
ABSTRACT

LI, LE. Numerical Studies for CVA with DWR and Portfolio Optimization with Mixed Normal
Distribution. (Under the direction of Dr. Tao Pang and Dr. Wei Chen.)

Credit value adjustment (CVA) is an adjustment added to the fair value of an over-the-counter
trade due to the counterparty risk. When the exposure to the counterparty changes in the same
direction as the counterparty default risk the so-called wrong-way-risk (WWR) must be taken
into account. On the other hand, if these two quantities change in the opposite direction, right-

way-risk (RWR) takes place. These two sides of effects are also called directional-way risk

(DWR). Calculating CVA with DWR has been a computationally challenging task especially
because it has to be done frequently. In this thesis, we start with the fact that the ratio of CVA
with DWR to CVA under the independent exposure and default assumption depends on the
means and standard deviations of exposure and default probability and their linear correlation.
The CVA DWR ratio is then decomposed into two factors, a robust correlation and a profile
multiplier with further economic insight into the CVA DWR ratio. The distribution free approach
in this paper entails an efficient algorithm of curve based CVA DWR calculation. A numerical
study illustrates the algorithm and its benefits when CVA with WWR is priced. A detailed
discussion about Hull and White model is made. Some analytical results are derived. We further
show the CVA DWR multiplier decomposition bridges different existing approaches that are
used to calculate CVA with DWR. Thus the decomposition provide insights of DWR and
better explain some phenomenon when DWR is in present. Portfolio optimization with mixed
normal distribution is presented. It’s shown that mixed normal distribution can better describe
stock index returns than normal distribution. Under a mixed normal assumption Value-at-Risk
(VaR) and Conditional Value-at-Risk (CVaR) can be easily computed, which greatly reduce
the computational efforts of the optimization problem. A numerical example with 5 assets is
presented to show the computational efficiency.
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Chapter 1

Introduction

Over-the-counter derivatives dealers need to adjust the value of a portfolio of derivatives trans-
actions with counterparties since there will be possible losses simply due to defaults by the
counterparties even if the trade itself doesn’t incur significant profit or loss. This has become a
standard practice nowadays. The adjustment amount is known as Credit Value Adjustment or
CVA. Prior to the credit crisis in 2007, CVA was considered negligible. According to the Basel
Committee, during the financial crisis roughly two-thirds of the credit crisis risk losses were
due to CVA losses and only one-third were due to actual defaults[2]. Consequently increasing
attention has been paid to counterparty risk and CVA charges ever since. Wrong-way-risk

(WWR) and right-way-risk (RWR) are introduced. WWR and RWR together are usually called
directional-way-risk (DWR).

Portfolio optimization has been an interesting topic for several decades. Lots of alternative dis-
tributions have been proposed to substitute normal distribution in order to better fit the financial
data. Different risk measures have been proposed to address different concerns of risk managers.
We focus on Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) optimization with
mixed normal distribution.
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1.1 Background and Literature Review

A derivatives dealer can have thousands counterparties with over millions derivative transactions
in total. For each counterparty a CVA is calculated based on the total net exposure to the
counterparty. Each CVA depends on the net value of the portfolio to the counterparty. The
computational complication of CVA is significant.

In parallel to CVA, there is a measure called DVA, short for debt value adjustment. It is the
credit adjustment value to the dealer’s counterparty due to possible defaults by the dealer. DVA
is not typically an interesting valuation and capital exercises because for one thing the dealer
typically does not realize DVA without the actual default, and for the other the dealer can even
book profit and loss against its own credit change. Therefore, our focus will be CVA in this paper.

CVA includes two types of exposures, the potential movements in the counterparty credit
spreads and the underlying market variables that affect the risk free instrument values. Accord-
ing to Basel III published in December 2010 by the Basel Committee on Banking Supervision,
dealers should only identify the CVA risk resulted from the changes in the counterparty credit
quality. Some practitioners and researchers argue that when the market variable is hedged, the
hedging positions will increase but not decrease the required capital[24]. The hedging transac-
tions will introduce new counterparties. As a result, it is not possible to hedge CVA perfectly.

In practice CVA calculations often assume the independence between the counterparty’s proba-
bility of default and the dealer’s exposure to this counterparty. However, this assumption usually
doesn’t hold in reality, which means they can move together. In the case they move in the same
direction, the so-called wrong-way risk (WWR) materializes. The right-way risk (RWR) takes
place when the two factors move in the opposite directions. These two sides of effects are also
called directional-way risk (DWR). WWR can be harmful. Examples like AIG in 2008 have
underlined the importance of WWR and brought growing interest in modeling CVA with WWR.
RWR tends to reduce the price of CVA.

In response to WWR, Basel III levied a multiplier α to the exposure in the CVA capital
charge. By default, α is set to be 1.4. Financial institutions can use a lower α if enough justifi-
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cation is provided but it can not be less than 1.2. However estimates of α by banks are reported
to range from 1.07 to 1.10 [26]. Although there is no incentive in BASEL III that rewards RWR,
we will discuss both effects in this thesis.

According to Jon Gregory [28], there are mainly two types of approaches to model CVA
with DWR, correlation approach and parametric approach. The former one includes Pykhtin
and Rosen [36], Rosen and Saunders [39], Brigo and Alfonsi [9], Brigo and Pallavicini [10],
Skoglund, Vestal and Chen [40] and Pang, Chen and Li [34]. The latter one is also called
stochastic hazard rate approach and was proposed in Hull and White [24]. Studies of Hull and
White model are also given in Ghamami and Goldberg [21] and Ruiz, Boca and Pachòn [38].

Pykhtin and Rosen [36] show that with a normal distribution of exposures and a Gaussian
copula, analytical expressions can be obtained for CVA even in the case of WWR. Rosen and
Saunders [39] propose a robust method, which effectively leverages existing ‘pre-computed’
exposures into a joint market and credit risk portfolio model. Their approach to WWR is through
an artificial copula, the so called ordered-scenario copula which governs the relation between
an exposure and a counterparty creditworthiness indicator. The method highly depends on the
chosen copula and distribution assumption of the creditworthiness indicator and the time to
default. However, the choice of the proper copula and the dependence level is also mostly subjec-
tive. The authors give no criteria on how to choose a copula or how to select the dependence level.

Brigo and Alfonsi [9], Brigo and Pallavicini [10] and Skoglund, Vestal and Chen [40] cor-
relate the exposure and default probability with two joint stochastic processes. Exposures and
default probabilities are then generated from the underlying interest rates and default intensities
respectively.

Hull and White [24] defines hazard rate as a deterministic function of the exposure and relate
it to default. The dependence of the default probability and the exposure is given between the
hazard rate function and the exposure. This approach is tractable but the deterministic function
reduces the modeling flexibility. Their model is subject to subjective judgment about the amount
of right-way or wrong-way risk the counterparty brings [24]. It requires the users to have a good
knowledge of the counterparty’s business.
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Both types of approaches have advantages and disadvantages. Our goal is not to draw con-
clusions about which approach is better. We try to propose a semi-parametric model that can
calculate CVA with DWR in a more efficient way and better interpret both approaches.

Portfolio optimization has been an interesting topic for several decades. Early work can be
traced back to Markowitz [30]. A mean-variance framework was built. The goal is to find the
optimal asset allocation that minimizes the variance of a portfolio, meanwhile certain minimum
required return level should be exceeded. Portfolio variance was the risk measure.

Due to the leptokurtosis of financial data [18], normal distribution may not describe the historical
returns very well. Some other distributions were proposed to fit financial data, like generalized
student’s t distribution [41] and stable distribution [32] [8] [33]. Instead of those distributions,
we use a mixed normal model, which will improve computational efficiency.

Besides the distribution selection, variance is not adequate to describe the risk of a portfo-
lio and some new risk measures were introduced. A popular one is Value-at-Risk (VaR). Hull
and White proposed a way to calculate VaR when the returns are not normally distributed [25].
VaR can describe tail risk but can not tell a portfolio manager on average how much the loss is
going to be. Conditional Value-at-Risk (CVaR) was used to address this. CVaR is defined to be
the expected loss given the loss is beyond VaR. As is shown in Rockafellar and Uryasev [37]
CVaR optimization can be quite convenient. Both VaR and CVaR are used as the risk measure
in this thesis. With a numerical example, we show the portfolio optimization problems can be
solved fast under this framework.

1.2 Contribution of This Research

In this thesis, we investigate existing models that are used to calculate CVA with DWR. Advan-
tages and disadvantages of each model are also discussed. There are several common drawbacks
that all these models have. The information embedded in the simulations on a single day can
not be reused; all of them try to calculate one CVA value without showing how a confidence
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interval can be constructed; no efforts have been done to bridge different models; none of the
existing models provides a good way to gain insights of CVA with DWR.

We will address these drawbacks one by one. Firstly, a decomposition of CVA DWR mul-
tiplier is proposed. Based on this decomposition, a semi-parametric method is proposed. Then
an efficient curve fitting algorithm is developed. Guidelines are provided so that the information
embedded in the simulations on a single day can be reused with certain conditions satisfied.
Re-usability criteria are listed to outline these conditions

A single CVA value is not as a helpful as a confidence interval of CVA to a risk manager.
Our work allows a risk manager to construct one without adding much computational burden.
Details are shown how this can be done.

By performing different approaches with the same set of exposures, we illustrate how our
robust correlation and profile multiplier can be used to interpret different sets of parameters
that are used in different types approaches. Thus a bridge is built. With this bridge, attempts of
interpreting CVA with DWR are made. We discuss extensively how the correlation parameter,
namely b, in Hull and White model impacts robust correlation and profile multiplier. Insights of
CVA with DWR are also provided and proves to be useful explaining phenomenon observed in
other researchers’ work.

We show that mixed normal distribution can better describe stock index return data than normal
distribution in the sense that mixed normal distribution can better model skewness and heavy
tail. It’s also shown that VaR and CVaR optimization with mixed normal distribution has great
computational advantage.

1.3 Outline of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, preliminary knowledge used in our
research is introduced. We briefly review interest rate models and credit risk models. We present,
in details, how we simulate interest rates and price interest rate swaps. Pricing methodology of
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plain vanilla interest rate swaps is given in Appendix A.

In Chapter 3, CVA and DWR are introduced. The standard simulation approach for CVA
is set up. We then propose our model to calculate CVA with DWR. We decompose the CVA
DWR multiplier into two factors, namely robust correlation and profile multiplier.

We present correlation approach and focus on WWR in Chapter 4. With a series of numerical
studies, an efficient curve fitting algorithm is developed. We discuss the use of our model to
build a confidence interval for CVA. Some findings about correlation approach are also discussed.

Parametric approach is shown in Chapter 5. An analytical expression of robust correlation
and profile multiplier is given. We use a numerical example to show how the analytical results
and our model can be applied to gain insights of CVA with DWR.

Portfolio optimization with mixed normal distribution is discussed in Chapter 6. We show
that VaR and CVaR of a mixed normal distribution can be found with little computational efforts.
Thus the work can be useful in the stress testing framework.
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Chapter 2

Preliminary

Now let’s introduce some preliminaries that will be used in our research. This chapter has two
parts: interest rate models and credit risk models. Pricing of plain vanilla interest rate swaps is
given in Appendix A.

2.1 Interest Rate Models

The risk free interest rate is one of the most important factors for pricing the financial instruments
and hence has been studied by a lot of researchers and practitioners. Short rate models include
those by Merton [31], Vasicek [43], Cox, Ingersoll, and Ross [15](CIR), Ho and Lee [22], Hull
and White [23], Black, Derman and Toy [6] and Black and Karasinski [7](BK). Comparison
and implementation of affine models has been given by Chan, Karolyi, Longstaff and Sanders
[11] and Paseka, Koulis and Thavaneswaran [35].

Since our focus is CVA and we propose a semi-parameter approach, we use the widely known
and popular CIR and Vasicek models in our numerical studies. The stochastic process of CIR
model is

drt = κr(θr− rt)dt +σr
√

rtdWt (2.1)

and for Vasicek model we have

drt = κr(θr− rt)dt +σrdWt (2.2)

7



where Wt is a standard Brownian Motion and κr, θr and σr correspond to the mean-reverting
speed, the mean-reverting level and the volatility respectively.

For CIR model, some efforts were made to avoid negative interest rates brought by the dis-
cretization. See Deelstra [16], Diop [17] and Alfonsi [1]. We take absolute value of the interest
rate which is proposed in Diop [17]. Euler discretization is applied to both models.

Plots of interest rate paths with both CIR and Vasicek models are shown below. The parameters
are chosen to be κr = 0.1, θr = 0.05 and σr = 0.06 for both models. This set of parameters is
also used in Skoglund, Vestal and Chen [40].

Figure. 2.1 Simulated interest rate paths - CIR model
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2.2 Credit Risk Modeling

On the other hand, various methods to model the default probability have been proposed and
studied. Structural approach proposed by Black and Scholes [5] and Merton [31] is also known
as the value-of-the-firm approach. It models the behavior of the total value of the firm’s assets.
Default is triggered when the total value of the firm’s assets fall below a preset barrier - such
as its debt. Black and Cox [4] extends Merton’s model in a way that allows premature default.
Fouque et al. [19] introduces a stochastic volatility model and Fouque et al. [20] is an extension
to a multi-name case.

Jarrow, Lando and Yu [27] discusses the relationship of the default intensities under phys-
ical and risk neutral measures. A CIR model is used to model the intensity and a ‘drift change
in the intensity’ is derived. They provide conditions under which the empirical and martingale
default intensities are equivalent. Berndt et al. [3] opts to use a Black-Karasinski model to model
the intensity process. They assume the logarithm Xt = ln(ht) of the default intensity ht has the

Figure. 2.2 Simulated interest rate paths - Vasicek model
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following SDE:
dXt = κX(θX −Xt)dt +σX dZt (2.3)

where Zt is a standard Brownian motion, and κX , θX and σX are unknown constants. These
parameters are estimated from the monthly Moody’s KMV EDF observations.

We use the recovery rate R of 0.4 proposed by Varma and Cantor [42] and choose κX and
σX estimated in Berndt et al.[3] for the Oil and Gas sector and set the long term mean so
that 0.6exp(−θX) = 0.02. Hence the parameters are chosen to be κX = 0.470, θX = 3.401 and
σX = 1.223. We further assume that certain conditions in Jarrow, Lando and Yu[27] are met
such that the intensity process is under the risk-neutral measure. Once we get all the default
intensities, the default probabilities will be calculated with the following equations.

The relationship between default intensity ht and survival probability S(t) is given by

S(t) = exp
(
−
∫ t

0
hudu

)
(2.4)

A discretization of Eq. 2.4 based on equally spaced time period is

S(t) = exp

(
−∆t ∑

ti≤t
hti

)
(2.5)

The default probability q(ti)’s in Eq. 3.5 follows

q(ti) = S(ti−1)−S(ti) (2.6)
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Chapter 3

A Semi-Parametric Method

In this chapter, we propose an approach that does not depend on the distribution of exposures
and the default probabilities.

3.1 CVA and DWR

Throughout our paper, we consider unilateral CVA, which ignores the bank’s own default risk.
The general formula for CVA is

CVA = (1−R)E
[
1{τ≤T}V

+(τ)
]
, (3.1)

where R is the constant recovery rate; τ is the default time; T is the time to expiration; 1{τ≤T} is
the default indicator function that is 1 if the default time τ ≤ T and 0 otherwise; V+(t) is the
risk-neutral discounted exposure at time t.

The exposure V+(t) is subject to netting and collateral but not recovery. Assume the dis-
counted portfolio value and required collateral are V (t) and C(t) respectively then the exposure
is

V+(t) = max(V (t)−C(t),0) . (3.2)
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Eq. 3.1 can be expressed as

CVA =−(1−R)
[∫ T

0
E
[
V+(t)

]
dS(t)

]
, (3.3)

where S(t) is the survival function of the counterparty’s default time τ .

We take discretization of the integral into (ti)k
i=0 time steps where t0 = 0 and tk = T . Eq. 3.3 can

be written as

CVA = (1−R)
k

∑
i=1

E
[
V+(ti)[S(ti−1)−S(ti)]

]
= (1−R)

k

∑
i=1

E
[
V+(ti)q(ti)

]
,

(3.4)

where q(ti) is the probability of default within (ti−1, ti] .

In a discretization approximation, the representative exposure V+
(ti) is usually used instead of

V+(ti). The formula used in BASEL III follows

V+
(ti) =

V+(ti−1)+V+(ti)
2

.

One can also use a right- or left-point rule, or use the exposures at the middle points

V+
(ti) =V+

(
ti−1 + ti

2

)
.

Thus Eq. 3.4 can be written as

CVA = (1−R)
k

∑
i=1

E
[
V+

(ti)q(ti)
]
. (3.5)

Wrong-way risk (WWR) occurs when the exposure V+
(ti) tends to grow while the default

probability q(ti) becomes larger. A good example of the presence of WWR is the situation
in which many credit default protection buyers had to deal with the falling giant American
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International Group (AIG) during the end of last decade financial crisis. AIG Financial Products
(AIGFP) was a division of AIG. It sells a huge amount of credit default swap known as CDS
against various types of debts including collateralized debt obligation or CDO. Prior to the
crisis, the default of individual bond issuers and investors were considered independently, i.e.
counterparty A’s default will not affect the likelihood of counterparty B’s default. However,
this was no longer true during the crisis due to the systematic risk. Many credit instruments
that AIGFP sold CDS against suddenly incur high default risk. AIGFP thus had a huge liability
from its CDS business which increases the default risk of AIG itself. In this situation, the CDS
buyers faced increasing exposure V+

(ti) from the CDS contracts because of the credit risk of
the underlying debt as well as the increasing default probability of the CDS counterparty i.e.
AIG, q(ti) simultaneously. One approach to capture WWR is to use the positive correlation
between stochastic processes of the exposure and the default probability. In other words, WWR
is presented when there is a positive correlation between V+

(ti) and q(ti). When there is WWR,
the expected credit loss due to counterparty risk amplifies. Therefore, WWR is not negligible.

3.2 CVA DWR Multiplier Decomposition

We assume that the distributions of V+
(ti)’s are unknown but have finite mean and volatility,

which depend on time ti and can vary across time. Likewise, the distributions of default proba-
bility q(ti)’s is also unknown. The corresponding time varying mean and volatility should be
finite as well.

Denote the means and variances of the exposures and default probabilities as follows

E
[
V+

(ti)
]
= µV (ti), Var

(
V+

(ti)
)
= σ

2
V (ti),

E [q(ti)] = µq(ti), Var(q(ti)) = σ
2
q (ti).

We now consider the correlation coefficient of V+
(ti) and q(ti) directly, namely ρ(ti). For each

time node, we have

ρ(ti) =
E
[
V+

(ti)q(ti)
]
−µV (ti)µq(ti)

σV (ti)σq(ti)
. (3.6)
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With the independence assumption and Eq. 3.5, we can get

CVAIND = (1−R)
k

∑
i=1

µV (ti)µq(ti). (3.7)

Then, according to Eq. 3.5, it is the CVA when exposures and default probabilities are indepen-
dent. In general, if we do not know whether the exposure and the default are independent, by
virtue of Eq. 3.5 and Eq. 3.6, the general formula for CVA is

CVA = (1−R)
k

∑
i=1

E [V (ti)q(ti)]

= (1−R)
k

∑
i=1

E [V (ti)q(ti)]−µV (ti)µq(ti)+µV (ti)µq(ti)
σV (ti)σq(ti)

σV (ti)σq(ti)

= (1−R)

[
k

∑
i=1

ρ(ti)σV (ti)σq(ti)+
k

∑
i=1

µV (ti)µq(ti)

]
.

(3.8)

We define the ratio of CVA to CVAIND as

CVAratio ≡
CVA

CVAIND
. (3.9)

Then, by virtue of Eq. 3.7 and Eq. 3.8, we can get

CVAratio = 1+
∑

k
i=1 ρ(ti)σV (ti)σq(ti)

∑
k
i=1 µV (ti)µq(ti)

, (3.10)

where ρ(ti) is the correlation between V+
(ti) and q(ti) given by Eq. 3.6.

Define

ρ̄ ≡ ∑
k
i=1 ρ(ti)σV (ti)σq(ti)

∑
k
i=1 σV (ti)σq(ti)

, (3.11)

and

Cp ≡
∑

k
i=1 σV (ti)σq(ti)

∑
k
i=1 µV (ti)µq(ti)

. (3.12)
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We call ρ̄ robust correlation and Cp profile multiplier. It is easy to see that −1 ≤ ρ̄ ≤ 1.
Cp describes the profiles of exposure and default probability.

Now the Eq. 3.10 can be written as

CVAratio = 1+ ρ̄Cp. (3.13)

and CVA can be expressed as

CVA = (1+ ρ̄Cp)CVAIND. (3.14)

If the robust correlation is not sensitive to small market changes, then we only need to estimate
it once in a small sub-period. With this stability assumption the computational effort can be
significantly reduced. We can simply simulate the exposures and default probabilities indepen-
dently and then derive CVA with WWR in a more efficient way.

It’s clear that the ratio depends on two factors ρ̄ and Cp. If either of them is sensitive to
the market changes, so will be the CVA ratio. Since one can derive Cp easily when calculating
CVAIND with full simulation, more attention will be paid to the sensitivity of robust correlation.

First of all, Cp can be considered as a quasi coefficient of variation of the defaultable value, that
is, the product of default free value and default probability assuming zero recovery rate. It can
be a by-product from the CVAIND calculation. In the defined CVA ratio, the robust correlation
ρ̄ is simply a coefficient of the effect from the quasi coefficient of variation Cp. Intuitively, a
portfolio with large Cp tends to inhibit high WWR risk. However, the actual impact from Cp can
range from none (when ρ̄ = 0) to full (when ρ̄ = 1). Our numerical study shown in the next
chapter is aiming to find out the effect of Cp and ρ̄ on CVA ratio. We observe the factor of ρ̄Cp

can be as large as 3. The CVA ratio also matches the spirit of the Basel α , which is currently set
to 1.4 in Basel III.
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Chapter 4

Efficient CVA Curve

In this chapter, we will perform a series of numerical analyses in the context of vanilla interest
rate swaps and develop an algorithm that calculates CVA with DWR efficiently.

4.1 Simulation Models

Although the model does not require any distribution assumption, for the sake of this numeric
study we will apply a few industry standard risk free interest rate and default hazard rate models.

The risk free interest rate is one of the most important factors for asset pricing and hence
has been studied by a lot of researchers and practitioners. We use short rate models proposed
by Cox, Ingersoll, and Ross [15](CIR) and Vasicek [43] in our numerical study. The stochastic
process of CIR model is

drt = κr(θr− rt)dt +σr
√

rtdWt , (4.1)

and for Vasicek model we have

drt = κr(θr− rt)dt +σrdWt , (4.2)

where Wt is a standard Brownian Motion, κr, θr and σr the corresponding mean-reverting speed,
mean-reverting level and volatility respectively.
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We simulate 3-year pay fixed interest rate swap exposures with quarterly payments by modeling
the interest rate r(ti) with both models. We will study and compare the effect of WWR for both
models.

Euler discretization is applied to both models. For CIR model, some efforts were made to
avoid negative interest rates brought by the discretization. See Deelstra [16], Diop [17] and Al-
fonsi [1]. We take absolute value of the interest rate when it is negative, as proposed in Diop [17].

The parameters are chosen to be κr = 0.1, θr = 0.05 and σr = 0.06 and we assume at time 0 the
interest rate term structure is flat and equal to θr. The fixed rate is also set to be θr so the swap
is at the money. The simulated future exposures have time dependent mean µV (ti) and volatility
σV (ti). This set of parameters is also used in Skoglund, Vestal and Chen [40]. Later we will
perform some sensitivity analysis when κr, θr and σr change.

Various default probability models have been proposed and studied. Jarrow, Lando and Yu
[27] discusses the relationship of the default intensities under physical and risk neutral measures.
A CIR model is used to model the intensity and a ‘drift change in the intensity’ is derived. They
provide conditions under which the empirical and martingale default intensities are equivalent.
Berndt et al. [3] opt to use a Black-Karasinski [7] model for the intensity process. They assume
the logarithm Xt = loght of the default intensity ht has the following SDE:

dXt = κX(θX −Xt)dt +σX dZt . (4.3)

where Zt is a standard Brownian motion, and κX , θX and σX are unknown constants. These
parameters can be estimated from the monthly Moody’s KMV (Kealhofer, McQuown and
Vasicek) EDF (Expected Default Frequency) observations.

We use the recovery rate R of 0.4 proposed by Varma and Cantor [42] and choose κX and
σX estimated in Berndt et al.[3] for the Oil and Gas sector and set the long term mean so
that 0.6exp(−θX) = 0.02. Hence the parameters are chosen to be κX = 0.470, θX = 3.401 and
σX = 1.223. We further assume that certain conditions in Jarrow, Lando and Yu[27] are met
such that the intensity process is under the risk-neutral measure. Once we get all the default
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intensities, the default probabilities will be calculated with the following equations.

The relationship between default intensity ht and survival probability S(t) is given by

S(t) = exp
(
−
∫ t

0
hudu

)
. (4.4)

A discretization of Eq. 4.4 based on equally spaced time periods is

S(t) = exp

(
−∆t ∑

ti≤t
hti

)
. (4.5)

The default probabilities q(ti)’s in Eq. 3.5 follow

q(ti) = S(ti−1)−S(ti). (4.6)

The default probabilities may have time dependent mean µq(ti) and volatility σq(ti). As stated
in the previous section, our approach only requires the values of the means and variances of the
exposures and default probabilities. It doesn’t rely on the assumption of distributions. It’s totally
safe to use any existing models to generate the default probabilities.

4.2 Wrong Way Risk and Correlation

To correlate the exposures and default probabilities, we use correlated Wt and Zt to generate the
underlying processes and denote

ρWZ ≡ E [dWt ·dZt ]/dt

as the correlation coefficient of Wt and Zt . ρWZ reflects the correlation between the exposure and
the default probability.

ρWZ can take values in [−1,1] to reflect the different level of correlations between the ex-
posures and the default probabilities. Given a level of the underlying correlation ρWZ , the robust
correlation given in Eq. 3.11 can be calculated by simulations. In particular, for a given value
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of ρWZ , we generate N paths of the interest rate process rt described by Eq. 4.1 or Eq. 4.2
and N paths of the default density process ht = logXt where Xt is given by Eq. 4.3. Then
we can generate the exposures and default probabilities at each time point ti. At each time
point ti, we calculate the means and variances of the exposures and the default probabilities,
µV (ti),σV (ti),µq(ti),σq(ti). Then the robust correlation ρ̄ can be calculate as the following:

ρ̄ =
∑

k
i=1 ρ(ti)σV (ti)σq(ti)

∑
k
i=1 σV (ti)σq(ti)

.

To calculate CVA using the full Monte Carlo simulation described above, we need to regenerate
all paths each time when we consider a new level of ρWZ . This is very time consuming if one
only cares about the CVA while ρWZ changes in a small range around the current value. On the
other hand, in the formula (3.14), once we generate the exposures and the default probabilities
for the independent case, we are ready to calculate the profile multiplier Cp, and the CVA
corresponding to different level of ρWZ can be obtained by changing the robust correlation ρ̄

without rerunning the full simulations. To guarantee the consistence, we need to establish the
relationship between ρWZ and the robust correlation ρ̄ . This will be done in section 4.4. But first,
we must determine N, the number of paths we need to simulate, to achieve the desired accuracy.

4.3 Full Simulation and Convergence

We derive exposures and default probabilities in the way introduced in the previous sections.
Then we apply the full simulation approach given in equation Eq. 3.4 to calculate CVA. N paths
of the interest rate rt and the default density ht are generated for a given level of ρWZ . For each
path j, j = 1,2, · · · ,N, we can calculate the exposure V+

j (ti) and the default probability q j(ti) at
each time ti. On the other hand, according to Eq. 3.4, the CVA is given by

CVA = (1−R)
k

∑
i=1

E[V+(ti)q(ti)] = (1−R)E

[
k

∑
i=1

V+(ti)q(ti)

]
. (4.7)

We define CVA j as

CVA j = (1−R)
k

∑
i=1

V+
j (ti)q j(ti). (4.8)
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The sample mean of the simulated CVA is:

CVAN =
1
N

N

∑
j=1

CVA j.

Apparently, by the Law of Large Numbers and Eq. 3.4, we know that

CVA = E[CVAN ]. (4.9)

The sample standard deviation sN is given by

s2
N ≡

1
N−1

N

∑
j=1

(
CVA j−CVAN

)2
.

Then the standard error eN of the sample mean CVAN can be estimated by

e2
N =

s2
N

N
.

Since CVA may be sensitive to the input parameters, the standard error eN of the sample mean
CVAN is not a good measure for convergence. Hence, for convergence study, we consider the
coefficient of variation the sample mean CVAN :

εN =
eN

CVAN
=

sN√
N CVAN

. (4.10)

N is set to be 10,000, 30,000, 50,000, 70,000 and 100,000 and we compute εN for both CIR and
Vasicek models with all ρWZ values. For illustration purpose, Fig. 4.1 shows εN when we use
CIR model and set ρWZ to be 0.5. We use a threshold of 0.01 or 1% to determine the number of
paths needed. From Fig. 4.1, we can see that when the total number of paths is 100,000 the CVA
curve is good enough (εN < 0.01) to be used as a benchmark. We also conduct convergence
studies for different values of ρWZ , such as 0,0.05.0.1,0.15, · · · ,1, and the results are the same.
For ρWZ taking negative values, the results are the same, too. Since we focus on the WWR, we
mainly consider ρWZ ∈ [0,1] in this paper. Next, we will use N = 100,000 and call it the full
simulation if we use the procedure above to obtain CVA.
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On the other hand, once we have generated the paths and obtained the exposures V+
j (ti) and the

default probability q j(ti) at each time ti, we can estimate CVAIND, too. Recall that

CVAIND = (1−R)
k

∑
i=1

E[V+(ti)]E[q(ti)]. (4.11)

Then we can estimate CVAIND by the following estimator:

CVA0N = (1−R)
k

∑
i=1

(
1
N

N

∑
j=1

V+
j (ti)

)(
1
N

N

∑
j=1

q j(ti)

)
. (4.12)

Now we can derive the CVAratio by Eq. 3.9 and we denote it as CVAS
ratio:

CVAS
ratio ≡

CVAN

CVA0N
. (4.13)

4.4 Robust Correlation and Efficient Curve Fitting

As we have seen in the last section, CVAIND is relatively easy to obtain, but if the level of
dependence ρWZ has changed, we have to redo the whole simulation process to get the CVA.
Here we propose a more efficient way to derive CVA when there is WWR.

Since CVAIND is already obtained, our goal is to obtain the CVAratio. First, by virtue of the
equation for the profile multiplier Cp given by Eq. 3.12, we can obtain Cp after one full simula-
tion and we do not need to re-do the simulation even the ρWZ changes. Secondly, according to
Eq. 3.13, we only need to estimate ρ̄ to obtain the CVAratio. Therefore, if we can identify stable
mapping between ρWZ and ρ̄ , we will not need to redo the full simulation when ρWZ changes.
We denote the CVA obtained by this formula as CVAF

ratio.

Fig. 4.2 gives the relation between ρWZ and ρ̄ . As we can see, an exponential function may give

21



us a very good fit. So we will propose an exponential function to map ρWZ to ρ̄:

ρ̄ = a[exp(bρWZ)−1] (4.14)

where a and b are fitted parameters and ρ̂ denotes the estimate of ρ̄ . So there are only 2
parameters to estimate.To fit the curve, we divide the interval [0,1] into K small subintervals
and define

δρ =
1
K
, ρ

i
WZ = iδρ , i = 1,2, · · · ,K.

For each given ρ i
WZ , we run the simulations to generate the exposures and default probabilities

to calculate ρ̄ i using formula (3.11). Then we fit the curve with the ρ̄i’s by estimating the values
of a,b by least square method.

We use two measures to test the accuracy of our approach. First we consider the relative
error of the ratio at each level of ρWZ , which is defined as

ερWZ ≡
∣∣∣∣CVAF

ratio−CVAS
ratio

CVAS
ratio

∣∣∣∣ .
It’s easy to see that this relative error is also the relative error of CVA. We check the maximum
ερWZ across all ρWZ levels to see if our approach is accurate enough. The other measure we use
is the mean squared error (MSE) which is defined as

MSE ≡ 1
K

K

∑
i=1

[
CVAF

ratio(ρ
i
WZ)−CVAS

ratio(ρ
i
WZ)
]2
.

As discussed in the previous section we calculate CVAIND with 100,000 paths and derive µV (ti),
µq(ti), σV (ti) and σq(ti). First we calculate the robust correlations for K = 20, i.e., at the points
where ρ i

WZ equals 0.05, 0.1, . . . , 0.95, 1. At each point we generate 10,000, 30,000, 50,000 or
70,000 paths to test if we need more paths to fit a robust correlation curve that can be used in
our approach. From Tables 4.1 and 4.2, we can see that 10,000 paths is good enough.

To reduce the computational burden, we further reduce the value of K from 20 to 10 and
5, i.e. ρWZ equals 0.1,0.2, . . . , 1.0 or 0.1,0.3, 0.5, 0.7 and 0.9, respectively. The corresponding
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results are given in Tables 4.3 and 4.4. For comparison purpose, in Fig. 4.3 , the CVA ratio curves
derived using the full simulation and using our approach are plotted. Obviously increasing the
fitting points of ρWZ may not give us more benefit. So in this case, we conclude that 5 points
of ρWZ between 0 and 1 is adequate to fit a robust correlation curve. Thus the total paths we
generate are 150,000. But one can get the CVA with any ρWZ between 0 and 1.

Throughout the rest of this paper, we fit the robust correlation curve with 5 points of ρWZ

and 10,000 paths at each ρWZ . In the next section, we will test the robustness of the approach
and perform some sensitivity analysis and extreme scenarios analysis.

4.5 Sensitivity Analysis and Extreme Scenarios

To test the robustness of our method, we first consider small perturbations of the parameters
and investigate the range of change for the robust correlation ρ̄ . Here we perturb all 3 interest
process parameters, κr, θr and σr, by ±10% of their current level. We denote the current level
as ‘MMM’. A -10% level is denoted as ‘L’ and +10% as ‘H’. Since we have 3 input parameters,
there are 33 possible levels to examine. We want to see if it is possible to fit the robust correlation
curve once for the ‘MMM’ level and reuse it for all other levels.With the fitted curve for level
‘MMM’, we calculate adjusted R-squares for all 27 levels to check the accuracy of fit. The
statistics and measures of accuracy are in Table 4.5. From this table, we can see that the adjusted
R2 statistics are very close to 1, which means the fitted curve can represent all other levels very
well. The accuracy measures indicate the fitted robust correlation can be used to calculate CVA
and capture WWR with relative error below 4% in magnitude. Therefore, instead of regenerating
ρ(ti) and calculating ρ̄ for all levels, we can just use ρ̂ fitted from level ‘MMM’ to represent
all other levels. We can replace ρ̄ with ρ̂ and plug it to our formula in Eq. 3.13, CVA ratio
curves for all 27 levels can be calculated easily without losing much accuracy. Such analysis can
also be performed against parameters for Xt or ht process. However, a company’s credit quality
information is usually updated quarterly or monthly and we assume that the Xt or ht process is
estimated less frequently unless there is a credit event. A credit event can trigger unwinding
of transactions, which will definitely impact the CVA calculation. One should always re-fit the
robust correlation in case of a credit event.
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The previous experiments may not reveal which input parameter has greater impact on the
CVA ratio. Also we need to know how sensitive ρ̄ and Cp are with respect to each input
parameter. We start from level ‘MMM’. Every time we only perturb one input parameter
of the interest rate process within a certain range. The range we use for κr, βr and σr are
κr ∈ [0.05,0.5],βr ∈ [0.04,0.4] and σr ∈ [0.04,0.4] respectively. These ranges are all equally
spaced. Table 4.6 shows the sensitivity of robust ρ̄ when ρWZ is 1. Fig. 4.4 and 4.5 show the
value of Cp for all different parameter levels.

Table 4.6 contains the value of ρ̄ when ρWZ is 1 where ρ̄ differs most. We can see that except in
the case a CIR model is assumed and σr changes, the maximum difference of ρ̄ in percentage is
below 6% and we don’t have to re-fit our curve. This means for partial perturbation, the robust
correlation can be reused without losing too much accuracy unless the volatility of CIR model
changes a lot.

From Fig. 4.4 and 4.5 we observe similar trends for both CIR and Vasicek models. Cp de-
creases as κr or βr increases. A larger κr draws the interest rate to its mean reverting level faster
and this reduces the volatility of the exposure and the numerator of Cp given in Eq. 3.12. A
larger βr leads to a higher mean reverting level and increases the mean of exposure and the
denominator of Cp. A larger σr means more volatile and increases the volatility of the exposure
and the numerator of Cp. We view the jump of Cp in Fig. 4.5a as simulation error. The sensitivity
analysis of Cp tells us that portfolios with different Cp should not be treated the same when we
consider WWR. Holding everything else the same, a more volatile portfolio has more risk to be
amplified and it needs a bigger adjustment factor. Note here that people don’t have to worry
about this when they use our model since Cp is derived every time when CVAIND is calculated
via full simulation. This will not add any computational effort.

In the real world the long term mean reverting level is usually stabler than the other two
inputs, so we further examine two more extreme scenarios. Notice that for a given level of
βr, the interest rate process is less volatile when κr is large and σr is small. Our ‘low volatile’
scenario uses κr = 0.5, βr = 0.1 and σr = 0.04 and ‘high volatile’ scenario takes κr = 0.05,
βr = 0.1 and σr = 0.4. We fit robust correlation curves under both scenarios and use our formula
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to derive the CVA ratio curve and check its accuracy. Fitted parameters, accuracy measures, Cp

and maximum CVA ratio are given in Table 4.7.

As a result from the extreme scenario analysis the CVA ratio can vary from 2.7434 to 4.1460.
Both ρWZ and Cp change a lot. See Table 4.7. Therefore in the situation where dramatic change
of the underlying interest rate process, a reusable robust correlation curve is not guaranteed and
thus one should re-fit the curve for the subsequent analysis.

4.6 Confidence Interval for CVA and CVA Ratio

The correlation between the exposures and the default probabilities ρWZ , plays a key role in the
CVA calculation. However, it is not directly observable from the market and the risk manager
has to estimate its value. The correlation may change from time to time, and the risk manager
may just have a range of the correlation with certain confidence level. On the other hand, to
estimate the CVA with a different correlation level ρWZ , the risk manager needs to run a full
simulation. So to get a confidence interval for CVA, a risk manager may need to repeat the
full simulation many times to get the distribution of the CVA to obtain the confidence level.
On the other hand, in our approach, from the Eq. 3.14, we can see that, if the risk manager
has a confidence interval about ρ̄ , she can get the confidence internal for CVA immediately.
If she has a confidence interval for ρWZ instead of the robust correlation ρ̄ , by virtue of the
monotone property of the mapping from ρWZ to ρ̄ , we can use the Eq. 3.14 and the values
of ρ̄ corresponding to the two ending points of the confidence interval for ρWZ to obtain the
confidence interval for the CVA.

With our proposed method, we only need to run the simulations with computational efforts of
150,000 paths in this particular study case to generate the whole CVA profile for ρWZ ∈ [0,1].
Not only it is easy to obtain the confidence interval, but it is also convenient to obtain the CVA
for any correlation level very quickly. For a different level of ρWZ , we can use the formula
(4.14) to obtain ρ̂ then plug it into Eq. 3.13 to obtain the new CVA ratio and then use formula
(3.14) to obtain the CVA under the new correlation level. No need to run any simulations for
the new levels of ρWZ . In this way, a distribution of CVA ratio or CVA can be derived and a
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confidence interval is constructed. If we need 100 CVA values to construct the distribution of
CVA or to construct a confidence interval, we at least reduce the computational burden by 98.5%.

Finally, although ρWZ must be specified to perform the simulations to describe the WWR,
it is more nature to consider the robust correlation ρ̄ instead of ρWZ . From our definition of ρ̄ ,
we can see that it describes the average correlation coefficient of the exposures and the default
probabilities. So if a risk manager has a view on the correlation, it should be described by ρ̄

instead of ρWZ . Further, it makes more sense to build a confidence level of CVA based on a
confidence level of ρ̄ instead of a confidence level of ρWZ .

4.7 Implementation Guide

Based our approach and numerical studies, we propose a step-by-step guide for CVA calculation.
Consider a risk manager who needs to calculate CVA with WWR. We assume that the risk
manager already have adapted her interest rate model and the default probability model, and
she need to calculate the CVA under different correlation levels. In other words, we assume
that the risk manager needs to calculate CVA under different level of ρWZ for ρWZ ∈ [0,1]. The
step-by-step guide for CVA calculation is as follows:

Step 1. Run a full simulation (e.g. 100,000 paths) and use Eq. 4.11 to get CVAIND and use
Eq. 3.12 to calculate Cp;

Step 2. Choose a grid of 5 values of ρ i
WZ , e.g. 0.2,0.4,0.6,0.8,1.0 and for each of them calculate

ρ̄i using Eq. 3.11 with 10,000 paths;

Step 3. Fit a robust correlation curve given by Eq. 4.14;

Step 4. For any given value of ρWZ ∈ [0,1], calculate ρ̄ for ρWZ using the fitted curve.

Step 5. Apply CVAIND, Cp and ρ̄ into equation Eq. 3.14 to get CVA and its confidence interval;

Step 6. In the next period, the risk manager should have an updated view on ρ̄ or ρWZ . If the
robust criteria (to be given below) is satisfied, go to Step 4 to calculate a new CVA.
Otherwise a full simulation has to be run, that is, return to step 1.
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From the results shown in Section 4.5, the model can be used without a full simulation if one of
the following robust criteria is satisfied:

i. The input parameters deviate from current level by no more than 10%;

ii. In the case of Vasicek model, if the parameters change in the following range: κr ∈
[0.05,0.5],βr ∈ [0.04,0.4] and σr ∈ [0.04,0.4] .

iii. In the case of CIR model, if the parameters change in the following range: κr ∈ [0.05,0.5],βr ∈
[0.04,0.4] and σr doesn’t change more than 10%.

From this step-by-step algorithm, we can see that if a risk manager obtains a confidence interval
for the correlation ρWZ , she just needs to follow Step 4-6 for the maximum value and the
minimum values of ρWZ to build the confidence interval for CVA. However this algorithm is not
a recipe for any situations without caution. When extreme market scenarios or credit events with
the counterparty occur, a full simulation needs to be performed to reestablish the foundation of
the algorithm.
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Table 4.1 Fitted parameters and accuracy with 20 ρWZ points and different number of paths -
CIR model

Number of paths
at each ρWZ

a b Adjusted R2 MSE
Maximum

ερWZ

10,000 1.0272 0.6267 0.9999 0.0002 1.63%
30,000 1.0223 0.6273 0.9998 0.0001 1.69%
50,000 1.0085 0.6339 0.9999 0.0001 1.67%
70,000 1.0287 0.6245 0.9999 0.0001 1.70%

Table 4.2 Fitted parameters and accuracy with 20 ρWZ points and different number of paths -
Vasicek model

Number of paths
at each ρWZ

a b Adjusted R2 MSE
Maximum

ερWZ

10,000 1.5091 0.4579 0.9999 0.0001 1.14%
30,000 1.5319 0.4524 0.9998 0.0001 1.21%
50,000 1.4717 0.4678 0.9999 0.0001 1.11%
70,000 1.4401 0.4762 0.9999 0.0001 1.05%

Table 4.3 Fitted parameters and accuracy with 10,000 paths and different number of ρWZ

points - CIR model

Number of
ρWZ points a b Adjusted R2 MSE

Maximum
ερWZ

5 1.0195 0.6321 0.9998 0.0002 1.44%
10 1.1040 0.5931 0.9998 0.0002 1.50%
20 1.0272 0.6267 0.9999 0.0002 1.63%

Table 4.4 Fitted parameters and accuracy with 10,000 paths and different number of ρWZ

points - Vasicek model

Number of
ρWZ points a b Adjusted R2 MSE

Maximum
ερWZ

5 1.3791 0.4934 0.9999 0.0001 1.16%
10 1.4522 0.4721 0.9999 0.0001 1.25%
20 1.5091 0.4579 0.9999 0.0001 1.14%
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Table 4.5 Goodness of fit statistics and accuracy using the robust correlation curve fitted at
level ‘MMM’

Level
Adjusted R2 MSE Maximum ερWZ

CIR Vasicek CIR Vasicek CIR Vasicek
LLL 0.9998 0.9999 0.0003 0.0003 1.52% 1.72%
LLM 0.9996 0.9999 0.0004 0.0005 1.69% 2.01%
LLH 0.9996 0.9999 0.0001 0.0002 1.37% 1.64%
LML 0.9997 0.9999 0.0003 0.0009 1.95% 3.24%
LMM 0.9996 0.9999 0.0006 0.0001 2.14% 1.20%
LMH 0.9996 0.9999 0.0002 0.0003 1.43% 1.91%
LHL 0.9998 0.9999 0.0001 0.0001 1.41% 1.16%
LHM 0.9998 0.9999 0.0004 0.0005 2.07% 2.10%
LHH 0.9997 0.9999 0.0009 0.0013 2.03% 2.75%
MLL 0.9998 0.9999 0.0002 0.0004 1.51% 1.79%
MLM 0.9997 0.9999 0.0009 0.0004 2.43% 1.84%
MLH 0.9997 0.9999 0.0002 0.0001 1.89% 2.00%
MML 0.9999 0.9999 0.0001 0.0001 1.45% 1.34%
MMM 0.9998 0.9999 0.0002 0.0001 1.44% 1.16%
MMH 0.9997 0.9999 0.0003 0.0002 1.78% 1.59%
MHL 0.9999 0.9999 0.0006 0.0001 2.65% 2.30%
MHM 0.9998 0.9999 0.0001 0.0001 1.11% 1.09%
MHH 0.9997 0.9999 0.0003 0.0002 1.96% 1.58%
HLL 0.9999 0.9999 0.0002 0.0002 1.62% 1.61%
HLM 0.9998 0.9999 0.0003 0.0001 1.71% 1.38%
HLH 0.9998 0.9999 0.0002 0.0001 1.21% 1.19%
HML 0.9999 0.9999 0.0003 0.0003 1.47% 1.50%
HMM 0.9999 0.9999 0.0002 0.0001 1.41% 1.41%
HMH 0.9998 0.9999 0.0001 0.0001 1.14% 1.08%
HHL 0.9999 0.9999 0.0003 0.0001 2.21% 1.49%
HHM 0.9999 0.9999 0.0003 0.0002 1.77% 1.65%
HHH 0.9999 0.9999 0.0003 0.0002 2.14% 1.74%
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Table 4.6 ρ̄ ranges with perturbed input parameters

Input
parameter

Parameter
range

CIR Vasicek
Min ρ̄ Max ρ̄ % change Min ρ̄ Max ρ̄ % change

κr 0.05-0.5 0.8815 0.9337 5.92% 0.8690 0.9189 5.74%
βr 0.04-0.4 0.8623 0.8896 3.17% 0.8630 0.8773 1.66%
σr 0.04-0.4 0.7808 0.8914 14.16% 0.8366 0.8800 5.19%

Table 4.7 Fitted parameters, accuracy measures, Cp and CVA ratio
- extreme scenarios

Model Scenario a b Adj. R2 MSE
Max.
ερWZ

Cp
Max.

CVA ratio

CIR
Low Vol 1.1454 0.5980 0.9993 0.0003 2.00% 1.8595 2.7434
High Vol 0.4109 1.0452 0.9982 0.0008 2.35% 4.1520 4.1460

Vasicek
Low Vol 1.4592 0.4921 0.9997 0.0004 2.47% 1.6303 2.5122
High Vol 2.2641 0.3078 1.0000 0.0002 2.12% 1.8312 2.4943

Figure. 4.1 CVA simulation convergence study
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(a) Robust correlation curve - CIR model

(b) Robust correlation curve - Vasicek model

Figure. 4.2 Robust correlation curve
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(a) CVA ratio curve - CIR model

(b) CVA ratio curve - Vasicek model

Figure. 4.3 CVA ratio curve
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(a) Profile multiplier with perturbed κr

(b) Profile multiplier with perturbed βr

(c) Profile multiplier with perturbed σr

Figure. 4.4 Results from perturbed input parameters - CIR model
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(a) Profile multiplier with perturbed κr

(b) Profile multiplier with perturbed βr

(c) Profile multiplier with perturbed σr

Figure. 4.5 Results from perturbed input parameters - Vasicek model
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(a)

(b)

Figure. 4.6 Mean and volatility of exposure at level MMM - CIR
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(a)

(b)

Figure. 4.7 Mean and volatility of exposure at level MMM - Vasicek

36



(a)

(b)

Figure. 4.8 Mean and volatility of default probability
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(a) All 27 levels of robust correlation ρ̄

(b) All 27 levels of robust correlation ρ̄

Figure. 4.9 Robust correlation
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Chapter 5

CVA DWR Multiplier Decomposition as A
Bridge

5.1 The Hull and White Model

In the case of WWR, when the dealer’s exposure is high the default probability of a counterparty
is also high. RWR takes the opposite side. The usual approach models DWR by calculating
conditional exposure. While Hull and White have proposed a different approach and do the
reverse. They change the calculation of q(t) so that the evolution of q(t) is related to that of
V (t), where V (t) can be the value of portfolio at time t.

Hull and White define the conditional default probability by linking the hazard rate, h(t),
to the underlying future value of the portfolio V (t). Conditional on no earlier default, the
probability of default in any small period ∆t is h∆t. Viewing today as time 0, exp(−ht) is the
probability of no default occurs before time t. If the hazard rate varies as a deterministic function
of time then this no default probability is exp

(
−
∫ t

0 h(u)du
)
.

Hazard rates can change stochastically and are not directly observable from the market. But
credit spreads are observable and can be used as a good approximation. In their approach, the
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following relationship must be satisfied

E
[

exp
(
−
∫ t

0
h(u)du

)]
= exp[−s(t)t], (5.1)

where s(t) is the counterparty credit spread with maturity t; 0 recovery rate is assumed.

In a Monte Carlo simulation, assuming the discretization is equally spaced, Eq. 5.1 is

E

[
exp(−

j

∑
i=1

hi∆t)

]
= exp(−s jt j), (5.2)

where hi and s j are h(ti) and s(t j) respectively.

Hull and White assume
hi = g(V (ti)) = exp(ai +bV (ti)), (5.3)

where b is a constant that measures the amount of DWR, ai is a function of ti that should be
calibrated with Eq. 5.2. The detailed procedure of this calibration is given in Hull and White.
Our discussion in the next section will be based on their model.

5.2 Analytical Results

In this section, we make some assumptions and derive some analytical results to have some
insights of Hull and White model.

We assume the following assumptions hold:

1. There are K time periods;

2. t j = j∆t for j = 1,2, . . . ,K and ∆t = 1
252 ;

3. The profit and loss at t j is denoted as X j;

4. X j follows normal distribution with mean µ j and variance σ2
j and Xi and X j are indepen-

dent for i 6= j;
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5. Suppose the initial value of the portfolio is a positive constant V0;

6. The observed credit spread with maturity t j is s j;

7. t0, X0 and s0 are all 0;

8. Recovery rate and discount rate are 0;

9. The exposure at time t j is Vj and Vj =V0 +∑
j
i=1 Xi;

10. For all j, the probability of Vj falls below 0 is negligible.

We define the hazard rate at time t j as h j. Following Hull and White framework, h j is a function
of Vj and

h j = g(Vj) = exp(a j +bVj), (5.4)

where b is a predetermined constant and ai is time dependent and should be calibrated so that

E

[
exp(−

j

∑
i=1

hi∆t)

]
= exp(−s jt j)

We approximate the left-hand side of the above equation with

E

[
exp(−

j

∑
i=1

hi∆t)

]
≈ 1−E

[
∆t

j

∑
i=1

hi

]
(5.5)

Then the market implied probability of default between time t j−1 and t j, denoted as C j, is

C j ≡ exp(−s j−1t j−1)− exp(−s jt j)

= E

[
exp(−

j−1

∑
i=1

hi∆t)

]
−E

[
exp(−

j

∑
i=1

hi∆t)

]

≈ E

[
∆t

j

∑
i=1

hi

]
−E

[
∆t

j−1

∑
i=1

hi

]
= E

[
h j∆t

]
(5.6)
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Hence C j’s can be expressed in terms of the expectation of hazard rate times ∆t and we have

E[h j∆t] =C j. (5.7)

In Appendix B, we use some numerical examples to show the error of this approximation is
acceptable.

From the definition of h j,

E[h j∆t] = exp(a j−a j−1)E[h j−1∆t exp(bX j)]. (5.8)

From Eq. 5.8 one can see

exp(a j−a j−1)E[exp(bX j)] =
C j

C j−1
. (5.9)

CVA with independent exposure and default probability can be expressed as

CVAIND = E

[
K

∑
j=1

VjC j

]

= E

[
K

∑
j=1

C j(V0 +
j

∑
i=1

Xi)

]

=
K

∑
j=1

C j

(
V0 +

j

∑
i=1

EXi

)

=
K

∑
j=1

C j

(
V0 +

j

∑
i=1

µi

)
.

(5.10)

CVA with DWR is

CVADWR =
K

∑
j=1

E
[
Vjh j∆t

]
=

K

∑
j=1

E

[(
V0 +

j

∑
i=1

Xi

)
h j∆t

]
.

(5.11)

42



We show

E

[(
V0 +

j

∑
i=1

Xi

)
h j∆t

]
=C j

[
V0 +

j

∑
i=1

(µi +bσ
2
i )

]
(5.12)

by induction.

Since V0 is a constant and by Eq. 5.7, it is enough to show

E

[
j

∑
i=1

Xih j∆t

]
=C j

j

∑
i=1

(µi +bσ
2
i ) (5.13)

Stein’s Lemma:
Suppose X follows N(µ,σ2). Further assume g is a function for which both E [g(X)(X−µ)]

and E [g′(X)] exist. Then

E[g(X)(X−µ)] = σ
2E[g′(X)]

E[g(X)X ] = σ
2E[g′(X)]+µE[g(X)].

(5.14)

Following our assumptions and the definition of function g given by Eq. 5.4, we know the
conditions of Stein’s Lemma are satisfied.

First let’s check when j = 1

E [X1h1∆t] = E [X1 exp(a1 +bX1)∆t]

= (µ1 +bσ
2
1 )E[h1∆t]

= (µ1 +bσ
2
1 )C1.

Eq. 5.13 holds. Next, let’s assume Eq. 5.13 holds for j = n−1 and that is

E

[
n−1

∑
i=1

Xihn−1∆t

]
=Cn−1

n−1

∑
i=1

(µi +bσ
2
i ) (5.15)
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Then we move on to j = n

E

[
n

∑
i=1

Xihn∆t

]
= E

[
(

n−1

∑
i=1

Xi +Xn)exp(an−an−1)exp(bXn)hn−1∆t

]

= exp(an−an−1)E[exp(bXn)]E

[
n−1

∑
i=1

Xihn−1∆t

]
+ exp(an−an−1)E[Xn exp(bXn)]E[hn−1∆t]

= exp(an−an−1)E[exp(bXn)]E

[
n−1

∑
i=1

Xihn−1∆t

]
+ exp(an−an−1)E[exp(bXn)](µn +bσ

2
n )E[hn−1∆t]

Taking Eq. 5.7, Eq. 5.9 and Eq. 5.15 to the right-hand side of the above equation we have

E

[
n

∑
i=1

Xihn∆t

]
=Cn

n−1

∑
i=1

(µi +bσ
2
i )

+(µn +bσ
2
n )E[hn∆t]

=Cn

n−1

∑
i=1

(µi +bσ
2
i )

+Cn(µn +bσ
2
n )

=Cn

n

∑
i=1

(µi +bσ
2
i ).

Hence Eq. 5.13 holds for all j.

Thus CVA with DWR given by Eq. 5.11 can be expressed as

CVADWR =
K

∑
j=1

C j

[
V0 +

j

∑
i=1

(µi +bσ
2
i )

]
(5.16)
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So the CVA ratio is given by

CVAratio ≡
CVADWR

CVAIND
= 1+b

∑
K
j=1

[
C j ∑

j
i=1 σ2

i

]
∑

K
j=1

[
C j

(
V0 +∑

j
i=1 µi

)] . (5.17)

The above equation shows that the CVA ratio is a function of b, moments of exposures and the
observed credit spreads. It is irrelevant with a j’s. This result is not surprising since all a j’s are
calibrated such that the expectation of default probabilities match those implied by the observed
market credit spreads. Thus the information carried by a j’s should be embedded in b, moments
of exposures and the observed market credit spreads. In other words a j’s should be functions of
those factors.

Denote the means and variances of the exposure and default probabilities as follows

E
[
Vj
]
= µV (t j), Var

(
Vj
)
= σ

2
V (t j),

E
[
h j∆t

]
= µPD(t j), Var

(
h j∆t

)
= σ

2
PD(t j).

With our assumptions, the followings hold

µV (t j) =V0 +
j

∑
i=1

µi,

σ
2
V (t j) =

j

∑
i=1

σ
2
i ,

µPD(t j) =C j,

σ
2
PD(t j) =C2

j [exp(b2
j

∑
i=1

σ
2
i )−1].
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The first two equations above are relatively straight forward. The third one is a calibration
condition in Hull and White approach. The derivation of the fourth one follows

E
[
h j∆t

]
= E

[
exp(a j)exp[b(V0 +

j

∑
i=1

Xi)]∆t

]

= exp(a j)exp(bV0)exp

(
b

j

∑
i=1

µi +
b2

∑
j
i=1 σ2

i
2

)
∆t

=C j.

(5.18)

Thus we have

exp(a j)∆t =C j exp(−bV0)

[
exp

(
b

j

∑
i=1

µi +
b2

∑
j
i=1 σ2

i
2

)]−1

. (5.19)

Next, let’s derive the second moment of h j∆t

E
[
(h j∆t)2]= (∆t)2E

[
exp(2a j)exp[2b(V0 +

j

∑
i=1

Xi)]

]

= exp(2a j)(∆t)2 exp(2bV0)exp

(
2b

j

∑
i=1

µi +2b2
j

∑
i=1

σ
2
i

)
.

(5.20)

Taking Eq. 5.19 into Eq. 5.20

E
[
(h j∆t)2]=C2

j exp(b2
j

∑
i=1

σ
2
i ). (5.21)

Hence

σ
2
PD(t j) = E

[
(h j∆t)2]− (E

[
h j∆t

]
)2 =C2

j

[
exp(b2

j

∑
i=1

σ
2
i )−1

]
.

We now consider the correlation coefficient of Vj and h j directly, namely ρ(t j). For each time
node, we have

ρ(t j) =
Cov(Vj,h j∆t)
σV (t j)σPD(t j)

(5.22)
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By Stein’s Lemma,

Cov(Vj,h j∆t) = E
[
g′(Vj)∆t

] j

∑
i=1

σ
2
i

= bE
[
h j∆t

] j

∑
i=1

σ
2
i

=C jbσ
2
i .

Hence

ρ(t j) =
C jb∑

j
i=1 σ2

i

C j

√
exp(b2 ∑

j
i=1 σ2

i )−1
√

∑
j
i=1 σ2

i

=
b
√

∑
j
i=1 σ2

i√
exp(b2 ∑

j
i=1 σ2

i )−1
.

(5.23)

In order to claim the magnitude of ρ(t j) decreases as b increases in magnitude, it is enough to
show this is true when b > 0 due to the symmetry of the function above. We first set

x = b

√√√√ K

∑
j=1

σ2
j > 0.

Eq. 5.23 becomes

ρ(t j) =
x√

exp(x2)−1

ρ
2(t j) =

x2

exp(x2)−1

One can see that both the numerator and denominator of the equation above are 0 when x = 0
and the first order derivative of the numerator is less than that of the denominator when x > 0.
So ρ(t j) decreases in magnitude as b increases in magnitude when b > 0.

Next we want to show ρ(t j) takes value in the interval of (−1,1). Using the expression of
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ρ2(t j) given above and denote u = x2

lim
u→0

u
exp(u)−1

H
= lim

u→0

1
exp(u)

= 1.

So when b > 0, x > 0 and the limit of ρ(t j) is 1. When b < 0, x approaches 0 from left and the
limit of ρ(t j) is -1.

In the case when defaults are independent with exposures or b = 0. The hazard rates are
constant over all simulation paths for all time nodes t j’s. So they have 0 variance and covariance
with exposure. ρ(t j) should also be 0.

Let’s see how the expression given by Eq. 5.17 can be interpreted in terms of CVA DWR
multiplier decomposition given in Pang, Chen and Li [34]. They discussed the use of CVA
multiplier decomposition to gain insights for WWR. Actually the formulas also hold for RWR.
The followings are defined

CVAratio = 1+
∑

K
j=1 ρ( ji)σV (t j)σPD(t j)

∑
K
j=1 µV (t j)µPD(t j)

, (5.24)

ρ̄ ≡
∑

K
j=1 ρ(t j)σV (t j)σPD(t j)

∑
K
j=1 σV (t j)σPD(t j)

, (5.25)

and

Cp ≡
∑

K
j=1 σV (t j)σPD(t j)

∑
K
j=1 µV (t j)µPD(t j)

. (5.26)

ρ̄ and Cp are called robust correlation and profile multiplier respectively. It is easy to see that
0≤ ρ̄ < 1. Cp describes the profiles of exposure and default probability.

Now the Eq. 5.17 can be written as

CVAratio = 1+ ρ̄Cp. (5.27)
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and CVA can be expressed as

CVA = (1+ ρ̄Cp)CVAIND. (5.28)

We claim that for given σV (t j) and σPD(t j), the magnitude of ρ̄ decreases as b increases in
magnitude. It’s enough to show this hold for ρ(t j) since ρ̄ is a weighted average of ρ(t j) with
all positive weights.

Taking µV (t j), µPD(t j), σV (t j) and σPD(t j) into Eq. 5.26

Cp =

∑
K
j=1

[
C j

√
∑

j
i=1 σ2

i

√
exp(b2 ∑

j
i=1 σ2

i )−1
]

∑
K
j=1

[
C j

(
∑

j
i=1 µi +V0

)] .

So Cp increases of as b increases in magnitude.

5.3 Discussion of Our Results

With CVA DWR multiplier decomposition, we can see that the parameter b in Hull and White
approach plays two roles. It amplifies the profile multiplier meanwhile reduces robust correla-
tion. The increase of profile multiplier dominates the decrease of robust correlation. Hence the
combined effect is increasing in b.

If we compare parametric approach with correlation approach, we can see that parametric
approach tends to consider the combined effect as a whole. While the latter one can better
describe robust correlation and profile multiplier separately since profile multiplier is only
a function of the mean and volatility of the exposures and default probabilities and robust
correlation is more sensitive to the correlation of the underlying risk drivers.

In almost all the uncollateralized cases, the direction of DWR is not hard to decide. It de-
pends on the nature of the trade and the position a bank takes. If a risk manager has a good
estimate of the change of default probability relative to the change of the portfolio exposure but

49



not the level of correlation, a parametric approach is more appropriate.

If the estimates of underlying risk drivers are believed to be of high accuracy, then a cor-
relation approach is better. Even when the risk manager only has a confidence interval of the
underlying or robust correlation, a corresponding confidence interval of CVA can be built.

From both of these two types of models, we conclude that both the robust correlation and
the profile multiplier play key roles in DWR. Aiming only on either of them will not be adequate.
For Hull and White approach we want to emphasis the importance of profile multiplier. If the
portfolio exposure tends to be more volatile or market CDS spread volatility of a counterparty
tends to increase, we should be more careful about DWR even though the correlation is still
unchanged.

With our results in this paper, one can better explain a phenomenon shown with Figure 9
in Ruiz, Boca and Pachòn [38]. That is CVA price decreases as the underlying volatility in-
creases in the presence of RWR. Given the denominator of profile multiplier unchanged, a
bigger numerator would increase the effect of RWR and reduce the CVA price. So CVA price
is decreasing in the volatility of the underlying ( oil price ). For CVA Vega, the same amount
of change of underlying volatility has relatively smaller impact on profile multiplier when the
numerator is bigger.

5.4 Numerical Study

A series of numerical analyses in the context of vanilla interest rate swaps will be performed in
this section.

5.4.1 Simulation Models

Neither Hull and White approach nor CVA DWR multiplier decomposition requires any distri-
bution assumption. For illustration purposes we will use the same set of exposures that are used
for ’MMM’ level in Chapter 4. DWR dependency is modeled in the spirit of Hull and White
approach. Parameter b ranges from -0.4 to 0.4.
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5.4.2 Numerical Results

From Fig. 5.1 and 5.3, we can see that the profile multiplier increases as the magnitude of b

increases. This is true for both RWR and WWR. This result also holds no matter we use CIR or
Vasicek model. In the presence of RWR, the magnitude of profile multiplier ranges from 0 to a
number slightly over 1. On the other hand, if WWR is in place this number could be almost 50
for CIR model and 100 for Vasicek model. This means WWR can be more amplified given the
same correlation magnitude. The huge difference between RWR and WWR is not surprising
since the exposure is truncated below.

An interesting relation we observe is the absolute value of robust correlation decreases as
b increases in magnitude. That’s to say a stronger codependent parameter lends to weaker
correlation. We consider this a property of Hull and White approach. The volatility of default
probabilities increases faster than the covariance of exposures and default probabilities.

Finally, the combined effect or CVA ratio is increasing in b. This is also expected for both RWR
and WWR. It’s quite intuitive to see if a trade faces WWR and the default probability of a
counterparty is more volatile, then the potential credit loss is bigger.

On the other hand, if there is RWR it seems that a trade may benefit from a more volatile
counterparty. This can be counter-intuitive at the first glance. Suppose a portfolio manager can
make deals with several counterparties to accomplish her goal. Given the same level of expected
default probability, a counterparty with less volatile default probability is considered to have
better quality. Then it’s not making sense to choose the ones with worse quality. This is true
only when counterparties are viewed standalone. However, this will ignore the RWR effect on
CVA value. A negative co-dependence can indeed reduce the potential credit loss. This is just
like portfolio optimization. It’s not always a bad idea to include a more risky asset due to its
negative correlation to current assets in the portfolio.
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5.5 Conclusion and Further Discussion

CVA DWR multiplier decomposition can build a bridge linking different approaches. With our
analytical and numerical results one can see the following:

• The parameter b in Hull and White model can impact both robust correlation and profile
multiplier given by Pang, Chen and Li [34] at the same time;

• With the same level of b in magnitude, b tends to have much more amplification effect on
the WWR side than the RWR;

• Better insights of RWR are achieved by examining how underlying volatility affects the
profile multiplier;

• The CVA ratio sensitivity relative to b is steeper when b is small in magnitude.

The parameter b in Hull and White is calibrated as the change of CDS spread relative to the
change of portfolio exposures. It’s intuitive to see the profile multiplier is closely related to the
level of b and has such monotonicity shown in Fig. 5.1 and 5.3.

When the amplification effect on the WWR side is compared to the one on the RWR side,
it’s clear that the profile multiplier is a lot bigger when there is WWR. This is a very nice
property from the standpoint of risk management. The alert is hard to neglect. Even when the
linear correlation of the exposure and default probability is small, the whole ratio can be large
enough to have risk managers to keep a close look at what’s happening. In some cases, market
tends to get more volatile much earlier than one notices the change in the correlation between
credit risk driver and underlying risk factor.

In the case one tries to gain insights of CVA with RWR, the CVA DWR decomposition offers a
big hand. It’s counterintuitive to see the CVA price decreases as b increases in magnitude when
there is RWR. However, from the decomposition one can easily see why this happens. Holding
the mean of the underlying as a constant and bumping up its volatility will increase the profile
multiplier. Since profile multiplier has more impact on the CVA ratio and robust correlation is
negative when there is RWR, the CVA price is for sure to be smaller.
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Another important finding is that when b is close to 0, one should be more careful. The
CVA ratio is quite sensitive to the estimates of b when b lies closely around 0. This is quite like
the behavior of options that are at the money. Delta is quite sensitive to the price change of the
underlying when option is at the money. A bad estimate of b around 0 can be misleading. So
when Hull and White model is used and b is small in magnitude, a risk manager may want to try
different values of b and see how sensitive the CVA price is relative to b.
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(a) RWR profile multiplier - CIR model

(b) WWR profile multiplier - CIR model

Figure. 5.1 Profile multiplier - CIR model
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(a) Robust correlation - CIR model

(b) CVA ratio - CIR model

Figure. 5.2 ρ̄ and CVA ratio - CIR model
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(a) RWR profile multiplier - Vasicek model

(b) WWR profile multiplier - Vasicek model

Figure. 5.3 Profile multiplier - Vasicek model
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(a) Robust correlation - Vasicek model

(b) CVA ratio - Vasicek model

Figure. 5.4 ρ̄ and CVA Ratio - Vasicek model
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Figure. 5.5 Snapshot of Figure 9 from Ruiz, Boca and Pachòn [38]
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Chapter 6

VaR and CVaR Optimization with Mixed
Normal Returns

Portfolio optimization has been an interesting topic for several decades. Lots of alternative
distributions have been proposed to substitute normal distribution in order to better fit the
financial data, such as student’s t distribution [41] and stable distribution [32] [8] [33]. At the
very beginning the optimization used the portfolio return variance as the objective function [30].
Later on different risk measures have been proposed, like Value-at-Risk (VaR) and Conditional-
Value-at-Risk (CVaR). They are used to address different concerns of portfolio managers. In
this thesis, we focus on VaR and CVaR optimization with mixed normal distribution.

6.1 Definitions

Definition 6.1.0.1. We denote Rp as the rate of return of a portfolio. Rp is a continuous random
variable that has cumulative distribution function FRp(rp). VaR can be expressed as a threshold

VaRα(Rp)≡max{rp ∈ R : Pr(Rp ≤ rp)≤ α}. (6.1)

Definition 6.1.0.2. CVaR has the following expression

CVaRα(Rp)≡ E [Rp|Rp ≤VaRα(Rp)] (6.2)
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6.2 Data Selection

Our investment universe contains 5 different broad indices across the world. They are Financial
Times Stock Exchange 100 (FTSE100), Hang Seng Index (HSI), NASDAQ Composite Index
(IXIC), NIKKEI 225 (NI225) and Standard and Poors 500 (GSPC). All of them are widely
used as benchmarks by portfolio managers. Since portfolio management may not benefit from
rebalancing too often [14], end of month adjust close prices are quoted.

For all the 5 assets, historical monthly log returns are calculated as

Rp(t) = ln(Pt)− ln(Pt−1) . (6.3)

Descriptive statistics of monthly log returns are shown below.

Table 6.1 Mean of monthly log returns

Asset FTSE100 HSI IXIC NI225 GSPC
µ 0.00365 0.00603 0.00742 -0.00030 0.00595

Table 6.2 Standard deviation of monthly log returns

Asset FTSE100 HSI IXIC NI225 GSPC
σ 0.04559 0.07928 0.06586 0.06192 0.04439
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Table 6.3 Return correlation

Asset FTSE100 HSI IXIC NI225 GSPC
FTSE100 1 0.6562 0.6718 0.4662 0.8048

HSI - 1 0.5924 0.4177 0.6355
IXIC - - 1 0.4931 0.9485

NI225 - - - 1 0.5157
GSPC - - - - 1

6.3 Mixed Normal Distribution

A mixed normal distribution with k components has the following CDF and probability density
function (PDF):

F(x) =
k

∑
i=1

πkFk(x)

and

f (x) =
k

∑
i=1

πk fk(x),

where Fk(x) and fk(x) are CDF and PDF of the k-th component which follows normal distribu-
tion with parameters µk and σk.

First, we standardize each returns and draw quantile-quantile (Q-Q) plots. These plots provide
insights of how well the market data fit a normal distribution.
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Figure. 6.1 Q-Q plot for FTSE100 - normal distribution

Figure. 6.2 Q-Q plot for HSI - normal distribution
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Figure. 6.3 Q-Q plot for IXIC - normal distribution

Figure. 6.4 Q-Q plot for NI225 - normal distribution
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Figure. 6.5 Q-Q plot for GSPC - normal distribution

From the shape of the Q-Q plots, one can see that the returns of all 5 assets are negative or
left skewed. This suggests we should find alternative distributions to fit the market data. In our
work, we choose to fit two component mixed normal distributions. Again Q-Q plots are drawn
to check the fit.
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Figure. 6.6 Q-Q plot for FTSE100 - mixed normal distribution

Figure. 6.7 Q-Q plot for HSI - mixed normal distribution
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Figure. 6.8 Q-Q plot for IXIC - mixed normal distribution

Figure. 6.9 Q-Q plot for NI225 - mixed normal distribution
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Figure. 6.10 Q-Q plot for GSPC - mixed normal distribution

Almost all the market data lie on the 45 degree line, which means a two component mixed
normal distribution can better fit the data than a normal distribution. And this holds for all 5
assets we selected.

6.4 Problem Setup

Assume that the goal of a professional investment manager is to earn a fixed target return. Mean-
while the risk of the portfolio needs to be minimized. Candidate risk measures are variance, VaR
and CVaR. If the portfolio value is normally distributed then these three measures are equivalent.
However, this is not true for other distributions like mixed normal distribution.

We assume the market has two different states: normal and stressed. In each state, all the
assets follow a joint normal distribution. The distribution parameters in each state are different.
Let’s consider one period T without re-balancing.

We define the followings:

67



1. N: The total number of individual assets in the manager’s universe - scalar.

2. xP: Weights of each individual assets in the manager’s portfolio with N elements, x1
P,x

2
P,

· · ·xN
P - N by 1 vector.

3. θk: Expected return of assets in state k, for k = 1,2 denoting normal and stressed markets
respectively - N by 1 vector.

4. Σk: Variance-Covariance matrix of assets in state k, for k = 1,2 denoting normal and
stressed markets respectively - N by N matrix.

5. πk: The probability of the market is in state k at the end of the period T ; ∑
2
k=1 πk = 1.

6. W : The target return.

The portfolio return in state k follows N(x′Pθk,x′PΣkxP) and the return at time T should follow a
mixed normal distribution. MN(µ1,µ2;σ2

1 ,σ
2
2 ;π1,π2) is used to denote the distribution, where

µ1 = x′Pθ1, µ2 = x′Pθ2, σ1 = x′PΣ1xP and σ2 = x′PΣ2xP.

The characteristic function of this mixed normal distribution can be expressed as

ΨRp(t) = E
[
eitRp

]
=

2

∑
k=1

πk exp
(

itµk−
1
2

σ
2
k t2
)

(6.4)

where i is the imaginary unit i.e. i =
√
−1.

It’s not hard to see that

E [Rp] =
2

∑
k=1

πiµk. (6.5)

Taking second derivative of ΨRp(t) with respect to t we have

d2ΨRp(t)
dt2 =

2

∑
k=1

πk

[(
iµk−σ

2
k t
)2−σ

2
k

]
ΨRp(t). (6.6)

68



By setting t = 0 and multiplying i2, we get the second moment of R

E
[
R2

p
]
=

2

∑
k=1

πk
(
σ

2
k +µ

2
k
)
. (6.7)

Then the mean variance optimization problem can be written as:

min :
2

∑
k=1

πk
(
σ

2
k +µ

2
k
)
−

(
2

∑
k=1

πkµk

)2

s.t.
N

∑
i=1

xi
P = 1

2

∑
k=1

πkµk ≥W.

Note here σ2
k and µk are nothing but functions of xP assuming all the other parameters are

given. Hence the mean-variance optimization problem can be expressed as a pretty simple
programming problem with linear constraints and quadratic objective function and can be solved
very fast without any simulation at all.

The VaR and CVaR optimization problems should have the same constraints as the mean
variance optimization. But they have different objective functions, which are

min :−VaRα(Rp; µ,σ ,π)

and
min :−CVaRα(Rp; µ,σ ,π).

Both types of optimization problems can be solved numerically. In the next subsection, we
show how that VaR can be found quickly with a bisection search. When VaR is given, CVaR
calculation is straight forward.
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6.5 Bisection Search For VaR of Mixed Normal Distribution

An example of a mixed normal distribution with two components is shown here. The first and
second component have cumulative distribution function F1(r) and F2(r) and weights π1 and π2.
Then the cumulative function of R is

FRp(rp) = π1F1(rp)+π2F2(rp).

First, let’s find the lower α quantile for both F1 and F2, namely c1 and c2 respectively.

c1 = max{rp ∈ R : F1(rp)≤ α}

c2 = max{rp ∈ R : F2(rp)≤ α}

Without loss of generality, let’s say c1 ≤ c2.

Next, we use bisection search to find level α VaR for the mixed normal distribution. The
solution must lie in the interval with end points c1 and c2. It’s not hard to see the followings hold

F1(c1) = α

F2(c1)≤ α

and
FR(c1) = π1F1(c1)+π2F2(c1)≤ α;

F1(c2)≥ α

F2(c2) = α

and
FRp(c2) = π1F1(c2)+π2F2(c2)≥ α.

Moreover, cumulative distribution function FRp is non-decreasing, so the solution must lie in the
interval [c1,c2].
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6.6 CVaR Calculation

For a random variable X that follows N(µ,σ2), one can see that

E[X |X ≤ c] =
1

Pr(X ≤ c)σ
√

2π

∫ c

−∞

xexp−
(x−µ)2

2σ2 dx

=
1

Φ(c−µ

σ
)
√

2π

∫ c−µ

σ

−∞

(σy+µ)exp−
y2
2 dy

=
1

Φ

(
c−µ

σ

) [Φ

(
c−µ

σ

)
µ−σφ

(
c−µ

σ

)]

=
1
α

[
Φ

(
c−µ

σ

)
µ−σφ

(
c−µ

σ

)]
(6.8)

where Φ(·) and φ(·) are cumulative distribution function and probability density function of
standard normal distribution.

In the case where return R follows a mixed normal distribution with two components, CVaR can
be expressed as

E[Rp|Rp ≤VaRα ] =
1
α

2

∑
k=1

πk

[
Φ

(
VaRα −µk

σk

)
µk−σkφ

(
VaRα −µk

σk

)]

=
2

∑
k=1

πkΦ

(
VaRα−µk

σk

)
α

µk−
σkφ

(
VaRα−µk

σk

)
Φ

(
VaRα−µk

σk

)
 (6.9)

Note here VaRα is the α level VaR of the mixed normal distribution. As is shown in the previous
subsection, VaR can be found with a bisection search given.

6.7 Stressed States

Stressed states can be defined based on a portfolio manager’s view. Due to the efficiency of
solving a VaR or CVaR optimization with mixed normal distribution, more than one stressed
states can be defined and easily added to the optimization problem. One can also calibrate a

71



mixed normal distribution with historical data [13] [44] [29] and add stressed states.

The stressed states we use is defined in the following way.

1. In a stressed state, we assume the mean of returns is 90% of what it is in the normal state;

2. The returns are more volatile and we multiply the volatility by 1.1;

3. Denote Q as the correlation matrix for normal state, we assume in the stressed state the
correlation matrix is Q

1
2 .

This kind of setup is also used in Chen and Skoglund [12]. In the next section, we show some
numerical results and discuss them.

6.8 Numerical Results and Discussions

The following plots show the VaR and CVaR optimization results. There are two main advan-
tages of this optimization. First, it’s very flexible. More components can be added and the
components weight can be adjusted based on a portfolio manager’s view.

Second, unlike stable distribution [33], PDF and CDF don’t have to be calculated numeri-
cally. Moreover since one can get the explicit expression of CVaR, the optimization problem
can be solved much faster. In this numerical example, 38 different target return values were
chosen over the interval of [0.0036, 0.0073] equally spaced. MATLAB was used to solve the
optimization problem and the code was run on a quattro core i-7 processor @ 2.80GHz with
8 gigabyte memory. It only took 1.4738 and 1.6538 seconds to find the optimal solution to
minimize VaR and CVaR respectively.
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Figure. 6.11 VaR asset allocation

Figure. 6.12 CVaR asset allocation

73



Figure. 6.13 VaR efficient frontier

Figure. 6.14 CVaR efficient frontier
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Appendix A

Pricing of Vanilla Interest Rate Swap

Without loss of generality, we assume the notional principal amount is 1. Each fixed rate payment
Bi, for i = 0,1,. . . , N−1, has the present value

PV (Bi) = KτiD(0, ti+1) (A.1)

where N is the total number of payments; K is the fixed rate determined at t = 0; τi is the time
between the ti and ti+1 as a fraction of a year; D(0, ti+1) is the price of zero coupon bond with
maturity ti+1; ti’s are repricing dates.

Each floating rate payment Ai, for i = 0,1,. . . , N−1, has the present value

PV (Ai) = E[RiτiD(0, ti+1)] (A.2)

where Ri is the spot rate at time ti with maturity ti+1.

Assuming that there is no arbitrage, we should set

Ri =
D(0, ti)/D(0, ti+1)−1

τi
(A.3)
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The present value of the fixed rate leg is

N−1

∑
i=0

PV (Bi) =
N−1

∑
i=0

KτiD(0, ti+1) (A.4)

The present value of the floating rate leg is

N−1

∑
i=0

PV (Ai) =
N−1

∑
i=0

RiτiD(0, ti+1) (A.5)

The equilibrium swap rate Xt is defined such that the time t net present value of the swap is 0,
given that a new zero curve is available at time t. That is to say standing at time t

∑
ti≥t

PV (Bi) = ∑
ti≥t

XtτiD(t, ti+1)

= ∑
ti≥t

RiτiD(t, ti+1) = ∑
ti≥t

PV (Ai)

Solve for Xt

Xt =
∑ti≥t RiτiD(t, ti+1)

∑ti≥t τiD(t, ti+1)
(A.6)

We assume K = X0 so that the initial value of the swap is 0.

To calculate CVA, we need to simulate the daily risk-free mark-to-market value of the vanilla
swap. Let’s take a look at how the net present value of a fixed rate payer swap evolves as time t

changes. Because our focus is CVA and not the value of the swap itself, we further assume that
all τi’s are equal. Given the repricing frequency is m times per year, τi =

1
m .

There are two cases: t is a repricing date or between two repricing dates. For the first case, we
have

NPV (t) =− 1
m ∑

ti≥t
X0D(t, ti+1)+

1
m ∑

ti≥t
RiD(t, ti+1) (A.7)

Apply Eq. A.6, we have

NPV (t) =
Xt−X0

m ∑
ti≥t

D(t, ti+1) (A.8)
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Now the new set of repricing rates should be derived from the new zero curve, we can write
Eq. A.3 as

Ri = m[D(t, ti)/D(t, ti+1)−1] (A.9)

Consider the numerator of Eq. A.6 and express Ri with Eq. A.9

∑
ti≥t

RiτiD(t, ti+1) = ∑
ti≥t

[D(t, ti)−D(t, ti+1)]

= D(t, ti)−D(t, tn+1)

= D(t, t)−D(t, tn+1)

(A.10)

Since D(t, t) = 1, we can rewrite Xt as

Xt = m
1−D(t, tn+1)

∑ti≥t D(t, ti+1)
(A.11)

If t is between two pricing dates, the first floating rate Rbase is determined on the previous
repricing date. Hence Xt should be modified as

Xt = m
(Rbase

m +1)D(t, ti)−D(t, tn+1)

∑ti≥t D(t, ti+1)
(A.12)

NPV (t) =

1−D(t, tn+1)−PV (B) t is repdate

(Rbase
m +1)D(t, ti)−D(t, tn+1)−PV (B) t is not repdate

(A.13)

where PV (B) = X0
m ∑D(t, ti+1).
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Appendix B

Error of Appoximation

We set the initial value of the portfolio as $10,000. On each day there is a profit or loss that
follows a normal distribution with 0 mean and $100 standard deviation. The time horizon we use
is one year or 252 trading days. We choose b to be 0.4. 100,000 paths are used in this simulation.
The following figures show that the first order approximation we use in Chapter 5 can be safely
assumed.

Figure. B.1 Default Probability - Market CDS Spread 100 Basis Point
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Figure. B.2 Default Probability - Market CDS Spread 200 Basis Point
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Figure. B.3 Default Probability - Market CDS Spread 300 Basis Point

Figure. B.4 Max Error

From the first four figures above, we can see that this approximation has small errors that can be
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Figure. B.5 Max Summation of Hazard Rates

tolerated. Fig. B.5 shows how big the summation of hazard rates can be. The last figure on the
next page is a screen-shot of market quoted CDS spread. For one year time horizon, 300 basis
point can cover all levels of ratings except Caa/CCC. For three year time horizon, a rating better
than Baa3/BBB- can be safely used.
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Figure. B.6 Example of Market Quoted CDS Spread
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