b0(1− sf )− (d+D),

 . (A.11)

which has eigenvalues

λ =

 b0 (sf − sh) +D

b0 (1− sf )− (d+ D)

 . (A.12)

The second eigenvalue is the same as equilbrium 3, and thus we also have that 5 is

unstable when RI > 1.
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6. 
d+D
1−sf (sT − sh) 0

(sh−sf)(d+D)2(RI−1)

(1−sf)
2
(b0−d)

−b0 (1− sf ) + d+ D

 , (A.13)

which has eigenvalues

λ =

 d+D
1−sf (sT − sh)

−b0 (1− sf ) + d+ D

 . (A.14)

The first eigenvalue is negative when sh > sT . The second eigenvalue is negative when

RI > 1. Since we assume both of these conditions, equilibrium 6 is stable.

The stability and locations of the six equilibria are summarized in Figure 2.1.

The difference in p-coordinates between equilibria 3 and 4 gives us a measure of how strongly

the invasion threshold depends on population size, or the potential benefit of suppressing the

population in decreasing the invasion threshold. The difference is represented by Eq. 2.8. It is

evident that when D = 0, equilibria 3 and 4 occur at the same value of p, and the invasion

threshold will be independent of N .

A.2 Linear increase in per capita death rate, interacting with

Wolbachia-induced mortality

We now consider the case where per capita emergence rate is constant, and the per capita

death rate increases linearly with population size. This type of density dependence is assumed

by Keeling et al. (2003), Farkas and Hinow (2010), and Zheng et al. (2014),
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Table A.2: Per capita density-dependent emergence and death rates for density-dependent
mortality that interacts with Wolbachia-induced mortality

I U

b(N) b(1− sf ) b

d(N) (b+D)
N

K
b
N

K

which is graphically represented in Figure A.2.

0 K

0

b(1 − sf )

b

b
U

d
U

b
I

d
I

N
Figure A.2: Linearly increasing per-capita death rate, interacting with Wolbachia-induced mor-
tality. Stable equilibria (filled circles) of all infected (red) or all uninfected (blue) individuals
occur where per capita emergence and death rates intersect.

Plugging this form of density dependence into Eq. A.3 and then solving for the equilibria

of the system gives the six equilibria in Table A.3.
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Table A.3: Equilibrium points for linear increase in per capita death rate, interacting with
Wolbachia-induced mortality. sT = (sfb+D)/(b+D).

# p∗ N∗

1. 0 0

2. 0 K

3.
sf
sh

0

4.
sT
sh

(1− sT )K

5. 1 0

6. 1 (1− sT )K

We again consider x = N/K for the stability analysis.

1.

J =

−bsf 0

0 b

 , (A.15)

which has eigenvalues

λ =

−bsf
b

 . (A.16)

One eigenvalue is always positive and the other is always negative, so equilibrium 1 is

unstable, and more specifically, a saddle.

106



2.

J =


−bsf −D 0

−b(sf + sh)−D −b

 , (A.17)

which has eigenvalues

λ =

−bsf −D
−b

 , (A.18)

both of which are always negative. Thus, equilibrium 2 is stable.

3.

J =


bsf
sh

(sh − sf )
Dsf
s2
h

(sf − sh)

0 b(1− sf )

 , (A.19)

which has eigenvalues

λ =

bsfsh (sh − sf )

b(1− sf )

 , (A.20)

the latter of which is positive, indicating that equilibrium 3 is unstable.

4.

J =


bsT
sh

(sT − sh)
DsT
s2
h

(sT − sh)

b2

b+D
(1− sf )(sT − sh) − b

b+D

1− sf
sh

(bsh +DsT )

 . (A.21)

The eigenvalues are too complicated to display, but we can at least solve for the determi-

nant:

∆ =
b2

sh
sT (1− sf )(sT − sh), (A.22)

which is negative when sh > sT , which must be true for the p-coordinate of equilibrium

4 to be less than one. Thus, wherever equilibrium 4 is biologically meaningful, we have

that it is unstable, and more specifically, a saddle.
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5.

J =


b(sf − sh) 0

0 b(1− sf )

 , (A.23)

which has eigenvalues

λ =

b(sf − sh)

b(1− sf )

 , (A.24)

the latter of which is always positive, indicating that equilibrium 5 is unstable.

6.

J =

 b(sT − sh) 0

b(1− sT )(sh − sT ) −b(1− sf )

 , (A.25)

which has eigenvalues

λ =

b(sT − sh)

−b(1− sf )

 , (A.26)

both of which are negative, provided sh > sT , which we have already assumed. Thus,

equilibrium 6, the infection-only equilibrium, is stable.

The equilibria positions and stabilities are represented in Figure A.3.
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Figure A.3: Phase plane for linearly increasing death rates, interacting with Wolbachia mortal-
ity, constant emergence rates. The separatrix (solid line) separates the phase space into initial
conditions that lead to Wolbachia extinction (unshaded region) and Wolbachia establishment
(shaded region). Equilibria (circles) occur wherever a p-nullcline (dotted lines) intersects an
N -nullcline (dashed lines) and are either stable (filled) or unstable (unfilled) as determined by
linear stability analysis. Parameter values are chosen to be b = 1, D = 1, sf = 0.1, sh = 1.

The dependence of the invasion threshold on population size can be expressed, again, as the

difference between p-coordinates of equilibria 3 and 4 (Eq. A.27).

δ =
D

b+D

(
1− sf
sh

)
(A.27)

We see, as in the previous form of density dependence, that the invasion threshold depends on

initial population size only when D 6= 0. Zheng et al. (2014) found this to be the case, although

the parameters they used show a weaker dependence on population size. We chose parameters
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to illustrate a case when there is a strong dependence on initial population size.

A.3 Linear increase in per capita death rate, independent of

Wolbachia-induced mortality

We could just as easily select a form of density-dependent per capita death rate in which the

density dependence-induced mortality acted independently of Wolbachia-induced mortality, as

was recently assumed by Souto-Maior et al. (2014). This might be a more appropriate choice if,

say, infection with Wolbachia caused an average reduction in lifespan of one day, regardless of

whether the population was at half or twice carrying capacity. The per capita emergence and

death rates would then take the form of Table A.4.

Table A.4: Per capita density-dependent emergence and death rates for density-dependent
mortality that is independent of Wolbachia-induced mortality

I U

b(N) b(1− sf ) b

d(N)
bN

K
+D

bN

K

These rates are depicted graphically in Figure A.4.
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Figure A.4: Linearly increasing per-capita death rate, interacting with Wolbachia-induced mor-
tality. Stable equilibria (filled circles) of all infected (red) or all uninfected (blue) individuals
occur where per capita emergence and death rates intersect.

Plugging this form of density dependence into Eq. A.3 and then solving for the equilibria

of the system gives the six equilibria in Table A.5.
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Table A.5: Equilibrium points for linear increase in per capita death rate, independent of
Wolbachia-induced mortality.

# p∗ N∗

1. 0 0

2. 0 K

3.
bsf +D

bsh
0

4.
bsf +D

bsh

(
(1− sf )− D

b

)
K

5. 1 0

6. 1

(
(1− sf )− D

b

)
K

Linear stability analysis for each point gives the following:

1.

J =


−bsf −D 0

0 b

 . (A.28)

with eigenvalues

λ =

−bsf −D
b

 . (A.29)

The second eigenvalue is always positive and thus the equilibrium is unstable.

2.

J =


−bsf −D 0

−b(sf + sh)−D −b

 , (A.30)
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which has eigenvalues

λ =

−bsf −D
−b

 . (A.31)

Both eigenvalues are negative, so long as Wolbachia does not cause a survival advantage,

such that D < −bsf , and the equilibrium is stable.

3.

J =


bsf +D

sh

(
sh −

(
sf +D/b

))
0

0 b(1− sf )−D

 , (A.32)

which has eigenvalues

λ =

bsf +D

sh

(
sh −

(
sf +D/b

))
b(1− sf )−D

 . (A.33)

The second eigenvalue is positive when RI > 1, and thus the equilibrium is unstable.

4.

J =


bsf +D

sh

(
sh −

(
sf +D/b

))
0

−
(
b(1− sf )−D

)(
sh −

(
sf +D/b

))
−
(
b(1− sf )−D

)
 , (A.34)

which has eigenvalues

λ =

bsf +D

sh

(
sh −

(
sf +D/b

))
−
(
b(1− sf )−D

)
 . (A.35)

The first eigenvalue is positive as long as sh > sf + D/b, which must be true for the

p-coordinate to be less than one, and thus to be biologically meaningful. The second

eigenvalue is negative when RI > 1. Thus, the equilibrium is unstable, and more specif-

ically, a saddle.
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5.

J =


−(b(sh − sf )−D) 0

0 b(1− sf )−D

 , (A.36)

which has eigenvalues

λ =

b(sf − sh)

b(1− sf )

 . (A.37)

The second eigenvalue is positive, and thus the equilibrium is unstable.

6.

J =


−b
(
sh −

(
sf +D/b

))
0

−
(
b(1− sf )−D

)(
sh −

(
sf +D/b

))
−
(
b(1− sf )−D

) , (A.38)

with eigenvalues

λ =

−b
(
sh −

(
sf +D/b

))
−
(
b(1− sf )−D

)
 . (A.39)

Both eigenvalues are negative when sh > sf +D/b, as we have already assumed, and when

RI > 1. Thus, the equilibrium is stable.

The positions and stabilities of the six equilibria are summarized in Figure A.5.
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Figure A.5: Phase plane for linearly increasing death rates, independent of Wolbachia mortal-
ity, constant emergence rates. The separatrix (solid line) separates the phase space into initial
conditions that lead to Wolbachia extinction (unshaded region) and Wolbachia establishment
(shaded region). Equilibria (circles) occur wherever a p-nullcline (dotted lines) intersects an
N -nullcline (dashed lines) and are either stable (filled) or unstable (unfilled) as determined by
linear stability analysis. Parameter values are chosen to be b = 1, D = 0.1, sf = 0.3, and sh = 1.

The difference in p-coordinates and thus the dependence of the invasion threshold on N

is δ = 0, regardless of parameter values, which explains why Souto-Maior et al. (2014) found

the invasion frequency threshold to be constant with population size (see their Eq. 3 and

5 and dashed lines in their Figure 1). This is because, if Wolbachia-induced mortality acts

independently of density-dependent mortality, then N cancels out in Eq. A.3a, and frequency

alone can predict the ultimate fate of Wolbachia. This does not mean, however, that population

size is constant, and density dependence may still affect the timecourse of the invasion, as was

the case for density-dependent emergence when D = 0 (see Figs. 2.2 and 2.2D in Chapter 2).
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Thus, the result that the invasion threshold of Wolbachia depends on population size as well

as initial frequency requires not only that the infection changes the lifespan of its host (D 6= 0),

but also that it interacts with any density-dependent mortality assumed in the per capita death

rate.

A.4 Nonlinear increase in per capita death rate

We now examine a form of nonlinear density dependence that was assumed by Hancock et al.

(2011) in their model for Ae. aegypti, although we apply it directly to adult mortality since we

do not explicitly model a larval stage.

Table A.6: Per capita density-dependent emergence and death rates for nonlinear density-
dependent mortality. w is the relative lifespan of Wolbachia-infected individuals, assumed to
scale with density-dependent mortality (interacting).

I U

b(N) (1− sf )b b

d(N) 1
w

(
d0 + αNβ

)
d0 + αNβ

Note that the form of density dependence in Section A.2 is a special case of this form, where

d0 = 0 and β = 1 (also, we use w here rather than b/(b+D) to represent the relative lifespan

of infected individuals). These rates are depicted graphically in Figure A.6.
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Figure A.6: Nonlinearly increasing per-capita death rate, interacting with Wolbachia-induced
mortality. Stable equilibria (filled circles) of all infected (red) or all uninfected (blue) individuals
occur where per capita emergence and death rates intersect.

The slope of b(N) − d(N) determines how quickly the system returns to carrying capacity for

small perturbations, i.e. the strength of density dependence. This slope is proportional to β.

Plugging this form of density dependence into Eq. A.3 and then solving for the equilibria

of the system gives the six equilibria in Table A.7.
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Table A.7: Equilibriua for nonlinear increase in per capita death rate, interacting with Wol-
bachia-induced mortality. RI and RU are the ratio of per capita birth to death rate in the limit as
N approaches 0 (equal to b(1−sf )/(d0/w) and b/d0 respectively). They represent the expected
number of female offspring produced by an infected and uninfected individual, respectively,
when density dependence and CI effects are absent. The total fitness cost is sT = 1−w(1− sf ).

# p∗ N∗

1. 0 0

2. 0 K

3.
1

sh

(
sf +

d0

b

(
1− w
w

))
0

4.
sT
sh

(
RI − 1

RU − 1

)1/β

K

5. 1 0

6. 1

(
RI − 1

RU − 1

)1/β

K

Linear stability analysis for each point gives the following:

1.

J =


−bsf − d0 (1− w) /w 0

0 b− d0

 . (A.40)

with eigenvalues

λ =

−bsf − d0 (1− w) /w

b− d0

 . (A.41)

The second eigenvalue is always positive and thus the equilibrium is unstable.

118



2.

J =


b(1− sf − 1/w) 0

b(1− sf − sh − 1/w) −β(b− d0)

 , (A.42)

which has eigenvalues

λ =

b(1− sf − 1/w)

−β(b− d0)

 . (A.43)

Both eigenvalues are negative, so long as Wolbachia does not cause a survival advantage

such that w > 1/(1− sf ), and the equilibrium is stable. The strength of density depen-

dence, represented by β, affects how quickly trajectories approach this equilibrium. The

stronger density dependence, the more quickly they approach, although the effect of this

also depends on the relative magnitude of the first eigenvalue (if it is much smaller than

the second eigenvalue, then the effect will be small because the rate of approach will be

limited by the first eigenvalue).

3.

J =


− 1

bwsh

(
bsf + d0(1− w)/w

)(
b(sf − sh) + d0(1− w)/w

)
0

0 b(1− sf )− d0/w

 ,
(A.44)

whose diagonal elements are the eigenvalues. The second eigenvalue is positive when

RI > 1, and thus the equilibrium is unstable.

4. The Jacobian and its eigenvalues for this equilibrium are too unwieldy to reproduce here,

but after some simplifying (see detailed stability analysis type4.mw), the determinant can

be written

∆ = −b β d0 sT
w

(
1− sT

sh

)
(RI − 1) (A.45)
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The determinant is always negative because we assume RI > 1 and sh > sT (both must be

true for this equilibrium to be biological, i.e. p∗ < 1 and N∗ > 0). Thus, the equilibrium

is unstable, and more specifically, a saddle.

5.

J =


−(b(sh − sf )− d0(1− w)/w) 0

0 b(1− sf )− d0/w

 , (A.46)

whose eigenvalues are the diagonal elements. The second eigenvalue is positive when

RI > 1, so the equilibrium is unstable.

6.

J =


b(sT − sh) 0

−b(sT − sh)

(
bw(1− sf )− d0

b− d0

)1/β

−β (b(1− sf )− d0/w)

 , (A.47)

with eigenvalues

λ =

 b(sT − sh)

−β (b(1− sf )− d0/w)

 . (A.48)

Both eigenvalues are negative when sh > sT and RI > 1. Thus, the equilibrium is sta-

ble. When density dependence is strong (β is large), nearby trajectories approach the

equilibrium more quickly.

The effect of density dependence on the invasion threshold can once again be quantified by the

difference in p-coordinates in equilibria 3 and 4:

δ =
1− w
sh

(
1− sf −

d0

bw

)
(A.49)

We see again that for the effect to be positive, we must have a lifespan-shortening strain w < 1.

Incidentally, again, the effect is reversed if w > 1 (Wolbachia causes an increase in lifespan),

though we must still have w < 1/(1 − sf ) for the equilibrium analysis to hold. Interestingly,

the strength of density dependence β does not enter into this equation, although its effect can
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clearly be seen in Figure A.7, where higher values of β tend to make it easier for Wolbachia to

spread (more gray area on phase plane). This illustrates the difficulty in defining one quantity

to measure the curvature of the separatrix without being able to explicitly solve for it.

The positions and stabilities of the six equilibria are summarized in Figure A.7.
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Figure A.7: Phase plane for nonlinearly increasing death rates, independent of Wolbachia mor-
tality, constant emergence rates. The separatrix (solid line) separates the phase space into initial
conditions that lead to Wolbachia extinction (unshaded region) and Wolbachia establishment
(shaded region). Equilibria (circles) occur wherever a p-nullcline (dotted lines) intersects an
N -nullcline (dashed lines) and are either stable (filled) or unstable (unfilled) as determined by
linear stability analysis. Parameter values are chosen to be b = 1, d0 = 0.1, sf = 0.1, w = 0.5,
sh = 1, β = A) 0.5, B) 1, C) 2 and D) 4.
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Appendix B

Eco-evolutionary dynamics of

Wolbachia : The interactions of

multiple releases and density

dependence
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Let us consider a single release of IT infected individuals into a population at carrying

capacity K. The frequency of infected individuals immediately after release is

ps =
IT

IT +K
. (B.1)

Now consider releasing the same total number of mosquitoes split equally into M > 1 releases

at equal time-intervals τ . Thus, IT /M infected mosquitoes are added each release. Of interest

is the final infection frequency after all M releases, pm, and how this compares to ps. We

initially represent all fitness cost as fecundity cost rather than lifespan shortening, because as

we saw in the main text, when there is no lifespan shortening, frequency alone is sufficient to

determine whether Wolbachia will become established or extinct. Thus, we have a one-to-one

correspondence of final infection frequency and Wolbachia’s ability to spread, so it is sufficient to

compare ps and pm to determine which strategy better facilitates the introgression of Wolbachia.

The results for four different scenarios, with and without only two effects: CI + fecundity

cost and density-dependent growth, are presented in Table B.1 (also in Table 2.3. The argument

for each scenario is explained in detail below.

Table B.1: Comparison of infection frequency following either one (ps) or multiple (pm) re-
leases. Results vary based on the presence/absence of only two effects: CI + fecundity cost and
density-dependent growth. Because there is no lifespan shortening in all cases, infection fre-
quency alone is an accurate predictor of the eventual fate of Wolbachia and so greater infection
frequency corresponds to a better chance for Wolbachia to spread

Density Dependence

No Yes

CI + Fecundity Cost

No A) pm = ps B) pm > ps

Yes C) pm < ps D) pm < ps or pm > ps
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1. In the absence of density dependence or CI + fecundity cost, released infected individuals

remain in the population and replace themselves at the same rate as uninfected individ-

uals. Thus, the frequency after the ith release, pi, is the cumulative number of released

individuals iIT /M divided by the cumulative number of released individuals plus the

original uninfected population size K:

pi =
iIT /M

iIT /M +K
. (B.2)

Thus, pm = IT /(IT +K) = ps, which is independent of τ .

2. We present two arguments for why pm > ps in this case: a verbal argument and a math-

ematical proof. The mathematical proof is more rigorous but essentially says the same

thing as the verbal argument.

1. Consider the phase plane for density-dependent population growth in Figure B.1, which

shows the example of logistic growth, though the results apply more generally.
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Figure B.1: Phase diagram for logistic growth, showing how population decreases in between
releases into a wild-type population initially at carrying capacity. Carrying capacity is repre-
sented by the positive stable equilibrium, where the curve for dN/dt crosses the N -axis. The
right-pointing red arrows represent the separate releases and the downward-left-pointing red
arrows represent the decrease in population size in between releases as the population returns
toward carrying capacity.

As seen by the red arrows in Figure B.1, the total population size decreases in be-

tween releases as the population returns toward carrying capacity. This decrease will

be greater if τ is larger. It is important to note that, because there is no CI or fitness

cost in this case, infected individuals are equally fit relative to uninfected individuals,

so the infection frequency does not change between releases. That is, the decrease in

net per capita growth rate due to increased population size applies equally to both

infected and uninfected individuals. Due to the decrease in population size between

releases, the IT /M released individuals after all but the first release make up a larger

proportion of the population than they would have if the population size remained the
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same, as in scenario A). This causes the cumulative infection frequency at the end of

all releases to be greater than the frequency after a single release of all IT individuals.

2. The mathematical proof is as follows: Consider the population size after the ith release,

Ni, the infection frequency pi, and that the population decreases by a fraction ai < 1

during the time between releases τ . Then,

Ni+1 = aiNi +
IT
M

(B.3)

pi+1 =
aipiNi + IT /M

Ni+1
(B.4)

Then, given N1 = K+IT /M , and p1 = IT /(IT +MK), we find (after some simplifying)

that

p2 =
(a1 + 1)IT

(a1 + 1)IT + a1MK
(B.5)

p3 =
(a1a2 + a1 + 1)IT

(a1a2 + a1 + 1)IT + a1a2MK
(B.6)

... (B.7)

pm =
(a1a2 · · · aM−1 + a1a2 · · · aM−2 + · · ·+ a1 + 1)IT

(a1a2 · · · aM−1 + a1a2 · · · aM−2 + · · ·+ a1 + 1)IT + a1a2 · · · aM−1MK
(B.8)

=

(
1 +

1

aM−1
+

1

aM−2aM−1
+ · · ·+ 1

a1a2 · · · aM−1

)
IT(

1 +
1

aM−1
+

1

aM−2aM−1
+ · · ·+ 1

a1a2 · · · aM−1

)
IT +MK

. (B.9)

Because all M terms (except the first) in the coefficient of IT are greater than one, the

coefficient A = 1 +
1

aM−1
+

1

aM−2aM−1
+ · · ·+ 1

a1a2 · · · aM−1
> M . Thus,

126



M

A
< 1 (B.10)

=⇒ IT +
M

A
K < IT +K (B.11)

=⇒ 1

IT + M
AK

>
1

IT +K
(B.12)

=⇒ IT

IT + M
AK

>
IT

IT +K
(B.13)

=⇒ AIT
AIT +MK

>
IT

IT +K
(B.14)

=⇒ pm > ps. (B.15)

The degree of difference will depend on the specific form of density dependence assumed

as well as τ . We can find an upper bound for pm however, because as τ →∞ for any

form of density dependence, ai →MK/(IT +MK) for all i. Using the formula for the

partial sum of a geometric series in this case, we can write

pm,max = 1−
(

MK

IT +MK

)M
. (B.16)

Thus,

ps < pm < 1−
(

MK

IT +MK

)M
(B.17)

3. For this scenario, we will assume that most of the multiple releases are insufficient to

cause the infection frequency to exceed the threshold. Additionally, the population does

not respond to changes in size, such that, after a release, the population remains at the

new population size until the next release. This allows us to remove the effects of density

dependence. Consider the phase plane in Figure B.2:
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Figure B.2: Phase diagram for bistable dynamics caused by, for example, the frequency-
dependent selection of Wolbachia due to CI and fitness cost. The unstable equilibrium p̂ occurs
where dp/dt crosses the p-axis between 0 and 1. The stable equilibria occur at 0 and 1, where
perturbations decay back toward equilibrium rather than move away. Releases are shown with
right-pointing red arrows, and the decrease in infection frequency between releases is shown by
upward-left-pointing red arrows.

Analogous to case B), the multiple releases are battling uphill, this time against the fitness

cost of Wolbachia rather than increased mortality, which drives the infection frequency

toward 0. This causes the frequency after multiple releases to be lower than if they were

released all at once.

Mathematically, if we consider that the infection frequency changes by a fraction ai during

the time τ after the ith release, we can write
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Ni = i
IT
M

+K (B.18)

pi+1 =
aipiNi + IT /M

Ni+1
(B.19)

which, given N1 = K + IT /M and p1 = IT /(IT +MK), yields

pm =
a1a2aM−1 + a1a2aM−2 + · · ·+ a1 + 1

M
ps. (B.20)

Whenever all ai < 1, as in Figure B.2, the numerator in (B.20) will be less than M

and pm < ps. This is a conservative estimate, however. Some releases in the multiple

release scenario might lead to an increase in frequency over the time interval τ , specifically

whenever the frequency threshold p̂ is exceeded. However, as long as a1a2 · · · aM−1 +

a1a2 · · · aM−2 + · · · + a1 + 1 < M , some of the ai may be greater than one and pm will

still be less than ps.

One can imagine exceptions in which pm > ps. For example, when the frequency threshold

is low, one might be able to split the infected individuals into a small number of releases

such that the first release is enough to exceed the threshold. Then one can wait a long

time τ , allowing CI to increase the infection frequency (a1 > 1) before releasing the next

batches, such that the frequency after all releases is greater than for a single release. We

focus here on the relevant scenario where it takes the majority of the multiple releases to

exceed the frequency threshold and satisfies a1a2 · · · aM−1 +a1a2 · · · aM−2 + · · ·+a1 +1 <

M .

Some examples using the frequency-only model with complete CI and no lifespan short-

ening (Eq. B.21) are shown in Figures B.3-B.5.

dp

dt
= d

p(1− p)(p− sf )

1− sfp− p(1− p)
(B.21)
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Figure B.3: Infection frequency following single release (blue, dark) and multiple release (red,
light) of the same total number of released infected individuals. ps = 0.53, M = 10, τ = 5,
sf = 0.55. The frequency threshold (dashed line) is p̂ = sf .
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Figure B.4: Infection frequency following single release (blue, dark) and multiple release (red,
light) of the same total number of released infected individuals. ps = 0.6, M = 10, τ = 5,
sf = 0.55. The frequency threshold (dashed line) is p̂ = sf .

Figure B.5 shows the effect of different values of M and τ for the same total number of

released individuals. Note that Figures B.3 and B.4 are similar to Figure 2 in Hancock et

al. (2011), and we have chosen similar parameter values and time scale to compare. The

comparison will be more evident in scenario D) where we also consider density dependence.
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Figure B.5: The infection frequency pm following the final release for various M and τ values.
Other parameters are the same as Figure B.4: ps = 0.6, sf = 0.55. The frequency threshold
(dashed line) is p̂ = sf . Without lifespan shortening, the final frequency relative to the threshold
determines whether Wolbachia will spread such that points above the dashed line indicate
eventual establishment and points below the dashed line represent eventual extinction.

In Figure B.5, as τ approaches zero, all release strategies approach the single release

frequency ps, which is the maximum attainable frequency given the same total number

of released insects. Figure B.5 is similar to Figure B1 in Appendix B of Hancock et al.

(2011), which looks at the minimum number of insects required to achieve release as a

function of M and τ . The main difference in Figure B.5 is that all points are for the same

number of released insects. Figure B.5 illustrates that single release is better than any

multiple release in this scenario.

4. For the final case it is difficult, if not impossible, to construct an analytical argument. We

therefore rely on simulations to show a variety of outcomes and demonstrate that it is

difficult to reach one single conclusion about whether multiple or single release is better.
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In our simulations we use density dependence type 4 (see Section A.4), though we expect

the results to apply broadly across different forms of density dependence. Even without

lifespan shortening, which further complicates matters because frequency alone can no

longer determine the outcome, we find that the results depend highly on values for M

and τ , as seen in Figure B.6.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

τ (days)

p
m

M = 2

M = 5

M = 10

M = 20

Figure B.6: The infection frequency pm following the final release for various M and τ values.
ps = 0.7, b = 1, d0 = 0.1, β = 0.5, sf = 0.55. The frequency threshold (dashed line) is p̂ = sf .
Without lifespan shortening, the final frequency relative to the threshold determines whether
Wolbachia will spread such that points above the dashed line indicate eventual establishment
and points below the dashed line represent eventual extinction.

In Figure B.6, we see that there are a range of M and τ values for which the final frequency

is above that for a single release. The benefit of many releases falls off quickly however,

after some critical τ , beyond which the infection frequency falls too much between releases

for establishment to occur. Single release in Figure B.6 causes establishment of Wolbachia.

Figure B.7 illustrates an example when single release leads to extinction and multiple
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release (of the same total number of individuals) in some cases leads to establishment.
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Figure B.7: The infection frequency pm following the final release for various M and τ values.
ps = 0.53, b = 1, d0 = 0.1, β = 0.5, sf = 0.55. The frequency threshold (dashed line) is p̂ = sf .
Without lifespan shortening, the final frequency relative to the threshold determines whether
Wolbachia will spread such that points above the dashed line indicate eventual establishment
and points below the dashed line represent eventual extinction.

We now look at the case with lifespan shortening.
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Figure B.8: The infection frequency pm following the final release for various M and τ values.
ps = 0.8, b = 1, d0 = 0.1, β = 0.5, sf = 0.05, sv = 0.5, where sv = 1−w. Points in between the
blue xs for each curve cause establishment of Wolbachia. Single release with the same number
of individuals causes extinction.

For the case of high survival fitness (sv = 0.5), single release to achieve an initial frequency

of 0.8 does not spread due to the large density-dependent response of the population,

and the proportionately higher death rate of newly released infected individuals, which

was also found by Hancock et al. (2011). Here, multiple releases are better for achieving

spread, but only for a range of M and τ values, indicated by the regions between blue

xs (we have no dashed line because the invasion threshold is no longer determined only

by infection frequency, and cannot be solved for, as discussed in the main text for the

case of lifespan shortening). Notice that the left-most xs are surprisingly close to the

single release approximation (τ → 0). This indicates that a very small τ (< 0.1) can

cause establishment of Wolbachia when single release (τ = 0) does not. This is likely due

to how quickly density dependence acts and the assumptions that changes in frequency
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are occurring continuously (i.e. start immediately after release). We believe this to be

a consequence of some of the simplifying assumptions in the model and not necessarily

biological. We do believe that the result that each number of releases has an associated

optimal number of time in between releases is biological, however. This is caused by the

tradeoff between splitting the total released number into smaller releases, each less likely

to exceed the frequency threshold but also less likely to experience high density-dependent

mortality.

Finally, when lifespan shortening is small, splitting the number of infected individuals

into multiple releases may still be more efficient, but the effect appears less so than when

lifespan shortening is large, as seen in Figure B.9. This mostly agrees with Hancock et

al. (2011). Their appendix B also looks at the trade-off between various M and τ values

though theirs is for different numbers of mosquitoes whereas we hold the number of

mosquitoes in each scenario constant. The difference between the two strategies is greater

when fitness cost, and thus the invasion threshold, are high. However, whether single or

multiple release is more advantageous will largely depend on the M and τ values chosen.

We have shown analytically how the case with both density dependence and CI + fitness

cost causes the interaction of two effects, each of which alone causes one or the other to

be a better strategy (see Table B.1). This creates some optimal parameter values where

multiple releases are better, although they may not be practical for real release scenarios.
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Figure B.9: The infection frequency pm following the final release for various M and τ values.
ps = 0.15, b = 1, d0 = 0.1, β = 0.5, sf = 0.05, sv = 0.1, where sv = 1−w. Points in between the
blue xs for each curve cause establishment of Wolbachia. Single release with the same number
of individuals causes extinction.
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Appendix C

Eco-evolutionary dynamics of

underdominance
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We develop two models of single-locus underdominance in a well-mixed population that assume

a 1:1 sex ratio and random mating. The first is a population dynamics model that allows

for changing population size and density-dependent per capita growth rates. The second is

a frequency-only model that assumes that the population size is constant. We then compare

results from the two models and discuss similarities to Wolbachia.

C.1 Population dynamics model

We consider a diploid population of individuals that are either wild-type (aa), heterozygous

(Aa), or homozygous (AA) for a novel allele A. We assume that Aa females experience a fitness

cost to longevity (svAa) and fecundity (sfAa), and that AA females experience a lower fitness

cost to longevity (svAA) and fecundity (sfAA), such that sfAa > sfAA and svAa > svAA.

We consider Naa, NAa, and NAA to be the number of females of each genotype in the

population, such that the total female population size is N = Naa +NAa +NAA. We can model

the number of females of each genotype over time with the system of continuous-time ordinary

differential equations in Eq. C.1:

Ṅaa =
(
b(N)(1− pA)− d(N)

)
Naa + b(N)(1− sfAa)

(
1− pA

2

)
NAa (C.1a)

ṄAa = b(N)pANaa +

(
b(N)(1− sfAa)

2
− d(N)

1− svAa

)
NAa + b(N)(1− sfAA)(1− pA)NAA

(C.1b)

ṄAA = b(N)(1− sfAa)
pA
2
NAa +

(
b(N)(1− sfAA)pA −

d(N)

1− svAA

)
NAA, (C.1c)
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where

pA =
1
2NAa +NAA

N
(C.2)

is the frequency of allele A in the population. The coefficients in Eq. C.1 correspond to the

probabilities of the various mating pairs combined with the probability of each offspring geno-

type arising from each mating pair. Density-dependent emergence and death rates b(N) and

d(N) depend only on total female population size and not on the genotype distribution. We

will focus on the type of density dependence assumed in the main text (Eq. 2.5 in the main

text).

C.2 Frequency-only model

We now use a Moran process to model the frequency of each genotype in the population,

assuming that the population size is constant. That is, paa(t) + pAa(t) + pAA(t) = 1. To do this,

we assume that each death is immediately followed by the emergence of a new adult. Deaths

occur at the rate

r = daapaa + dAapAa + dAApAA (C.3)

= d paa +

(
d

1− svAa

)
pAa +

(
d

1− svAA

)
pAA, (C.4)

where d is the constant per capita death rate of wild-type females.

The probability that the death of an i-genotype female is followed by the emergence of a

j-genotype female is
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(
dipi∑
k dkpk

)(
bjpj∑
k bkpk

)
, (C.5)

where i, j, k ∈ {aa,Aa,AA}, and baa = b, bAa = b(1− sfAa), and bAA = b(1− sfAA).

The change in frequency of a genotype i can then be modeled by the rate of events multiplied

by the probability of an event that increases pi minus the probability of an event that decreases

pi:

dNi

dt
= r

 bipi

(∑
j 6=i djpj

)
(∑

j bjpj

)(∑
j djpj

) − dipi

(∑
j 6=i bjpj

)
(∑

j bjpj

)(∑
j djpj

)
 (C.6a)

=
1∑
j bjpj

bipi
∑
j 6=i

djpj

− dipi
∑
j 6=i

bjpj

 , (C.6b)

where we have used the fact that r =
∑

j djpj .

C.3 Results

The time series for two different release scenarios with two different parameter sets are shown

in the main text (Fig. 3). We will focus here on the first parameter set: sfAa = 0.4, svAa = 0.8,

sfAA = 0.1, svAA = 0.3 when releasing into carrying capacity. The trajectories in 3-D phase

space are shown for both models in Figs. C.1 and C.2.
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Figure C.1: Differences in population dynamics model (A) and frequency-only model (B) for
release of AA homozygous females into a wild-type (aa) population at carrying capacity K.
Initial frequencies are 0.1 (red, lower right), 0.2, ..., 0.9 (magenta, top center). Trajectories start
at back right and go to a stable equilibrium of all AA (top center) or all aa (bottom right),
depending on initial conditions. The unfilled circle is the unstable equilibrium. Parameter values
are b = 1, d = 0.1, sfAa = 0.4, svAa = 0.8, sfAA = 0.1, svAA = 0.3.
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Figure C.2: Differences in population dynamics model (A) and frequency-only model (B) for
release of AA homozygous females into a wild-type (aa) population that was suppressed to 10%
of carrying capacity prior to release. Initial frequencies are 0.1 (red, lower right), 0.2, ..., 0.9
(magenta, top center). Trajectories start at back right and go to a stable equilibrium of all AA
(top center) or all aa (bottom right), depending on initial conditions. The unfilled circle is the
unstable equilibrium. Parameter values are b = 1, d = 0.1, sfAa = 0.4, svAa = 0.8, sfAA = 0.1,
svAA = 0.3.
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The solutions to the frequency-only model lie in the triangular section of the plane Naa +

NAa +NAA = K where Naa, NAa, NAA ≥ 0, and the frequency-only model results are identical

in Figs. C.1 and C.2, since the frequency-only model does not distinguish among different

release scenarios. As in Wolbachia, we see that the invasion threshold is higher than predicted

by the frequency-only model when releasing into a population at carrying capacity. In Fig. C.1,

the p0 = 0.7 trajectory (dark blue) leads to allele A being lost from the population dynamics

model but becoming established in the frequency only model (see Fig. 2.3A). While it is not

clear from Fig. C.2, there is a narrow range of initial frequencies in the case of releasing into a

suppressed population for which the opposite is true: the population dynamics model predicts

establishment where the frequency-only model predicts extinction (see Fig. 2.3B). It is not clear

why the difference between the models for releases into a suppressed population is much smaller

for underdominance than for Wolbachia.
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Appendix D

Markov chain transition

probabilities
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D.1 Transition probabilities

We consider the continuous-time stochastic process {X(t), t ≥ 0} where X(t) represents the life

stage of an individual at time t. Thus, X has state space {1, 2, ..., 7}. We define Pij(t, t+ ∆t) as

the probability that an individual is in stage j after a time interval ∆t given that it is in stage

i at time t:

Pij(t, t+ ∆t) = Pr{X(t+ ∆t) = j |X(t) = i}, (D.1)

We start with the time-homogeneous case, meaning Pij does not depend on t and Pij(t, t+∆t) =

Pij(∆t). We refer to the 7× 7 matrix P (t) with elements Pij as the transition matrix.

The forward Kolmogorov equation states that

dP (t)

dt
= P (t)Q. (D.2)

where Q is the instantaneous transition rate matrix, with elements defined

qij = lim
∆t→0

Pij(∆t)− Pij(0)

∆t
. (D.3)

We have two rate matrices for each model: Qf when food is present, and Qv when food is

absent. According to the descriptions in Section 4.2, the rate matrices for each model when

food is available are
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Model 1:

Qf =



−(r + µf ) r 0 0 0 0 µf

0 −(r + µf ) r 0 0 0 µf

0 0 −(r + µf ) r 0 0 µf

0 0 0 −(r + µf ) r 0 µf

0 0 0 0 −(r + µf ) r µf

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(D.4)

Model 2:

Qf =



−r r 0 0 0 0 0

0 −r r 0 0 0 0

0 0 −r r 0 0 0

0 0 0 −r r 0 0

0 0 0 0 −r r 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(D.5)

Model 3:

Qf =



−r1 r1 0 0 0 0 0

0 −r1 r1 0 0 0 0

0 0 −r1 r1 0 0 0

0 0 0 −r2 r2 0 0

0 0 0 0 −r2 r2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



. (D.6)
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The rate matrix when food is absent is the same for all three models:

Qv =



−µv 0 0 0 0 0 µv

0 −µv 0 0 0 0 µv

0 0 −µv 0 0 0 µv

0 0 0 −µv 0 0 µv

0 0 0 0 −µv 0 µv

0 0 0 0 0 0 0

0 0 0 0 0 0 0



. (D.7)

The matrix differential equation in Eq. D.2 with initial condition P (0) = I (which simply states

that the probability of being in the current state given that the individual is in the current state

is one), has the solution

P (t) = eQt. (D.8)

Using Maple v. 16 to evaluate the matrix exponential of each of the rate matrices, we

can thus determine the probability of any transition Pij(∆t). If we consider equally spaced

observation times ~t = (0, ∆t, 2∆t, . . . , n∆t), then the joint probability of any observed state

sequence ~x = (x0, x1, x2, . . . , xn) is

Pr{ ~X = ~x} = Px0x1(∆t)Px1x2(∆t) · · ·Pxn−1xn(∆t). (D.9)

This is due to the fact that the memoryless property of Markov chains states that that each

transition probability depends only on the current state, meaning they are all independent.

Each factor in D.9 comes from the element of the transition matrix P (∆t) corresponding to

the observed transition.
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D.2 Food Dynamics

If we assume that the time until food in a container is depleted is a random variable T , then

we have, by the law of total probability

Pr{X(t+ ∆t) = j |X(t) = i} = (D.10)

Pr{X(t+ ∆t) = j |X(t) = i, T ≤ t}Pr{T ≤ t}

+ Pr{X(t+ ∆t) = j |X(t) = i, t < T ≤ t+ ∆t}Pr{t < T ≤ t+ ∆t}

+ Pr{X(t+ ∆t) = j |X(t) = i, T > t+ ∆t}Pr{T > t+ ∆t}

For an exponentially distributed waiting time T ∼ Exp(λ), the first term on the right hand side

of Eq. D.10 is equal to

Pij,v(∆t)(1− e−λt), (D.11)

where Pij,v is the element of Pv(t) = exp (Qvt) corresponding to transition i→ j . The (1−e−λt)

term comes from the cumulative distribution function of T , which describes the probability that

T ≤ t.

Similarly, the third term on the right hand side of Eq. D.10 is equal to

Pij,f (∆t)e−λ(t+∆t), (D.12)

where Pij,f comes from Pf = exp (Qf t).

The second term on the right hand side of Eq. D.10 is more difficult to evaluate. However,

if we consider T = t+ s on the interval [t, t+ ∆t], then any transition i→ j that is not death

must occur by time t + s, such that X(t + s) = j. This is because, once food is depleted,

immature Ae. aegypti can only die or stay in the same state. In addition, the individual must
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then remain in state j (i.e. not die) until the end of the interval. Thus, the probability of

observing i → j (j < 7) during the interval [t, t + ∆t], given that T = t + s, is the joint

probability Pr{X(t + s) = j|X(t) = i, T = t + s}Pr{X(t + ∆t) = j |X(t + s) = j, T = t + s}.

This probability is equal to Pij,f (s)Pjj,v(∆t − s). Using the law of total probability for all the

values of s at which this can occur, we have

Pr{X(t+ ∆t) = j |X(t) = i, t < T ≤ t+ ∆t}Pr{t < T ≤ t+ ∆t}

=

∫ ∆t

0
Pij,f (s)Pjj,v(∆t− s)Pr{t+ s < T ≤ t+ s+ ds}ds

=

∫ ∆t

0
Pij,f (s)

(
1− exp−µv(∆t−s)

)
λe−λ(t+s)ds. (D.13)

In simplifying the last expression, we have used the fact that Pjj,v(∆t−s) =
(
1− exp−µv(∆t−s))

in all three versions of the model and the probability density function of an exponentially dis-

tributed random variable Pr{s < T ≤ s+ ds} = λe−λsds.

Thus, we can solve for all transition probabilities other than death by substituting Eqs.

D.11–D.13 into Eq. D.10:

Pij(t,∆t) = Pij,v(∆t)(1− e−λt) (D.14)

+

∫ ∆t

0
Pij,f (s)

(
1− e−µv(∆t−s)

)
λe−λ(t+s)ds

+ Pij,f (∆t)e−λ(t+∆t)

and then use the fact that
∑

j Pij = 1 to solve for death:

Pi7 = 1−
6∑
j=1

Pij . (D.15)

Note that the transition probabilities are now time-inhomogeneous, meaning they depend on t
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as well as the time between observations ∆t.
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Appendix E

Markov chain Monte Carlo methods
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E.1 Background

Using Bayes’ rule, we can write

p(Θ |x) ∝ p(x |Θ) p(Θ) (E.1)

for the posterior distribution of parameters given the likelihood p(x |Θ) and prior distribution

p(Θ). Note that we have dropped the vector notation used in Section 4.2.1 as almost all quanti-

ties in this section are vector-valued, either indexed by house, treatment, replicate or number of

parameters. For our mixed-effects model we can split the parameters into our rate parameters,

θ = (rij , µij , λij), fixed effects φ = (νi, σ
2
H , σ2

ε) and random effects ψ = (Hj):

p(θ, φ, ψ |x) ∝ p(x | θ, φ, ψ) p(θ, φ, ψ),

∝ p(x | θ) p(ψ |φ) p(φ) p(θ). (E.2)

The posterior distribution is denoted by p(θ, φ, ψ |x), the hyper-prior by p(ψ |φ), and the prior

distribution of fixed-effect parameters by p(θ). The joint likelihood over all buckets is p(x | θ) =∏
i

∏
j

∏
k p(xk | θij), where p(xk | θij) is given by Eq. 4.2 for individual k in house j and bucket

i. Given the joint posterior distribution, our estimates for individual fixed effects will then come

from the marginal posterior distributions

p(φ` | y) =

∫
· · ·
∫
p(θ, φ, ψ | y) dθ dψ dφ1 · · · dφ`−1 dφ`+1 · · · dφnf

, (E.3)

where nf is the number of fixed effects.

E.2 Metropolis-Hastings

When it is impossible to calculate the posterior distribution directly, we can use a computational

method known as Markov chain Monte Carlo (MCMC) to estimate it by drawing many samples
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that eventually converge to the posterior distirbution (Tierney, 1994). One such technique

is the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), which is the

following (note that we use parenthetical superscript notation θ(t) throughout to denote θ(t)

for readability, not a power):

0. Choose initial parameter values θ(0), set iteration counter t = 0, and choose chain length

N .

1. Propose new values θ∗ from a proposal probability distribution q
(
θ∗| θ(t)

)
.

2. Evaluate α =
p(θ∗| y) q(θ(t) | θ∗)
p(θ(t) | y) q(θ∗| θ(t))

=
p(y | θ∗) p(θ∗) q(θ(t) | θ∗)
p(y | θ(t)) p(θ(t)) q(θ∗| θ(t))

(from Eq. E.1, where the

proportionality constant p(y) cancels out in the ratio).

3. Draw a random number u ∼ Uniform(0, 1).

4. Set θ(t+1) = θ∗ if α > u. Otherwise, set θ(t+1) = θ(t).

5. Iterate t = t+ 1 and stop if t = N . Otherwise, repeat from step 1.

The autocorrelated random-walk θ(t) will eventually converge to samples from the posterior

distribution. Whether it does so efficiently is a more difficult question and depends on problem

specifics such as the initial parameter values, chain length, and shapes of the proposal and

target posterior distributions (Chib and Greenberg, 1995). Generally, the chains are run for an

initial “burn-in” period to reduce dependence on the initial conditions. The chains are also run

long enough after the burn-in period to reduce the effect of the autocorrelation between closely

spaced points (Plummer et al., 2006). Finally, there is a tradeoff between accepting proposed

values (climbing the posterior distribution) and rejecting proposed values (exploring parameter

space), such that the ideal proportion of proposed values that are accepted is between 25% for

high-dimensional systems and 45% for one-dimensional systems (Gelman et al., 1996).

A common choice for the proposal distribution q(θ∗ | θ(t)) is a normal distribution centered

at θ(t). Any symmetric distribution about θ(t) simplifies the expression for α since q(θ∗ | θ(t)) =

q(θ(t) | θ∗), causing these terms to cancel in the ratio. Then, the proposal variance can be
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adjusted to obtain the desired acceptance ratio (Chib and Greenberg, 1995). However, specifying

this variance for all parameters in high-dimensional problems can be difficult. Our model has

93 parameters in version 2, and 124 parameters in versions 1 and 3. We thus turn to another

MCMC method, Gibbs sampling, to reduce the amount of tuning required.

E.3 Gibbs Sampling

Gibbs sampling was developed by Geman and Geman (1984) and Gelfand (1990), and samples

from the posterior distribution by repeatedly sampling from and updating the full conditional

distributions of the parameters. The full conditional distribution of a parameter is

p(θi | θ1, . . . , θi−1, θi+1, . . . , θp, y). (E.4)

The algorithm is

0. Choose initial parameter values θ(0), set iteration counter t = 0, and choose

chain length N .

1. Sample θ
(t+1)
1 ∼ p(θ1 | θ(t)

2 , . . . , θ
(t)
p , y)

2. Sample θ
(t+1)
2 ∼ p(θ2 | θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
p , y)

...

p. Sample θ
(t+1)
p ∼ p(θp | θ(t+1)

1 , . . . , θ
(t+1)
p−1 , y)

p+ 1. Iterate t = t+ 1 and stop if t = N . Otherwise, repeat from step 1.

This method also converges to the posterior distribution and has the advantage of not requiring

a proposal distribution, but it requires that all of the full conditionals can be derived, which

is not always the case. Because we derived the likelihood (Eq. 4.2) from Markov transition

probabilities rather than assume its form, we are unable to determine a conjugate prior for the
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full model, i.e. a prior that when multiplied by the likelihood yields a posterior with the same

distribution. This prevents us from being able to find the full conditionals for the full model.

However, we can derive the full conditionals for a submodel, update the submodel parameters

using Gibbs sampling, and then use Metropolis-Hastings to sample the remaining parameters.

This greatly reduces the dimension of the required proposal distribution and aids in ensuring

convergence to the posterior distribution.

Consider the posterior distribution of the full model

p(log θ, φ, ψ |x) ∝ p(x | log θ) p(log θ |φ, ψ) p(ψ |φ) p(φ). (E.5)

We are unable to determine the full conditionals for log θ due to the complicated form of the

likelihood function. We can, however, determine the full conditionals for the sub-model

p(φ, ψ | log θ) ∝ p(log θ |φ, ψ) p(ψ |φ) p(φ), (E.6)

which represents all but the first factor on the right-hand side of Eq. E.5, if we choose the

following conjugate priors for p(φ):

νi ∼ N (0, σ2
ν) (E.7a)

σ2
H ∼ InvGamma(aH , bH) (E.7b)

σ2
ε ∼ InvGamma(aε, bε). (E.7c)
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As an example, we go through the derivation of the full conditional p(νi |·) in Eq. E.8.

p(νi | ·) = p(νi | ρij , H, σ2
ε) ∝

( nH∏
j=1

p(ρij | νi, Hj , σ
2
ε)
)
p(νi)

∝ exp

− 1

2σ2
ε

nH∑
j=1

(
ρij − (νi +Hj)

)2 exp

(
− ν2

i

2σ2
ν

)

∝ exp

(
−
(
nH
2σ2

ε

+
1

2σ2
ν

)
ν2
i +

(∑
j (ρij −Hj)

σ2
ε

)
νi

)
∝ exp

(
−
(
nH
2σ2

ε

+
1

2σ2
ν

)(
νi −

∑
j (ρij −Hj)

nH + σ2
ε/σ2

ν

)2
)

=⇒ νi | · ∼ N

(∑
j (ρij −Hj)

nH + σ2
ε/σ2

ν

,

(
nH
σ2
ε

+
1

σ2
ν

)−1
)
, (E.8a)

where nH is the number of houses in the experiment. All of the full conditionals for the submodel

are listed in Eq. E.9, where nB is the number of buckets in each house and nT = nHnB is the

total number of buckets in the experiment. Note that the i-summations go from 1 to nB and

the j-summations go from 1 to nH .

νi | · ∼ N

(∑
j (ρij −Hj)

nH + σ2
ε/σ2

ν

,

(
nH
σ2
ε

+
1

σ2
ν

)−1
)

(E.9a)

Hj | · ∼ N

(∑
i (ρij − νi)
nB + σ2

ε/σ2
H

,

(
nB
σ2
ε

+
1

σ2
H

)−1
)

(E.9b)

σ2
H | · ∼ InvGamma

(
nH
2

+ aH ,

∑
j H

2
j

2
+ bH

)
(E.9c)

σ2
ε | · ∼ InvGamma

(
nT
2

+ aε,
1

2

∑
j

∑
i (ρij − νi −Hj)

2 + bε

)
(E.9d)

Once we sample from the full conditionals of the submodel, we can find the posterior den-

sity (relative to the normalizing constant) of the sampled φ and ψ
(
Eq. E.6

)
, multiply by
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our likelihood p(x | log θ) to estimate the posterior of the full model, and update log θ using

Metropolis-Hastings. We summarize our algorithm, which incorporates both Gibbs sampling

and Metropolis-Hastings, below:

0. Choose initial parameter values θ(0), set iteration counter t = 0, choose proposal variances

for log-rates σ2
log θ, and choose chain length N .

1. Sample ν
(t+1)
1 ∼ p(ν1 | ν(t)

2 , H
(t)
1 , . . . , σ

2(t)
H , σ

2(t)
ε , log(θ)(t))

2. Sample ν
(t+1)
2 ∼ p(ν2 | ν(t+1)

1 , H
(t)
1 . . . , σ

2(t)
H , σ

2(t)
ε , log(θ)(t))

...

13. Sample σ
2(t+1)
ε ∼ p(σ2

ε | ν
(t+1)
1 , ν

(t+1)
2 , . . . ,H

(t+1)
9 σ

2(t+1)
H , log(θ)(t))

14. Define β
(

log(θ)
)
≡ p(x | θ) + log

(
p
(

log(θ) |ψ(t+1)
)
p(ψ(t+1) |φ(t+1)) p(φ(t+1))

)
15. Propose new values log(θ)∗ ∼ N

(
log(θ)(t), σ2

log θ

)
16. Evaluate α = exp

(
β
(

log(θ)∗
)
− β

(
log(θ)(t)

))
17. Draw a random number u ∼ Uniform(0, 1).

18. Set log(θ)(t+1) = θ∗ if α > u. Otherwise, set log(θ)(t+1) = log(θ)(t).

19. Iterate t = t+ 1 and stop if t = N . Otherwise, repeat from step 1.
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Appendix F

Transgenic Pests and Human

Health: A Short Overview of Social,

Cultural, and Scientific

Considerations1

Tim Antonelli, Amanda Clayton, Molly Hartzog, Sophia Webster, Gabriel

Zilnik2

1. This chapter is published in the book Genetic Control of Malaria and Dengue: Antonelli, T., Clayton, A.,
Hartzog, M., Webster, S. & G. Zilnik, 2015. Transgenic Pests and Human Health: A Short Overview of Social,
Cultural, and Scientific Considerations. Pp. 1–30, in Z. N. Adleman, ed. Genetic Control of Malaria and Dengue.
Elsevier.
2. All authors contributed equally to this work.
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F.1 Introduction

The global problems of dengue fever and malaria are multi-faceted, complex issues that span

many disciplines, including human health, ecology, economics and urban development, health

and environmental policy, social work, and risk analysis. Effective disease control and prevention

therefore requires integrated research from all of these disciplines in order to understand the

problem from as many angles as possible and within its social and cultural contexts. This

type of interdisciplinary approach that integrates perspectives from the natural sciences, social

sciences, and humanities was recently endorsed by the American Academy of Arts and Sciences

as critical for developing effective solutions for the world’s problems.1 Adopting this approach,

we introduce the ethical, regulatory, social, and economic aspects of control programs for dengue

fever and malaria, relating to both currently used control techniques as well as the emerging

technologies involving genetically modified organisms (GMOs).

The goal of this chapter is not to offer a definitive stance on whether or not GM technologies

should be used to control mosquito-borne diseases, but rather to offer a cursory look at the

complex issues that span multiple disciplines, governmental and non-governmental organiza-

tions, and community interests. In conclusion, we argue that a discussion of whether or not to

implement GM technologies should be conducted within the larger discussion of national, re-

gional, and global disease control strategies. These control plans should consider an integration

of multiple control strategies and adapt to suit differing social and cultural contexts based on

the area under consideration.

F.2 Current State of GMOs

In 1996 agriculture experienced a genetic revolution. Before the planting season, the United

States Environmental Protection Agency (EPA) had approved the commercial sale of what

would become the most widespread transgenic cultivars. Recombinant DNA technology has

revolutionized biological sciences with practical impacts in fields ranging from medicine to
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agriculture.2 New crops and modified organisms would soon come to be known as geneti-

cally modified organisms (GMOs). Crops carried genes from bacteria conferring resistance to

RoundupTM (glyphosate) weed killer and to certain insect species. Bacteria were engineered to

produce human insulin. With regard to pest management the impact of transgenics remains

acutely felt in agriculture. Entire agricultural systems were constructed around new transgenic

cultivars; new industries were born, while old ones failed. Land Grant institutions around the

country helped research the impacts of these new varieties. Fields from the applied life sci-

ences produced thousands of articles in biochemistry, molecular biology, conservation biology,

ecology, evolution, plant science, weed science, environmental resource management and many

more regarding the efficacy and safety of transgenic cultivars.3 Yet, this technology has its de-

tractors. Many groups such as Union of Concerned Scientists and Gene Watch point to issues

with regulatory systems in assessing safety or environmental concerns related to transgenic

organisms.

Controlling pests with transgenic technology is predominantly accomplished with δ-endo-

toxins (Cry toxins) from strains of Bacillus thuringiensis. Commonly known as Bt crops, the

plants have a host of attractive features. Most notable is the narrow spectrum of pests that each

Cry toxin affects. At the time of this writing, varieties of Bt crops primarily target lepidopteran,

dipteran, and coleopteran pests. Furthermore, a single gene encodes each Cry toxin making the

combination of toxins, known as stacking, relatively straightforward.4 Growers have found these

crops extremely useful; in 2014, transgenic Bt crops constituted 84% of cotton and 80% of corn

grown in the United States.5 Developing countries such as India, China, South Africa, Brazil,

and Argentina have seen explosive growth in transgenic crop adoption. Those five countries

accounted for nearly 50% of transgenic crops (including herbicide tolerant cultivars) grown

worldwide in 2011.6 However, these crops are not without their drawbacks. While the primary

pests of these crops have been controlled, a surge of secondary piercing-sucking pests such as

stink bugs and aphids has become a problem in some regions of the world.7 Consequently,

the increase in insecticide use to control secondary pests may offset the decreased insecticide
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applications for the primary pests now controlled by Bt. Thus, detailed knowledge of the pest

assemblage is useful when approaching transgenic control through direct modification. Similarly,

in thinking about genetically-modified mosquitoes to combat dengue and malaria, detailed

knowledge of the transmission cycle and host assemblage is required to know how the system

might respond to genetic control of a single species.

While transgenic crops are widespread in much of North America and Asia, this is not

necessarily the case around much of the globe. For example, many nations in Europe restrict

transgenic cultivars and in some cases have even seen a decline in field trials of these cultivars.6

Concern over the safety of these crops remains intense, but as it stands now, no credible scientific

evidence has been presented demonstrating adverse effects associated with consumption of

transgenic crops.8 However, the moral and ethical arguments against transgenic crops seem to

have the most traction and these arguments are more difficult to resolve with scientific data

alone. Below we discuss some of the ethical implications surrounding transgenic insects, which

are derived from literature surrounding transgenic cultivars.

F.3 Dengue Fever and Malaria

The WHO provides fact sheets (available online) on both dengue and malaria that are straight-

forward and highly informative. Here we provide a summary and comparison of the two diseases

focusing on their global prevalence, symptom severity, and vector characteristics. We also dis-

cuss briefly the availability and efficacy of existing treatment and prevention methods for both

diseases. Table F.1 displays a summary of the key facts for both diseases discussed below.

F.3.1 Dengue Fever

Dengue is caused by at least four independent viruses that are all transmitted primarily by the

mosquito Aedes aegypti. The most typical form of the disease is commonly called dengue fever

and its symptoms include fever, rash, headache, and joint and retro-orbital pain. The severe

form of the disease, called severe dengue or dengue hemorrhagic fever (DHF), can result in
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Table F.1: Key facts about dengue and malaria9−11

Dengue Malaria

Vector
Aedes aegypti, Aedes albopictus
(secondary)

about 20 species from the
Anopheles genus

Strains
4 virus serotypes from the
Flavivirus genus

4 parasite species from the
Plasmodium genus

Severity
contracting a second serotype
results in a higher likelihood of
experiencing severe dengue

prevalence and severity varies with
parasite (Plasmodium falciparum is
the most common and deadly)

Immunity

contracting one serotype provides
permanent immunity to that strain
and temporary immunity to the
others

partial immunity is accumulated
over time and provides protection
against severe disease

Diagnosis
ELISA tests for antigens (IgM &
IgG), PCR

rapid diagnostic tests for antigens,
microscopy, PCR

Symptoms

Classic: fever, rash, headache,
muscle aches, retro-orbital pain,
vomiting

Severe: internal hemorrhaging,
severe abdominal pain and
vomiting, respiratory distress

Classic: fever, headache, chills,
vomiting

Severe: anemia, respiratory
distress, cerebral malaria, organ
failure

Mortality

without treatment: about 20%
mortality rate

with treatment: less than 1%
mortality rate

about 584,000 deaths in 2013

90% of deaths were from Africa,
mostly among children

Global Burden

WHO9: 50-100 million cases per
year

Bhatt et al.12: about 390 million
cases per year, including
asymptomatic

WHO10: about 200 million cases in
2013

Risk Groups
children, elderly,
immuno-compromized

children, elderly,
immuno-compromized; tourists &
immigrants

Vaccines
In development but not yet
available

In development but not yet
available

Treatment

Classic: fluids, pain medication,
rest

Severe: fluid replacement therapy,
blood transfusion

antimalarial medications (parasite
resistance is a continuing issue)

Common Vector Control
container control, indoor residual
spraying (IRS) of insecticides,
larvicide packets in collected water

long-lasting insecticide-treated nets
(LLINs), indoor residual spraying
(IRS) of insecticides
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vomiting, internal hemorrhaging and even death.13

The WHO estimates that there are 50-100 million dengue infections each year, mostly in

tropical regions, though a more recent estimate is nearer to 400 million due to the large number

of asymptomatic and unreported cases.12 Despite its high incidence, dengue fever is one of

seventeen diseases classified as a neglected tropical disease (NTD).14 In terms of human health

impact, NTDs are often compared to the big three: malaria, HIV/AIDS, and tuberculosis,

which receive significantly more attention in funding, research, and social welfare projects than

the seventeen NTDs. The disproportionate attention is partly a result of the big three being

outlined specifically in the Millennium Development Goals, where NTDs are included only in

the other diseases category. However, while NTDs typically carry a low mortality rate, they are

both promoted by and promote poverty, are highly debilitative, and disproportionately impact

women and children. Perhaps most importantly, NTDs can increase the severity and prevalence

of the big three through co-infection and co-endemicity.15,16 As a result, Hotez et al. encourage

the development of a global plan for the big three that includes control of seventeen NTDs as

a powerful tool in the process.17

F.3.2 Malaria

Malaria is a parasitic disease spread by about 20 different species of Anopheles mosquitoes

in tropical and subtropical climates throughout the world. According to the WHO, malaria

is more prevalent in areas with species of Anopheles that have longer lifespans or that have

breeding habits leading to increased mosquito populations.10 Because malaria is spread by so

many species of mosquitoes, the direct suppression of the mosquito populations responsible for

transmission is complicated. However, because all Anopheles species bite at night, one of the

simplest and most effective forms of malaria prevention is to use long-lasting insecticide-treated

bed nets (LLINs) to keep humans from being bitten while sleeping.

Symptoms of malaria include fever, headache, chills, and vomiting. Severe complications can

involve anemia, respiratory distress, and cerebral malaria in children and other forms of organ
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failure in adults. However, as with dengue, severe and fatal complications from malaria are

generally avoidable via effective vector control practices and fast access to medical treatment.11

Antimalarial medications are able to both treat and prevent malaria but parasitic resistance

to medications is an ongoing issue.10 Recent WHO estimates indicate that there were about

200 million cases of malaria in 2013, about 584,000 of which resulted in death.10 Over 90% of

these deaths occurred in Africa, mostly among children where, according to the WHO, “a child

dies every minute from malaria.”10 Although the death toll of malaria is still high globally and

especially among children in Africa, the occurrence of malaria cases and deaths has decreased

by around 50% since 2000.10

F.3.3 Dengue and Malaria Control

Currently, the most commonly used techniques for dengue control include chemical control in

the form of either larvicide in water sources, or adulticide applied via indoor residual spraying

(IRS) or aspiration packs; and cultural control in the form of recruiting communities to empty

containers of standing water that may serve as larval rearing sites. For malaria, cultural control

in the form of using LLINs during sleep is the most common form of vector control. This form

of control is highly effective for malaria prevention, but does not successfully prevent dengue

fever because Ae. aegypti bite during the day. The other main form of malaria vector control

is the implementation of IRS to reduce adult Anopheles populations. Antimalarial medications

can also be taken preemptively to prevent malaria transmission and their use is recommended

by the WHO for travelers, pregnant women, and children under 5 years old in high transmission

areas.10

Emerging techniques to control both diseases using GMOs can be broadly categorized as

either population suppression, which seek to reduce the numbers of mosquitoes, or population

replacement, which seeks to replace the disease-carrying population with a transgenic strain

incapable of transmitting disease (for a more detailed description of these strategies, see Chapter

1 of WHO/TDR, 2014).18 GMO technology is controversial, however, especially in the United
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States and Europe, where a heated debate continues surrounding genetically modified foods.

F.4 Things to consider before implementing GMO control meth-

ods

Table F.2 lists key issues to consider before implementing GMO control methods. In the fol-

lowing sections, we focus primarily on the simpler system of dengue transmission and control.

While malaria is a more complex system, the points we raise should still apply to using GMO

methods for the prevention of malaria. Issues of regulation, public opinion, and ethics pertaining

to the use of GMOs as a control technique are likely similar for both diseases, as these issues

relate more to the emerging technologies of genetic modification rather than to the specific

diseases to which these technologies are applied.

Table F.2: Considerations for potential use of GM technologies for disease control

• Economic burden of dengue or malaria in the area under consideration

• Burden on quality of life

• Burden on healthcare system in time of epidemic

• Local community’s perception of disease risk

• Local community’s willingness to participate in cultural control

• Local community’s values and belief systems regarding environmental protection and care

• Efficacy and public acceptance of currently used control measures, locally and in neigh-
boring areas

• Financial cost, quality of life cost, and ethical cost of candidate technologies for mosquito
control

• Benefits of disease prevention over disease treatment in the area under consideration

• Other culturally-specific considerations in the area under consideration
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F.4.1 Allocating Resources between Treatment and Control

It is important to prioritize treatment strategies to mitigate severe health problems resulting

from disease transmission. General improvements to healthcare infrastructures along with other

forms of economic development would likely decrease instances of malaria and dengue as well

as many other communicable diseases. For any control methods implemented to reduce trans-

mission of dengue or malaria, it is important that local communities are consulted and actively

engaged in policy decisions and implementation.

Dengue treatment is usually simple and highly effective at reducing death rates if infected

individuals are able to obtain timely access to necessary treatment facilities.9 However, re-

searchers and policymakers working with the virus note that healthcare infrastructures in low

and middle income countries are often incapable of handling the influx of cases that occurs dur-

ing an epidemic.9,19 The response to this problem seems to have often been to push for increased

dengue prevention rather than to try and tackle healthcare infrastructure issues directly.20 Al-

though the control and prevention of dengue is vital to reducing the negative impacts of the virus

in the long run, it is important that researchers and policymakers not overlook the immediate

importance of ensuring individual access to dengue treatment.

The WHO handbook on dengue management states that “emergency preparedness and

response are often overlooked by programme managers and policy-makers,” and that “while

plans have frequently been prepared in dengue-endemic countries, they are seldom validated.”21

(pp 123−124) However, this problem could be due to a lack of resources rather than a lack of

diligence. Because each area will typically only experience an epidemic every few years, it may

be difficult to maintain the resources needed to treat high case loads of dengue. We suggest that

mobile dengue response units be formed at the international level with neighboring countries

pooling resources to maintain effective response teams. This is an area in which NGOs like the

Red Cross, NIH, or WHO could step in to provide the necessary resources and expertise to be

able to respond to the needs of a larger area.

The effective treatment of dengue will not eliminate disease incidence or transmission. Pre-
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vention of the disease will still only be possible through preemptive vector control practices

or the development of an effective vaccine. However, the effective control and prevention of

dengue is likely to take an extensive amount of time and resources. In the interim, steps should

be taken as quickly as possible to ensure that all areas are capable of treating cases of dengue

and severe dengue in order to reduce serious health complications and fatalities to the lowest

possible levels. There is no justification for accepting high death rates from dengue while long-

term solutions are being developed when short-term treatment solutions are currently available

for implementation.

F.4.2 Economic Development

Although the risk of dengue transmission is present and possibly increasing in parts of Europe

and the US due to increased global temperatures and the presence of Aedes mosquitoes in

these regions, the vast majority of countries at the highest risk levels are low- to middle-income

countries. While this is likely to be in part due to the fact that many low- and middle-income

countries are located in tropical and subtropical climate regions, there are several infrastructural

factors that are likely to contribute to a nations level of dengue risk as well. Improving upon

these infrastructural issues would likely not only reduce incidences of dengue but would also

have other health benefits for the individuals in the affected areas.

Because Ae. aegypti breed in open water containers, one of the main infrastructural obstacles

to preventing the spread of dengue lies in poor water and sewage availability. According to the

WHO, “Dengue afflicts all levels of society but the burden may be higher among the poorest

who grow up in communities with inadequate water supply and solid waste infrastructure, and

where conditions are most favourable for multiplication of the main vector, Ae. aegypti,”.21 This

is because areas without reliable waste disposal or piped water tend to have issues with water

drainage and/or are forced to collect water in open containers for household use. These open

pools of water then act as viable oviposition sites for the Ae. aegypti mosquito.22 Improving

waste disposal and piped water availability would also lead to many health benefits for affected
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communities that spread far beyond reduced incidences of dengue fever, such as a reduction

in hookworm and gastrointestinal diseases which are also prevalent in areas most affected by

dengue.23

As noted above, Ae. aegypti bite during the day, which makes bed nets an ineffective con-

trol method against the mosquitoes. Infrastructural improvements to household construction,

particularly regarding the availability of screened windows, air conditioning, and enclosed walls

and roofs, would therefore further reduce dengue risk by preventing Ae. aegypti from entering

households and biting inhabitants during the day.22,24 Such household improvements are costly

however and would necessitate either higher household incomes or subsidization by outside

sources like governmental or non-governmental organizations.

Making permanent improvements to the healthcare infrastructures in dengue endemic coun-

tries would increase the ability of these countries to handle epidemics and minimize severe

disease complications and deaths. These infrastructural improvements would also have health

benefits extending outside of dengue outcomes by increasing the ability of healthcare infras-

tructures to treat a wide range of diseases requiring intravenous fluid replacement therapies

or other simple medical interventions.25 Improving transportation infrastructures by building

roads and increasing the availability of affordable public transportation would further increase

the accessibility of healthcare facilities, thereby reaching a wider spectrum of individuals in

need of treatment.

There is ample research linking health outcomes to educational and other economic out-

comes.26−28 Limited healthcare access due to low income levels leads to worsened health out-

comes which can keep individuals from obtaining a formal education or from working, thus

leading to even lower incomes. A poverty trap is thus formed wherein low incomes lead to poor

health outcomes which contribute to even lower incomes.27 However, infrastructural improve-

ments and other development programs that increase the access of low income individuals to

healthcare have the potential to stop or even reverse the cycle of these poverty traps since

healthier individuals are more likely to be able to obtain a formal education and/or to partici-
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pate in the labor market.26,28

F.4.3 Community Engagement

Community engagement for dengue control emerged in the 1980s as a new attempt at sus-

tainable control for the mosquito vector Ae. aegypti. It is envisioned as a bottom-up control

strategy, one that is carried out by citizens of the community and guided by local leaders rather

than government officials. However, especially in the initial stages, collaboration between the

government and local leaders is an integral part of community engagement. This strategy is in

contrast to a top-down approach, that is, a program run entirely by the government and health

officials without input from or expectations of the local community. In some cases attempts at

community engagement end up looking very similar to the traditional government-run control,

especially once funding for a trial program has ceased. If implemented correctly, the sense of

leadership and ownership in resources and ideas should make a community more responsive and

engaged in addressing the dengue problem even after outside support is withdrawn.29

Community engagement for control of Anopheles mosquitoes, which transmit malaria, uses

some similar and some different techniques for the mosquitos different behaviors and feeding

habits. Rather than focusing on emptying containers with standing water in and around homes,

as is done for Ae. aegypti, community engagement focuses on distributing and educating about

bed nets. Both mosquitoes may be controlled through insecticidal spraying of homes however,

especially when it is carried out properly by the household and by the vector control employees.

In the 1980s the World Health Organization (WHO) put funding into community engage-

ment trial programs and initially gave funding to Thailand to conduct trials using the new

strategy. However, these initial programs were not very successful because they did not involve

true community engagement. The program was government directed, still maintained as top-

down control, and participating citizens were simply told what to do, so when the support was

withdrawn the community programs fell apart.29

The trials in the 1980s taught important lessons: community engagement programs will not
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be sustainable unless there are continued economic incentives and the programs will not receive

funding from the limited government health dollars once they have been successful. However,

even with continued programmatic incentives and government funding, there are still other

factors that underscore the success of a community-based program. If the economic incentives

disappear after the external funding ends, the incentive of improved health and fewer cases of

dengue should continue to motivate community participation in control programs but it may

not be enough, especially during times when dengue is absent from an area and other health

concerns take precedence.

While community based programs are intended to ultimately give control to members of

the community, relying solely on the community presents problems itself. Even when incentives

are present, members of the community must be convinced that removing larval habitats is

in their best interests and that controlling Ae. aegypti is a priority. Some reinforcement and

involvement from the government must always be maintained to ensure that the community

is educated and continuing to implement the control measures. The shift from governmental

control to local control will take time because the community may see the task as one for which

the government is responsible.29

Since the 1980s, community based programs to control dengue have been implemented in

many areas around the world. Some of these programs have been successful and sustained over

periods of years after funding has ceased, while others continue to look like the initial trials in

Thailand where the programs deteriorate after funding and other incentives are removed. Today,

some of the most successful community based programs are present in Cuba, where local Cubans

appear to have truly embraced the cause and believe in suppressing dengue through educating

community members, removing larval habitats, and going door to door during epidemic periods

to check for symptoms of dengue. In 1981, the first and largest DHF epidemic presented itself

in the Americas. In response, the Cuban government trained and mobilized over 15,000 workers

to go house to house educating citizens about dengue and mosquito vector control, in addition

to extensive pesticide application.30
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Initially, the 1980s success of Cuban programs depended on top-down control with enforce-

ment through anti-mosquito breeding laws. People were educated on how to prevent mosquitoes

from breeding in and around their homes and were fined by inspectors who were sent to fre-

quently check individual households and enforce the laws.29 Today, numerous studies suggest

that the top-down control is no longer needed even when outside incentives are not present.

For example, a 2007 study conducted in Santiago de Cuba focused on the sustainability of a

community-based approach for two years after external funding was withdrawn.31 The sustain-

ability was evaluated through direct observation, questionnaires, group interviews, and routine

entomological surveys using the Breteau and entomological house indices. Two years after the

external support was removed, people living in neighborhoods who had received the interven-

tion continued to correctly apply larvicides and store water properly; as a result, larval indices

continued to decline. Comparatively, larval and house indices of people living in the control

area, who had not received community engagement support and education, increased.31 This

study provides evidence that the community-based approaches in Cuba are sustainable and

effective at reducing Ae. aegypti.

Thailand still heavily maintains governmentally run, top-down control programs for reducing

and eliminating Ae. aegypti. Although successful, this type of continued government intervention

is more expensive than the approaches in Cuba in which, over time, the external support is

removed and the community takes over responsibilities the government had previously assumed.

A study in Taiwan, where dengue cases have been limited, examined the impacts and stress

that volunteers in community health experience and suggests that the volunteers experience a

lack of support in the role they are expected to fulfill, as well as a lack of proper education and

work overload.32−33 These types of concerns and considerations are important for community

engagement as the volunteers are expected to dedicate time to extra duties outside of their

everyday jobs and families needs. Although the participants in this study are volunteers, in

other community based programs the people do not necessarily volunteer to participate, es-

pecially during trial periods where governmental or outside support is maintaining that the
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community follows through with the tasks requested of them. A careful balance between giving

the community too much responsibility versus not giving enough is difficult to achieve and

what a successful program looks like will differ dramatically between countries and even local

areas. New techniques, such as the use of transgenic mosquitoes to control vector populations,

may help to reduce the burden of community health volunteers. However, before release, it is

important to gather the input from public opinion studies in the communities using commu-

nity engagement to understand the attitudes, concerns, and ideas that people have surrounding

transgenic insect releases.34

Considering the current programs that use traditional non-transgenic approaches, a good

community engagement strategy is one that (1) is sustainable over decades and evolves to meet

the rising number of dengue cases each year, (2) empowers citizen to be involved, but does not

place too much responsibility on the community so that engagement disappears after incentives

or lawful actions are no longer there, and (3) is widely accepted and does not involve forcing a

community to be a part of a control program that goes against its beliefs and values.

If transgenic mosquitoes are released to suppress dengue, the programs are likely to change

in terms of the levels of involvement required from the government and community. First, the

removal and monitoring of larval habitats by private homeowners would still be useful in reduc-

ing cases, but if released mosquitoes are able to suppress wild populations to non-transmissible

levels, likely less monitoring would be required. Secondly, the amount of insecticidal spraying

inside and outside of homes would be reduced. This would reduce the need for homeowners to

vacate during spraying as well as reduce the risk of chemical exposure. Thirdly, engagement

would be more frontloaded in the sense that government and community collaboration would

take place before the transgenic mosquitoes are released. GMO educational events and gath-

ering public opinion would be essential to gain a sense of the public acceptance or denial of

the GMO technology. After this, the next step would be to understand the reasons why people

accept or deny transgenic mosquitoes as a method to suppress dengue. All of this collaboration

would be done before the release of mosquitoes, and hence most of the community engagement

173



would be done before the program actually begins and with less community involvement needed

after implementation. This is in contrast to the current programs in which community partic-

ipation is oftentimes required and even increases overtime as governments or outside sources

pull funding.

Box 1: Community Engagement

Community engagement, involvement, and development to reduce mosquito borne diseases all

refer to the concept of giving a community leadership and ownership of ideas and resources

after education and collaboration from the government. Community engagement (bottom-

up/horizontal control) is intended to be a sustainable method that is less costly and more

effective at reducing dengue than programs run solely by the government (top-down control).

Ideally, the initial steps of community engagement involve governmental vector control

employees educating and collaborating with local communities and then slowly the community

takes over responsibility for some of the tasks the government once performed. More than

this, the strategy is ideally sustainable because the communities have a desire to reduce

the mosquitoes and believe in the methods they have been taught. Sustainability is key to

the strategy because the initial money the government or outside source of funding had will

eventually be used up and the initial incentives to perform the tasks may no longer be present.

Thus, the success of trials for community engagement are difficult to assess unless long term

studies are carried out years after the funding and incentives are removed.

To date, the most successful community engagement programs appear to be in Cuba,

where Cubans have embraced the techniques needed to suppress dengue such as removing

larval habitats, going door to door to check for dengue symptoms, and educating other citizens

about suppression and control techniques.
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F.4.4 Values and Ethics of Control Measures

Here we offer an “informed laypersons” ethical framework for considering the release of genet-

ically modified mosquitoes. Entire careers and numerous volumes have been dedicated to the

study of bioethics. We hope this will serve, at the very least, as a spark for further exploration

of relevant ethical and social concepts and issues surrounding the use of transgenic mosquitoes

for public health. The principles we believe to be most pertinent to the discussion are outlined

with some hypothetical examples drawn from literature and adapted to the modification of

pest species. Table F.3 offers a brief overview of the principles discussed, namely: stewardship,

animal welfare, justice as fairness, and precaution.

Stewardship

The stewardship principle states that humans are entrusted to care for and promote the good

quality of air, water, soil, ecosystems, biodiversity, and the earth as a whole.35 Illustrating

this role, Resnik states a steward is like a property manager and “should ensure that the

property is not damaged and should make improvements on the property.”35 This includes,

first and foremost, the residents of the property. Field trials for transgenic insects intended

to control disease should be conducted in an area where the disease is a recognized public

health concern. Mechanisms should be put in place to protect these residents and especially

those who are affected by the disease during the field trial. This protection would include

informing the community about the trials and providing free healthcare for the targeted disease.

These mechanisms would help to ensure that the benefits significantly outweigh the risks to the

community and to the residents environment.36 All life depends on environmental resources

for survival; thus stewardship argues it is no longer defensible to solely consider the natural

resource needs of humans. The principle of stewardship moves the ethical discussion toward a

biocentric view that nature has its own moral worth.35,37 Control measures that may conflict

with the notions of stewardship include chemical pesticides, environmental management, and

transgenic technology.
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Table F.3: Brief outline of ethical principles

Principle Short Definition
Potential Questions to
Address

Stewardship

The environment must be cared
for in such a way as to provide
natural resources for future
generations.

What could the future
environmental impact look like?

How would this technology
change the impact of controlling
this pest?

Animal Welfare

Animals have rights in so much
that “because it is an animal” is
not an acceptable justification
for actions taken against them.

Is genetic modification of this
species necessary?

Does genetic modification
unreasonably or unnecessarily
interfere with biological drivers
of this species?

Justice as Fairness

A fair decision is one in which
maximizes liberty for all and the
distribution of effects follows
that the least advantaged
individuals in a society will
receive the greatest benefits.

Who benefits from this
technology and who bears the
associated risks?

How are benefits and risks
divided among those directly
involved with the technology?

Is the distribution of risks and
benefits fair (as defined by
Rawls)?

Precaution

With the acknowledgement that
zero risk is an impossible
standard, reasonable risks to the
environment, health, and safety
of participants must be
considered prior to initiating a
control program.

What are the plausible
environmental, health, and
safety risks of this technology?

Would further research
significantly alter the impact or
reduce the probability of adverse
effects?
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Long-term damage to natural resources has occurred from short- and long-term applica-

tions of chemical insecticides such as DDT to control disease vectors.35,38 In the years immedi-

ately following World War II, unrestricted pesticide use posed dangers to nature and humans

which drew increasing public and academic attention.38−40 Given the preponderance of evidence

demonstrating the damage unrestricted pesticide use can cause to the environment, one would

be hard-pressed to find environmental scientists that would endorse such use. Still, one can

strongly argue for judicious application of pesticides if they are used to promote a universally

recognized goal of high priority, such as human health.35

Animal Welfare

Animal biotechnology has often been considered in the light of the modification of vertebrates.

Ethicists have developed a number of ethical theories that allowed for the modification of ani-

mals under certain conditions.41,42 Discourse centered predominantly on domesticated animals,

their ecological relationships with the natural environment, and their relationships to humans.

Mosquitoes, and invertebrates in general, present a new and challenging test for these ethical

theories developed in response to the potential of transgenic farm animals.

How should animals be treated? Do humans have “dominion” over life, the right to do as we

please? Modern arguments that humans do have to make ethical decisions in treating animals

arise from Peter Singers 1975 utilitarian treatise Animal Liberation. Can a dog, cow, or fish

suffer? If yes, then in the interest of maximizing happiness, humans are obligated not to inflict

upon them any unnecessary suffering.43 Animals deserve our respect, but how much respect

they deserve is still debated.

Finding strict utility insufficient, other authors have attempted to formulate a more deonto-

logical—or constrained—view of how we should treat animals. For instance, some have argued

that all sentient animals possess intrinsic value, with sentience being defined as the ability to

feel.41,44 By Intrinsic value we mean an animal has value aside from any use or aesthetic value

humans derive from it. We should treat animals as if what we do to them matters to them.
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Violating an animals intrinsic value is permissible only if a serious animal or human interest

(life or death) is threatened and no alternative measures are available.44

Yet another concept is telos, a creature’s “end” or “purpose.” Aristotle defined telos as

the full, flourishing development of existence. In application to mosquitoes, it would constitute

the nature of the mosquito or, more abstractly, the “mosquitoness” of the mosquito. Animals

have needs and interests, and those needs and interests that matter most are inviolable.41 For

instance, it would be wrong to isolate a social animal from social interactions. Contrast this

with the previous statement: we should treat animals well because what we do to them matters

to them. Can telos be changed? Should humans manipulate an animal’s telos? Let us examine

a thought experiment we modified from Michael Hauskeller:45 (p 59)

Scientists genetically design a human. This person lacks the possibility to live a fully

human life. Traits have been knocked out so that they cannot use their hands the way

humans do, their nose the way humans do, their eyes the way humans do, and so

on. Simultaneously, the desire to live a fully “human” existence is removed so they

would not know that anything is missing from their existence.

Is this morally acceptable? Have the scientists caused this person harm? After all, this person

does not know or care that these things have been done to them. Yet, “We could still deplore

their state and say that harm has been done to them, because we perceive the gap between

what they now are and what they are meant to be,” says Hauskeller.45 (p 59) Alternatively, if we

would not do this to a human, is it permissible to do this to an animal?

Critics are particularly suspicious of the extensions beyond utilitarian arguments for animal

welfare. For instance, if animals have intrinsic value, then what of bacteria, viruses, and other

pathogens?35 If yes, then is it wrong to eradicate tuberculosis, HIV, or dengue? We find this

to be an interesting, but fundamentally frail argument. Examination of potential consequences

inhabits any ethical discussions, but because a principle may be uncomfortable or have negative

outcomes for humanity is not a reason for rejection. Even if pathogens had intrinsic value, erad-

ication could be justifiable because of the level of morbidity and mortality caused by pathogens.
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In other words, eradication of pathogens is justified despite their intrinsic value. In practical

application, conflicts will arise between competing ethical principles. Resolving those conflicts

reasonably and fairly is part and parcel in deciding what actions to take.

Justice as Fairness

How does one decide what is just or fair with regards to dengue and malaria control? Aristotle

outlined the formal definition of justice: equals should treat each other as equals.46 We adopted

Rawls’ concept of justice as fairness, which outlines two principles: (i) equal liberties for all,

and (ii) the difference principle.46 Under the first, everyone in a society would be entitled to

maximum liberty insofar as everyone had equal liberty. The difference principle ensures people

have equality of opportunities, but restricts social and economic inequalities to ones that benefit

the least advantaged members of society. Justice as fairness does not only apply to individuals,

but it is equally applicable to organizations. Rawls46 (p 3) wrote, “A theory however elegant and

economical must be rejected or revised if it is untrue; likewise laws and institutions no matter

how efficient or well-arranged must be reformed or abolished if they are unjust.”

Two areas of justice concern control programs. Procedural justice regards the process of

making fair societal decisions, and distributive justice seeks a fair distribution of risks and

benefits. How we determine the process of making fair decisions includes several underlying

principles such as public participation in decisions that affect them, transparency in public

decisions, and that people have equal protection under the law. Legal and political systems

are responsible for carrying out procedural justice.46 Determining how risks and benefits are

distributed is a complex issue with social and cultural considerations. One way to make that

determination is to use “veil of ignorance” thought experiment.46 Under the veil, members of a

group would negotiate the distribution of risks and benefits in a society not knowing what the

negotiators socioeconomic position in the society would be. Rawls argues this would provide

a powerful incentive to formulate an equitable distribution of risks and benefits. For example,

one would most likely not place a majority of the risk from insecticide exposure on individuals
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without access to healthcare because, after the negotiation, they might occupy that place in

society.

This has straightforward applications to the control of mosquitoes and vector-borne disease.

How should communities and nations organize their infrastructure to treat those affected by

dengue or malaria? Access to healthcare options needs to be universally promoted. New control

strategies need to balance risks and benefits equitably among society. Those that have the

least ability to mitigate suffering from disease should receive the greatest benefit from control.

Communities have a right to make informed public decisions on control strategies that directly

impact their interests.

Precaution

How should a society weigh the risks and benefits of a control measure? Science can only

give estimates of probabilities of what may occur based on the best evidence available at the

time. This is because science works not by proving hypotheses, but by rejecting alternative

hypotheses.47 It arrives at explanations of natural processes through narrowing down probable

outcomes until only one or a handful remain. This means that the scientific method does not

have the capability to precisely predict what will happen in the future only the likelihood of

what could happen. Still, when weighing the risks of control strategies, the worst advice is to

“be careful”.48 This also happens to be a mischaracterization of the precautionary principle.

There lies some difficulty in defining the precautionary principle due to the often vague

language used in official documents.49−51 The practical approach to the precautionary principle

is embodied in Principle 15 of the Rio Declaration:52

In order to protect the environment, the precautionary approach shall be widely ap-

plied by States according to their capabilities. Where there are threats of serious or

irreversible damage, lack of full scientific certainty shall not be used as a reason for

postponing cost-effective measures to prevent environmental degradation.

While this may still seem vague, a number of authors have attempted to clarify the principle.
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Scientific evaluation of the probability of risks should be employed to determine to what extent

a reasonable risk of environmental harm exists.49 Individual nations have the right to determine

the level of acceptable risks to take, in so far as taking those risks does not unfairly place burdens

on neighboring states or individuals least able to bear such risks.

The precautionary principle has engendered a heated debate in the scientific community.

On one end it is seen as irrational, incoherent, and paralyzing to discovery, research and ex-

ploration. Conversely, proponents argue that it is a policy tool for making practical decisions

in spite of scientific uncertainty. When appropriately defined and applied with careful weighing

of reasonable risks, the precautionary principle can allow regulators and policy makers to take

informed, rational approaches to protect the environment and human health without paralyzing

scientific discovery.35,51

The precautionary principle will have the most potential to affect proposed systems with

gene drives such as homing endonucleases, killer-rescue, and Wolbachia.53−55 These approaches

have the potential to spread to areas or countries with bans or moratoriums on transgenic

technology. Therefore, any drive system will need to prepare for this encroachment and be able

to reverse or cancel the spread of the system into unwanted areas. Furthermore, where the

system is designed for eradication of the species there are the possibility of ecological knock-

on effects. These effects may not be predictable or even known until the control strategy is

underway. While these examples are not reasons in-of-themselves not to pursue a strategy, it

would seem reasonable to prepare a method to recall the transgene. This agrees with Macer

(2003) who states that the precautionary principle makes us “reasonably cautious” because it

aligns with the principle of “do no harm,” although no human action is completely without

risk. Thus, there should be continual re-evaluation of the risks involved, and a plan to abort the

program should be in place.34 For genetically modified mosquitoes, this could be accomplished

with additional drive systems or a rescue construct.55,56
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An Ethical, Cultural, and Social Framework

The development of any framework is difficult. Stepping back to examine why something is

done or how it ought to be done has eye-opening ramifications. If rushed, the creators of such a

framework will have difficulty defending it to the public. This process will certainly yield diverse

results depending on the situation. We suggest the principles outlined above as a framework

with which to approach questions regarding transgenic pests and human health, fully aware

that they may often create situations of conflict. Part of creating a framework is resolving con-

flict between principles or potentially making a value judgment as to which principle supersedes

another. But a given framework should not be viewed as relativistic and thus dismissed as un-

principled; rather, it should produce similar results in similar situations. Thus, in deciding how

to resolve conflicts between principles one must outline why one principle must take precedence

over another. Ethicists and philosophers could be brought into the conversation as there are

many tools within their disciplines in which to deal with conflicting principles in a logically de-

fensible manner. We accept that no two situations or communities are exactly the same, but we

argue that making a good-faith effort to utilize a framework will result in a publicly defensible

approach to disease mitigation and mosquito control.

F.4.5 Regulation, Deliberation, and Public Communication of Biotechnol-

ogy

Current US Regulation of Biotechnology

Current regulation of GMOs within the U.S. is delegated under the Coordinated Framework

for the Regulation of Biotechnology (CFRB). This framework employed existing legislation and

regulatory organizations to regulate biotechnology. In one sense, this is a result of a definitional

question; the regulation of GE plants, microorganisms, food, and animals are divided among

These include the Toxic Substances Control Act (TSCA), Federal Insecticide, Fungicide, and Rodenticide
Act (FIFRA), Federal Food Drug and Cosmetic Act (FFDCA), and the Federal Plant Pest Act (FPPA) (Kuzma,
Najmaie & Larson, 2009).

These include the Food and Drug Administration (FDA), the Environmental Protection Agency (EPA), and
the U.S. Department of Agriculture (USDA) (Kuzma, Najmaie & Larson, 2009).

182



the EPA, FDA, and USDA based on whether they are defined as “plant pests,” “pesticides,”

“toxic chemicals,” or “investigational new animal drugs.”57

Regulatory Controversy and Oxitec

British biotech company, Oxitec, made the first release of GM mosquitoes for dengue con-

trol in 2009 on the Caribbean Island of Grand Cayman, with another trial in the summer of

2010.58 The following year, Oxitec completed another release in Malaysia, supported by the

Malaysian government.59 While the 80% drop in the Ae. aegypti mosquito population in Grand

Cayman was considered a major success by Oxitec, these releases have not come without con-

troversy, with Science claiming “strained ties” between Oxitec and the Bill and Melinda Gates

Foundation.58 While anti-GMO activists have warned against potential risks of releasing GE

mosquitoes, Nature Biotechnology cited disagreements having to do with regulatory processes;

that is, some disagree with the speed at which Oxitec seemed to conduct releases, and the way

in which these releases were communicated with the local communities. Oxitec founder Luke

Alphey stated that flyers were distributed in Grand Cayman and government officials went door-

to-door answering questions; however, many remain critical of the unorthodox press release via

a YouTube video at the conclusion of the trials.60 In addition to Oxitec’s arguably sparse public

communication efforts, other scientists were critical of Oxitec’s procedure of conducting field

trials and making information public before going through the peer review system.60 Later,

the Oxitec mosquitoes were released in Brazil to seemingly little public controversy, while the

discussion of possible releases in the Florida Keys in the United States sparked a public petition

against the releases.61

Debates regarding Oxitec’s procedure of field releases and public communication strategy

has directly spilled over into discussions regarding the regulation of GM pests. Most notably,

R. Guy Reeves et al. offered a critique of the current regulatory system in the US, Cayman

Islands, and Malaysia.62 They strongly criticized the use of categorical exclusions (CEs) based

on the 2008 Environmental Impact Statement (EIS) on GE insects. A CE is a request for
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exemption from drafting a full environmental assessment (EA), with the argument that a new

EA would be redundant and unnecessary. According to Reeves et al., CEs for GM insects are

largely granted based on the 2008 EIS.62 The 2008 EIS covered four species of GE insects: pink

bollworm moth (P. gossypiella), Mediterranean fruit fly (Ceratitis capitata), Mexican fruit fly

(Anastrepha ludens), and oriental fruit fly (Bactrocera dorsalis). They argue that the 2008-EIS

is “scientifically deficient on the basis that (1) most consideration of environmental risk is too

generic to be scientifically meaningful; (2) it relies on unpublished data to establish central

scientific points; and (3) of the approximately 170 scientific publications cited, the endorsement

of the majority of novel transgenic approaches is based on just two laboratory studies in only

one of the four species covered by the document.”62 Furthermore, Reeves et al. argue that

the continual reliance on the 2008 EIS, especially given what they see as scientific deficiencies,

suggests that US regulators fail to acknowledge critical technological differences among different

GE insects. In conclusion, they argue for a public engagement approach that includes public

access to pre-release materials as well as a “high quality multi-disciplinary approach” in order

for these new technologies to succeed.62

In a response, Alphey and Beech pointed to Reeves et al.’s argument for transparency

in the pre-release process, stating the “argument has some merit, but needs to be balanced

against significant practical difficulties. Technology developers have legitimate rights to protect

proprietary information; governments understand this and provide statutory protections.”63 In

addition, Alphey and Beech question Reeves et al.’s basis that regulatory decisions should be

based primarily on peer reviewed scientific works, asserting that this argument “depends on

three assumptions: that journal peer-review is a superior guarantee of quality than any other

method, that no data from any other source can be of adequate quality to warrant consideration,

and that regulators themselves are incapable of adequately assessing the quality and significance

of data provided to them. Each of these assumptions is näıve at best.”63 Alphey and Beech

believe that regulatory bodies should have access to a wider range of information aside from

peer-reviewed studies and that peer-review should not be the benchmark for quality regulatory
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data.63

Figure F.1: Timeline of Oxitec mosquito releases and relevant regulation

As it currently sits, the controversy surrounding the Oxitec field releases seems to primarily

circulate around social issues, both the social practices of the scientific community and what

is seen as appropriate social interactions among scientists, regulators, and lay communities. As

Alphey and Beech point out, Reeves et al. “confuse the concepts of transparency, independence,

and scientific quality.”63 On the other hand, Alphey and Beech seem to reify these concepts

themselves, not acknowledging that there may be a diversity of values surrounding each of these

concepts, depending on the given situation.

Biotechnology and the Public Sphere

Regulation for biotechnologies like transgenic mosquitoes require a sensitivity to the academic

and scientific traditions, or how knowledge is constructed and verified, of the nation at hand.
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Jasanoff calls these traditions “civic epistemologies.”64 As Jasanoff defines it, a civic episte-

mology includes the citizens’ and government’s ideology regarding the roles that science and

technology play in the nation. These frameworks are usually implicit, operating in the back-

ground of political and technical discussions. Discussions regarding the common values of a

nation and how science and technology further or hinder these values can help bring this epis-

temological framework to the foreground, helping to bring the governing body to a stronger

consensus on how to regulate these technologies.

This philosophy of debate perhaps best aligns with the concept of the public sphere, orig-

inally developed by Jrgen Habermas.65 The Habermasian public sphere is intended to be an

inclusive social space where issues are introduced, developed, and debated among a group of

equal-standing citizens who are brought together by a common interest. However, it should not

be taken for granted that all voices are given an equal and appropriate platform. Governing

bodies must give due consideration to the voices that arise not only in governmental institu-

tions, but also within common arenas such as public school associations, religious institutions,

and other community organizations and NGOs.66 These organizations are distinct from interest

groups and lobbyists.66 Explicit attention to the civic epistemologies of a nation, especially as

it is defined in non-institutionalized community organizations, can help to bring attention to

marginalized epistemologies, or counterpublics,67 in order to enable a more inclusive form of

participatory democracy, leading to a more desirable oversight framework that incorporates

differing values, ethics, morals, and concerns of the affected citizens.57

Models of Public Communication

Sensitivity to the way in which a new technology is presented and discussed within a given

community or communities is not merely to quibble over “rhetoric.” This idea assumes a def-

inition of “rhetoric” as “mere words” or “mere style” that is added as an extra flourish and

has no effect on the core message. However, the academic tradition of rhetoric, stretching back

to the work of Aristotle in Ancient Greece, studies the structure and effects of argumentation

186



and persuasion through the three appeals (ethos, or credibility and character; pathos, or emo-

tion; and logos, or logic). While many may initially believe that only logos applies to science,

many rhetoricians have illustrated how ethos, or credibility and character, has been a major

driver in scientific communication. Ethos plays an especially strong role when scientists are

called upon as policy advisors; several historical examples have been documented where scien-

tists were both successful and unsuccessful in developing what was seen as an acceptable ethos,

including J. Robert Oppenheimer in the case of nuclear warfare, Rachel Carson in the case of

pesticides, and the Nongovernmental International Panel on Climate Change (IPCC).68 When

managed carefully and appropriately, a speakers ethos can help to garner trust among public

communities.69 In addition, rhetoricians have shownpathos is embedded in science communica-

tion, perhaps unconsciously, through arrangement, style, and diction in public communication

about biotechnology.70 This is not to say that pathos appeals should be flagged and avoided at

all costs, as this would be an impossible task. Rather, a more productive use of rhetoric would

be to give due attention to the values and emotions that are implicit in our communication

and foreground these in public communication and deliberation. Foregrounding these values

and emotions would open up a site of public deliberation that fairly considers the desires of the

relevant stakeholders.

However, the model of public communication that has been used for some time by the

scientific community has not accounted for this kind of open deliberation. In the past several

decades, a deficit model of communication has been used widely by governmental agencies and

biotech industries. This model is based on the Shannon-Weaver71 model of communication that

consists of a sender, receiver, noise, and feedback loop. This model comes with a number of

problematic assumptions regarding the role of the audience and the role of the communica-

tor. First of all, the traditional model of public communication of science assumes a one-way,

linear mode of discourse flowing from the expert speaker to a lay audience, with a singular

and transparent means of communication.69 In this model, the audience is usually perceived

as ignorant at best, hostile at worst, and in all cases in need of “simple, clear” information
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in order to understand reason.72 This model problematically assumes that pure information

can be communicated and received without any alteration to the message; however, language

studies scholars have argued that language choice inherently and unavoidable directs attention

to certain aspects of a situation, while deflecting others.73 Appeals to transparency are often

made in the deficit model of communication, but the appeal to “transparency” hides the role

of language in shaping how we understand science, nature, illness, the human condition, and

so on, by ignoring how language unavoidably shapes meaning, ultimately governing what is

admitted for discussion into the public sphere (Hartzog and Katz, unpublished manuscript).

However, it is not only within the public sphere that style inherently directs what is discussed

and how it is discussed. Even in the laboratory, the rhetorical figures of analogy, metaphor, and

metonymy have been shown, through ethnographic research, to direct experimental research

within the physics laboratory.74

Given that messages can never truly be sent through a “clear” channel, a model of com-

munication that values multiple interpretations of information will create a more trustworthy,

respectful, and productive discursive landscape for understanding and talking about this tech-

nology in regulatory debates. Several alternative models have been proposed by humanists and

social scientists, including a rhetorical model of communication69 and a “genetic” model of

communication that understands specialist and public discourses as a “double helix,” with one

influencing the other.75 Both the rhetorical and helical model of public communication em-

phasize a communication that is focused on influence rather than information. In other words,

instead of the one-way information transfer model, these models emphasize recursivity, where

scientists and stakeholders use a common language to engage in a back-and-forth dialog that

influences one another’s positions. In addition, the rhetorical model in particular emphasizes the

complexities surrounding the speakers, audiences, languages, histories, and intentions around a

Analogy is a model of argument where one thing is compared to another thing that are essentially dissimilar.
For example, discussing a budget in terms of going on a diet. Metaphor is a rhetorical figure that offers a
way of “talking about one thing in terms of another.” For example, talking about the human brain in terms
of a computer. Metonymy is another rhetorical figure that can be defined as “a form of substitution in which
something that is associated with x is substituted for x.” For example, describing a group of on-duty Secret
Service agents as “suits” (Jasinski, 2001).
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given situation. Therefore, a close critique of various texts and spoken exchanges, is valued in

order to understand what enabled productive/unproductive communication or miscommunica-

tion.

Public Opinion of Transgenics

Little research has been done on the public opinion of transgenic mosquitoes for dengue control.

However, past research shows that public opinion of genetic modification of living organisms

varies.76 One public opinion survey found that the opinion of a representative sample of the US

population varies slightly based on how the technology is presented, whether the technology

is described as a “transgenic mosquito,” a “genetically modified mosquito,” a “genetically en-

gineered mosquito,” or “sterile mosquito.”77 Support for the release of “genetically modified,”

“genetically engineered” or “transgenic” mosquitoes was generally lower than support for the

release of “sterile” mosquitoes. However, respondents exposed to all labels generally indicated

that they believed the technology to be safer than insecticides.77

This change in opinion due to change in the label used is not surprising given past research

of this nature. For example, research in H1N1/swine flu coverage illustrates that the latter term

generally elicits a more emotional response and connection to the human experience with the

flu, while the former distanced the flu from the human experience by emphasizing its scientific

aspects.78 In research concerning the global warming/climate change debate, preference in ter-

minology aligned closely to party preference.79,80 Sensitivity to the effects of language on public

opinion should not be used simply in order to mislead the community into complacency. Rather,

future research in public opinion of transgenic technologies should take into account how the

technology is presented as one factor that affects public response. This information can then

be used create a more accurate assessment of a communitys level of accepted risk regarding

control measures, which can, in turn, inform regulatory decisions within the community.

In addition to studies of public opinion, future research should take into consideration how

transgenic technologies are incorporated into the cultural norms of various communities. In
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the case of transgenic mosquitoes, for example, this would include an understanding of the

community control practices and how these are integrated into the citizens’ daily lives. Arnold

Pacey81 offers a critique of what happens when technology is transferred from one culture to

another (e.g. from the lab to the field), ultimately arguing for an experiential study of technology

in society. That is, a focus on the knowledge and practices of the communities which use and/or

are affected by the technologies developed by scientists and engineers. He expresses a deep need

to discuss and justify technology using the discourse of these publics, rather than keeping the

technologies close to the scientific communities until ready for release.

This cultural sensitivity is especially crucial in many cultural control methods. For example,

the removal of vector breeding containers that was proposed to be an effective method of

reducing vector populations, but this depends in part on active community involvement.29

While it had been proposed that community intervention was effective, many of the studies

suffered from a lack of methodological rigor (see Community Participation). It remains disputed

if community involvement will decrease over time as enthusiasm for the new control methods

fades.31,82 Careful consideration of the sociological composition in a community is needed to

avoid the potential pitfalls of community involvement research that could lead to a loss of trust

for implementation of new control measures.

F.5 Conclusion

Every community charged with controlling malaria and/or dengue faces unique challenges re-

garding its available resources, political infrastructure and cultural values in implementing any

control technique or treatment plan. We fully acknowledge that there can be no single most

effective way to control vector-borne disease across so many different scenarios, and that any

such decision rests entirely within the policymakers and public health officials of the commu-

nity in question. What we have attempted here is to outline the various considerations that we

believe should be taken into account when considering how best to control dengue, regardless

of the decision reached. These considerations include the effectiveness of currently used control
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measures, the potential use of transgenic control methods, risks and benefits of each, and di-

agnosis and treatment options including access to clean water and health care, public opinion,

and bioethics.

While there remains no cure for dengue, the current treatment option of fluid replacement is

simple and its availability should be prioritized, especially because it can benefit the treatment

of a myriad of health issues beyond dengue. Likewise, accessibility to currently effective malaria

treatment should be prioritized. Alongside the availability of treatment, proper emphasis must

be given to informing people on how to correctly diagnose each disease, the timing of which

is crucial for proper treatment. With fluid replacement for dengue and anti-malarial drugs,

combined with early diagnosis, mortality rates from both diseases can be drastically reduced.

For overcrowding of hospitals during dengue epidemics, we suggest the development of response

units in endemic regions that can be mobilized when necessary to avoid the diversion of hospital

resources.

Vector control remains a critical component in the integrated strategy to suppress malaria

and dengue; however, current methods should be continually reassessed to monitor their effec-

tiveness while other options, including GMO use, should be considered. We have outlined one

ethical framework that we believe to be most widely applicable to the multitude of societies

performing or considering vector control. By enumerating several relevant ethical principles

(stewardship, animal welfare, justice as fairness, and precaution), we hope to shed light on how

to proceed with discussions surrounding this controversial new technology. These principles as

well as inclusive public discussions are particularly important considering the gaps in current

regulations regarding the use of GMOs. Such discussions across both the expert and non-expert

spheres are required in order for new policy to reflect both the most efficient form of vector

control as well as the societys values and concerns.

The fight against malaria and dengue is far from over, but we hope to inform and encourage

open discussion regarding the various forms of treatment and vector control, so that communi-

ties may take steps toward further reducing disease in the most efficient and responsible means

191



possible.
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